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ABSTRACT 

Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental 

importance for optical device and domain wall electronics applications that require precise 

domain patterns. Stable ferroelectric switching has previously been observed in undoped LN 

layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE 

layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to 

significantly alter ferroelectric switching properties including coercive field and switching 

currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE 

phases which allows for precise ferroelectric patterning via domain growth control. 

Furthermore, piezoresponse force microscopy and switching spectroscopy reveal that the 

voltage at which polarization switches from the “up” to the “down” state increases with 

increasing thickness in pure Mg:LN whereas the voltage required for stable back switching to 

the original “up” state does not exhibit this thickness dependence, which is consistent with 

the presence of an internal frozen defect field. The inhibition of domain nucleation above PE 

interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not undoped 

samples and is mainly ascribed to a remaining frozen polarization in the PE phase that 

opposes polarization reversal. This reduced frozen depolarization field in the PE phase also 

influences the depolarization field of the Mg:LN layer above due to the presence of 

uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal 

electric fields within the sample cause long-range lattice distortions in Mg:LN via 

electromechanical coupling that were corroborated with complimentary Raman 

measurements.  
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I. INTRODUCTION 

The development of a reliable periodic poling technology for congruent lithium niobate (LN) 

has led to the efficient exploitation of its large optical nonlinearity and spontaneous 

polarization in a variety of applications, ranging from optical telecommunications and 

frequency conversion
1,2

 to ferroelectric lithography
3–5

 and artificial photosynthesis.
6
 

However, optical and ferroelectric properties can be improved by high concentration Mg 

doping, which has gained significant interest for applications in optics, especially due to the 

high resistance to photorefraction of Mg doped LN (Mg:LN) crystals.
7,8

 Combined with a 

lower coercive field compared to undoped crystals, periodically poled Mg:LN is therefore a 

promising material for quasi phase matched devices
9–11

 and applications based on domain 

wall electronics where the locally enhanced photoconductivity at the domain boundaries
12,13

 

can be exploited. With these applications in mind, domain reversal induced by an externally 

applied field,
10,11,14–16

 illumination
17

 or temperature variation
18

 has been studied 

macroscopically and on the micro- or nanoscale to gain control over the switching process. 

The achievement of precise domain patterning for ferroelectric gratings is particularly crucial 

for the aforementioned applications, which remains a challenge at small scales due to 

sideways growth of domains and coalescence.
19,20

 In undoped LN, proton exchange, a 

chemical modification of the crystal lattice by introduction of protons and depletion of Li 

ions that leads to loss of ferroelectricity, has been demonstrated to (i) inhibit switching in the 

LN layer beneath the PE phase and (ii) limit lateral domain expansion if the proton 

exchanged (PE) phases are located at the surface where electric field poling is initiated.
19,20

 

However, if the PE phase is located beneath a layer of undoped LN, stable domain switching 

is not suppressed.
21

 The proton exchange process is commonly used in optics for the 

fabrication of waveguides.
22–25

 Although little knowledge exists about the effect of PE phases 

on the surrounding ferroelectric crystal matrix, this technique allows for precise local 
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structural modifications and is therefore an interesting option for domain growth control. PE 

assisted domain engineering has not been investigated yet for doped Mg:LN crystals and 

cannot be inferred from results obtained on undoped LN. Mg doping is known to change 

ferroelectric properties with respect to the well-understood behavior of undoped LN, most 

notably the onset of diode-like conduction after polarization switching and much longer 

(almost 3 orders of magnitude) stabilization times for freshly poled domains.
11,26,27

 In order to 

gain further control over domain engineering in Mg:LN, the aims of this work are to (i) 

demonstrate a method to tailor micro- and nanoscale domain patterning through local 

inhibition of domain growth in Mg:LN, (ii) provide further insight into switching kinetics in 

Mg:LN and (iii) explore the structural impact of the introduction of PE phases on the 

surrounding Mg:LN crystal matrix, which affects ferroelectric behavior. Therefore, switching 

studies using piezoresponse force microscopy
28,29

 (PFM) and switching spectroscopy PFM
30

 

(SSPFM) were performed on a wedge-shaped Mg:LN substrate exhibiting PE phases at the 

bottom surface, which allows to assess ferroelectric properties in dependence of sample 

composition and thickness. In a next step, complementary Raman spectroscopy
31

 was used to 

detect the  PE induced changes and effects on the surrounding crystal matrix and related to 

ferroelectric properties. 

 

 

II. MATERIALS AND METHODS 

A z-cut 5 mol% MgO doped congruent LN substrate having a thickness of 500 µm (Roditi 

Ltd.) was periodically proton exchanged along the crystallographic x-axis by exposing the -z 

surface through periodic mask openings to benzoic acid at 210°C for 48 h, as described 

elsewhere.
19,32

 The maximum depth of these PE channels into the Mg:LN substrate is 5.87 

µm as measured with an optical prism coupling technique.
33

 Apart from the periodic PE 
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channels, proton exchange also took place at isolated locations within the alternating LN 

stripes due to fine openings in the mask that allowed for shallow localized PE islands, which 

are visible in light microscope images (Figure 1(a)). Chemo-mechanical wedge polishing 

(angle ≈14°) with an alkaline sub-micron colloidal silica solution (SF1 Polishing Solution, 

Logitech) was performed on the +z surface to obtain a cross section of the PE areas while 

preserving the polar orientation in the vertical direction (Figure 1(b)). The obtained wedge 

shape allows for sample thickness and composition dependent experimental studies. A ≈100 

nm thick gold layer was deposited on the -z surface through thermal evaporation in vacuum 

as a bottom electrode and connected to a copper circuit board with silver paint.  

 

Sample topography was imaged with contact mode atomic force microscopy (AFM) (MFP-

3D, Asylum Research). The electromechanical behavior of different sample areas was 

measured using PFM by applying an AC voltage (5 V amplitude, 20 kHz) to a conductive tip 

(PPP-EFM Nanosensors, 2.8 N/m, 75 kHz) and recording the deformation of the surface due 

to the converse piezoelectric effect.
28,29

 In order to obtain the amplitude of the voltage 

induced oscillations and local polarization direction, the cantilever movement is demodulated 

into PFM amplitude and phase signals using an external lock-in amplifier (HF2LI, Zurich 

Instruments) equipped with an adder for the simultaneous application of AC and DC 

voltages. A high voltage amplifier (FLC Electronics, F10A) was used to amplify AC and DC 

voltages for switching experiments. 

 

The local ferroelectric properties of a 20 × 20 µm
2 

area of the sample were investigated using 

SSPFM
30

 by applying a triangular waveform consisting of DC square pulses in a grid of  20 × 

20 points and collecting the hysteresis loops extracted from the PFM data recorded after each 

pulse. A switching distance of 1 µm was chosen to ensure resultant domains are non-
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coalescent under ambient conditions. Switching and data acquisition started at the bottom left 

corner and proceeded continuously to the top. The SSPFM waveform consisted of three parts 

during which the polarization orientation was switched by applying square pulses of 50 ms 

duration (ON) followed by a 50 ms pause (OFF): ON pulses increased from 0 to +70 V in 

steps of 28 V to switch the polarization orientation from “up” to “down” and then decreased 

stepwise to 0 V again (part 1); subsequently, the polarization was reversed to its “up” state 

again by applying the same waveform of negative polarity (part 2); switching to the “down” 

state was repeated to obtain a domain pattern visible in subsequent PFM scans and to assess 

long term domain stability (part 3). The data for hysteresis loops and the voltage at which full 

stable polarization reversal occurs from “up” to “down” (Vdown) and “down” to “up” (Vup) 

were extracted from PFM amplitude and phase signals acquired during parts 1 and 2 of the 

SSPFM waveform. 

 

Raman spectra from 100 to 1100 cm
-1

 were measured with a confocal Raman spectrometer 

(Renishaw 1000) by focusing a laser (λ = 532 nm) on the sample surface with a 50x objective 

and collecting the scattering through the same objective in Z̅(YY)Z backscattering geometry. 

Raman maps were acquired at the wedge edge of Mg doped samples across PE and Mg:LN 

areas with a step size of 1 µm (in x- and y directions) and an integration time of 10 s. The 

spectrophotometer was calibrated using a characteristic silicon line at 520.5 cm
-1

. All spectra 

were normalized with respect to the highest peak and the peaks were fitted assuming a 

mixture of Lorentzian and Gaussian shapes, after a baseline correction. Peak fitting 

parameters included peak intensity, position, and width at half height for each spectrum, from 

which image maps were constructed using interpolation of neighboring pixels.  
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III. RESULTS AND DISCUSSION 

The topography appears homogeneous within the investigated sample areas despite their 

varying composition and crystal structure (Figure 2(a, b)) while PFM amplitude and phase 

images show contrast between Mg:LN and the exposed PE area where piezoresponse is 

reduced (Figure 2(c, d)), consistent with prior reports.
34

 From the known depth and wedge 

angle of the PE channel, a thickness range of 4.34 µm to 9.18 µm within the depicted scan 

size can be calculated. After applying SSPFM pulses, domain stability is assessed in 

subsequent PFM images.  From the acquired PFM signal recorded in between the applied DC 

pulses during SSPFM (OFF state), hysteresis loops can be extracted for each grid point, 

revealing differences in ferroelectric properties due to sample composition and thickness. 

Unlike PFM images, hysteresis loops allow the onsets of switching as well as full but 

unstable polarization reversal to be tracked as the signal is recorded immediately after the 

voltage pulses during the subsequent 50 ms. While electrical AFM modes are valuable tools 

to investigate ferroelectric behavior, Raman spectroscopy was employed in order to elucidate 

underlying effects of the observed switching properties such as the structural impact of PE on 

the surrounding Mg:LN.  

 

The experimental observations yield the following findings that will be discussed in detail in 

the subsections below: (i) buried PE areas inhibit stable domain switching in ferroelectric 

Mg:LN layers, (ii) the voltages at which stable switching occurs is thickness dependent only 

for forward switching, and (iii) the introduction of PE phases leads to long-range distortions 

in the embedding Mg:LN matrix that correspond to changes in depolarization fields in PE and 

Mg:LN, which affect ferroelectric behavior. 
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Switching inhibition in Mg:LN above PE areas 

After applying SSPFM to each grid point, a pattern of stably switched domains is visible in 

PFM images (Figure 3(a, b)). It is apparent that stable polarization reversal in Mg:LN is 

impeded by buried PE layers  regardless of the thickness of the Mg:LN above. The obstructed 

switching on the left side of the amplitude and phase images depicted in Figure 3(a, b) is due 

to an adjacent PE area outside of the scanning range. Empty spots in the domain pattern in the 

Mg:LN stripe mark the position of buried shallow PE islands at the -z surface that are 

otherwise invisible to surface imaging microscopy techniques like PFM. The reduced 

thickness of these islands compared to the periodic deep PE channels can be inferred from the 

fact that although present throughout all Mg:LN areas in the whole sample, none are exposed 

by wedge polishing, indicating a depth of < 2.18 µm.  

 

Inhibition of domain switching above PE is a phenomenon that was observed in Mg:LN only. 

A control experiment on a similar but undoped LN sample of equal composition and 

polarization at a matching sample thickness of 4.06 to 8.89 µm showed stably switched 

domains in the whole grid, which was taken at a switching distance of 2 µm that also allows 

for single, non-coalescent domains (Figure 3(c, d)).  

 

In order to understand inhibition of switching above PE, internal electric fields within the 

sample have to be considered as well as differences between undoped and Mg doped LN. PE 

leads to deterioration of ferroelectricity, which results in a lower, yet present, polarization
34

 

that cannot be switched. The resulting frozen PE depolarization field counteracts switching as 

it makes the initial polarization state energetically favorable and increases the energy barrier 

for polarization reversal. This effect has been commonly derived thermodynamically in free 

energy models and is also employed to explain asymmetries in hysteresis loops due to 
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internal defect fields that arise from frozen defect clusters.
35,36

 In addition, the depolarization 

field in the Mg:LN above PE is increased due to uncompensated bound charges at the PE 

interface compared to Mg:LN terminated by metal electrodes.
37

 It has been shown previously 

that in LN a 83% decrease in polarization occurs in the PE phase, while in Mg:LN only a 

reduction of 68% is present.
34

 Therefore, the counteracting frozen PE depolarization field is 

higher in Mg doped samples, which explains the observed differences in domain stability 

above PE layers between LN and Mg:LN. 

 

Thus, from the SSPFM data extracted PFM phase and amplitude loops show that the 

thickness of the buried PE layer influences domain evolution (Figure 4(a, b)). In and above 

the exposed PE area there is no significant change in PFM phase at positive and only small 

variations at negative voltages. Independent of the thickness of the Mg:LN layer (up to 3.31 

µm) above the PE channel, there was no onset of switching observed, in agreement with the 

behavior in the exposed PE region. However, adjacent to the exposed PE area where the 

underlying PE layer is thinner and exhibits a strong curvature, unstable phase changes were 

measured. Full switching from “up” to “down” and “down” to “up” polarization states can 

also occur at Mg:LN areas with shallow PE islands underneath, implying that both the 

thickness and composition of the PE layer play a role in domain formation. However, the fact 

that the domains are not visible in PFM amplitude and phase images leads to the conclusion 

that these domains are not stable. In contrast, at adjacent switching positions in pure Mg:LN, 

stable domain switching is permitted and shows thickness dependent domain kinetics that can 

be utilized for further control of domain growth. 
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Thickness dependence of ferroelectric switching 

In the absence of buried PE layers, stable switching within part 1 and 2 of the SSPFM cycle 

is observed up to 8.67 µm thickness. Here, the thickness of the Mg:LN layer mainly 

determines the voltage at which stable switching to “down” polarization states occurs Vdown 

(Figure 4(c, d)). Switching voltages were extracted only for stably switched domains from 

phase hysteresis loops with Vdown, exhibiting a pronounced thickness dependence, whereas the 

values for Vup, show a much weaker effect (Figure 5(a)). The difference in these switching 

voltages, ΔVS, is therefore also thickness dependent. Considering the simplified relation V ~ 

E·t with the voltage, V, the electric field, E, and the Mg:LN thickness, t, differences in the 

slopes of switching voltages can be ascribed to a change in E. However, the asymmetry and 

different behavior of switching voltages for “up” and “down” polarization states can be 

ascribed to frozen Nb antisites - Li vacancy clusters, which are common in LN and the origin 

of frozen defect fields that favor the initial polarization orientation.
38,39

 The strength of this 

defect field is estimated from the asymmetry in Eup and Edown as depicted in Figure 5(b) to be 

2.34 ± 0.47 kV/mm and shows no thickness dependence. While in undoped congruent LN 

internal defect fields of this order of magnitude are expected, fields of only ≈ 0.5 kV/mm are 

reported for Mg:LN as high concentration doping leads to a reduction in vacancies.
15,40–42

 

However, the values from literature were obtained macroscopically from coercive fields on 

non PE samples, whereas here the internal defect field is inferred from the stable switching 

voltages as measured with a nanosized probe upon switching of a single domain in 

periodically PE Mg:LN. Therefore, also contributions to the measured internal electric fields 

by PE induced long-range distortions are likely and will be further investigated in the 

following section. 
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Long-range distortions imposed by PE 

From the 4 A and 9 E Raman active transversal and longitudinal phonons in LN, only 4 

A(LO) that describe longitudinal ion displacement along the z-axis (around 270 cm
-1

, 330 cm
-

1
,430 cm

-1
,
 
and 869 cm

-1
), and 7 non stoichiometric E(TO) bands that represent transversal 

oscillations in the x- or y- direction (around 149 cm
-1

, 234 cm
-1

, 258 cm
-1

, 326 cm
-1

, 361 cm
-1

, 

429 cm
-1

,
 
and 577 cm

-1
), are permitted in the chosen configuration of Z̅(YY)Z and are visible 

in the spectra (Figure 6(a), red line).
43–46

 Incorporation of Mg
2+

 ions into the crystal leads to 

changes in parameters (intensity, position, width) of existing peaks especially if the sites of 

involved oscillations are occupied by the dopants.
40,45,47

 Furthermore, bands that would 

usually not be permitted for symmetry reasons appear and are ascribed to 

photorefraction
45,48,49

 and defect induced symmetry breaking,
50

 which explains the A(TO4) 

band visible around 625 cm
-1

. Also proton exchange leads to significant alterations of the 

spectra due to lattice disorder.
51–54

 The original lines of the substrate are still present, but 

broadened and changed in intensity, Figure 6(a). A characteristic phonon frequency 680 cm
-1

 

originated in distortion of Nb
5+

 octahedra towards non polar states
53–55

 exhibits a high 

intensity in exposed PE areas. Only the edge of a PE band
54

 located at 69 cm
-1

 is visible 

within the measured spectral range. A new peak at 960 cm
-1

 appears and is assigned to OH
-
 

librational bands that are strongly dependent on the proton exchange phase.
55,56

 Having 

assigned spectral characteristics it is possible to monitor the influence of PE across the 

sample as well as strains indicated by peak broadening and position shift.
31

 In Raman spectra 

(Figure 6(a)) extracted at different positions on the sample (red: 20 µm thick Mg:LN; blue: 

exposed PE area; green: 14.1 µm thick Mg:LN above 5.9 µm PE, as also approximately 

indicated by colored crosses in the intensity map, Figure 6(b)), this peak is unexpectedly 

visible as a shoulder on the Mg:LN stripe and is even more pronounced above the PE channel 

(spectral area of interest shaded in light blue). The intensity map of the 680 cm
-1

 peak 
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exhibits high signals from the exposed PE area and from PE covered by a thin layer of 

Mg:LN. Furthermore, that band is enhanced at Mg:LN areas above shallow PE islands 

compared to the surrounding Mg:LN (Figure 6(b)). In addition, characteristic peaks for pure 

LN and Mg:LN exhibit reduction in intensity, peak broadening, and shifts in peak positions. 

As an example, maps for each peak parameter of the 149 cm
-1

 E(TO1) band (spectral area 

highlighted in light yellow in Figure 6(a)), are extracted and shown in Figure 6(c). This peak 

represent out of phase displacement of Nb
5+

 and O
2-

 ions along the crystallographic y-axis,
57

 

and exhibits spectral changes that vary within the exposed PE areas and show less prominent 

changes with increasing Mg:LN thickness. As the oscillation of ions can be affected by 

electric fields and corresponding electromechanical strains in the crystal lattice, the observed 

composition dependent Raman contrast supports the anticipated change in Mg:LN 

depolarization fields due to uncompensated polarization charges at the PE interface.
58

 In 

addition, mechanically imposed strains might contribute to lattice distortions as Mg:LN and 

LN undergo structural changes through unit cell expansion upon proton exchange.
59,60

 It is 

therefore evident that the introduction of PE phases does not only modify the crystal lattice 

locally but also leads to long range distortions of the embedding Mg:LN matrix. 

 

 

IV. CONCLUSIONS 

Here, it is shown that nanoscale domain patterns for, e.g., ferroelectric Mg:LN gratings in 

optical and electronic devices can be obtained by domain growth control via PE phases and 

sample thickness. Switching spectroscopy and subsequent PFM imaging of a periodically PE 

Mg:LN wedge shaped sample having +z polar orientation revealed significant differences in 

ferroelectric behavior between pure Mg:LN in direct contact with the metal bottom electrode 

and Mg:LN above PE phases. In pure Mg:LN, stable switching was observed. Furthermore, a 
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linear thickness dependence of the voltage required for stable polarization switching from 

“up” to “down” state, Vdown, was measured while the voltage for polarization reversal to the 

original state, Vup, remained approximately constant, which can be ascribed to large frozen 

defect fields.
39,61

 In Mg:LN above buried PE phases, stable polarization reversal is prevented, 

which is in contrast to observations in undoped LN. This effect is ascribed to the strong 

remaining frozen polarization in the PE phase of Mg:LN that counteracts switching and is 

greatly reduced in undoped LN. Onsets of polarization reversal were observed in some 

Mg:LN areas above shallow PE islands and edges of the PE channel while domain nucleation 

was completely inhibited in Mg:LN directly above the thickest part of the PE channel. Due to 

uncompensated polarization charges at the Mg:LN boundaries, the depolarization field is 

changed compared to pure Mg:LN, which via electromechanical coupling and in combination 

with mechanically imposed strain, leads to long-range distortions that were corroborated by 

Raman spectroscopy. Apart from domain engineering, the wide range of these distortions in 

Mg:LN areas above PE, might also have an impact on optical applications via the elasto-optic 

effect.   
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FIGURES 

 

 

FIG. 1. (a) Light microscope image of sample showing regions of different composition 

(scale bar 10 µm) and (b) scheme of sample and experimental setup for PFM and SSPFM. 
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FIG. 2. AFM images of (a) height, (b) deflection, (c) PFM amplitude, and (d) PFM phase 

before application of SSPFM waveform on PE Mg:LN (scan size 20×20 µm
2
, offset 

flattening applied). 
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FIG. 3. PFM (a, c) amplitude (normalized) and (b, d) phase images recorded after application 

of the SSPFM waveform over the whole scan size on (a, b) Mg:LN (switching distance 1 µm)  

and (c, d)  undoped LN (switching distance 2 µm) (scan sizes 20×20 µm
2
, offset flattening 

applied to a and b). 
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FIG. 4. Representative SSPFM hysteresis loops (moving average smoothing filter applied) 

measured on (a, b) areas with PE layers (blue: in exposed PE channel area, red: above PE 

channel, green: beside exposed PE channel area, black: above shallow PE island) and (c, d) 

Mg:LN (purple: at 4.34 µm thickness, light blue: at 8.16 µm). 
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FIG. 5. (a) Switching voltages and (b) corresponding electric fields of stable Mg:LN domains 

as a function of sample thickness (red ∆: Vdown /Edown, blue ○: Vup /Eup, black ×: ΔVS = Vdown -

Vup / ΔES = Edown - Eup), solid lines are linear fits of data points, weighted by error bars. 
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FIG. 6. (a) Raman spectra extracted from three different positions on the sample surface (red: 

20 µm thick Mg:LN, blue: exposed PE area, green: 14.1 µm thick Mg:LN above 5.9 µm PE) 

approximately indicated by colored crosses in (b) the Raman intensity map of the 680 cm
-1

 

peak (highlighted in blue in spectra graph). (c) Raman intensity, position, and width maps of 

the 149 cm
-1

 peak (highlighted in yellow in spectra graph) (map image sizes 54×71 µm
2
; 

exposed PE area at bottom).  
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