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Abstract 
Animal models have been the main resources for drug discovery and prediction of drugs’ 

pharmacokinetic responses in the body. However, noticeable drawbacks associated with 

animal models include high cost, low reproducibility, low physiological similarity to 

humans, and ethical problems. Engineered tissue models have recently emerged as an 

alternative or substitute for animal models in drug discovery and testing and disease 

modeling. In this review, we focus on skeletal muscle and cardiac muscle tissues by first 

describing their characterization and physiology. Major fabrication technologies (i.e., 

electrospinning, bioprinting, dielectrophoresis, textile technology, and microfluidics) to 

make functional muscle tissues are then described. Finally, currently used muscle tissue 

models in drug screening are reviewed and discussed.  
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1. Introduction 
It is obvious that harmonized movement is one of the most significant and common 

features of humans, which occurs by utilizing their muscles. Muscle tissues are made up 

of cells with the ability to change their length through contractile process. Skeletal muscle 

and cardiac muscle are the most important groups of vertebrates’ muscles. A muscle that 

sticks to a bone of the skeleton and is responsible for preserving position and moving the 

body is called skeletal muscle and a heart muscle is named cardiac muscle. Microscopic 

images of skeletal and cardiac muscle cells (striated muscle) revealed a series of repeating 

units called sarcomeres, whereas smooth muscle cells lack this characteristic (1, 2). 

Cardiomyocytes (CMs), endothelial cells (ECs), and cardiac fibroblasts constitute the 

native myocardium (3). The synchronous contraction of heart occurs due to CMs, which 

take up almost 90% of the myocardium volume (4). Extracellular matrix (ECM) 

surrounds CMs and provides physical support and biochemical cues to the cells (5). In 

particular, mitochondria supply continuous adenosine triphosphate that is needed in 

maintaining the cardiac contraction. CMs are connected end to end by intercalated disk 

junctions to form cardiac muscle (Figure 1-A). Besides overall resemblance between 

skeletal and cardiac tissues, there are some differences between them. Human skeletal 

muscle exhibits higher degree of multi-nucleation and a cardiac muscle. Skeletal muscles 

contract in response to a specific stimulus conveyed via a neuro-muscular junction and 

can be controlled at any time, whereas cardiac muscle exhibits autonomous activity and 

spontaneous contractions in cell culture (1). A heart muscle has to contract over 100,000 

times a day without any break and relaxation (based on ordinary 70 beats per minutes) 

(6). . 

Skeletal muscles, constituting about 40 percent of our body’s weight, are made up of long 

cylindrical cells containing many nuclei, which are skeletal muscle fibers. The length and 

diameter of fibers differ from a few millimeters to more than 10 cm and 5 to 10 µm, 

respectively. Despite their long length, only few fibers reach the length of muscle tissue.. 

By magnifying the muscle fiber we reach myofibrils, which are also called myotubes 

(filamentary bundles with the approximate diameter of 0.1 µm, Figure 1-B) (7). 

Myofibers are made of a large number of sarcomeres that connect end to end with each 
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other. Sarcomeres, as essential contractile units in striated muscles are separated from 

adjacent ones using Z-line (a thin border line between sarcomeres). The contractile 

process of skeletal muscle does not occur without interaction between two fundamental 

proteins in sarcomeres (i.e., myosin and actin) (1). One way to characterize a mature 

skeletal muscle is the analysis of sarcomere structure and contraction ability of muscles 

(8). 

Cell survival, motility, and communication take place inside the ECM, which fills spaces 

among cells with specific biomolecules. In addition to provide mechanical structure for 

cells, the ECM is a suitable milieu for cell-cell and cell-matrix interactions, migration, 

differentiation, elongation, and proliferation of cells (9). The ECM for skeletal muscle is 

mainly composed of collagen type I with minor quantities of collagen types III, IV and 

V, elastin, fibronectin, and laminin (10). In the other hand, the ECM for cardiac muscle 

mostly contains collagen types I and III, elastin, and glycosaminoglycans (11).  

In what follows, we first describe the most important fabrication methods to make 

functional muscle tissue constructs. Current applications of engineered muscle tissues in 

disease modeling and drug screening are then reviewed and discussed. 

 

2. Engineering muscle tissues  
Cardiovascular diseases (CVDs) (e.g., myocardial infarction (12)) are among the most 

life-threatening disorders world-wide. According to the American Heart Association, 

CVDs are the leading cause of death internationally (13). It is anticipated that by 2030, 

23.6 million people will die because of CVDs, such as heart failure, arrhythmia, and heart 

valve problems. CVD-related parameters may affect cholesterol, fat, and insulin levels in 

the body (14). In addition, loss of skeletal muscle functionality is inevitable due to muscle 

diseases, aging, and injuries. Due to the paucity of allograft muscle tissues for 

transplantation, muscle tissue engineering as a promising strategy has drawn attention to 

provide alternative methods to overcome muscle diseases and injuries.  
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Tissue engineering, with the ultimate goal of developing functional tissues, aims to 

recover or replace damaged or diseased tissues and organs (2). As a critical point in tissue 

engineering, designing and fabricating a suitable microenvironment for cells that 

resembles the natural ECM is playing an important role. Scaffolds as the biomimetic 

ECM should have structural, mechanical, and biological properties close to those in the 

ECM. In addition, they need to be biocompatible and biodegradable. It is considered that 

reproducing physico-chemical properties of  each specific native tissue environment 

provides ideal design criteria for tissue engineering scaffolds (15). Microfabrication 

techniques have been utilized in fabricating functional tissue constructs during the past 

decades. Here, we highlight commonly used technologies (i.e., electrospinning, 

bioprinting, dielectrophoresis (DEP), textile approaches, and microfluidics) in 

manipulating muscle cells and making functional muscle tissues.   

 

2.1. Electrospinning  

The history of electrospinning technique goes back to the 1930s when Formhals 

synthesized fibers utilizing electric charges (16). While this technique did not gain 

scientific attention for many years, it has recently found widespread applications in tissue 

engineering (17), drug delivery (18), textile (19), filtration (20), catalysis (21), nanofiber 

reinforcement (22), and wound healing (23). Besides scientific applications, the 

electrospinning technique has various industrial applications as reviewed elsewhere (24).  

Electrospinning is a simple, low-cost, and adaptable approach for synthesizing polymeric 

fibers from a polymer melt or solution using an electric field. The size of fibers (ranging 

from a few nanometers (nanofibers) to microns) can be controlled by some factors, such 

as solution feed rate, applied voltage, and viscosity of polymeric solution (Figure 2-A) 

(2, 25, 26). The main reason to utilize the electrospinning technique for tissue engineering 

applications is morphological resemblance between electrospun fibers as the scaffold and 

natural ECM, such as Type I collagen (2, 27). Besides cell attachment and proliferation, 

desirable oxygen and nutrient transport properties can also be achieved as a result of high 

surface area/volume ratio and microporosity of electrospun fibers (28, 29). By choosing 

appropriate material or composite for electrospun fibers, it is possible to tune proper 

geometries and properties of fiber scaffolds (30).  
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Precise control of fiber alignment is a key parameter for application of electrospun fibers 

in muscle tissue engineering. Scaffolds with anisotropic or unidirectional orientation 

guide morphogenesis of muscle cells and boost cell functionality compared to randomly 

oriented fibers. Choi et al. used a mixture of polycaprolactone (PCL) and collagen as 

electrospun nanofiber scaffolds and seeded human skeletal muscle cells on them. Their 

results showed myotube length on the unidirectional oriented scaffolds was more than 

twice of that observed on randomly aligned ones, whereas no noticeable differences were 

reported between myotube diameters (31). In another study, poly(lactic-co-glycolic acid) 

was employed to fabricate highly aligned electrospun fibers with a diameter ranging from 

100-nm to 1.4-µm. The synthesized scaffolds without any surface modification provided 

appropriate conditions for cell attachment, alignment, differentiation, and proliferation of 

C2C12 murine myoblasts (26). 

 

Applying electrical stimulation to electrospun fibers (for example PCL or polyurethane 

(PU) fibers) can improve tissue formation and functionality. Adding multiwalled carbon 

nanotubes (CNTs) in electrospun fibers also induced muscle cell differentiation and 

increased electrical conductivity of fibers (32). Electrospun CNT-PU scaffolds enhanced 

differentiation of myoblasts to myotubes under electrical stimulation compared with the 

same scaffolds without stimulation (15). Liao et al. studied the effect of electrical 

stimulation on muscle cells cultured on aligned PU electrospun fibers. Their results 

showed an increase from 70% to 85% of striated myotubes after applying electrical 

stimulation on day 7 of culture. Higher cellular elongation and alignment and more 

striated myotubes were also observed on aligned fibers compared with random fibers (8).  

 

Besides widespread applications of the electrospinning technique, there are few practical 

limitations (2). For example, as fiber diameter decreases to the nanoscale, the average 

pore size of the scaffold and consequently cellular infiltration into the fibers decreases. 

This results in non-uniform dispersion and migration of cells onto the electrospun 

nanofibers that restrict vascularization and tissue formation (33). Moreover, a potential 

source of cytotoxicity are chemical residues from electrospun fibers. It is suggested to 

utilize water as a solvent in order to prevent such toxicity (34). Insufficient mechanical 

strength is a challenge for some electrospun scaffolds, which is necessary for load bearing 
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applications and appropriate biodegradation of fibers (35). Finally, slow rate of 

production is an issue that discourages people from using the electrospinning technique 

(36).   

 

2.2. Bioprinting 

In 1986 Charles W. Hull called his three-dimensional (3D) printing method 

“stereolithography” for the first time. He utilized ultraviolet light to cure consecutively 

printed thin layers of material to make a 3D construct (37). This technology is able to 

rapidly fabricate micro- and macroarchitectures without compromising the cellular 

viability (38). A 3D tissue construct can be formed from precise placement of 

biomaterials and living cells sequentially using the 3D printing approach. The main 

bioprinting methods include inkjet bioprinting (39-41), laser-assisted bioprinting (LAB) 

(42-44), and extrusion-based bioprinting (EBB) (45-47). Inkjet bioprinting method is the 

most prevalent one, which utilizes thermal (39) or acoustic (48) forces to expel desirable 

amounts of materials on the anticipated location. However, liquids can only exit from 

inkjet bioprinters and need further treatment to form solids. LAB is based on laser-

induced forward transfer in which metals, peptides, DNA, and cells can be printed (43). 

Unlike other methods, LAB is nozzle-free and enables printing of materials with a wide 

range of viscosity and cells with high cell viability and functionality. Despite its 

advantages, slow flow rate and high setup cost are the major concerns associated with 

using this technique (49). EBB is appreciated for its notable deposition and printing speed, 

affordable and commercialized hardware, and ability to print a wide range of bioinks, 

such as cell encapsulated hydrogels (50), microcarriers (51), and cell aggregates (52). 

Compared to the aforementioned methods, limited resolution, solidification process, and 

low cell viability due to shear stress of the nozzle are major disadvantages of EBB (53). 

Bioprinting is an outstanding technique to spatially pattern and distribute cells and ligands 

inside scaffolds. Kang et al. recently introduced an integrated tissue-organ printer for 

creation of tissue structures (Figure 2-B). They printed mouse myoblasts to form 3D 

muscle structures (15 mm × 5 mm × 1 mm). At day 3 of culture, linear stretching and 

compaction of viable cells were observed and the formation of muscle-like constructs 

having aligned myotubes was reported at day 7 of culture. After 2 weeks of implantation, 
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nerve integration and vascularization were revealed by the expression of specific markers 

(54). In another study, differentiation of C2C12 muscle cells incorporating chemical and 

geometric cues was investigated. An inkjet bioprinter was utilized in printing bone 

morphogenetic protein-2 and fibroblast growth factor-2 to induce the differentiation of 

mouse C2C12 myoblasts into tenocytes and osteoblasts, while in the absence of growth 

factors myotubes were formed (55).  

 

2.3. Dielectrophoresis  

DEP is an electrokinetic technique applied for cellular characterization (56), particle 

separation (57, 58) and manipulation (59-61), and fabrication of biomimetic scaffolds (62, 

63). This technique was first introduced by Herbert Pohl in the 1950s (64). DEP is defined 

as the motion of dielectric particles within a medium due to an exposed inhomogeneous 

electric field (65, 66). Migration of particles occurs as a result of an electric field gradient 

in medium. An AC field is usually used to induce the polarization of particles and medium. 

The DEP force is influenced by particles’ dielectric behavior and size, frequency of 

electric field and electrical characteristics of medium (67). If the particle is more 

polarizable compared to the occupying medium, the particle is driven to areas with large 

electric fields. This occurrence is noted as positive DEP. On the other hand, negative DEP 

refers to the case where the particle is less polarizable in comparison to the medium. This 

leads to migration of particles from regions of high electric field (68).  

DEP was employed for aligning nanoparticles in scaffolds for tuning their characteristics 

for tissue regeneration and cell therapy applications (69). For example, we successfully 

fabricated functional skeletal muscle tissues using dielectrophoretically aligned CNT-

hydrogel scaffolds (70). The CNTs were aligned in gelatin methacrylate (GelMA) 

hydrogel via DEP for controlling electrical and mechanical properties of scaffolds 

(Figure 2-C). The Young’s modulus of the resulted hydrogel was 23.4 ± 0.2 kPa (close 

to the elasticity of the native muscle tissue). In addition, the hydrogel showed anisotropic 

electrical conductivity for fabrication of aligned and contractile muscle myofibers (71). 

Different factors, such as voltage, frequency, and ionic conductivity of medium can 

influence properties of dielectrophoretically manipulated scaffolds (72). Dunne et al. 

explored effects of some parameters on properties of silk nanofibrous scaffolds prepared 
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by the DEP technique. They reported that decrease in the fibril size can be achieved by 

increasing the DEP frequency (62). However, there are some limitations and 

disadvantages associated with the DEP approach. For example, dynamic particles have 

altering dielectric characteristics based on their size and shape. Therefore, particles of the 

same type may have different dielectric properties in DEP devices (66). In addition, DEP 

needs precise sample handling in small amounts, which limits its application in large scale 

(73). 

 

2.4. Textile technology  

Textile technologies, originally developed for manufacturing clothes and ornamental 

fabrics, have newly become a promising approach for fabrication of fibrous scaffolds in 

tissue engineering (74-76). The variety of textile manipulation approaches (e.g., weaving 

(Figure 2-D) (77, 78), knitting (79, 80), and braiding (81, 82) provide accurate control 

over pore size, surface topography, and pore interconnectivity of fibers and cellular 

distribution within them (83). Constituent units of textile fibers in tissue engineering can 

be natural (84), synthetic (85, 86), and composite (87, 88) fibers. The Acorn CorCapTM 

cardiac support device is an example of a textile based device used in the cardiac field 

(89). In addition to mechanical property, each device or graft provides cellular attachment, 

proliferation, and alignment. Therefore, textile-based grafts and devices can be specified 

for different tissues or organs (77). 

 

Some research groups have utilized textile techniques in cardiac tissue engineering (90). 

This fabrication method can provide suitable mechanical properties and cellular 

alignment for CMs. As an outstanding example, knitted mesh of neonatal rat heart cells 

and fibrin formed a hybrid cardiac construct (91). Hyaluronan benzyl ester was selected 

as a knit, since hyaluronan is available in the native cardiac tissue. The presence of knit 

enhanced the mechanical properties of constructs, which experienced cyclic mechanical 

load in the experiment. This hybrid cardiac construct revealed higher modulus and tensile 

strength than the native myocardium. Other fabrication methods can be incorporated with 

textiles to achieve desirable characteristics of scaffolds. Şenel-Ayaz et al. utilized both 

electrospinning and textile technology to create textile-template electrospun fibers 
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showing various 3D micropatterns based on the type of fabric used as a template (83). In 

addition, heart valve engineering has also been performed based on textile and 

electrospinning methods (92, 93). By incorporating micromolding technique with textile 

technology, Hosseini et al. introduced a simple approach, called fiber assisted molding 

(FAM) for making curved micropatterns (94). They utilized FAM to fabricate 3D helical 

structures to achieve highly aligned myoblasts and myotubes. 

 

2.5 Microfluidics 

Microfluidics is a technology that is generally defined by perfusion of fluids in channels 

with miniaturized diameters ranging from tens to hundreds of micrometers (95). 

Microfluidic systems reduce sample volume compared to macroscale counterparts and 

thereby decrease reagent cost (96). Microfluidic techniques gain advantages from specific 

features of the microscale world, such as laminar flow that prevents fluid mixing in the 

microchannels (97). Besides surface tension, capillary force is a predominant factor that 

should be considered in the design of microfluidic platforms (98). Microfluidics is an 

interdisciplinary field that has a wide range of applications in biomedical engineering, 

chemical biosensors, cell analysis, and diagnostics (99). For instance, lab-on-a-chip 

concept that has attracted worldwide attention in the last decade is mainly relies on 

microfluidics (100). 

In addition to heart-on-chip platforms, microfluidic technology is utilized for many 

biomedical applications including bio-actuators (101), contraction analysis of cells (102), 

and dynamic cell culture models (103). Shimizu et al. fabricated a microfluidic device to 

achieve 3D contractile skeletal muscle tissues. They used C2C12 cells embedded inside 

collagen and made gels inside microchannels. The muscle contraction was observed 

under different electrical stimulation conditions (twitch (1 Hz) and tetanus (50 Hz)). 

In addition to disease modeling and drug screening, engineered muscle tissues may have 

other applications in regenerative medicine (104), bio-actuators or bio-robots (105), 

biological electrochemical systems (gaining electricity and other source of energy from 

muscle contraction) (106), and food industry (107). These important applications are not 

the scope of this review. Therefore, in the next section, we focus on the applications of 

engineered muscle tissues in disease modeling and drug screening.  
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3. Applications of engineered muscle tissues in drug screening 

Most studies for drug development use animals to model pharmacological response of the 

human body. Physiological and metabolic differences between animals and humans make 

it difficult to precisely model the effect of drugs. Recent advances in biomaterial 

development, tissue engineering, and microscale technologies have helped to develop 

functional organs-on-a-chip platforms for different drug screening and diagnostics 

applications. However, despite significant advances in the field of tissue engineering, 

little work has been done towards using 3D engineered tissues as functional tools in 

pharmacological research and development. Likewise, little investigations have been 

devoted to using 3D muscle tissues in pharmacological applications. 

In vitro studies should mimic the natural response of human tissues in laboratory. To 

achieve this goal, a culture system should be constructed according to the physiology of 

healthy or diseased tissue or organ. Generally, several microenvironment cues should be 

provided for muscle cells to enhance their maturation and functionality in vitro (108). For 

example, growth factors and other supplements have been used as the biological cues to 

regulate muscle cell behavior (109). Insulin-like growth factor 1 (110) and transforming 

growth factor beta 1 (111) are among the most important growth factors that enhance the 

maturation and contractility of muscle cells. In addition, substrate properties play an 

important role in proliferation and differentiation of muscle cells by providing elastic 

substrates, similar to the native niche (112). 3D cell cultures barricade improper signaling 

and provide better cell-cell and cell-ECM communications compared to 2D platforms 

(113). Mechanical stretch regimes (passive tension or active forces) revealed potential 

capability to elevate the maturation and differentiation of different cell types especially 

muscle cells. For instance, Montevecchi et al. seeded C2C12 cells on electrospun 

membranes (114). Their results showed that by applying cyclic stretching (three 

successive movement with frequency of 0.5 Hz, which induced 3.4% deformation of 

substrate), myosin accumulation was increased eight times compared to non-stimulated 

cultures. Besides applying mechanical cues to enhance cell differentiation, alignment, and 

functionality (115), electrical stimulation can exercise muscle cells and persuade cells to 

obtain and improve their structural and functional ability (116). We electrically stimulated 
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myotubes through interdigitated array of Pt electrodes deposited under the muscle tissue. 

Electrical stimulation of C2C12 myotubes (voltage and frequency were 6 V and 1 Hz) 

increased the alignment and elongation of myotubes (Figure 3-A, B) (117).     

 

There are other factors that need to be considered for mimicking the natural environment 

of muscle cells, such as cell alignment (118). In Figure 3-C, electrical and topographical 

cues are incorporated to achieve aligned myotubes (71). Moreover, co-culturing of 

muscle cells with appropriate surrounding cells provides an in vivo-like environment that 

enhances the cellular maturation. For instance, co-culturing skeletal muscle with motor 

neurons, endothelial cells or tenocytes has shown a significant impact on muscle tissue 

maturation (119). Recently, making neuromuscular junctions in engineered skeletal 

muscle tissues has gained an increasing attention (120, 121). Tissue development in vivo 

and in vitro are time dependent (122). In the other word, by passing more time muscle 

cells become more mature. Smith et al. showed that contractile force of myotubes had a 

noticeable increase from day 14 to day 21 in contrast to first two weeks of culture (123).   

 

3.1. Cardiac muscle 

Significant advances have been made in the field for cardiac regeneration (124-127). 

Some regeneration strategies focus on scaffold-free concepts, such as the generation of 

multi-layered cardiac cell sheets (128-131) and the generation of multicellular aggregates 

named spheroids (132, 133). On the other hand, scaffold-based approaches use both 

natural (134-140) and synthetic (141-144) biomaterials as the scaffold. Conventional two-

dimensional (2D) platforms for drug testing are static and do not mimic the complicated 

cell-matrix and cell-cell interactions in the native cardiac tissue (145, 146). The 

combination of tissue engineering with microfluidic technologies has expedited the 

development of heart-on-a-chip platforms that can be used as emerging tools for in vivo-

like applications of cardiac tissues (147-149). For example, Tanaka et al. developed a 

novel microspherical heart-like pump device powered by spontaneously contracting 

neonatal rat CM sheets (101). This system was fabricated by rolling a beating CM sheet 

onto a fabricated polydimethylsiloxane (PDMS) hollow elastomeric sphere fixed with 
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inlet and outlet ports. Young et al. fabricated a 2-layer microfluidic device to study the 

permeability of EC monolayers on porous membranes under shear stress conditions (150). 

The PDMS device consisted of lower and upper microchannels and a porous membrane 

separated them. Later, the authors modified the microfluidic device to recapitulate 3D 

vascular system and studied the physiological cardiovascular cell-cell interactions (151). 

Li et al. fabricated a microfluidic chip integrated with an acoustic wave sensor to study 

the cardiac muscle cell contraction (152). The device has potential application to study 

contractile activity of a single heart muscle cell during drug screening. 

Recent studies have been devoted to developing heart-on-a-chip platforms for 

pharmaceutical applications (153-158). Earlier studies used CMs derived from animals, 

as they were widely accessible. For example, Parker and colleagues developed muscular 

thin film (MTF)-based systems and employed them for pharmacological and contractility 

studies (159-161). They quantified the contractility of rat CMs as a result of epinephrine 

exposure (159). The CMs were micropatterned on thin poly(N-

isopropylacrylamide)/PDMS elastomers (Figure 4-A). They assembled eight separate 

MTFs on a single device. With this novel system, the authors were able to quantify the 

contractility of several cardiac muscle tissues simultaneously (Figure 4-B). Two years 

later, Agarwal et al. modified the heart-on-a-chip system and used it to test isoproterenol 

on cardiac muscle contractility (160). The authors developed semiautomatic device 

incorporating a system to control drug injection, temperature, and electrical stimulation 

(Figure 4-C). The device consisted of a simple microfluidic channel, which is reusable, 

transparent, and biocompatible and did not require specialized skills to use it. The 

microdevice was tested with continuous perfusion of isoproterenol at different exposures 

during electrical stimulation of MTF. This new device is suitable for high-content drug 

testing in cardiac muscle tissues in vitro. 

Eschenhagen and Zimmerman developed a cardiac model, called engineered heart tissue 

(EHT), employing embryonic chick CMs suspended in a collagen matrix (162). Some 

years after, the same research group reported improvements of their device and used 

neonatal rat CMs in a Matrigel/collagen gel (163). The authors prepared 3D circular EHTs 

by culturing CMs around a central Teflon cylinder. Compared to other techniques for 

engineering cardiac muscles, this system exhibited a higher cardiac tissue/matrix ratio, 
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contractility, and maturation. Hansen et al. modified their device to obtain mini-EHTs in 

a fibrinogen/thrombin/Matrigel matrix (145). The authors used fibrinogen and thrombin 

instead of collagen because the polymerization of hydrogel was more rapid than the 

gelation of collagen. The authors used the ring format instead of a strip format in creating 

mini-EHTs. Posteriorly, the 24-well mini-EHTs format was used to evaluate 46 

proarrhythmic drugs under perfusion and/or electrically stimulation on the contractile 

activity of muscle tissues (164). The study was carried out with 14 to 21-day old mini-

EHTs and three different concentrations of drugs. The authors observed that the mini-

EHTs were sensitive to the drug concentrations. Recently, Eschenhagen group utilized 

the EHTs to explore tyrosine kinase inhibitors-mediated cardiotoxicity using 

immunohistology and transmission electron microscopy (165). 

Recently, Kaneko et al. developed a cell-based model using an agarose microchamber 

array chip to evaluate the effect of haloperidol on mouse CM beating activity (166). The 

authors developed two systems, a four-cell and a nine-cell CM network. They observed 

that the beating rhythm of the CMs were unstable and slower after the addition and wash 

out of haloperidol in the four-CM network because this system was not large enough to 

re-establish a stable beating state. Instead, the beating rhythm was returned to its original 

state after the haloperidol wash in the nine-cell network. These results showed the 

importance of tissue culture size on the stability of drug screening models. Song et al. 

reported a diabetic cardiac tissue to test the effect of antidiabetic thiazolidinedione drugs. 

For that purpose, the authors cultured rat CMs in collagen gels under different media 

conditions to reproduce a diabetic myocardium (167). The authors studied the CMs under 

normal, diabetic, and therapeutic conditions. Their results showed that CMs cultivated 

with high glucose media showed low current propagation and high cell apoptosis. 

Thiazolidinedione enhanced electrical properties and viability of CMs. The proposed 

platform is suitable for drug screening on engineered cardiac tissues in diabetic conditions. 

Functional CMs can be obtained from human pluripotent stem cells (hPSCs), including 

induced pluripotent stem cells (iPSCs) and human embryonic stem cells (ESCs) (168-

173). Despite their immature characteristics, extensive pharmacological studies have 

shown that iPSC-derived CMs accelerate drug screening, enable more accurate prediction 

of human cardiac response to pharmacotherapy, and provide tools for personalized drug 
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screening assays to timely and accurately predict a patient’s drug response. Braam et al. 

used iPSC-derived CMs for toxicity assessment of different drugs (174). Most 

pharmaceutical companies have established iPSC research sections or closely collaborate 

with scientist groups to explore the potential of these cell populations in predictive 

pharmacology, toxicology, and personalized medicine. In another study, Nunes et al. 

created a platform called “biowire” to employ structural and electrical cues in order to 

mature hPSC-derived CMs. Seeded cells inside collagen were showed higher maturation 

by applying electrical stimulation. The stimulated biowires exhibited an enhancement in 

organization, conduction velocity, and Ca+2 handling (175). 

Xiao et al. developed a perfusable bioreactor to generate 3D microtissues (a typical 

biowire) using both neonatal rat CMs and human ESC-derived CMs (176). The system 

was implemented with electrical stimulation (carbon rod electrodes) to improve the 

maturation of CMs. The authors tested cardiac biowires with nitric oxide and observed 

that the beating rate was decreased after the treatment. Serena et al. engineered a 

multilayered microfluidic platform for pharmacological analysis on human CMs (177). 

The device was fabricated using the conventional lithographic technique and molded in 

PDMS. They then exposed the human CMs to hydrogen peroxide (H2O2) to mimic the 

oxidative stress implicated in various disease states and observed that contractile activity 

was dramatically suppressed. 

Many recent studies focused on engineering cardiac tissue constructs from iPSC-derived 

CMs (178-180). Cardiac muscle tissues obtained from human iPSCs combined with 

microfluidic systems has become a useful platform to improve preclinical pharmacology 

as well as drug discovery approaches. Incorporating vasculature in engineered cardiac 

tissue is needed to enhance physiological fidelity and enhance tissue survival.  George 

and colleges created perfused human capillary networks from human endothelial colony 

forming cell-derived ECs (Figure 5) (181). Later, the authors combined the network of 

human capillaries in the presence of cardiac muscle spheroids derived from human iPSCs 

to fabricate a vascularized cardiac microtissue (Figure 5-C) (182). Their results showed 

that human CMs survived and continued to contract within the device for up to 28 days, 

while a surrounding vessel network was developed.  
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Mathur et al. developed a human cardiac microphysiological system from human iPSC-

derived CMs for pharmacological studies (183). The novel device contained a cell 

chamber, two neighboring channels for medium, and some connecting microchannels 

mimicking the endothelial barrier. This barrier protected the muscle tissue from shear 

forces and allowed the diffusion of nutrients. The authors obtained robust and 

reproducible human 3D aligned cardiac microtissues modifying a previous study in 

serum-free media (184). Human iPSC-derived CMs started beating spontaneously and 

without any external stimulation. After 7 days, multiple cell layers started to contract in 

a uniaxial manner. The engineered cardiac tissue was tested with four model drugs 

(verapamil, E-4031, isoproterenol, and metoprolol). The results showed a good 

correlation of tissue response to those previously recorded with other methods in human 

cardiac cells. For example, the addition of isoproterenol enhanced the tissue beating. All 

aforementioned investigations show a great progress in the development of reliable 

cardiac tissues in vitro for disease modeling and drug screening applications. Moreover, 

they emphasize that the cardiac tissue-on-chip models generally have better prediction of 

clinical results compared to conventional 2D culture models. Our lab recently developed 

a tissue construct named “AngioChip”, the most advanced vascularized cardiac platform 

to date, which combined multiple layers of branched networks (Figure 2-E). Microholes 

and nanopores within the tissue scaffold were prepared to fortify permeability and cell 

migration. Developed cardiac tissues with AngioChip technology were implanted in vivo 

and successfully connected with the vasculature system of the host (185).  

3.2. Skeletal muscle  

In general, skeletal muscle tissue engineering uses cells, scaffolds, and growth factors 

aiming to regenerate native skeletal muscles (186). Several cell types, such as satellite 

cells, myoblasts, mesoangioblasts, pericytes, embryonic stem cells, mesenchymal stem 

cells, and iPSCs have been identified as potential sources for cells for skeletal muscle 

regeneration (117, 187). In addition, different methods to construct 3D skeletal muscles 

in vitro have been developed with the ability to apply both mechanical and electrical 

stimulations (188). These techniques focus on scaffold-free concepts (189-191) or on 

scaffold-based approaches (192-195). Numerous groups have documented the use of 3D 

skeletal muscle tissues as in vitro models for pharmacological screening tests or 
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biological studies (196-198). For example, Syverud et al. developed 3D skeletal muscle 

units (SMUs) and examined the potential of dexamethasone as a growth factor (199). 

SMUs were tissue constructs fabricated from contractile myotubes and monolayers of 

primary fibroblasts. The results showed that dexamethasone improved myogenic 

proliferation and myotube fusion when it was added before induction of differentiation. 

Moreover, SMUs exposed to 10 nM of dexamethasone on day 6 or day 0 showed 

organized muscle structure and enhanced force production. 

Tourovskaia et al. fabricated a microfluidic platform to stimulate myotubes with agrin, a 

chemical expressed by neurons in vivo at the nerve-muscle junction (200, 201). The 

microfluidic system was fabricated using soft lithography in PDMS and consisted of a 

main channel formed by different numbers of converging inlet channels for the delivery 

of drugs to the myotubes. The results suggested that agrin is an important stabilizer in the 

synapse formation. This microfluidic device allowed an accurate control of perfusion and 

chemical environment surrounding cells. In addition, the device can be used for studies 

of spatiotemporal competition between different stimuli. In another work, Anene-Nzelu 

et al. developed 3D microfluidic systems with microtopographical cues to obtain aligned 

myoblast constructs (202). The top layer of the system consisted of a microfluidic channel 

with a micropillar array to immobilize C2C12 cells and a bottom PDMS microgrooved 

layer. The authors observed that C2C12 cells aligned along the direction of microgrooves. 

In addition, it was observed that the alignment enhanced the maturation of myoblast 

constructs and the expression of skeletal muscle genes. The proposed microfluidic system 

is simple, cost-effective, and scalable and can be used as a powerful platform for drug 

screening. 

Although several strategies have been proposed to make contractile 3D skeletal muscles 

in vitro, Vandenburgh et al. made the most significant contribution toward using 

engineered muscle tissues in drug screening. They developed miniature bioartificial 

muscles (mBAMs) in 96-well plates (203, 204). mBAMs were 3D contractile tissues with 

organized and striated skeletal muscle fibers, which can generate directed force when 

electrically stimulated. In their model, murine myoblasts were mixed with collagen, 

Matrigel, or fibrinogen-thrombin gels and cast in a flexible well with microposts on each 

side (Figure 6). This approach provided a nondestructive and sensitive method for 
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measuring muscle contractile forces. Preliminary work tested Atorvastatin and insulin-

like growth factor-1 on healthy murine muscle fibers (205). The results demonstrated 

mBAM myofiber active force and hypertrophy were enhanced as the muscle tissues were 

exposed to insulin-like growth factor-1. However, mBAM weakness and deterioration 

were reported for the tissues exposed to a cholesterol-lowering statin. Following this work, 

the system was automated and was used for high-throughput screening experiments (206). 

The author tested the effects of 31 potential dugs on mdx mouse-derived mBAMs to treat 

Duchenne muscular dystrophy. The results showed that 11 compounds enhanced the 

muscle force generation. The novel automated system can be used as a powerful 

preclinical tool in pharmaceutical applications.  

Recently, Madden et al. fabricated human skeletal muscle culture systems, named 

myobundles, using primary myogenic cells to study their contractile activity and 

biochemical responses to three different drugs (207). Myogenic cells were derived from 

human muscle biopsy and human myobundles were generated using a hydrogel molding 

method previously described with rat cells (208). After 5 days of differentiation, the 

myofibers showed spontaneous contraction. Human myobundles were tested with statins 

(cerivastatin and lovastatin), chloroquine, and clenbuterol and their contractile and 

biochemical responses were recorded. The results showed that myobundles exhibited 

aligned architecture, multinucleated, and striated myofibers. Also, they contracted 

spontaneously and responded to electrical and biochemical stimuli. The authors observed 

that myobundles were more sensitive to cerivastatin than lovastatin, which agrees with 

previous clinical reports. In response to chloroquine, myobundles induced the autophagic 

myopathy observed in muscle tissues in vivo. Clenbuterol at low concentration caused the 

myofiber hypertrophy and increased contractile strength of myobundles. However, higher 

concentrations of clenbuterol led to muscle weakness consistent with previous animal and 

human studies. In general, these studies suggested that myobundles were able to 

recapitulate the physiological responses of native muscles and can be used as a preclinical 

tool for predictive pharmacological screening.  

 

4. Future work 
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Recent advances in biomaterial synthesis, stem cell biology, and microfabrication 

technologies have enabled researchers to develop biomimetic and physiologically 

relevant muscle tissue constructs for drug screening and disease modeling applications. 

However, despite significant progress in generating muscle tissues for screening novel 

drugs, more sophisticated tissue models are needed to make reliable assessment of 

compound efficacy or toxicity. Development of advanced scaffolding materials with 

tunable physicochemical properties is needed to fabricate functional skeletal and cardiac 

tissues. In particular, electrical conductivity and mechanical properties of scaffolds are 

important parameters in designing tissue scaffolds due to inherent current propagation 

and contractility of muscle tissues. Biological moieties can also be incorporated into the 

biomaterials to regulate muscle cell behaviors and function. The use of nanomaterials 

(e.g., CNTs (209), graphene (210), metallic glass nanowires (211), and gold nanoparticles 

(212, 213)) to fabricate hybrid scaffolds has shown great advantages in tissue 

organization and maturation over pristine scaffolds. However, research is still required to 

understand molecular mechanisms of cell-nanomaterial interactions and possible 

cytotoxicity and genotoxicity of nanomaterials.  

Stem cell-derived skeletal muscle and CMs have provided great cell sources for tissue 

fabrication. However, protocols for stem cell differentiation and purification need to be 

further explored to obtain highly pure and mature muscle cells in a facile and reproducible 

manner. Variation in stem cell-derived CMs is an obstacle toward understanding and 

comparison among different cell types. To solve this problem, researchers have started to 

utilize CRISPR/Cas9 method to purify their favorable mutation in iPSCs from donors 

(108, 214). Heterogeneous cell populations may cause problems in tissue maturation and 

function. In addition, cost and time in stem cell differentiation should be reduced for 

affordable tissue fabrication procedure particularly at large scales.  

Microfabrication technologies and devices can help to provide high-throughput 

engineered tissue platforms for drug screening and disease modeling. Such high-

throughput platforms are highly required to evaluate multiple drugs with different 

concentrations on a single tissue, simultaneously. Therefore, time and cost associated to 

tissue-based drug screening platforms can substantially be decreased. Moreover, novel 

analytical methods or materials, such as scanning electrochemical microscopy (211) and 
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nanoporous gold electrodes (215) can provide powerful tools in characterization of high-

throughput tissue models in an accurate and non-destructive manner.  

 

5. Conclusion 
This review briefly described the morphology and structure of skeletal and cardiac muscle 

tissues. Commonly used approaches in fabricating muscle tissues were explained 

providing a similar natural ECM for muscle cells in vitro. For example, aligned 

electrospun sheets guided cellular alignment that is necessary for muscle functionality. 

Bioprinting methods are able to provide rapid fabrication, cellular viability in 3D 

constructs, and the ability to examine muscle cell behaviors and function, such as 

elongation and proliferation. DEP was another microscale technology for alignment and 

accurate positioning of cells. Finally, textile technology and microfluidics with the ability 

to produce commercialized cardiac support devices and grafts revealed the clinical 

advantage of tissue engineering. Following this, we discussed commonly developed 

cardiac and muscle tissues for drug screening purposes. The advent of tissue-on-a-chip 

platforms is a promising approach to mimic the in vivo-like environment for muscle 

tissues in a miniaturized, low cost, and scalable manner. Muscle cell differentiation, 

alignment, contractile activity, and tissue formation are characteristics that most of the 

experiments determine as a function of tissue maturation and performance. Despite great 

work on tissue fabrication and testing for drug discovery, further research and innovation 

are required prior to widely used and successful commercialization of engineered tissues 

in pharmaceutical industry. 
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Figure 1. Anatomy of cardiac and skeletal muscle in the body. (A) Cardiac muscle. 

(B) Skeletal muscle. 

 

Figure 2. Methods to fabricate muscle tissues in vitro. (A) The schematic of 

electrospinning setup (216). (B) Integrated tissue-organ printer system as an example of 

bioprinting approach (54). (C) The creation process inside GelMA hydrogel for CNT 

alignment using DEP (71). (D) Fabrication of meter-long cell-laden microfiber process 

using textile technology (78). (E) A schematic of AngioChip platform made with 

microfluidic technique (185).  

Figure 3. In vitro parameters for mimicking in vivo environment. (A) Before and after 

applying electrical stimulation to C2C12 myotubes. (B) The mean percent of aligned 

C2C12 myotubes for different regimes (voltage for regime 1 and 2 were 0.5 and 6 

respectively) (117). (C) Aligning C2C12 cells by applying mechanical and electrical cues 

(71). 

Figure 4. Heart-on-a-chip models. (A) Fabrication procedure of contractile CM stripes. 

(B) Time-lapse bright-field pictures of contractile CM stripes. Analysis of CM 

contractility (PDMS layer=18.6 µm): (i) Bright-field images of films adhered to the 

substrate, (ii) films curved at diastole and peak systole, and (iii) the film length (blue) and 

x-projection (red) placed on the tissue pictures. Scale bar: 5 mm. (C) Schematics of the 

fabrication procedure for MTF and semiautomatic microdevice integrated a MTF chip. 
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Figure 5. A microfluidic system combined with heart tissue. (A) Image of the PDMS 

microfluidic-based platform. (B) Fluorescent microscopy of CD31-stained capillary 

networks (green). Scale bar, 200 µm. (C) CMs (shown as cTnT staining in red) generated 

an interconnected muscle network. Scale bar, 100 µm. 

 

Figure 6. Engineered mBAMs on flexible PDMS microposts. (A) 165-µm radius 

microposts. Scale bar, 4 mm. (B) 350-µm radius microposts. (C) Microposts with caps. 

(D) mBAM at day 4-5 after casting in the microwell on 350-µm radius posts. (E) 7-8-

day-old mBAM immunostained against sarcomeric tropomyosin (dark gray color) 

indicating organized myofibers. Double-headed arrow shows the long axis of the mBAM. 

Scale bar, 20µm. (F) Micropost displacement as a result of a tetanic electrical stimulation. 

Illustrations of pre-stimulation and 1-s post-stimulation are shown along with simple. 

Circles mark the micropost top images. (G) Time-lapse of mBAM maximum tetanic force 

as a function time (205). 

 

 



 36 

Figure 1. 

 

 

 

 

 

 

 

 



 37 

Figure 2. 
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Figure 6. 

 

 

 

 

 


