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In this paper, we derive a new model to determine the distribution of silicate units in binary glasses (or
liquids). The model is based on statistical mechanics and assumes grand canonical ensemble of sili-
cate units which exchange energy and network modifiers from the reservoir. This model complements
experimental techniques, which measure short range order in glasses such as nuclear magnetic reso-
nance (NMR) spectroscopy. The model has potential in calculating the amounts of liquid-liquid phase
segregation and crystal nucleation, and it can be easily extended to more complicated compositions.
The structural relaxation of the glass as probed by NMR spectroscopy is also reported, where the
model could find its usefulness. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963341]

I. INTRODUCTION

In binary alkali (R+1; R ∈ {Li, Na, K, Rb, Cs}) or
alkaline earth (Ŕ+2; Ŕ ∈ {Mg,Ca,Sr,Ba}) silicate glasses
(or liquids), silicates form tetrahedral structures that are
connected to each other by corner sharing.1 The oxygens
in these glasses exist in three forms, namely, (1) free oxygens
(FOs, O−2), (2) non-bridging oxygens (NBOs, O−1), and (3)
bridging oxygens (BOs, O0). Though, at lower concentrations
of R2O (or ŔO), the amount of FOs in the composition
is negligible.2,3 Providentially, these compositions are of
interest to the glass science because of their glass forming
ability. The BOs and NBOs are present on the corners of
silicate tetrahedra where the BOs act as connectors between
two tetrahedra, while the NBOs terminate the connectivity
of a given tetrahedron. Therefore, depending upon the
number of NBOs and BOs on a given silicate tetrahedron,
the tetrahedron can be classified by Qn notation where
n ∈ {[0,4] ∩ N} is the number of BOs on a given silicate
tetrahedron.

Studies on the distribution of Qn units are ubiquitous
in the field of silicate based glasses. Techniques such as
nuclear magnetic resonance (NMR) and Raman spectroscopies
are routinely employed to assess the distribution of
structural units. Also, there are many mathematical models
that theoretically address this issue to gain fundamental
understanding of this distribution. The binary model presumes
only two types of Qn units at each composition without
taking account of the speciation reaction (R1); therefore,
it only describes the distribution that corresponds only to
crystalline silicates but not glasses. A pure statistical model
based on binomial distribution was suggested, supposing
a completely random distribution of BOs and NBOs.4

However, this model does not take into account the
temperature effects. Further, Brandriss et al.5 suggested
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a thermodynamic model to take temperature effects into
consideration. In this model, equilibrium constants (kn) are
experimentally measured by assuming a speciation reaction
(R1) and using the van’t Hoff equation ∆Hn is calculated as
follows:

2Qn↔ Qn−1 + Qn+1 ∆Hn, (R1)

kn (T) = [Qn+1] [Qn−1]
[Qn]2

Γ,

∂ ln kn (T)
∂T

=
∆Hn

RT2 ,

∆Hn

R
=

ln kn (T2) − ln kn (T1)(
1
T1
− 1

T2

) ,

where Γ ≈ 1 corresponds to a function of activity coefficients.
By measuring kn at any two different temperatures by NMR
or Raman spectroscopy, ∆Hn is evaluated, and using the
value of ∆Hn, kn at other temperatures could be calculated.
Another thermodynamic model of associated solutions was
proposed, which employs rigorous thermodynamic theory
of affinity.6–9 This model uses Gibbs free energy of
formation for all the crystalline compounds formed in a
particular glass system. Nevertheless, all these models use
either pure statistics or macroscopic thermodynamics and
therefore have their own limitations. A statistical mechanical
model was proposed by Mauro10 for the glass systems
having a single network modifier and multiple network
formers. This model is based on non-central hypergeometric
distribution where the bias is weighted by Boltzmann
factors. The model provides a mathematical description for
the distribution network modifiers among various network
formers; however, it does not address the problem of Qn

distribution.
Therefore, in this paper we introduce a new statistical

mechanical model for binary silicate glass systems in
order to address the problem of Qn distribution from a
fundamental standpoint. The model assumes presence of
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no FOs. The model has a huge technological importance
and has a potential to deal with some of the open
problems in the field of glass science such as liquid-liquid
phase segregation (LLPS), crystal nucleation, and structural
relaxation.

II. FORMULATION OF THE MODEL

A. Defining silicate units

As described in the Introduction, silicate units are
defined by the Qn notation based on the number of BO(s)
that surround a given Si atom. However, there have been
a number of suggestions from NMR spectroscopy that in
glass compositions, silicate units can be further described by
considering the next-nearest neighbors.11–13 Based on this new
description, the units can be defined as Q4

i jkl (35), Q3
i jk (20),

Q2
i j (10), Q1

i (4), and Q0 (1), where i, j, k, l ∈ {[1,4] ∩ N}.
For example, a Q3

334 unit would have three BOs, out of
which, two are connected to Q3 units and one is connected
to a Q4 unit (Fig. 1). According to this new definition,
there would be 70 different types of silicate units, from all
the combinations of the superscripts as listed in Table I.
Howbeit, in this paper we introduce a new Snm notation
that is more suitable for the derivation of the model where
n ∈ {[0,4] ∩ N}, while m ∈ {[1,m(n)] ∩ N}. Here n has same
meaning as in Q notation, corresponding to the internal
structure of the unit, i.e., the amount of alkali or alkaline
metal ions present in it. While m corresponds to the external
structure, i.e., the types of units a given silicate unit is
connected to, and m maps a particular combination of ijkl of a
Q notation. A comparison between Q notation and S notation
is shown in Table I. In this paper, both notations are used
interchangeably according to the convenience (Fig. 1). We
also define different types of BOs in the glass by Oi j notation,

FIG. 1. Examples of silicate units and basis vectors corresponding to Φ
and Ω.

where Oi j is a BO connecting Qi and Q j (i, j ∈ {[1,4] ∩ N})
units together.

B. Statistical treatment

Consider a liquid of either alkali (R+1) or alkaline earth
(Ŕ+2) silicate composition given by

R2O or ŔO : x,

SiO2 : 1.

Here, the amount of SiO2 is scaled to unity and the
addition of the network modifiers is given by the variable
x, where x ∈ [0,2], which corresponds to R2O% ∈ [0,2/3].
If Pn

m is probability (or fraction) of occurrence of a Snm

microstate, then the constraints (1)–(3) must hold, which are
constraints corresponding to the amounts of SiO2, energy, and
R2O or ŔO, respectively,

n,m

Pm
n = 1, (1)

n,m

Em
n Pm

n = ⟨E⟩ , (2)
n,m

nPm
n = 2 [2 − ⟨x⟩] = ⟨NBO⟩ , (3)

where En
m is the energy of a given Snm microstate, while

⟨E⟩, ⟨x⟩ and ⟨NBO⟩ ∈ [0,4] are the expected values of
energy, composition, and the amount of BOs for a given
ensemble. Additionally, because Snm notation takes into
consideration the network linkages with its neighbors, there
would be 10 more additional internal constraints connecting
the probabilities of different Snm microstates corresponding
to the 10 different types of BOs (Oi j). The equations are
presented in Subsection 1 of the Appendix and they take the
form given by the following:

n,m

(i, j)mn Pm
n = 0. (4)

The coefficients (i, j)nm represent the number of network
connections between Qi and Q j silicate units originating
from a given Snm unit. The following examples illustrate the
physical meaning of these coefficients:

• The value of (3,2)38 which corresponds to the
microstate S3

8 (or Q3
224) would be 2 because there

are two 3 → 2 connections.
• The value of (4,3)31 which corresponds to the

microstate S3
1 (or Q3

444) would be −3 because there are
three 3→ 4 connections, and the negative sign implies
the reversal of the originating direction.

• The value of (4,3)320 which corresponds to the
microstate S3

20 (or Q3
111) would be 0 because of the

non-existence of any 4 → 3 connections.

All the values of the coefficients (i, j)nm are presented
in Table I. Basically, Equations (3) and (4) represent
constraints corresponding to chemical composition and
network connectivity, respectively. The entropy generated by
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TABLE I. Comparison between Q and S notations, and constants associated to network connectivity.

No. Sn
m Qn

ij. . . (4,3)nm (4,2)nm (4,1)nm (3,2)nm (3,1)nm (2,1)nm

Units of Q4
ijkl

1 S4
1 Q4

4444 0 0 0 0 0 0
2 S4

2 Q4
3444 1 0 0 0 0 0

3 S4
3 Q4

3344 2 0 0 0 0 0
4 S4

4 Q4
3334 3 0 0 0 0 0

5 S4
5 Q4

3333 4 0 0 0 0 0
6 S4

6 Q4
2444 0 1 0 0 0 0

7 S4
7 Q4

2344 1 1 0 0 0 0
8 S4

8 Q4
2334 2 1 0 0 0 0

9 S4
9 Q4

2333 3 1 0 0 0 0
10 S4

10 Q4
2244 0 2 0 0 0 0

11 S4
11 Q4

2234 1 2 0 0 0 0
12 S4

12 Q4
2233 2 2 0 0 0 0

13 S4
13 Q4

2224 0 3 0 0 0 0
14 S4

14 Q4
2223 1 3 0 0 0 0

15 S4
15 Q4

2222 0 4 1 0 0 0
16 S4

16 Q4
1444 0 0 1 0 0 0

17 S4
17 Q4

1344 1 0 1 0 0 0
18 S4

18 Q4
1334 2 0 1 0 0 0

19 S4
19 Q4

1333 3 0 1 0 0 0
20 S4

20 Q4
1244 0 1 1 0 0 0

21 S4
21 Q4

1234 1 1 1 0 0 0
22 S4

22 Q4
1233 2 1 1 0 0 0

23 S4
23 Q4

1224 0 2 1 0 0 0
24 S4

24 Q4
1223 1 2 1 0 0 0

25 S4
25 Q4

1222 0 3 1 0 0 0
26 S4

26 Q4
1144 0 0 2 0 0 0

27 S4
27 Q4

1134 1 0 2 0 0 0
28 S4

28 Q4
1133 2 0 2 0 0 0

29 S4
29 Q4

1124 0 1 2 0 0 0
30 S4

30 Q4
1123 1 1 2 0 0 0

31 S4
31 Q4

1122 0 2 2 0 0 0
32 S4

32 Q4
1114 0 0 3 0 0 0

33 S4
33 Q4

1113 1 0 3 0 0 0
34 S4

34 Q4
1112 0 1 3 0 0 0

35 S4
35 Q4

1111 0 0 4 0 0 0

Units of Q3
ijk

36 S3
1 Q3

444 −3 0 0 0 0 0
37 S3

2 Q3
344 −2 0 0 0 0 0

38 S3
3 Q3

334 −1 0 0 0 0 0
39 S3

4 Q3
333 0 0 0 0 0 0

40 S3
5 Q3

244 −2 0 0 1 0 0
41 S3

6 Q3
234 −1 0 0 1 0 0

42 S3
7 Q3

233 0 0 0 1 0 0
43 S3

8 Q3
224 −1 0 0 2 0 0

44 S3
9 Q3

223 0 0 0 2 0 0
45 S3

10 Q3
222 0 0 0 3 0 0

46 S3
11 Q3

144 −2 0 0 0 1 0
47 S3

12 Q3
134 −1 0 0 0 1 0

48 S3
13 Q3

133 0 0 0 0 1 0
49 S3

14 Q3
124 −1 0 0 1 1 0

50 S3
15 Q3

123 0 0 0 1 1 0
51 S3

16 Q3
122 0 0 0 2 1 0

52 S3
17 Q3

114 −1 0 0 0 2 0
53 S3

18 Q3
113 0 0 0 0 2 0

54 S3
19 Q3

112 0 0 0 1 2 0
55 S3

20 Q3
111 0 0 0 0 3 0
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TABLE I. (Continued.)

No. Sn
m Qn

ij. . . (4,3)nm (4,2)nm (4,1)nm (3,2)nm (3,1)nm (2,1)nm

Units of Q2
ij

56 S2
1 Q2

44 0 −2 0 0 0 0
57 S2

2 Q2
34 0 −1 0 −1 0 0

58 S2
3 Q2

33 0 0 0 −2 0 0
59 S2

4 Q2
24 0 −1 0 0 0 0

60 S2
5 Q2

23 0 0 0 −1 0 0
61 S2

6 Q2
22 0 0 0 0 0 0

62 S2
7 Q2

14 0 −1 0 0 0 1
63 S2

8 Q2
13 0 0 0 −1 0 1

64 S2
9 Q2

12 0 0 0 0 0 1
65 S2

10 Q2
11 0 0 0 0 0 2

Units of Q1
i

66 S1
1 Q1

4 0 0 −1 0 0 0
67 S1

2 Q1
3 0 0 0 0 −1 0

68 S1
3 Q1

2 0 0 0 0 0 1
69 S1

4 Q1
1 0 0 0 0 0 0

Units of Q0

70 S0
1 Q0 0 0 0 0 0 0

a given distribution of Snm microstates is given by

S = −kB


n,m

�
Pm
n ln Pm

n

�
, (5)

where kB is the Boltzmann constant. Maximizing Eq. (5) by
subjecting to the constraints Eqs. (1)–(4) using the method
of Lagrange multipliers would yield (Subsection 2 of the
Appendix),

Pm
n =

1
Zgr

e


i≥ j(i, j)mn µi j+n µ−Em

n
kBT , (6)

where µ and µi j are the chemical potentials associated to
the exchange of network modifiers (R+ or Ŕ2+) and network
connections, respectively, T is the temperature, and Zgr is the
grand canonical partition function given by

Zgr =

n,m

e


i≥ j(i, j)mn µi j+n µ−Em

n
kBT . (7)

C. Energy consideration and quantization

The energy associated with a given Snm microstate would
be vibrational energy.14 The frequencies of the vibrational
normal modes associated to a particular Snm microstate
could be obtained by appropriately choosing the interatomic
potentials derived from quantum mechanical calculations
and then solving the characteristic equation. If each Snm

microstate has Nn
m number of normal modes associated to

it, labelled by ν ∈ {[1,Nn
m] ∩ N}, then a given Snm unit can

be considered to be an Nn
m dimensional quantum harmonic

oscillator. Consequently, we can represent the vibrational
state of the Snm unit existing in some stationary state by a
state vector

�
Sm
n

�
km

n
��

where kn
m is vector ∈ ZNm

n in positive

orthant subspace, the meaning of which would be apparent
subsequently. When the Hamiltonian (Ĥ) acts on the state
vector

�
Sm
n

�
km

n
��

, it would yield

Ĥ
�
Sm
n (k) =



Nm
n

v=1

(
1
2
+ km

n (ν)
)
~ωm

n (ν)


�
Sm
n (km

n )
�
, (8)

where ~ is the Dirac constant, knm(ν) ∈ N and ωn
m(ν) are the

quantum numbers and the angular frequency associated to the
νth mode of the quantum harmonic oscillator. Here, the vector
kn

m corresponds to a set of quantum numbers associated to
all the normal modes (k(1), k(2), . . . , k(Nn

m)). In the quantum
mechanical framework, the statistical probability is given by
the density operator ( ρ̂), which is based on Eq. (6) and would
take the form

ρ̂ =
1

Zgr
e


I≥J I J µi j+n̂ µ−Ĥ

kBT . (9)

Here, two new operators I J and n̂ are introduced; they
act on the state vector

�
Sm
n

�
and give Eigen values (i, j)nm and

n, respectively. Both, I J and n̂ operators commutate with the
Hamiltonian. Further, the partition function Zgr is given by

Zgr = Tr *
,
e


I≥J I J µi j+n̂ µ−Ĥ

kBT +
-
. (10)

When ρ̂ acts on the state vector
�
Sm
n

�
, it gives the

probability Pn
m,

ρ̂
�
Sm
n (k)

�
=

1
Zgr

e


I≥J I J µi j+n̂ µ−Ĥ

kBT
�
Sm
n (km

n )
�

=
1

Zgr
e


i≥ j(i, j)mn µ+n µ−Nm

n
v=1 ( 1

2 +k
m
n (ν))~ωm

n (ν)
kBT

�
Sm
n (km

n )
�
.

(11)
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The partition function can be evaluated as

Zgr =

n,m


km

n

e


i≥ j(i, j)mn µi j+n µ−Nm

n
ν=1 ( 1

2 +k
m
n (ν))~ωm

n (ν)
kBT

=

n,m


km

n

e


i≥ j(i, j)mn µi j+n µ

kBT e
−Nm

n
ν=1 ( 1

2 +k
m
n (ν))~ωm

n (ν)
kBT

=

n,m

e


i≥ j(i, j)mn µi j+n µ

kBT

Nm
n

ν=1

*.
,

1

2 sinh
(
~ωm

n (ν)
2kBT

) +/
-

=

n,m

e


i≥ j(i, j)mn µi j+n µ

kBT Zm
n , (12)

where Zn
m is the canonical partition function associated

to a given Snm microstate. It can also be written in terms
of Helmholtz free energy (Fn

m) of the quantum harmonic
oscillator as

Zm
n = e−

Fm
n

kBT . (13)

Therefore, the probability distribution of Snm microstates
is given by

Pm
n =

1
Zgr

e


i≥ j(i, j)mn µi j+n µ−Fm

n
kBT . (14)

Comparing Eqs. (14) and (6), it can be noticed that, by
using the semi-quantum mechanical approach, En

m is changed
to Fn

m.

D. Ensemble averages

The ensemble averages for energy (⟨E⟩), entropy (S),
and composition (⟨NBO⟩) are related to the grand partition
function by

⟨E⟩ = −kBT ln Zgr + T S + ⟨N⟩ µ. (15)

The entropy of the liquid is split into configurational and
vibrational contributions given by

S = −kB


n,m

Pm
n ln Pm

n +

n,m

Pm
n Sm

n = Sconf + Svib. (16)

The derivations for Eqs. (15) and (16) are presented in
Subsection 3 of the Appendix. The vibrational energy and
entropy of a Snm microstate are given by15

Em
n =

Nm
n

ν=1

~ωm
n (ν)



1
2
+

1

e
~ωm

n (ν)
kBT − 1


,

Sm
n =

Em
n − Fm

n

T
.

(17)

And, the chemical composition of the glass (from Eq.
(3)) is given by

R2O or RO (%) = ⟨x⟩
1 + ⟨x⟩ =

4 − ⟨NBO⟩
6 − ⟨NBO⟩ ,

SiO2 (%) = 1
1 + ⟨x⟩ =

2
6 − ⟨NBO⟩ .

(18)

III. DISCUSSION

A. Generalization of the model

The current model describes the probability distribution
of silicate units in a binary alkali or alkaline earth silicate
glasses where each microstate assumes a single structural
configuration. However, the model can be further extended to
take into account all structural configurations by labeling
a microstate as Snm(Φ,Ω), where Φ accounts for the
complete internal structure of the silicate unit, encompassing
all the vectors from ϕ1 to ϕ4 ∈ R3 as shown in Fig. 1.
While Ω takes into account how the neighboring units are
connected to a given unit, encompassing all the vectors
from ω1 to ω4 ∈ R3 (Fig. 1). Together, Φ and Ω consider
all variations in the bond lengths and bond angles that are
associated to a given silicate unit, acknowledging all possible
structural configurations. Though, n and m have a discrete
probability distribution, Φ and Ω could assume a continuous
probability distribution. In this case, Equations (1)–(3) change
to 

Φ,Ω


n,m

Pm
n (Φ,Ω) dΦdΩ = 1, (19)


Φ,Ω


n,m

Em
n (Φ,Ω) Pm

n (Φ,Ω) dΦdΩ = ⟨E⟩ , (20)


Φ,Ω


n,m

nPm
n (Φ,Ω) dΦdΩ = ⟨NBO⟩ . (21)

In the model derived in Section II, Φ = ΦT, where ΦT
is the associated vector to a silicate tetrahedron, and Ω
would assume some expected value with some variance. Then,
integrating Pn

m(ΦT,Ω) over the entire space of Ω would yield
the value for Pn

m as shown in the following:

Pn =

m

Pm
n =


m


Φ,Ω

Pm
n (ΦT,Ω) dΦdΩ . (22)

It is also possible that Φ and Ω take discrete values in
the case when structural units are confined to local minima.
Consequently, the integrals over Φ and Ω (Eqs. (19)–(21))
would be replaced with summation over all the states of local
minima. When multi-component silicate liquid compositions
are used, if the added components are network formers
(e.g., Al2O3 or B2O3 added to silicates), then they could be
modelled as additional network units. If units are considered
to be atoms of different kind, then one can ignore the internal
structure of the unit by dropping off n and Φ. In this case,
the model could be applicable to metallic glasses. For other
oxide glasses such as borate and phosphate systems, similarly,
appropriate internal structures and external correlations should
be chosen.

B. LLPS and crystallization

The introduction of Snm (or Qn
i j ...) notation as opposed

to previous Qn notation is essential for answering questions
concerning LLPS and crystallization. Because of this new
notation, which takes into consideration the type of units
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that surround a given unit, the mixing of different units
is automatically considered. Consequently, by obtaining
probability distribution of Snm units in a given composition by
the current model, the amount of LLPS could be calculated.
This idea has been experimentally tested using the double
quantum (DQ) NMR spectroscopy technique, where the
probability distribution of Qn

i j ... units was measured and
the amount of LLPS was estimated.11,16

Concerning crystallization, if a particular set of units,
which corresponds to a set of points in the nm-plane (Fig. 4(a)),
undergoes crystallization, then the probability distribution
Pn

m(Φ,Ω), for each Snm(Φ,Ω) microstate in the ΦΩ-space,
will be sharply peaked, and given by Dirac delta function
as

Pm
n (Φ,Ω) = δ (Φ −Φ′) δ (Ω − Ω′) , (23)

where Φ′ and Ω′ are constants corresponding to a
particular crystal structure. Therefore, crystallization (or
crystal nucleation) of a particular set of Snm units in a
supercooled liquid corresponds to a collection of Snm units
and sharpening of the Pn

m(Φ,Ω) peak in the ΦΩ-space.
In the glass forming liquids, the time scales required to

access the crystalline states are large. Therefore, these states
can be eliminated by assuming some broad distribution of
probabilities in the ΦΩ-space for a given Snm unit. This
subject of LLPS and crystallization within the framework of
the current model will be expounded in a subsequent paper.

C. Structural relaxation

In the last two decades, huge advances have been
made in the understanding of the nature of glass and
structural relaxation using the potential energy landscape
(PEL) approach.17–20 The PEL approach uses a canonical
ensemble of various structural configurations of large number
of atoms. Our present model is fundamentally different; it
employs a grand canonical ensemble of structural units that
build the glass network and exchange network modifiers and
energy from the reservoir. However, the problem of relaxation
can be addressed in a similar way as in the PEL approach
using the concept of continuously broken ergodicity (CBE)
as proposed by Mauro et al.21 Here, we consider conditional
probabilities f I,J(t), which correspond to a system occupying a
microstate J after starting in a known state I with subsequent
evolution of time t, accounting for the actual transition rates
between different states. The conditional probabilities would
satisfy the following: 

J

f I,J (t) = 1, (24)

where I and J are different Snm(Φ,Ω) microstates. In the
limit of zero and infinite time evolution, the conditional
probabilities reduce to the Kronecker delta function (δI,J) and
the equilibrium probabilities, respectively, given by

lim
t→0

f I,J (t) = δI,J, (25)

lim
t→∞

f I,J (t) = PJ . (26)

FIG. 2. NMR spectra of annealed and non-annealed (as quenched)
28Li2O–72SiO2 glass, showing structural relaxation. Asterisks indicate spin-
ning side bands.

The conditional entropy is given by

SJ (t) = −kB


J

f I,J (t) ln f I,J (t) . (27)

The time evolution of the expected value of the
configurational is calculated by

S (t) =

I

PISJ (t) . (28)

The time dependent conditional probabilities f I,J(t) can
be obtained by solving hierarchical master equations given
by:

df I,J (t)
dt

=

K,J

WK→ J (T (t)) f I,K (t)

−

K,J

WJ→K (T (t)) f I,J (t) , (29)

where WK→ J and WJ→K are the associated reaction rate
constants. After a time evolution t, the probability of the state
J is given by

PJ (t) =

I

PI f I,J (t) . (30)

The relaxation takes place over the entire phase space Γs
subjected to available thermal energy and observational time
(τobs). Here we report structural relaxation in a lithium silicate
glass from the perspective of the current model using NMR
spectroscopy. Figure 2 shows 1D-NMR spectra of a binary
lithium silicate glass of composition 28% Li2O–72% SiO2
(in moles). One spectrum was recorded on the glass directly
quenched from the melt and the other was recorded on the
glass quenched and then annealed at 460 ◦C for 75 h. The
two spectra show clear differences indicating the structural
relaxation. The details of the experimental procedure can be
found in Subsection 4 of the Appendix.

D. Test of the model

In this section, we show how the proposed model can
be used in studying silicate based glasses (or liquids) in
conjunction with NMR spectroscopy by using an example.
The purpose of this section is for the illustration of the
usefulness and applicability of the current model.
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FIG. 3. Simulated NMR spectrum of a hypothetical system using the current
model.

The chemical shielding on a particular 29Si nucleus
depends on the chemical environment around that nucleus.
Therefore, the 29Si isotropic chemical shift (δiso) of nucleus
would be function of all the structural parameters n, m, Φ and
Ω: δiso(n,m,Φ,Ω). Since Φ and Ω have variance with some
expected value, δiso also would have corresponding variance
(σ2) and an expected value, ⟨δiso⟩. The variance is given
by22

σ(n,m)2 = ⟨δiso (n,m)⟩2 − ⟨δiso (n,m)⟩2. (31)

We can assume that the variation in δiso for a given
Snm unit approximated to a normal distribution (Fig. 3,
variance in Sn

m). This would be a component of the spectrum
associated to a particular Snm unit; and the spectrum of the
whole sample, a sum of individual components (Eq. (32)), is
shown in Fig. 3. This spectrum corresponds to a hypothetical
composition with 28% R2O and is generated by calculating the
probabilities Pn

m in Eq. (14) by assuming some realistic values
of Fn

m, δiso(n,m), and σ(n,m) (the procedure is presented in
Subsection 5 of the Appendix). Then, the intensity I(δiso) of
the NMR spectrum is given by

I (δiso) ∝

n,m

Pm
n

σ (n,m)√2π
e
− (δiso−⟨δiso(n,m)⟩)2

2σ(n,m)2 . (32)

This way, using the current model, NMR spectrum of
a given sample could be theoretically computed. Further,

FIG. 5. Variation of probability distribution with composition at 800 K. Dots
represent the simulated data points and the lines are just connecting the points
to guide the eyes.

using the probability distribution, properties of the liquids can
be computed. The variation of properties with temperature
for specific heat, entropy, and molar volume is presented
in the supplementary material. In order to show relaxation
behavior of silicate units of this hypothetical composition,
we used a relatively simple concept called broken ergodicity
(BE) proposed by Palmer23 as opposed to CBE discussed
in Sec. III C. In BE, we divide the phase space Γs into
set of non-ergodic disjoint components where within each
component internal ergodicity still exists. In this present
example, we divided the phase space (nm-plane, Fig. 4(a))
into three components: (a) Γ1 = {S4

1}, (b) Γ2 = {S4
2,S3

1},
and (c) Γ3 = Γs ∩ {S4

1,S4
2,S3

1}. The reason for selecting these
components is because the structural units belonging to Γ1 and
Γ2 exist in highly polymerized network; therefore they would
not have sufficient time to maintain the ergodicity during
the fast quenching of the melt. By enforcing BE, probability
distribution at some observational time (τobs) is obtained
(Fig. 4(a)). The NMR spectra in Fig. 4(b) are generated
by

1. Probability distribution at high temperature (1600 K) was
obtained (which corresponds to t = 0).

2. Then under the BE condition, new probability distribution
at 775 K was obtained (which corresponds to t = τobs).

FIG. 4. (a) Phase space in n and m showing the gradient of polymerization: decreasing from dark to light. (b) Relaxation of silicate structural units with time.
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3. Probability distribution without BE condition would yield
equilibrium probability at 775 K (corresponds to t = ∞).

The relaxation behavior simulated in Fig. 4(b) shows
characteristics similar to the experimental observations shown
in Fig. 2. Therefore, the as quenched glass without annealing
contains a lot of memory effects which can be probed by NMR
spectroscopy. This behavior needs to be evaluated for multiple
compositions in future studies. Using the same vibrational
frequencies, the variation of probability distribution with
composition is plotted in Fig. 5.

IV. CONCLUSIONS

We have presented in this paper a new model based on
statistical mechanics to describe the distribution of various
silicate units in glasses. We considered the system to be a
grand canonical ensemble of silicate units which exchange
energy and network modifiers with the reservoir. Several
applications where the current model could find its usefulness
are mentioned. These include LLPS, crystal nucleation, and
glass relaxation. Since statistical mechanics uses microscopic
properties to obtain macroscopic properties, several bulk
properties of the glass can be easily calculated using the
current model.

SUPPLEMENTARY MATERIAL

See supplementary material for vibrational frequencies
used in the simulations and corresponding probability
distributions obtained at different temperatures. It also
contains plots illustrating the effect of network speciation
on several properties of the glass.
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APPENDIX: DERIVATION OF NETWORK
CONSTRAINTS, PROBABILITY DISTRIBUTION
AND ENTROPY, AND EXPERIMENTAL PROCEDURE
1. Network connectivity constraints

In a given glass composition, BOs characterized by
Oi j must be conserved. Therefore Equations (A1)–(A10)
corresponding to 10 different Oi j oxygens must hold, where

p4
i jkl, p3

i jk, p2
i j, and p1

i are the probabilities (notice lower
case “p” as opposed to upper case “P” in S notation)
associated with Q4

i jkl, Q3
i jk, Q2

i j, and Q1
i units. The

Q notation is employed here because it is easier to see
the connection between right and left hand sides of the
equations,

O11: p1
1 = p1

1, (A1)

O12: p2
1 =


j,1

p1 j
2 + 2p11

2 , (A2)

O13: p3
1 =


j,k,1

p1 jk
3 + 2


k,1

p11k
3 + 3p111

3 , (A3)

O14: p4
1 =


j,k,l,1

p1 jkl
4 + 2


k,l,1

p11kl
4 + 3


l,1

p111l
4 + 4p1111

4 ,

(A4)

O22:

j,2

p2 j
2 + 2p22

2 =

j,2

p2 j
2 + 2p22

2 , (A5)

O23:

j,3

p3 j
2 + 2p33

2 =

j,k,2

p2 jk
3 + 2


k,2

p22k
3 + 3p222

3 , (A6)

O24:

j,4

p4 j
2 + 2p44

2 =


j,k,l,2

p2 jkl
4 + 2


k,l,2

p22kl
4

+ 3

l,2

p222l
4 + 4p2222

4 , (A7)

O33:

j,k,3

p3 jk
3 + 2


k,3

p33k
3 + 3p333

3

=

j,k,3

p3 jk
3 + 2


k,3

p33k
3 + 3p333

3 ,
(A8)

O34:

j,k,4

p4 jk
3 + 2


k,4

p44k
3 + 3p444

3

=


j,k,l,4

p3 jkl
4 + 2


k,l,4

p33kl
4 + 3


l,4

p333l
4 + 4p3333

4 , (A9)

O44:


j,k,l,4

p4 jkl
4 + 2


k,l,4

p44kl
4 + 3


l,4

p444l
4 + 4p4444

4

=


j,k,l,4

p4 jkl
4 + 2


k,l,4

p44kl
4 + 3


l,4

p444l
4 + 4p4444

4 .

(A10)

Equations (A1)–(A10) can be represented as follows:


n,m

(i, j)mn Pm
n = ki j . (A11)

The coefficients (i, j)nm are constants associated to each
equation representing a given Oi j BO. Further, according to
(A1)–(A10), the values of (i, j)nm = 0∀ i = j and ki j = 0∀ i, j.
The values of the constants are presented in Table I.

2. Derivation for the probabilities Pn
m

The solution given by Eq. (6) is obtained from the
Lagrange function L(Pn

m) with the Lagrange multipliers α,
β and γ given by
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L (Pm
n ) = kB


n,m

(Pm
n ln Pm

n ) + α




n,m

Pm
n − 1



+ β




n,m

Em
n Pm

n − ⟨E⟩

+ γ




n,m

nPm
n − 2 ⟨NBO⟩



+

i, j

γi j




n,m

(i, j)mn Pm
n − ki j


. (A12)

Differentiating L(Pn
m) with respect to Pn

m would equal
zero,

∂L (Pm
n )

∂Pm
n

= kB (1 + ln Pm
n ) + α + βEm

n

+ γn +

i, j

γi j(i, j)mn = 0.

Rearranging,

ln Pm
n = − ln Zgr −

βEm
n

kB
− nγ

kB
−


i, j(i, j)mn γi j

kB
, (A13)

where ln Zgr =
(α+kB)

kB
and substituting Eq. (A13) in Eq. (6)

S = −kB


n,m

(
−Pm

n ln Zgr − Pm
n

βEm
n

kB
− Pm

n

nγ
kB

−Pm
n


i, jγi j(i, j)mn

kB

)
.

Solving the above equation using Equations (1)–(4) gives

S = kB ln Zgr + β ⟨E⟩ + 2γ ⟨NBO⟩ +

i, j

γi jki j .

Rearranging,

⟨E⟩ = 1
β

S − kB

β
ln Zgr −

γ

β
(2 ⟨NBO⟩) −


i, j

γi j

β
ki j .

Differentiating,

d ⟨E⟩ = 1
β

dS − kB

β
d ln Zgr −

γ

β
d (2 ⟨NBO⟩) −


i, j

γi j

β
dki j .

Comparing the above equation with the fundamental
thermodynamic relation24

dE = TdS − PdV +


µidni (A14)

would yield

β =
1
T
, (A15)

γ = − µ
T
, (A16)

γi j = −
µi j

T
. (A17)

Therefore, substituting Eqs. (A15)–(A17) into Eq. (A13)
and rearranging gives

Pm
n =

1
Zgr

e


i, j(i, j)mn µi j+n µ−Em

n
kBT . (A18)

3. Entropy of the liquid

The entropy of the liquid is given by

S = −kB


n,m,k

Pm
n (k) ln Pm

n (k) ,

S = −kB


n,m,k

Pm
n (k)


− ln Zgr +


i≥ j (i, j)mn µi j

kBT
+

n µ

kBT

−
Nm
n

ν=1

(
1
2
+ k (ν)

)
~ωm

n (ν)
kBT


,

S = kB ln Zgr −
⟨NBO⟩ µ

T
+


n,m,k

Pm
n (k)

Nm
n

ν=1

(
1
2
+ k (ν)

)

×
~ωm

n (ν)
T

,

S = kB ln Zgr −
⟨NBO⟩ µ

T
+


n,m

Pm
n

Nm
n

ν=1

~ωm
n (ν)
T

×


1
2
+

1

e
~ωm

n (ν)
kBT − 1


,

S = kB ln Zgr −
⟨NBO⟩ µ

T
+


n,m

Pm
n Em

n

T
,

S = kB ln Zgr −
NBOµ

T
+

E
T
.

Further, the entropy can be split into configurational and
vibrational parts

S = kB ln Zgr −
⟨NBO⟩ µ

T
+


n,m

Pm
n Em

n

T
,

S = kB ln Zgr −
⟨NBO⟩ µ

T
+


n,m

Pm
n (Fm

n + T Sm
n )

T
,

S =

n,m

Pm
n


kB ln Zgr −


i≥ j (i, j)mn µi j

T
− n µ

T
+

Fm
n

T
+ Sm

n


,

S = −kB


n,m

Pm
n


ln Zgr +


i≥ j (i, j)mn µi j

kBT
+

n µ

kBT
−

Fm
n

kBT



+

n,m

Pm
n Sm

n ,

S = −kB


n,m

Pm
n ln Pm

n +

n,m

Pm
n Sm

n ,

S = Sconf + Svib.

4. Experimental procedure

For the preparation of the glass, SiO2 and Li2CO3 with
purity >99% were weighed in required amounts, mixed by
ball milling, and then calcined at 800 ◦C in alumina crucibles
for 1 h in air. The calcined powder was crushed in a mortar
and transferred to a Pt crucible for melting at a temperature of
1550 ◦C for 1 h in air. Bulk (monolithic) bar shaped glasses
were prepared by pouring the melt on a bronze mold. One sam-
ple was annealed at 460 ◦C for 75 h. X-ray diffraction analysis
(not shown) confirmed that the samples were fully amorphous.
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29Si MAS-NMR spectra were recorded on both annealed
and non-annealed glass samples crushed into fine powders.
The NMR spectrometer (BRUKER Avance III) was operated
at a Larmor frequency of 79.5 MHz with a 9.4 T magnetic
field, using a 7 mm rotor rotating at 5 kHz. The samples were
excited with a 90◦ flip angle using 900 s delay time. Both
spectra were obtained after Fourier transformation of 64 scans
of free induction decays (FID). Tetramethylsilane was used as
chemical shift reference at 0 ppm.

5. Details of simulation

The NMR spectrum obtained from the annealed glass
was deconvoluted using DMfit software25 for the units Q2,
Q3, and Q4 using mixed Gaussian/Lorentzian line shapes.
The amounts of the units obtained were 6%, 66%, and
28% for the units Q2, Q3, and Q4, respectively. Using
the current model, the Snm distribution was simulated by
fitting the appropriate ωn

m values in order to simulate a
realistic probability distribution that is in agreement with the
experimentally measured distribution. The fitted ωn

m values
and the probability distributions are presented in Tables S1
and S2, respectively.
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