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STUDY QUESTION: Do external factors affect euploidy in egg donor cycles?

SUMMARY ANSWER: The study demonstrates that during human assisted reproduction, embryonic chromosome abnormalities may be
partly iatrogenic.

WHAT IS KNOWN ALREADY: Chromosome abnormalities have been linked in the past to culture conditions such as temperature and
Ph variations, as well as hormonal stimulation. Those reports were performed with older screening techniques (FISH), or ART methods no
longer in use, and the subjects studied were not a homogeneous group.

STUDY DESIGN, SIZE, DURATION: A total of 1645 donor oocyte cycles and |3 282 blastocyst biopsies from 42 fertility clinics were
included in this retrospective cohort study. Samples from donor cycles with PGS attempted between September 201 | and July 2015 were
included.

PARTICIPANTS/MATERIALS, SETTING, METHODS: PGS cycles from multiple fertility clinics referred to Reprogenetics
(Livingston, NJ) that involved only oocyte donation were included in this study. Testing was performed by array comparative genomic hybrid-
ization (aCGH). Ploidy data were analyzed using Generalized Linear Mixed Models with logistic regression using a logit link function consider-
ing a number of variables that represent fixed and random effects.

MAIN RESULTS AND THE ROLE OF CHANCE: Euploidy rate was associated with the referring center and independent of almost all
the parameters examined except donor age and testing technology. Average euploidy rate per center ranged from 39.5 to 82.5%. The mean
expected rate of euploidy was 68.4%, but there are variations in this rate associated with the center effect.

LIMITATIONS, REASONS FOR CAUTION: Data set does not include details of the donor selection process, donor race or ethnic origin,
ovarian reserve or ovarian responsiveness. Due to the retrospective nature of the study, associations are apparent, however, causality cannot
be established. Discrepancies in regard to completeness and homogeneity of data exist due to data collection from over 40 different clinics.
WIDER IMPLICATIONS OF THE FINDINGS: This is the first study to show a strong association between center-specific ART treat-
ment practices and the incidence of chromosome abnormality in human embryos, although the meiotic or mitotic origin of these abnormal-
ities could not be determined using these technologies. Given the widespread applications of ART in both subfertile and fertile populations,
our findings should be of interest to the medical community in general as well as the ART community in particular.
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Introduction

Genetic screening of thousands of human embryos in the past two
decades has clearly established that the incidence of numeric chromo-
some abnormalities is very high following ovarian stimulation and IVF,
overall exceeding 50% of biopsied embryos (Munné et al., 1995; Magli
etal., 2001; Ata et al., 2012). A majority of aneuploidies are meiotic in
origin and known to be maternal age related (Hassold et al., 1980).
Other chromosome abnormalities occur post activation, during
resumption of meiosis Il and subsequent mitoses, leading to complex
abnormalities, polyploidy and mosaicism in resulting embryos (Munné
etal., 1994; Munné, 2006; Magli et al., 2007). Post-meiotic abnormality
rates are constant across age groups (~35% in Day 3 embryos), while
meiotic aneuploidy rates increase with advancing maternal age, from
29% in women <35 years of age to 47% in women 40 years and older
(Munné et al., 2007).

Experimental evidence and clinical data suggest that, apart from
maternal age, a number of treatment-related factors may affect the
incidence of chromosomal imbalance in embryos. These factors include
culture conditions and gamete manipulation, in vitro gamete ageing, high
oxygen tension during culture and immaturity or post maturity of oocytes
at the time of fertilization (Badenas et al., 1989; McKiernan and Bavister,
1990; Pickering et al., 1990; Santalé et al., 1992; Almeida and Bolton,
1995; Munné et al., 1997). Other studies have found significant differ-
ences in chromosome abnormalities depending on medication type
(Weghofer et al., 2008, 2009) or dosage (Baart et al., 2007; Rubio
et al., 2010) for ovarian stimulation.

One study using fluorescent in situ hybridization (FISH) to assess
whole cleavage stage human embryos suggested that the incidence of
mosaicism differed among different fertility centers (Munné et dl.,
[997). Munné et al. (2006) also examined chromosome abnormality
rates in egg donors and found significant differences between cycles in
the same donor as well as differences between donors. However, all
these studies had multiple limitations, including the FISH technique
(which did not analyze all chromosomes), single blastomere biopsy in
cleavage stage embryos and small or heterogeneous population of
patients examined.

In the nearly two decades that have passed, improvements have
been made in both diagnostic and embryo culture technologies: With
the introduction of array comparative genomic hybridization (aCGH)
(Gutiérrez-Mateo et al., 201 1; Ata et al., 2012), single nucleotide poly-
morphism (SNP) arrays (Treff et al., 2010; Rabinowitz et al., 2012),
quantitative PCR (Treff et al., 2012) and next generation sequencing
(NGS) (Fiorentino et al., 2014; Wells et al., 2014), combined with
trophectoderm biopsy (McArthur et al., 2005; Scott et al., 2013), the
question of whether some abnormalities detected in early human
embryos are treatment-related deserves to be reinvestigated.

Accordingly, we initiated a retrospective analysis of trophectoderm
biopsy results for oocyte donation cycles attempted in multiple fertility
clinics, asking whether we could identify variation in the level of
euploidy among the clinics. Oocyte donors are young, presumably fer-
tile women in whom oocyte chromosome abnormalities are expected
to be low (<40%; Ata et al., 2012). Thus, the study population is rela-
tively homogeneous. All genetic analyses of biopsies were conducted
at a single reference laboratory, eliminating technical variation in test-
ing as a confounder of euploidy rates. We found that the variable
‘referring center’ had a significant influence on euploidy rate, in addition

to the expected effect of maternal age and changes in technology
through time.

Material and Methods

Patient selection

PGS cycles from multiple fertility clinics referred to Reprogenetics
(Livingston, NJ) between September 201 | and July 2015 and that involved
oocyte donation were included in this study. Oocyte donors were selected
by each fertility center; the reasons for offering PGS for egg donation cycles
were not specified.

Signed informed consent for the PGS procedure was obtained from
oocyte recipients by each center and sent to Reprogenetics for all patients.
As part of the standard PGS referral procedure, age of donors and recipi-
ents and biopsy data were shared with Reprogenetics. Patient data were
de-identified by the Principal Investigator after the PGS procedure and the
PGS results were compiled for analysis. This investigation was approved by
Aspire IRB as a retrospective study of archived clinical data with de-
identification (Protocol number PGSP-2015).

Analysis of samples

Blastocyst biopsy was performed by each clinic at the blastocyst stage,
either on Day 5 or Day 6 of development. All centers used a laser to per-
form the biopsy. Biopsied samples were sent to Reprogenetics for analysis
by array CGH. Biopsy methodologies were most likely not identical; the
impact of the procedure itself on the diagnosis (Capalbo et al., 2015) was
not considered here but will be assessed in future studies. However,
embryos with a diagnosis of degraded DNA were excluded from the ana-
lysis based on the possibility that poor technique could lead to this out-
come. Array CGH has been extensively validated in single-cell biopsies as
well as multi-cell blastocyst biopsies and in both instances, the misdiagnosis
rate was below 2% (Colls et al., 2012; Gutiérrez-Mateo et al., 201 1;
Capalbo et al., 2013; Kung et al., 2015).

It should be noted that there are two other potential sources of uncer-
tainty in this data set: first, a limited number of vitrified/warmed oocyte
donation cycles were included in the database but these were not distin-
guishable. However, aneuploidy rates have not been shown to increase
following oocyte vitrification (Forman et al., 2012; Goldman et al., 2015).
Second, oocytes from one donor cycle may have been used for multiple
recipients but because this was not specified in the database, in the ana-
lyses, each cycle was treated as an independent cycle.

Samples were classified as euploid if they had the same chromosome
content as the control DNA, that is 46,XX or 46,XY, aneuploid if they had
an extra or missing chromosome, or segmental abnormal if they had a
missing or extra piece of chromosome above 6 MB in size. aCGH can
occasionally identify blastocyst biopsies as mosaic (4% according to Greco
et al, 2015) and in those instances the criteria at the time were to classify
these embryos as abnormal. In this study, all chromosome abnormalities
(aneuploidy, mosaicism and segmental abnormalities) were grouped
together for purposes of analysis.

Array CGH was performed as described previously (Colls et al., 2012;
Gutiérrez-Mateo et al, 2011) with some minor modifications. In
September 2011, a-CGH was performed using the 24SureV3 (lllumina,
San Diego, CA) single channel method, which uses male and female refer-
ence DNAs, thus each sample was compared to two male and two female
references. The analysis software was BlueFuse (lllumina, San Diego, CA)
versions 2.4 (September 201 1), 2.6 (December 201 1), 3.0 (August 2012),
3.2 (August 2013) and 4.1 (August 2014). From version 2.4 to 2.6, there
was no impact on euploidy detection capabilities. The better algorithms
included in the later versions (3.0 onwards) of BlueFuse allowed the
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detection of partial gains or losses of DNA of a size of 6 MB or larger,
which were diagnosed as sub-chromosomal abnormalities. The change in
technology was considered as a variable, referred to as ‘testing technology’
in the current analysis.

Donor and patient demographics were obtained from each clinic either
through a questionnaire, the testing requisition form submitted by each
center or through the PGS portal of the elVF database (PracticeHwy,
Dallas, TX). Testing results and all other relevant information were stored
in a Reprogenetics database, and this database was used for data analysis.

Statistical analysis

The rate of euploidy per cycle was determined by dividing the number of
euploid embryos by the sum of euploid and chromosomally abnormal
embryos. Embryos with no diagnosis and/or degraded DNA were
excluded. The average rate of euploidy per center was determined as the
arithmetic average of euploidy rate for all donor cycles at the center.

Cycle-specific variables with fixed and random effects were considered
in the analysis. Those considered to be included: testing technology (x)),
age of the donor (x3), number of embryos with a ploidy diagnosis (x3), day
of biopsy (Day 5 or Day 6) (x4), diagnosis of male factor (xs), use of donor
sperm (xg), age of the recipient (x7) and age of the recipient’s male partner
(xg) (female partner age was used to estimate the male partner’s age). The
referring center was considered a variable with random effect (g.). The
euploidy state(E) is defined as the dichotomous variable that indicates
whether an embryo is euploid (E = 1) or not (E = 0). We analyzed the
euploidy state of the sample by using a generalized linear mixed model
(GLMM) with a logistic link function:

8
logit P(E= 1)) = a + Zﬁi-x,-+ec+ e,

i=1

where a is the interception, f; the coefficient for each fixed variable x; and
€ is the residual random variable. This GLMM will give insight about which
effects (fixed or random) have significant or non-significant influence on
euploidy rate.

All fitting was performed to detect parameters that were associated with
the incidence of euploidy for each donor cycle. The variables that remain in
the model were established by using a backward elimination procedure,
removing those the removal of which does not reduce the deviance (imbal-
ance) of the model fit, and which prove to be non-significant.

The Wilcoxon signed-rank test was used to determine differences in
euploidy rates among the centers.

Results

Cycles with donors >36 years (n = 19), unreported donor age or
missing biopsy date were excluded from the analysis. One cycle with
only undiagnosed blastocysts was not included in the analysis.

The data set thus included a total of 42 centers with 126 physicians
referring 1665 PGS cycles for 1549 recipient between September
2011 and July 2015. Average donor age was 25.5 + 3.03 years (range:
[9-35 years).

A total of 13595 blastocysts were analyzed, of which 313 (2.3%)
had no diagnosis, 177 had amplification failure and 136 had degraded
DNA. Of the 13282 diagnosed blastocysts, 9162 (68.98%) were
euploid and the rest were chromosomally abnormal. We chose to
examine euploidy rate per donor cycle, which ranged from 0 to 100%.
Euploidy rates were not normally distributed and average euploidy
rate per donor cycle was 68.5 + 22.2%.

Identifying associations between euploidy
and cycle-specific variables

Multiple GLMM with logistic regression was used to examine the rela-
tionship between the incidence of euploidy per donor cycle and the
independent variables described above. The analyses showed that
only two fixed effect variables, namely, donor age (P = 0.04) and test-
ing technology (P = 0.000007) along with the random effect variable
referring center were significant for euploidy. With respect to the
referring center, variance was significantly nonzero (P = 0.002) thus
leading to the conclusion that the center influences the incidence of
euploidy. Inclusion of the fixed effect variables in the model provided
minimal improvement of 0.21% compared to the simplest model that
only considered the random effect represented by the referring cen-
ter. None of the other variables examined (number of embryos, diag-
nosis of male factor, use of donor sperm, age of the recipient or age of
the recipient’s male partner) was significantly associated with the
donor cycle-specific euploidy. On the other hand, the correlation
intraclass coefficient showed that 8.34% of the variability in euploidy
rate is due to the center. The between center variance can also be
summarized using the so called median odds ratio (MOR) (Larsen
et al., 2000). The estimation of the MOR for this random variable leads
to a value of 1.33, showing that (in the median case) the residual het-
erogeneity between centers increases by [.33 times the individual
odds ratio of euploidy when randomly picking out two patients in dif-
ferent centers. Although it is a modest MOR value, the variation turns
out to be significant as the GLMM analysis shows and it deserves to be
taken into account for explaining euploidy rate. Inter-center differ-
ences are shown in Fig. |.

To verify that the observed effect of these factors on euploidy rate
was not due to other confounding variables, several GLMM models
were generated by eliminating these potential confounders gradually.
In these models, it was observed that the coefficients associated with
these factors were hardly modified (<10%) after removing other fac-
tors (both fixed and random). This suggests that there are in fact no
confounding variables in the model and that the random factor asso-
ciated with the center is not an effect derived from other factors that
were considered in this study.

Discussion

In this study, we have demonstrated by using a GLMM analysis that the
rate of euploidy in embryos generated from donated oocytes is treat-
ment center-dependent.

Our analysis also showed a significant association between donor age
as well as testing technology and the diagnosis of euploidy in embryos. It
should be noted, however, that our data set did not include details of the
donor selection process, whether donors were directed or anonymous,
donor race or ethnic origin, ovarian reserve or ovarian responsiveness.
We also did not collect information on donor selection criteria used by
each center. Potential impact of these factors on chromosome status of
donor oocytes would have to be further investigated.

In agreement with a previous study (Ata et al., 2012), we found that
the number of blastocysts biopsied in each cycle was not associated with
euploidy rate. Although the number of embryos biopsied may not be
related to euploidy rates (Ata et al., 2012), there may be an optimal num-
ber of eggs for achieving maximum pregnancy rates (Sunkara et al., 201 ).
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Figure | Mean incidence of embryo euploidy (%), calculated for individual centers, weighting each donor cycle equally regardless of the number of
embryos per cycle. The mean incidence of donor cycle euploidy for each center is displayed as a shaded bar (error bars represent +£95% confidence
limits for the mean value). The overall mean incidence of euploidy for all donors from all centers (68.5%) is displayed as a bold horizontal black line.
The number of donor cycles is displayed at the bottom of each center’s bar. Centers with an incidence of euploidy that was significantly different from
the overall mean incidence of euploidy using Wilcoxon signed-rank test are shaded in red (significantly lower euploidy) or in green (significantly higher
euploidy). Centers with an incidence of euploidy that was not significantly different from the overall mean incidence of euploidy are shaded in gray.
Center ID number represents the center’s ranking from lowest to highest incidence of euploidy.

The observation of Sunkara et al. (2011) could mean that hormonal
stimulation may affect euploidy independent of embryo number or that
it affects uterine receptivity. Corroborating evidence is also provided
by the study of Baker et al. (2015), showing that live birth rates diminish
with increasing dosage of gonadotrophins, nearly independently of
maternal age (Baker et al., 2015). Taken together, it may be speculated
that differences in donor ovarian stimulation regimens used by different
treating centers in this study may be a contributing factor to the
observed differences in euploidy rates.

Oocyte donor age was found to affect euploidy rate as expected
and shows that the increase in chromosome abnormalities observed
with increasing maternal age is already occurring in this young group of
oocyte donors.

Testing technology was also expected to produce some differences in
chromosome abnormality rates. For example in the earlier part of the study
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period, segmental abnormalities were not identified but these abnormalities
accounted for ~5% of all chromosome abnormalities in later analyses.

Paternal age is known to influence reproductive outcome and thus
potentially euploidy (Frattarelli et al., 2008). However, our analyses
showed no significant relationship between euploidy rate and male part-
ner age. Likewise, the use of donor sperm did not influence euploidy rate.

Using SNP array analysis of embryos, most embryonic meiotic aneu-
ploidies have been found to be maternal in origin (Treff et al., 2010;
Rabinowitz et al., 2012; Konstantinidis et al., 2015), and although male
factor infertility can increase chromosome abnormality rates in embryos
(Silber et al., 2003; Dubey et al., 2008; Magli et al., 2009; Sanchez-Castro
et al., 2009; Rodrigo et al., 2010), male factor was described as a diagno-
sis in only 9.5% of the cycles in this study. Euploidy rate for these cycles
was not significantly different from the incidence expected for the entire
donor pool.
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Despite differences in the proportion of blastocysts biopsied on Day 5
versus Day 6 at different centers, this proportion was not associated
with euploidy rate.

Of the many center-specific factors that could explain the differ-
ences among centers, subtleties of case management, such as drug
type, dosage and duration for ovarian stimulation, and even follicular
aspiration methodologies could influence oocyte chromosome integ-
rity. Physicians may have individual preferences for FSH dosage for
donors and the number of eggs they aim to collect. Higher FSH
dosages in the presence of normal ovarian response may be associated
with poorer outcomes (Baker et al., 2015), which may be oocyte qual-
ity related. Physicians may also follow different routines during follicle
aspiration, for example which follicles they choose to aspirate and at
what negative pressure, whether they tend to flush follicles or not, and
differences in time between hCG administration and egg retrieval.
Smaller follicles harbor more immature eggs, which have a higher inci-
dence of chromosome abnormalities, and following IVM and IVF, these
eggs lead to a higher incidence of multinucleation (De Vincentiis et al.,
2013; Alvarez Sedo et dl., 2015); multinucleation, in turn, has been asso-
ciated with a high rate of chromosome abnormality (Kligman et al., 1996;
Munné, 2006; Munné et al., 2007). Contaminants and volatile compounds
could be also contributing to these differences in aneuploidy rates (Hunt
et al., 2003, Susiarjo et al., 2007). On the other hand, some of the differ-
ences observed here could be produced by culture conditions and affect
post-meiotic abnormalities (Munné et al, 1997; Munné and Alikani,
201 1). Indeed, a preliminary study comparing different culture media also
detects significant differences in chromosome abnormalities between
treatments, although pH values were also different (Hickman et al., 2016),
and another study using NGS showed significant differences between cen-
ters in aneuploidy and mosaicism rates (Sachdev et dl., 2016). Our study,
by using aCGH was not able to assess the origin of the abnormalities.

This study has some limitations. First, this is a retrospective observa-
tional study. The analyses used in the study can show associations
between variables, but they cannot establish causality. Nonetheless,
retrospective studies of this type are needed in order to design appro-
priate prospective, randomized studies that rigorously test the associa-
tions of interest. Second, the study uses a large database containing
data from >40 clinics. This is an enormous advantage with respect to
sample size, but a disadvantage with respect to data completeness and
homogeneity. A number of relevant parameters, including stimulation
protocols, were not available in this data set and could not be analyzed in
this first phase of the study; these will be considered in follow-up studies.

In summary, this is the first study to show a strong association
between center-specific ART treatment practices and the incidence of
chromosome abnormality in human embryos generated from donated
oocytes. Further elucidation of the nature of the different practices
that may be contributing to higher or lower euploidy rates should pro-
vide opportunities for improving clinical outcomes of ART. Considering
the ever-wider applications of ART in both subfertile and fertile popula-
tions, our findings should be of interest to the medical community in gen-
eral as well as the ART community in particular.
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