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Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their

intrinsic compatibility with biological environment and biofunctionality combined with strong

piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced

domain structures and polarization switching in the smallest amino acid b-glycine, representing a

broad class of non-centrosymmetric amino acids. We show that b-glycine is indeed a room-

temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via

a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied

as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization

screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is

applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the

properties of b-glycine are controlled by the charged domain walls which in turn can be manipu-

lated by an external bias. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927807]

I. INTRODUCTION

Inorganic piezoelectric and ferroelectric materials are

widely used for temperature and force sensing, data storage,

mechanical actuation, and, recently, for energy harvesting.1

They are based mainly on perovskites (presumably contain-

ing lead) and sintered at high temperature thus preventing

their integration into Si-based devices and use in biomedi-

cal applications. Organic ferroelectric materials,2 on the

contrary, can be easily processed (e.g., by solution growth)

and easily functionalized, e.g., for biosensor applications.

In addition, they are mechanically flexible and, therefore,

can provide conformal coating.3 However, they typically

suffer from low spontaneous polarization, low transition

temperature, and weak piezoelectric properties even at low

temperatures. Recent results on croconic acid4 and disopro-

pylammonium chloride (bromide)5,6 have been indeed a

breakthrough due to a combination of high enough transi-

tion temperature and polarization combined with low coer-

cive field and switchability. These discoveries paved

the way for using organic ferroelectrics in bioelectronics,

biosensing, harvesting systems, MEMS, just to name a

few. For example, biologically compatible harvesting

elements were created based on 1,4-diazabicyclo[2.2.2]

octane perrhenate (dabcoHReO4) ferroelectric microcrys-

tals embedded in polymer fibers by electrospinning.7

However, these materials represent a relatively narrow

class of synthetic organic crystals with a limited variability

of the physical properties and rarely known biocompatibil-

ity. Apparently, new materials classes based on natural tis-

sue components, such as amino acids, peptides, or lipids,

should be explored in view of their natural biocompatibility

and variability.8 Recent studies on the simplest amino acid

glycine have demonstrated that it is a suitable material with

apparent ferroelectric properties and square piezoresponse

hysteresis loops at room temperature.9 The advantage of

glycine is not only its simplicity and ability to serve as a

building block for proteins but also its polymorphic nature

allowing simple yet effective means to form piezoelectric

composites comprising several phases of the same material

(e.g., ferroelectric-dielectric or ferroelectric-piezoelectric).

Recently, a simple method of stabilization of the piezoelec-

tric b-phase has been demonstrated,10 and a humidity effect

on the motion of the interphase boundary has been

revealed.11 The ability to grow stable b-phase crystals has

allowed us to study in detail its switchability and dynamics

of the ferroelectric domain propagation in this technologi-

cally important material. The domain shape is dictated by

polarization screening at the domain boundaries and also

mediated by growth defects. Thermodynamic theory is

applied to explain the domain size under switching by the

voltage applied to the tip of the atomic force microscope

(AFM) and 180� domain wall energy is extracted from the

experiments. Our findings suggest that b-glycine is an uni-

axial ferroelectric with the properties controlled by the

charged domain walls which in turn can be manipulated by

the tip-enhanced electric field.
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II. EXPERIMENTAL

Needle-shaped b-glycine crystals were grown via evapo-

ration of a 50 ll drop of 0.13 M aqueous glycine solution

onto (111)Pt/SiO2/Si substrate (Inostek, South Korea) under

ambient conditions (21 �C, humidity 30%).10

In this work, we used AFM, namely, its piezoresponse

force microscopy (PFM) configuration12 to study local pie-

zoelectricity in b-glycine micro crystals either by simple

polarization imaging or using a spectroscopy mode. In PFM

imaging, an ac voltage is applied locally to the sample via

PFM tip leading to the sample deformation due to converse

piezoelectric effect. It is possible to record both deflection

and torsion displacements of the cantilever on the sample

surface, thus acquiring vertical (out-of-plane) and lateral

(in-plane) piezoresponses. A commercial AFM (Ntegra

Aura, NT-MDT, Russia) used in this study was equipped

with an external function generator (FG120,Yokogawa,

Japan) and a lock-in amplifier (SR830, Stanford Research,

USA). A conductive Si cantilever with a spring constant of

�3 N/m and resonance frequency of �75 kHz (measure-

ment frequency �15 kHz) was used for domain imaging

and local poling. Switching spectroscopy PFM was per-

formed to confirm polarization switchability of domains.13

In these measurements, the tip was fixed at a predefined

position on the sample surface and voltage bias pulses of

variable strengths and durations were applied. Domain con-

figurations were imaged immediately after each pulse. In

some cases, we could observe an instability of the switched

domains (polarization backswitching). In these cases, sev-

eral scans were done until a more or less stable domain con-

figuration was reached.

III. RESULTS AND DISCUSSION

Figures 1(a) 1(c) show typical topography and piezores-

ponse images (separately amplitude and phase) acquired on

the surface of a needle-shaped b-glycine microcrystal com-

prising several domain boundaries. According to the topog-

raphy image (Fig. 1(a)), b-glycine grows in a layer fashion

and a number of defects are generated on the surface of the

crystal. These topographic defects apparently correlate with

the distribution of ferroelectric domains. Only an in-plane

(shear piezocontrast) was observed with almost zero out-of-

plane polarization (image not shown). The bright and dark

contrasts of the in-plane phase image (Fig. 1(c)) indicate an

apparent 180� phase difference and suggest an antiparallel

polarization direction in adjacent domains (as shown in Fig.

1(c) by arrows). The in-plane (shear) signal is significantly

reduced at domain walls as expected (Fig. 1(d)).14 This could

be a result of domain wall clamping and averaging effect of

the piezoresponse by the finite size of the tip.14 A compari-

son of the in-plane piezoresponse with single crystal x-ray

diffraction data (obtained on identical b-glycine crystals

elongated along the b direction10) indicates that the sponta-

neous polarization of as-grown domains is parallel to the

crystal axis b of the monoclinic phase of a b-polymorph. By

calibrating lateral displacement using an AFM scanner, it

was possible to determine the absolute value of the effective

shear piezoelectric coefficient (d15eff) inside the domain. The

in-plane sensitivity was calculated based on the geometry of

the cantilever and measured out-of-plane deflection sensitiv-

ity as described by Peter et al.15 The piezoresponse signal

of b-glycine was measured at a point inside the domain

while varying the amplitude of the ac bias from 0 to 15 V.

FIG. 1. (a) Topography, (b) LPFM

(lateral PFM) amplitude, (c) LPFM

phase, and (d) cross sections across the

domain wall on the topography and

amplitude images (marked by green

line).
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The effective shear piezoelectric coefficient was calculated

directly from the slope of the acquired curve and in-plane

torsional sensitivity of the cantilever.15 The value varied

from point to point with an average effective coefficient of

about 6 pm/V. It should be noted that this value cannot repre-

sent the true bulk coefficient and should be used with caution

to evaluate piezoelectric activity of the amino acid crystals.

Still this value is significantly greater than that of the corre-

sponding coefficient of quartz (d14¼ 0.76 pm/V)16 and simi-

lar to ZnO (d15¼ 8.3 pm/V).17

The domain walls in b-glycine are apparently true 180�

domains separating domains with the polarization parallel to

the domain wall plane and charged domain walls in which

polarization discontinuity leads to an additional energy asso-

ciated with such domain configurations. The combination of

both represents a typical step-like domain structure similar

to that recently observed in a-6,60-dimethyl-2,20-bipiridinium

chloranilate.18 Figure 2 shows a part of the step-like domain

structure overlaid on the 3D topography image. It clearly

indicates that the 180� domains are mostly coincident with

the cleavage planes of the crystal. The steps in topography

correspond to the atomic planes of b-glycine. Since the

crystal surface was not polished, it may be suggested that

the stabilization of 180� domain walls occurs at these

growth defects and their density is controlled by the density

of atomic steps on the surface. It is natural to propose that

b-glycine (grown at room temperature below the Curie point)

could decrease the domain wall energy by pinning 180� do-

main walls at the vertical steps on the surface (Fig. 2). These

thermodynamically stable domains may not be easily

switched under an applied electric field and thus the macro-

scopic remanent polarization can be reduced as compared to

the single domain state.18

The distinct feature of our b-glycine microcrystals is a

presence of a large number of charged domain walls (either

head-to-head or tail-to-tail). In uniaxial ferroelectrics, 180�

domain walls typically separate antiparallel domains with

polarization vector parallel to domain plane, so as to avoid

high electrostatic energy associated with polarization discon-

tinuity at the domain wall.19 Consequently, charged domain

walls have been rarely observed in ferroelectric materials,

e.g., in PbTiO3 crystals,20 in PZT thin films21 and, recently,

in uniaxial organic ferroelectrics.18 An as-grown glycine

crystal has both antiparallel (neutral) and charged ferroelec-

tric domain walls appearing as a series of steps as shown

schematically in Fig. 3. As seen from the comparison of

PFM amplitude and topography cross-sections (Fig. 1(d)),

the initial charged domain boundaries in the crystal are

always associated with the topography trenches of about

6 7 nm in depth. This is an indication of the existence of top-

ological defects which can be associated with the high elec-

trostatic field compensated by electronic or ionic charges

trapped at defect sites.22 On the other hand, the associated

strain at the charge domain wall is about 0.1% and corre-

sponds to the change of crystal dimension due to d31 piezo-

electric effect under an electric field of about 5 MV/cm. This

naturally explains the existence of trenches (not protrusions)

on the surface due to the negative sign of d31. Unfortunately,

our microcrystals were by far too small to conduct conven-

tional Sawyer-Tower polarization hysteresis measurements.

In order to confirm polarization switchability in b-glycine,

an external electric field was applied locally via a PFM tip

to the crystal with in-plane polarization and domain switch-

ing was controlled by varying the amplitude and duration

of dc bias pulses.23 It is well known that the electric field

created via PFM tip is inhomogeneous and has a maximum

intensity in a direction perpendicular to the sample surface.

Due to this effect, it is possible to create an artificial do-

main with the polarization perpendicular to the ferroelectric

surface and monitor their switching kinetics by measuring

the domain diameter versus applied voltage.24,25 Recently,

Pertsev and Kholkin26 have theoretically shown that the

180� in-plane polarization switching can be observed in

uniaxial ferroelectrics when the initial polarization is paral-
lel to the sample surface. In this approach, the PFM tip is

represented as a line of charges25 and the potential distribu-

tion created by the tip inside the ferroelectric crystal can be

written in the form

FIG. 2. (a) LPFM contrast for the as grown state, (b) PFM contrast overlaid

on the topography. Green and white lines represent charged and neutral do

main walls, respectively.

FIG. 3. Schematic of the domain configurations and polarization distribution

on the growth steps of glycine crystals.
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where x is a coordinate parallel to the polar axis (in our case

b direction), z is the coordinate perpendicular to the surface,

H is the total tip height, rtip is the effective radius of the tip,

eext is the dielectric permittivity of external media, and V is

the bias applied to the tip. The dielectric response in the sur-

face plane is supposed to be anisotropic (ex 6¼ ey), where ex is

the dielectric permittivity along the polar x direction and ey

is along the nonpolar one. The distribution of lateral field of

the tip should be calculated as the derivative of potential øtip

with respect to x: Etip
x ¼ �@Øtip=@x.

We calculated the lateral component of electric field in-

tensity at the sample surface and at two different depths (10

and 20 nm) by using Eq. (1) and applied voltage 90 V. As

expected, the inhomogeneous electric field induced by the

tip in x-direction (Etip
x ) has opposite signs at right and left

sides from the tip, reaching a maximum at a distance close to

the tip and then decreasing slowly with distance (Fig. 4(a)).

Therefore, the surface domain would grow only at one side

of the PFM tip depending on the initial polarization of the

crystal and the sign of applied electric field (Fig. 4(b)).

Changing the bias sign reverses the direction of electric

field produced by the tip and, therefore, creates a domain in

the opposite direction (Fig. 4(c)). Interestingly, recent obser-

vation of the in-plane switching in congruent LiNbO3 single

crystals demonstrate much richer phenomena where in-plane

domains grew in the same direction after the application of

voltages of opposite signs.27

Indeed, after the application of a high enough dc bias to

the tip in contact with the glycine surface, a new 180� do-

main is observed being sufficiently stable after switching.

Figures 5(a) and 5(b) represent domains appearing after the

application of �90 V to the tip for two opposite polarization

states (cf. Figs. 5(a) and 5(b)) and different pulse durations.

The direction of the nascent domain is sensitive to the initial

polarization direction and changes to the opposite one upon

crystal rotation at 180�. Nascent domains have a typical rec-

tangular shape with high aspect ratio and wedge-shaped end

(in order to decrease electrostatic energy associated with

charged domain wall19). We note that the charged domain

walls are not associated anymore with the surface morphol-

ogy defects (i.e., with the topography change) and, therefore,

electrically switched domains were not that stable as com-

pared to the natural ones appearing during crystal growth. It

is speculated that the high electrostatic field associated with

them could be partly compensated by the external rather than

by internal charges associated with defects. It was found that

as-grown charged domain walls cannot be moved even under

very high electric bias (up to 100 V) applied to the tip.

Domain lengths were found to be dependent on the am-

plitude and duration of the applied voltage pulses. Figure 6

FIG. 4. (a) The electric field intensity

Etip
x produced by the tip on the surface

and with different depths along the x

axis. (b) and (c) Schematics of the

expected in plane domain configuration

recorded by the PFM tip with positive

and negative bias, respectively. T T is

tail to tail and H H is head to head

configurations.
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illustrates the voltage dependence of the domain length for a

fixed bias pulse duration (10 s). Independently of the voltage

pulse duration, the critical voltage was about 65 V for both

orientations of the initial polarization. Small variation of crit-

ical voltages (65 V) probably originates from different

defect structure (density, defect type) under the tip.

The value of threshold voltage needed for the appear-

ance of domains on the non-polar surface is more than three

times higher than that necessary for the switching on the

polar surface in glycine (Vcr � 20 V according to Ref. 9).

There are two reasons for that. First, due to the dielectric ani-

sotropy of the surface (ez=ex > 2Þ , the maximum value of Ez

is about two times higher than that of Ex, similar to the case

of the non-polar surface of uniaxial LiNbO3.27 Second, back

switching effect could be more pronounced for in-plane

domains which are not sufficiently stable due to incomplete

polarization screening.27 Apparently, domains switched

under lower voltages are unstable, and the initial polarization

state is recovered after the external field is switched off. This

happens due to fundamental instability of the charged do-

main which cannot be completely screened with absence of

the slow bulk screening processes.28

Ferroelectricity in organic crystals arises from the

collective transfer of electrons in charge-transfer (CT)

complexes29 or protons transfer in hydrogen bonded crys-

tals,2 which are different from ionic displacements in perov-

skite structure. The spontaneous polarization of glycine

crystals come from the interaction of permanent dipole

moments of glycine molecules in the volume but polarization

of each chain can be inverted by dynamics of the intermolec-

ular N-H…O bonds, similar to proton tautomerism of

O-H…O bonds in croconic acid30 or N-H…N bonds in benz-

imidazole derivatives.31 This property is attributed to the am-

photeric nature of glycine molecule which can donate or

accept proton to each other.

With increasing voltage, the domain length reached high

values, e.g., �17 lm for 90 V, or even more as shown in

Fig. 6. At such distances, the associated driving field from

the tip is very weak or practically zero (according to Etip
x

equation). Thus the domain wall is not driven anymore by

the electric field from the tip. This observation can be

explained by the domain breakdown phenomenon, a domain

FIG. 5. LPFM image of domains after writing in bright (a) and dark areas

(b) by tip voltages of 90 V with different pulse durations (the arrows show

the contact points of the AFM tip).

FIG. 6. Domain length as a function of applied voltage for a fixed pulse du

ration (10 s).

FIG. 7. (a) Domain length as a function of writing time for the applied volt

age 90 V. (b) Domain wall velocity of as a function of domain length for

the applied voltage 90 V.
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growth process which was proposed by Molotskii et al.32 It

states that the main driving force for domain propagation is a

decrease in the depolarizing field energy of the system,

rather than direct effect of the electric field induced by the

tip. Probably, in the case of glycine, the domain length

increases with consecutive rear-rangement of H atoms posi-

tion in the intermolecular N-H…O bonds to satisfy the mini-

mum free energy condition.

The domain lengths were also found to depend on

the duration of the applied voltage as seen in Fig. 7(a). The

threshold time was about 2 s. At shorter times, the domains

were not in equilibrium and switched back after the field

was removed. Domain wall velocity was calculated based

on the dependence of the domain length on switching time

(�¼ dL/dt) and is plotted as a function of the domain length

in Fig. 7(b). Domain velocity significantly decreases with

increasing domain length since the lateral electric

field asymptotically decreases with distance from the tip

(E tip
x � 1=x).26

The stability of the written domain structures is impor-

tant for the application of ferroelectrics for memories and

other applications.33 In glycine, the domains are stable for a

short time only and then their length slowly decreases to

reach stable configuration or sometimes they fully disappear

similar to the case of single-domain strontium-barium nio-

bate (SBN) crystals.34 However, the time taken for the

nucleated domain to switch back after removal of the field is

much slower than the intrinsic switching time.

The equilibrium domain size under the voltages above

the critical one was determined using a theoretical approach

developed in Ref. 26, and the results were compared with the

experimental results in Fig. 6. The model is based on the

minimization of the total free energy after the polarization

switching inside the domain in the form DF ¼ Udw þ Udep

� 2Ps

Ð
X Etip

x ðx; y; zÞdX, where Udw is the self-energy of the

domain boundary separating the new domain from the sur-

rounding crystal, Udep is the energy of a depolarizing field

created by the polarization charges on the domain surface,

and the last term represents the work Wtip done by Etip dur-

ing the polarization reversal inside the domain volume X.

By minimizing the free energy numerically, critical bias

voltage (Vcr) was evaluated and the domain lengths were calcu-

lated at and above critical voltage using the following materials

parameters35 Ps � 0:11 C=m2, ex � 5 , ez ¼ ey � 18,

c ¼ 0:001 J=m2. In our calculations, we considered the tip ra-

dius rtip ¼ 30 nm, H¼ 10 lm, and h¼ 1 nm. The critical

voltage was about 25 V for glycine while PFM scanning

indicates domain appearance after the application of much

higher voltage (�65 V). This discrepancy is might be due to

instability of domains appearing under the lower voltages

and their backswitching after the field removal.19 Figure 8

compares the experimental and calculated domain lengths as

a function of the voltage applied to the tip. The experimental

values at low voltages deviate from the expected theoretical

behavior and domain sizes are smaller than predicted ones.

However, at high voltages, the experimental domain lengths

are very close to those predicted by the thermodynamic

theory.26

IV. CONCLUSIONS

Our experiments have shown that solution grown micro-

crystals of b-glycine are uniaxial ferroelectrics with the

polarization vector parallel to monoclinic axis b. The domain

structure of b-glycine consists of charged and neutral 180�

domain walls. Dynamics of these in-plane domains is studied

as a function of applied voltage and pulse duration. The do-

main shape is dictated by the polarization screening and

mediated by growth defects such as atomic steps and pits.

Thermodynamic theory is applied to explain the domain

propagation induced by the AFM tip. Our findings suggest

that the properties of b-glycine are controlled by the charged

domain walls which in turn can be manipulated by the exter-

nal bias.
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