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The continuous decrease on the geometric size of electronic devices and integrated
circuits generates higher local power densities and localized heating problems that cannot
be characterized by conventional thermographic techniques. Here, a self-referencing
intensity-based molecular thermometer involving a di-ureasil organic-inorganic hybrid thin
film co-doped with Eu3+ and Tb3+ tris (β-diketonate) chelates is used to obtain the
temperature map of a FR4 printed wiring board with spatio-temporal resolutions of
0.42 μm/4.8 ms.
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INTRODUCTION
Miniaturization, integration and the increase of physical com-
plexity in electronic devices and circuits tend to generate higher
local power densities and localized heating problems (Burzo et al.,
2005; Christofferson et al., 2008). The management of the heat
flux generated by the several billion of transistors that actually
exist in a single chip is one of the main challenges of the modern
electronics industry. Thermal management is therefore essen-
tial to improves electronics performance and reliability, posing a
limitation stronger than the downscaling itself. The temperature
distribution across integrated circuits must be, then, accurately
mapped with superior spatial resolution (Burzo et al., 2005;
Yarimaga et al., 2011; Liu et al., 2012).

The well-known limitations of contact thermometers has
strengthened the development of non-contact thermometry tech-
niques (Brites et al., 2012), such as, infrared (IR) thermography
(Meola and Carlomagno, 2004), thermoreflectance (Kolodner
and Tyson, 1983; Christofferson et al., 2008), optical interferome-
try (Kersey and Berkoff, 1992), Raman spectroscopy (Frazão et al.,
2009) and luminescence (Aigouy et al., 2005; Brites et al., 2010;
Vetrone et al., 2010; Kuzmin et al., 2011; Yarimaga et al., 2011;
Benayas et al., 2012). Luminescence methods combine temper-
ature sensitivities up to 5.0%·K−1 with spatial resolution below
1 μm and have been used to monitor and map temperature on
integrated circuits and electronic devices (Aigouy et al., 2005;
Jung et al., 2011; Yarimaga et al., 2011; Brites et al., 2013).

Here we report the use of a self-referencing intensity-
based molecular thermometer involving a di-ureasil organic-
inorganic hybrid thin film co-doped with Eu3+ and Tb3+ tris
(β-diketonate) chelates to map the temperature over a FR4
printed wiring board using commercial detectors and excitation
sources.

MATERIALS AND METHODS
The synthesis and characterization of the Eu3+/Tb3+ co-doped
di-ureasil organic/inorganic hybrids has already been described
in detail elsewhere (Brites et al., 2010, 2013). The first step
of the synthesis involves the formation in tetrahydrofuran
of an urea cross-linked hybrid precursor (De Zea Bermudez
et al., 1999). In the second step, the [Eu(btfa)3(MeOH)(bpeta)]
and [Tb(btfa)3(MeOH)(bpeta)] complexes [where btfa− is
4,4,4-trifluoro-l-phenyl–1,3-butanedionate, bpeta is 1,2–bis(4–
pyridyl)ethane and MeOH methanol] were incorporated as
ethanolic solutions together with water and HCl to promote
the hydrolysis of the urea cross-linked hybrid precursor. The
di-ureasil thermometer, hereafter named UET–1.3, incorporates
the Eu3+ and Tb3+ β-diketonate complexes in a 1:3 mass pro-
portion, respectively, and is processed as a film or a monolith.
Although the films can be obtained with high thickness control
by dip- or spin-coating techniques, here a ∼10 μm thermosen-
sitive UET–1.3 layer was deposited over a FR4 printed circuit
board (Figure 1A). UET–1.3 monoliths were also employed for
photoluminescence characterization and temperature calibration.

The size (250–1000 μm) and geometry of the copper tracks
etched over the FR4 printed wiring board determine the temper-
ature distribution profile that is controlled by the current feeding
the board. The UET–1.3 film was excited with a handheld UV
lamp (Spectroline E-Series, Aldrich, Model Z169625, operating at
365 ± 25 nm) and the emission was collected with optical fibers of
200 and 450 μm inner diameter. The emission spectra were then
analyzed in a portable spectrometer (Ocean Optics, USB-4000
FL) with limit of detection of 1/200. The fiber was positioned over
the circuit that was moved with a nanomax 3-Axis flexure trans-
lation stage from ThorLabs®, with variable steps (ranging from
800 to 50 μm).
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FIGURE 1 | (A) Geometry of the FR4 printed wiring board where A and B
characterize the directions used in temperature mappings. (B) Schematic
representation of the setup used. The heating circuit (H) was covered with
a UET–1.3 film (F) and positioned over a translation stage (T). The
temperature was controlled by the source (S). A handheld UV lamp (L) was
used to excite the film. The optical fiber (O) was connected to the portable
detector (D) and the emission spectra were processed in the computer (C).

A key parameter to evaluate the performance of a luminescent
thermometer is the relative sensitivity (S), defined as the relative
variation on the thermometric parameter (Q) with temperature:

S = dQ/dT

Q
. (1)

The relative sensitivity was proposed as a figure of merit to com-
pare the performance of distinct thermometers (Brites et al.,
2012). When the temperature is accessed in different points it
is possible to define the spatial resolution of the measurement
(δx) as the minimum distance between points that present tem-
perature higher than the temperature uncertainly (δT). It can be
estimated using the common expression (Kim et al., 2012):

δx = δT
∣
∣
∣ �∇T

∣
∣
∣
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(2)

where
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∣
∣ �∇T

∣
∣
∣
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= dT/dx is the maximum temperature gradient

of the mapping. The experimental setup used defines the temper-
ature detection limit and the temperature gradient. The temporal
resolution of the measurement (δt) is the minimum time interval
between measurements presenting temperature higher than δT:

δt = δT

dT/dt
(3)

where dT/dt is the temperature change per unit of time.

RESULTS
The emission spectra (Figure 2A), as well as the 5D4 and 5D0 life-
time values, are temperature dependent in the 10–330 K range
(Brites et al., 2010). This dependence and the room-temperature
emission quantum yield value (0.16 ± 0.02 at 365 nm) permit
to anticipate that the UET–1.3 thermometer sensitivity in the
290–330 K temperature range is enough to implement a sensor
based on the analysis of the emission spectra using commer-
cially cost-effective excitation sources and detectors (e.g., hand-
held UV lamp and a portable optical-fiber connected detector,
Figure 1B).

The temperature of the UET–1.3 film can be accessed measur-
ing the emission spectra and using the thermometric parameter
�, defined as:

� = I2
Eu − I2

Tb, (4)

where IEu and ITb stands for the integrated areas of the
5D0→7F2 and 5D4→7F5 transitions, assigned to Eu3+ and Tb3+,
respectively (Figure 2B). Other definitions for the thermomet-
ric parameter are also plausible (namely the ITb/IEu ratiometric
form) without losing the generality of the method. Here we
use, however, the previously reported thermometric parameter
� (Brites et al., 2010, 2011, 2013). The UET–1.3 local cali-
bration curve (Figure 3A) for the temperature range 290–330 K
was computed by three consecutive temperature cycles. A sec-
ond order polynomial fit to the experimental � values allows
the conversion of intensities into temperature. Given the 1/200
detection limit of the detector used in the experiments we can
anticipate an ultimate temperature detection limit of δTmin =
0.01 K. Nevertheless, in the experimental conditions used, a
temperature uncertainly δT = 0.15 K was estimated from the
full-width-at-half-maximum value of the temperature reads
Gaussian distribution in the absence of any external heat source
(Figure 3B).

Using a fixed heating current, bi-dimensional temperature
profiles of the FR4 printed wiring board along the directions
A and B in Figure 1A were reconstructed from the emission
spectra of UET-1.3 using the 200 and the 450 μm core diam-
eter fibers and different scanning steps (ranging from 800 to
50 μm), Figure 4. The spatial resolution of the thermometer was
calculated by Equation 2 using the temperature profiles along
the A direction in Figure 1A (Figure 5A). The results are com-
pared in Figure 6. The calculated spatial resolution is consid-
erably improved from 10 to 0.5 μm when the scanning step is
decreased from 800 μm to values around the fiber inner radius
(200 and 100 μm, for the 450 and 200 μm fibers, respectively).
For lower scanning step values the spatial resolution remains
almost constant. The higher spatial resolution measured with
the 200 μm core diameter fiber is 0.42 μm, a value 4.5 times
lower than the Rayleigh limit of diffraction (1.89 μm) in the
experimental conditions used (see discussion below). Despite the
minor changes of the spatial resolution when the scanning step
decreases from 200 to 50 μm (Figure 6), the transition from
the low to high temperature regions in the profile along the A
direction in Figure 1A is clearly much more defined for 50 μm
(Figure 4B).
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FIGURE 2 | (A) Temperature dependence of the emission spectra of
UET–1.3 (excited at 365 nm) in the 10–330 K temperature range. The
f-f lines corresponding to the 5D4→7F6, 5 (Tb3+) and 5D0→7F2−4

(Eu3+) transitions are identified. In the area marked with an asterisk

there is a superposition between the emission of Eu3+
(5D0→7F0, 1) and Tb3+ (5D4→7F4). (B) Normalized integrated
intensity of 5D0→7F2(red) and 5D4→7F5(green) in the temperature
range 290–330K.

FIGURE 3 | (A) Local calibration curve of UET–1.3 for the temperature
range 290–330K. The temperature was cycled three times and the
emission spectra recorded at equal time intervals when the temperature
increases. For all emission spectra the computed � parameter was
divided by its value at 303 K (�0) to get a thermometric parameter near
the unit. The results for all cycles are overlapped and the second

degree polynomial fit presented in the Figure (r2 > 0.995) is the local
calibration curve. (B) Relative frequency of the UET–1.3 temperature read
during 60 s in the absence of current in the heating circuit (inset). The
distribution of temperature (vertical bars) was fitted to a Gaussian (solid
line) resulting in a maximum at 295.4K and a full-
width-at-half-maximum of 0.15 K.

For the determination of the temporal resolution limit of the
mapping, δt, the heating current was turned on and the ther-
malisation of the copper track followed using the UET–1.3 ther-
mometer readout (Figure 5B). The temporal resolution achieved,
4.8 ms, is of the same order of magnitude than the detector
integration time set (e.g., 10 ms).

DISCUSSION
The seminal work of Kolodner and Tyson (1983) demon-
strated the potential of non-contact thermometry to map inte-
grated circuits reporting the temperature mapping of a MOSFET
through the emission of a polymer film containing Eu(tta)32H2O

(tta− stands for thenoyltrifluoroacetonate). A 0.01 K tempera-
ture resolution is expected based on shot noise of the collected
light; however experimental conditions (e.g., electric fluctua-
tions of detection system) degrade this limit to the 0.1–1.0 K
range. The spatial resolution is limited by the CCD smoothing
to 15 μm (Kolodner and Tyson, 1983). Since 2005 there is a sig-
nificant number of references reporting the temperature mapping
of active electronic devices with high spatial resolution.

Burzo et al. (2005) used the thermoreflectance of a MOSFET
device to map the temperature in a window of 15 × 50 μm, with
uncertainly of 13% (or 2.6 K) and spatial/temporal resolutions
of 2.3 μm/1.1 μ s, respectively. Tessier et al. (2007) recognized
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FIGURE 4 | Pseudocolor temperature maps reconstructed from the

emission of UET–1.3 collected with the 200 µm core diameter fiber (A)

along the directions A and B indicated in Figure 1A, using a scanning

step of 200 µm, and (B) along A direction, changing the scanning step

from 50 to 200 µm. The shadowed areas correspond to the position of the
copper tracks.

FIGURE 5 | (A) Temperature profiles along the A direction indicated in
Figure 1A for the 200 μm core diameter fiber using scanning steps of 50 μm
(blue squares) and 200 μm (red circles). The maximum temperature gradient

is 0.357 × 106 K·m−1. (B) Temporal dependence of the temperature over the
copper track represented in (A) measured with the 450 μm core diameter
fiber. The arrow marks the instant when the heating current was turned on.

that the thermoreflectance of integrated circuits fabricated over
silicon can also be used in backside imaging exploiting the trans-
parency of this substrate in the near IR region. The technique
produces temperature mapping with spatial resolution of 1.7 μm
and temporal resolution defined by the camera triggering at 50 ms
(Tessier et al., 2007). The small value and the temperature and
wavelength dependence of the thermoreflectance coefficient is
actually the most challenging aspect for thermoreflectance based
thermometry, making the setup for temperature mapping quite
sophisticated (Burzo et al., 2005).

The use of a scanning thermal microscope (SThM) adapted
for fluorescence reads (Benayas et al., 2012) was reported by
Aigouy et al. (2005, 2009, 2011) and Saïdi et al. (2009, 2011) to
work in the sub-wavelength spatial resolution regime. Regarding
high-resolution thermal imaging of integrated circuits, Saïdi

et al. (2011) used a small fluorescent Er3+/Yb3+-doped PbF2

nanocrystal as a temperature sensor. The technique presents
temperature uncertainly ∼1.0 K, spatial resolution of 0.027 μm,
despite the relatively long acquisition times (100 ms per pixel),
that invalidates the transient mapping of the device (Saïdi et al.,
2011).

In fact, the use of conventional optical microscopy for temper-
ature mapping set the Rayleigh criterion as the ultimate spatial
resolution limit (Tessier et al., 2007; Serrels et al., 2008):

δxRL = 1.22
yλ

D
= 1.22

λ

NA
(5)

where λ is the maximum wavelength, y is the distance to the
emitting surface, D is the diameter of the detector and NA is the
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FIGURE 6 | Spatial resolution of the UET–1.3 thermometers for

different scanning steps. The red circles and black squares correspond to
the mappings using the 200 and 450μm diameter fiber, respectively. The
solid lines are guides for the eyes. The interrupted red and black lines
correspond to the Rayleigh spatial resolution limit of the 200 and 450 μm
diameter fibers, respectively.

correspondent numerical aperture. In recent years, a number of
fluorescence imaging techniques with sub-diffraction-limit reso-
lution have been developed, achieving a spatial resolution until
0.01 μm (Rust et al., 2006).

The Rayleigh spatial resolutions applied to the experimental
parameters used in this work are presented in Figure 6. Contrary
to the Rayleigh spatial limit that increases for narrower fibers,
the temperature spatial resolution as defined here (Equation 2)
improves when narrower fibers are used. This conclusion results
from the area probed by the fiber (fiber field-of-view) can change
significantly in a small step (the area change is 1.25% of the
fiber field-of-view for the best spatial resolution value). As the
temperature readout results of a spectroscopic measurement (the
temperature at each position is averaged over the field-of-view of
the fiber) it is not limited by the Rayleigh criterion. The spatial
resolution is limited by the experimental setup used that produces
a field-of-view averaged temperature change above the sensitivity
of the detector.

Figure 7 compares the spatio-temporal resolution for temper-
ature mapping of integrated circuits using distinct luminescent
thermometers. This figure shows that the choice of high spatial
resolution compromises the temporal resolution and vice-versa.
To reach spatial resolution in the micrometer range (1–10 μm)
the temporal resolution ranges from the microsecond to the frac-
tion of the second. Although thermoreflectance based technique
displays high temporal resolution and SThM based techniques
present the highest spatial resolution, the combination of high
spatial and temporal resolutions in a single temperature mapping
has not been reported yet, showing that there is plenty of room to
improve the temperature mappings reported so far.

CONCLUSIONS
Here we report the use of Eu3+/Tb3+ co-doped di-ureasil thin
films to perform temperature mapping of integrated circuits with

FIGURE 7 | Spatio-temporal resolution for temperature mapping of

integrated circuits using distinct luminescent thermometers.

temperature with spatio-temporal resolution of 0.42 μm/4.8 ms.
The finer temperature spatial resolution reached is below the
Rayleigh optical spatial resolution limit, because it results from
a spectroscopic measurement. The temperature mapping spatial
resolution depends on the scanning step and on the diameter
of the optical fiber used. The spatial resolution is not improved
for scanning step values lower than the fiber inner radius;
nevertheless narrower fibers produce finer temperature spatial
resolution.

The technique presented here can be easily used for routine
temperature maps with cost-effective equipment (e.g., a portable
spectrometer and a handheld excitation source) furnishing results
of the same order of magnitude of those obtained with more
sophisticated setups. We can foresee that the spatio-temporal res-
olution values presented here does not constitute the ultimate
limit of the technique that predictably will improve both reso-
lutions using sensitivity-enhanced materials, for the 290–330 K
operating range. Although the UET–1.3 film thermometer is a
cost effective competitive approach combining equitable spa-
tial and temporal resolution we are currently investigating new
materials to address these demands.
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