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Abstract: The purpose of this review is to present the most recent findings in bone tissue 

engineering. Special attention is given to multifunctional materials based on collagen and 

collagen–hydroxyapatite composites used for skin and bone cancer treatments. The multi­

functionality of these materials was obtained by adding to the base regenerative grafts proper 

components, such as ferrites (magnetite being the most important representative), cytostatics 

(cisplatin, carboplatin, vincristine, methotrexate, paclitaxel, doxorubicin), silver nanoparticles, 

antibiotics (anthracyclines, geldanamycin), and/or analgesics (ibuprofen, fentanyl). The suit­

ability of complex systems for the intended applications was systematically analyzed. The 

developmental possibilities of multifunctional materials with regenerative and curative roles 

(antitumoral as well as pain management) in the field of skin and bone cancer treatment are 

discussed. It is worth mentioning that better materials are likely to be developed by combining 

conventional and unconventional experimental strategies.
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Introduction
Bone is one of the naturally occurring composite materials that still does not have an 

artificial correspondent.1 The interdependence between its morphology and properties 

is well understood, and two types of bone structures – cortical (compact) and trabecular 

(spongy) – can be easily identified. These different morphologies seem to be induced 

by piezoelectricity, with cortical bone being a result of a mechanically assisted bio­

mineralization process.2 The arrangement of osteons along with the loading direction 

can be explained by piezoelectricity. Recently, Noris-Suárez et al reproduced natural 

biomineralization conditions in vitro. They proved that the mechanical loading of the 

collagenous material induces important modifications upon the mineral-deposition 

process. They demonstrated that once mechanical loading takes place, the collagen 

fibers became arched and the negative charges appear especially distributed on the 

compressed zones. This is why mineralization occurs predominantly on the compressed 

areas, even if no osteoblasts are present.3

Tissue engineering is of interest for researchers especially because of the increas­

ing need for grafting materials.4 The starting monolithic materials have been continu­

ously improved by adding different components aimed at inducing new properties or 

to improve existing ones.5–9 The most common improvements have been related to the 

increase of healing rate, biocompatibility, or mechanical properties, or with the inducing 

of new properties, such as antimicrobial, anti-inflammatory, or analgesic activity. These 

new properties are sought after to avoid certain undesirable side effects or infections.7,9–11 
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The complex composition and morphology of bone tissues 

confers them remarkable properties and functionalities.1,12–14 

In the last few decades, many researchers have invested their 

efforts in developing new materials for bone grafting inspired 

in bone composition and structure.15 The compositions of 

bone and some of the most studied bone grafts are presented 

in Table 1. The systematic study of bone grafts can be con­

sidered to have started in the early twentieth century, when 

different transplants were done (allografts and xenografts).16 

Nowadays, special attention is paid to the synthesis of new 

bone grafts based on composite (nano)materials. Also, many 

papers deal with the important issue of how to design these 

materials in order to obtain improved biological properties. 

Biocompatibility and biointegration are usually realized by 

using engineered composite (nano)materials starting from 

natural polymers, calcium phosphates, and bone cells.5,6

Based on the classification made by Ashby et al,17 nowadays 

there is a gradual transition occurring from the “nano- and 

bio-” age to a material-design age. During the nano- and bio-

age, scientists focused their attention on improving material 

properties by decreasing materials’ size to the nanometric scale, 

but also paid attention to improving biological assessment in 

order to be better accepted by the human and animal body.18 

The material-design age maintains this principal concern, but 

improvements are achieved by optimizing such material char­

acteristics as porosity, hydrophilicity, pore size, distribution, 

and shape, etc.19,20 This is why there are a lot of papers dealing 

with material design or tissue-engineered nanobiomaterials, 

or even with both concepts.5,12,13,21–27 The use of bone cells for 

obtaining bone grafts could bring some major advantages:  

1) the cells could be gathered from the patient and cultured in 

vitro; 2) the opportunity for using available stem cells that can 

be differentiated under proper conditions into bone cells; and  

3) bone graft seeded with bone cells has the ability of being 

easily invaded by new bone ingrowth, thus promoting a much 

faster integration and the achievement of natural bone proper­

ties in a shorter time, in safe conditions, and with less donor 

tissue compared with classical auto- and allografting proce­

dures.36,37 Moreover, the bone graft can act as a drug-delivery 

system for antibiotics and consequently enhance bone ingrowth 

in conjunction with wound healing.37

Worldwide, cancer remains the second-most common 

cause of death, despite the advances in prevention, early 

detection, and protocols of treatment. It is well known that 

pain continues to be the most feared complication during 

treatment.38–40 In 2008, the total number of new cancer 

cases, based on the International Agency for Research on 

Cancer, was 12,662,554 (52.26% men), while for 2030 ∼21 

million new cases of cancer are expected.41 Mortality is 

strongly influenced by cancer type. The overall or mortality 

numbers worldwide in 2008 were 7,564,802 (∼59.75% of 

total incidence). Among the cancer types, the best survival 

rates (mortality/incidence × 100) are for thyroid and testis 

cancer (16% and 18%, respectively), while the worst are for 

liver and pancreas cancer (93% and 96%, respectively).42 The 

very low survival rate is probably strongly influenced by the 

high mortality induced by lung cancer (which accounts for 

∼18.2% of total cancer mortalities).43

Cancer usually occurs in mature/old people, except 

osteosarcoma, which is typically diagnosed in young 

people (10–20 years old) and rarely in old people,44,45 in 

the extremity of the long bones, especially in the femur.46 

There are 45 main types of primary bone tumor, the most 

important being osteosarcoma (35.1% of the primary bone 

tumors), followed by chondrosarcoma, Ewing’s sarcoma, and 

chondroma. By sex, males are more exposed to bone cancer 

(4% incidence in males compared to 3% in females),47 even 

though osteosarcoma develops earlier in females compared 

with males (by about 2 years).46

Cancer treatment is mainly based on surgery and radio- 

and chemotherapy, but also other unconventional therapies 

are available: hyperthermia, targeted therapy, immuno- or 

phototherapy, the use of nanoparticles or stem cell trans­

plants, or many other less used therapies.48 Hyperthermia is 

being used more and more as complementary therapy. The 

main result of the application of this therapy is decreasing  

chemotherapeutic doses or levels of radiation needed to 

Table 1 Composition of bone and its substitutes

Bone28,29 50–74 wt% mineral phase; mainly HA 45%–58%, 
carbonate ∼4%, citrate ∼0.9%, sodium ∼0.7%, 
magnesium ∼0.5%, but also many other trace 
elements, such as Cl–, F–, K+, Sr2+, Pb2+, Zn2+, Cu2+, 
Fe2+; 16–40 wt% organic (85%–90% collagen);  
,10 wt% water

Substitutes29–35 Metals and alloys (first-generation bone grafts): 
titanium and its alloys, stainless steel, Co–Cr alloys
Ceramics and polymers (second-generation bone 
grafts): calcium phosphates, Al2O3, ZrO2; collagen, 
gelatin, chitosan, chitin, alginate, PLLA, PLGA, 
PVA, PMMA, PE, PCL
(Nano)composite (third-acellular materials and 
fourth-generation bone grafts, containing cells  
or derived): COLL/HA, HA/gelatin, HA/chitosan,  
HA/alginate, HA/PLGA, HA/PLLA, HA/PE,  
HA/PVA, COLL/PVA/HA

Abbreviations: COLL, collagen; HA, hydroxyapatite; PVA, polyvinyl alcohol; 
wt, weight; PLGA, polylactide-co-glycolide; PMMA, polymethyl methacrylate; PE, 
polyethylene; PCL, poly-ε-caprolactone; PLLA, poly-L-lactic acid; Co-Cr alloys, 
Cobalt-Chrom alloys.
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maintain or even improve the efficiency of the treatment.49–51 

Also, the use of nanoparticles showed a significant antitumoral 

effect, alone or in association with other therapies.52–55 These 

alternative therapies are mostly in the experimental phase of 

research, present an exciting challenge for the present, and will 

probably offer solutions for cancer treatment in the future, but 

there are also some alternative therapies currently available for 

cancer treatment, such as Doxil® (Janssen, Beerse, Belgium) 

and Abraxane® (Celgene, Summit, NJ, USA).55

Drug-delivery systems are also used for different kinds of 

cancer. The most popular drug-delivery systems are based on 

polymers and ceramics and their composites. Polymers are 

by far the most used drug-delivery systems, the most used 

being polyethylene glycol (PEG), polyethylene oxide, poly-

ε-caprolactone, chitosan, alginate, polyvinyl alcohol (PVA), 

polymethyl methacrylate, cellulose, etc.56–67 Also, proteins 

(collagen being the most abundant) are known as support 

for drug-delivery systems, but usually their high chemical 

and physical instability present technical problems related 

to synthesis and storage.68–71 PVA is extremely useful for 

chemoembolization, and in certain conditions can be loaded 

with various antitumoral drugs, such as cisplatin, doxorubi­

cin, mitomycin C, and ethiodol.67,72–74 Ceramic drug-delivery 

systems are also used for the treatment of bone cancer.75

Collagen–hydroxyapatite  
composite materials
Collagen is a special class of proteins present in many tissues 

and organs. The history of collagen starts in 1960 with the 

discovery of the first representative of this class. Currently, 

29 types of collagen76 are known. From the point of view 

of distribution and biomedical applications, type I collagen 

is by far the most abundant and used variety. The intensive 

use of type I collagen can be easily explained based on the 

following: 1) there are a large number of type I collagen 

precursors (especially bovine calf); 2) the extraction technol­

ogy is convenient (even native, fibrillar collagen is obtained 

under controlled conditions, collagen being susceptible to 

denaturation), because of the short extraction time with 

cheap reactants, especially if compared with the technology 

of extraction of type V collagen from bone.77–79 In the case 

of bone, a supplementary step is required, which consists of  

bone decalcification with hydrochloric acid and/or ethyl­

enediaminetetraacetic acid.80–82 Once extracted, the native 

or denatured collagen can be stored as gel or transformed in 

fibers or matrices.77

It is worth mentioning that type I collagen is also com­

mercially available and used as wound dressing, especially in 

the case of burns,83,84 as a main component of many creams 

designed for care or treatment of skin laxity, rhytides, or 

photoaging,85 or as a component of many engineered materi­

als used for bone regeneration and cancer treatment.70,78,86,87 

Collagen has also been used since 1980 as a drug-delivery 

system for ophthalmic agents (especially the antibiotics 

gentamicin and vancomycin),88 the trend being to extend the 

use of this material in obtaining many other drug-delivery 

systems.71,78,89

Despite intensive research efforts in the field of bone and 

bone grafts,29,90–94 the properties of the materials obtained are 

still far from those of healthy bone.95 Many types of materials 

have been separately attempted as bone grafts, such as ceram­

ics32,96,97 and polymers,98,99 or combined in different manners 

to obtain composite materials.12,22,23,27,29,93,100–108 Collagen–

hydroxyapatite (COLL/HA) composites are desired materials 

for bone grafting, especially due to their very good compo­

sitional similarity with bone,1,28 but also as drug-delivery 

systems.109–113 COLL/HA composite materials are currently 

extensively used as bone grafts.12,21,33,34,93,100–108,114–117 Obvi­

ously, the biological properties as well as the mechanical 

properties are influenced by the manufacturing process. The 

size and crystallinity of hydroxyapatite crystals are essential 

parameters that influence the biological properties,95,118 mate­

rials based on smaller crystals inducing less inflammatory  

response.95

Most studied are the porous COLL/HA composite mate­

rials, which could be considered especially for trabecular 

bone grafting and reconstruction, but can also be used for 

compact bone reconstruction. The biointegration of COLL/

HA scaffolds is strongly influenced by porosity and pore size. 

Generally, it can be assumed that 150–200 µm pores are opti­

mal for rapid osteointegration.119 Larger pores are unwanted, 

because the mechanical properties of the graft drastically 

decrease, while narrower pores limit cell penetration inside 

the graft.120,121 Porosity and pore size can be controlled by 

different parameters, such as precursor concentration, drying 

conditions, presence of different components, etc.13,22 Usually, 

COLL/HA composite materials with high porosity are 

obtained from diluted, mineralized collagen gel followed by 

freeze-drying. Control of porosity can easily be achieved 

by controlling the drying process, (eg, air-drying followed by 

freeze-drying).13 It has been proved that porosity decreases 

upon increase in air-drying time/extent.12,13 The explanation 

is very simple: air-drying is driven by capillary action that 

makes the material shrink and become denser during the 

evaporation of liquid water.12 Conversely, capillary forces 

are absent in freeze-drying, which involves sublimation of 
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frozen water, therefore maintaining the initial morphology 

of the porous structure. Based on literature data published 

by us,13 the evolution of the porosity of samples obtained by 

combined drying is presented in Table 2, and ranges between 

95% and 38%.

More compact composite materials are usually obtained 

from collagen gel by mineralization under such conditions 

that allow continuous material restructuring (Table 2, sample 

SA, COLL-PVA 1:2 A, or COLL-PVA/HA 1:2:3 A). Porosity 

can fall below even 5% if centrifugal sedimentation is used 

and only then dried in air.

Figure 1 presents the morphology of some COLL/HA 

composite materials obtained by mineralization of collagen 

in different forms (gel, matrix, or fiber).12,21,115 From collagen 

gel, both porous and compact materials as well as materials 

with intermediate porosity can be obtained. The mineraliza­

tion of collagen matrix usually leads to porous composite 

materials. Probably, under certain conditions, collagen matri­

ces and fibers can be processed to more compact materials. 

Porous composite materials have been tested as drug-delivery 

systems because, similarly with natural bone, the exchange 

rate (here the release rate) of the porous materials is higher 

than the release rate from compact materials.

Multifunctional materials
A lot of materials have been tested as delivery support 

for bone-related diseases. A short review on this specific 

topic was recently published by Soundrapandian et  al.122 

Most of these drug-delivery systems are based on the 

combination of different polymers with bioglass or calcium 

phosphates. Even if natural polymers are more suitable, 

a lot of composite materials based on synthetic polymers, 

such as polycaprolactone, poly(d,l-lactide), polylactide-co-

glycolide (PLGA), or polymethyl methacrylate, have been 

also regarded with increasing interest.122–124 The enhanced sta­

bility of synthetic polymers in comparison with natural ones 

explains the higher number of composite materials based on 

synthetic polymer matrices. Further, the possibility of tailor­

ing the composition of synthetic polymers enables a broader 

range of properties to be obtained for the final composites, 

including mechanical properties, drug-release rate, etc.

Starting from the well-established materials for bone 

grafting, different kinds of natural or synthetic components 

(Table 3) have been added in order to induce some new 

functionalities. Multifunctional materials are being regarded 

with increasing interest for both industrial and biomedical 

applications.125,126 The multifunctional features of collagen 

and COLL/HA composite materials can be induced by the 

incorporation of various components, such as bone mor­

phogenic protein,127–131 vitamins,110,132 bisphosphonates,111,133 

antibiotics,69,112,113 magnetite,116 cytostatics,70 or even more 

complex systems.134 A main functionality of many of 

these systems is related to their ability to deliver the active 

component. Perhaps the most studied drug-delivery systems 

are those loaded with antibiotics or analgesics.134 For the 

treatment of severe bone defects, surgical intervention might 

be required, because otherwise self-healing would be very 

slow, or even abnormal repair could happen.29 The current 

protocols in the case of surgical intervention include the 

administration of antibiotics. A better alternate is to use bone 

grafts with antibacterial activity (for instance, an antibiotic-

loaded bone graft), because the local delivery of the antibiotic 

reduces the systemic toxicity of these drugs.135,136 The use of 

analgesic-loaded materials is a real need in the treatment of 

many diseases. In some cases, drug-loaded systems are easy 

to apply clinically. For instance, in the case of bone cancer, 

resection of the tumoral tissue is often required, leaving a 

bone defect that needs to be filled with bone-regenerative 

material. Bone fillers can in fact be more complex systems 

incorporating pharmaceutically active substances (analgesic 

and/or antitumoral drugs), allowing them to be released 

in situ.70,134 Generally, the presented multifunctional systems 

were developed in order to assist natural repair mechanisms 

(bone morphogenic protein presence improves the rate of 

bone regeneration, bisphosphonate indirectly favors bone 

formation by suppressing bone resorption) or even to act as 

Table 2 Influence of preparation route and composition on the 
porosity of different samples

Sample Porosity, % Observations

CAD 0 95 CAD samples obtained 
by controlled air-drying, 
followed by freeze-drying 
Data extracted from 
Andronescu et al13

CAD 30 94
CAD 48 93
CAD 76 92
CAD 96 88
CAD 173 54
CAD 199 38
SA 16 COLL/HA material obtained 

by self-assembly12 (data not 
presented in that manuscript)

COLL-PVA 1:2 L 93 “L” samples obtained by 
freeze-drying 
“A” samples obtained by 
air-drying 
Data extracted from Ficai et al5

COLL-PVA 1:2 A 19
COLL-PVA/HA 1:2:3 L 79
COLL-PVA/HA 1:2:3 A 14

COLL/HA centrifugation 3 COLL/HA material obtained 
by mineralization followed 
by centrifugal sedimentation 
(data not published)

Abbreviations: COLL, collagen; HA, hydroxyapatite; PVA, polyvinyl alcohol.
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drugs (for avoiding infections [antibiotics] or even to fight 

against cancer [cytostatics] or other bone-related diseases). 

All these systems can be assimilated with drug-delivery 

systems and could be used to treat diseases from simple bone 

defects/fractures up to bone cancer. It is expected that clini­

cal trials will be positive, because local administration will 

improve drug efficiency and limit side effects.70,137

Drug-delivery systems  
for bone cancer treatment
Research on cancer treatment has focused on two main 

areas: 1) developing new drugs, and 2) improving the 

activity of existing drugs by reducing their side effects. 

The main strategy for improving the activity of antitumoral 

agents is local delivery. A lot of drug-delivery systems were 

proposed and tested between 1991 and 2013,138 such as 

PLGA/doxorubicin,139 chitosan/paclitaxel,140 polyurethane/

curcumin,141 chitosan/ellagic acid,142 alginate/cisplatin,62  

poly-l-lactic acid/paclitaxel,143 PLGA/isopropyl myristate/

paclitaxel,143 PEG–poly(aspartic acid)/adriamycin,144 gela­

tin/doxorubicin,145 hydroxyapatite/platinum complexes,146,147 

or COLL/HA/cisplatin.70

Apatite-based materials are extensively used as bone filler/

grafts.148–150 This is why many drug-delivery systems designed 

for bone-disease treatment are based on hydroxyapatite. For 

instance, hydroxyapatite/cisplatin drug-delivery systems 

were obtained and tested as delivery systems of different 

platinum complexes.147,151–154 Many trials were taken into 

account, focusing on the synthesis route, drug content, 

porosity, pore size, etc. Hydroxyapatite samples with dif­

ferent porosity fractions (58%, 76%, and 82%) and average 

pore sizes (15 µm, 21 µm, and 35 µm) were obtained by the 

gel-casting method followed by cisplatin loading.147 Percent­

age cisplatin recovery after 168 hours increased from 21% 

to 28% and 42% as porosity fractions increased within the 

aforementioned range (58%–82%). Control of the release 

rate is of paramount importance, because long-term deliv­

ery could decrease cancer recurrence by reducing remnant 

cancerous cells.70

Recently, Abe et  al developed new paclitaxel-loaded 

hydroxyapatite/alginate composite material for the treatment 

of metastatic spine cancer,153 which develops frequently in 

patients with breast cancer. Based on animal experiments, the 

use of paclitaxel-loaded hydroxyapatite/alginate composite 

COLL/HA composite materials
derived from collagen matrices

COLL/HA composite materials
derived from collagen matrices

COLL/HA composite materials
derived from collagen gel

COLL/HA composite materials
derived from collagen gel

Gel Matrix Fiber/s
COLL/HA
composite
materials
derived

from
collagen

fibres

100 µm100 µm

200 µm

200 µm200 µm
200 µm

200 µm
200 µm

Figure 1 Collagen (COLL) forms and their COLL/hydroxyapatite (HA) composite (nano)materials.
Notes: Reprinted from Chem Eng J.160. Ficai A, Andronescu E, Voicu G, et al. Self assembled collagen/ hydroxyapatite composite materials. 794–800. Copyright (2010), with 
permission from Elsevier.12 Reprinted from Mater Lett. 64. Ficai A, Andronescu E, Trandafir V, Ghitulica C, Voicu G. Collagen/hydroxyapatite composite obtained by electric 
field orientation. 541–544. Copyright (2010), with permission from Elsevier.21 Adapted from Golub LM. Special Issue: Clinical Applications of Non-Antbacterial Tetracyclines 
Introduction. Pharmacol Res. 2011;63:99–101.114
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beads led to 140%–150% increases in disease-free time as 

well as survival time compared with control animals.

Itokazu et  al developed some drug-delivery systems 

based on hydroxyapatite and cytostatics for bone 

cancer treatment.177–179 They proved that porosity and pore 

size influenced the release rate of both doxorubicin and 

methotrexate. The implantation of these ceramic blocks 

at the tumor site led to a reduction in dose of the antitu­

mor agent, and consequently the risk of systemic toxicity 

decreased drastically compared with conventional systemic 

administration. The improved contact of antitumor agents 

with tumoral cells is expected to reduce the recurrence and 

metastasis of cancer.

A gelatin/doxorubicin drug-delivery system145 was 

obtained and tested for the treatment of bone cancer, 

because doxorubicin is one of the most potent antitumor 

agents in use for bone cancer treatment, while the gela­

tin could act, after doxorubicin release, as a scaffold for 

bone regeneration. The classical administration route of 

doxorubicin is undesirable because of severe side effects. 

A general way to reduce side effects is to avoid intravenous 

administration of antitumor agents by using drug-delivery 

systems. In the case of bone cancer, the use of implantable 

gelatin/doxorubicin could be a promising way of targeted 

delivery of doxorubicin to tumoral tissue. The rate of 

delivery could be easily controlled by the degree of cross-

linking and porosity.

COLL/HA–cisplatin is a remarkable material for the 

treatment of bone cancer because it assures two functions: 

targeted delivery of cisplatin and acting as a regenerative 

scaffold.70 For this reason, samples were obtained and tested 

from the point of view of cisplatin-induced cytotoxicity. The 

delivery curve of cisplatin has two independent regions: 

a fast delivery up to 2 hours, followed by a sustained delivery 

of cisplatin up to 26 hours.70 The short release time can be 

exploited by choosing a proper polychemotherapeutic method 

that includes the cisplatin release and further traditional 

administration of complementary cytostatics.181

Bone cancer is usually associated with terrible pain.182–184 

Up to 30% of patients with recently diagnosed cancers report 

pain. With the evolution of the cancer, the pain becomes more 

intense, and about 80% of patients with primary bone cancer 

and over 90% of patients with metastases to osseous struc­

tures need ever-stronger drugs for pain management.39,185–187 

Based on the World Health Organization analysis, pain inten­

sity as well as pain management is classified at three levels. 

The lowest level of pain is usually treated with nonopioid 

and/or adjuvant drugs (aspirin and acetaminophen being 

extensively used), the middle and worst levels of pain need 

increasing doses of opioids (and also with increasing effi­

ciency from weak [codeine, for instance] to strong opioids 

[morphine, for instance]) combined or not with nonopioid 

and/or adjuvant drugs.186 In the case of severe pain, systems 

with immediate or sustained release are used.187

Magnetite and magnetite-based  
materials for bone cancer treatment
An overview of the most important applications of magnetite 

and magnetite-based materials is presented in Figure 2. Pure 

magnetite is rarely used for cancer treatment, in particular 

because of its high tendency of agglomeration and high 

reactivity. This is why many researchers have attempted to 

functionalize its surface from simple fatty acids,188 up to 

Table 3 Common components used for inducing bone graft 
multifunctionality

Component Observations References

Collagen Support material for tissue  
regeneration (especially  
skin-tissue regeneration)

83,84

Hydroxyapatite Support material for tissue  
regeneration (especially for  
bone-tissue regeneration)

95

BMPs Improve bone regeneration 127–131 
155–158

Bisphosphonate Synthetic compounds that are  
taken up preferentially by the  
skeleton and suppress osteoclast- 
mediated bone resorption

133,159

Vitamins 1,25 Dihydroxycholecalciferol  
(D3) – calcium homeostasis 
Vitamin K – responsible with  
bone mineralization

160 
 
109,132, 
160

Antibiotics Antibacterial purpose  
(gentamicin, norfloxacin,  
ciprofloxacin, vancomycin)

111,112, 
161

Analgesics Local analgesics are used  
especially for pain management

14

Nanoparticles 
  Magnetite 

  Silver

 
Cancer therapy by hyperthermia 
Magnetic resonance imaging 
Drug delivery and targeted  
delivery 
Antibacterial and antitumoral  
effects

 
116,162,163
164,165 
165–167 

168–172

Cytostatics Antitumoral effects 70,173–175
Glycosaminoglycans 
(hyaluronan and  
chondroitin  
sulphate)

– �modulate the attraction of skin  
and bone precursor cells and  
their subsequent differentiation  
and gene expression

– �regulate the action of proteins 
essential to bone and skin  
regeneration

176,177
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complex agents, such as aminophosphonic acid, diols and 

polyols, polyhydroxy acids, siloxanes, thioacids, etc.189 As 

presented in Figure 2, magnetite and magnetite-based mate­

rials are efficient in cancer diagnosis as well as in cancer 

treatment, including hyperthermia as well as drug transport 

and targeted delivery. The hyperthermia is produced by 

magnetite when a proper alternating electromagnetic field 

is applied. The output power and the applied frequency are 

essential for producing medical hyperthermia, especially in 

the case of deep organs/tissues.190 Usually, these radiations 

are of low power and should induce low toxicity.191

Magnetic materials proved its effectiveness in the treat­

ment of different diseases, including cancer treatment, by 

combining surgery – as a conventional treatment and hyper­

thermia – as an alternate route of treatment. A methodology 

of treating bone cancer was presented by Andronescu et al,116 

(Figure 3) and consists of two main parts. The first step is 

assimilated with the surgical intervention of resection of 

the tumoral tissue, while the second step consists of filling 

the resulting bone defect with multifunctional materials. 

Once implanted, bone healing starts due to the presence of 

COLL/HA composite material. The magnetic nanoparticles 

can be activated, externally and at any time, by applying an 

electromagnetic field that induces hyperthermia.

Even if only a few materials are based on COLL/

HA–Fe
3
O

4
,116,134 perhaps, due to the high sensibility of the 

collagenous structure, their potential is great. The work 

realized by Andronescu et al116 presents the preparation of 

different COLL/HA–Fe
3
O

4
 with a 1:4 ratio of COLL:HA 

and 1%, 2%, and 5% magnetite. The in vitro studies revealed 

that mild hyperthermia is produced even at low magnetite 

content. In the case of COLL/HA–Fe
3
O

4
 with 1% magnetite, 

the maximum temperature reached was ∼41°C, which means 

mild hyperthermia, while at 5% magnetite the maximum 

temperature exceeded 45°C (Figure 4). All these data were 

obtained using thermostated samples (37°C) at 150 kHz.

The aforementioned methodology of bone cancer treat­

ment can be easily adapted for more complex material 

drug-delivery systems, such as COLL/HA–Fe
3
O

4
–cyto­

static, COLL/HA–Fe
3
O

4
–analgesic, COLL/HA–Fe

3
O

4
–Me 

(Me = Au, Ag), COLL/HA–Fe
3
O

4
–Me–cytostatic, COLL/

HA–Fe
3
O

4
–Me–analgesic, or even COLL/HA–Fe

3
O

4
–

Me–analgesic–cytostatic.134 These multifunctional materi­

als assure the convergence of conventional (surgery and 

chemotherapy) and alternative (hyperthermia, antitumoral 

effect of some metallic nanoparticles, phototherapy, and pain 

management due to the presence of analgesics) routes of 

bone cancer treatment. It is expected that due to the uncon­

ventional component of bone cancer treatment (as well as the 

targeted delivery of chemotherapeutic drugs) that the content 

of chemotherapeutic drugs will decrease and consequently 

systemic toxicity will be minimized.

For instance, Campbell et  al192 synthesized quasicubic 

magnetite/silica core–shell nanoparticles that proved to 

be enhanced magnetic resonance imaging (MRI) contrast 

agents for cancer imaging. The synthesis of Fe
3
O

4
@SiO

2
 

was performed from prefabricated magnetite nanoparticles 

by controlled hydrolysis of Tetraethylorthosilicate with the 

formation of a silica network onto the magnetite nanopar­

ticles. Using these quasicubic magnetite/silica nanoparticles, 

in vitro and in vivo experiments were carried out. Based on 

the in vivo experiments on mice infected with PC3 human 

prostate cancer cells, the change in MRI signal was up to 

Magnetite

Bioseparation
Drug delivery
Gene delivery

Drug transport

Functionalized magnetite
Modified magnetite

MRI Biosensors
Cancer therapy
by hyperthermia

Figure 2 Applications of magnetite and magnetite-based materials.
Abbreviation: MRI, magnetic resonance imaging.

Multifunctional
system

implantation

Multifunctional system
for bone grafting and
hyperthermia effect

Alternating
electromagnetical

field
Healing

Remaining tumoral cell

Bone defect

Tumoral bone tissue

Tumoral bone excision

Figure 3 Schematic representation of bone cancer treatment by combined therapy (surgery and hyperthermia).
Note: With kind permission from Springer Science+Business Media: J Mater Sci—Mater M., Synthesis and characterization of collagen/hydroxyapatite:magnetite composite 
material for bone cancer treatment. 21, 2010, 2237–2242, Andronescu E, Ficai M, Voicu G, Ficai D, Maganu M, Ficai A, figure 2.116
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80% for 100 µg/mL Fe, a value that is significantly higher 

than reported results obtained with other materials, which 

reach up to only 15%–20%. The presence of silica led to a 

higher uptake of PC3 prostate cancer cells compared with 

pure magnetite. PC3 prostate cancer cell viability decreased 

once the content of Fe increased from 0 to 100 µg/mL.191

Treating bone cancer with magnetite and/or magnetite-

based materials has also been attempted with different 

materials, such as polymethyl methacrylate/Fe
3
O

4
,193,194 

HA/Fe
3
O

4
,195–198 glass- and bioglass-based composites,199,200 

and complex polymer/ceramic composite materials with 

various magnetite content.116,201,202 Based on the literature 

survey, most materials designed for bone cancer treatment 

by hyperthermia are based on calcium phosphates or bioglass 

and magnetite.

Conclusion and perspectives
Cancer remains the second-most common cause of death 

in the world, despite advances in prevention and early 

detection and newer treatment protocols. The development 

of new antitumoral agents as well as the development of 

more efficient treatment strategies are current pursuits for 

scientists. Chitosan and PEG have been intensively studied 

for drug delivery in many applications, including cancer 

treatment. Only a few papers have dealt with collagen-based 

support materials, most probably because of the high chemi­

cal sensibility of this protein in comparison with chitosan, 

PEG, alginate, etc. It is expected that the use of collagen for 

the preparation of drug-delivery systems of cytostatics will 

be continued in the future. Expected applications are bone 

cancer treatment by using composite materials based on col­

lagen and calcium phosphates, skin cancer treatment by using 

collagen-based polymeric materials, or even colon cancer, 

collagen being a good carrier through the stomach.
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