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  Abstract:   The oxidative modification of Biolignin (BL) has 

been investigated to make it more suitable as an adsor-

bent for transition/heavy metals. BL is a by-product of 

a wheat straw organosolv process for the production of 

pulp, ethanol, and pentoses (CIMV S.A. pilot plant, Lev-

allois Perret, France). It was subjected to oxidation by a 

polyoxometalate (POM) H 
3
 [PMo 

12
 O 

40
 ], aiming at the incre-

ment of oxygen-containing adsorption-active sites. The 

POM oxidation of BL was performed under moderate con-

ditions (1 bar, 60 – 90 ° C, and 200 ° C) with the co-oxidants 

O 
2
  or H 

2
 O 

2
 . The resulting lignin functionality and structure 

was evaluated by pyrolysis-gas chromatography/mass 

spectrometry, solid-state  13 C nuclear magnetic resonance, 

Fourier transform infrared, and chemical analysis. The 

condensation degree of BL and its COOH and aliphatic OH 

group contents increased significantly, whereas the poly-

mer structure was maintained. Under optimal conditions 

with POM/H 
2
 O 

2
 , the sorption capacity of lignins toward 

Cd(II) and Pb(II) was increased threefold and twofold, 

respectively.  
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   Introduction 
 The biorefinery concept is adopted from petroleum refin-

ery, where an array of products is produced from crude 

oil without wastes. A branch of the biorefinery efforts is 

dealing with the modification of established biomass con-

version processes, for example, by the introduction of a 

prehydrolysis step before pulping, and the conversion of 

dissolved carbohydrates to value-added products ( G ü tsch 

and Sixta 2011 ;  H ö rhammer et al. 2011 ; Sch  ü tt et al. 2011 ; 

Testova et  al.  2011 ). The development of new processes 

based on organic solvents and acids (organosolv process) 

has also a long tradition (Jim  é nez et al. 1998, 2004 ; Saake 

et  al.  1998 ; Abad et  al.  2002 ; Lehnen et  al.  2002 ; Claus 

et  al.  2004 ; Yawalata and Paszner  2006 ; Iakovlev et  al. 

 2009 ). The ideal behind this research is a mild separation 

of cellulose, hemicelluloses, and lignin and the produc-

tion of value-added products of them as polymers, food, 

and chemicals. Power and heat should be produced only 

from the unavoidable wastes. Biorefinery also concerns 

with the utilization of lignin as a by-product of pulping. 

 In the present article, an organosolv process of wheat 

straw based on acetic and formic acid digestion, which is 

realized in association with two industrial partners (CIMV 

S.A., Levallois Perret, France and DSM Bio-based Products 

& Services B.V., Delft, The Netherlands), is in focus. The 

scientific developments are accompanied within an EU 

project called Biocommodity Refinery (BIOCORE) under 

the participation of 25 institutions. CIMV products are 

cellulose, sugar syrup, and Biolignin (BL). The details 

are described by Lam et  al.  (2001) , Delmas  (2008) , and 

Delmas et al.  (2011) . The utilization of BL as an adsorbent 

material will be addressed in the present article. 

 Lignins in situ (native lignins) are multifunctional 

phenolic polymers containing hydroxyl, carboxyl, and 

carbonyl groups (Sarkanen and Ludwig  1971 ; Fengel and 

Wegener  1989 ; Lin and Dence  1992 ). The native lignins 

obtained after pulping are called technical lignins, 

because their structure is modified during digestion, also 

in the case of acid hydrolysis of an organosolv process. 

The porous structure of technical lignins is not highly 

developed. Nevertheless, they are utile as adsorbents/

sequestrants of heavy metals, oil products, phenols and 

chlorophenols, detergents, etc. (Dizhbite et  al.  1999 ; 

Basso et al.  2002 ; Babel and Kurniawan  2003 ; Boving and 

Zhang  2004 ; Demirbas  2004 ; Crist et al.  2005 ; Mohan et al. 

 2006 ; Rachkova et al.  2006 ; Guo et al.  2008 ; Harmita et al. 

 2009 ). The mechanism of the sorption includes physical 

adsorption, hydrogen bonding, coordination and covalent 

linking, and acid-base interaction. The various methods 
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of functionalization of lignins were proposed to expand 

their potential for bioremediation, that is, adsorption of 

not desired compounds from the environment (Dizhbite 

et al.  1999 ; Suhas et al.  2007 ). 

 The oxidative conversion of kraft lignins by means 

of polyoxometalates (POMs) is one of the promising 

approaches in this context (Dos Santos et al.  2012 ). The oxi-

dation of eucalypt kraft lignin by the POM Na 
5
 [PMo 

10
 V 

2
 O 

40
 ], 

alone or in combination with laccase, resulted in enrich-

ment with carboxylic and carbonyl groups. The oxidized 

lignin had an improved sorption capacity toward Cd and 

Hg; more precisely, up to 15% of these transition metals 

were adsorbed. 

 POMs are effective for the removal of residual lignin 

from pulp (Kubelka et  al.  1992 ; Rabelo et  al.  2008 ). 

 Weinstock et  al.  (1998)  are the pioneers in this field, 

because they investigated in several studies how the POMs 

act in O 
2
 - or O 

2
 /H 

2
 O 

2
 -containing media for the delignifica-

tion and bleaching of technical cellulose. They clarified 

that POMs are capable either to partially oxidize lignin 

with moderate decomposition of the side chains, demeth-

ylation, oxidation to quinones, cross-polymerization, and 

cleavage of the aromatic ring or, alternatively, to deeply 

oxidize lignin to products with low molecular weight. A 

problem is that POMs need to be applied in stoichiomet-

ric amounts. Evtuguin et al.  (2000)  confirmed with model 

compounds that [PMo 
7
 V 

5
 O 

40
 ] 8-  leads below 60 ° C to par-

tially oxidized lignin without depolymerization. POMs do 

not promote radical-chain oxidizing reactions; thus, the 

polysaccharides are not degraded. Gaspar et  al.  (2004)  

demonstrated in pilot-scale trials that they are suitable for 

the oxygen delignification of kraft pulp. Guo et al.  (2011)  

confirmed that Mo-containing POMs are efficient for the 

activation of H 
2
 O 

2
  bleaching and delignification of pulp. 

 The aim of the present work was the oxidative modi-

fication of BL to make it more suitable for bioremedia-

tion applications (heavy metal adsorption). The oxidative 

systems POM/O 
2
  and POM/H 

2
 O 

2
  will be addressed. Based 

on literature data (Guo et  al.  2011 ) and our preliminary 

study with [PMo 
12

 O 
40

 ] 3-  and [PMo 
7
 V 

5
 O 

40
 ] 8-  (Dizhbite et  al. 

 2011 ), phosphomolybdic acid H 
3
 [PMo 

12
 O 

40
 ] was selected as 

a good candidate for oxidative lignin modification. H 
2
 O 

2
  

as co-oxidant permits the performance under mild reac-

tion conditions (1 bar, 20 ° C). The resulting lignins were 

evaluated by pyrolysis-gas chromatography/mass spec-

trometry (Py-GC/MS), solid-state  13 C nuclear magnetic 

resonance (NMR) and Fourier transform infrared (FTIR) 

spectroscopy, and chemical analysis. The sorption prop-

erties of the lignins will be evaluated toward cadmium 

and lead. These elements are ubiquitous in the environ-

ment because they are applied in metallurgy, chemical 

 Table 1      Experimental conditions used for the oxidative 

 modification of BL and yields of modified lignins.  

Sample [POM] 
(mol l -1 )

[H 2 O 2 ] 
(mol l -1 )

pH Temp. 
( ° C)

Time 
(h)

Yield 
(%)

BL-POM-1 0.002 0 2.3 60 2 91  ±  2
BL-POM-2 0.05 0 1.1 40 2 88  ±  2
BL-POM-3 0.05 0 1.1 60 2 89  ±  2
BL-POM/H 

2
 O 

2
 -4 0.002 4.0 2.3 20 2 86  ±  3

BL-POM/H 
2
 O 

2
 -5 0.002 4.0 2.3 20 8 86  ±  1

industries, electrogalvanization, textile production, fuels, 

just to mention a few.  

  Materials and methods 

  Materials 
 BL was extracted from wheat straw at atmospheric pressure with a 

mixture of acetic acid/formic acid/water 30:55:15 (v/v/v) at the CIMV 

pilot plant (Pomacle, France) (Delmas et  al.  2011 ). Klason lignin 

(89  ±  1%) was determined according to Tappi T222. The parent BL was 

dried under vacuum at 40 ° C (oven VACIOTEM-T, Selecta, Barcelona, 

Spain) to < 1%  moisture content and the fraction with particle sizes 

of  d   <  0.25 mm was submitted to modifi cation. 

 Phosphomolybdic acid H 
3
 [PMo 

12
 O 

40
 ] of A.C.S. grade was pur-

chased from Acros Organics (Geel, Belgium). Cd(NO 
3
 ) 

2
  · 4 H 

2
 O and 

Pb(NO 
3
 ) 

2
 , both of analytical grade, were from Lach-ner (Neratovice, 

Czech Republic). The 35% H 
2
 O 

2
  solution from Reachem (Bratislava, 

Slovakia) and the other chemicals from Sigma-Aldrich (Munich, 

Germany) were also of analytical grade. All test solutions were fresh-

ly prepared with deionized water.  

  Oxidative modification of lignin 
 The parameters were preselected according to Evtuguin et al.  (2000)  

and Dizhbite et al.  (2011) . The details are listed in Table  1  . In the 1 l 

stainless still reactor (PARR model 4848, Parr Instrument, Moline, IL, 

USA) 5 g of lignin were suspended with 250 ml of 0.002 or 0.05 mol l 1  

phosphomolybdic acid. For experiments with POM/H 
2
 O 

2
  system, H 

2
 O 

2
  

aqueous solution (4 mol l 1 ) was added to the reaction mixture. The 

oxygen pressure was 1 bar. The solid reaction product was washed 

with deionized water until pH 4 (pH of the parent BL suspension) and 

dried under vacuum at 40 ° C for 24 h. The dried samples were ground 

in a Retch Ball Mill MM200 (Retch, Haan, Germany) at the frequency 

of 30 s 1  for 30 min and then analyzed.  

  Chemical analysis 
 Elemental analysis: CHNSO analyzer ELEMENTAR (Vario MACRO, 

Hanau, Germany). Analysis of functional groups: according to Zakis 

 (1994) . OMe determination: according to Vieb ö ck and Schwappach 

Brought to you by | University of Haifa
Authenticated | 132.74.1.4

Download Date | 6/28/13 12:48 PM



T. Dizhbite et al.: Straw lignin modification by POM      541

in a Zeisel apparatus (domestic glassware). The contents of phenolic 

hydroxyl (OH 
phen

 ) and carboxylic (COOH) groups were determined by 

acid-base conductometric titration under N 
2
  (automatic titration de-

vice ABU901, Radiometer Analytical, Villeurbanne, France) coupled 

with Conductometer CDM 210 (Radiometer Analytical, Villeurbanne, 

France) and Titration manager TIM900 (Radio meter  Analytical, Vil-

leurbanne, France). Aliphatic OH groups: via determination of the 

 total OH group content by acetylation with acetic anhydride and 

 potentiometric titration of free acetic acid with 0.1 N NaOH solution 

in water, taking into account the percentage of COOH groups in the 

sample (Zakis  1994 ). OH 
aliph

   =  OH 
total

  – OH 
phen

 . The content of carbonyl 

groups was measured by oximation by conductometric titration 

 (Zakis  1994 ). All analyses were done in triplicate at least. All results 

are expressed on a dry weight (oven drying at 105 ° C for 18 h) and ash 

(ash: 700 ° C for 3 h in a Carbolite furnace ELF 11/6B, Hope Valley, UK) 

free basis.  

  Analytical pyrolysis (Py-GC/MS) 
 Instrument: Frontier Lab (Koriyama, Japan) Micro Double-shot Pyro-

lyzer Py-2020iD (pyrolysis temperature 500 ° C, heating rate 600 ° C  s 1 ) 

directly coupled with the Shimadzu GC/MS-QP 2010  apparatus, 

 Kyoto, Japan, (EI 70 eV). Capillary column: RTX-1701 (Restec, San Die-

go, CA, USA), 60 m  ×  0.25 mm  ×  0.25   μ m fi lm. Temperatures:  injector 

250 ° C, ion source 250 ° C. MS scan range  m/z  15 – 350, He as carrier 

gas (1 ml  min 1 ), split ratio 1:30. Inserted mass: 1 – 2 mg (residual MC 

of sample   <  1%). Oven program: 1 min isothermal at 60 ° C and then 

6 ° C min 1  to 270 ° C (held for 10 min). The apparatus was modifi ed by 

the installation of the splitter of gas-carrier fl ow Vitreous Silica Outlet 

Splitter VSOS (SGE, Ringwood, Victoria, Australia) to operate FID and 

MS detectors simultaneously. Internal standard for quantifi cation: 

fl uoranthene. Identifi cation:  Library MS NIST 147.LI13. The summed 

peak areas of the relevant peaks were  normalized to 100% and the 

data for fi ve repetitive  experiments were averaged for presentation.  

  NMR spectroscopy 
  13 C CP-MAS NMR instrument: Bruker Avance 400 spectrometer ( Bruker 

BioSpin, Billerica, MA, USA). Samples were packed into a  zirconia 

rotor sealed with Kel-FTM caps and spun at 7 kHz.  Acquisition para-

meters: 5000 scans with a 90 °  proton pulse, a cross- polarization con-

tact time of 1 ms, and a recovery delay of 2.5 s. Spectra were processed 

with Bruker soft ware XWIN-NMR-3.1 (Bruker BioSpin, Billerica, MA, 

USA).  

  FTIR spectroscopy 
 Instrument: Spectrum One (Perkin-Elmer, Beaconsfi eld, UK) FTIR 

spectrometer (KBr pellet technique); resolution: 4 cm 1 ; number 

of scans: 64. Before analyses, the lignin samples were mixed with 

 potassium ferricyanide K 
3
 Fe[(CN) 

6
 ] as an internal standard at a pro-

portion 1:5. Baseline correction was carried out by the Spectrum 

 version 5.0 soft ware (Perkin-Elmer, Beaconsfi eld, UK) and the result-

ing spectra were normalized to the intensity of CN stretching band 

at 2140 cm 1 .  

 Table 2      Elemental composition of parent and modified BL.  

Sample N (%) C (%) H (%) O (%)

BL 1.6  ±  0.1 62.1  ±  0.3 5.5  ±  0.1 30.8  ±  0.7

BL-POM-1 1.6  ±  0.1 60.1  ±  0.2 5.8  ±  0.1 32.4  ±  0.2

BL-POM-2 1.6  ±  0.1 54.3  ±  0.2 5.8  ±  0.1 38.3  ±  0.2

BL-POM-3 1.4  ±  0.1 50.6  ±  0.1 5.8  ±  0.1 42.1  ±  0.1

BL-POM/H 
2
 O 

2
 -4 1.5  ±  0.1 58.7  ±  0.2 5.4  ±  0.1 34.4  ±  0.4

BL-POM/H 
2
 O 

2
 -5 1.5  ±  0.1 57.6  ±  0.2 5.4  ±  0.1 35.5  ±  0.4

  Characterization of the porous structure 
 Method applied: N 

2
  adsorption-desorption isotherms method. Tem-

perature: -196 ° C according to the recommendations of the Interna-

tional Union of Pure and Applied Chemistry (Sing et al.  1985 ). Instru-

ment: KELVIN 1042 sorptometer (Costech International, Cernusco 

S/Nav, Milan, Italy). Specifi c surface area ( S  
BET

 ) was calculated by ap-

plying the Brunauer-Emmett-Teller (BET) equation. The pore size dis-

tribution was calculated by the Barrett-Joyner-Halenda (BJH) method 

(Gregg and Sing  1982 ).  

  Heavy metals adsorption 
 The sorption of cadmium and lead was observed by the batch meth-

od. All experiments were carried out in acetate buff er (pH 5.0) at 

20 ° C varying metal initial concentration in the solution in the range 

from 1  ×  10 5  up to 1  ×  10 3  mol l 1 . A 200  mg sample was placed into 

50 ml Pyrex fl asks. The solution of the metal salt (20 ml) was added 

to the fl ask with lignin, and the fl ask was shaken for 24 h. The pre-

experiments showed that this time is suffi  cient to achieve adsorption 

equilibrium. At least four replicated experiments were carried out. 

At the end of each batch experiment run, an aliquot of solution was 

centrifuged at 20,000 rpm for 5 min and the Cd or Pb concentration 

in supernatant was determined by atomic absorption spectroscopy 

(AA-6300, Shimadzu apparatus, Kyoto, Japan). The blank solutions 

of the metal salts were treated similarly and the concentration at the 

end of each experiment was taken as the initial one. The adsorption 

at equilibrium,  q  
e
  (mol   g 1  lignin), was calculated as  Q  

e
   =   V   ×  ( C  

0
 - C  

e
 )/

(1000  ×   m  
 s 
 ), where  C  

0
  and  C  

e
  are the initial and equilibrium concen-

trations of metal solutions (mol l 1 ),  V  is the solution volume (ml), 

and  m  
 s 
  is the mass of lignin (g).   

  Results and discussion 

  Influence of modification conditions 

 The oxidative modification of BL was carried out aiming at 

higher amounts of oxygen-containing functional groups, 

namely, carboxyl, carbonyl, and aliphatic hydroxyl groups 

in lignin without depolymerization. An elemental analysis 

(Table  2  ) shows a significant increase of oxygen contents. 

The analysis of functional groups (Table  3  ) indicated that 
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the increase in oxygen content was related mostly to the 

formation of carboxyl groups. An increased content of 

OH 
aliph

  groups was detected only in the samples BL-POM-3 

and BL-POM/H 
2
 O 

2
 -5. This can be partly the results of a 

partial deacetylation of wheat straw lignin, which is acety-

lated at C-g atoms (Del Rio et al.  2012 ). 

 The largest increment of carboxyl, carbonyl, and ali-

phatic hydroxyl groups was observed, when BL was oxi-

dized in the system POM/H 
2
 O 

2
  (sample BL-POM/H 

2
 O 

2
 -5) 

at 20 ° C with the 0.002 mol l -1  concentration of the cata-

lyst. In experiments with the system POM/O 
2
 , similar 

results could be achieved only at 20 times elevated con-

centration of phosphomolybdic acid and at a higher tem-

perature of 60 ° C (BL-POM-3). The content of carbonyl 

groups increased significantly only after the treatment 

in the presence of H 
2
 O 

2
  (samples BL-POM/H 

2
 O 

2
 -4 and -5). 

These features may be tentatively explained by a much 

easier formation of peroxomolybdate in the presence of 

hydrogen peroxide, which readily reacts with lignin. It is 

believed that peroxocomplexes of molybdate are respon-

sible for the lignin oxidation in presence of H 
2
 O 

2
  (Taube 

et al.  2008 ). 

 The demethoxylation reactions occur upon BL catalytic 

oxidation as indicated by decreasing OMe groups (Table 3). 

This is especially pronounced in the reaction system POM/

H 
2
 O 

2
 . Hence, the increased amounts of carbonyl and phe-

nolic hydroxyl groups in corresponding oxidized lignins 

may be assigned, at least partially, to the formation of 

quinone and hydroquinone moieties. The small decrease 

of OH 
phen

  in lignins oxidized in the reaction system POM/O 
2
  

could be explained by condensation reactions (including 

oxidative coupling), which led to molecular weight incre-

ment as shown previously in the aerobic lignin with phos-

phomolybdovanadates (Dos Santos et al. 2012). 

 Based on the results of chemical analyses, the 

lignins oxidized in the reaction system POM/O 
2
  at 60 ° C 

( C  
POM

   =  0.05 mol l -1 ) for 2 h and in the system POM/H 
2
 O 

2
  at 

20 ° C ( C  
POM

   =  0.002 mol l -1 ) for 8 h, provided modified lignins 

in yields of approximately 85% and with the highest 

 Table 3      Functional composition of parent and modified BL.  

Sample Analytical data (mmol g -1 )

OCH 3 C  =  O OH COOH OH aliph OH phen 

BL 3.1  ±  0.1 1.4  ±  0.1 1.2  ±  0.5 4.9  ±  0.1 1.2  ±  0.2

BL-POM-1 2.9  ±  0.2 1.4  ±  0.2 1.6  ±  0.1 5.9  ±  0.1 0.9  ±  0.1

BL-POM-2 2.7  ±  0.3 1.4  ±  0.1 2.7  ±  0.1 5.0  ±  0.2 0.9  ±  0.1

BL-POM-3 2.5  ±  0.1 1.4  ±  0.1 3.0  ±  0.2 6.4  ±  0.2 0.7  ±  0.1

BL-POM/H 
2
 O 

2
 -4 2.4  ±  0.1 1.7  ±  0.1 2.7  ±  0.1 5.1  ±  0.2 1.5  ±  0.1

BL-POM/H 
2
 O 

2
 -5 2.3  ±  0.1 1.8  ±  0.1 2.9  ±  0.1 7.1  ±  0.3 1.3  ±  0.1

increment of the targeted functional groups. These lignins 

were selected for sorption experiments and detailed char-

acterization by FTIR and  13 C NMR spectroscopy and ana-

lytical pyrolysis (Py-GC/MS). 

 The fingerprint region of FTIR spectra of BL (Figure  1  ) 

before and after oxidation exhibits typical guaiacyl-syrin-

gyl lignin patterns (Faix  1991a ). A decrease of absorption 

intensity at 1510  cm -1  (BL oxidized in POM/H 
2
 O 

2
 ) reveals 

some degradation of aromatic structures. Moreover, an 

increased carbonyl group intensity (1600 – 1720 cm -1 ) is 

perceptible. The band at 1720 cm -1  corresponds to uncon-

jugated carboxylic groups and that at 1650 cm -1  to various 

carbonyl groups, including quinones and conjugated 

ones. Probably, the aromatic rings opening led to the for-

mation of muconic acid-type carboxyl group formation. 

The spectral condensation index calculated according 

to Faix  (1991b)  (see also Xiao et al.  2012 ) of the BL-POM-3 

sample (0.60) was higher than that for the untreated BL 

(0.51). Accordingly, the condensation reactions occur 

leading to the consumption of some OH 
phen

  groups in the 

system POM/O 
2
 . 

 In the solid-state  13 C NMR spectra, a significant signal 

increment was observed at 123 – 127 ppm (quaternary aro-

matic carbon atoms; see Chen and Robert  1988 ; Hawkes 

et  al.  1993 ) with respect to resonances at 100 – 160  ppm 

(carbons in aromatic structures) in the system POM/

O 
2
 /BL (Figure  2  ; Table  4  ). This is in agreement with the 

interpretation of the FTIR spectra in terms of an elevated 

degree of condensation, which leads to the formation of 

new quaternary C-C bonds. The condensation reactions 

were more pronounced for BL oxidized by POM/O 
2
  than by 

POM/H 
2
 O 

2
  (Figure 2, BL-POM-3 and BL-POM/H 

2
 O 

2
  samples, 

respectively).    
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 Figure 1      FTIR spectra of lignin samples: ( 1 ) BL, ( 2 ) BL-POM-3, and 

( 3 ) BL-POM-H 
2
 O 

2
 -5.    
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 The spectra of oxidized lignins showed noticeable 

higher signals at 165 – 210 ppm assigned to the carbons of 

carboxyl and carbonyl groups. Thus, these results can be 

interpreted as carbons in COOH groups of benzoic acid 

and/or muconic acid type formed as a result of benzene 

ring opening (Hawkes et  al.  1993 ; Evtuguin et  al.  2009 ). 

The set of signals at 192 – 194 and 196 – 205  ppm was 

assigned to carbonyls in benzaldehyde or cinnamalde-

hyde and ketone carbonyl groups, respectively (Chen and 

Robert  1988 ). The increasing aromaticity of lignin oxi-

dized in the system POM/O 
2
  (BL-POM-3 sample) together 

with decreasing intensities at 0 – 100  ppm (Table 4) may 

be indicative for the demethoxylation and degradation of 

aliphatic side chains. 

 Lignin condensation was confirmed by the results of 

Py-GC/MS analysis (Table  5  ). Areas of pyrograms peaks, 

typical for lignin degradation products, were summed 

up and normalized to 100% to facilitate the overview 

of changes caused by oxydation. The partial degrada-

tion of side chains upon oxidation is evidenced by the 

increase in relative amounts of guaiacyl and syringyl 

derivatives without and with shortened side chains 

[Ph + Ph(C1) + Ph(C2)] (Tamminen et  al.  2004 ). The ratio 

200ppm (t1) 150 100 50 0

3

2

1

 Figure 2       13 C CP-MAS NMR spectra of lignin samples: ( 1 ) BL, ( 2 ) BL-POM-3, and ( 3 ) BL-POM-H 
2
 O 

2
 -5.    

 Table 4      Results of semiquantitative analysis of BL and its oxidized analogues by solid-state  13 C NMR.  

Sample Integral intensity of NMR signal (%) a Degree of aromatization b 

0 – 50 ppm 50 – 100 ppm 100 – 160 ppm 165 – 210 ppm

BL 43 33 22 2 18

BL-POM-3 23 29 42 6 29

BL-POM/H 
2
 O 

2
 -5 29 29 34 8 22

    a Normalized intensity of the signal in the ppm ranges indicated.  b Degree of aromatization: (Integral intensity in the range 110 – 140 ppm)/

(Integral intensity in the range 0 – 140 ppm) (McBeath et al.  2011 ).   

between [Ph + Ph(C1) + Ph(C2)]/Ph(C3) increased from 6.5 

(BL) to 13.9 (BL-POM-3) and 8.2 (BL-POM/H 
2
 O 

2
 -5). Clearly, 

the degradation of lignin side chains is more pronounced 

in the system POM/O 
2
  (Ohra -aho et al. 2005 ). 

 The oxidative modification in the samples BL-POM-3 

and BL-POM/H 
2
 O 

2
  led to 4- and 1.5-fold elevated amount 

of the fraction of phenyl and benzene derivatives 

(Table  6  ). This is also a sign of condensation reactions. 

The less intensive development of condensation reac-

tions upon BL modification in the system POM/H 
2
 O 

2
  

could be connected with the formation of reactive per-

oxomolybdates in the presence of H 
2
 O 

2
 . This provides 

an efficient oxidation as evidenced by the formation 

of carboxyl and carbonyl groups. In the system  POM/O 
2
 , 

carboxyl group formation is accompanied by lignin 

condensation. 

 For applications in environmental remediation, for 

example, for the adsorption of heavy metals, the conden-

sation of lignins is mainly advantageous because it dimin-

ishes lignin leachability in aqueous solutions. In fact, the 

solubility of oxidized BL in DMSO and aqueous dioxane 

solutions decreased by 30 – 100% depending on the sever-

ity of the oxidation conditions.  
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 Table 5      Distribution of lignin-derived volatile products in pyrolysates of BL samples normalized to 100%.  

Compound Normalized peak areas (%)

BL BL-POM-3 BL-POM/H 2 O 2 -5

Methylbenzene 0.9 4.5 0.4

1,4-Dimethylbenzene 0.1 0.9 2.2

Phenylethene 0.1 0.8 0.3

Methoxybenzene Trace 1.2 0.7

1-Methoxy-4-methylbenzene Trace 0.6 0.5

Phenol 4 26.7 0.8

1-Ethenyl-4-methoxybenzene Trace Trace Trace

2-Methylphenol 0.8 4.5 0.4

4-Methylphenol 2.9 3.7 0.2

3-Methylphenol 0.7 7.1 0.6

2-Methoxy-3-methylphenol 0.1 0.3 Trace

3,4-Dimethylphenol 0.7 1.7 5.3

1,2-Dimethoxy-4-methylbenzene 0.1 Trace 6.1

4-Ethylphenol 1.3 3.5 Trace

3 ′ ,5 ′ -Dihydroxyacetophenone 0.2 Trace 1.1

3-Methoxy-5-methyphenol 0.4 Trace 2.0

2-Allylphenol 0.2 Trace 0.5

 Σ  of benzene and phenol derivatives 12.6 54.6 22.2

2-Methoxyphenol 10.3 9.1 11.1

2-methoxy-4-methylphenol 10.9 9.3 9.9

4-Ethyl-2-methoxyphenol 3.8 3.3 4.6

4-Vinyl-2-metoxyphenol 27.8 23.8 29.4

4-Allyl-2-methoxyphenol 0.8 0.8 0.4

2-Methoxy-4-propylphenol 0.5 0.2 0.4

2-Methoxy-4-[(Z)-prop-1-enyl]phenol 0.7 0.6 0.7

2-Methoxy-4-[(E)-prop-1-enyl]phenol 4.1 2.4 3.3

4-Hydroxy-3-methoxybenzaldehyde 0.9 4.9 0.9

1-(G)ethanone 0.6 1.6 0.6

1-(G)propan-2-one 0.6 0.3 0.5

1-(G)propan-1-one 0.3 0.2 0.2

1-(G)propan-1-one-1-oxy 1.2 4.4 1.0

2,6-Dimethoxyphenol 6.4 7.6 7.5

2,6-Dimethoxy-4-methylphenol 5.5 6.3 6.1

4-Ethyl-2,6-dimethoxyphenol 0.9 1.0 0.9

4-Vinyl-2,6-dimethoxyphenol 3.1 2.9 2.5

4-Allyl-2,6-dimethoxyphenol and 2,6-dimethoxy-4-propylphenol 1.2 0.8 0.9

2,6-Dimethoxyphenol derivative 0.2 0.4 0.2

2,6-Dimethoxy-4-[(E)-prop-1-enyl]phenol 3.2 2.1 2.4

4-Hydroxy-3,5-dimethoxybenzaldehyde 0.3 4.7 0.3

1-(S)ethanone 1.7 1.5 0.9

1-(S)propan-2-one 0.3 0.1 0.3

1-(S)propan-1-one 0.1 0.2 0.2

1-(S)propan-1-one-1-oxy 0.6 2.7 0.7

   G, guaiacyl  =  4-hydroxy-3-methoxyphenyl; S, syringyl  =  4-hydroxy-3,5-dimethoxypheny.   

 Table 6      Summarized results of Py-GC/MS analysis of lignin 

samples.  

Sample  Σ  of peak areas (%)

Bz Ph G S

BL 1.4 11.1 63.6 25.1

BL-POM-3 8.0 46.6 40.9 4.5

BL-POM/H 
2
 O 

2
 -5 5.7 16.5 58.0 18.8

   Bz, benzene; G, guaiacol; Ph, phenol; S, syringol.   

  Adsorption properties of modified BL 

 The effect of oxidative treatment on the porosity of BL 

was studied  –  to our knowledge, for the first time  –  by 

the N 
2
  sorption-desorption method. The values concern-

ing the  S  
BET

  (average, 24 m 2  g -1 ) and pore volumes (average, 

153 mm 3  g -1 ) (Table  7  ) are altogether significantly higher than 

those reported in the literature for other organosolv and 

kraft lignins (Telysheva et al.  2006 ; Harmita et al.  2009 ). 
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Only the data of the lignin modified with POM/H 
2
 O 

2
  are 

slightly lower than those of the reference. 

 The pore size distribution profiles of modified lignin 

samples were similar to that for the parent BL (Figure  3  ); 

only a slight increase in the mesopore diameters was 

observed for the sample BL-POM-3. It can be safely 

 Table 7      Characterization of porous structure of BL samples.  

Sample BET a  (m 2  g -1 ) Volume of pores (mm 3  g -1 )

BL 24.4  ±  0.6 161  ±  1
BL-POM-3 24.8  ±  0.6 158  ±  2
BL-POM/H 

2
 O 

2
 -5 22.1  ±  0.8 139  ±  2

    a Specific surface.   
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 Figure 4      Cadmium (a) and lead (b) adsorption isotherms by BL samples: ( 1 ) BL, ( 2 ) BL-POM-3, and ( 3 ) BL-POM-H 
2
 O 

2
 -5. 

 Solid line denotes the adsorption isotherms predicted by the Langmuir model.    

 Table 8      Langmuir isotherm parameters for Cd 2 +   and Pb 2 +   adsorption on BL samples.  

Sample Cd(II) Pb(II)

 q  max  (mmol g -1 )  b  (mmol l -1 )  r  q  max  (mmol g -1 )  b  (mmol l -1 )  r 

BL 0.13  ±  0.01 0.44  ±  0.04 0.999 0.37  ±  0.01 0.92  ±  0.05 0.987

BL-POM-3 0.16  ±  0.01 0.94  ±  0.05 0.995 0.68  ±  0.03 4.54  ±  0.05 0.990

BL-POM-H 
2
 O 

2
 -5 0.32  ±  0.03 0.98  ±  0.05 0.989 0.75  ±  0.03 3.09  ±  0.05 0.992

concluded that the porous structure of BL remained unaf-

fected in the course of oxidative modifications. 

 The sorption capacity of the oxidized BLs toward Cd(II) 

and Pb(II) was significantly higher than that of the refer-

ence BL, as shown by the  b  values in Table  8  . The sorp-

tion of Cd(II) and Pb(II) on the BL, BL-POM-3, and BL-POM/

H 
2
 O 

2
  samples corresponds to an L-type isotherm in the 

Giles classification system for solute adsorption isotherms 

and the experimental sorption equilibrium data for both 

metals fit well to the Langmuir model (Faust and Aly  1987 ): 

   

= +
max max

1
,e e

e

C C
q bq q

 

 where  q  
max

  is the maximal monolayer sorption capacity 

(mmol g -1 ),  q  e  is the metal uptake (mmol g -1 ),  C  e  is the metal 

equilibrium concentration (mmol l -1 ), and  b  is the Lang-

muir constant characteristic to affinity of sorbent to sorp-

tive (Figure 4). 

 The values of maximum sorption capacity,  q  
max

 , cal-

culated for Cd and Pb from the Langmuir equation, were 

significantly higher for the both modified lignins than 

those for the parent BL (Table 8). The modification with 

POM/H 
2
 O 

2
  resulted in more than threefold increased sorp-

tion capacity of BL toward Cd (from 125 up to 496  μ mol g -1 ), 

whereas for Pb only twofold increase of  q  
max

  (from 370 up 

to 751  μ mol g -1 ) was observed. The revealed sorption capac-

ities of BL and its oxidized forms are comparable with or 

0
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 Figure 3      Pore size distribution profiles of BL samples: ( 1 ) BL, ( 2 ) 

BL-POM-3, and ( 3 ) BL-POM-H 
2
 O 

2
 -5.    
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higher than that reported in the literature for other ligno-

cellulosic materials. For example, the range of maximum 

sorption capacity toward Cd between 8 and 28  μ mol g -1  was 

reported for kraft and organosolv lignins from softwoods 

and hardwoods (Harmita et al.  2009 ). For Pb removal from 

aqueous solutions, the values of  q  
max

  from 2 up to 900 

 μ mol g -1  were achieved by modified lignocellulosics (Wan 

Ngah and Hanafiah  2008 ). 

 The increased values of the Langmuir constant  b  indi-

cated enhancement of modified BL affinity toward heavy 

metal cations. Probably, the formation of new COOH 

groups after oxidative modification are potential sites for 

coordinative linkages with metals.   

  Conclusion 
 The yield of the oxidized products was 88% in experi-

ments with the cooxidants O 
2
  or H 

2
 O 

2
 . The modified lignins 

revealed a notable increase in the number of carboxyl and 

aliphatic hydroxyl groups after the oxidation by POM/O 
2
  

and POM/H 
2
 O 

2
 . The introduction of conjugated carbonyl 

groups was typical only for POM/H 
2
 O 

2
 . The solubility of 

the oxidized lignin decreased due to condensation reac-

tions. The sorption ability toward Cd and Pb cations was 

the best by application of the system POM/H 
2
 O 

2
 . This can 

be explained by the highest amounts of primary COOH 

groups formed, which increase the sites for coordinative 

linkages to metals.   
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