
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2016

Pedro Miguel
Jesus Gonçalves

Controlador de Tempo-Real baseado em MATLAB e
Raspberry Pi

Real-Time controller based on MATLAB and
Raspberry Pi

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2016

Pedro Miguel
Jesus Gonçalves

Controlador de Tempo-Real baseado em MATLAB e
Raspberry Pi

Real-Time controller based on MATLAB and
Raspberry Pi

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Eletrónica e Telecomunicações, realizada sob a orientação científica do
Doutor Alexandre Manuel Moutela Nunes da Mota, Professor Associado do
Departamento de Eletrónica, Telecomunicações e Informática da Universi-
dade de Aveiro, e do Doutor Paulo Bacelar Reis Pedreiras, Professor Auxiliar
do Departamento de Eletrónica, Telecomunicações e Informática da Universi-
dade de Aveiro.

o júri / the jury

presidente / president Professor Doutor José Alberto Gouveia Fonseca
Professor Associado da Universidade de Aveiro

vogais / examiners committee Professor Doutor Frederico Miguel do Céu Marques dos Santos
Professor Adjunto do Instituto Superior de Engenharia de Coimbra

Professor Doutor Paulo Bacelar Reis Pedreiras
Professor Auxiliar da Universidade de Aveiro

agradecimentos /
acknowledgements

Quero agradecer ao meus pais, Albertina Gonçalves e Helder Gonçalves, pela
oportunidade concedida para que eu pudesse continuar com os meus estu-
dos.
Agradeço aos meus professores Alexandre Manuel Moutela Nunes da Mota,
Paulo Bacelar Reis Pedreiras e Rómulo Antão pela sua disponibilidade, sug-
estões, bem como todas as discussão pertinentes que contribuiram para a
realização desta dissertação.
Por fim, quero agradecer ao meus amigos que me acompanham desde o
início do percurso académico, pela sua camaradagem e por terem tornado
esta experiência mais enriquecedora.

Palavras Chave Controlo, MATLAB, PID, RST, Raspberry Pi, Tempo Real, Xenomai.

Resumo Para esta dissertação é proposto o desenvolvimento de um controlador de
tempo-real baseado na plataforma computacional Raspberry Pi, munidos de
ADCs e DACs para interagir com sistemas físicos. Os algoritmos de controlo
deverão poder ser desenvolvidos e testados em MATLAB, sendo “traduzidos”,
de forma automática, para linguagem C capaz de ser compilada e executada
na plataforma Raspberry Pi.

Keywords Control, MATLAB, PID, RST, Raspberry Pi, Real-Time, Xenomai.

Abstract For this dissertation is proposed the development of a real-time controller
based on the computer platform Raspberry Pi, fitted with ADCs and DACs
to interact with physical systems. The control algorithms must be able to be
developed and tested in MATLAB, then "translated" automatically to C pro-
gramming language to be compiled and run on the Raspberry Pi platform.

Contents

Contents . i

List of Figures . v

List of Tables . vii

Glossary . ix

1 Introduction . 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Document Structure . 2

2 Background . 3
2.1 MATLAB . 3

2.1.1 Data Acquisition with MATLAB . 3
2.1.2 Code Generator for Embedded Systems 6
2.1.3 Comparing Solutions . 6

2.2 Real-Time Operative System . 7
2.2.1 PREEMPT_RT . 7
2.2.2 Xenomai . 8

2.3 Communication Protocols . 8
2.3.1 Ethernet . 8
2.3.2 SPI . 10
2.3.3 I2C . 10

2.4 Control Systems . 10
2.4.1 ON-OFF . 10
2.4.2 PID . 11
2.4.3 Tuning methods . 14
2.4.4 Identification method . 15
2.4.5 Reference Signal Tracking . 16

3 Hardware Development . 19
3.1 Requirements . 19
3.2 Processor Unit . 20
3.3 Hardware Implementation . 21

3.3.1 Complementary Integrated Circuits 22

i

3.3.2 Power System . 24
3.4 Printed Circuit Board . 24
3.5 Summary . 26

4 Software and Firmware . 27
4.1 Firmware . 28

4.1.1 Device Driver . 28
4.1.2 Hardware abstract layer . 29

4.2 Communication Protocol for MATLAB And Raspberry Pi 32
4.2.1 Protocol Overview . 32
4.2.2 Network commands . 33
4.2.3 Registers Description . 36
4.2.4 Protocol on MATLAB And Raspberry Pi 37

4.3 MATLAB Code Translator to C . 42
4.3.1 Implementations . 42
4.3.2 Rules to use . 44
4.3.3 Code execution on the Raspberry Pi 45

4.4 Summary . 45

5 Experimental Results . 47
5.1 Measurements and Validation Tests . 47

5.1.1 Performance of Communication Protocol 47
5.1.2 Temporal Analysis of Digital and Analog I/O 48
5.1.3 Functional analysis of Analog I/O 49

5.2 RST Controller . 51
5.2.1 First Order System . 51
5.2.2 Second Order System . 56

5.3 PID Controller with auto tuning . 59
5.3.1 Physical System . 59
5.3.2 PID Controller . 60
5.3.3 I-PD Controller . 61

5.4 MATLAB to C code . 62
5.5 Summary . 64

6 Conclusions and Future work . 67
6.1 Conclusion . 67
6.2 Future work . 68

A Rasp:IO schematic . 69

B Installing Xenomai on Raspberry Pi 73
B.1 Prerequisites . 73
B.2 Install Raspbian . 73
B.3 Donwload and prepare Xenomai . 74
B.4 Install Xenomai on Raspberry Pi . 75
B.5 Test installation and performance evaluation 76
B.6 Final adjustments . 77

C UDP based Communication Protocol 79
C.1 Interface Specifications . 79

ii

C.2 Message Format . 85
C.3 Table ID . 87
C.4 Table Error . 88

D Communication Protocol test . 89
D.1 Script to test getADC() command . 89
D.2 Script to test getADCAll() command . 91
D.3 Script to test setDAC() command . 93
D.4 Script to test setDACAll() command . 95
D.5 Script to test getIN() command . 97
D.6 Script to test getINAll() command . 99
D.7 Script to test setOUT() command . 101
D.8 Script to test setOUTAll() command . 103
D.9 Script to test setPWMDuty() command . 105
D.10 Script to test setPWMFreq() command . 107

E Second Order plant for RST controller 109

F List of functions supported by code translator 113

Bibliography . 115

iii

List of Figures

2.1 Layers on Internet Protocol suite model . 9
2.2 ON-OFF controller . 10
2.3 P controller . 11
2.4 PI controller . 12
2.5 PID controller . 12
2.6 I-PD controller . 13
2.7 Open loop step response . 14
2.8 Relay feedback auto tuning method . 15
2.9 RST controller structure . 16

3.1 Multiple working modes . 20
3.2 Block diagram . 20
3.3 Raspberry Pi 1 model B plant . 21
3.4 Plant of the developed PCB . 25

4.1 System block diagram . 28
4.2 SPI reading . 29
4.3 Number of samples per ADC sweep . 30
4.4 Worst case time for DAC sweep . 31
4.5 Internet protocol suite . 33
4.6 UDP transmission handler . 39
4.7 UDP server task . 41
4.8 Code translator flowchart . 43
4.9 Structure to convert functions. The complete structure can be found on Appendix F 44

5.1 DAC offset voltage . 50
5.2 ADC offset voltage . 50
5.3 Error bar graph with minimum, maximum and mean value difference to the

multimeter . 50
5.4 Difference between set voltage on DAC and read on ADC 51
5.5 Sallen-key second order low pass filter . 51
5.6 Estimated coefficients using RLS on first order system 52
5.7 Step signal of the first order model . 52
5.8 Close loop first order with RST controller and RLS identification on MATLAB . 53
5.9 Measured time on each iteration of the control loop on MATLAB 54
5.10 Close loop first order with RST controller and RLS on Raspberry Pi 55
5.11 Measured time on each iteration of the control loop on Raspberry Pi 55

v

5.12 Estimated coefficients using RLS on second order system 56
5.13 Step signal of the second order model . 56
5.14 Second order RST controller on MATLAB . 57
5.15 Measured time on each iteration of the control loop on MATLAB 58
5.16 Second order RST controller on Raspberry Pi . 58
5.17 Measured time on each iteration of the control loop on Raspberry Pi 59
5.18 Third order plant . 60
5.19 Theoretical system response to step signal . 60
5.20 PID with relay feedback . 61
5.21 Third order I-PD controller on MATLAB . 62

A.1 Power converter . 70
A.2 Main ICs . 71
A.3 Protection circuit . 72

B.1 User space latency results . 76
B.2 Kernel space latency results . 77

vi

List of Tables

2.1 LabJack Product Comparison . 4
2.2 LabJack Product Comparison . 5
2.3 Ziegler-Nichols tuning formula in open loop . 14
2.4 Ziegler-Nichols tuning formula in closed-loop . 14

3.1 Electrical and functional description of MAX11300 22
3.2 Parameters of MAX31790 . 23
3.3 Electrical characteristic of 74HC244 from -40◦C to 80◦C at 5V 23
3.4 Electrical characteristics of Op-Amp TL071 and OP27 from -25◦C to 85◦C . . . 24
3.5 Maximum current available in each rail . 24

4.1 Configuration parameters for MAX11300 . 29

5.1 Execution time of each function on MATLAB 48
5.2 Execution time of each function on Raspberry Pi 49
5.3 Execution times of first order plant with RST and RLS on MATLAB 54
5.4 Execution times of first order plant with RST and RLS on Raspberry Pi 54
5.5 Timing for second order RST controller on MATLAB 57
5.6 Timing for second order RST controller on Raspberry Pi 59
5.7 Period and amplitude obtain from ON-OFF controller 61
5.8 Tunned parameters from the relay feedback method 61

C.1 ID number of each command . 88
C.2 Error number and it name . 88

vii

Glossary

ABS Anti-lock Braking System

ADC Analog to Digital Converter

ADEOS Adaptive Domain Environment for
Operating Systems

API Application Programming Interface

ARM Advanced RISC Machine

ARX AutoRegressive with eXogenous
terms

CMOS Complementary
Metal-Oxide-Semiconductor

CPU Central Processing Unit

CS Chip Select

DAC Digital to Analog Converter

DAQ Data AcQuisition

DETI Departamento de Eletrónica,
Telecomunicações e Informática

DI Digital Input

DO Digital Output

FIFO First In First Out

FPGA Field Programmable Gate Array

GPIO General-Purose Input/Output

GPI General Purpose Input

GPO General Purpose Output

GPU Graphics Processing Unit

HAL Hardware Abstract Layer

I-PD Integral - Proportional Derivative

I/O Input/Output

I2C Inter-Integrated Circuit

IC Integrated Circuit

IP Internet Protocol

IRQ Interrupt ReQuest

JFET junction gate Field-Effect Transistor

LabVIEW Laboratory Virtual Instrument
Engineering Workbench

LAN Local Area Network

LSB Least Significant Bit

LS Least Squares

MATLAB MATrix LABoratory

MISO Master Input Slave Output

MOSI Master Output Slave Input

OS Operative System

PCB Printed Circuit Board

PC Personal Computer

PDIP Plastic Dual-In-line Package

PID Proportional Integral Derivative

PI Proportional Integral

PWM Pulse-Width Modulation

P Proportional

RAM Random-Access Memory

RLS Recursive Least Square

RST Reference Signal Tracking

RTDM Real-Time Driver Model

RTOS Real-Time Operative System

RT Real-Time

SAH Sample And Hold

SCLK Signal Clock

SCL Serial Clock

SDA SDASerial Data

ix

SOC System On Chip

SPI Serial Peripheral Interface

TCP Transmission Control Protocol

UART Universal Asynchronous
Receiver/Transmitter

UDP User Datagram Protocol

USB Universal Serial Bus

x

chapter 1
Introduction
Developing a Real-Time (RT) control system is a challenge that involves the production of software
that not only has to meet functional requirements, but must also meet the non functional requirements,
in particular in the temporal level. There are several solutions that are able to meet this requirements
based on RT Linux. Related to function levels it is known that MATrix LABoratory (MATLAB)
provides a wide range of solutions, and therefore will be an integral part of the project.

1.1 motivation
Control Systems are all around. There are many examples that we use daily and we are not always

aware, such as the air conditioning, the car’s Anti-lock Braking System (ABS) or ourselves. Our body
temperature regulation is an example of control system that I will enter in more detail. Our body
regulates its internal temperature to be around 37o. If the temperature goes up, the body will act to
lower the temperature, using vasodilation or sweating. In case of the temperature goes down, the body
will start to do vasoconstriction, piloerection or shivering to rise the temperature [1].

Nowadays, with the price of digital computers dropping, most controllers start to be implemented
in software. The price is not the only reason to do the implementation. Flexibility, adaptable controllers
and error detection are other reasons to use digital controllers. With tools available like MATLAB, it
is possible to test and to tune complex and expensive systems without the risk of damaging it. After
having the controller developed, would be great to validate it with the physical system and test it
without leaving MATLAB. Digital controller theory is based on periodicity of sampling and actuation
on system. For this, it is mandatory to have real-time systems that ensure that the time requirements
are met. Therefore, it is necessary to have the control loop running in a real-time embedded system.
Having a minimal effort of code adaptation would help to focus in the development of system and lead
to a better comprehension of the control subject.

1

1.2 goals
In this dissertation it is intended to develop a digital and analog interface for MATLAB. This

interface is to be used in an educational environment to let students improve their knowledge in control
systems. Making the bridge between an informatic system and the physical world is not the only
intent of this system. The developed interface has to be able to work on its own, and to execute the
algorithm that would be running on MATLAB.

To accomplish the goals, a set number of steps need to be accomplished:

• Preliminary study of the problem;

• Development of interfaces ADC and DAC for the Raspberry Pi.

• Integration of a RT kernel on the Raspberry Pi.

• Development of a RT manager for Raspberry Pi.

• Development of control algorithms and translation process from MATLAB to C programming
language.

• Development of a demonstrator.

• Testing and Validation.

1.3 document structure
The structure of this document is:

• Chapter 1: presents the motivation and goals of this thesis as well this document structure.

• Chapter 2: presents the tools available at the market and the fundamental concepts required
to the devolpment of this work.

• Chapter 3: presents the development of the hardware and the requirements to be meet.

• Chapter 4: presents the configurations made to the hardware, the protocol created for real-time
communications and the program to translate MATLAB code to Raspberry Pi.

• Chapter 5: presents the tests made to validate the entire system, specifically testing control
algorithms and perform electrical and time tests for each part of the developed system.

• Chapter 6: presents an analysis of the work performed and it is given suggestions for future
work.

• Appendix: with various information about the protocol, a guide to install Xenomai and results
of tests made.

2

chapter 2
Background
This chapter presents general concepts about real-time, control systems and serial protocols used
during the development of the work. It also presents a survey of products already on market with
similar functionality respecting the work herein presented.

2.1 matlab
MATLAB was created in the early 1970s by Cleve Molar. It was initially written in FORTRAN

with the aim to compute the eigenvalues of matrices and solve systems of linear equations. It had only
one data type, matrix of complex doubles, and a collection of 80 functions.

Jack Little saw the potential of MATLAB in fields like signal processing and control, and with
Steve Bangert they developed MATLAB for Personal Computer (PC) by porting the Molar’s code to C.
They also add the possibility to create user functions, which made MATLAB a programing language
rather then a calculator. In 1984, Mathworks was founded and PC MATLAB was its first product [2].

From the beginning until today, MATLAB has increase its scope, adding capabilities in areas
such as optimization, signal and image processing, fuzzy logic, splines, wavelets, statistics, partial
differential equations, bioinformatics, mathematical finance and control [2].

2.1.1 data acquisition with matlab
MATLAB is optimized for solving engineering and scientific problems. In this platform is possible

to simulate systems and test control algorithms. It is not new the idea of using MATLAB to interact
with physical systems, as there are already some tools available in the market for this propose, which
are briefly presented in the following sections.

3

labjack corporation
Labjack Corporation makes Data AcQuisition (DAQ) hardware and software to connect the

physical world to computers and the Internet [3]. The company has a wide range of hardware with
ADCs from 12 to 24 bits of resolution, wide inputs range and selectable gains. Still in the analog
domain, they have DACs with different resolutions of 10 or 12 bits, going from 0V to 5V. Other
functionalities include multiple digital Input/Output (I/O), counters, timers with PWM output and
quadrature inputs. Their products are compatible with multiple environments such as: Laboratory
Virtual Instrument Engineering Workbench (LabVIEW), MATLAB, C and Python. More detail about
the hardware can be found on Table 2.1.

The series T7 supports scripting in LUA, a programming language designed for embedded systems.
"A lua script can be used to collect data without a host computer or to perform complex tasks producing
simple results that a host can read." [4] and "While running a Lua script, the T7 and T7-Pro can
operate without computer involvement. Basically, user-specified operations (feedback loops, logging,
PID loops) can be conducted via on-board script" [5] (from their website).

U12 U3-LV U3-HV U6 U6-Pro UE9 UE9-Pro T7 T7-Pro
Analog Input
Voltage ±10V 0-2.4V -10V to 20V ±10V ±10V ±5V ±5V ±10V ±10V

Analog Inputs 8 16 16 14 14 14 14 14 14
ADC Effective
Resolution 12 bits 12 bits 12 bits 16 bits 22 bits 12 bits 20 bits 16 bits 22 bits

Analog Output
Voltage 0-5V 0-5V 0-5V 0-5V 0-5V 0-5V 0-5V 0-5V 0-5V

Analog Outputs 2 2 2 2 2 2 2 2 2
DAC Resolution 10 bits 10 bits 10 bits 12 bits 12 bits 12 bits 12 bits 12 bits 12 bits
Digital I/O 20 20 16 20 20 23 23 23 23
Logical Level 5V 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V
Counters 1 Up to 2 Up to 2 Up to 2 Up to 2 Up to 2 Up to 2 Up to 10 Up to 10
USB Yes Yes Yes Yes Yes Yes Yes Yes Yes
Internal Temp
Sensor No Yes Yes Yes Yes Yes Yes Yes Yes

Ethernet No No No No No Yes Yes Yes Yes
Wireless No No No No No No No No Yes
Modbus TCP No No No No No Yes Yes Yes Yes
Scripting (Lua) No No No No No No No Yes Yes
MATLAB
Compatible Yes Yes Yes Yes Yes Yes Yes Yes Yes

Price $139 $108 $114 $299 $369 $479 $579 $399 $499

Table 2.1: LabJack Product Comparison

national instruments
NI has multiple products to perform data acquisition, embedded control and systems monitoring.

Their products are available in different form factors, from single board to reconfigurable platforms,
with extend I/O options.

Focusing in single board solutions, one of the many available is sbRIO-9627, a dual core solution
with a Field Programmable Gate Array (FPGA). It has four 3.3V digital channels, sixteen channels
with 16bits ADC with multiple ranges capable of 200k samples per second and four DAC channels with
16 bits of resolution working from -10V to 10V. This product runs a NI Linux RTOS programmable
with LabVIEW or C. Price was not stated. The board myRIO-1950, follows the same concept, a dual

4

core with FPGA. Multiple digital I/O with 8 ADC channels, 4 DAC channels, but with more modest
analog characteristics. The target price is $901 but for academic use it costs $400.

USB-6001 is a low cost multifunction DAQ, with eight analog inputs of 14 bits of resolution capable
of doing 20k samples per second. It features also two analog output channels with 14 bits of resolution
and 5k samples per channel per second. Both analog ranges can go from -10V to 10V. It also has
13 multipurpose digital I/O ports. It is compatible with C, LabVIEW and the newer versions of
MATLAB. It costs $189. USB-6211 and PCI-6010 have the same philosophy. They are multifunction
DAQ with better specifications.

More detailed information about these five products, can be found on Table 2.2.

USB-6001 USB-6211 PCI-6010 sbRIO-9627 myRIO-1950
Analog Input
Voltage ±10V ±10V ±10V ±10V 0 to 5V

Analog Inputs 8 16 16 16 8
ADC Resolution 14 bits 16 bits 16 bits 16 bits 12 bits
Analog Output
Voltage ±10V ±10V ±10V ±10V 0 to 5V

Analog Outputs 2 2 2 4 4
DAC Resolution 14 bits 16 bits 16 bits 16 bits 12 bits
Digital I/O 13 8 24 96 32
Logical Level 3.3V 5V 5V 3.3V 5V
Counters 1 2 2 N.A. N.A.
USB Yes Yes Yes Yes Yes
Internal Temp
Sensor No No No No No

Ethernet No No No Yes No
Programmable No No No Yes Yes
MATLAB
Compatible Yes Yes Yes No No

Price $189 $808 $677 N.A. $4001or
$901

Table 2.2: LabJack Product Comparison

digilent
Digilent, a National Instruments company, has "Analog Discovery 100MSPS USB Oscilloscope

& Logic Analyzer"[6] featuring a two channels oscilloscope, a two channels function generator and
16 channels in multiple modes, which can be configured as digital I/O, logical analyzer or pattern
generator. Other functionalities include digital bus analyzer (SPI, I2C...), voltmeter and power supply.
Currently is supported by MATLAB and communicates using Universal Serial Bus (USB). This
product cost $259.

1price only for academic use

5

mathworks
Mathworks supports a varied number of systems, like Beagleboard, Raspberry Pi and Arduino to

work as an interface to the physical world. For the above systems, MATLAB provides a set number of
commands to interface with the peripherals I2C, SPI, GPIO [7] [8] [9] and much others supported by
the platforms. For Beagleboard and Raspberry Pi it is also possible to have access to Linux system
shell, which allows to accomplish more powerful functions with more control. In the several examples
that are possible to find on their website, it is demonstrated how the system can be used for analog
data acquisition. In the case of the Raspberry Pi [10], it is used an external 10bits ADC with eight
channels, MCP3008 [11], for Beagleboard [12] and Arduino [13] it is used the internal ADC.

2.1.2 code generator for embedded systems
This platform allows simulating systems and test control algorithms. After performing all tests

and arrive to a suitable control algorithm, it would be useful to have a tool to generate automatically
the code to an embedded system. This task can be done with the MATLAB Coder [14], a commercial
software from Mathworks available to MATLAB. This tool converts code from MATLAB language to
readable C code to be integrated as source code on projects.

2.1.3 comparing solutions
The commercial offer of DAQ systems is abundant. Selecting U12 from LabJack or USB-6001

from National Instruments would be a good choice for the price range. Both can handle a wide input
voltage in the analog side, with eight channels available. In the analog output the USB-6001 has a
wider output voltage than the U12, but both have two channels. In the digital domain, they have more
than 10 I/O channels 5V compatible. For $189, USB-6001 is a good choice, with built-in support to
MATLAB, and for $139 the U12, with support given by LabJack.

However, these boards do not perform so well for closed-loop control. The U12, takes 20ms [15] to
execute and respond to a command so it is not suitable for fast controller loops. For better performance,
the U6 would be a faster alternative, doing in the same request command four ADC reads and two
DAC writes in 8.28ms [16], but it costs $299. The same analysis can not be performed on USB-6001
as there is no data available in National instrument website. In any case, these tools are not suitable
for our use, as it is required that they work independently, without a PC. The only tool present here
that is capable to work as a self contained controller running LUA scripting and work as a MATLAB
digital and analog interface is T7 from LabJack. In average it is capable to read four Analog to Digital
Converters (ADCs) and write on two Digital to Analog Converters (DACs) in 5ms [17], but it sells for
$399.

Therefore, it is advantageous to develop our own hardware and software. The first advantage is
economical: it is possible to build a less expensive tool, that can work in both modes of operation.
The second is the possibility to add more functionalities in software without having to buy a new
equipment. And last, as the equipment is to be used in a academic environment, the probability of it
being misused or damaged is high; so having the schematic and using more general purpose ICs is a
great help to troubleshooting and repair.

6

2.2 real-time operative system
There are several types of Operative Systems (OSs); those of general purpose, which are design

to have the best average throughput, such as Microsoft Windows, and Real-Time Operative Systems
(RTOSs), that will be covered in this section. A RTOS is a type of computational system where the
correct answer is not enough for the correctness of the job, the time to get the answer is equally
important. These types of systems are projected to attend events or carry out periodic activities,
which have timeliness constraints. For example, to attend events there is the airbag case, where is not
possible to know when the system will actuate, but when it is needed the system has to function well
and with precise timing. On the other hand, a closed control loop is a type of system that requires
periodicity to read the sensors and calculate the signal to the actuators; not actuating on time can
lead to an unreliable control. Both systems have time constrains.

When talking about RTOS, it is common to assume that the latency will decrease, but this is
not precise. What will decrease is the maximum latency. The goal is to have a predictable and
deterministic system.

RT systems can be classified in two types: soft and hard. Soft is when a system usually performs
an operation on time, but even after the time limit, often called the deadline, the result of operation
maintains some of the utility. However, for hard RT the OS must guarantee in every case that the
operations are perform on time. If the deadlines are not respected the operation loses all usefulnesses
and may cause catastrophic outcomes.

Modern OSs are capable to handle more than one process at a time, concurrently. This ability is
called multitasking, and it is possible thanks to a unit responsible for the scheduling task, the scheduler.
It determines the order of each task executed, with the aim to complete the tasks before their deadline.
The scheduling algorithm can be classified [18]:

• Preemptive vs non-preemptive: preemptive is when the Central Processing Unit (CPU) is
executing a task, and its execution can be interrupted by another task of higher priority.
Non-preemptive, is when the task will be running until the end of its completion, without
interruption.

• Static vs dynamic priorities: In static, the priority of the task remains constant. In dynamic,
the priority can be higher or lower than the initially defined to let the system meet the temporal
requirements easier.

• Off-line vs on-line: On-line, the order of execution of the task is decided during the normal
system operation; in this systems it possible to start and end tasks at run time. Off-line, when
the order of execution of the tasks are defined before the system start to run.

2.2.1 preempt_rt
PREEMPT_RT [19] are a set of patches to the Linux kernel, some of which are already integrated

on the OS. Linux is preemptible in user level, which means that a task in this domain will be interrupted
by another of higher priority. The goal of these patches is to change the kernel to preemptable. To
accomplish this, it must be changed some operating mechanisms; two of them will be presented
next. The first is to convert all Interrupt ReQuest (IRQ) to thread interrupts; when it is received a
interruption it is performed only the necessary work and it is wake-up the corresponding thread. This

7

thread is scheduled by the kernel depending on its priority. The second is the replacement of spinlocks
in kernel by mutex; spinlock is a busy wait mechanism to access critical sections with little overhead,
used on kernel space. On the other hand the mutex will put the thread in sleep until the resource is
free again. More changes are applied, but these two are considerer the most important ones.

2.2.2 xenomai
Xenomai is a micro-kernel that adds hard RT properties to Linux. The main idea is to have all

RT threads executed on the RT kernel and when there is no work to do it is given the opportunity to
Linux to run, as if it was a low priority thread.

When the hardware makes an interruption, Xenomai has to be capable to arrive first than the Linux
Kernel, or it can be blocked for an unbounded time. To accomplish this is used the Adaptive Domain
Environment for Operating Systems (ADEOS) interrupt pipe, to send all hardware interruptions to
Xenomai first. If Xenomai has an RT handler to the interrupts, it will execute it, if not it will pass to
the Linux kernel.

When a Xenomai thread is created, it usually starts in primary mode, the Xenomai domain. If it
invokes a non-RT syscall, the thread will transit to the secondary mode, the Linux domain, continue
to run in the real-time services of Linux, maintaining its priority. In this mode, Xenomai benefits from
the improvements made by the PREEMPT_RT project to have a lower latency.

2.3 communication protocols

2.3.1 ethernet
Ethernet is mostly used in Local Area Networks (LANs) because of its big bandwidth, cheap

hardware and is supported in most OS. It is one of the link layer protocols in the Internet Protocol
suite, which is divided in four layers: the link, the Internet, the transport and the application layer
[20]. The Figure 2.1 represents its multiple layers.

• Link: it is the lowest layer specified on the Internet Protocol suite. This layer is responsible
to frame the packets to be send to the physical medium. An example is the Ethernet frame
specified in IEEE 802.3-2012 [21].

• Internet: in this layer is defined the addressing and routing strategy. It is responsible to move
the IP data to the next network until it arrives to the destination.

• Transport: here is implemented the congestion and error control, segmentation and application
addressing. Examples of protocols are: TCP and UDP.

• Application: provides applications a way to access the services of the other layers, defining
protocols that applications use to exchange data.

The first Ethernet standard was able of transmission rates of 10Mb/s. Since its standardization in
1985 it has evolved to 100Gb/s [21]. Ethernet can operate on multiple physical layers such as coaxial,
twisted-pair or optical fiber, depending of the intended speed.

8

Figure 2.1: Layers on Internet Protocol suite model

tcp
Transmission Control Protocol (TCP) is a connection oriented protocol part of the transport layer.

To begin the communication the sender has to perform a three-way handshake. This consists in sending
to the server a connection request then the server will answer to the client with a connection request
acknowledge and the client will do the last step, sending the final acknowledge. To close a connection
the steps are similar.

As TCP is connection oriented it has implemented the following features: TCP ensures that all
the packets are delivery to the source. To accomplish this, the packets have to be answered with an
acknowledge. If during a predefining amount of time the sender does not receive acknowledge packets,
it will assume that the packets failed to arrive to the receiver and it will retransmit them. The protocol
delivers the packets to the application in-order, even when they arrive out of order. To accomplish
this, the TCP has a 32 bits sequence number in the header. In the header there is also included a 16
bits checksum for error checking. TCP also features a congestion control algorithm that delays the
transmission when the network is busy.

udp
User Datagram Protocol (UDP) is a message oriented lightweight protocol, also part of the

transport layer. There is no session, as in TCP, therefore the application can start to talk with the
server immediately. For being a lightweight protocol, it does not have the features of the TCP. There
is no acknowledge, so the sender does not know if the packets fail to arrive to the destination; and the
packets can be delivered to the application out of order. UDP does not have implemented any type of
congestion control, so the packets continue to be send even when the network is overloaded. Another
propriety of the protocol is that the message boundaries are preserved.

With this saying, UDP is more suitable for applications that requires low latency, and can deal
with some packets losses, such as audio and video streaming, because the retransmission mechanism of
TCP is temporally unpredictable.

9

2.3.2 spi
Serial Peripheral Interface (SPI) [22] is a full-duplex synchronous serial communication interface

used for short distance, initially designed by Motorola. There are multiple versions of the protocol,
but we will only talk about the four wire: SCLK is the clock generated by the master device; MOSI,
master output slave input, is where the master device write the data to the slave; MISO, master input
slave output, is where the master reads the data sent by the slave, and finally the CS, chip select, is
the port responsible to for selecting the slave to communicate with.

2.3.3 i2c
Inter-Integrated Circuit (I2C) [23] is a half-duplex synchronous serial protocol develop by Philips

Semiconductor. The bus is consisting of two channels, the Serial Clock (SCL) and SDA (SDA). SCL is
the clock signal line and SDA is the line in which data is transmitted in both directions. This protocol
was develop to have multiple slaves in the same bus. When a communications starts, it first sends the
slave address followed by a read/write bit.

2.4 control systems
Controller is a system that manipulates one or more elements of another system to set the desired

behavior of this last. There is two forms of control: open and closed-loop. The first, open-loop, does
not use feedback, which means the output of the system will not have influence in the control signal.
The opposite is the closed-loop controller, which uses information of the output signal of the system to
manipulate the control signal. In this section will be presented the closed-loop controllers ON-OFF,
Proportional Integral Derivative (PID) and its variants, and also Reference Signal Tracking (RST).
The controllers will serve to test the functional and temporal performance of the developed platform.

2.4.1 on-off
The controller ON-OFF is the simplest to implement. This controller only has two states, it

outputs the maximum value in case the difference between the output system and the setpoint is
positive, or the minimum in case the difference is negative. The disadvantage of using this controller is
that leads to a oscillatory output of the system, as the controller is oscillator.

If the output of the system is contaminated with noise it should be add hysteresis to the controller.

Figure 2.2: ON-OFF controller

10

The control equation is:

u(k) =
{

Umax if e(k) > 0
Umin if e(k) < 0

(2.1)

,where e(k) = r(k) − y(k), Umax and Umin are the maximum and minimum of the output of the
control signal.

2.4.2 pid
In this subsection it will be presented the PID controller, one of the oldest strategies still in use.

According to a survey fulfilled in 1989, more then 90% of the controllers used in the industry were
PID type [24]. Nowadays the PID controller continue to be widely used [25].

proportional
To better understand the PID controller, first it should be explained the behavior of a simple

proportional controller. As the name implies, the output of the controller is proportional to the
difference of the output system and the setpoint, e(k) (Figure 2.3). In practice, this is only valid
until the output of the controller saturates, or in another words, when it reaches the maximum and
minimum values of the control signal.

Figure 2.3: P controller

The output signal of the controller is:

u(k) =


Umax if e(k) > +eo

u0 +Kpe(k) if −eo ≤ e(k) ≤ +eo

Umin if e(k) < −eo

(2.2)

Yet, this controller is not ideal as the output of the system not always reaches the setpoint. In the
next subsubsection is presented a controller that intends to solve this problem.

proportional integral
The Proportional Integral (PI) controller is consisted of two adjustable parameters, one of which

is the Kp proportional value and the other Ti integration time (Figure 2.4).
The control signal is the sum of the proportional value of the error and the integral of this same

error times the factor 1
Ti

(2.3). With this controller, the control signal is always rising when the error
has positive signal, or decreasing when the error signal is negative [26]. This allows us to conclude
that when the error signal is constant the output of the system is equal to the setpoint.

Gc(s) = Kp(1 + 1
sTi

) (2.3)

11

Figure 2.4: PI controller

Using the Equation 2.3 to obtain the Equation 2.4 in discrete time, approximating the derivate
operator by the backward difference, where the h is the sampling interval.

Gc(q−1) = s0 + s1q
−1

1 − q−1 (2.4)

{
s0 = Kp(1 + h

Ti
)

s1 = −Kp

(2.5)

The Equation 2.6 is the control signal derived from Equation 2.5 [26].

u(k) = u(k − 1) + s0r(k) + s1r(k − 1) − s0y(k) − s1y(k − 1) (2.6)

proportional integral derivative
The PID controller has three parameters to adjust. The proportional Kp, which was presented

earlier; the integral Ti, which leads to no error in stationary state; and the derivate Td, which causes a
reduction of overshoot.

Figure 2.5 shows the diagram block of the controller and its equation at 2.7 is in Laplace domain.
As in this thesis the controller will be used in discrete time, it was obtained the Equation 2.8 by
approximating the derivate and integral operator by the backward difference.

Figure 2.5: PID controller

Gc(s) = Kp(1 + 1
sTi

+ sTd) (2.7)

Gc(q−1) = Kp(1 + h

Ti

1
1 − q−1 + Td

h
(1 − q−1)) (2.8)

Gc(q−1) = Kp

1 + h
Ti

+ Td

h − (1 + 2Td

h)q−1 + Td

h q
−2

1 − q−1 (2.9)

12

The Equation 2.10 is the expression of the controller with the parameters s0, s1 and s2 on 2.11.

Gc(q−1) = s0 + s1q
−1 + seq

−2

1 − q−1 (2.10)


s0 = Kp(1 + h

Ti
+ Td

h)
s1 = −Kp(1 + 2Td

h)
s2 = KpTd

h

(2.11)

From the analysis of the Equation 2.10 it is possible to conclude that the controller has a pole in
the origin and two zeros.

The following Equation 2.12 is the control signal derived from the Equation 2.10 [26].

u(k) = u(k − 1) + s0r(k) + s1r(k − 1) + s2r(k − 2) − s0y(k) − s1y(k − 1) − s2(k − 2) (2.12)

The advantage of using PID is that it allows to control the plant adequately without knowing the
transfer functions. This tuning can be achieved manually by trial and error or automatically. More
information about the tuning techniques can be found on Subsection 2.4.3.

Due to the derivative component, the quality of the control can be degraded in the presence of
noise either on output of the system or at the reference signal.

integral - proportional derivative
The Integral - Proportional Derivative (I-PD) controller is a variant of the PID in which the

derivative components is applied only to the output of the system, so this controller tends to reduce
the initial overshoot that happens when the reference point value is changed, but it takes more time to
converge to the reference point [27].

Figure 2.6 presents the block diagram of the I-PD controller.

Figure 2.6: I-PD controller

From the block diagram above it was obtained the control signal in Laplace domain (Equation
2.13). From this equation it was derived the control signal in the discrete domain (Equation 2.14)s.

U(S) = Kp
1
sTi

(R(S) − Y (S)) −Kp(1 + sTd)Y (S) (2.13)

u(k) = v1(k) + v2(k) + v3(k) (2.14)


v1(k) = v1(k − 1) +Kp

h
Ti
e(k)

v2(k) = −Kpy(k)
v3(k) = −Kp

Td

h (y(k) − y(k − 1))
(2.15)

13

2.4.3 tuning methods
The tuning methods presented next were proposed by Ziegler-Nichols in 1942 for tune P, PI and

PID controllers.

ziegler-nichols open loop
One of the methods is performed with the system in open-loop. This can only be employed to a

system that can be approximated to a first order system with some dead time. If this condition is met,
it is applied a unitary step to the plant and it is observed the output signal. Figure 2.7 is an example
of a typical response; from this it is taken the dead time L and the T time constant. So by using this
two parameters, it is possible to get parameters for the controller by using the Table 2.3.

book
2007/8
page 1

188 Chapter 6. PID Controller Design

0 5 10 15 20 25 30 35
0

0.5

1

1.5

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← D in feedback
← normal PID

Figure 6.6. The closed-loop step responses comparison.

�

�

�

�

k

time t

y(t)

1

Kc

�� Imaginary

real

(a) time response (b) Nyquist plot

a

�

L T����

Figure 6.7. Sketches of the responses of an FOPDT model.

dead time (FOPDT) which can be expressed by

G(s) = k

1 + sT
e−sL. (6.5)

In real-time process control systems, a large variety of plants can be approximately
modeled by (6.5). If the system model cannot be physically derived, experiments can be
performed to extract the parameters for the approximate model (6.5). For instance, if the
step response of the plant model can be measured through an experiment, the output signal
can be recorded as sketched in Fig. 6.7(a), from which the parameters of k, L, and T (or
a, where a = kL/T) can be extracted by the simple approach shown. More sophisticated
curve fitting approaches can also be used. With L and a, the Ziegler–Nichols formula in
Table 6.1 can be used to get the controller parameters.

If a frequency response experiment can be performed, the crossover frequency ωc

and the ultimate gain Kc can be obtained from the Nyquist plot as shown in Fig. 6.7(b).
Let Tc = 2π/ωc. The PID controller parameters can also be retrieved from Table 6.1. It
should be noted that Table 6.1 applies for the design of P (proportional) and PI controllers
in addition to the PID controller with the same set of experimental data from the plant.
Since only the 180◦ point on the Nyquist locus is used in this approach, Ziegler and Nichols

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

Figure 2.7: Open loop step response

Controller type Kp Ti Td

P T
kL

PI 0.9T
kL

3L
PID 1.2T

kL
2L L

2

Table 2.3: Ziegler-Nichols tuning formula in open loop

ziegler-nichols closed-loop
The other suggested method is in closed-loop. The plant is put under a P controller and it is

possible to put in oscillation with constant amplitude and frequency when the gain Kp increases. For
this to be possible the plant has to have excess of poles in relation to zeros by three [26] .

This method intends to obtain the period Pcr and the gain Kcr of the controller that leads to
oscillation. The parameters for the controller P, PI, and PID can be set using the Table 2.4.

Controller type Kp Ti Td

P 0.5Kcr

PI 0.45Kcr
Pcr

1.2
PID 0.6Kcr

Pcr

2
Pcr

8

Table 2.4: Ziegler-Nichols tuning formula in closed-loop

14

relay feedback method
In 1984 it was presented an auto-tuning method for the PID controller. The method proposed by

Åström and Hägglund uses two types of controllers [26] as described in this subsection. First the plant
is put under control by an ON-OFF controller, with the intent to put it in oscillation. With this it
is intended to obtain the period of oscillation, which is an approximation of the critical period Pcr

and the amplitude of oscillation a. Knowing the a value it is possible to calculate the Kcr with the
Equation 2.16, where d is the total amplitude of control signal. Consulting the Table 2.4 it is obtained
the parameter for the PID controller. The next step is to switch the ON-OFF controller to the PID
controller with the parameters already tunned. The idea of this method is presented on Figure 2.8.

Kcr = 4d
πa

(2.16)

Figure 2.8: Relay feedback auto tuning method

2.4.4 identification method
The control methods presented earlier can be applied by treating the system as a black box, or

in other words, without knowing the composition of the system. In some control techniques can be
desirable to know more about the system and it can be theoretical deduced by a mathematical model
or by using a system identification technique. Still, when using a mathematical model is not always
possible to find all the coefficient of the system and for this reason the system identification techniques
are important.

The Least Squares (LS) and it recursive implementation is a method that tries to obtain the
coefficient of the model that minimizes the square error of the difference between this model and the
system. LS is a parametric regression method, which means it is necessary to know the structure of
the model as well as its order. The goal of the method LS is to minimize the function cost of Equation
2.18, using AutoRegressive with eXogenous terms (ARX) model with no noise (Equation 2.17).

G(q−1) = b1q
−1 + ...+ bnq

−n

1 + a1q−1 + ...+ anq−n
(2.17)

J(θ̂, N) = 1
2

N∑
i=1

ε2(i) (2.18)

ε(i) = y(i) −ϕT θ̂ (2.19)

On Equation 2.19 the y(i) is the current output of the system, ϕ are the regressors that usually
are a delayed version of the input and output, and θ̂ are the unknown parameters bi and ai from the

15

model ARX. The resolution of Equation 2.18 [28] leads to the equation 2.20, which is only possible if
ΦTΦ has a determinant not null, with Φ being the matrix column of all ϕ̂ and Y the vector of all Y .

θ̂ = (ΦTΦ)−1ΦTY (2.20)

The recursive variation of the LS, RLS is more practical when using the identification method for
real-time control or when the system is time-variant. The advantages are: less memory required to
record the ϕ (part of the input and output signal), and simpler computational complexity to update
the θ̂ (estimated model coefficients).

The solution for the RLS [29] (Equation 2.21), takes the following steps: build the ϕN+1 with the
new incoming data, calculate the weighting factor KN+1, calculate the new error of the model εN+1

and for last update the θ̂N+1. The variable PN expresses the confidence level in the model; if it is
small it means that there is an high confidence level in the θ̂N . For time-variant systems, one of the
techniques used to let the RLS continues to update its θ̂ is to add a forgetting factor coefficient. To
accomplish this is only necessary to replace the last row of the Equation 2.21 with the Equation 2.22.
Usually the value λ should be only a little lower than one.

θ̂N+1 = θ̂N +KN+1εN+1

εN+1 = y(N + 1) − ϕN+1θ̂N

KN+1 = PNϕ
T
N+1(1 + ϕN+1PNϕ

T
N+1)

PN+1 = (I −KN+1ϕN+1)PN

(2.21)

PN+1 = 1
λ

(I −KN+1ϕN+1)PN (2.22)

2.4.5 reference signal tracking
RST controller is a pole placement control technique to impose the behavior of the system in

a closed-loop. It is a controller with two degrees of freedom, feed-forward and feedback actions, in
opposition to the controller presented earlier that has only one degree. By knowing the plant, through
theoretical equations or some identification system method, it is possible to set the closed-loop poles
by changing the RST parameters. Figure 2.9 presents the structure of the controller.

Figure 2.9: RST controller structure

Using the model ARX, the closed-loop model must have the number of poles in Laplace domain
greater or equal to the number of zeros; also the poles have to be in the left side of the half s-plane.

BT

AR+BS
= Bm

Am
(2.23)

16

Equation 2.23 not always let us choose the wanted solution and for this reason is normal to
introduce one more degree of freedom, the auxiliary polynomial Aobs. This polynomial will not interfere
in the output response in relation to the input (Equation 2.24), but will influence the behavior of the
system with perturbations (Equation 2.26), when considering the ARX model with noise (Equation
2.25).

BT

AR+BS
= AobsBm

AobsAm
(2.24)

y = B

A
u+ ξ (2.25)

y = Bm

Am
u+ R

AobsAm
ξ (2.26)

The new polynomial Aobs should be understand as one parameter more of the controller, and
likewise must follow a set of rules:

• deg(R(q)) ≥ deg(T (q)) , to be causal

• deg(R(q)) ≥ deg(S(q)) , to be causal

• It is usual to choose the polynomial R and S with the same degree of A. In this case Aobs has
to be: deg(Aabs) = 2deg(A) − deg(Am)

From Equation 2.24, the solution for polynomial T is direct (Equation 2.27). Then, it is left to
solve the Equation 2.28 that gives R and S polynomials. To have no steady state error is needed to
have a high gain to low frequencies, which is accomplish by having integral action on the regulator. For
this it is used the polynomial R in the form R = (q − 1)R1. This leads to the Equation 2.29, usually
known as Diophantine equation [30].

T (q) = A(q)obsBm(q)
B(q) (2.27)

A(q)R(q) +B(q)S(q) = Am(q) (2.28)

A(q)R1(q) ∗ (q − 1) +B(q)S(q) = Am(q) (2.29)

Following the rules for a first order system in closed-loop, we reach the statements:

• A(q) = q + a

• B(q) = b

• Am(q) = q + am

• Aobs(q) = 1 + ao

• Bm(q) = bm

• R1(q) = 1

• S(q) = qS0 + s1

17

In this case, s0 and s1 are the only parameters left to define, and can be found by the Equation
2.30. {

s0 = 1−a+am+a0
b

s1 = ama0+a
b

(2.30)

For a second order system in closed-loop it is known that:

• A(q) = q2 + qa1 + a2

• B(q) = qb1 + b2

• Am(q) = q2 + qam1 + am2

• Aobs(q) = q2 + qaobs1 + aobs2

• Bm(q) = qbm1 + bm2

• R1(q) = q + r1

• S(q) = q2s0 + qs1 + s2

In this case, is needed to determine r1, s0, s1 and s2. The solution for this parameters can be
found at Equation 2.31, where P0, P1, P2, P3, P4, P5 and P6 are defined at 2.32.

r1 = P0 − b1s0

s0 = − P1+b1s1
P2

s1 = − b1(P5P2−P1a2b1)+b2P6
b2(P4b1−P2b2)−a2b3

1

s2 = P6+(P4b1−P2b2)s1
P2b1

(2.31)

P0 = am1 + aaobs1 + 1 − a1

P1 = a2 + a1P0 − am1 − am2 − aobs2 − aobs1(1 + am1) − 1
P2 = b1(1 − a1) + b2

P3 = a2(P0 − 1) − a1P0 − am1aobs2 − am2aobs1

P4 = b1(a1 − a2)
P5 = −a2P0 − am2aobs2

P6 = −P3P2 + P4P1

(2.32)

With the polynomials S(q),R(q) and T (q) calculated, it is only missing the control function,
Equation 2.33.

u(k) = T (q)r(k) − S(q)y(k)
R(q) (2.33)

18

chapter 3
Hardware Development
3.1 requirements

The objective of this work is to build an embedded system to be used in a educational environment,
helping students to learn and test control algorithms in a physical system. This system will have
two operation modes, shown on Figure 3.1. The first mode allows a fast development of the control
algorithm in a familiar programmable environment for the user, MATLAB. The developed system
will communicate with MATLAB by the Ethernet interface, and will only work as digital and analog
interface to the physical system. In the second mode, the embedded system has to work without any
assistance of an external computer. Thus, it must realize all needed calculations, read and actuate
on time in the physical system. Before proceeding to the selection of the hardware and describing
the developed system, it is necessary to define the requirements. The hardware in development
has to be capable to read and operate in a mix of digital and analog system, with at least four
Digital Input (DI) and four Digital Output (DO) compatible with 5 Volt Complementary Metal-Oxide-
Semiconductor (CMOS) technology, capable of supplying more than 20mA per channel and featuring
input protection. Furthermore, in the digital side is needed four Pulse-Width Modulation (PWM)
channels with clock frequency up to 20kHz. On the analog side, it is necessary at least four ADCs able
to measure from -5V to 5V with an input resistance of more than 1GΩ, 5mV resolution and sample
frequency of 1kHz, and four DACs channels with the same voltage range, resolution and frequency
characteristics and with an output current of 20mA and short-circuit protection. The board has to be
powered from an unique supply voltage of 5V and generate internally all the voltages needed. Figure
3.2 represents the block diagram of the target system.

19

Figure 3.1: Multiple working modes

Figure 3.2: Block diagram

3.2 processor unit
For this work it is necessary an embedded system to handle Ethernet communications while working

alongside MATLAB and to be capable to execute the control loop code when working in independent
mode. It also has to be able to interact with the physical system or at least has to have protocols
to talk with the Integrated Circuits (ICs) responsible to read and actuate in the system. Taking in
account the intended use of the embedded system, it was made an analysis of systems like Raspberry
Pi, Beaglebone and others. The choice of the system fell upon the Raspberry Pi 1, model B, because it
is the most affordable option, is available at the university and was already used in previous projects.
This is a small credit-card size single micro-computer board with the purpose to allow children to have
access to a computer at home. It features a Broadcom BCM2835 System On Chip (SOC) containing
a single core ARM11 processor with floating point running at 700MHz clock speed, an integrated
Graphics Processing Unit (GPU) [31] with 512MB Random-Access Memory (RAM) distributed for

20

both processors. The SOC connects to a USB hub which provides a 100Mb/s Ethernet connection
and two USB 2.0 ports. It provides a 34 pin connector with General-Purose Input/Output (GPIO)
ports, common protocol communications as Universal Asynchronous Receiver/Transmitter (UART),
SPI, I2C and also some peripherals as PWM. Figure 3.3 shows the placement of components and
connectors of Raspberry Pi.

This computer runs a free OS based on Debian, a well known Linux distribution [32]. Every OS
has a learning curve to allow users to understand how the system is designed and to know how to
program using its Application Programming Interface (API). It is here that Linux presents more
advantages over any other system, with many books, on-line tutorials and a big community ready to
help. Linux is an open source, which means the code is available to anyone to read it, modify it and
contribute with their one modifications, which leads to faster and multiple solutions for one problem.

Figure 3.3: Raspberry Pi 1 model B plant

3.3 hardware implementation
Although the Raspberry Pi already provides some of the important features required, it does not

fulfill all the electrical requirements defined on Section 3.1. This section will address the main ICs
used to complement the functionalities missed by Raspberry PI, namely the analog and digital I/O,
and the PWM functionality. The additional hardware was selected taking in consideration the size,
price, functionality and past knowledge.

21

3.3.1 complementary integrated circuits

max11300
The most important complementary IC used is the MAX11300 [33] from Maxim Integrated. It

was used because of its price, multiple functionalities, availability at the university and because it was
already used in older projects. It has 20 I/O ports, each one configurable as ADC, DAC or GPIO,
with ports capable of being configured as logic level translators or analog switches, and with a internal
voltage reference. The ADCs and DACs have a 12 bits resolution, with selectable input and output
voltage ranges from -10V to +10V.

The advantages of using this "Swiss army knife", as the EETimes calls it [34], are being: a very
capable and configurable IC that attends most of our needs; allowing to set the sample rate of the
ADC, the number of samples before sending the ADC value, the threshold for the digital input ports
and the high level voltage for a digital output ports. Other way to meet the requirements fulfilled by
the IC could be using multiple dedicated ICs to perform each function, but this would lead to a more
expensive and complex solution.

MAX11300 features a high speed SPI and a digital core, which can be used to configure the device,
read or write values in the ports, and two more special pins, one to trigger an ADC conversion and
another that can be configured to signal the CPU about multiple events as an ADC conversion done,
DAC over-current or the internal temperature.

A more complete description of the IC can be found in Table 3.1

Parameter Min Typical Max
ADC range -10V 10V
ADC resolution 12 bits
ADC offset error -5LSB 5LSB
ADC sample rate 200kps 400kps
ADC sample number 1 128
ADC input resistance 70kΩ 100kΩ 130kΩ
DAC range -10V 10V
DAC resolution 12 bits
DAC offset error -20LSB 20LSB
DAC refresh time 40us
DAC output current 25mA
GPI programmable threshold 0.3V 2.5V
GPO programmable High 0V 10V
Voltage reference 2.494V 2.5V 2.506V
SPI clock speed 20MHz

Table 3.1: Electrical and functional description of MAX11300

max31790
Most of the functional requirements were fulfilled by the previous IC, missing only PWM and

I/O protection. Although Raspberry Pi has PWM built in, it only has two channels available and on
Section 3.1 it was state the need of four channels. For this reason it is used an external IC to accomplish

22

Parameter Value
PWM resolution 9bits
PWM frequency 25Hz, 30Hz, 35Hz, 100Hz,

149.7Hz, 1.25kHz, 1.47kHz,
3.57kHz, 5kHz, 12.5kHz,
25kHz

PWM frequency accuracy +-6%
PWM maximum voltage 5.5V
PWM maximum current 5mA
TACH count resolution 11bits
I2C clock speed 400kHz

Table 3.2: Parameters of MAX31790

this functionality. The IC responsible for the PWM is the MAX31790 [35], from Maxim Integrated, for
the following reasons: the first and more important is the existence of a kernel device-driver for Linux,
which will be of much help at making the porting to Xenomai Real-Time Driver Model (RTDM). Also
the IC has six PWM channels with Open-Drain outputs and six tachometer channels, both tolerating
up to 5.5V. The PWM has 12 programmable oscillating frequencies shared in groups of three channels,
and the communications are performed by I2C protocol. More details can be found at the Table 3.2.

input and output protection
It can not be neglected that this work aims the educational environment, where it is likely for the

equipment to be misused. For this reason it is necessary to have electrical protection for the more
expensive ICs, and the protection circuit has to be easily replaced when permanent damage happens.

For the I/O digital channels configured on MAX11300 it is used the 74HC244 [36] in Plastic
Dual-In-line Package (PDIP) package. The 74HC244 is a very common IC easy to find on retailers. It
has eight buffers in one package with clamp diodes for excessive voltage protection in the input. A
more complete description of this device can be found in Table 3.3.

Parameter Value
HIGH-level input voltage 4.2V
LOW-level input voltage 1.35V
HIGH-level output voltage 4.4V
LOW-level output voltage 0.1V
Maximum output current 35mA

Table 3.3: Electrical characteristic of 74HC244 from -40◦C to 80◦C at 5V

For protecting the MAX11300’s analog channels was selected a TL071 [37] Op-Amp on PDIP
package, for the same reasons described above. It is a low-noise JFET-input Op-Amp, which means high
input resistance with input offset compensation, high slew rate, and with an output capable of being
in a continuous short-circuit for an undefined amount of time. If a better input offset characteristics
without the need of offset compensation is desired, the OP27 [38] can be used as replacement, with the
disadvantage of being more expensive. For an easier comparison between the two, consult Table 3.4.

23

The MAX31790 PWM ports are Open-Drain, which means that they can be short circuited to
ground without any damage and pulled as high as 5.5V safely if the current limit is respected. The
tachometer ports are 5.5V tolerant, and for most case scenarios this value is enough. For those reasons
and to save space on the Printed Circuit Board (PCB), it was not implemented any protection circuit
for this IC.

Parameter TL071 OP27
Supply voltage +-18v +-22V
Input offset voltage 13mV 50uV
Input resistance 1TΩ 3GΩ
Output maximum current 25mA 35mA

Table 3.4: Electrical characteristics of Op-Amp TL071 and OP27 from -25◦C to 85◦C

3.3.2 power system
The system should be powered by a single supply of 5V. It is used 5V coming from the GPIO

connector of the Raspberry Pi. As the MAX11300 and the Op-Amp need -7.5V and 7.5V, it is used a
dual switch regulator, LT3471 [39] from Linear Technology, followed by two linear regulators for noise
improvement. Two more linear regulators were used to supply the 5V and 3.3V that the IC needs.
These supplies are not only used to power the internal IC, but will also be available to power any other
circuit outside the board.

It is the responsibility of the user to respect all the limitations of each power supply source. The
maximum current on each rail can be found on table 3.5.

Supply voltage Maximum Current
-7.5V -50mA
3.3V 100mA1

5V 100mA1

7.5V 100mA1

Table 3.5: Maximum current available in each rail

3.4 printed circuit board
In the scope of this thesis it was developed a prototype board named RasP:IO that contains all

the required electronic component and interfaces. This board was essential to test and validate the
project. The first step was to make the schematic that can be found on Appendix A with all the IC
mentioned in this chapter. Afterwards was designed a four layers board; one of the middle layers is a
ground plane to reduce the noise on analog side and the rest of the layers are used to route all other

1Note the current in 3.3V, 5V and 7.5V rails can not exceed 100mA combined.

24

electrical signals. The dimensions are 10 by 10cm, the maximum dimension possible that respects the
target price to manufacture.

On Figure 3.4 can be found a 3D rendering of the developed PCB with the components marked:

• Left side - power output connector: The first four ones are ground, followed by -7.5V, 3.3V, 5V
and 7.5V. Next is the input power connector. In the first contact can be connect the 5V and
the second GND. The last is a connector compatible with the Raspberry Pi GPIO port.

• Bottom side - analog I/O: The first connector is the analog input with four grounds and four
analog inputs interleaved. In the same pattern is the second connector, the analog output, with
four grounds and four analog outputs.

• Top side - PWM & Tachometer connector with the Digital I/O. The first has four tachometer
inputs intercalated with four PWM channels. The second has four outputs followed by four
inputs, both digital.

Figure 3.4: Plant of the developed PCB

25

3.5 summary
In this chapter it was stated the requirements of the project, the selection of the ICs and the CPU.
For the CPU, it was chosen Raspberry Pi 1 model B for its Ethernet interface, ability to run a

Linux distribution, the multiple GPIO and CPU.
As Raspberry Pi does not have all the need functions, it was added two ICs, MAX11300 for the

analog and digital I/O and the MAX31790 to generate the PWM.
Finally, it was developed a PCB. This chapter shows the location of the most important ICs and

connectors, as well the interfaces.

26

chapter 4
Software and Firmware
This chapter presents the firmware that supports the communication with the multiple ICs on the
board and the Hardware Abstract Layer (HAL) to interface the hardware with the higher level software
without worrying about the technical details of the hardware. Then it is described the Ethernet based
protocol that was implemented to allow the communications between the Raspberry Pi and the PC.
Finally, it will be presented the software that allows interacting with the Raspberry Pi and RasP:IO
board as an I/O interface as well as turning them on a standalone controller.

27

Figure 4.1: System block diagram

4.1 firmware

4.1.1 device driver
Raspberry Pi is running Raspbian version of May, 2015, a distribution of Debian, that came with

kernel on version 3.18 . To install the version 2.6 of Xenomai, was necessary to revert the Linux kernel
to the version 3.10, in which device drivers like SPI were not working correctly. Installing Xenomai on
Raspberry Pi was not a trivial task, and after having it working it was created a guide with the steps
taken. The guide can be consulted on Appendix B.

Raspberry PI features SPI with two FIFOs of 16 bytes, one to store the data to send and the other
the received data. Most of the operations carried out by the system imply the use of the SPI interface.
Therefore it is important to choose an efficient device driver. For example, one of the ICs used on the
board is the MAX11300, which has an SPI interface to communicate with Raspberry Pi.

There are multiple options for the device driver from SPIDEV, a library working in user-land
and written in C, implemented on Linux in Kernel Space but only accessible on user-land [40], or
more preferable a real-time device driver working on Xenomai. When the software was developed and
tested there was no RTDM for SPI on Xenomai available, and implementing one is a difficult and time
consuming task. SPIDEV suffers from latency [41], and for this reason it was discarded. Therefore, the

28

choice of the driver fell back on BCM2835, an Open Source library written in C [42]. This library was
modified to transmit in polling mode a block of data with no more than 16 bytes. This way it takes
advantage of the Hardware’s FIFO and the transfer occurs in a predictable time. Another modification
done is the inclusion of a timeout mechanism.

4.1.2 hardware abstract layer
Having the SPI device driver decided, it is time to start communicating with MAX11300. The

address space is of 7 bits and the registers are 16 bits. For this reason to do any type of request or
communication, it is always needed to send the address number followed by the read/write bit, and
then read or write in multiples of two bytes, of which the first is the most significant one. Figure 4.2
shows an example of a read operation of two bytes. Before doing any operation involving the ports, the
IC must be configured. Maxim Integrated has available configuration software [43] and it generates all
code in C for the initialization of the IC, defines the channels type, the sample frequency, number of
samples per read, maximum and minimum voltage of the ADC and DAC, decision level of the digital
input, output logical one level, and more. All important configurations can be found on Table 4.1.

Description register value value meaning
ADC conversation mode 3 continuous sweep
ADC conversation rate 0 200kps
ADC sample average 3 8 samples
ADC voltage range 2 -5V to 5V
ADC voltage reference 0 internal
DAC voltage range 2 -5V to 5V
DAC voltage reference 0 internal
GPI threshold 4095 2.5V
GPO logical one level 2047 5V
Temperature monitor 1 internal
Temperature sample average 1 8 samples

Table 4.1: Configuration parameters for MAX11300

The ADC is 12 bits and it works in continuous mode. It is always necessary to read two bytes of
data to get the analog value on each channel. It was selected the conversation rate of 200kps, because

Internal and External Temperature Sensor Specifications
(VAVDD = 4.75V to 5.25V, VDVDD = 3.3V, VAVDDIO = +12.5V, VAGND = VDGND = 0V, VAVSSIO = -2.5V, VDACREF = 2.5V, VADCREF = 2.5V
(Internal), fS = 400ksps, 10V analog input range set to range 1 (0 to +10V). TA = -40ºC to +105ºC, unless otherwise noted. Typical values
are at TA = +25ºC.) (Note 2)

Figure 2. SPI Read Timing (N = Number of Words Written; N > 1 for Burst Mode)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
ACCURACY

Accuracy of Internal Sensor
(Note 6,8)

0°C ≤ TJ ≤ +80°C ±0.3 ±2.0 °C

-40°C ≤ TJ ≤ +125°C ±0.7 ±5 °C

Accuracy of External Sensor
(Note 6,8)

0°C ≤ TRJ ≤ +80°C ±0.3 ±2.0 °C

-40°C ≤ TRJ ≤ +150°C ±1.0 ±5 °C

Temperature Measurement
Resolution 0.125 °C

External Sensor Junction Current
High 68 μA

Low 4 μA

External Sensor Junction Current
High Series resistance cancellation mode 136 μA

Low Series resistance cancellation mode 8 μA

D0N/D1N Voltage (Internally
Generated) 0.5 V

CS

DIN

SCLK

DOUT

AD6 AD5 RB/WAD0AD1AD2

HIGH-Z

tCSS0tCSH0 tDS tDH

tCH tCL

tCP

D[N16-1] D[N16-2] D[N16-16]D[N16-15]D[N16-3] D[N16-12] HIGH-Z

tDOT tCSS1 tCSW

tDOD

MAX11300 PIXI, 20-Port Programmable Mixed-Signal I/O with
12-Bit ADC, 12-Bit DAC, Analog Switches, and GPIO

www.maximintegrated.com Maxim Integrated │  9

Figure 4.2: SPI reading

29

it provides the maximum acquisition time (3.5us) available on the IC. With a longer acquisition time
is possible to decrease the offset DC voltage on the hold phase of the Sample And Hold (SAH) circuit
[44]. As there are four channels configured as analog inputs, from channel 0 to 3, and the internal
temperature monitor also uses the ADC, all doing eight sample averages, it leads to a maximum
theoretical refresh rate of 5000Hz. It was selected the highest number of sample averages with care to
have a sample time of five times less [45] than the minimum period of the control loop. Figure 4.3
shows the total number of samples done on one sweep, as well as the acquisition time.

To get the analog value of one of the pins configured as analog input first, it is read a 16 bits
register to check if there is a new analog conversion available. If yes, it is read a 32 bits register to
check in which pin is available the new conversion. If the desired pin has a new conversion, it is read a
16 bits register associated with the chosen pin and in the end it is erased the first 16 bits register. If
any of this conditions fails, there is a wait time of a full sweep conversion and then it is made a new
attempt. Figure 4.2 shows the situation where the initial four bits are zeros, followed by 12 bits with
the analog value. The procedure to read the four ADC channels is the same. It is read a register to
check if there are analog conversions ready, and if it is true then it is read the second register to verify
if the four pins have new conversions available. Then it sends the address of the first channel and waits
for the return of eight bytes. This is possible to do in one SPI transaction because the ADC channels
are mapped in sequence. If any of the check flags fail, it is perform the same behavior describe before.

Figure 4.3: Number of samples per ADC sweep

The DAC has a 12 bits resolution being responsible to set the analog output, define the General
Purpose Input (GPI) threshold voltage between the digital levels, and also define the voltage of the
logical one level of General Purpose Output (GPO). So in total there are 12 channels depending of
the internal DAC in the IC, if every channel needs 40us, the minimum refreshment rate is 1887Hz,
taking in consideration the introduction of multiples of 80us that will be explain later. To set one
value on analog output, it is necessary to send the address of associated register port with the write
bit, followed by 16 bits that contains the 12 bits value aligned to the right. The analog outputs have
two working modes; the first is the sequential update mode. In this mode the DAC would be updating
the 12 DAC depending pins all sequentially when it receives or not a new value to be set. This would
introduce a variable time of actuation from 0 to 440us (11channels*40us). The second mode, which is
used here, makes the update immediately when is set a new value in one of the analog output channels.
The disadvantage of using this mode is that successive writes to the DAC register must be separated
by 80us as can be seen in Figure 4.4. So in this mode, when it is wanted to set the four DAC channels,
there is a delay of 360us between the first and fourth channel, against the 120us of the first mode.

Digital inputs use the DAC to set the threshold between high and low level, which can be any
value from 0.3V to 2.5V. It was chosen 2.5V, because it is the medium value of the output of the
protection circuit (Table 3.3). The GPI bits of the channels are split in two register of 16 bits. On
software the registers were concatenated in one 32 bits register, to have a direct match between the

30

Figure 4.4: Worst case time for DAC sweep

number of the pin and the position of the digital value on the register. In order to read the digital
value of a pin, it is just needed to read the bit(s) number of the wanted pin(s).

Digital outputs use the DAC to set the logical one level and it can be any value from 0V to 5V. The
value used was the maximum available, 5V, to have the best margin for the input protection circuit,
(Table 3.3). The write operation in the digital port is similar to the read one, with the difference that
is necessary to do a read-modify-write operation to change only the wanted bit(s) and preserve the
remaining ones.

In ’MAX11300Hex.h’, the file generated by the configuration software, there is the first HAL
function that initializes the MAX11300 with the values set on table 4.1. The function is:

Sintax: void MAX11300init()
Arguments: None
Return: None

In the file ’raspio_max11300.h’ it is possible to find two sets of functions, the private ones to
access the hardware in low level, and the public that implement the HAL. These are:

• The function getADC is used to get only a new read from ADC.
Sintax: uint8_t getADC(uint8_t channel, float *voltage)
Arguments: channel: unsigned byte, value from 0 to 3

voltage: float pointer, value came in SI unit
Return: different value from 0 in case of error

• The function getADCAll is used to get all analog values at the same time from the channels
configured as analog inputs.
Sintax: uint8_t getADCAll(float *voltage)
Arguments: voltage: float array of 4 elements, values came in SI unit
Return: different value from 0 in case of error

• The function setDAC is used to set the output voltage of one of the DAC channels.
Sintax: uint8_t setDAC(uint8_t channel, float voltage)
Arguments: channel: unsigned byte, value from 0 to 3

voltage: float, value from -5 to 5 in SI unit
Return: different value from 0 in case of error

31

• The function setDACAll is used to set all output voltages of all the channels configured as
analog outputs.
Sintax: uint8_t setDACAll(float *voltage)
Arguments: voltage: float array of 4 elements, values from -5 to 5 in SI unit
Return: different value from 0 in case of error

• The function getIN is used to get a new digital value from one of the channels.
Sintax: uint8_t getIN(uint8_t channel, uint8_t *boolean)
Arguments: channel: unsigned byte, value from 0 to 3

boolean: unsigned byte pointer, 0 for low level or 1 to high
Return: different value from 0 in case of error

• The function getINAll is used to get all the digital values from the channels configured as digital
inputs.
Sintax: uint8_t getINAll(uint8_t *boolean)
Arguments: boolean: unsigned byte array of 4 elements, 0 for low level or 1 to high
Return: different value from 0 in case of error

• The function setOUT is used to set a new digital value in one of the digital outputs.
Sintax: uint8_t setOUT(uint8_t channel, uint8_t boolean)
Arguments: channel: unsigned byte, value from 0 to 3

boolean: unsigned byte, 0 for low level or 1 to high
Return: different value from 0 in case of error

• The function setOUTAll is used to set all digital values in all channels configured as digital
outputs.
Sintax: uint8_t setOUTAll(uint8_t *boolean)
Arguments: boolean: unsigned byte array of 4 elements, 0 for low level or 1 to high
Return: different value from 0 in case of error

4.2 communication protocol for matlab and
raspberry pi

4.2.1 protocol overview
To have MATLAB doing all data processing running in a PC with Microsoft Windows, OSX

from Apple or Linux and use the Raspberry Pi as an interface is necessary to choose the mode of
communication between both. Raspberry Pi supports multiple serial protocols: UART, I2C, SPI and
Ethernet. The choice fell back on Ethernet because it is available in most modern PC, so it does not
require additional hardware except for a cable. Ethernet has a wide bandwidth, it is supported by
most modern OS without the need to do any software installation; in one cable is possible to run
multiple services and can work in ranges up to 100 meters [46].

UDP is more suitable than TCP for network applications with low latency goals, because the latter
one has a non-deterministic behavior, due to the retransmission and congestion mechanisms employed.
Although UDP has this characteristics, it has one unwanted behavior, that is the lack of guarantees

32

Figure 4.5: Internet protocol suite

of packet delivery. As this application is sensitive to packets losses, it is necessary to implement
complementary mechanisms to ensure packet delivery. To achieve this, several mechanisms have been
implemented. First, the server will respond to every message with an acknowledge or appropriate
answer. There is a sequence number in the beginning of every message to make sure that it has not
received messages out of order and a checksum number in the end of the messages to check if the
content was not modified in the transmission or in the copy to the UDP socket.

In this protocol is implemented the client-server model type. Raspberry Pi is the server with known
Internet Protocol (IP) address and port capable to attend only one client at time and the client will
be the computer running MATLAB. The client is responsible to initiate and end the communication,
and has the task of incrementing the sequence number on every new sent message and wait for the
response. In case it passes more than the defined time-out value after the message was sent, and it was
not received any answer, it will be send again the same message. If the arrival keeps failing it will
be tried one more time, and if this behavior is maintained, the user will be informed with a time-out
error. Another possible error is if the sequence number received does not match the sent one, or the
checksum is wrong; in this situation it tries to read again the socket for two more times. If no valid
message has arrived, the message is retransmitted in the same conditions as explained before.

Although this protocol is created for real-time application, neither MATLAB nor the operative
systems are real-time, so there are not guarantees that the time-out value will be always respected,
what can lead to longer time of execution.

The value chosen for the time-out was 8ms. The value was adjusted to get a failure rate lower
than 0.01% and it was obtained exchanging messages between MATLAB and Raspberry PI, using the
implemented protocol.

4.2.2 network commands
This subsection presents the commands created to interacted with the HAL on Raspberry PI. Most

commands shown here use the same name of the ones presents in the HAL on Subsection 4.1.2, but it
is to notice that the parameters and return value can differ. In the end of this subsection there are two
more commands related to PWM functionality but there is no hardware supporting them.

33

start connection
The client has to initiate the communication with the server, which is done with the start command.

Syntax: start()
Arguments: None
Return: 0 or NaN (Not a Number) in case of error

end connection
When the client does not need to do any more operations with the server, it must send the end

command.

Syntax: end()
Arguments: None
Return: 0 or NaN in case of error

get a new adc value
The command getADC is used to get a new read from the ADC.

Syntax: getADC(channel)
Arguments: Channel: int value from 0 to 3
Return: Voltage, float beteween -5 or 5, or NaN in case of error

get all adc values
The command getADCAll is used to get all the analog values at the same time from the ADC.

Syntax: getADCAll()
Arguments: None
Return: Voltage, float’ array with 4 elements between -5 and 5 volt, or NaN in the position(s) with error(s)

set a new dac value
The command setDAC is used to set the output voltage of one of the DAC channels.

Syntax: setDAC(channel, voltage)
Arguments: Channel: int value from 0 to 3

Voltage: float between -5 and 5 volts
Return: 0 or NaN in case of error

set all dac values
The command setDACAll is used to set the output voltage of all the DAC channels.

Syntax: setDACAll(voltage[])
Arguments: Voltage: float’ array with 4 elements between -5 and 5 volts, or NaN on the position(s) to not set any value(s)
Return: 0 or NaN in case of error

34

get a new digital input
The command getIN returns the digital value from one of the digital inputs.

Syntax: getIN(channel)
Arguments: Channel: int value from 0 to 3
Return: Boolean 0, 1 or NaN in case of error

get all digital inputs
The command getINAll returns the digital values from the digital inputs.

Syntax: getINAll()
Arguments: None
Return: Boolean’ array with 4 elements of 0, 1 or NaN in the position(s) with error(s)

set a new digital output
The command setOUT sets a digital outputs to one logical level.

Syntax: setOUT(channel, boolean)
Arguments: Channel: int value from 0 to 3

Boolean: 0 or 1
Return: 0 or NaN in case of error

set all digital outputs
The command setOUTAll sets all the digital outputs to the given logical level.

Syntax: setOUTAll(boolean[])
Arguments: Boolean’ array with 4 elements of 0, 1 or NaN in the position(s) to not set any value(s)
Return: 0 or NaN in case of error

set pwm frequency value
The command setPWMFreq sets the frequency of the PWM channel. In case the requested

frequency is not supported by the hardware, it is applied the next lower value, and returned in the
answer message. It is important to notice that in the Rasp:IO, the first three channels share the
same clock, so any change in frequency in one channel will be applied to the other two. For more
information about this limitation, consult Section 3.3.1 on Chapter 3.

Syntax: setPWMFreq(channel, frequency)
Arguments: Channel: int value from 0 to 3

Frequency: 25, 30, 35, 100, 125, 150, 1250, 1470, 3570, 5000, 12500 or 25000 in Hz
Return: Frequency or NaN in case of error

35

set pwm duty-cycle value
The command setPWMDuty sets the duty-cycle value of one of the PWM channels.

Syntax: setPWMDuty(channel, duty-cycle)
Arguments: Channel: int value from 0 to 3

Duty-cycle: float between 0 and 100
Return: 0 or NaN in case of error

4.2.3 registers description
In the last subsection was presented the commands available from MATLAB. The messages

exchanged in this protocol are in the Appendix C.1 and the format of each one in the C.2. Here it is
only explained the meaning, size and type of every register present in the messages.

• Seq Num: Sequential Number to identify the number of the message. Size 1 byte, type unsigned;
it is the first register in all messages.

• ID: Identification command code. The corresponding value to the message request can be found
on Appendix C.3. Size 1 byte, type unsigned; it is only used in the messages send by the client
and appears always next to Seq Num.

• Checksum: The method used is the weighted sum of all bytes in the message in modulo of 256.
To detect more errors the coprimes of 256 must be used for the weight value. The chosen values
were {3, 5, 19, 61, 97, 127, 211, 251}. This method detects all single byte errors, and some
transposition errors. Size 1 byte, type unsigned; it is the last register in all messages.

• Channel: Number of the channel of the requested operation. The channel count will start at 0.
Size 1 byte, type unsigned.

• Voltage: Applied only to analog commands, is the voltage applied to DAC or received from
ADC. Type floating point and follows the IEEE Standard 754 for single precision. Size 4 bytes.

• Boolean: Applied only for digital commands, 0 for LOW and 1 for HIGH. Size 1 byte, type
unsigned.

• Frequency: Frequency in Hz of PWM to be set. The channel 0, 1 and 2 share the same timer,
so any change in any of this channels will affect the frequency at the others. Channel 3 has an
independent timer. Size 2 byte, type unsigned.

• Duty-cycle: Duty-cycle in percentage of PWM to be set. Type floating point and follows the
IEEE Standard 754 for single precision. Size 4 bytes.

• Error: Number to describe the type of error. If zero, the operation was successful. For more
information consult Appendix C.4. Size 1 byte, type unsigned.

36

4.2.4 protocol on matlab and raspberry pi

matlab implementation
MATLAB has built-in UDP protocols but it is not the most efficient implementation, and for

this reason it was used the UDP library [47], with the advantage of being modifiable. In both
implementations, when a message is sent, it is performed a socket open before and close after. This is
not advantageous for the intended use, because opening and closing the socket adds time. So it was
used a slightly modified version made by Rómulo Antão, PhD student of DETI [48] to keep the socket
open between messages.

On the MATLAB side it was created a socket for the UDP communications. There are a set of
parameters that are unknown for the programmer, and they have to be set by the user. So it was
created the function ’udp_message()’ that allows to configure the Remote IP and Port of the server,
and the Port and time-out value which MATLAB will use. The syntax of this function is:

Syntax: raspio = udp_message(Local Port, Remote IP, Remote Port, Time Out)
Arguments: Local Port: Port on the side of Matlab, type int

Remote IP: IP address of Raspberry Pi, type string
Remote Port: Open port on Raspberry Pi for the UDP socket, type

int
Time Out: Time waiting in milliseconds for receive a UDP

package, type int
Return: Object

All the functions specified on Subsection 4.2.2 use the function ’transmit()’ to handle the following
errors: Sequence Number mismatch, wrong checksum, time-out and also to do the retransmissions.
With the creation of this function, whose flowchart is in Figure 4.6, it is much easier to debug the
communications and to extend the list of commands, as it is only needed to construct the buffer with
the information, call this function and after that check if there were no errors and send to the user the
information decoded.

Syntax: transmit(obj, check_pos_send, check_pos_recv)
Arguments: obj: inside of the object there is multiple information:

from the buffer to the socket.
check_pos_send: index where the function has to add the checksum

number in the buffer to send. It starts counting
from 1.

check_pos_recv: index of the checksum in the received buffer to
validate the content. It starts counting from 1.

Return: 0 for successful, other number for error)

Function ’transmit()’ has as arguments the object, the position of the checksum in the buffer to
send and of the received buffer, in this order. The object contains multiple information such as: a
pre-version of the buffer to send, current sequence number, UDP socket, number of tries to read and
transmit. The function returns a value different of zero if there was any error; for more information
about the error consult the Appendix C.4.

37

When the function ’transmit()’ is called by another function such as ’setOUT()’, in the beginning
it has to increment the sequence number by one, fill it in the first position of the buffer, calculate the
checksum and add to buffer in the position set by the second argument. Next will try to send the
buffer; if there is no error it will try to read the incoming buffer, compare the sequence number and do
the checksum. If every step taken does not give any error, the received buffer will be copied to the
same place of the sent buffer, and the function returns zero. If when reading there is a time-out error,
the function will do a retransmission; if the sequence number or checksum mismatches the function will
try to do two more reads before doing a retransmission. After it performs a total of three transmissions
and were all unsuccessful, the function returns the appropriated error. In the end, the caller function
just have to check the value returned to see if there is no error, and retrieve the information from the
buffer. The described behavior of the transmit function is show on Figure 4.6.

38

Figure 4.6: UDP transmission handler

39

raspberry pi implementation
In Raspberry Pi it was used a socket in Linux running on a Xenomai task, with priority of 98. The

first step is to create the socket, and for that is configured the address family to IPv4, to service type
datagram, and protocol UDP. The second step is to bind a address to the socket, this means choose the
port number in the IP network, where the client will connect. After that, the socket is ready to start
receiving messages. The function used to receive the messages is of the blocking type. This means the
program will not continue the execution until it receives a message or until an error occurs.

The first message that the server expects to receive is the start command. If it receives any other
command before, it sends a message with an error code to inform the client. After the start command
the server will send the appropriated message following the guidelines on Subsection 4.2.1. Then the
server will attend all the requests until the stop command is received.

When a message is received, is compared if the sequence number is greater or equal than the
previous valid message. Next it decodes the ID and if it is valid, is used to know the position of the
checksum, to see if the it matches the content of the message. If any of these conditions fail, the
server will discard the message. If the sequence number, the ID and checksum are equal to the last
previous valid message, the server knows that it has already processed the command. To speed up the
process, the command will not be executed again and will only rebuilt the buffer with the information
of the last call and sent it to the client. In case the sequence number is greater then the previous valid
message, it will use the ID to decode the rest of the fields of the message, will execute the command,
and with the result of the command (being successful or an error), will built the message to send to
the client. Figure 4.7 presents a flowchart that describes the algorithm. Note that not all mechanisms
to deal with errors are present in the figure.

40

Figure 4.7: UDP server task

41

4.3 matlab code translator to c
As mentioned before, the objective of this work is to be able to develop control algorithms in

MATLAB and then allow its execution on the RasP:IO platform. To automate this process it was
implemented a toolchain that translates the MATLAB algorithms to C code and carries out its
compilation. This section describes the main components of this toolchain.

4.3.1 implementations
As it was mention before, MATLAB is a multi-platform tool. Therefore, to make the code translator

available to all OS, it was decided to make the code translator in MATLAB programing language.
The function responsible to translate the code is ’translate2C()’; in the arguments there must be a

string with the name of the file with its termination. The function will try to find the file and open it.
If successful it will do a first read to learn the name of the variables and arrays inside of the given
.m file. Afterwards, it will do a second pass for accomplish two things: to translate the name of the
functions to C and insert the parameters and to correct the syntax.

The function responsible to translate and do the match from MATLAB to C is in the file
’fixFunction.m’. Here there is a structure with one function to match per line and at least five fields to
fill. The first two fields regard to the function in MATLAB; first if the function returns something it
has to be field with ’ret’ if not it must be let empty ’ ’; second is the name. The third, fourth, and
fifth parameters regard to the equivalent function in C; the third is ’ret’ or empty ’ ’, depending if the
function returns something, the fourth is the name and the fifth is the argument. Inside the argument
string, the code will try to find the expression ’arg’ with a number from 1 to 9; this means that in
the function translated to C there will be the argument number, found in the string with the rest
of the expression. If any more arguments are needed, there can be added following the example on
Figure 4.9. For example, to convert the expression ’set_periodic(0.01)’ to make a loop with a period
of 10ms, the function resulting from translation would be ’rt_task_set_periodic(NULL, TM_NOW,
0.01*1000000000)’.

The second point to correct, as it was said before, is the syntax, and in this case is necessary to
correct the parenthesis of the index of arrays, making them beginning in zero and not one as MATLAB
does; correct the control flow statements and treat the copy and fill of arrays. Figure 4.8 presents an
high level flowchart of the translation of code.

In the end, the program will print the code translated in the MATLAB’s console with the
appropriate warnings when it was not capable to do the translation, and it will print a file in the
same directory. The file is opened automatically in a text editor to give the opportunity to the user
to correct the code. Afterwards, it is inquired in the console if the user wants to send the C code to
Raspberry Pi using a ssh/scp session, and if he wants to compile the code. If there are no errors in
the compiling process, it is prompted to run or not the code, if there are errors or warnings during
compilation it will be shown.

On the Raspberry Pi was created a program that initializes the SPI communications, creates
and starts a Xenomai thread with the name ’Control Loop’ and priority 97. In the beginning of the
launched thread, is verified if the SPI device driver is working and if the IC used to give the digital
and analog I/O is connected. This is done by verifying if it is possible to read the ID of the IC and if
it matches with the value in its datasheet. After performing the verification, and if it was successful, it

42

Figure 4.8: Code translator flowchart

43

is called inside the Xenomai thread the function ’control_task_body()’ that is prototyped on the file
’control.h’ generated by the code translator developed in this section. And is ready to compile and run.

Sintax: translate2C(file_name)
Arguments: file_name: string with the file name and the termination
Return: None

MATLAB FUNCTION C FUNCTION
return function_name return function_name arg1 arg2 arg3
’ret’ ’obj.getADC’ ’ ’ ’getADC’ ’(uint8_t)arg1’ ’&ret’
’ ’ ’obj.setDAC’ ’ ’ ’setDAC’ ’(uint8_t)arg1’ ’arg2’

’ ’ ’set_periodic’ ’ ’ ’rt_task_set_periodic’ ’NULL’ ’TM_NOW’ ’arg1*
1000000000’

Figure 4.9: Structure to convert functions. The complete structure can be found on
Appendix F

4.3.2 rules to use
With the time available it was not possible to do a more complete code translator to work in all

the cases. For this reason some guidelines must be followed:

• First, all lines of code before the instruction:

"udp_message(LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT)" will be
ignored.

• It has to exist one and only one ’start()’ and ’stop()’ command in the m file.

• To make a function periodic, the function "set_periodic(period_s)" has to be used with the
time in seconds, in conjugation with the function "wait_period()", normally inside the loop.

The program has a set number of limitations that can be found in the next list:

• The code translator will not translate the inside of the functions. Instead it will try to find an
equivalent function to C.

• It is only allowed one instruction per line.

• A function can not be called in one of the arguments of another function.

• Control flow statements allowed: if, else, while and for.

• It is not allowed any arithmetic operation with matrices and arrays.

• Operations allowed with arrays: only ’zeros()’.

• The arrays have to maintain the same size in run-time.

• The exponential operator must be avoid.

44

Note: When the code translator when declares the variable in C it will try to get the values from
the MATLAB’s workspace. This can be useful to define the initial value to variables where there is no
other way to set the value in C language.

4.3.3 code execution on the raspberry pi
The translator code inquires the user with multiple questions, to send, compile and run the code.

To perform these operations is used a ssh/scp session [49] executed on MATLAB. Although the user
has some control when it runs the function code translator, it was created the function ’ssh_action()’
to give more options to the user. Above this code was created an interface with all the options needed.
It is possible to send a file, compile, run or stop the control code, and run or stop the server protocol.

Here are the multiple options for using the function ’ssh_action()’:

• To send a file to Raspberry Pi, which can be the file generated by the code translator or other.
Argument FILE NAME is a string containing the file name with the extension. Nothing is
returned.

ssh_action(’SEND FILE’ , FILE NAME)

• To compile the file "control.c" in conjugation with the body of the control loop sent by MATLAB.
Returns the warnings or errors resulting from the compilation.

ssh_action(’COMPILE’)

• To run the compiled code from the option describe above. The function will only be concluded
when the control execution finishes. Returns everything is written to the Linux console by the
program.

ssh_action(’RUN CONTROL’)

• To force the code to stop running. Returns a string confirming that the program has stopped.

ssh_action(’STOP CONTROL’)

• To run the UDP server task. Nothing is returned.

ssh_action(’RUN SERVER’)

• To stop the UDP server task. Nothing is returned.

ssh_action(’STOP SERVER’)

• To shutdown the server. Nothing is returned.

ssh_action(’SHUTDOWN’)

4.4 summary
In this chapter about software and firmware was present the SPI device driver and the reasons

that justified the option for the BCM2835 open-source device driver. Next it was presented the HAL
of MAX11300, the IC responsible for the analog and digital I/O and the parameters to configure
this IC. In the second section, was defined the UDP based communication protocol for allowing the

45

communication between the IC and the Raspberry Pi, as well the library used and functions created.
At last, was present the code translator from MATLAB environment to C, the set of rules needed to
use, its limitations and the functions to operate the Raspberry Pi.

46

chapter 5
Experimental Results
In this chapter it will be presented the tests performed to the platform. First it is presented the more
technical tests where it is shown the results of the function and temporal tests to the communication
protocol and to the RasP:IO interface.

Afterwards it will be shown a RST controller with RLS for identification of the system. With this
controller it is intended to show the performance of RasP:IO working as an interface to MATLAB
and also as an independent embedded system. As consequence, the communication protocol is also
tested with a real example, and the same happens to the code translator. The next test is performed
with a PID controller with relay feedback, where it is important to measure the time correctly for the
calculation of the PID parameters.

In the end it is performed a simple test to the code translator. This test also intends to show the
good practices when making use of the translator.

The following tests were performed with MATLAB running on Windows 10 64 bits, in a computer
with 4Gb of RAM and the CPU i3-330UM. The results may vary in a different computer.

5.1 measurements and validation tests

5.1.1 performance of communication protocol
To test the protocol implemented between MATLAB and Raspberry Pi was created multiple

scripts in MATLAB to test each command 200000 times. Each command inside the scripts is executed
at maximum speed permitted by MATLAB without any delay between them. The scripts for the tests
can be found in Appendix D, but briefly follow these rules:

• the channels are generated randomly inside the valid values, when applied;

• in the analog commands the value sent or received has to describe a ramp from -5V to 5V and
back to -5V;

• in the digital commands the sent or received values are the or operation of the least significant
bit between the value of the channel and the sequence number of the communication protocol.

47

For the tests, it was used the following settings:

• Local Port: random value between 8000 and 50000;

• Server IP: ’raspberrypi.mshome.net’;

• Server Port: 10000;

• Time-out: 8ms.

Function Name Mean
time

Standard
deviation

Maximum
time

Number
of errors

getADC 2.36ms 0.52ms 23.28ms 6
getADCALL 2.63ms 0.39ms 16.56ms 0
setDAC 2.34ms 0.56ms 25.96ms 4
setDACALL 2.47ms 0.58ms 22.82ms 8
getIN 2.35ms 0.53ms 24.23ms 4
getINALL 2.61ms 0.65ms 35.62ms 5
setOUT 2.34ms 0.54ms 19.88ms 5
setOUTALL 3.03ms 0.85ms 39.79ms 4
setPWMFreq 2.44ms 0.52ms 24.56ms 4
setPWMDuty 2.36ms 0.55ms 24.55ms 4

Table 5.1: Execution time of each function on MATLAB

Most of the error communications that happened were in the MATLAB side when it was waiting to
receive a message or a acknowledge. On Raspberry Pi it was not detected any missed reception, neither
any error on sending the message. The only way to ensure that the error registered is MATLAB/OS’s
fault would be putting a switch in the middle of the communications and check every message. As the
errors are not so frequent this can be hard to realize and was not done as the results were satisfactory.

5.1.2 temporal analysis of digital and analog i/o
To test the time of execution of each function created to read and to write digital and analog

values on the interface, it was created a periodic Xenomai thread running at a frequency of 1000Hz,
that executed each function sequentially each time for 200000 times and registered the time in each
call. For more information about the meaning of each function consult Subsection 4.1.2.

With the times registered, it was calculated the mean, standard deviation and maximum values
that are presented on Table 5.2. A short analysis of the time measured of each command was performed,
to ensure that its execution was correct. Command getIN and getINALL were taken as base values,
for being the ones that only perform one transaction on SPI.

• The setOUT and setOUTALL take twice the time, because it is made a 32 bits read operation
and then a 32 bits write operation on SPI.

• The setDAC only does a 16 bits write and has the value higher than the other operations. The
possible reason is that it has to first perform some floating point operations to convert the
voltage to a binary value.

48

• The highest value is from setDACALL, and the reason is that it has to perform four times the
floating point conversion and the 16 bits write to SPI, with 80us delay between every write.

• The getADC has the mean value within the expected value, as it also performs floating point
conversions, reads 16 bits and 32 bits registers, and in the end it reads the actual value, which
is a 16 bits read operation.

• The getADCALL has the same steps, with the difference that it has to do four floating point
conversions, and in the end four times 16 bits read, but as the channels are in raw, they are all
sent in the same operation, which does not add much time.

Function Name Mean
time

Standard
deviation

Maximum
time

getADC 83us 9us 143us
getADCALL 87us 9us 152us
setDAC 77us 7us 120us
setDACALL 326us 7us 372us
getIN 26us 3us 56us
getINALL 26us 3us 53us
setOUT 45us 5us 80us
setOUTALL 46us 5us 84us

Table 5.2: Execution time of each function on Raspberry Pi

During the execution of these tests, it was not registered any errors. The maximum value takes
around twice the time of the mean value, and could only be improved with real-time drivers for
Xenomai.

5.1.3 functional analysis of analog i/o
In this subsection it was tested the accuracy of the DAC and ADC. With the channel 0 of the

DAC connect to the channel 0 of ADC, it was measured the voltage from the DAC with the multimeter
FLUKE 287 and compared the voltage with the value read from ADC. The multimeter in use as an
accuracy of 1.25mV with in the range -5V and 5V [50], better than the resolution of the MAX11300
that is of 2.44mV.

The test starts with the DAC set to -5V and were made increments of 200LSBs (about 488mV)
until 5V. In every step it is made 1000 read with the ADC, but before starting to read it is waited one
second.

Figure 5.1 has the difference between the set voltage on DAC and the read voltage of multimeter.
The mean value of the difference is 4.61mV, which means that the DAC has a systematic error of about
2LSBs.

Figure 5.2 shows the difference between the value measured by the multimeter Fluke 287, which is
being used as reference, and the mean voltage get from the 1000 reads of ADC. From this 1000 reads
it was obtained the maximum and minimum value (Figure 5.3), and it shows a dispersion of about
10mV or 4LSBs. When only considering the voltage range between -4.5V and 4.5V it is possible to

49

set voltage on DAC (Volt)

-5 -4 -3 -2 -1 0 1 2 3 4 5

di
ffe

re
nc

e
(V

ol
t)

×10-3

0

2

4

6

Figure 5.1: DAC offset voltage

deduce that the ADC suffers from a gain error, in other words, the linear gain is slightly different from
one. At -5V the ADC registers an offset of 5mV with opposite signal. From the datasheet [33] these
offset voltages are within specifications.

voltage read from Multimeter (Volt)

-5 -4 -3 -2 -1 0 1 2 3 4 5

di
ffe

re
nc

e
(V

ol
t)

×10-3

-5

0

5

Figure 5.2: ADC offset voltage

voltage read from Multimeter (Volt)

-5 -4 -3 -2 -1 0 1 2 3 4 5

di
ffe

re
nc

e
(V

ol
t)

-0.01

0

0.01
min and max mean

Figure 5.3: Error bar graph with minimum, maximum and mean value difference to the
multimeter

Figure 5.4 is a more interesting graph for control applications. It shows the difference between
the ADC and DAC, as this is the offset voltage that the controller will have. In the case that the
closed-loop has a high gain, this offset voltage will not be significant. At -5V the difference between the
ADC and DAC is zero, but in the next recorded value it jumps to 10mV, about 4LSBs. Afterwards, it
continues to decrease until the difference reaches 0V, at about 4.76V.

50

read voltage on ADC (Volt)

-5 -4 -3 -2 -1 0 1 2 3 4 5

di
ffe

re
nc

e
(V

ol
t)

0

0.005

0.01

Figure 5.4: Difference between set voltage on DAC and read on ADC

5.2 rst controller
In this section it is used the RST controller with the Recursive Least Square (RLS) algorithm to

make the system identification. The plant in use has to have two inputs, one for the input and the
other to emulate load on the system, and one output. It is intended to apply the stated algorithms in
a first and second order plant. To meet the set requirements, the OKAWA Electric Design [51] was
used to generate a second order Sallen-key low pass filter with a damping ratio approximately of 0.4,
rise time of 0.5 seconds and unitary gain. The electronic circuit is presented on Figure 5.5 with the
addition of two more op-amps, the first in a summing configuration to have the two inputs needed. As
this configuration has a gain of -1, it was added in last an op-amp in inverting configuration to make
the gain of the plant equal to 1. The components values are stated in the figure.

The input of the circuit is connected to the channel 0 of the DAC, the load to channel 1 of the
DAC, and the output to the channel 0 of ADC. In the tests made where the load is not used or
mentioned, it was left connected to the DAC set to 0V.

The RLS algorithm is initialized in all tests, both in MATLAB and Raspberry Pi, with all the
estimated coefficients θ̂ with 1 and the covariance matrix P with the matrix identity multiplied by 100.
By doing so, it is not given any confidence to the set θ̂, but it will converge quickly to the right value.
Both algorithms, identification and control, are running at a frequency of 20Hz.

TL071 TL071 TL07168k

1u

15k

15k

560k 270k
150k

150k

150n

GN
D

GND

GN
D

VSS VSS VSS

VD
D

VD
D

VD
D

U1
3
4 1

5
2 U2

3
4 1

5
2 U3

3
4 1

5
2

R1

C1

R2

R3

R4 R5
R6

R7
C2

Reference input
Load input Output

Figure 5.5: Sallen-key second order low pass filter

5.2.1 first order system
As first order plant it was used the circuit present in Figure 5.5 with the C1 replaced by an open

circuit.

51

rls identification method
To excite the system it was used as reference signal a square wave with amplitude of 2V centering

in 0V and period of 6 seconds. At the same time it was running the algorithm of identification and it
was recording both the output signal and the evaluation of the estimated model coefficients, that are
represent on Figure 5.6.

Time (seconds)

0 2 4 6 8 10 12
-1

0

1

2

a1 b1

Figure 5.6: Estimated coefficients using RLS on first order system

With the steady values of the estimator it was found the equation of the model of the system 5.1,
exciting the model with the signal and compared against the physical one. The result can be found on
Figure 5.7.

G(q−1) = 0.297q−1

1 − 0.7031q−1 (5.1)

Time (seconds)

0 0.2 0.4 0.6 0.8 1 1.2

A
m

pl
itu

de
 (

V
ol

t)

0

0.2

0.4

0.6

0.8

1

Figure 5.7: Step signal of the first order model

Taking in account the time constant of the plant and the step response of the model, it is likely
that the RLS algorithm is working correctly. But there is not enough data to ensure the identification
is 100% correct.

52

rst controller on matlab
The reference signal used runs multiple times between 2V and -2V ending in 0V, to prove the

correctness of the controller. Approximately at the 14th second was added load to the input of the
system to see its immunity to perturbations. The behavior of the closed-loop system was selected
to have a system with unitary gain and a rise time of 0.42 seconds, and it was obtained by choosing
the system, represented in the Equation 5.2. The observer pole was set at -14, to be two times faster
than the pole in closed-loop. In Figure 5.8 there is the performance of the RST controller with RLS
identification at run time, executed in MATLAB.

Gm(s) = 7
s+ 7 (5.2)

At the first second the output of the system overshoots the setpoint as the estimated coefficients
of the model by the RLS algorithm are only correct and stable after one second, already demonstrated
in the Figure 5.6. The closed-loop tracked correctly the reference signal and was quick to converge to
the setpoint again when it suffered the perturbation at the 14th second, around 0.9 seconds.

0 2 4 6 8 10 12 14 16 18

A
m

pl
itu

de
 (

vo
lt)

-2

0

2

4
ref load out

Time (seconds)

0 2 4 6 8 10 12 14 16 18

A
m

pl
itu

de
 (

vo
lt)

-2

0

2

4
control

Figure 5.8: Close loop first order with RST controller and RLS identification on
MATLAB

During the execution of the control loop, it was recorded the time between each period, the
duration of the functions ’getADC()’ and ’setDAC()’ and the time took to perform all the calculations,
using the functions ’tic()’ and ’toc()’ from MATLAB. The times measured in each cycle of the control
loop can be seen on Figure 5.9. From the analysis of this figure, it is visible that in the beginning of
the control algorithm, first three iterations, the time measured was more than two times the mean
value. As this happens in beginning it is possible to reduce the impact of this in the performance of
the control loop just by starting to execute the control later. For this reason it was calculated the
mean, standard deviation and maximum values, starting from iteration number four. The result are at
Table 5.3.

53

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

100

200

period

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

50

100

ADC

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

10

20

calculations

iteration number of control loop

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

20

40

DAC

Figure 5.9: Measured time on each iteration of the control loop on MATLAB

Mean
time

Standard
deviation

Maximum
time

Period 50.035ms 0.354ms 55.251ms
ADC 4.806ms 0.999ms 13.588ms
Calculations 0.227ms 0.040ms 0.480ms
DAC 4.263ms 1.474ms 21.800ms

Table 5.3: Execution times of first order plant with RST and RLS on MATLAB

rst controller on raspberry pi
Using the code translator, the code was translated, sent, compiled and run on Raspberry Pi.

Therefore the procedure continues the same from the last subsubsection. It was used the function
’rt_printf()’, the equivalent to ’printf()’ for Xenomai, to send in the end of the execution the data
visible on Figure 5.10 and Table 5.4. For register the time was use one special function from Xenomai,
’rt_time_read()’.

Mean
time

Standard
deviation

Maximum
time

Period 50.000ms 0.004ms 50.022ms
ADC 0.131ms 0.007ms 0.141ms
Calculations 0.042ms 0.001ms 0.047ms
DAC 0.095ms 0.010ms 0.106ms

Table 5.4: Execution times of first order plant with RST and RLS on Raspberry Pi

From the comparison of the output signal of Figure 5.8 and 5.10 it is possible to notice the initial
delay that only happens in the beginning of the MATLAB execution. As stated before this delays are
due to the initial long time of the three first iterations of the control loop on MATLAB. As it only

54

0 2 4 6 8 10 12 14 16 18

A
m

pl
itu

de
 (

vo
lt)

-2

0

2

4
ref load out

Time (seconds)

0 2 4 6 8 10 12 14 16 18

A
m

pl
itu

de
 (

vo
lt)

-2

0

2

4
control

Figure 5.10: Close loop first order with RST controller and RLS on Raspberry Pi

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

50

100
period

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

0.1

0.2 ADC

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

0.05 calculations

Iteration number of control loop

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

0.1

0.2
DAC

Figure 5.11: Measured time on each iteration of the control loop on Raspberry Pi

happens at the beginning of the performance of the controller, it is not significantly affected. In any
case, the behavior observed on MATLAB is very similar to the one observed with Raspberry Pi. On
the same figures, the difference between running in best effort system and in real-time system is more
visible on the control signal, as it appears more smooth in the last. From the analysis of the Tables 5.3
and 5.4 is possible to verify this as well, as on MATLAB the standard deviations of each section of the
code are much worse than on Raspberry Pi, and from the Figures 5.9 and 5.11 is also shown that the
times on Raspberry Pi are more constant and shorter.

55

5.2.2 second order system
For the test with a second order plant it was reinstalled the capacitor C1 on the electric circuit, as

it is shown in Figure 5.5.

rls identification method
Like before, in the reference input there is a square signal with amplitude of 2V. It was plotted

the evolution of the estimated parameters using the RLS algorithm (Figure 5.12).

Time (seconds)

0 2 4 6 8 10 12
-2

0

2

a1 a2 b1 b2

Figure 5.12: Estimated coefficients using RLS on second order system

From the steady values of the estimator it was calculated the equation of the model (Equation
5.3), and compared the model response of the physical system (Figure 5.13).

G(q−1) = 0.03887q−1 + 0.05084q−2

1 − 1.673q−1 + 0.7631q−2 (5.3)

Time (seconds)

0 0.5 1 1.5 2 2.5 3

A
m

pl
itu

de
 (

V
ol

t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5.13: Step signal of the second order model

Comparing the step signal (Figure 5.13) with the transient analysis present on Appendix E, it is
possible to confirm the correctness of the identification algorithm. Although when it was executed the

56

RST with RLS for the first order, the data obtained let us reach the same conclusion. However, this
way we also ensure that the RLS works for second order plants.

rst controller on matlab
The reference signal continues the same from the last time, running multiple times from 2V to -2V

and back to 2V, finishing in 0V. Again the load signal is the same, it starts approximately at second
14th, going to -0.5V, then to 0.5V and finishing at 0V. As the estimated coefficients of the model only
are correct and stable after one and half seconds, as showed on Figure 5.12, the controlled system is
only capable to follow the reference signal after that moment, as shown in Figure 5.14. The closed-loop
system was select to have the natural frequency of five rads and damping ratio of one, to have a non
oscillatory behavior. On Table 5.5 there is the execution time of each part of the code; as previously
the first three iterations were discarded for being much superior to the mean value, and for happen in
the beginning when then controller was not operate.

0 2 4 6 8 10 12 14 16 18

A
m

pl
itu

de
 (

vo
lt)

-4

-2

0

2

4

ref load out

Time (seconds)

0 2 4 6 8 10 12 14 16 18

A
m

pl
itu

de
 (

vo
lt)

-5

0

5

control

Figure 5.14: Second order RST controller on MATLAB

Mean
time

Standard
deviation

Maximum
time

Period 50.015ms 0.084ms 51.119ms
ADC 4.422ms 0.676ms 7.459ms
Calculations 0.212ms 0.087ms 1.698ms
DAC 3.483ms 0.554ms 7.369ms

Table 5.5: Timing for second order RST controller on MATLAB

57

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

100

200

period

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

50

100

ADC

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

10

20

calculations

Iteration number of control loop

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

5

10

DAC

Figure 5.15: Measured time on each iteration of the control loop on MATLAB

rst controller on raspberry pi
The procedure is repeated on Raspberry Pi. It was used the code translator to automate the

process of translation and compiling in the Raspberry, making only small changes in the code to print
the output, reference, load and control signal of the system in closed-loop (Figure 5.16), and the
execution time of each part of the controller, (Table 5.6).

0 2 4 6 8 10 12 14 16 18

A
m

pl
itu

de
 (

vo
lt)

-4

-2

0

2

4

ref load out

Time (seconds)

0 2 4 6 8 10 12 14 16 18

A
m

pl
itu

de
 (

vo
lt)

-5

0

5

control

Figure 5.16: Second order RST controller on Raspberry Pi

As it happened for the first order plant, there is also an initial delay that was already discussed in
the previous section. The execution time on Raspberry Pi (Table 5.6 and Figure 5.17), continues to

58

show more stable time than MATLAB, with shorter execution times, less jitter, and maximum values
not far from the mean values.

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

50

100
period

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

0.1

0.2 ADC

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

0.05

0.1 calculations

Iteration number of control loop

0 50 100 150 200 250 300 350

T
im

e
(m

s)

0

0.1

0.2
DAC

Figure 5.17: Measured time on each iteration of the control loop on Raspberry Pi

Mean
time

Standard
deviation

Maximum
time

Period 50.000ms 0.006ms 50.028ms
ADC 0.128ms 0.007ms 0.145ms
Calculations 0.075ms 0.002ms 0.082ms
DAC 0.095ms 0.010ms 0.109ms

Table 5.6: Timing for second order RST controller on Raspberry Pi

5.3 pid controller with auto tuning
One of the control algorithms mentioned in Section 2.4 was the PID auto-tuning with relay feedback.

To employ this technique of tuning, the plant under test has to have an excess of poles that allow to
put the system in oscillation. For this reason it was chosen a third order system.

5.3.1 physical system

G(s) = 210.4
s3 + 18.79s2 + 112.4s+ 210.4 (5.4)

Before starting with PID controller, it was made a study about the plant to see if it would be
possible to bring to oscillation with the RasP:IO interface. First, using the command margin() on

59

15k

10u
15k

1k2 120k

120k

220u

GN
D

GND

GN
D

VSS VSS

VD
D

VD
D

1u

3
4 1

5
2 3

4 1

5
2

R1

C1

R2

R3 R4

R5C2

C3

OutputInput

Figure 5.18: Third order plant

MATLAB, was discovered the gain that would make the system marginally stable on closed-loop, as
well as its frequency of oscillation. From the command was obtained the gain of 9.03 and a period of
0.59s. The Figure 5.19 shows the model in closed-loop, oscillating at its natural frequency. Now that
it is known that the oscillation period is superior to 0.5 seconds, the experience can continue. The
bigger the oscillation period, lesser will be the frequency required for MATLAB to perform correctly
the control loop.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

Time (seconds)

A
m

pl
itu

de
 (

V
ol

t)

Figure 5.19: Theoretical system response to step signal

5.3.2 pid controller
The relay feedback method works in two phases: first, the system is put in oscillation with a

ON-OFF controller; to obtain a precise period and amplitude, the sampling rate was configured to
60Hz. The second phase activates when the system output reaches 0V and the ON-OFF controller is
switched for a PID controller working at 20Hz.

The algorithm created to detect the period stopped the execution at 2.5 seconds, that was when it
detected two consecutive oscillations periods with a difference of less than 0.5% and two consecutive
oscillations with a difference in the amplitude of less than 0.5%. The values returned by this method
are at the Table 5.7.

From the formulas of Table 2.4 it was calculated the parameters for the PID, that are in the Table
5.8.

After the algorithm switches to the PID controller, it is applied to the input of the controller the
reference signal, 0V, and then goes to 2V during three seconds, comes back to 0V and stays there

60

parameter value
Tu 0.65ms
a 1.604V

Table 5.7: Period and amplitude obtain from ON-OFF controller

parameter value
Kp 4.764
Ti 0.325
Td 0.081

Table 5.8: Tunned parameters from the relay feedback method

for three more seconds before it stops the control. The result of this method can be see in Figure
5.20. The control signal resulting from the tunned parameters, in dash blue, has a maximum and
minimum values much larger than the supported by the RasP:IO. This causes the system to take
longer to reach the setpoint. It is also noticeable that the overshoot value of the system’s output, in
some cases, reaches the double of the reference signal. This behavior is expected due to the tuning by
Ziegler-Nichols.

0 2 4 6 8 10 12

A
m

pl
itu

de
 (

V
ol

t)

-4

0

4

ref out

Time (seconds)

0 2 4 6 8 10 12

A
m

pl
itu

de
 (

V
ol

t)

-40

0

40
control applied control calculated

Figure 5.20: PID with relay feedback

5.3.3 i-pd controller
To test the I-PD controller it was used the parameters obtained in the last subsection. The result

of the test can be found on Figure 5.21. As it was expected because of the controller nature, it does
not overshoot when the setpoint changes, because the error value is only feed on integrator, as opposite
to the PID, in which the error is feed to the three parts of the controller.

61

This controller is a good improvement in relation to the last one, as the system becomes faster to
converge to the reference input, and without overshoot, which in some applications is not allowed to
happen.

0 1 2 3 4 5 6 7 8 9

A
m

pl
itu

de
 (

V
ol

t)

-4

-2

0

2

4

ref out

Time (seconds)

0 1 2 3 4 5 6 7 8 9

A
m

pl
itu

de
 (

V
ol

t)

-4

-2

0

2

4

control

Figure 5.21: Third order I-PD controller on MATLAB

5.4 matlab to c code
In the Section 5.2 the code translator was already used to run the control algorithm in Raspberry Pi

and it was working correctly. Here it will be presented one simple example of a proportional controller
that can be run as it is on MATLAB or translated to C code. This section will not only serve to show
the result of the code generated in C, but also to address with an example of the structure that should
be followed when using this software.

First it should be written all the code that will not be translated by the software, and it has to be
executed in the workspace of MATLAB by the user. In this case is the following code:

r = [0 2∗ ones (1 , 20)] ;
f im = length (r) ;
u = z e r o s (fim , 1) ;
e = z e r o s (fim , 1) ;
y = z e r o s (fim , 1) ;

Next is the code needed to set the communications with RasP:IO. This code will also not be
translated by the software, as it will only start to translate the code after the line with ’udp_message’.

LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ uint16 ’) ;
REMOTE_IP = ’ ra spbe r ryp i . mshome . net ’ ;

62

REMOTE_PORT = 10000;
TIMEOUT = 9 ; % Depending on the transmit per iod o f the remote dev i ce

(ms)
r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT) ;

Now the software will start to decode and translate the code to C.
To avoid errors, it is recommended to write all the variables in the beginning of this part.

h = 1/20 ;
Kp = 2 ;
r ;
f im = length (r) ;
u = z e r o s (fim , 1) ;
e = z e r o s (fim , 1) ;
y = z e r o s (fim , 1) ;

r a s p i o . s t a r t () ;
s e t_pe r i o d i c (h) ;
for k=2: fim

wait_period () ;
y (k) = r a s p i o . getADC(0) ;
%c o n t r o l a lgor i thm
e (k) = r (k)−y (k) ;
u (k) = e (k) ∗Kp;
%s a t u r a t i o n
if (u(k) > 4 .5)

u(k) = 4 . 5 ;
end
if (u(k) < −4.5)

u(k) = −4.5;
end
r a s p i o . setDAC (0 , u(k)) ;

end
r a s p i o . setDAC (0 ,0) ;
r a s p i o . end () ;

The result of the code translator his present next. After it finishes to print the code to the
MATLAB console, it will also open in a text editor, to let the user do the necessary corrections. Then
it will present multiple questions to the user, such as: if the user wants to send and compile the code
on Raspberry Pi and if he wants to run the code.

void control_task_body (void) {
f l o a t h ;
f l o a t r [] = { 0 , 2 .000000 , 2 .000000 , 2 .000000 , 2 .000000 , 2 .000000 , 2 .000000 ,

2 .000000 , 2 .000000 , 2 .000000 , 2 .000000 , 2 .000000 , 2 .000000 , 2 .000000 ,
2 .000000 , 2 .000000 , 2 .000000 , 2 .000000 , 2 .000000 , 2 .000000 , 2 . 000000} ;

f l o a t Kp;
i n t fim = 21 ;
f l o a t u [] = { 0 , 0} ;
f l o a t e [] = { 0 , 0} ;

63

f l o a t y [] = { 0 , 0} ;
i n t k ;

h = (f l o a t) 1 / 20 ;
r ;
Kp = (i n t) 2 ;
f im ;
u ;
e ;
y ;
MAX11300init () ;
r t_task_set_per iod ic (NULL, TM_NOW, h∗1000000000) ;
for (k = 2 ; k <= fim ; k++) {

rt_task_wait_period (NULL) ;
getADC((uint8_t) 0 , &y [k−1]) ;
// %c o n t r o l a lgor i thm
e [k−1] = r [k−1] − y [k −1] ;
u [k−1] = e [k−1] ∗ Kp;
// %s a t u r a t i o n
if (u [k−1] > 4 .5) {

u [k−1] = (f l o a t) 4 . 5 ;
}
if (u [k−1] < − 4 .5) {

u [k−1] = (f l o a t) − 4 . 5 ;
}
setDAC((uint8_t) 0 , u [k−1]) ;

}
setDAC((uint8_t) 0 , 0) ;
return ;

}

5.5 summary
In the beginning of this thesis it was intended to have the algorithms running on MATLAB and

on Raspberry Pi. When running in the last, it was aimed to achieve a better performance, and by
performance it is meant a faster execution with smaller standard deviation and maximum time. From
the comparison of the Tables on Section 5.2, it is concluded that the objective was reached, with
improvements by a factor of 14 to 150 for period time, and in ADC and DAC operation. The Raspberry
Pi was up to two times faster than MATLAB when performing calculations.

When using MATLAB, the control algorithm should only be initiated after three periods, to
avoid the initial delays that are presented on Figure 5.9 and 5.15. If this is done, it can be achieved
satisfactory results as seen on Tables 5.3 and 5.5, as in most cases the standard deviation was not
bigger than 1.5ms and the maximum value smaller than 22ms. This values are expected for a best
effort OS.

Regarding the individual tests, the communication protocol working in a non RTOS presents good
results with a low standard deviation, although with the maximum time being 10 times bigger than the
mean value. During the execution of the test, there were not captured many errors, a total of 44 errors

64

for 2000000 executions, what gives a 0.0022% error rate in the communication protocol. Although,
they still happen, and when they did, the user was warned with a message during the execution of the
code. To note, there is a slight difference from the mean values of Table 5.1 and from the RST test on
Table 5.3 and 5.5. This difference is due to two factors: the test realized in the Section 5.1.1 were done
in a free running and in the control section (5.2), at a fix period accomplished by doing busy-waiting
delay. The second reason is that this tests were performed without the hardware connected, as it was
only intended to test the communication protocol, but as can be seen in the Subsection 5.1.2, the
hardware does not increase the time significantly.

From the tests done in this chapter with the controllers and protocol communication, it can
be concluded that it will not be possible to do data acquisition or to implement the controllers on
MATLAB working at a frequency of 1000Hz. However this is not a problem as the primarily intended
was to have the DAC and ADC capable of working at a frequency of 1000Hz on Raspberry Pi, which
is proved on Table 5.2.

About the hardware implemented, the IC MAX11300 responsible for the digital and analog
interface, in the test realized on the analog output, presents an almost constant voltage offset of 2LSBs
that could be reduce to almost zero. This offset was not corrected on software as it would require a
better characterization of all channels for a different set of temperatures.

About the analog input, it has a non linear difference at -5V to the next measured value; the range
in use should be reduced to -4.5V to 4.5V.

For the PWM interface, it was implemented the necessary functions to interact with MATLAB,
but the same were not created to execute on Raspberry Pi, so it were not performed any tests to the
functionalities of this interface.

Finally, the code translator worked as it was supposed to work, whenever the code structure was
followed. When errors of translation happen during the initial builds, the line was well identified and
it was easy to fix. The errors generated were caused by the use of functions unknown to the translator
or missing declaration of arrays or variables. Thought the software does not support a big range of
function, in total only 25, these were enough to perform the translations in this chapter.

65

chapter 6
Conclusions and Future
work
6.1 conclusion

For the development of this thesis it was necessary to acquire multiple knowledge in several fields.
First it was done a research to discover if there was some solution that could fulfill entirely our
requirements. When it was concluded that it was not available, it was done a different study about
the several embedded system that could perform most of the intended task. Next it was needed to
do a study about the different communication protocols, and which were more advantageous for our
system. As the developed platform had time constrains to be met, there was the need to select an
appropriate real-time operative system, that would bring an adequate performance to the system and
also available to Raspberry Pi.

The goal of this master degree thesis was to develop an aggregation of analog and digital I/O to
interact with a physical system. This platform was called RasP:IO. With the hardware implemented, it
was created a communication protocol that would allow the exchange of information between MATLAB
and Raspberry Pi, and the strategies applied to maximize the success of the sent messages, within a
certain time. It was created a toolchain that would automatize all the process of code translation from
the MATLAB to C, and the controlling of its execution.

In the end, there were performed numerous tests to determine the performance of the developed
work. The test on the communication protocol revealed that the error rate was less than 0.01%, better
than the initial intended for non RTOS. Afterwards, were performed multiple tests to the RasP:IO
interface, and was determined a good time performance with constant times of execution, and a
sporadic maximum time of two times the mean value. The analog performance of the interface was
not perfect but when considering the range that should be of use for control applications, the accuracy
of the interface was enough. With the tests realized with the controllers, MATLAB reveals to have a
satisfactory performance when took in consideration precaution stated in the previous chapter. When
the controllers’ algorithm were translated to C programming language to execute on Raspberry Pi, the
quality of control was improved, with the jitter of sampling and actuation time of a few microseconds.

67

6.2 future work
For future work it would be interesting to improve the general performance and add additional

features, such as:

• Create a command to the communication protocol that allows it to make an analog read and
write as one operation.

• Create a real-time device drivers to SPI and I2C to improve the maximum execution time on
Raspberry Pi.

• Develop the HAL for the IC responsible by the PWM feature.

• Do an extensive temporal analysis of the behavior of Raspberry Pi in normal conditions and
under load.

68

appendix A
Rasp:IO schematic

69

Spi
ceO

rde
r 1

Spi
ceO

rde
r 2

Spi
ceO

rde
r 3

Spi
ceO

rde
r 4

Spi
ceO

rde
r 5

Spi
ceO

rde
r 6

Spi
ceO

rde
r 7

Spi
ceO

rde
r 8

Spi
ceO

rde
r 9

Spi
ceO

rde
r 1

0

Spi
ceO

rde
r 1

1

Spi
ceO

rde
r 1

Spi
ceO

rde
r 2

Spi
ceO

rde
r 3

Spi
ceO

rde
r 4

Spi
ceO

rde
r 5

+3V3

+5V GN
D

MC
P18

26S

4.7
uF

1uF

GN
D

GN
D

10u
F

GN
D

0.3
3uF

0.3
3uF

4.7
k

4.7
k GN

D

GN
D

10u
H

56p
F

120k 16k GN
D

1uF

13k 110k
10u

F

56p
F

GN
D

10u
F

GN
D

LT3
471

GND

GN
D100

nF

MB
RA1

40

MBRA140 GN
D

LT3
015

20k 3k9

10u
F

V-

1k2

6k2
10u

F

V+

VCCINT

VCCINT

VCCINT

GN
D

4.7
uF

1uF

GN
D

+5V

LPD6235

green

+3V3 GN
D680

LT1
963

AEQ GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

100
uF

100
uF

100
uF

100
uF

100
uF

100
uF

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

green

GN
D1k5

green

GN
D2k7

green
2k7

+5V

V+

V-GN
D

LM
340

MP
-05

+5V
+5V

+3V3
+3V3

GN
D

GN
D

GN
D

GN
D

GN
D

VIN
1

GN
D

2*2
VO

UT
3

U$2

C1
C2

C7

C8C9

R2R3

L2
C10

R4 R5

C12

R6 R7

C13C14

C15

U$3
FB1

N

FB1
P

VRE
F

FB2
P

FB2
N

SW
2

SHD
N/S

S2

VINSHD
N/S

S1

SW
1

GN
D

C11

D1

D2

IC1

SHD
N

IN

GN
D

OU
T AD
J

R8 R9

C20

R10

R11
C19

C21
C22

U$15

3V3R22

GN
D

U$6 IN
2

OU
T

4
SHD

N
1

SEN
SE

5

36

C28
C29

C30
C31

C32 C33

5VR14

V+R15

V- R16

IC9

GN
D

VI
1

4

VO
3

UN_V+ UN_V-

V+_2

V-_2

+5V
5V_2

3V3_2

3V3_3

GND

GND_2
GND_3
GND_4
GND_5

LT

LT

INT

INT

INT

sup 0

sup 0 sup 0

pw
r 0

pw
r 0

pw
r 0

pas 1 pas 1

pas 1 pas 1 sup 0

sup 0

pas 1 pas 1sup 0

pas 1 pas 1pas 1 pas 1

pas
 1

pas
 1

pas
 1

pas
 1 sup 0sup 0

pas
 1

pas
 1

pas 1 pas 1

pas 1pas 1 pas 1pas 1 sup 0

pas
 1

pas
 1

pas 1pas 1 pas 1pas 1

pas 1 pas 1pas 1 pas 1 sup 0

pas 1 pas 1 sup 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas 0

pas
 0

pas
 0

pas
 0

pas 0

pas 0

sup
 0

sup 0pas 1 pas 1

pas
 0

pas
 0

pas 0 pas 0 sup 0

pas
 0

pas
 0

pas 0

pas
 0

pas
 0

pas 1pas 1 pas 1pas 1

pas 1 pas 1

sup 0

pas 1pas 1

pas
 1

pas
 1

pas 1 pas 1

sup 0

sup 0

sup 0

sup 0

sup 0

pas 1 pas 1

pas 1 pas 1 sup 0

sup 0

pas 1 pas 1

pas 1 pas 1

pas 0pas 0sup 0 sup 0pas 1pas 1

in 0
pas

 0

in 0
in 0

pwr 0
pwr 0

sup 0

sup 0

sup 0

sup 0

sup 0

sup 0

pas 1 pas 1

pas 1 pas 1

pas 1pas 1

pas 1pas 1

pas 1 pas 1 pas 1 pas 1sup 0 sup 0

sup 0

sup 0

sup 0
sup 0

pas 0pas 0 sup 0pas 1pas 1

pas 0pas 0 sup 0pas 1pas 1

pas 0pas 0 pas 1pas 1

sup 0

sup 0

sup 0sup 0

in 0

pas 0

pas
 0

in 0
in 0

in 0

in 0

in 0

in 0

in 0

in 0

in 0

in 0

in 0

sup 0

sup 0

sup 0

sup 0

sup 0

sup 0

sup 0

in 0 sup 0

in 0 sup 0

lm3
40

a

Figure A.1: Power converter

70

MA
X11

300

GN
D

+3V3

4.7k
+3V3

RAS
PBE

RRY
PI-

GPI
OP

TH
GN

D

4.7
uF4.

7uF

100nF

GN
D

V+ V-

100nF 100nF

+5V
100nF

GN
D

GN
D

VCCINT
VCCINT

MB
RAF

440

MA
X31

790
-HE

AD
ER

GN
D

GND

+3V3

GNDA

100nF

GN
DG

ND
GN

D
GN

D
GN

D

4.7k

4.7k0

0

+3V3

+3V3

MB
RAF

440

0
0

0

GNDA

GNDA

GNDA

GN
D

~C
NV

T
9

DO
UT

7
CS

6
SCL

K
5

DIN
4

INT 8
DGND 2

AGND1 38
AGND 17*3

AVSSIO 24*6

DVDD3

DAC_REF12
ADC_INT_REF10
ADC_EXT_REF11

AVDD15*2

AVDDIO26*2

D1P
22

D1N
23

D0P
13

D0N
14

POR
T0

19
POR

T1
20

POR
T2

21
POR

T3
25

POR
T4

27
POR

T5
28

POR
T6

30
POR

T7
31

POR
T8

32
POR

T9
33

POR
T10

35
POR

T11
36

POR
T12

37
POR

T13
40

POR
T14

42
POR

T15
43

POR
T16

45
POR

T17
46

POR
T18

47
POR

T19
1

U$1

R1
3.3

V
1

SDA
3

SCL
5

GP4
7

GN
D

9

GP1
7

11

GP2
7

13

GP2
2

15

3.3
V

17

MO
SI

19
MIS

O
21

SCL
K

23

GN
D

25

CE1
26

CE0
24

GP2
5

22
GN

D
20

GP2
4

18
GP2

3
16

GN
D

14

GP1
8#

12

RXI
10

TXO
8

GN
D

6

5V
4

5V
2JP2

C3
C4

C6

C16 C17

C18

D4

X1-
1

X1-
2

PW
MO

UT6
P$1

0
PW

MO
UT5

P$1
2

PW
MO

UT4
P$1

4
PW

MO
UT3

P$1
6

PW
MO

UT2
P$1

8
PW

MO
UT1

P$2
0

TAC
H6

P$9
TAC

H5
P$1

1
TAC

H4
P$1

3
TAC

H3
P$1

5
TAC

H2
P$1

7
TAC

H1
P$1

9

FULL_SPEED P$27
FAN_FAIL P$24
WD_START P$5
SPIN_START P$2
FREQ_START P$1
PWM_START1 P$26
PWM_START0 P$25

AD
D1

P$3
AD

D0
P$4

SDA
P$2

2
SCL

P$2
3

CLK
OU

T
P$2

8

XTAL1P$7
XTAL2P$6

VCCP$21
GNDP$8

U$5

C43

R23

R24R25

R26

X9-
1

X9-
2

X9-
3

X9-
4

X9-
5

X9-
6

X9-
7

X9-
8

SCLK
D3

R28
R29

R30

MISO
MOSI

CS

CNVT
INT

SCL
SDA

P16P17P18P19 P10P11P12P13P14P15 P0P1P2P3P4P5P6P7P8P9

INT

INT

io 0 io 0 io 0 io 0 io 0

io 0

pwr 0

pwr 0

pwr 0

pwr 0

pwr 0

in 0

in 0

in 0

pwr 0

pwr 0

io 0 io 0 io 0 io 0 io 0

sup 0

sup 0

pas 1 pas 1sup 0
pwr

 0

io 0 io 0 io 0

pwr
 0

io 0 io 0io 0

pwr
 0

out
 0

in 0out
 0

pwr
 0

out
 0

out
 0

io 0
pwr

 0
io 0io 0

pwr
 0

io 0in 0out
 0

pwr
 0

pwr
 0

pwr
 0

sup 0

pas 1 pas 1

pas 1 pas 1

pas
 1

pas
 1

sup 0

sup 0 sup 0

pas
 1

pas
 1

pas
 1

pas
 1

sup 0

pas
 1

pas
 1

sup 0

sup 0

sup 0

sup 0

pas
 0

pas
 0

pas
 0

pas
 0

io 0 io 0 io 0 io 0 io 0 io 0 io 0 io 0 io 0 io 0 io 0 io 0

io 0

io 0

io 0

io 0

io 0

io 0

io 0

io 0io 0io 0io 0io 0

io 0

io 0

io 0

io 0

sup 0

sup
 0

sup 0

sup 0

pas
 1

pas
 1

sup 0

sup 0

sup 0

sup 0

sup 0

pas 1 pas 1

pas 1 pas 1pas 1 pas 1

pas 1 pas 1

sup 0

sup 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

in 0
pas

 0
pas

 0

pas 1 pas 1

pas 1 pas 1

pas
 1

pas
 1

in 0

in 0

in 0

in 0

in 0

in 0

in 0

sup 0

sup 0

sup 0

sup 0

Figure A.2: Main ICs

71

74H
C24

4N

74H
C24

4N

TL0
71P100
k

V+ V-

V-

100nF 100nF

TL0
71P100
k

V+ V-

V-

100nF 100nF

GN
DA GNDA

GNDAGN
DA

TL0
71P100
k

V+ V-

V-

100nF 100nF

TL0
71P100
k

V+ V-

V-

100nF 100nF

GNDA

GNDA

GN
DA

GN
DA

GN
D

V+ V-+5V +3V3

GN
D

GN
D

GNDA

GN
D

+5V

100nF

TL0
71P100
k

V+ V-

V-

100nF 100nF

TL0
71P100
k

V+ V-

V-

100nF 100nF

GNDA

GNDA

GN
DA

GN
DA

TL0
71P100
k

V+ V-

V-

100nF 100nF

TL0
71P100
k

V+ V-

V-

100nF 100nF

GN
DA GNDA

GNDAGN
DA

GNDA

IC3
A G

1

A1
2

A2
4

A3
6

A4
8

Y4
12

Y3
14

Y2
16

Y1
18

IC3
B G

19

A1
11

A2
13

A3
15

A4
17

Y4
3

Y3
5

Y2
7

Y1
9

IC5 5

1

23
6

87 4

R12 A
E

S

C23 C24

IC6 5

1

23
6

87 4

R13 A
E

S

C25 C26

IC1
1 5

1

23
6

87 4

R18 A
E

S

C35 C36

IC1
2 5

1

23
6

8
7 4

R19 A
E

S

C37 C38

X8-
1

X8-
2

X8-
3

X8-
4

X8-
5

X8-
6

X8-
7

X8-
8

X10
-1

X10
-2

X10
-3

X10
-4

X10
-5

X10
-6

X10
-7

X10
-8

X3-
1

X3-
2

X3-
3

X3-
4

X3-
5

X3-
6

X3-
7

X3-
8

IC3P GN
D

VC
C

10
20

C27

IC2 5

1

23
6

87 4

R17 A
E

S

C34 C39

IC4 5

1

23
6

8
7 4

R20 A
E

S

C40 C41

IC7 5

1

23
6

87 4

R21 A
E

S

C42 C44

IC8 5

1

23
6

87 4

R27 A
E

S

C45 C46

X2-
1

X2-
2

X2-
3

X2-
4

X2-
5

X2-
6

X2-
7

X2-
8

P16P17P18P19

P10 P11 P12 P13

P0
P1

P2
P3

P6
P7

P8
P9

DA
C1

DA
C1

DA
C0

DA
C0

AD
C1

AD
C1

AD
C0

AD
C0

DA
C2

DA
C2

DA
C3

DA
C3

AD
C2

AD
C2

AD
C3

AD
C3

in 0in 0 in 0 in 0 in 0
hiz

0
hiz

0
hiz

0
hiz

0

in 0in 0 in 0 in 0 in 0
hiz

0
hiz

0
hiz

0
hiz

0

ON1
ON2

OPT
V+ V-

pas
 0

pas 0

in 0in 0
out

 0

pas 0
pwr 0 pwr 0

pas
 0

pas
 0

pas 0

sup 0 sup 0

sup 0

pas
 1

pas
 1

pas
 1

pas
 1

ON1
ON2

OPT
V+ V-

pas
 0

pas 0

in 0in 0
out

 0

pas 0
pwr 0 pwr 0

pas
 0

pas
 0

pas 0

sup 0 sup 0

sup 0

pas
 1

pas
 1

pas
 1

pas
 1

sup
 0

sup 0

sup 0sup
 0

ON1
ON2

OPT
V+ V-

pas
 0

pas 0

in 0in 0
out

 0

pas 0
pwr 0 pwr 0

pas
 0

pas
 0

pas 0

sup 0 sup 0

sup 0

pas
 1

pas
 1

pas
 1

pas
 1

ON1
ON2

OPT
V+ V-

pas
 0

pas 0

in 0in 0
out

 0

pas 0
pwr 0 pwr 0

pas
 0

pas
 0

pas 0

sup 0 sup 0

sup 0

pas
 1

pas
 1

pas
 1

pas
 1

sup 0

sup 0

sup
 0

sup
 0

sup 0sup 0 sup 0sup 0 sup 0

sup 0 sup 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

sup 0
pas

 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pw
r 0

pw
r 0

sup 0

sup 0

pas
 1

pas
 1

ON1
ON2

OPT
V+ V-

pas
 0

pas 0

in 0in 0
out

 0

pas 0
pwr 0 pwr 0

pas
 0

pas
 0

pas 0

sup 0 sup 0

sup 0

pas
 1

pas
 1

pas
 1

pas
 1

ON1
ON2

OPT
V+ V-

pas
 0

pas 0

in 0in 0
out

 0

pas 0
pwr 0 pwr 0

pas
 0

pas
 0

pas 0

sup 0 sup 0

sup 0

pas
 1

pas
 1

pas
 1

pas
 1

sup 0

sup 0

sup
 0

sup
 0

ON1
ON2

OPT
V+ V-

pas
 0

pas 0

in 0in 0
out

 0

pas 0
pwr 0 pwr 0

pas
 0

pas
 0

pas 0

sup 0 sup 0

sup 0

pas
 1

pas
 1

pas
 1

pas
 1

ON1
ON2

OPT
V+ V-

pas
 0

pas 0

in 0in 0
out

 0

pas 0
pwr 0 pwr 0

pas
 0

pas
 0

pas 0

sup 0 sup 0

sup 0

pas
 1

pas
 1

pas
 1

pas
 1

sup
 0

sup 0

sup 0sup
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

pas
 0

sup 0

Pow
er C

onn
ect

or

Figure A.3: Protection circuit

72

appendix B
Installing Xenomai on
Raspberry Pi
This guide explains how to install Xenomai in Raspberry Pi 1.

b.1 prerequisites
It is required a computer with Linux installed, preferable with some Ubuntu variant, with Internet

connection, Raspberry Pi version 1 and a SD card.

b.2 install raspbian
1. Download RASPBIAN WHEEZY from: https://www.raspberrypi.org/downloads/

raspbian/

2. Format the SD card, using Gparted and delete all partitions of the SD card and create one in
FAT32.

3. Copy the downloaded image to the SD card. Use /dev/sdd not /dev/sdd1. Assuming /dev/sdd
is the name of the card.

$ dd bs=4M if=2015−05−05−raspbian−wheezy . z ip o f=/dev/sdd

4. Plug the SD card on the Raspberry Pi, and let it do the first boot. To connect to the Raspberry
Pi without a screen and keyboard, it is need the IP address, that can be find with:

$ arp −a

73

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/

Or connect directly to a router.
The wanted IP, has the physical address like B8:27:EB:**:**:**

5. To access to the Raspberry Pi.

$ ssh pi@IP_ADDRESS −X

6. Shut down the Raspberry Pi and put the SD card back on the PC. To shut down, type on
terminal:

$ sudo shutdown −h now

b.3 donwload and prepare xenomai
On the PC execute the following steps:

1. Go to the website https://github.com/awesomebytes/xenorasp and download:

. /1 _download_xenorasp_stuff . sh

. /2 _apply_xenomai_ipipe_patches . sh
rpi_xenomai_2 . 6 . 3 _linux_3 .10 _conf ig

2. Execute both scripts on the terminal.

3. Type the following command:

$ cp . . / rpi_xenomai_2 . 6 . 3 _linux_3 .10 _conf ig
l inux −rp i −3.10. y/ bu i ld / . c o n f i g

$ cd l inux −rp i −3.10. y
$ mkdir bu i ld
$ make mrproper
$ make ARCH=arm O=bui ld menuconfig

4. Inside Kernel Configuration load the "rpi_xenomai_2.6.3_linux_3.10_config" and do the
following changes:

System Type −> Broadcom BCM2708 Development Platform −>
−>Bind sp idev to SPI0 master ∗

CPU Power Management −> CPU i d l e PM support (NO)
CPU Power Management −> CPU Frequency s c a l i n g (NO)
Device Dr ive r s −> SPI support −> BCM2708 SPI c o n t r o l l e r d r i v e r (SPI0) ∗

74

Device Dr iver s −> SPI support −> User mode SPI dev i ce d r i v e r support ∗
Real−time sub−system −> Driver s −> Test ing d r i v e r s −>

−>Timer benchmark d r i v e r ∗
Real−time sub−system −> Driver s −> Test ing d r i v e r s −>

−>Kernel−only l a t ency measurement module ∗

5. Compile Xenomai.

$ make ARCH=arm O=bui ld CROSS_COMPILE= . . / . . / too l s −master /arm−bcm2708/
arm−bcm2708hardfp−l inux −gnueabi / bin /arm−bcm2708hardfp−l inux −gnueabi− −j 5
$ make ARCH=arm O=bui ld INSTALL_MOD_PATH=d i s t modu le s_ins ta l l
$ make ARCH=arm O=bui ld INSTALL_HDR_PATH=d i s t h e a d e r s _ i n s t a l l

6. Convert absolute symlinks of the source directory to relative.

$ sudo apt−get i n s t a l l syml inks
$ syml inks −cr . /

b.4 install xenomai on raspberry pi
In this section it will be explained how to copy the files generated by the last step and some

required source files to Raspberry Pi.

1. Copy the zImage to boot

$ cp bu i ld / arch /arm/ boot /zImage /media/RASP_BOOT_PARTITION

2. Copy source. If it is not intended to compile modules for kernel, this step can be skipped, and
some hundred megabytes will be saved.

$ cp −r . . / l inux −rp i −3.10. y / . /media/RASP_FILESYSTEM_ROOT/home/ pi / l i nux /

3. Copy the dist to / of Linux filesystem (include and lib is there).

$ cd bu i ld / d i s t
$ sudo cp −r ∗ /media/RASP_FILESYSTEM_ROOT

4. Add to config.txt of your BOOT partition the line:

75

k e r n e l=zImage

5. Now plug the SD card on your Raspberry Pi to download some examples, code, test code and
documentation.

$ cd /home
$ wget http :// download . gna . org /xenomai/ s t a b l e /xenomai − 2 . 6 . 2 . 1 . ta r . bz2
$ ta r −j x v f xenomai − 2 . 6 . 2 . 1 . ta r . bz2
$ mv −r xenomai −2 .6 . 2 . 1 xenomai−head
$ cd xenomai−head
$ make
$ sudo make i n s t a l l

b.5 test installation and performance evalua-
tion

1. Test the performance in user space:

$ sudo su
$ echo "0" >>/proc /xenomai/ l a t ency
$ exit
$ sudo / usr /xenomai/ bin / la t ency

The expected results are shown in Figure B.1.

Figure B.1: User space latency results

2. To test the latency of Xenomai in kernel space:

$ cd / l i b /modules / ‘uname −r ‘ / ke r ne l / d r i v e r s /xenomai/ t e s t i n g
$ sudo modprobe . / xeno_klat . ko

76

$ / usr /xenomai/ bin / k la tency

NOTE: If the last method gives error, try the following command:

$ sudo modprobe xeno_timerbench
$ sudo / usr /xenomai/ bin / la t ency −t1

The expected results are shown in Figure B.2.

Figure B.2: Kernel space latency results

b.6 final adjustments
1. Join build and source directory in one.

$ cd ∼/ l i nux
$ rm . / bu i ld / Make f i l e
$ rm . / bu i ld /source
$ cp −R −v bu i ld / . .

2. In order to compile some modules in kernel space it is necessary to do the following fix:

$ sudo cp −R /home/ pi / l i nux / l i b /modules / ’uname −r ’ / / l i b /modules/
$ sudo cd / l i b /modules / ’uname −r ’ /
$ sudo rm bu i ld source
$ ln −s /home/ pi / l i nux bu i ld
$ ln −s /home/ pi / l i nux source

3. To see if it can compile modules, you can run the next comands:

$ cd ∼/Documents

77

$ wget :
https : // d l . dropboxusercontent . com/u/31280811/Xenomai/Hello_module . ta r

$ ta r −xvf Hello_module . ta r
$ make
$ sudo insmod h e l l o . ko
$ sudo rmmod h e l l o
$ dmesg | t a i l

Expected:

Hel lo world 1 .
Goodbye world 1 .

78

appendix C
UDP based Communication
Protocol
c.1 interface specifications

This appendix provides a detailed description of the protocol that was implemented to allow the
communication between the PC and the Rasp Pi.

start connection
The client has to initiate the communication with the server, done with the start command. This

will initiate the UDP protocol, send a START message and wait until the ACK reception.

Syntax: start()

Arguments: None
Return: 0 or NaN (Not a Number) in case of error

79

end connection
When client does not need to do any more operations with the server, it must send the end

command, that will transmit the STOP message and will wait until the ACK, after it will to close the
UDP socket.

Syntax: end()

Arguments: None
Return: 0 or NaN in case of error

get a new adc value
The command getADC is used to get a new read from an ADC channel. It will send a request to

the server with ANALOG-REQUEST message, and will receive the new value on ANALOG-ANSWER
message.

Syntax: getADC(channel)

Arguments: Channel: int value from 0 to 3
Return: Voltage, float beteween -5 or 5, or NaN in case of error

80

get all adc values
The command getADCAll is used to get all the analog values at the same time from the ADC of

each analog channel. It will send a request to the server with ANALOG-REQUEST-ALL message,
and will receive the four values on ANALOG-ANSWER-ALL message.

Syntax: getADCAll()

Arguments: None
Return: Voltage, float’ array with 4 elements between -5 and 5 volt, or NaN in the position(s) with error(s)

set a new dac value
The command setDAC is used to set the output voltage of one of the DAC channels. It will send

an ANALOG-SET message and will wait for the ACK message.

Syntax: setDAC(channel, voltage)

Arguments: Channel: int value from 0 to 3
Voltage: float between -5 and 5 volts

Return: 0 or NaN in case of error

set all dac values
The command setDACAll is used to set the output voltage of all the DAC channels. It will send a

ANALOG-SET-ALL message, and will wait for the ACK message.

81

Syntax: setDACAll(voltage[])

Arguments: Voltage: float’ array with 4 elements between -5 and 5 volts, or NaN on the position(s) to not set any value(s)
Return: 0 or NaN in case of error

get a new digital input
The command getIN will get the digital value from one of the digital inputs. The command will

send a DIGITAL-GET message and will wait for the DIGITAL-ANSWER.

Syntax: getIN(channel)

Arguments: Channel: int value from 0 to 3
Return: Boolean 0, 1 or NaN in case of error

get all digital inputs
The command getINAll will get the digital value from all channels. The command will send a

DIGITAL-GET-ALL message and will wait for the DIGITAL-ANSWER-ALL.

Syntax: getINAll()

82

Arguments: None
Return: Boolean’ array with 4 elements of 0, 1 or NaN in the position(s) with error(s)

set a new digital output
The command setOUT sets the digital value of one of the digital outputs. When executing the

command, is sent a DIGITAL-SET message to the server and it will answer back with a ACK massage.

Syntax: setOUT(channel, boolean)

Arguments: Channel: int value from 0 to 3
Boolean: 0 or 1

Return: 0 or NaN in case of error

set all digital outputs
The command setOUTAll sets the digital value of all digital outputs. When executing the

command, is send a DIGITAL-SET-All message to the server and it will answer back with a ACK
massage.

Syntax: setOUTAll(boolean[])

83

Arguments: Boolean’ array with 4 elements of 0, 1 or NaN in the position(s) to not set any value(s)
Return: 0 or NaN in case of error

set pwm frequency value
The command setPWMFreq, sets the frequency of the PWM channel. It is sent a PWM-FREQ-SET

by the client and it will wait for a PWM-FREQ-ANSWER. In case the requested frequency is not
supported by the hardware, it is applied the next lower value, and returned in the answer message. It
is important to notice in the Rasp:IO, the first three channels share the same clock, so any change in
frequency in one channel will be applied to the other two. For more information about this limitation,
consult Section 3.3.1 on Chapter 3.

Syntax: setPWMFreq(channel, frequency)

Arguments: Channel: int value from 0 to 3
Frequency: 25, 30, 35, 100, 125, 150, 1250, 1470, 3570, 5000, 12500 or 25000 in Hz

Return: Frequency or NaN in case of error

set pwm duty-cycle value
The command setPWMDuty sets the duty-cycle value of one of the the PWM channels. It is sent

a PWM-DUTY-SET message and the server answers with an ACK message.

Syntax: setPWMDuty(channel, duty-cycle)

84

Arguments: Channel: int value from 0 to 3
Duty-cycle: float between 0 and 100

Return: 0 or NaN in case of error

c.2 message format
In this section will be shown the registers that compose each message, the order that take as well

the number of bytes.

• Start:

Byte 0 1 2
Seq Num ID CheckSum

• End:

Byte 0 1 2
Seq Num ID CheckSum

• Analog-Request:

Byte 0 1 2 3
Seq Num ID Channel CheckSum

• Analog-Request-All:

Byte 0 1 2
Seq Num ID CheckSum

• Analog-Set:

Byte 0 1 2 3 4 5 6 7
Seq Num ID Channel Voltage CheckSum

85

• Analog-Set-All:

Byte 0 1 2 3 4 5
Seq Num ID Voltage for channel 0

6 7 8 9 10 11 12 13
Voltage for channel 1 Voltage for channel 2

14 15 16 17 18
Voltage for channel 3 CheckSum

• Analog-Answer:

Byte 0 1 2 3 4 5 6
Seq Num Error Voltage CheckSum

• Analog-Answer-All:

Byte 0 1 2 3 4 5
Seq Num Error Voltage for channel 0

6 7 8 9 10 11 12 13
Voltage for channel 1 Voltage for channel 2

14 15 16 17 18
Voltage for channel 3 CheckSum

• Digital-Get:

Byte 0 1 2 3
Seq Num ID Channel CheckSum

• Digital-Get-All:

Byte 0 1 2
Seq Num ID CheckSum

• Digital-Set:

Byte 0 1 2 3 4
Seq Num ID Channel Boolean CheckSum

• Digital-Set-All:

Byte 0 1 2 3 4 5
Seq Num ID Boolean 0 Boolean 1 Boolean 2 Boolean 3
6

CheckSum

86

• Digital-Answer:

Byte 0 1 2
Seq Num Error Boolean CheckSum

• Digital-Answer-All:

Byte 0 1 2 3 4 5
Seq Num Error Boolean 0 Boolean 1 Boolean 2 Boolean 3
6

CheckSum

• PWM-Freq-Set:

Byte 0 1 2 3 4 5
Seq Num ID Channel Frequency CheckSum

• PWM-Duty-Set:

Byte 0 1 2 3 4 5 6 7
Seq Num ID Channel Duty-cycle CheckSum

• PWM-Freq-Answer:

Byte 0 1 2 3 4
Seq Num Error Frequency CheckSum

• ACK:

Byte 0 1 2
Seq Num Error CheckSum

c.3 table id
This section specifies the ID (identification number) for all the commands.

87

ID number Related command
100 Start
101 End
110 Analog-Request
112 Analog-Request-All
115 Analog-Set
116 Analog-Set-All
120 Digital-Get
121 Digital-Get-All
125 Digital-Set
126 Digital-Set-All
130 PWM-Freq-Set
131 PWM-Duty-Set

Table C.1: ID number of each command

c.4 table error
This section specifies the error numbers.

Error number Related name
0 No-Error

100 Already-Open
101 Not-Open
110 Channel
115 Truncate-Value
116 Invalid-Value

Table C.2: Error number and it name

88

appendix D
Communication Protocol
test

d.1 script to test getadc() command

1 % Add dependenc ies to path
2 addpath (’ . . / mcu_comm ’) ;
3 path = [’getADC_ ’ d a t e s t r (now , ’dd−mm−yy_HH−MM’)] ;
4 mkdir (’ . \ t e s t_protoco l o ’ , path) ;
5 addpath ([’ t e s t_pro toco lo \ ’ path]) ;
6 cd ([’ t e s t_protoco l o \ ’ path]) ;
7 diary cmd_line . txt
8 cd . . \ . . \ ;
9

10 %% I n i t i a l i z e the UDP connect ion
11 LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ u int16 ’) ;
12 REMOTE_IP = ’ ra spbe r ryp i . mshome . net ’ ;
13 REMOTE_PORT = 10000;
14 TIMEOUT = 8 ; % Depending on the transmit per iod o f the

remote dev i c e (ms)
15
16 % I n i t i a l i z e the communication o b j e c t
17 r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT) ;
18
19 %% Setup the loop
20 sim_k = 200000;
21 M = 5 ;
22
23 f o r m=1:M
24 t e l a p s e d = z e r o s (1 , sim_k) ;
25 % Send data to MCU
26 r a s p i o . s t a r t () ;
27 adc = [−500 −500 −500 −500];
28 warn (m) = 0 ;

89

29 error_n (m) = 0 ;
30 f o r k=1:sim_k
31 channel = randi ([0 3] , 1 , 1) ;
32
33 t s t a r t = t i c ;
34 aux = r a s p i o . getADC(channel) ;
35 t e l a p s e d (k) = toc (t s t a r t) ;
36
37 i f (i snan (aux))
38 f p r i n t f (’ Error : %d\n ’ , k) ;
39 error_n (m) = error_n (m) +1;
40 t e l a p s e d (k) = nan ;
41 end
42
43 i f (abs (adc (channel +1) ∗0 .01 − aux) > 0.0001)
44 warning (’Ch %d\ tk %d\ tExpeted %d and r e c e i v e d

%d\n ’ , channel , k , adc (channel +1) ∗0 .01 , aux)
45 warn (m) = warn (m) +1;
46 adc (channel +1) = int16 (aux ∗ 100) ;
47 end
48 adc (channel +1) = adc (channel +1) + 1 ;
49 i f (adc (channel +1) > 500)
50 adc (channel +1) = −500;
51 end
52
53 % i f (mod(k ,10000) == 0)
54 % f p r i n t f (’ k = %d\n ’ , k) ;
55 % end
56 end
57 r a s p i o . end () ;
58 time (m, :)= t e l a p s e d ∗1000 ;
59 f i g u r e ;
60 h(m) = histogram (time (m, :)) ;
61 med(m) = nanmean (time (m, :)) ;
62 desv io (m) = nanstd (time (m, :)) ;
63 maximo(m) = nanmax(time (m, :)) ;
64 s t r = s p r i n t f (’ Media : %fms \ tDesvio : %fms\tMaximo : %fms\tWarning :

%d\ tError :
%d\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n ’ ,med(m) , de sv io (m) ,maximo(m) , warn (m) , error_n (m)) ;

65 di sp (s t r) ;
66 pause (2) ;
67 end
68
69 cd ([’ t e s t_protoco l o \ ’ path]) ;
70 f o r k=1:M
71 saveas (h(k) , s p r i n t f (’ f i gure_%d . f i g ’ , k))
72 saveas (h(k) , s p r i n t f (’ f i gure_%d . png ’ , k))
73 end
74 c l e a r v a r s −except time med desv io maximo warn error_n
75 save (’ workspace . mat ’) ;
76 d a t e s t r (now , ’dd−mm−yy_HH−MM’) ;
77 diary o f f
78 cd . . \ . . \ ;

90

d.2 script to test getadcall() command

1 % Add dependenc ies to path
2 % addpath (’ . . / mcu_comm’) ;
3 path = [’ getADCAll_ ’ d a t e s t r (now , ’dd−mm−yy_HH−MM’)] ;
4 mkdir (’ . \ t e s t_protoco l o ’ , path) ;
5 addpath ([’ t e s t_pro toco lo \ ’ path]) ;
6 cd ([’ t e s t_protoco l o \ ’ path]) ;
7 diary cmd_line . txt
8 cd . . \ . . \ ;
9

10 %% I n i t i a l i z e the UDP connect ion
11 LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ u int16 ’) ;
12 REMOTE_IP = ’ ra spbe r ryp i . mshome . net ’ ;
13 REMOTE_PORT = 10000;
14 TIMEOUT = 8 ; % Depending on the transmit per iod o f the

remote dev i c e (ms)
15
16 % I n i t i a l i z e the communication o b j e c t
17 r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT) ;
18
19 %% Setup the loop
20 sim_k = 200000;
21 M = 5 ;
22
23 f o r m=1:M
24 t e l a p s e d = z e r o s (1 , sim_k) ;
25 % Send data to MCU
26 r a s p i o . s t a r t () ;
27 adc = [−500 −400 −300 −200];
28 warn (m) = 0 ;
29 error_n (m) = 0 ;
30 f o r k=1:sim_k
31
32 t s t a r t = t i c ;
33 aux = r a s p i o . getADCAll () ;
34 t e l a p s e d (k) = toc (t s t a r t) ;
35
36 i f (i snan (aux))
37 f p r i n t f (’ Error : %d\n ’ , k) ;
38 error_n (m) = error_n (m) +1;
39 t e l a p s e d (k) = nan ;
40 cont inue ;
41 end
42
43 f o r i =1:4
44 i f (abs (adc (i) ∗0 .01 − aux (i)) > 0.0001)
45 warning (’Ch %d\ tk %d\ tExpeted %d and r e c e i v e d

%d\n ’ , i , k , adc (i) ∗0 .01 , aux (i))
46 warn (m) = warn (m) +1;
47 adc (i) = int16 (aux (i) ∗ 100) ;
48 end
49 end

91

50
51 f o r i =1:4
52 adc (i) = adc (i) + 1 ;
53 i f (adc (i) > 500)
54 adc (i) = −500;
55 end
56 end
57
58 end
59 r a s p i o . end () ;
60 time (m, :)= t e l a p s e d ∗1000 ;
61 f i g u r e ;
62 h(m) = histogram (time (m, :)) ;
63 med(m) = nanmean (time (m, :)) ;
64 desv io (m) = nanstd (time (m, :)) ;
65 maximo(m) = nanmax(time (m, :)) ;
66 s t r = s p r i n t f (’ Media : %fms \ tDesvio : %fms\tMaximo : %fms\tWarning :

%d\ tError :
%d\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n ’ ,med(m) , de sv io (m) ,maximo(m) , warn (m) , error_n (m)) ;

67 di sp (s t r) ;
68 pause (2) ;
69 end
70
71 cd ([’ t e s t_protoco l o \ ’ path]) ;
72 f o r k=1:M
73 saveas (h(k) , s p r i n t f (’ f i gure_%d . f i g ’ , k))
74 saveas (h(k) , s p r i n t f (’ f i gure_%d . png ’ , k))
75 end
76 c l e a r v a r s −except time med desv io maximo warn error_n
77 save (’ workspace . mat ’) ;
78 d a t e s t r (now , ’dd−mm−yy_HH−MM’) ;
79 diary o f f
80 cd . . \ . . \ ;

92

d.3 script to test setdac() command

1 % Add dependenc ies to path
2 addpath (’ . . / mcu_comm ’) ;
3 path = [’setDAC_ ’ d a t e s t r (now , ’dd−mm−yy_HH−MM’)] ;
4 mkdir (’ . \ t e s t_protoco l o ’ , path) ;
5 addpath ([’ t e s t_pro toco lo \ ’ path]) ;
6 cd ([’ t e s t_protoco l o \ ’ path]) ;
7 diary cmd_line . txt
8 cd . . \ . . \ ;
9

10 %% I n i t i a l i z e the UDP connect ion
11 LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ u int16 ’) ;
12 REMOTE_IP = ’ ra spbe r ryp i . mshome . net ’ ;
13 REMOTE_PORT = 10000;
14 TIMEOUT = 8 ; % Depending on the transmit per iod o f the

remote dev i c e (ms)
15
16 % I n i t i a l i z e the communication o b j e c t
17 r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT) ;
18
19 %% Setup the loop
20 sim_k = 200000;
21 M = 5 ;
22
23 f o r m=1:M
24 t e l a p s e d = z e r o s (1 , sim_k) ;
25 % Send data to MCU
26 r a s p i o . s t a r t () ;
27 dac = [−500 −500 −500 −500];
28 warn (m) = 0 ;
29 error_n (m) = 0 ;
30 f o r k=1:sim_k
31 channel = randi ([0 3] , 1 , 1) ;
32
33 t s t a r t = t i c ;
34 aux = r a s p i o . setDAC(channel , dac (channel +1) ∗0 .01) ;
35 t e l a p s e d (k) = toc (t s t a r t) ;
36
37 i f (i snan (aux))
38 f p r i n t f (’ Error : %d\n ’ , k) ;
39 error_n (m) = error_n (m) +1;
40 t e l a p s e d (k) = nan ;
41 end
42
43 dac (channel +1) = dac (channel +1) + 1 ;
44 i f (dac (channel +1) > 500)
45 dac (channel +1) = −500;
46 end
47
48 % i f (mod(k ,10000) == 0)
49 % f p r i n t f (’ k = %d\n ’ , k) ;
50 % end

93

51 end
52 r a s p i o . end () ;
53 time (m, :)= t e l a p s e d ∗1000 ;
54 f i g u r e ;
55 h(m) = histogram (time (m, :)) ;
56 med(m) = nanmean (time (m, :)) ;
57 desv io (m) = nanstd (time (m, :)) ;
58 maximo(m) = nanmax(time (m, :)) ;
59 s t r = s p r i n t f (’ Media : %fms \ tDesvio : %fms\tMaximo : %fms\tWarning :

%d\ tError :
%d\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n ’ ,med(m) , de sv io (m) ,maximo(m) , warn (m) , error_n (m)) ;

60 di sp (s t r) ;
61 pause (2) ;
62 end
63
64 cd ([’ t e s t_protoco l o \ ’ path]) ;
65 f o r k=1:M
66 saveas (h(k) , s p r i n t f (’ f i gure_%d . f i g ’ , k))
67 saveas (h(k) , s p r i n t f (’ f i gure_%d . png ’ , k))
68 end
69 c l e a r v a r s −except time med desv io maximo warn error_n
70 save (’ workspace . mat ’) ;
71 d a t e s t r (now , ’dd−mm−yy_HH−MM’) ;
72 diary o f f
73 cd . . \ . . \ ;

94

d.4 script to test setdacall() command

1 % Add dependenc ies to path
2 % addpath (’ . . / mcu_comm’) ;
3 path = [’ setDACAll_ ’ d a t e s t r (now , ’dd−mm−yy_HH−MM’)] ;
4 mkdir (’ . \ t e s t_protoco l o ’ , path) ;
5 addpath ([’ t e s t_pro toco lo \ ’ path]) ;
6 cd ([’ t e s t_protoco l o \ ’ path]) ;
7 diary cmd_line . txt
8 cd . . \ . . \ ;
9

10 %% I n i t i a l i z e the UDP connect ion
11 LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ u int16 ’) ;
12 REMOTE_IP = ’ ra spbe r ryp i . mshome . net ’ ;
13 REMOTE_PORT = 10000;
14 TIMEOUT = 8 ; % Depending on the transmit per iod o f the

remote dev i c e (ms)
15
16 % I n i t i a l i z e the communication o b j e c t
17 r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT) ;
18
19 %% Setup the loop
20 sim_k = 200000;
21 M = 5 ;
22
23 f o r m=1:M
24 t e l a p s e d = z e r o s (1 , sim_k) ;
25 % Send data to MCU
26 r a s p i o . s t a r t () ;
27 dac = [−500 −500 −500 −500];
28 warn (m) = 0 ;
29 error_n (m) = 0 ;
30 f o r k=1:sim_k
31 t s t a r t = t i c ;
32 aux = r a s p i o . setDACAll (dac ∗0 .01) ;
33 t e l a p s e d (k) = toc (t s t a r t) ;
34
35 i f (i snan (aux))
36 f p r i n t f (’ Error : %d\n ’ , k) ;
37 error_n (m) = error_n (m) +1;
38 t e l a p s e d (k) = nan ;
39 end
40
41 f o r i =1:4
42 dac (i) = dac (i) + 1 ;
43 i f (dac (i) > 500)
44 dac (i) = −500;
45 end
46 end
47
48 % i f (mod(k ,10000) == 0)
49 % f p r i n t f (’ k = %d\n ’ , k) ;
50 % end

95

51 end
52 r a s p i o . end () ;
53 time (m, :)= t e l a p s e d ∗1000 ;
54 f i g u r e ;
55 h(m) = histogram (time (m, :)) ;
56 med(m) = nanmean (time (m, :)) ;
57 desv io (m) = nanstd (time (m, :)) ;
58 maximo(m) = nanmax(time (m, :)) ;
59 s t r = s p r i n t f (’ Media : %fms \ tDesvio : %fms\tMaximo : %fms\tWarning :

%d\ tError :
%d\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n ’ ,med(m) , de sv io (m) ,maximo(m) , warn (m) , error_n (m)) ;

60 di sp (s t r) ;
61 pause (2) ;
62 end
63
64 cd ([’ t e s t_protoco l o \ ’ path]) ;
65 f o r k=1:M
66 saveas (h(k) , s p r i n t f (’ f i gure_%d . f i g ’ , k))
67 saveas (h(k) , s p r i n t f (’ f i gure_%d . png ’ , k))
68 end
69 c l e a r v a r s −except time med desv io maximo warn error_n
70 save (’ workspace . mat ’) ;
71 d a t e s t r (now , ’dd−mm−yy_HH−MM’) ;
72 diary o f f
73 cd . . \ . . \ ;

96

d.5 script to test getin() command

1 % Add dependenc ies to path
2 addpath (’ . . / mcu_comm ’) ;
3 path = [’ getIN_ ’ d a t e s t r (now , ’dd−mm−yy_HH−MM’)] ;
4 mkdir (’ . \ t e s t_protoco l o ’ , path) ;
5 addpath ([’ t e s t_pro toco lo \ ’ path]) ;
6 cd ([’ t e s t_protoco l o \ ’ path]) ;
7 diary cmd_line . txt
8 cd . . \ . . \ ;
9

10 %% I n i t i a l i z e the UDP connect ion
11 LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ u int16 ’) ;
12 REMOTE_IP = ’ ra spbe r ryp i . mshome . net ’ ;
13 REMOTE_PORT = 10000;
14 TIMEOUT = 8 ; % Depending on the transmit per iod o f the

remote dev i c e (ms)
15
16 % I n i t i a l i z e the communication o b j e c t
17 r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT) ;
18
19 %% Setup the loop
20 sim_k = 200000;
21 M = 5 ;
22
23 f o r m=1:M
24 t e l a p s e d = z e r o s (1 , sim_k) ;
25 % Send data to MCU
26 r a s p i o . s t a r t () ;
27 dac = [−500 −500 −500 −500];
28 warn (m) = 0 ;
29 error_n (m) = 0 ;
30 f o r k=1:sim_k
31 channel = randi ([0 3] , 1 , 1) ;
32
33 t s t a r t = t i c ;
34 aux = r a s p i o . getIN () ;
35 t e l a p s e d (k) = toc (t s t a r t) ;
36
37 i f (i snan (aux))
38 f p r i n t f (’ Error : %d\n ’ , k) ;
39 error_n (m) = error_n (m) +1;
40 t e l a p s e d (k) = nan ;
41 end
42
43 i f (b itand (r a s p i o . channel + r a s p i o . seq_num , 1) ∼= aux)
44 warning (’Ch %d\ tk %d\ tExpeted %d and r e c e i v e d

%d\n ’ , channel , k , b itand (r a s p i o . channel + r a s p i o . seq_num , 1) ,
aux) ;

45 warn (m) = warn (m) +1;
46 end
47
48 % i f (mod(k ,10000) == 0)

97

49 % f p r i n t f (’ k = %d\n ’ , k) ;
50 % end
51 end
52 r a s p i o . end () ;
53 time (m, :)= t e l a p s e d ∗1000 ;
54 f i g u r e ;
55 h(m) = histogram (time (m, :)) ;
56 med(m) = nanmean (time (m, :)) ;
57 desv io (m) = nanstd (time (m, :)) ;
58 maximo(m) = nanmax(time (m, :)) ;
59 s t r = s p r i n t f (’ Media : %fms \ tDesvio : %fms\tMaximo : %fms\tWarning :

%d\ tError :
%d\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n ’ ,med(m) , de sv io (m) ,maximo(m) , warn (m) , error_n (m)) ;

60 di sp (s t r) ;
61 pause (2) ;
62 end
63
64 cd ([’ t e s t_protoco l o \ ’ path]) ;
65 f o r k=1:M
66 saveas (h(k) , s p r i n t f (’ f i gure_%d . f i g ’ , k))
67 saveas (h(k) , s p r i n t f (’ f i gure_%d . png ’ , k))
68 end
69 c l e a r v a r s −except time med desv io maximo warn error_n
70 save (’ workspace . mat ’) ;
71 d a t e s t r (now , ’dd−mm−yy_HH−MM’) ;
72 diary o f f
73 cd . . \ . . \ ;

98

d.6 script to test getinall() command

1 % Add dependenc ies to path
2 % addpath (’ . . / mcu_comm’) ;
3 path = [’ getINAll_ ’ d a t e s t r (now , ’dd−mm−yy_HH−MM’)] ;
4 mkdir (’ . \ t e s t_protoco l o ’ , path) ;
5 addpath ([’ t e s t_pro toco lo \ ’ path]) ;
6 cd ([’ t e s t_protoco l o \ ’ path]) ;
7 diary cmd_line . txt
8 cd . . \ . . \ ;
9

10 %% I n i t i a l i z e the UDP connect ion
11 LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ u int16 ’) ;
12 REMOTE_IP = ’ ra spbe r ryp i . mshome . net ’ ;
13 REMOTE_PORT = 10000;
14 TIMEOUT = 8 ; % Depending on the transmit per iod o f the

remote dev i c e (ms)
15
16 % I n i t i a l i z e the communication o b j e c t
17 r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT) ;
18
19 %% Setup the loop
20 sim_k = 200000;
21 M = 5 ;
22
23 f o r m=1:M
24 t e l a p s e d = z e r o s (1 , sim_k) ;
25 % Send data to MCU
26 r a s p i o . s t a r t () ;
27 warn (m) = 0 ;
28 error_n (m) = 0 ;
29 f o r k=1:sim_k
30
31 t s t a r t = t i c ;
32 aux = r a s p i o . get INAl l () ;
33 t e l a p s e d (k) = toc (t s t a r t) ;
34
35 i f (i snan (aux))
36 f p r i n t f (’ Error : %d\n ’ , k) ;
37 error_n (m) = error_n (m) +1;
38 t e l a p s e d (k) = nan ;
39 cont inue ;
40 end
41
42 f o r i =1:4
43 i f (l ength (aux) == 4)
44 i f (b itand ((i −1) + r a s p i o . seq_num , 1) ∼= aux (i))
45 warning (’Ch %d\ tk %d\ tExpeted %d and r e c e i v e d

%d\n ’ , (i −1) ,k , bitand ((i −1) + r a s p i o . seq_num , 1) ,
aux (i)) ;

46 warn (m) = warn (m) +1;
47 end
48 e l s e

99

49 warning (’%d\ ton ly r e c e i v e d %d va lue s \n ’ , k , l ength (aux)) ;
50 warn (m) = warn (m) +1;
51 break ;
52 end
53 end
54
55 end
56 r a s p i o . end () ;
57 time (m, :)= t e l a p s e d ∗1000 ;
58 f i g u r e ;
59 h(m) = histogram (time (m, :)) ;
60 med(m) = nanmean (time (m, :)) ;
61 desv io (m) = nanstd (time (m, :)) ;
62 maximo(m) = nanmax(time (m, :)) ;
63 s t r = s p r i n t f (’ Media : %fms \ tDesvio : %fms\tMaximo : %fms\tWarning :

%d\ tError :
%d\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n ’ ,med(m) , de sv io (m) ,maximo(m) , warn (m) , error_n (m)) ;

64 di sp (s t r) ;
65 pause (2) ;
66 end
67
68 cd ([’ t e s t_protoco l o \ ’ path]) ;
69 f o r k=1:M
70 saveas (h(k) , s p r i n t f (’ f i gure_%d . f i g ’ , k))
71 saveas (h(k) , s p r i n t f (’ f i gure_%d . png ’ , k))
72 end
73 c l e a r v a r s −except time med desv io maximo warn error_n
74 save (’ workspace . mat ’) ;
75 d a t e s t r (now , ’dd−mm−yy_HH−MM’) ;
76 diary o f f
77 cd . . \ . . \ ;

100

d.7 script to test setout() command

1 % Add dependenc ies to path
2 addpath (’ . . / mcu_comm ’) ;
3 path = [’setOUT_ ’ d a t e s t r (now , ’dd−mm−yy_HH−MM’)] ;
4 mkdir (’ . \ t e s t_protoco l o ’ , path) ;
5 addpath ([’ t e s t_pro toco lo \ ’ path]) ;
6 cd ([’ t e s t_protoco l o \ ’ path]) ;
7 diary cmd_line . txt
8 cd . . \ . . \ ;
9

10 %% I n i t i a l i z e the UDP connect ion
11 LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ u int16 ’) ;
12 REMOTE_IP = ’ ra spbe r ryp i . mshome . net ’ ;
13 REMOTE_PORT = 10000;
14 TIMEOUT = 8 ; % Depending on the transmit per iod o f the

remote dev i c e (ms)
15
16 % I n i t i a l i z e the communication o b j e c t
17 r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT) ;
18
19 %% Setup the loop
20 sim_k = 200000;
21 M = 5 ;
22
23 f o r m=1:M
24 t e l a p s e d = z e r o s (1 , sim_k) ;
25 % Send data to MCU
26 r a s p i o . s t a r t () ;
27 dac = [−500 −500 −500 −500];
28 warn (m) = 0 ;
29 error_n (m) = 0 ;
30 f o r k=1:sim_k
31 channel = randi ([0 3] , 1 , 1) ;
32
33 seq = bitand (r a s p i o . seq_num +1 ,255) ;
34
35 t s t a r t = t i c ;
36 aux = r a s p i o . setOUT(channel , b itand (channel + seq , 1)) ;
37 t e l a p s e d (k) = toc (t s t a r t) ;
38
39 i f (i snan (aux))
40 f p r i n t f (’ Error : %d\n ’ , k) ;
41 error_n (m) = error_n (m) +1;
42 t e l a p s e d (k) = nan ;
43 end
44
45
46 % i f (mod(k ,10000) == 0)
47 % f p r i n t f (’ k = %d\n ’ , k) ;
48 % end
49 end
50 r a s p i o . end () ;

101

51 time (m, :)= t e l a p s e d ∗1000 ;
52 f i g u r e ;
53 h(m) = histogram (time (m, :)) ;
54 med(m) = nanmean (time (m, :)) ;
55 desv io (m) = nanstd (time (m, :)) ;
56 maximo(m) = nanmax(time (m, :)) ;
57 s t r = s p r i n t f (’ Media : %fms \ tDesvio : %fms\tMaximo : %fms\tWarning :

%d\ tError :
%d\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n ’ ,med(m) , de sv io (m) ,maximo(m) , warn (m) , error_n (m)) ;

58 di sp (s t r) ;
59 pause (2) ;
60 end
61
62 cd ([’ t e s t_protoco l o \ ’ path]) ;
63 f o r k=1:M
64 saveas (h(k) , s p r i n t f (’ f i gure_%d . f i g ’ , k))
65 saveas (h(k) , s p r i n t f (’ f i gure_%d . png ’ , k))
66 end
67 c l e a r v a r s −except time med desv io maximo warn error_n
68 save (’ workspace . mat ’) ;
69 d a t e s t r (now , ’dd−mm−yy_HH−MM’) ;
70 diary o f f
71 cd . . \ . . \ ;

102

d.8 script to test setoutall() command

1 % Add dependenc ies to path
2 % addpath (’ . . / mcu_comm’) ;
3 path = [’ setOUTAll_ ’ d a t e s t r (now , ’dd−mm−yy_HH−MM’)] ;
4 mkdir (’ . \ t e s t_protoco l o ’ , path) ;
5 addpath ([’ t e s t_pro toco lo \ ’ path]) ;
6 cd ([’ t e s t_protoco l o \ ’ path]) ;
7 diary cmd_line . txt
8 cd . . \ . . \ ;
9

10 %% I n i t i a l i z e the UDP connect ion
11 LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ u int16 ’) ;
12 REMOTE_IP = ’ ra spbe r ryp i . mshome . net ’ ;
13 REMOTE_PORT = 10000;
14 TIMEOUT = 8 ; % Depending on the transmit per iod o f the

remote dev i c e (ms)
15
16 % I n i t i a l i z e the communication o b j e c t
17 r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT) ;
18
19 %% Setup the loop
20 sim_k = 200000;
21 M = 5 ;
22
23 f o r m=1:M
24 t e l a p s e d = z e r o s (1 , sim_k) ;
25 % Send data to MCU
26 r a s p i o . s t a r t () ;
27 warn (m) = 0 ;
28 error_n (m) = 0 ;
29 f o r k=1:sim_k
30 seq = bitand (r a s p i o . seq_num +1 ,255) ;
31 out = [bitand (0 + seq , 1) , b itand (1 + seq , 1) , b itand (2 + seq , 1) ,

b itand (3 + seq , 1)] ;
32 t s t a r t = t i c ;
33 aux = r a s p i o . setOUTAll (out) ;
34 t e l a p s e d (k) = toc (t s t a r t) ;
35
36 i f (i snan (aux))
37 f p r i n t f (’ Error : %d\n ’ , k) ;
38 error_n (m) = error_n (m) +1;
39 t e l a p s e d (k) = nan ;
40 end
41
42 end
43 r a s p i o . end () ;
44 time (m, :)= t e l a p s e d ∗1000 ;
45 f i g u r e ;
46 h(m) = histogram (time (m, :)) ;
47 med(m) = nanmean (time (m, :)) ;
48 desv io (m) = nanstd (time (m, :)) ;
49 maximo(m) = nanmax(time (m, :)) ;

103

50 s t r = s p r i n t f (’ Media : %fms \ tDesvio : %fms\tMaximo : %fms\tWarning :
%d\ tError :
%d\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n ’ ,med(m) , de sv io (m) ,maximo(m) , warn (m) , error_n (m)) ;

51 di sp (s t r) ;
52 pause (2) ;
53 end
54
55 cd ([’ t e s t_protoco l o \ ’ path]) ;
56 f o r k=1:M
57 saveas (h(k) , s p r i n t f (’ f i gure_%d . f i g ’ , k))
58 saveas (h(k) , s p r i n t f (’ f i gure_%d . png ’ , k))
59 end
60 c l e a r v a r s −except time med desv io maximo warn error_n
61 save (’ workspace . mat ’) ;
62 d a t e s t r (now , ’dd−mm−yy_HH−MM’) ;
63 diary o f f
64 cd . . \ . . \ ;

104

d.9 script to test setpwmduty() command

1 % Add dependenc ies to path
2 addpath (’ . . / mcu_comm ’) ;
3 path = [’setPWMDuty_ ’ d a t e s t r (now , ’dd−mm−yy_HH−MM’)] ;
4 mkdir (’ . \ t e s t_protoco l o ’ , path) ;
5 addpath ([’ t e s t_pro toco lo \ ’ path]) ;
6 cd ([’ t e s t_protoco l o \ ’ path]) ;
7 diary cmd_line . txt
8 cd . . \ . . \ ;
9

10 %% I n i t i a l i z e the UDP connect ion
11 LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ u int16 ’) ;
12 REMOTE_IP = ’ 192 . 168 . 137 . 183 ’ ;
13 REMOTE_PORT = 10000;
14 TIMEOUT = 8 ; % Depending on the transmit per iod o f the

remote dev i c e (ms)
15 MSG_LENGTH = 10 ; % Maximum datagram s i z e (bytes)
16
17 % I n i t i a l i z e the communication o b j e c t
18 r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT,MSG_LENGTH) ;
19
20 %% Setup the loop
21 sim_k = 200000;
22 M = 5 ;
23
24 f o r m=1:M
25 t e l a p s e d = z e r o s (1 , sim_k) ;
26 % Send data to MCU
27 r a s p i o . s t a r t () ;
28 duty = [10 10 10 1 0] ;
29 warn (m) = 0 ;
30 error_n (m) = 0 ;
31 f o r k=1:sim_k
32 channel = randi ([0 3] , 1 , 1) ;
33
34 t s t a r t = t i c ;
35 aux = r a s p i o . setDutyPWM(channel , duty (channel +1) ∗ 0 . 1) ;
36 t e l a p s e d (k) = toc (t s t a r t) ;
37
38 i f (i snan (aux))
39 f p r i n t f (’ Error : %d\n ’ , k) ;
40 error_n (m) = error_n (m) +1;
41 t e l a p s e d (k) = nan ;
42 end
43
44 duty (channel +1) = duty (channel +1) + 1 ;
45 i f (duty (channel +1) > 1000)
46 duty (channel +1) = 0 ;
47 end
48
49 % i f (mod(k ,10000) == 0)
50 % f p r i n t f (’ k = %d\n ’ , k) ;

105

51 % end
52 end
53 r a s p i o . end () ;
54 time (m, :)= t e l a p s e d ∗1000 ;
55 f i g u r e ;
56 h(m) = histogram (time (m, :)) ;
57 med(m) = nanmean (time (m, :)) ;
58 desv io (m) = nanstd (time (m, :)) ;
59 maximo(m) = nanmax(time (m, :)) ;
60 s t r = s p r i n t f (’ Media : %fms \ tDesvio : %fms\tMaximo : %fms\tWarning :

%d\ tError :
%d\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n ’ ,med(m) , de sv io (m) ,maximo(m) , warn (m) , error_n (m)) ;

61 di sp (s t r) ;
62 pause (2) ;
63 end
64
65 cd ([’ t e s t_protoco l o \ ’ path]) ;
66 f o r k=1:M
67 saveas (h(k) , s p r i n t f (’ f i gure_%d . f i g ’ , k))
68 saveas (h(k) , s p r i n t f (’ f i gure_%d . png ’ , k))
69 end
70 c l e a r v a r s −except time med desv io maximo warn error_n
71 save (’ workspace . mat ’) ;
72 d a t e s t r (now , ’dd−mm−yy_HH−MM’) ;
73 diary o f f
74 cd . . \ . . \ ;

106

d.10 script to test setpwmfreq() command

1 %Add dependenc ies to path
2 %addpath (’ . . / mcu_comm’) ;
3 path = [’setPWMFreq_ ’ d a t e s t r (now , ’dd−mm−yy_HH−MM’)] ;
4 mkdir (’ . \ t e s t_protoco l o ’ , path) ;
5 addpath ([’ t e s t_pro toco lo \ ’ path]) ;
6 cd ([’ t e s t_protoco l o \ ’ path]) ;
7 diary cmd_line . txt
8 cd . . \ . . \ ;
9

10 %% I n i t i a l i z e the UDP connect ion
11 LOCAL_PORT = cas t (s i n g l e (8000+50000∗ rand ()) , ’ u int16 ’) ;
12 REMOTE_IP = ’ 192 . 168 . 137 . 183 ’ ;
13 REMOTE_PORT = 10000;
14 TIMEOUT = 8 ; % Depending on the transmit per iod o f the

remote dev i c e (ms)
15 MSG_LENGTH = 10 ; % Maximum datagram s i z e (bytes)
16
17 % I n i t i a l i z e the communication o b j e c t
18 r a s p i o = udp_message (LOCAL_PORT,REMOTE_IP,REMOTE_PORT,TIMEOUT,MSG_LENGTH) ;
19
20 %% Setup the loop
21 sim_k = 200000;
22 M = 5 ;
23
24 f o r m=1:M
25 t e l a p s e d = z e r o s (1 , sim_k) ;
26 % Send data to MCU
27 r a s p i o . s t a r t () ;
28 f r e q = [10 10 10 1 0] ;
29 warn (m) = 0 ;
30 error_n (m) = 0 ;
31 f o r k=1:sim_k
32 channel = randi ([0 3] , 1 , 1) ;
33
34 %warning (’ o f f ’) ;
35 t s t a r t = t i c ;
36 aux = r a s p i o . setFreqPWM(channel , f r e q (channel +1)) ;
37 t e l a p s e d (k) = toc (t s t a r t) ;
38 %warning (’ on ’) ;
39
40 i f (i snan (aux))
41 f p r i n t f (’ Error : %d\ t Ch= %d\ t Freq= %d expected= %d\n ’ , k , channel ,

f r e q (channel +1) , r a s p i o . f requency) ;
42 error_n (m) = error_n (m) +1;
43 t e l a p s e d (k) = nan ;
44 e l s e
45 i f (aux ∼= 100∗ f l o o r (f r e q (channel +1)/100))
46 warning (’Ch %d\ tk %d\ tExpeted %d and r e c e i v e d

%d\n ’ , channel , k , f r e q (channel +1) , aux) ;
47 warn (m) = warn (m) +1;
48 end

107

49 end
50
51 f r e q (channel +1) = f r e q (channel +1) +10;
52 i f (f r e q (channel +1) > 2^16)
53 f r e q (channel +1) = 0 ;
54 end
55
56
57 % i f (mod(k ,10000) == 0)
58 % f p r i n t f (’ k = %d\n ’ , k) ;
59 % end
60 end
61 r a s p i o . end () ;
62 time (m, :)= t e l a p s e d ∗1000 ;
63 f i g u r e ;
64 h(m) = histogram (time (m, :)) ;
65 med(m) = nanmean (time (m, :)) ;
66 desv io (m) = nanstd (time (m, :)) ;
67 maximo(m) = nanmax(time (m, :)) ;
68 s t r = s p r i n t f (’ Media : %fms \ tDesvio : %fms\tMaximo : %fms\tWarning :

%d\ tError :
%d\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n ’ ,med(m) , de sv io (m) ,maximo(m) , warn (m) , error_n (m)) ;

69 di sp (s t r) ;
70 pause (2) ;
71 end
72
73 cd ([’ t e s t_protoco l o \ ’ path]) ;
74 f o r k=1:M
75 saveas (h(k) , s p r i n t f (’ f i gure_%d . f i g ’ , k))
76 saveas (h(k) , s p r i n t f (’ f i gure_%d . png ’ , k))
77 end
78 c l e a r v a r s −except time med desv io maximo warn error_n
79 save (’ workspace . mat ’) ;
80 d a t e s t r (now , ’dd−mm−yy_HH−MM’) ;
81 diary o f f
82 cd . . \ . . \ ;

108

appendix E
Second Order plant for RST
controller

109

4/18/2016 Sallen­Key Low­pass Filter Design Tool ­ Result ­

http://sim.okawa­denshi.jp/en/OPstool.php 1/2

English | Japanese

Home > Tools > Filters > Sallen­Key Low­pass Filter Design Tool > Result

Sallen­Key Low­pass Filter Design Tool ­ Result ­

Calculated the Transfer Function for the Sallen­Key Low­pass filter, displayed on graphs, showing Bode diagram, Nyquist diagram,
Impulse response and Step response.

Sallen­
Key Low­
pass
Filter

Vin(s)→ →Vout(s)

Transfer Function

G(s)=
44.0917107584

s2+5.48941798942s+44.0917107584

R1 = 560kΩ
R2 = 270kΩ
C1 = 1uF
C2 = 0.15uF

Cut­off frequency
 fc = 1.05681411834[Hz]

Quality factor
 Q = 1.20962895403

Damping ratio
 ζ = 0.413349894061

Pole(s)
 p = ­0.436834003857 +0.962305634291i[Hz]
 |p|= 1.05681411834[Hz]
 p = ­0.436834003857­0.962305634291i[Hz]
 |p|= 1.05681411834[Hz]

Phase margin
 pm= 71.6[deg] (f =1.2[Hz])

Oscillation frequency
 f = 0.962305634291[Hz]

Overshoot (in absolute value)
 The 1st peak gpk = 1.24 (t =0.52[sec])
 The 2nd peak gpk = 0.94 (t =1.05[sec])
 The 3rd peak gpk = 1.01 (t =1.55[sec])

Final value of the step response (on the condition that the
system converged when t goes to infinity)
 g(∞) = 1

fc=1 Hz
Q factor | Damping ratio ζ

Quality factor Q = 1.2
Damping ratio ζ = 0.5

C1 = 1u F C2 = 150n F
C1, C2 is optional. But when setting these
capacitances, C1 and C2 of both are needed to
give following the equation
 (C2/C1) ≤ ζ 2

 (C1/C2) ≥ 4Q2

Select Capacitor Sequence: E6
Select Resistor Sequence: E12

Frequency analysis

Bode diagram
Nyquist diagram
Pole, zero
Phase margin
Oscillation analysis

Transient analysis

Step response Impulse response
Overshoot
Final value of the step response

Calculate

Frequency analysis

4/18/2016 Sallen­Key Low­pass Filter Design Tool ­ Result ­

http://sim.okawa­denshi.jp/en/OPstool.php 2/2

Transient analysis

Top

♦Suggestion box
 We'll use your suggestion to improve site quality in future.

 Submit

Disclaimer ©2016 OKAWA Electric Design

appendix F
List of functions supported
by code translator
The functions supported by code translator can be found on file ’fixFunction.m’. Here is a preview of
the file:07-07-2016 4:44 D:\Dropbox\Documentos\6º Ano\Tese\Documents\latex-ua\la...\fixFunction.m 1 of 1
%Add here:
% MATLAB FUNCTION | C FUNCTION
% return function_name |return function_name arg1 arg2 arg3 arg4 ...
FUNCTION_LIST = {{'', 'obj.start', '', 'MAX11300init', ''};
 %{'' , 'obj.end' , '' , 'rt_task_delete' , 'NULL'};
 {'' , 'obj.end' , '' , 'return' , ''};
 {'ret' , 'obj.getADC' , '' , 'getADC' , '(uint8_t)arg1' , '&ret' };
 {'ret' , 'obj.getADCAll' , '' , 'getADCAll' , 'ret'};
 {'' , 'obj.setDAC' , '' , 'setDAC' , '(uint8_t)arg1' , 'arg2'};
 {'' , 'obj.setDACAll' , '' , 'setDACAll' , 'arg1'};
 {'ret' , 'obj.getIN' , '' , 'getIN' , '(uint8_t)arg1' , '&ret'};
 {'ret' , 'obj.getINAll' , '' , 'getINAll' , 'ret'};
 {'' , 'obj.setOUT' , '' , 'setOUT' , '(uint8_t)arg1' , 'arg2'};
 {'' , 'obj.setOUTAll' , '' , 'setOUTAll' , 'arg1'};
 {'' , 'rls_am' , '' , 'rls' , '(uint8_t)arg5' , 'arg1' , 'arg2' ,
'arg3', 'arg4' , 'arg6'};
 {'ret' , 'zeros' , '' , 'memset' , 'ret' , '0' , 'sizeof(ret)'};
 {'ret' , 'sizeof' , 'int ret' , 'sizeof' , 'arg1'};
 {'ret' , 'length' , 'int ret' , 'length' , 'arg1'};
 {'' , 'pause' , '' , 'myDelay' , 'arg1'};
 {'' , 'set_periodic' , '' , 'rt_task_set_periodic', 'NULL' , 'TM_NOW' ,
'arg1*1000000000'};
 {'' , 'wait_period' , '' , 'rt_task_wait_period' , 'NULL'};
 {'' , 'tic' , '' , '' , '' , };
 {'' , 'toc' , '' , '' , '' , };
 %function from math.h
 {'ret' , 'cos' , 'ret' , 'cos' , 'arg1'};
 {'ret' , 'sin' , 'ret' , 'sin' , 'arg1'};
 {'ret' , 'tan' , 'ret' , 'tan' , 'arg1'};
 {'ret' , 'abs' , 'ret' , 'fabs' , 'arg1'};
 {'ret' , 'sqrt' , 'ret' , 'sqrt' , 'arg1'};
 {'ret' , 'exp' , 'ret' , 'exp' , 'arg1'}};

113

Bibliography
[1] (Jun. 2016). Regulation Of Body Temperature, [Online]. Available: http://163.178.103.176/

tema1g/grupos1/germant1/gatp2/b/fever.htm.

[2] R. Schreiber. (2007). MATLAB.

[3] (May 2016). About, LabJack, [Online]. Available: https://labjack.com/about.

[4] (May 2016). 25.0 Scripting, LabJack, [Online]. Available: https://labjack.com/support/
datasheets/t7/scripting.

[5] (May 2016). Key Advantages Of T7 LUA Scripting, LabJack, [Online]. Available: https:
//labjack.com/news/key-advantages-t7-lua-scripting.

[6] Analog DiscoveryTMTechnical Reference Manual, version C, Linear Technology Corporation, Mar.
2015. [Online]. Available: https://reference.digilentinc.com/_media/analog_discovery:
analog_discovery_rm.pdf.

[7] Mathworks. (May 2016). MATLAB Support Package For Raspberry Pi Hardware, [Online].
Available: http://www.mathworks.com/help/supportpkg/raspberrypiio/index.html.

[8] (May 2016). MATLAB Support Package For BeagleBone Black Hardware, Mathworks, [Online].
Available: http://www.mathworks.com/help/supportpkg/beagleboneio/index.html.

[9] (May 2016). MATLAB Support Package For Arduino Hardware, Mathworks, [Online]. Available:
http://www.mathworks.com/help/supportpkg/arduinoio/index.html.

[10] (May 2016). Analog Input Using SPI, Mathworks, [Online]. Available: http://www.mathworks.
com/help/supportpkg/raspberrypiio/examples/analog-input-using-spi.html.

[11] (Mar. 2008). MCP3004/3008, [Online]. Available: http://ww1.microchip.com/downloads/
en/DeviceDoc/21295d.pdf.

[12] (May 2016). Use The BeagleBone Black ADC To Capture Analog Data, Mathworks, [Online].
Available: http://www.mathworks.com/help/supportpkg/beagleboneio/ug/use- the-
beaglebone-black-adc-to-capture-analog-data.html.

[13] MakerZone. (Jun. 2016). Using MATLAB And Arduino To Acquire Analog Signals, [Online].
Available: http://www.mathworks.com/videos/using-matlab-and-arduino-to-acquire-
analog-signals-100739.html.

[14] (May 2016). MATLAB Coder - Generate C And C++ Code From MATLAB Code, Mathworks,
[Online]. Available: http://www.mathworks.com/products/matlab-coder/.

[15] (Jun. 2016). Maximum Data Rates for the LabJack U12, LabJack, [Online]. Available: https:
//labjack.com/u12/datarates.

115

http://163.178.103.176/tema1g/grupos1/germant1/gatp2/b/fever.htm
http://163.178.103.176/tema1g/grupos1/germant1/gatp2/b/fever.htm
https://labjack.com/about
https://labjack.com/support/datasheets/t7/scripting
https://labjack.com/support/datasheets/t7/scripting
https://labjack.com/news/key-advantages-t7-lua-scripting
https://labjack.com/news/key-advantages-t7-lua-scripting
https://reference.digilentinc.com/_media/analog_discovery:analog_discovery_rm.pdf
https://reference.digilentinc.com/_media/analog_discovery:analog_discovery_rm.pdf
http://www.mathworks.com/help/supportpkg/raspberrypiio/index.html
http://www.mathworks.com/help/supportpkg/beagleboneio/index.html
http://www.mathworks.com/help/supportpkg/arduinoio/index.html
http://www.mathworks.com/help/supportpkg/raspberrypiio/examples/analog-input-using-spi.html
http://www.mathworks.com/help/supportpkg/raspberrypiio/examples/analog-input-using-spi.html
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
http://www.mathworks.com/help/supportpkg/beagleboneio/ug/use-the-beaglebone-black-adc-to-capture-analog-data.html
http://www.mathworks.com/help/supportpkg/beagleboneio/ug/use-the-beaglebone-black-adc-to-capture-analog-data.html
http://www.mathworks.com/videos/using-matlab-and-arduino-to-acquire-analog-signals-100739.html
http://www.mathworks.com/videos/using-matlab-and-arduino-to-acquire-analog-signals-100739.html
http://www.mathworks.com/products/matlab-coder/
https://labjack.com/u12/datarates
https://labjack.com/u12/datarates

[16] (Jun. 2016). 3.1 - Command/Response, LabJack, [Online]. Available: https://labjack.com/
support/datasheets/u6/operation/command-response.

[17] (Jun. 2016). A-1 Data Rates, LabJack, [Online]. Available: https://labjack.com/support/
datasheets/t7/appendix-a-1.

[18] P. Pedreiras. (May 2016). Scheduling Basics, [Online]. Available: http://ppedreiras.av.it.
pt/resources/str1516/docs/STR-4.pdf.

[19] (May 2016). Real-Time Linux Wiki, [Online]. Available: https://rt.wiki.kernel.org/.

[20] J. Davies. (Jan. 2012). TCP/IP Fundamentals For Microsoft Windows, [Online]. Available: https:
//download.microsoft.com/download/9/4/6/946958ef-7b86-4ddc-bfdb-c7ed2af4ce51/
TCPIP_Fund.pdf.

[21] (Dec. 2012). IEEE Standard for Ethernet.

[22] SPI Protocol And Bus Configuration Of Multiple DCPs, Intersil, Aug. 2007. [Online]. Available:
http://www.intersil.com/content/dam/Intersil/documents/an13/an1340.pdf.

[23] UM10204 - I2C-Bus Specification And User Manual, version 6, NXP, Apr. 2014. [Online].
Available: http://www.nxp.com/documents/user_manual/UM10204.pdf.

[24] «6. PID Controller Design», in Linear Feedback Control, ch. 6, pp. 181–233. doi: 10.1137/1.
9780898718621.ch6. eprint: http://epubs.siam.org/doi/pdf/10.1137/1.9780898718621.
ch6. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/1.9780898718621.ch6.

[25] (Jul. 2016). PID Theory Explained, National Instruments, [Online]. Available: http://www.ni.
com/white-paper/3782/en/.

[26] A. M. Mota, «Controladores PID», in Sistemas de Controlo 2 - Texto de Apoio, Beta 0.2. Apr.
2014.

[27] V. Rajinikanth and K. Latha. (Jun. 2016). I-PD Controller Tuning for Unstable System Using
Bacterial Foraging Algorithm: A Study Based on Various Error Criterion, [Online]. Available:
http://www.hindawi.com/journals/acisc/2012/329389/.

[28] A. M. Mota, «Identificação De Modelos Discretos Através Do Método Dos Minimos Quadrados»,
in Sistemas de Controlo 2 - Texto de Apoio, Beta 0.2. Apr. 2014.

[29] T. Cunha and A. Mota. (Jan. 2016). System Identification Based On Recursive Least Squares
Estimation.

[30] A. M. Mota, «Controladores RST», in Sistemas de Controlo 2 - Texto de Apoio, Beta 0.2. Apr.
2014.

[31] (May 2016). Model B Hardware General Specifications, [Online]. Available: www.raspberry-
projects . com / pi / pi - hardware / raspberry - pi - model - b / hardware - general -
specifications.

[32] (May 2016). About Debian, [Online]. Available: https://www.debian.org/intro/about.

[33] MAX11300, version 3, Maxim Integrated Products, Mar. 2014. [Online]. Available: https:
//datasheets.maximintegrated.com/en/ds/MAX11300.pdf.

[34] (May 2016). Programmable Analog: Maxim Creates Swiss Army Knife, EETimes, [Online].
Available: http://www.eetimes.com/document.asp?doc_id=1322790.

[35] MAX31790, version 2, Maxim Integrated Products, Dec. 2012. [Online]. Available: https:
//datasheets.maximintegrated.com/en/ds/MAX31790.pdf.

[36] 74HC244, version .5, NXP Semiconductors N.V., Dec. 1990. [Online]. Available: http://www.
nxp.com/documents/data_sheet/74HC_HCT244.pdf.

116

https://labjack.com/support/datasheets/u6/operation/command-response
https://labjack.com/support/datasheets/u6/operation/command-response
https://labjack.com/support/datasheets/t7/appendix-a-1
https://labjack.com/support/datasheets/t7/appendix-a-1
http://ppedreiras.av.it.pt/resources/str1516/docs/STR-4.pdf
http://ppedreiras.av.it.pt/resources/str1516/docs/STR-4.pdf
https://rt.wiki.kernel.org/
https://download.microsoft.com/download/9/4/6/946958ef-7b86-4ddc-bfdb-c7ed2af4ce51/TCPIP_Fund.pdf
https://download.microsoft.com/download/9/4/6/946958ef-7b86-4ddc-bfdb-c7ed2af4ce51/TCPIP_Fund.pdf
https://download.microsoft.com/download/9/4/6/946958ef-7b86-4ddc-bfdb-c7ed2af4ce51/TCPIP_Fund.pdf
http://www.intersil.com/content/dam/Intersil/documents/an13/an1340.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://dx.doi.org/10.1137/1.9780898718621.ch6
http://dx.doi.org/10.1137/1.9780898718621.ch6
http://epubs.siam.org/doi/pdf/10.1137/1.9780898718621.ch6
http://epubs.siam.org/doi/pdf/10.1137/1.9780898718621.ch6
http://epubs.siam.org/doi/abs/10.1137/1.9780898718621.ch6
http://www.ni.com/white-paper/3782/en/
http://www.ni.com/white-paper/3782/en/
http://www.hindawi.com/journals/acisc/2012/329389/
www.raspberry-projects.com/pi/pi-hardware/raspberry-pi-model-b/hardware-general-specifications
www.raspberry-projects.com/pi/pi-hardware/raspberry-pi-model-b/hardware-general-specifications
www.raspberry-projects.com/pi/pi-hardware/raspberry-pi-model-b/hardware-general-specifications
https://www.debian.org/intro/about
https://datasheets.maximintegrated.com/en/ds/MAX11300.pdf
https://datasheets.maximintegrated.com/en/ds/MAX11300.pdf
http://www.eetimes.com/document.asp?doc_id=1322790
https://datasheets.maximintegrated.com/en/ds/MAX31790.pdf
https://datasheets.maximintegrated.com/en/ds/MAX31790.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT244.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT244.pdf

[37] TL071, Texas Instruments, Sep. 1978. [Online]. Available: http://www.ti.com/lit/ds/
symlink/tl071.pdf.

[38] OP27, version H, NXP Semiconductors N.V. [Online]. Available: http://www.analog.com/
media/en/technical-documentation/data-sheets/OP27.pdf.

[39] LT3471, version B, Linear Technology Corporation. [Online]. Available: http://cds.linear.
com/docs/en/datasheet/3471fb.pdf.

[40] (May 2016). SPI Devices, [Online]. Available: https://www.kernel.org/doc/Documentation/
spi/spidev.

[41] (May 2016). SPI Driver Latency, [Online]. Available: http://elinux.org/RPi_SPI#SPI_
driver_latency.

[42] M. McCauley. (Jan. 2016). C Library for Broadcom BCM2835 as Used in Raspberry Pi, [Online].
Available: http://www.airspayce.com/mikem/bcm2835/index.html.

[43] (Feb. 2016). EV KIT SOFTWARE. version 1.2, [Online]. Available: https : / / www .
maximintegrated.com/en/design/tools/applications/evkit- software/index.mvp/
id/1196.

[44] Sample-And-Hold Amplifiers - MT-090 TUTORIAL, Analog Devices. [Online]. Available: http:
//www.analog.com/media/cn/training-seminars/tutorials/MT-090.pdf.

[45] W. S. Levine, THE CONTROL HANDBOOK, ser. The electrical engineering handbook series.
Boca Raton (Fl.): CRC Press New York, 1996, isbn: 0-8493-8570-9. [Online]. Available: http:
//opac.inria.fr/record=b1079196.

[46] Amplicon. (Jun. 2016). 10 Key Benefits of Industrial Ethernet, [Online]. Available: https:
//www.amplicon.com/docs/Articles/10-key-benefits-of-Industrial-Ethernet-Tech-
Article.pdf.

[47] K. Bartlett. (Mar. 2010). A Simple UDP Communications Application, [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/24525.

[48] R. Antão, «Typ-2 Fuzzy Logic: Uncertain System’s Modeling And Control», PhD thesis,
Universidade de Aveiro, Department of Electronics, Telecommunications and Informatics, 2016.

[49] K. Bartlett. (Aug. 2014). SSH/SFTP/SCP For Matlab. version 1.10, [Online]. Available: http:
//www.mathworks.com/matlabcentral/fileexchange/35409-ssh-sftp-scp-for-matlab--
v2-.

[50] (Jun. 2007). 287/289 Users Manual, [Online]. Available: http://media.fluke.com/documents/
287_289_umeng0200.pdf.

[51] (Apr. 2016). Sallen-Key Low-pass Filter Design Tool, OKAWA Electric Design, [Online]. Avail-
able: http://sim.okawa-denshi.jp/en/OPseikiLowkeisan.htm.

117

http://www.ti.com/lit/ds/symlink/tl071.pdf
http://www.ti.com/lit/ds/symlink/tl071.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/OP27.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/OP27.pdf
http://cds.linear.com/docs/en/datasheet/3471fb.pdf
http://cds.linear.com/docs/en/datasheet/3471fb.pdf
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.kernel.org/doc/Documentation/spi/spidev
http://elinux.org/RPi_SPI#SPI_driver_latency
http://elinux.org/RPi_SPI#SPI_driver_latency
http://www.airspayce.com/mikem/bcm2835/index.html
https://www.maximintegrated.com/en/design/tools/applications/evkit-software/index.mvp/id/1196
https://www.maximintegrated.com/en/design/tools/applications/evkit-software/index.mvp/id/1196
https://www.maximintegrated.com/en/design/tools/applications/evkit-software/index.mvp/id/1196
http://www.analog.com/media/cn/training-seminars/tutorials/MT-090.pdf
http://www.analog.com/media/cn/training-seminars/tutorials/MT-090.pdf
http://opac.inria.fr/record=b1079196
http://opac.inria.fr/record=b1079196
https://www.amplicon.com/docs/Articles/10-key-benefits-of-Industrial-Ethernet-Tech-Article.pdf
https://www.amplicon.com/docs/Articles/10-key-benefits-of-Industrial-Ethernet-Tech-Article.pdf
https://www.amplicon.com/docs/Articles/10-key-benefits-of-Industrial-Ethernet-Tech-Article.pdf
http://www.mathworks.com/matlabcentral/fileexchange/24525
http://www.mathworks.com/matlabcentral/fileexchange/35409-ssh-sftp-scp-for-matlab--v2-
http://www.mathworks.com/matlabcentral/fileexchange/35409-ssh-sftp-scp-for-matlab--v2-
http://www.mathworks.com/matlabcentral/fileexchange/35409-ssh-sftp-scp-for-matlab--v2-
http://media.fluke.com/documents/287_289_umeng0200.pdf
http://media.fluke.com/documents/287_289_umeng0200.pdf
http://sim.okawa-denshi.jp/en/OPseikiLowkeisan.htm

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Goals
	Document Structure

	Background
	MATLAB
	Data Acquisition with MATLAB
	Code Generator for Embedded Systems
	Comparing Solutions

	Real-Time Operative System
	PREEMPT_RT
	Xenomai

	Communication Protocols
	Ethernet
	SPI
	I2C

	Control Systems
	ON-OFF
	PID
	Tuning methods
	Identification method
	Reference Signal Tracking

	Hardware Development
	Requirements
	Processor Unit
	Hardware Implementation
	Complementary Integrated Circuits
	Power System

	Printed Circuit Board
	Summary

	Software and Firmware
	Firmware
	Device Driver
	Hardware abstract layer

	Communication Protocol for MATLAB And Raspberry Pi
	Protocol Overview
	Network commands
	Registers Description
	Protocol on MATLAB And Raspberry Pi

	MATLAB Code Translator to C
	Implementations
	Rules to use
	Code execution on the Raspberry Pi

	Summary

	Experimental Results
	Measurements and Validation Tests
	Performance of Communication Protocol
	Temporal Analysis of Digital and Analog I/O
	Functional analysis of Analog I/O

	RST Controller
	First Order System
	Second Order System

	PID Controller with auto tuning
	Physical System
	PID Controller
	I-PD Controller

	MATLAB to C code
	Summary

	Conclusions and Future work
	Conclusion
	Future work

	Rasp:IO schematic
	Installing Xenomai on Raspberry Pi
	Prerequisites
	Install Raspbian
	Donwload and prepare Xenomai
	Install Xenomai on Raspberry Pi
	Test installation and performance evaluation
	Final adjustments

	UDP based Communication Protocol
	Interface Specifications
	Message Format
	Table ID
	Table Error

	Communication Protocol test
	Script to test getADC() command
	Script to test getADCAll() command
	Script to test setDAC() command
	Script to test setDACAll() command
	Script to test getIN() command
	Script to test getINAll() command
	Script to test setOUT() command
	Script to test setOUTAll() command
	Script to test setPWMDuty() command
	Script to test setPWMFreq() command

	Second Order plant for RST controller
	List of functions supported by code translator
	Bibliography

