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ABSTRACT 
In the last decades the fiber Bragg gratings (FBG) and Fabry-Perot Interferometer (FPI) micro cavities based sensors 
have become one of the most attractive optical fiber sensing technologies. However, its production requires a significant 
economical investment. We propose a cost effective solution based on micro cavity generated by the recycling of optical 
fibers destroyed through the catastrophic fuse effect. This technique considerably reduces the experimental complexity 
and the production costs. In this paper, the application of these sensors in the monitoring of several parameters, such as 
refractive index, pressure, strain and temperature is presented. 
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1. INTRODUCTION 

Nowadays, as result of its advantages over traditional electronic sensing [1], optical fiber sensors are widely used for 
several applications concerning parameters such as strain and pressure, high temperature and refractive index (RI) 
sensing, among many others [2-4]. The most suitable optical fiber sensing technologies are based on fiber Bragg gratings 
(FBG) or Fabry-Perot Interferometer (FPI) micro cavities, due to its small size enclosing an accurate response and 
sensitivity [1-3, 5, 6]. Nevertheless, the production of such sensing devices demands an high economical investments and 
requires complex implementations [7, 8].  

In this work we propose an innovative and cost effective solution to obtain optical fibers FPI sensors, based on micro 
cavity produced by the recycling of optical fibers destroyed through the catastrophic fuse effect. This technique 
considerably reduces the process manufacturing costs, making the manufacturing apparatus affordable and requiring 
small experimental complexity. 

2. SENSORS DESCRIPTION 

The catastrophic fiber fuse effect phenomenon, first observed in 1987, is characterized by the continuous self-destruction 
of the fiber, by vaporizing the fiber core [9,10]. This process is commonly ignited by a local heating point, induced by a 
high density of energy on a tight bend in a fiber, a damaged or unclean connector. The self-induced destruction is 
described as fuse zone, propagating towards the optical signal source with an average velocity of 0.5 m s-1 [11]. The 
demand for higher bandwidths on modern optical communications has significantly increased the amount of energy 
propagating on the fiber network, promoting the catastrophic fuse effect as a real problem on future optical 
communications networks. 
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The FPI micro cavities approach for pressure sensing has a similar setup as the one used for RI sensing, with the sensor 
dimensions of 169.8 ± 2.3 μm for the cavity length, a maximum width of 91.8±0.9 μm and a width in the fiber tip of 
21.2±0.6 μm. However, in this particular situation, the sensibility to pressure was tested by placing the sensor inside a 
recipient, and gradually increasing the water column high above it in the recipient in 4 cm steps, inducing the cavity 
length L to decrease. The typical wavelength spectra obtained for this tests are displayed in Figure 6.a), and the 
wavelength modulation period as function of the pressure induced in the sensor for the water levels in analysis is 
displayed in Figure 6.b).  
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Figure 5. a) Micro cavity reflection spectra for different values of applied pressure; b) Micro cavity modulation period 
as function of increase pressure (the line corresponds the best fit to the experimental data, r>0.96) 

From the experimental data analyzed a sensitivity of 1.21 ± 0.06 pm/Pa was achieved, which reveals an enhancement in 
the sensitivity when compared with similar sensors manufactured through more demanding complex experimental 
apparatus [14]. 

3.3 Strain sensor 

For the analysis of the micro cavities for strain sensing, a micrometric translation stage was used. The fiber holding the 
micro cavity (Figure 2.c), with the dimensions of 41.5±0.5μm in the longitudinal axis and 55.3±0.5μm in the transversal 
axis) was fixed between a rigid fixed support and the linear translation stage, with a distance between anchorage points 
of 13.0 cm. The sensor reflection spectrum was obtained as function of the imposed elongation, ranging from 0 μm to 
750 μm, which corresponds to a maximum strain value of 5769 με. The reflected optical spectra for different values of 
the applied strain are shown in Figure 6.a), and the strain sensitivity, obtained by the linear fit of the spectral wavelength 
shift as a function of the applied strain, is estimated in Figure 6.b). 
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Figure 6. a) Measured reflection optical spectra for different strain values; b) Spectral wavelength shift as function of 
the applied strain. The dots represent the experimental data and the lines are the best linear fits (r>0.99). 

This characterization was performed until the fibers fracture, revealing a rupture limit of 5769.23 με, and a strain 
sensitivity of 3.1±0.1 pm/με. These values are identical, within the experimental uncertainty, to those  obtained for the 
rupture limit of single mode silica optical fibers [15], pointing out that the this micro cavities production process does not 
debilitate the optical fiber robustness.  

3.2 Pressurre sensor 
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A cavity under a physical perturbation will undergo a physical length change. Therefore, a longitudinal strain applied to 
the FPI optical cavity will change the cavity physical length, resulting in the wavelength shift of the FPI cavity reflection 
transfer function. The wavelength shift can be related with the longitudinal relative elongation, εz, by [16]: 

z
4

(2 1)
md L

dz m
λ ε=

+
                                                                            (3) 

where m is the order of the interference. Although equation (4) shows an explicit dependence with the cavity physical 
length, the m parameter is also dependent on L, as shown before in [16] and a fact often ignored by other authors [5,17]. 
When a strain is applied along the longitudinal axis of the fiber, it will also induce a reduction of the cavity with, due to 
the small diameter of the fiber. This effect make the micro cavity response to external deformation (strain sensitivity) 
dependent on the cavity volume, with a proportionality constant of (4.8±0.4) × 10-7 pm µε-1 µm-3 [16]. 

3.4 High temperature sensor 

For the thermal characterization the micro cavity based sensor was placed in a tubular furnace, and the temperature was 
increased from 22ºC till 1150 ºC in 100 ºC steps. Figure 7 shows the reflected optical spectrum and the spectrum 
wavelength shift as function of the temperature values. 
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Figure 7. a) Spectral response for two different temperatures, and  b) Spectral wavelength shift as function of the 
temperature increase. The dots represent the experimental data and the lines are the best linear fits (r>0.98). 

Considering the influence of the temperature, T, in the micro cavity length (with an initial value of 626.4±2.3 μm), a 
sensitivity of 7.1±0.3 pm/°C was achieved  with stable responses temperatures up to 1150 ºC.  The value obtained for 
this sensor is close to the sensitivity obtained for typical uniform FBG device, 13.9 ± 0.3 pm/°C, with the advantage that 
these micro cavities sensors were able to stand temperatures up till 1150 °C, while a FBG sensor is erased at 
temperatures above 500 °C. Additionally, the micro cavities based sensors stability at 1000 °C was tested, showing its 
ability to stand such harsh conditions for several hours, with no significant changes in the reflected spectra.  

When compared with similar high temperature sensors, like RFBG [18, 19], the micro cavities sensor present similar 
robustness and a sensitivity in the same order of magnitude as a typical RFBG (16.1 ± 0.1 pm/ºC) with a low cost and 
less complex manufacturing setup. 

4. CONCLUSION 

In this work we present an innovative and cost effective process for FPI micro cavities sensing systems through the 
recycling of optical fiber destroyed by the catastrophic fuse effect, with applications in RI, pressure, strain and high 
temperature measurements. The sensitivities obtained for the developed devices are generally in the range of similar 
systems produced through high cost experimental apparatus which makes the solution reported an advantage regarding 
the low cost and complexity of production and implementation. 
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