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carinho, e acima de tudo por todo o seu amor incondicional.
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Resumo Com a chegada da era da Informação, os sistemas de comunicação
tornaram-se na espinha dorsal da nossa sociedade. A Sociedade Moderna
esforça-se por ter acesso instantâneo a fontes de informação espećıficas para
tomar decisões limitadas pelo tempo. Portanto, o século XXI está marcado
pela crescente exigência da largura de banda nas comunicações sem fios,
pois tal permite aos utilizadores comunicarem e acederem às aplicações a
partir de áreas lonǵınquas. Até ao momento, foram alcançados diversos
avanços/descobertas na largura de banda das comunicações sem fios, mas
tal tem sido conseguido usando o intervalo de radiofrequências (RF) do es-
pectro eletromagnético e que fez com que o RF ficasse com o papel principal
nos sistemas de comunicação de hoje. Contudo, a Tecnologia RF é v́ıtima
do seu próprio sucesso. Devido ao tremendo aumento do número de apar-
elhos de comunicação móveis, a tecnologia RF não pode lidar muito mais
tempo com a exigência dos mercados e atingirá o seu ponto de saturação.

VLC (Comunicação através de luz viśıvel) é uma técnica recente muito apel-
ativa no campo das comunicações sem-fios e que pretende ser um comple-
mento à tecnologia RF, sendo considerada por muitos investigadores como
uma alternativa viável. Esta dissertação discute o problema de se alcançar
uma grande taxa de transmissão com a implementação de uma Data Link
Layer (DLL) direccionada para sistemas VLC com modulação OFDM e está
inserida num projecto financiado intitulado VLCLighting. O objectivo prin-
cipal desta dissertação consiste na implementação de um DLL eficiente num
processador Microblaze numa Field-Programmable Gate Array (FPGA) e no
estudo da sua utilização em sistemas VLC para uso combinado em sistemas
de iluminação. Uma vez que foram identificados dois serviços com valor-
acrescentado para serem inclúıdos no projecto VLCLighting, a proposta DLL
pretende fornecer os meios necessários à fragmentação e encaminhamento
das exigências dos serviços, enquanto se mantém um fluxo cont́ınuo de
transmissão capaz de assegurar as funcionalidades de iluminação e comu-
nicação. A presente dissertação propõe um desenho inspirado nos sistemas
DVB e do projeto OMEGA, e descrevendo as alterações exigidas para sat-
isfazer os objectivos do projecto VLCLighting.





Abstract With the advent of the Information Age, communication systems have be-
come the backbone of our society. The modern society strives to find instant
access to specific sources of information to make time-constrained decisions.
Therefore, the twenty-first century is marked by a growing demand for band-
width in wireless communications, as it allows users to communicate and
access daily applications even from remote areas. Up to the present time,
numerous breakthroughs in wireless communications were accomplished but
mainly using the radio portion of the electromagnetic spectrum, which made
RF to take the central role in today’s communication systems. However, RF
technology is a victim of its own success. Due to the tremendous increase
in the number of mobile devices, RF technology cannot cope much longer
with this market demand and will eventually reach a saturation point.

VLC is a recently appealing technique in the field of wireless communica-
tions that intends to complement RF technologies and is sought by many re-
searchers as a viable alternative. VLC based on Light Emitting Diode (LED)
takes advantage of these solid-state devices superior modulation capability
to transmit data while assuring their lighting functionality. This work ad-
dresses the problem of achieving high bandwidth in a DLL design for OFDM
based VLC broadcast systems and is inserted in a funded project called VL-
CLighting. The main objective of this dissertation work is to implement
an efficient DLL in a Microblaze soft processor in a FPGA and to study
its usage in a broadcast VLC system for lighting systems. Since two value
added services were identified in the VLCLighting project, the proposed DLL
aims at furnishing the adequate means to fragment and route those services
requests while maintaining a continuous transmission flow that assures light-
ing and transceiver functionality. This work proposes a DLL design that was
inspired in DVB and project OMEGA systems, able to describe the required
amendments to fullfill VLCLighting goals.
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Chapter 1

Introduction

Wireless technology revolutionized our contemporary life providing the perfect means
to globalization. With today’s fast-paced society and its demands for higher data rates and
mobile information technologies, wireless communications have been skyrocketing. We rely on
these systems on a daily basis from our job to even our simplest everyday tasks. It influences
all aspects of our life by bringing a new level of convenience with a continuous connection to
our entertainment, educational and work applications. Therefore, the twenty-first century is
marked by a growing demand for bandwidth in wireless communications, as it allows users
to communicate and access those applications even from remote areas.

For over a century, the development of wireless technologies had an exponential increase.
It all started when Nikola’s Tesla invented the Tesla Coil, which he proposed could be used for
transmission of information. Tesla’s later demonstration, of a remote-control boat together
with Marconi’s first Atlantic wireless transmission, broke new ground in the communications
field. Since then, numerous breakthroughs in wireless communications were accomplished
but mainly using the radio portion of the electromagnetic spectrum. In the light of these
achievements, Radio Frequency (RF) has taken the central role in today’s communications
systems. But as we see, a tremendous increase in the number of mobile devices and a growing
demand for bandwidth, RF spectrum has become saturated, and new promising alternatives
began to be sought. One of the most promising alternatives is Visible Light Communication
(VLC), which is a rapidly developing field that benefits from an unregulated part of the
electromagnetic spectrum, wide bandwidth and absence of electromagnetic interference.

Solid-State Lighting has advanced tremendously in the last fifty years and is beginning
to unseat traditional illumination systems. This green lighting source has become a serious
competitor of incandescent, fluorescent and sodium-vapor light sources, as Light Emitting
Diode (LED) technology provides a reduce power consumption, higher life time and a more
environment-friendly solution that has no lead and no mercury. As LED flourishes at a very
fast pace, VLC takes advantage of its superior switching capability to transmit data, i.e., it
takes advantage of LED fast switching characteristics to offer wireless communication. With
the ramping up of LED technology and the invention of VLC systems based on them, we can
use the lighting infrastructure already available and build the mentioned added value making
them more efficient and economical than RF solutions.

VLC is a recently appealing technique in the field of wireless communications. In this
technique, as the name suggests, data transmission is achieved through the use of the visible
spectrum and it is a subset of Optical Wireless Communications (OWC). Artificially created
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or naturally available, the optical radiation waves in this abundant electromagnetic spectrum
have never been truly exploited for their value. It encompasses the frequency range from the
384,6THz up to 784,5THz that is the portion of the electromagnetic spectrum visible to the
human eye.

The aim of this work is to propose a Network Layered Architecture for an Orthogonal
Frequency-Division Multiplexing (OFDM) based VLC system. Throughout this document
a DLL design and its implementation for a Microblaze in a FPGA will be in the spotlight
of discussion. This work is part of a funded project called VLCLighting that is the result
of a joint collaborative effort of different research projects with other master dissertations
associated.

The current chapter presents the main motivations for researching a DLL for VLC, de-
scribing the importance of such technology while introducing the taken steps for the proposed
Network Layered Architecture. Afterwards, the objectives will be explained and a brief de-
scription of the organization will be presented.

1.1 Overall Scenario

The present dissertation “DLL architecture for OFDM based VLC transceivers and its
implementation in FPGAs” proposes and studies a DLL design in FPGA for Visible Light
Communication broadcast application. This dissertation work takes place in the Integrated
Circuits Group of the Telecommunications Institute of Aveiro and the proven expertise of
this group in projects like VIDAS and LITES provided a set of conditions to support the
conceptual framework and accomplish the project where this work work is included. This
dissertation is inserted in the project VLCLighting (Visible Light Communications for LED
based Public Lighting Systems) that was funded by FCT/MEC through national funds and co-
funded by FEDER PT2020 partnership agreement under the project UID/EEA/50008/2013.

Project VLCLighting is a VLC project intended to provide broadcast services in public
street lighting infrastructures. VLCLighting aspires to fulfill today’s bandwidth need by re-
defining the existent public lighting with intelligent LED systems that can provide information
access. VLCLighting is a joint collaborative project of different research efforts, and it is com-
posed by an innovative Optical Digital-to-Analog Converter (ODAC) Front-End, DC Biased
Optical Orthogonal Frequency-Division Multiplexing (DCO-OFDM) modulation, a Channel
Encoder with Forward Error Correction (FEC) techniques and by this work proposal of a
DLL. This project has identified two types of value added services to be introduced in public
lighting systems. It identified a Moderate Data Rate service to provide adequate means for
control and management, advertising and infotainment services and a High Data Rate service
for video broadcast.

During the elaboration of this dissertation, projects like the OMEGA and the Digital
Video Broadcasting (DVB) were part of the literature. Project OMEGA provided valu-
able insight into Medium Access Control (MAC) and Logical Link Control (LLC) protocols
with their Optical Wireless Medium Access Control (OWMAC) and Optical Wireless Log-
ical Link Control (OWLLC) specifications for Infra-Red Communication (IRC) and VLC
systems. On the other hand, DVB, namely Digital Video Broadcasting - Return Channel
Terrestrial (DVB-RCT), contributed with a broadcasting system behaviour overview, as well
as with a baseline specification of return channel with their DVB-RCT MAC architecture
proposal. These insights supported and inspired this proposed DLL structure design along
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with its functionalities.

1.2 Dissertation Motivation

The realization of a DLL for a VLC system comprises several aspects. VLCLighting
project has identified two types of value added services to be introduced in public lighting
systems, a Moderate Data Rate (MDR) and a High Data Rate (HDR). The proposed DLL
aims at providing the adequate means to fragment and route these data while maintaining a
continuous transmission flow that assures the lighting and transceiver functionality. However,
VLC broadcast poses several challenges to DLL design that need to be taken into account.
The need for an optimized DLL raised as a means to comply with VLC limitations, as well
as, project constraints that could not be entirely satisfied without a protocol that ensured
data packaging and prioritizing from the multiple services.

After, It was found that not a lot of research has been done to develop a VLC outdoor
broadcast system with a reliable DLL protocol. It was only found VLC research that focuses
on indoor systems where environmental conditions can be conveniently controlled. From
the review of the literature, it became evident that work should be done to look into the
possibility of designing a modular architecture containing a DLL that could fit the present
outdoor lighting infrastructures. Therefore, the objectives of the research presented in this
dissertation led to a planned methodology mentioned in the following section.

It is important to remark that this work is only a preliminary step into a DLL standard
for VLC based on OFDM systems that has not been established yet and presents many
opportunities of improvement.

1.3 Methodology

The main objective of this work is to explore the feasibility for an efficient DLL imple-
mentation in FPGA and its usage in a broadcast VLC system for a public lighting system
application.

In the first place, a study was carried out to identify possible challenges and understand the
concepts of VLC systems, especially on outdoor scenarios. Secondly, it was made a study and
research of MAC and LLC sublayers for VLC broadcast systems. It was found that in project
OMEGA it was proposed an OWLLC and OWMAC for bidirectional VLC. On the other hand,
DVB-RCT defined the MAC sublayer for digital terrestrial television. Based on this work
literature, a DLL architecture that handles multiple broadcasting services was designed. The
functions required to be programmed and their functionalities were characterized bearing in
mind general project’s needs. After this, study, further characterization was done to conciliate
DLL with FEC techniques, efficiencies and to assure maximum performance for the project.
In the next phase, DLL functions design with their respective programming structure and
flowcharts were created.

This work proposes a DLL implementation in a FPGA, therefore Spartan605 Evaluation
Kit was studied. The FPGA implementation started with the identification of its limitations.
After this, embedded system tools and flows provided in the Xilinx Embedded Development
Kit (EDK) were used for developing a system based on MicroBlaze embedded processors in
Spartan605. Subsequent C++ programming of the DLL functions was accomplished with the
Xilinx Software Development Kit (SDK). Finally, the performance of the proposed DLL was
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analysed and several tests with different Direct Memory Access (DMA) configurations and
different memories were examined.

In the process of investigation and realization of the proposed work, several software tools
were used at the Instituto de Telecomunicações of Aveiro. These tools included Windows
7 Professional operating system along with Microsoft Office 2013 applications, and MatLab
2012a. The FPGA implementation was accomplished with Xilinx ISE Design Suite 14.5,
namely with Xilinx Platform Studio (XPS) and Xilinx SDK.

1.4 Dissertation Structure

Now that the reader is introduced to the VLC overall scenario and this work motivations,
further explanation of VLC systems and the proposed DLL will be discussed further on.

Chapter 2 summarises the technical background necessary for the project. VLC and basic
concepts of LEDs are discussed briefly while giving to the reader their historical context. This
chapter also presents and explores the proposed Communication Network Layered Architec-
ture and some of the usual VLC applications.

Bearing in mind the unidirectional broadcast communication characteristic of VLCLight-
ing project, the design of the DLL had numerous constraints that will be discussed in Chapter
3. This Chapter introduces the DLL concepts to provide the reader with full description of
its functionalities behaviour.

Chapter 4 presents the embedded system implementation for the DLL. Basic concepts on
FPGAs and the studied functionalities is presented, so full embedded process flow and DLL
application designs could be understood. Finally, full analysis of DLL programmed functions
concludes the discussion.

A set of test benches were performed to evaluate the programmed DLL behaviour, and
these can be seen Chapter 5. Since this dissertation study major aims at video broadcast,
different memory usage impact, as well as, different DMA configurations were the primal
focus of this chapter. Chapter 5 also presents different time measurement techniques and
DLL error handling capability.

Chapter 6 presents the final discussion and conclusions, as well as some future work
guidelines.

1.5 Contributions

The proposed architecture along with an initial analysis of the DLL functionalities were
used as part of a published article and talk at the ConfTele 2015 - 10th Conference on
Telecommunications Aveiro, Portugal on September 17, 2015. The article VLCLighting - A
Collaborative Research Project on Visible Light Communication “describes a collaborative
research project on Visible Light Communications for lighting infrastructures. It is being
developed by the Integrated Circuits and Mobile Network groups in Instituto de Telecomu-
nicações, Aveiro site, and expects to deliver a VLC demonstrator transmitting video and data
in real-time by the end of 2016. Another main goal is to develop this system to be modular
in order to enable collaboration with other groups with interest in this field, offering the
academic community a real-time test bed to evaluate the performance of different modules,
algorithms and optical front-ends, which is currently not available” [1].
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In this dissertation framework, a poster presentation in Students@deti was also performed
to both students and teachers of the Department of Electronics and Telecommunications of
the University of Aveiro.
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Chapter 2

Technology context

Light is an indispensable part of our lives that we often forget. Light plays a central role
in our well-being, as well as, all living beings. We rely too heavily on our eyes to gather all
quotidian information and to perceive the world around us. Visible light has an enormous
impact on our human experience, considering that we interpret the surrounding environment
predominantly through vision. The interest in using this essential part of the electromagnetic
spectrum as a communication medium started many years ago when ancient civilizations used
fire beacons and smoke signals to send messages.

In modern society, electric lighting is taken for granted, because nowadays it is the most
common form of artificial lighting but it was not always like this. Electric lighting revolution-
ized the world and with the later appearance and developments in LED technology, research
in a new and promising VLC technology began. The ubiquitous LED with its recent ability to
achieve meaningful data rates for today’s communication needs made VLC based on LED a
recently pervasive technology. This technology goal is to add extra value of data transmission
to all present lighting systems and to promptly reply to the massive information demand.

Figure 2.1: Electromagnetic Spectrum [2]

As mentioned before, VLC is a subset of OWC where data is transmitted using the
visible light spectrum that is within 380nm and 780nm [3]. These wavelengths correspond to
384,6THz up to 784,5THz, as we can see in the Electromagnetic Spectrum figure 2.1.

Nowadays RF communications are the most popular technology, but the radio spectrum
is saturated and cannot answer the demands of the consumers. Due to this, the visible
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spectrum is the viable solution that provides a much wider spectrum (Radio spectrum =
300GHz while Visible Spectrum =400THz). Besides improved capacity, the visible spectrum
provides more efficiency because radio waves consume a lot of energy while VLC is highly
energy efficient. Another advantage is the availability because radio waves cannot be used
in some sensitive scenarios like aircrafts due to interferences with other devices. While radio
waves can penetrate walls, visible light cannot, presenting a useful resource to improve security
in communications. The last advantage, but not least important, is human health, while the
transmission of power radio waves cannot be increased over a certain level because there are
serious health risks for humans, “VLC is considered to be harmless for the human body even
while increasing the transmission power”[4]. Even though VLC has all of these advantages,
it has some drawbacks and the most important one is the need to coexist with the existing
lighting systems, while not interfering or being interfered by radio based wireless technologies.

2.1 VLC motivation

The worldwide spectrum crunch refers to the potential lack of RF spectrum required
to support the social dependence upon wireless systems. This spectrum crunch represents
a profound risk in the future of wireless networking and it persuaded many researchers to
explore new alternatives.

Figure 2.2 illustrates the USA frequency allocations of the radio spectrum and it should
give a better idea to the reader of the worldwide spectrum crunch.

Figure 2.2: USA Frequency Allocations [5]

ANACOM is the national regulatory authority for communications in Portugal that plans
and supervises the allocation of spectrum resources for many wireless applications, including
radio and television broadcasting, land mobile service and satellite service. Each application
is given a frequency band in which it is allowed to operate to ensure an efficient use of the
available radio spectrum and to prevent interferences. From the 2015 ECO proposal([6]) and
ANACOM’s national table of frequency allocation [7], it is quite clear that the radio spectrum
is very crowded. At the same time, the upward trend of wireless devices, evident in Figure 2.4,
is one of the primary contributors for the global mobile data traffic growth (Figure 2.3). Cisco
predictions estimate 24,3 Exabytes per month of mobile data traffic by 2019 and they confirm
that wireless communications face a potential radio spectrum deficit. The stated predictions
support the uptake of new wireless technology alternatives like VLC and they are the true
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motivation for its research.

Figure 2.3: Global Mobile Data Traffic [8] Figure 2.4: Global Mobile Devices [8]

In addition to the radio spectrum crunch, interference from the simultaneous use of a fre-
quency band is also a concern for many existing wireless systems. The usage of mobile devices
on airplanes, which can directly affect safety, is a prime example of radio interference risks.
Until recently RF technology uses on airplanes was prohibited because wireless devices can
cause interferences to the aircrafts navigation and communication systems. RF interference is
also a large impediment to the success of wireless healthcare because it can have debilitating
effects on medical telemetry systems that carry vital data and can also lead to unpredictable
operation of medical devices.

To present the reader with the whole picture of VLC systems, VLC technology limitations
will also be on the focus of this motivation section. Since VLC is a light-based technology, its
major drawback is it inability to penetrate opaque objects. Although this confination of the
information can be a privacy advantage in more secured scenarios, it can also be a liability
in Line-Of-Sight (LOS) based systems. In order to use VLC technology for indoor, ambient
noise produced by light emanating from both natural and artificial sources, needs to be taken
into account. The interference produced by artificial ambient light sources like fluorescent
and incandescent lamps can cause a significant degradation of these systems performance.
The optical medium usage in outdoor scenarios also struggles to work flawlessly in adverse
environmental conditions like fog and rain while trying to cope with external interferences
introduced by sunlight that can lead to photodetector saturation problems. These restrictions,
questions VLC usage for large-scale delivery of data transmissions and present significant
challenges in this promising technology research.

Both indoor and outdoor VLC systems can have LOS, Non-Line-Of-Sight (NLOS) or
hybrid architectures that present different behaviour characteristics. VLC nature favours
the LOS architecture usage due to the existence of a direct communication channel between
the emitter and receiver. NLOS, on the other hand, must rely on the reflections from the
surrounding environment making them a more usual indoor solution. This electromagnetic
propagation characteristic occurs when a full obstruction exists between the receiver and
emitter. The hybrid solution tries to get the best from both worlds and chooses the best
solution at that moment.

2.2 VLC History

The history of VLC dates back to ancient civilizations. In those civilizations fire beacons
were fires lit on hills or high places used either as lighthouse for sea navigation through
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dangerous coastal areas or for land signaling, when enemy troops were approaching. In
Ancient China, soldiers had a set of communication signals that later were also used in the
Great Wall. They would use fire beacons, flags and drum beats to warn other soldiers towers
of enemy actions [9]. The first recorded use of the heliograph comes with Ancient Greeks in
405BC where they used polished shields to signal in battle [10], as seen as in Figure 2.5.

Figure 2.5: Light Communication using Combat Shield [11]

The hydraulic telegraph (Figure 2.6) was invented by a Greek named Aeneas in 350BC,
which was a fast communication system with fairly detailed information over long distances.
At that time, fire was used to indicate danger or that an objective has been accomplished
but without any level of detail. This detail limitation was overcome by having a system of
water-filled vessels containing rods that contained agreed-upon messages. Both groups of the
communication needed to be in line-of-sight and upon agreement, with torch lighting, they
would pull the plug from the bottom of the water-contained vessel. As the water drained,
different messages on the rod would be revealed and again with torch lighting signal the
receiver could know which message to read on the rod [12].

Figure 2.6: Hydraulic Telegraph of Aeneas [12] Figure 2.7: Heliograph [13]

The Lighthouse of Alexandria was the first tower used as a lighthouse. The lighthouse
was constructed in the 3rd century BC and it was one of the tallest man-made buildings
for many centuries. It was responsible for navigational guidance of maritime pilots. In the
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2nd century BC Polybius wrote a communication and data encryption system, also known
as the Polybius square. The system divided the letters of the alphabet in five parts written
in a tablet with 5 letters each, but due to modern alphabet having 26 letters the I and J
were combined. Upon the raise of two torches, the transmitter waits for the reply from the
receiver to confirm the communication. After that, the transmitter raises the first set of
torches signaling which tablet of the five to consult. Next, he raises the second set of torches
that indicates which letter to write down and following the same principle the transmitter
sends the following letters. Even being accurate this process was proven to be tedious [11].
For many years visible light communication was made essentially with fire, an example of this
is the Byzantine Empire that in the 9th century used a system of fire beacons to transmit
messages from the border to their capital (Constantinople). In 1821 the German scientist
Karl Gauss found a mean to mirror a controlled beam of sunlight to a distant station even
though this device (heliotrope) was meant to be used in geodetic surveys [14]. This device
was the predecessor of the first widely accepted heliograph made by Sir Henry Christopher
Mance in 1869 that added a movable mirror that later could be used to signal Morse code.
The heliograph, seen in figure 2.7, provided a very mobile element in the British Signal Service
operated where two mirrors were used to gather sunlight and send it to a prearranged spot
as a coded series of short and long flashes [15].

Later, in 1880 Alexander Graham Bell invents the photophone (Figure 2.8) which is a
device that transmits sound on a beam of light. On June 3, Bell conducted the world first
wireless transmission from the top of the Franklin School in Washington, D.C. “Bell’s photo-
phone worked by projecting the voice through an instrument toward a mirror and he observed
that vibrations in the voice caused similar vibrations in the mirror”. Bell directed sunlight
into the mirror, which captured and projected the mirror’s vibrations. These vibrations
were transformed back into sound at the receiving end of the projection. The photophone
functioned similarly to the telephone, except that the photophone used light as a mean of
projecting the information and the telephone relied on electricity [16].

Figure 2.8: Photophone [17]

An American Engineer named Eugene Polley in 1955 invented the Flash Matic, which was
the first-ever wireless TV remote control. Polleys Flash-Matic consisted in pointing a visible
beam of light at photo cells in each corner of the television screen. The viewer used a highly
directional flashlight to turn the picture and sound on or off, or to change the channel in a
clockwise or counter-clockwise direction [18]. The discovery of optical sources like LASER
(Light Amplification by Stimulated Emission of Radiation) in the 1960s was an important
step forward in the history of VLC. This breakthrough was the base for future projects such
as the NASAs Lunar Laser Communication Demonstration (LLCD) that is a project for deep
space communication using visible light. In 1976 we see the introduction of LED in VLC
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when Thomas P. Pearsall research revolutionized telecommunications. Since the 1960s LEDs
have doubled their light output and power efficiency every 36 months. This behavior is known
as Haitzs Law shown in Figure 2.9. Haitzs Law said that every decade, the cost per lumen
(unit of useful light emitted) falls by a factor of 10 and the amount of light generated per
LED package increases by a factor of 20, for a given wavelength (color) of light [19].

Figure 2.9: Haitz Law [19]

Since 2003 there have been various research efforts in VLC for data transmission using
LEDs and the most important ones were made by the Nakagawa Laboratory, Smart Lighting
Engineering Centre, Omega Project, D-Light Project, UC-Light Centre and work at Oxford
University [4]. Due to VLC importance a Visible Light Communication Consortium was
formed in Japan in 2004 in order to realize safe, ubiquitous telecommunication system using
visible light through the activities of market research, promotion, and standardization. This
VLCC later proposed two visible light standards to JEITA (Japan Electronics and Information
Technology Industries Association) and the two proposals became JEITA standards in June
2007 [20]. With VLC technology being researched all over the world, IEEE saw the need to
standardize it. So, in January 2009 the IEEE 802.15.7 VLC Task Group completed a PHY
and MAC standard for Visible Light Communications [21]. More recently, we see Organic
Light Emitting Diodes being used to achieve 10Mb/sec and to still have a great focus in
VLC research nowadays [22]. Then, in 2010, Siemens researchers with the help of Fraunhofer
Heinrich Hertz Institute improved the record of wireless data transfer to 500 Mbit/s using
White LED light [23]. In July 2011 Harald Haas made a live public demonstration of VLC
technology at TEDGlobal 2011 by transmitting high-definition video with a standard LED
lamp [24]. This presentation made VLC technology even more worldwide known. Recently, in
2015, Fraunhofer HHI developed a VLC demonstrator that exploits a much higher bandwidth
of up to 180 MHz and achieves a transmission rate in laboratory experiments of over 1 Gbit/s
per single light frequency. This means that their newly prototype with white RGB LEDs can
get speeds of up to 3Gbit/s.
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2.3 Types of VLC

In order to illustrate the reader with general VLC applications, this section will be di-
vided in three subsections that will discuss indoor VLC, outdoor VLC and underwater VLC
scenarios.

2.3.1 Indoor VLC

White LEDs are commonly used as replacements for incandescent lamps and as their
performance improves, these devices will become candidates for replacement of general illu-
mination. These solid-state sources can be modulated at superior rates where incandescent
or fluorescent alternatives are very hard to be modulated. Thus offering the possibility of
broadcasting information at the same time as providing illumination. The indoor practical
applications of VLC indoor are numerous. For instance, it can be used to broadcast TV
signal and other multimedia contents, as well as, provide internet access. Other possible ap-
plication is indoor navigation system by preinstalling LED ceiling lightning that has an ID
encoded. Other indoor VLC applications are mines and aviation where RF communications
are undesirable.

2.3.2 Outdoor VLC

In outdoor VLC there are many external light noise sources like sun light, road/street
lights that need to be taken into consideration. In long distances this kind of environment
poses a major difficulty to be dealt, because fog, smoke and temperature variances are major
problems. Since most of outdoor VLC systems are short range communications, this atmo-
spheric restrictions do not impact so much. Another limitation is that most outdoor VLC
systems need line-of-sight access which in some urban areas with obstacles or some natural
barriers can provide issues. Outdoor VLC applications are already being developed for traf-
fic signs, communication between vehicles, traffic updates, in-car entertainment and outdoor
advertising.

2.3.3 Underwater VLC

Due to underwater RF communications limitation, VLC is a successful choice amongst
researchers as an alternative for underwater VLC. “The underwater environment provides
a promising area of application for wireless optical communications; here visible light expe-
riences significantly lower attenuation than the remaining electromagnetic spectrum” [25],
especially in the green wavelength. A system capable of interactive communications between
divers that sends the voice from a diver and sends to another diver using light is already
being developed by a joint group of 21 Zamami Co, RISE Co, Keio University and Nak-
agwa Laboratories. This promising VLC project together with VLC potential for underwater
communication, makes the use of this technology ideal for underwater exploration.

2.4 VLC Architecture

A basic VLC system consists of a light source, free space as the propagation medium and
a light detector. Information, in the form of digital or analog signals, is input to electronic
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circuitry that modulates the light source. The source output passes through an optical system
(to control the emitted radiation, for instance, to ensure that the transmitter complies with
eye safety regulation) into the free space. The received signal then comes through an optical
system that has an optical filter able to reject optical noise and a lens system or concentrator
that focuses light on the detector. The resulting photocurrent at the end of the photodetector
is then amplified before the signal processing electronics [26].

Figure 2.10: VLC Concept

2.4.1 VLC Emitter

Visible Light Communication Emitters typically consist in a visible solid-state emitter
that can be either an LED or a semiconductor LASER, depending on the application. LED
stands for Light-Emitting Diode and it is a semiconductor p-n junction device that gives
off spontaneous optical radiation, which in another words, is a diode that emits light when
electricity passes through. LASER stands for Light Amplification by Stimulated Emission of
Light meaning that a source light is amplified within a gain medium and focused in a target
area. While LED, like most sources of light presents an incoherent light emission, LASER
presents us a coherently light emission source and as a result there is minimal loss of energy
along the beam and the target area. Coherent light features all the individual light waves
precisely lined up with each other and working in perfect unison. Usually when the emitter
acts as a communication transmitter and an illumination device at the same time white light
LEDs are used. In the Figure 2.11 of the ACO-OFDM VLC transmitter, a data message
(Digital Data) passes the channel encoder where a convolutional coding or Reed-Solomon
algorithm is employed (further discussed in sections 2.7.2 and 2.7.2) and then, the signal is
scrambled with the interleaving block (section 2.7.2). While channel coder main objective
is to compute the algorithm so receiver then uses it in the channel decoder. It also aims at
code correction in general purposes, where interleaving block aims code correction of burst
errors. The interleaving block makes a more uniform distribution of the errors, so a word can
be recovered even in the case of a burst error occurrence (a group of adjacent bits that are
all affected). After scramble operation, modulation is the next step. The Quadrature Phase
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Shift Keying (QPSK) adds two more phases (90◦ and 270◦) allowing the transmission of two
symbols per bit. Modulated waves with Quadrature Amplitude Modulation (QAM) are the
combination of both phase-shift keying (PSK) and amplitude-shift keying (ASK) allowing an
increase of bit-rate. For example, 16 QAM can represent four bits instead of just the two bits
per symbol with QPSK. Further modulation is required and solutions like DCO-OFDM and
ACO-OFDM were considered, being the last one seen in Figure 2.11 while DCO-OFDM can
be seen in Figure 2.12. Both modulations are studied in greater detail in the section 2.7.3.
OFDM signals are generally complex and bipolar, so the following blocks are responsible for
making this signal real and positive. Considering the ACO-OFDM modulation, the first step
is the use of Hermitian symmetry on the complex signal that feeds into the IFFT block [27].
This step ensures that the output of the IFFT is real. In the case of DCO-OFDM an additional
step for adding a DC to obtain a unipolar signal would be needed, but in ACO-OFDM this
is not needed. After having a real signal, the next step is the cyclic prefix block (CP) that
ensures no intersymbol interference, because it adds a safeguard interval between the symbols
to transmit. As a final step, the emitter clips the signal at zero level that removes the entire
negative signal because in VLC it is physically impossible to transmit negative signals. The
pilot block in the architecture is for measurements of the channel conditions and calculation of
the equalization gain in the receiver. The physical layer of a VLC emitter diagram architecture
with ACO-OFDM can be seen in Figure 2.11.

Figure 2.11: VLC PHY ACO-ODFM emitter architecture

Figure 2.12: VLC PHY DCO-ODFM emitter architecture
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2.4.2 VLC Transmission Channel

In an indoor environment the primary use of the VLC sources is to provide illumination.
Therefore, the illumination and communication must be considered simultaneously. In a
typical broadcast VLC system the receiver is below the ceiling where the light from the
arrays propagates to provide a communication channel. There is a line of sight (LOS) path
from each LED to the receiver, and also a diffuse path via the reflections from surfaces within
the room. The LOS path strength can be calculated using a knowledge of the emission
patterns of each source and a simple propagation model. There are a number of different ray-
tracing approaches that can be used to simulate the diffuse path, but these are complex and
time-consuming which makes the alternative approach that models the room as an integrating
sphere a viable solution [28]. There are ambient light interference that affect the VLC channel
such as incandescent lights, fluorescent lamps or the sunlight. “Incandescent lights emit high
levels of infrared radiation, fluorescent lamps emit high levels in the visible spectrum range
and the sunlight emit ultraviolet radiation and a considerable amount of infrared radiation”
[4]. All these noise sources need to be addressed accordingly and they will be addressed in
the next Chapter.

2.4.3 VLC Receiver

Visible Light Communication receivers typically consist of a collection optics and an op-
tical filter, which collect light of the correct wavelength range. The resulting photocurrent is
amplified, normally using a transimpedance preamplifier. The optical filter is used to reduce
the effect of ambient light by creating a narrowband optical system that only allows the mod-
ulated source wavelength to be detected. In the case of VLC the modulated energy covers
the entire visible spectrum, so that filtering will reduce both the ambient light noise from
daylight and the desired signal [28]. One of the main parts of the VLC Receiver diagram
is the photo-detector which normally is a PIN photodiode or an Avalanche photodiode that
converts the optical signal into an electrical current for further amplification. Another im-
portant stage to be considered is filtering. Considering that many noise sources do not only
affect visible light spectrum and due to PIN photodiodes spectral sensitivity that includes a
large part of near Infrared Spectrum, an IR cut-off filter is used to filter the signal. Since all
ambient light indoors and outdoors flicker, and this behavior is considered as noise to VLC
it needs to be filtered. The interference from ambient lights is of additive nature to the mod-
ulated information and all the received optical signals are superimposed together [29]. The
Front-End Receiver C12702-11 already has a band pass filter that rejects frequencies outside
the range of 4 KHz up to 100MHz. After this, another band pass filter is required to remove
the 50Hz noise originated from the other illumination appliances. Afterwards, a low pass filter
is used to avoid the aliasing effect and an Analog to Digital converter is used to digitalize the
signal. Cyclic Prefix remover is responsible for removing the safeguard interval between the
received symbols for further conversion, by the FFT, to frequency-domain. The ACO-OFDM
Frame Demapping removes the sub-carriers that are set to zero (odd) and passes the rest
to the Hermitian symmetry rejection that ensures that the output does not have the second
half of sub-carriers which contain the conjugates in inverse order. Deframing is responsible
for selecting the sub-carriers that contain data from the other ones that contain pilot or syn-
chronization purposes. After this, the Channel Estimation block uses the occasionally sent
Pilot Block information to analyze the channel conditions and equalize it with the Equalizer
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blocks, if necessary. Then the demodulator block is responsible for demodulation the signal.
After demodulation the scrambling is removed by the Deinterleaving block and the Channel
Decoder uses the result from the algorithm, done by the emitter, of the Channel Encoder to
correct bit errors that might have occurred. After all these PHY layer steps and after the
MAC Management layer at the output we have a digital data output that should be equal to
data input in the VLC emitter. A full diagram architecture of the Physical Layer of ACO-
OFDM VLC receiver can be seen in Figure 2.13. The DCO-OFDM receiver can be seen in
Figure 2.14 which has a similar architecture regarding the presented ACO-OFDM with the
exception of Carrier Demapping that is not required.

Figure 2.13: VLC PHY ACO-ODFM receiver architecture

Figure 2.14: VLC PHY DCO-ODFM receiver architecture

2.5 Light-Emitting Diode

LEDs have come a long way in the last decades and the continuous advances in tech-
nology provided a great increase of LEDs luminous output. LED technology research and
developments together with its very energy-efficient and long lifetime characteristics made it
a viable solution for the lightning market . Due to thermal inertia both incandescent and
fluorescent light bulbs are not able to carry information. LEDs are solid state devices which
allows them to switch between on and off states at moderate frequencies and this character-
istic can be explored to modulate information using visible light waves [30]. Typically there
are two methods to create white light LEDs. Red, Green and Blue devices are combined in
a single package and the white light is generated by mixing them in appropriate proportion.
The advantage of this approach is to be able to tune the colour by altering the current to each
device. However, the additional complexity of packaging and drive electronics has made this
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approach to providing general illumination less attractive. The widely used alternative is to
combine a blue LED with a coating of a phosphor that emits yellow light. The blue emission
from the LED combines with the yellow from the phosphor to create white light which has
the advantage of requiring only a single electrically driven source [28]. The comparison of
both methods is shown in Figure 2.1. RGB LEDs have a bigger bandwidth and consequently
achieve higher data rate but they require more difficult modulation techniques.

RGB LEDs Phosphor-based LEDs

Data rates ∼= 100Mbits/sec ∼= 40Mbits/sec

Price More expensive Low cost

Bandwidth Higher bandwidth Phosphor limits the bandwidth

Modulation Complex Low complexity

Table 2.1: RGB LEDs vs. Phosphor-based LEDs [4]

2.5.1 LED History

In 1907 Henry Joseph Round, personal assistant of Guglielmo Marconi, noticed the natural
phenomenon called electroluminescence in a piece of Silicon Carbide [31]. Electroluminescence
is the production of visible light by a substance exposed to an electric field without thermal
energy generation [32]. Twenty years later, the Russian Oleg Losev observes and describes in
greater detail light emission from zinc oxide and silicon carbide crystal rectifier diodes used in
radio receivers when a current was passed through them. In the 1950s British experiments into
electroluminescence using Gallium Arsenide led to the first modern LED, short word for Light
Emitting Diode. In this decade an American physicist and inventor named William Shockley,
co-inventor of the transistor in Bell Labs, files a patent for an infrared LED in 1951, Kurt
Lehovec then patent a SiC visible light LED in 1952 and Rubin Braunstein and Egon Loebner
patent a green LED in 1958. Even with all of these evolutions and all issued patents it is Nick
Holonyak that is considered by most to be the pioneer of Light Emitting Diode technology.
This American Engineer is responsible for creating the first practical visible-spectrum LED
in 1962, while working at General Electric Company. This first LED was red and was made
of GaAsP (Gallium Arsenide Phosphide) on a GaAs substrate [31]. This year marks the birth
of the industrially-produced LED, costing 110,13e each. After this date companies such as
IBM uses them in circuit boards (1964) and Hewlett Packard integrates them in hand-held
calculators (1968) [33]. As we can see in Figure 2.15 these LEDs were merely for indication
since the light output was not enough to illuminate.

Figure 2.15: LED display in TI-30

With LEDs having the focus of many research Labs, M. Georges Craford invents the first
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yellow LED and develops a brighter red LED in 1972. Four years later Thomas P. Pearsall
creates the first high brightness and high efficiency LED for optical fiber telecommunications
improving communications technology worldwide. Another breakthrough in LED technology
is made in 1993 when Shuji Nakamura creates a high brightness blue LED using GaN (Gallium
Nitride). This discovery quickly led him to design a white LED that went to the market two
years later [34]. The development of LED technology after this was focused in improving its
brightness making their efficiency and light output to raise exponentially. With this focus in
mind, in 2006 the first LED with 100 lumens per watt was produced [34] making LED lightning
a viable solution. Since this major breakthrough we can see examples like Torraca (Italian
village) that was the first town to convert its entire illumination system to LED technology.
This lead to a reduction in energy and maintenance costs by 70% (2007). Audi was the first
car company to implement a full LED headlights in 2008 [35]. There are already efficient
LED architectures to approach the target of 250lm/W for 3000K/80CRI and 225lm/W for
3000K/90CRI [36].

2.6 Photodiode

A photodiode is a semiconductor that converts light into electrical current making it suit-
able for accurate measurement of light intensity. When photons are absorbed by a photodiode
a current is generated. Every photodiode has a dark current which is the current through the
photodiode in the absence of light. This dark current is important to bear in mind because
it represents the minimum detectable signal and a signal needs to produce more current then
the dark current to be detected. Dark current is correlated with the operating temperature,
bias current and the type of photodiode [27]. There are several principles of operation of
photodiodes, being the PIN and APD the most known ones.

2.6.1 PIN

PIN photodiode is the most widely used semiconductor detector and it is a diode with a
wide undoped intrinsic semiconductor between a p-type semiconductor and a n-type semicon-
ductor. The junction is reversed biased by an external source and the bias voltage appears
almost entirely across the intrinsic section. This is because the intrinsic section is free off
charges and therefore is much more resistive than the p and n sections, which forms a strong
electric field. When photons hit this section they make valence band electrons to jump into
the conduction band leaving a hole behind, which promotes the creation of photo-generated
carriers. The created carriers in the middle section drift due to the strong electric field, mak-
ing electrons to move towards the n-region and holes towards the p-region. This phenomenon
causes a photo-current to flow into the circuit [37]. PIN photodiode is capable of operating
at a very high bit rate exceeding 100Gbps. However the commercial available ones only of-
fer bandwidths up to 20GHz and this is mainly due to package limitations [27]. Although,
the previous presented results are usual for optical fiber communications, VLC systems give
more importance to receiver sensitivity. Therefore, APD photodetectors that provide better
sensitivity will be discussed in the following section.
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2.6.2 APD

APD can be thought of a photodetector that provide a built-in first stage of gain through
avalanche multiplication. By applying a high reverse bias voltage, APD shows an internal
current gain effect, normally around 100, due to impact ionization called avalanche effect.
However, some silicon APD employ alternative doping that allows an even greater voltage to
be applied (more than 1500 V) before breakdown is reached and hence a greater operating
gain, which can be more than 1000. In general, in APD the higher the reverse voltage is, the
higher the gain. Avalanche photodiode is a highly sensitive photodiode that operates at high
speeds and high gain by applying a reverse bias. These optical detectors are the preferred
ones for high bandwidth applications where the wavelength lies between 400nm and 1100 nm
and where high speed and low optical power are required. APD photodiode has worst Signal
to Noise ratio when compared to PIN photodiodes and presents an increased complexity of
operation. However the main difference with the PIN diode is that the absorption of a photon
of incoming light may set off an electron-hole pair avalanche breakdown. This feature gives
the APD a much greater sensitivity when compared with PIN [38].

2.7 Communication Network Layered Architecture

The VLCLighting project arquitecture that will be shown in Section 3 is composed by a
DLL, a Channel Coding and modulation. Therefore, this section will present the reader with
a brief overview on their propose and their usual usage in VLC systems.

2.7.1 Data Link Layer

DLL layer goal is to provide services to the higher layer that enable transparent and in-
dependent control of the transmission and reception of data from the physical layer. The
detailed operations within the DLL layer are hidden from the above layers. Such operations
can be frame delimiting and recognition, addressing of destination stations, conveyance of
source-station addressing information, collision resolution (on shared broadcast links), pro-
tection against errors (generating and checking frame check sequences) and control of access to
the physical transmission medium. The MAC sublayer within DLL is responsible for channel
access control mechanism. Electrical multiplexing and optical multiplexing are two possible
strategies to realize this multiple access control but there is also packet mode mechanisms of
multiplexing. Electrical multiplexing techniques includes Frequency-division multiple access,
Time-division multiple access, Space-division multiple access and Code-division multiple ac-
cess. Optical multiplexing techniques include wavelength-division multiple access (WDMA)
and space-division multiple access (SDMA). Packet mode mechanisms include Carrier sense
multiple access with collision avoidance (CSMA-CA), ALOHA and Multiple Access with Col-
lision Avoidance (MACA). Since this work will be focused on a broadcast system, as will be
discussed further, where channel sensing is not possible, these will not be implemented.

The functions of the DLL are divided into Provisioning Management, Connection Manage-
ment and Link Management. Provisioning management is responsible for time or sub-carriers
selection. Connection management manages addresses from upper layer converting them into
physical addresses. Link management is responsible for establishing the relation between the
physical addresses and the location of its physical destination. On the other hand, MAC data
service provides data transport services between the peer MACs. One important function of
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DLL in VLC systems is the idle pattern that can be transmitted during medium access layer
idle (no data transmission) for infrastructure light sources. This DLL idle state helps main-
tain visibility and flicker-free operation. The data and the idle pattern should have the same
duty cycle to minimize flicker and these visibility patterns are not encoded in the PHY layer
and do not have a frame check sequence (FCS) associated with them [39]. For instance, in
the DVB-RCT, individual packets are organized in groups and constitute a mega-frame and
each mega-frame contains exactly one Megaframe Initialization Packet (MIP). MIP is made
of 4 byte header and a 184 byte data field and contain many important parameters, such as,
the transport packet header, the synchronization id, periodic flag, sectionlength, pointer and
maximum delay [40]. In this MIP there are also functions like enable function, bandwidth -
function and tx power function that are used for their bidirectional case.

2.7.2 Channel Encoder

Convolutional Coding

Convolutional code is a type of error-correcting code that generates parity symbols via the
sliding application of a Boolean polynomial function to a data stream. Unlike block codes,
they involve the transmission of parity bits that are computed from message bits and the
sender does not send the message bits followed by the parity bits, it only sends the parity
bits instead.

Reed-Solomon

The Reed-Solomon algorithm is a type of block code, which means that encodes data
in blocks. This algorithm is widely used in telecommunications and in data storage. It is
also part of all CD, DVD readers and most barcodes, where it provides error correction and
data recovery. It also protects telemetry data sent by deep-space probes such as Voyagers I
and II. And it is employed by ADSL and Digital TV hardware to ensure data fidelity during
transmission and reception. Reed-Solomon codes are BCH algorithms that use finite fields to
process message data. They use polynomial structures to detect errors in the encoded data
and they add check symbols to the data block, from which they can determine the presence
of errors and compute the correct values. BCH algorithms offer precise, customizable control
over the number of check symbols and provide simplified code structures, which makes them
attractive for hardware implementations [41].

Concatenated coding

Concatenated coding is an error-correcting algorithm that is constructed from two simpler
coding algorithms in order to achieve better performance at the cost of increasing complexity.
Concatenated codes combine an inner code and an outer code and it was proposed by Dave
Forney [42] as a solution to the problem of finding a code that with increased block length
would exponentially decrease the error probability.

Interleaving

Interleaving is a technique to make forward error correction more robust, breaking up
burst errors. This technique is ideal for burst errors correction that occur, for example, in
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fast fading channels because it shuffles source symbols across several code words creating a
more uniform distribution of the errors. Otherwise, if the number of errors within a code
word would exceed the error-correcting code capability, it would fail to recover the original
code word.

Puncturing

A punctured code is obtained by periodically deleting encoded symbols from ordinary
encoded sequences, in order to increase the code rate. Puncturing is used to create the
needed variable coding rates to provide various error protection levels to the users of the
system. For example, in a Viterbi decoder that only operates on the metric of one input bit
per encoded symbol instead of the higher numbers needed, and where the traceback length is
usually five times greater than the constraint length, the puncturing ensures that the decoder
has enough time-steps to properly decode the noisy input bits [43].

Pilot Carrier

Pilot carrier is a pilot signal transmitted over the communication system for supervisory,
control, equalization, synchronization or reference purposes. In the proposed architecture pilot
carrier is used for measurements of the channel conditions and calculation of the equalization
gain and the phase-shift for each sub-carrier. Due to the presence of a DC component output
in the receiver, which can affect the demodulation of digital signal, an orthogonal carrier pilot
should be used. This simple method significantly reduces the bit error rate (BER) of data
symbol detection [40].

2.7.3 Modulation Techniques

VLC technology uses simple intensity modulation and direct detection schemes, which
requires the modulation signal to be real-valued and positive. Well-known modulation schemes
from radio frequency communication can be adapted into the visible-light domain. Such
examples include on-off keying (OOK), pulse-position modulation (PPM) and pulse-amplitude
modulation (PAM) [44].

OOK

OOK transmits the higher state (bit 1) by turning on the light and transmits the lower
state (bit 0) by turning off the light. When transmitting the bit 0, the light does not necessarily
require to be turned off completely, but dimmed at a certain lower level relatively to the
turning on state. OOK is the simplest Amplitude-Shift Keying modulation and it represents
the digital data as the presence or absence of a carrier wave, which in the case of VLC is the
presence or absence of light.

OFDM

OFDM is a method of encoding digital data on multiple carrier frequencies. OFDM
allows equalization to be performed efficiently in the frequency domain and makes sure that
available communication resources are always fully-utilized, because it adaptively encodes into
different frequency bands. Conventional OFDM generates complex-valued bipolar signals,
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which need to be adapted to become suitable for VLC. In order to have the time-domain
waveform, real Hermitian symmetry is used. This symmetry allows all negative samples to
be removed, and as a result a purely positive signal is obtained without any distortion to
the useful information. This operation effectively maps the information symbols onto sub-
carriers in different frequency bands. Due to complex-value nature, a real OFDM signal can be
obtained, but reduces the system bandwidth by a half. However, the resulting waveform still
has a bipolar nature (it has a positive and negative part). A valid approach to make a bipolar
signal strictly non-negative is to introduce a direct current (DC) bias around which the original
bipolar signal can vary, this is known as DC-Clipped optical OFDM(DCO-OFDM) [44]. Since
OFDM signals have a high peak-to-average amplitude ratio, the required DC bias can be
high. The power dissipation increases due to this bias and makes asymmetrically-clipped
optical OFDM (ACO-OFDM), that requires no biasing, a strong alternative. ACO-OFDM
clips the entire negative excursion of the electrical waveform to minimize average optical
power. In ACO-OFDM the odd-indexed sub-carriers in the OFDM frame are modulated with
information while even sub-carriers are set to zero [45]. More recently, a technique known as
unipolar OFDM (U-OFDM) has been proposed and it takes a real bipolar OFDM signal and
generates a unipolar signal by splitting every OFDM frame into two separate frames in the
time domain. The first frame contains the positive time-domain samples and zeros in place of
the negative samples and the second frame contains only the absolute values of the negative
samples and zeros in place of the positive samples. Then at the receiver, the original bipolar
frame can be obtained simply by subtracting the frame containing the negative samples from
the frame containing the positive samples. The result of all these manipulations is a purely
unipolar signal which requires almost no biasing and this leads to very significant electrical
and optical power savings in comparison to DCO-OFDM [44]. Only a quarter of all subcarriers
in an ACO-OFDM are utilized to carry information while U-OFDM frame sacrifices half of
the information capacity in comparison to conventional OFDM. In ACO-OFDM, the capacity
reduction comes from not utilizing the evenly-indexed sub-carriers, while in U-OFDM this
comes from the splitting of each bipolar OFDM frame into two unipolar frames.
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Chapter 3

Designing a DLL for VLC

The main objective of this dissertation is to study and implement a DLL for a broadcast
VLC system. This work is part of a wider project called VLCLighting. Before going into the
details of its implementation is necessary to provide the reader with an overview of the project
characteristics and goals. This chapter will present VLCLighting architecture, the DLL im-
plementation objectives, as well as, the DLL concepts, project constraints encountered, DLL
functions description and their respective flowcharts.

VLCLighting architecture is composed by a modular system with a DLL, FEC, modulation
and optical front-ends, as it can be seen in figure 3.1.

Figure 3.1: VLCLighting architecture

The optical emitter is an ODAC with 255 High Brightness - Light Emitting Diode (HB-LED)
that ensures communication with an Hamamatsu optical receiver and two FPGAs were used
to develop all the remaining functional blocks. The emitter front-end is an ODAC that offers
8 bits of resolution. To achieve the lighting functionality 255 HB-LEDs were used, where
different digital bit weights were given to different number of LEDs. These 255 LED array is
called an ODAC, which is a digital to analogue converter in the optical domain. With ODAC
usage we can achieve further distances without using power LEDs and also mitigate the non
linear effects on this solid state devices. The non-usage of power LEDs also benefits with
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a larger bandwidth. LEDs are usually designed to be operated around a constant current,
which makes its non-linear characteristics an issue in VLC systems where a DAC is used to
send analogue information. With ODAC it is possible relax design constraints correlated to
current driving the LEDs and its variation effect in luminous power. This allows to start
thinking about the precision between one digital bit to its adjacent, which have an error of
half of the least significant bit value. The receiver front-end is from Hamamatsu (C12702-11)
and provides a 4KHz to 100MHz bandwidth with low noise and compact design.

A key part of the VLCLighting system that offers integration between all mentioned blocks
is its asynchronous architecture. Using this architecture all blocks are independent, making
their design and testing simpler. The act of adding or removing a single block is simplified due
to the interface and synchronization abstraction. With this asynchronous implementation,
reusage of hardware is also a possibility as well as high configurability parameters. However,
it presents a higher complexity of each block implementation due to the need of additional
control blocks, higher memory requirement and its initial delay.

Figure 3.2: Tx Asynchronous architecture

Figure 3.3: Rx Asynchronous architecture

The asynchronous architecture of the emitter can be seen in Figure 3.2 and the receiver
in Figure 3.3, where their basic units are composed by the already required processing unit
with an extra controller unit and buffer. The processing unit processes data until the buffer
reaches the almost full state and resumes it when signalled that buffer is below a certain
threshold. The controller block is responsible for signalling the processing unit of such cases
while keeping track of buffer fill level.

The blocks of DLL, FEC and modulation were implemented in the FPGA taking into
account the asynchronous architecture. Each of these blocks ensure its buffer fill level and
signal the adjacent blocks to prevent full or empty buffer states. An important part of
modulation is the need of an analogue signal to be made real and positive to ensure the
LED requirements. FEC codes are another value added feature to the project due to many

26



variables in VLC channel that can compromise performance. VLC systems are very sensitive
to noise and interferences and these can degrade system performance. This signal degradation
can arise due to many sources and these will be fully discussed in section 3.2 together with
FEC code techniques to overcome them.

Now that the reader has an overview of VLCLighting architecture and the importance of
some of its blocks, it is time to understand the importance of the proposed work on a reliable
DLL protocol.

3.1 Data Link Layer concepts

The OSI reference model is a seven-layer conceptual model developed by the International
Standardization Organization (ISO) that describes the standards for inter-computer commu-
nication. The purpose of the OSI reference model is to guide vendors and developers in the
development of digital communication products and software programs, as well as, facilitate
clear comparisons among different communications tools. OSI reference model representation
can be seen in figure 3.4. In order to understand the importance of this work, a full description
of its layers will be performed.

Figure 3.4: OSI VLC adaptation

The main concept of OSI model is that the process of communication between two end-
points in a telecommunication network can be divided into seven distinct groups of related
functions called layers. So, in a given message between users, there will be a flow of data down
through the layers in the source device, across the network and then up through the layers
in the receiving device. At each level, two entities at the communicating devices exchange
protocol data units (PDUs) by means of a layer protocol. Each PDU contains a payload,
called the service data unit (SDU), along with protocol-related headers and/or footers. The
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seven OSI layers are stacked from Application Layer to Physical Layer and they perform
the communication functions of a telecommunication or computing system without regarding
their underlying internal structure as well as their technology. Another model and set of
communication protocols used on the Internet and similar computer networks is the Internet
protocol suite, also know as the TCP/IP protocol. TCP/IP provides end-to-end connectivity
specifying how data should be packaged, addressed, transmitted, routed and received at the
destination. It is organized into four abstraction layers called Application, Transport, Inter-
net and Link. This DLL study is contemplated in both models as DLL in OSI model and
Link layer in TCP/IP protocol. Since TCP/IP model lacks the formalism of the OSI model,
the OSI layer will be the one on the focus of the discussion.

Starting from the top of OSI model we have the Application layer that interfaces with
network applications like mail, web and file transfer. The next layer is Presentation Layer
that provides a context for communication between layers, like encryption, decryption and
compression. This layer prepares the data from the lower layers for “presentation” to the
application layer. Session layer establishes and maintains communication link. It controls the
dialogues between computers, where typical protocol examples are handshaking protocols. It
also controls duplexing, termination and restarts of the communication. It is important to
remark that these three layers are seen by many as an whole and their datagrams are called
Upper Layer Data. The Transport layer produces transparent transfer of data and the usual
protocols operated here are the TCP for reliable connections and UDP for unreliable ones.
TCP is used to make sure that the datagrams arrive at the destination and UDP is used
when latency is a more serious issue. The Transport layer provides end-to-end connections,
reliability and flow control. The datagrams of this layer are called Segments. The next layer
is called Network layer and it is where routers operate. Network layer provides connections
between hosts and different networks with logical addressing protocols like IPv4 and IPv6.
As previously mentioned, it is in this layer that routers operate so, it is where the routing of
packets takes place. The DLL that will be the focus of this work adds physical addressing by
providing connections between hosts on the same network. DLL datagrams are called Frames.
The last layer is called Physical layer, it describes electrical and physical specifications of the
used devices. The datagrams in this layer are called symbols. The communication according
to the OSI model is achieved when a datagram goes down through each one of the mentioned
layers. Upper layer data is sent down from the application layer and once it arrives the
transport layer, it is encapsulated into a segment, so the segment header is attached to the
upper layer data. Then, it goes down to Network layer where the segment is encapsulated
into a packet. At the DLL the packet is encapsulated into a frame and at Physical layer it
is converted into symbols that are sent out to the network. The receiving process is made
backwards, it goes up through the different layers. In each lower layer the encapsulation is
stripped away, leaving the Upper Layer Data at the end of the process.

The DLL provides the building blocks for communication across a variety of physical
media. It connects upper-layer processes to the Physical layer, in other words, it places data
on and receives data from the network layer and then provides data deliver between services.
The DLL is divided into two sub-layers called MAC and LLC. The Network layer packets
do not have a way to cross the physical media. It is the role of the DLL to format these
data packets into frames and send them out to the network. Typically, the DLL is also
responsible for fragmentation, re-assembly, error handling, addressing and medium access
control. The DLL is the lowest layer in the OSI model that is concerned with addressing:
labelling information with a particular destination location. Each device on a network has a
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unique number, usually called MAC address, that is used by the DLL protocol to ensure that
data intended for a specific device gets to it properly.

In order for data to be sent across the network, the Network layer packets have to be
encapsulated and formatted into frames. The data packet is taken from the network layer
above and fitted with a header and trailer in order to be sent through the physical layer. This
process is know as encapsulation. The header contains information that is specific to the type
of network and the protocol being used Typical components of the header are the start frame,
address field, which contain the destination and source address of the frame. It also includes
a type/length field that is used to characterize the type of data being sent or frame length.
The trailer comes at the end of the frame and contains two parts: the frame check sequence
(FCS) and the stop frame. The stop frame is optional in the the case of length field usage.
The FCS field is used for error correction where the sender creates a verification code based
on the package content and places it in this field. When the frame arrives at its destination
the receiver makes its own calculations and compares them to the ones placed in FCS field.
Once the same calculations are made at the receiver, the information is disposed in case of
FCS field is not a match. This value uniquely represents the data contained in the frame and
is used by the receiving node to detect bit errors occurring in the physical link between nodes.

The DLL is conceptually divided into two sub-layers called LLC and MAC. These sub-
layers provide full functionality for different protocols and hardware. The LLC sub-layer
prepares data for transmission by giving specific information regarding which network pro-
tocol is to be used in the frame. It allows a variety of protocols to be used in the same
hardware. The successful transmission of a DLL frame requires that the frame is received,
intact, by the receiver, where collisions can cause undesired corruption to them. In order
to minimize the loss or corruption, medium access control protocols are used by the MAC
sub-layer that regulates the placement of data on the physical medium, controlling the access
to the physical hardware. It also provides specific information that allows the frame to meet
the specifications of the physical device where data is being sent across. This sub-layer also
marks the beginning and end of a frame. Typical DLL protocols are chosen based on network
hardware implementation. Some examples are HDLC (High level Data Link Control), PPP
(Point-to-Point Protocol) and the most widely known Ethernet.

VLC systems are systems where data is transmitted wirelessly over short distances and
where DLL protocol is in general a key issue for performing hard real-time communications.
If this layer is not able to give tight time and reliability guarantees (medium access time),
this can be hardly corrected by other protocol layers. A comparison between the conceptual
OSI model and the usually implemented layers for VLC systems can be seen in figure 3.4.
It is important to notice that VLC systems usually do not consider logical addressing and
implement only the two lower OSI equivalent layers. As previously said, OMEGA project
and DVB-RCT supported and inspired this work. The proposed DLL structure follows this
inspiration lines. The first one, with its OWMAC Specification, provided insight into a
DLL structure for VLC, while the second one provided some insight into broadcast MAC
specifications.

OMEGA OWMAC specification that can be seen in [46] was a key-part that provided
a detailed insight in a MAC and LLC protocol for IRC and VLC. The MAC service in
the OMEGA architecture is fully distributed, meaning that all devices provide all required
MAC functions and no device acts as a central coordinator. The coordination between the
devices within optical range is achieved by the exchange of beacon frames. This periodic
beacon transmission enables device discovery, supports dynamic network organization, and
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provides support for mobility. The basic timing for the network and scheduling information
for accessing the medium are also performed with these beacons. The OMEGA basic timing
structure for frame exchange is a superframe that starts with a Beacon Period (BP). Each
device protects itself and its neighbours BPs for exclusive use of the beacon protocol, ensuring
that no transmissions other than beacons are attempted during the BP of any device. MAC
beacon frames are intended to be received and interpreted by all devices and hence their frame
payloads are transmitted with the lowest available data rate in order to be decoded by all
recipients. Other frames are exchanged in a more restricted context and their frame payloads
are transmitted at the higher possible data rates. This information is included in OMEGA
MAC Headers. Fragmentation of data frames are also performed in OMEGA project to reduce
the data loss in marginal links, as well as an implementation of acknowledgement policy that
assures the delivery of a frame. If the source does not receive the requested acknowledgement
then it may retransmit the frame or discard it. OMEGA also implemented a Multiplexing
sublayer to enable the coexistence of concurrently active higher layer protocols within a single
device, routing outgoing and incoming data to and from their corresponding higher layers.
OMEGA MAC frame which consists of a fixed-length MAC Header and an MAC Frame body
with an optional variable length is depicted in Figure 3.5.

Figure 3.5: OMEGA General MAC Frame format [46]
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The Frame Payload in OMEGA has a length range from zero to 4095 Bytes. It carries the
information to be transferred to a device or group of devices. If the payload length is zero,
the FCS is not included and there is no MAC Frame Body. The MAC header is composed
by a Frame Control Sequence, MAC Destination and Source addresses, Sequence Control,
Access Method and PLCP Header correction field.

The Frame Control consists of a Protocol version (3 bits) used for device supporting
checking; a Frame Type (3 bits), a Frame Subtype (4 bits) to assist the receiver in the proper
processing of the frame; a retry bit that identifies a retransmission of frame; an acknowledge
policy parameter (2 bits) set by the transmitter; a secure bit to identify the usage of a temporal
key; and 2 reserved bits. In OMEGA project, five frame types were planned but only three
were implemented, which were the Beacon, Control and Data frame types. Beacon frames are
used to determine the expected reception time at the receiving device as well as to estimate
the impact on superframe synchronization and increment its start time accordingly. Control
frames are used for Acknowledgement purposes Data frames, as the name, suggests to send
the data.

The MAC Destination and Source addresses have a 16 bits size each. They identify the
source device and the destination device. A particular case of destination address is the
0xFFFF used for broadcast. The Sequence Control identifies the order of the data units and
their fragments. It is composed by one fragment bit, sequence number (12 bits) and a fragment
number (2 bits). The fragment number is zero in the first or only fragment and is incremented
by one for each successive fragment of that service data unit. The sequence number is used
for duplicate detection of frames sent using the acknowledgement policy. For this purpose a
dedicated counter for different source devices, destination devices and fragments is assigned.
The More Fragments field is set to zero to indicate that the current fragment is the sole or
final fragment of the current service data unit, otherwise is set to one.

Access Method parameter is divided into Duration, More Frames, Access Method and
Feedback information. The Duration field is 13 bits in length and is set to an expected
medium busy interval after the end of the PLCP header of the current frame in units of
microseconds. Its value is used to update the network allocation vector. More Frames is
set to zero if the transmitter will not send further frames to the same recipient during the
current superframe. Access method sub-parameter must be set for each packet and must be
updated for each time slot. It is set differently depending on the reservation type (half-duplex
or full-duplex) for each packet sent in the given time slots. The Feedback information field (8
bits) is used by the receiver of the frame to assess the channel condition that could be based
on the Received Signal Strength Indication (RSSI), BER and Packets Loss.

Now that the reader has an overview on OMEGA OWMAC specification, DVB-RCT
contributions to this work study will be presented. In order to provide asymmetric interactive
services supporting broadcast to the home with a return channel, a MAC standardization was
conducted and the frame structure can be seen in Figure 3.6.

DVB-RCT general MAC format has several common frame characteristics with OMEGA
OWMAC. As OMEGA, it also has a Protocol Version parameter with three bits to identify
current MAC version. Syntax Indicator (2 bits) indicates the addressing type contained in the
MAC message and together with Protocol Version make the Message Configuration param-
eter. DVB-RCT Message Length indicates the length of the MAC message and it is present
only in downstream messages. MAC address parameter identifies the MAC address of the
Network Interface Unit (interface between the downstream and upstream channel). Another
common parameter to OMEGA is the Fragment Count field that identifies the fragment in a
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MAC message when multiple fragments are transmitted. The last DVB-RCT MAC parameter
is the one that contains the data and it is called MAC Information Elements.

Figure 3.6: DVB-RCT MAC message structure [47]

This section provided the reader with the basic concepts that were used to design and
implement the DLL layer for VLCLighting project. In the next section, project constraints
will be discussed.

3.2 Project constraints

In order to achieve a compromise between the proposed DLL and its adjacent block
(FEC), a study of their efficiencies impact in each other is required. Therefore, this section
will present the study conducted to achieve the best DLL frame scenario and FEC code
to be used. First, a brief introduction to system parameters and their definitions will be
discussed. The performance analysis for non-binary block codes over memoryless channel was
a key part of this study. In order to evaluate system performance in different conditions,
the probability of bit error and Signal-to-Noise Ratio (SNR) are two of the most important
performance parameters to taken into account. One of the most important ways to determine
the quality of a digital transmission system is to measure its Bit Error Rate (BER). As the
name implies, BER parameter is the number of incorrectly received bits divided by the total
number of transferred bits during a time interval. The definition of BER can be translated
into the formula 3.1 [48]:

BER =
Number of errors

Total number of bits sent
(3.1)

The SNR is a measure of signal strength relative to background noise. This is a measure-
ment of prime importance in all applications from simple broadcast receivers to those used
in cellular or wireless communications and it is expressed by the equation 3.2.

SNR =
Psignal

Pnoise
(3.2)
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The SNR is more usual to see expressed in a logarithmic basis using decibels like in 3.3:

SNRdB = 10× log10

(
Psignal

Pnoise

)
(3.3)

If the medium between the transmitter and receiver is good and the signal to noise ratio
is high, the BER will be very small. However if noise can be detected, there is a chance that
the BER will need to be considered and its impact studied.

VLC system’s reliability can be compromised by noise and interference from several
sources. These systems need to be able to cope with ambient light like sun and moon, and
existing artificial light sources. Since this VLC system aims at public lighting, atmospheric
attenuation is a big issue in outdoor scenarios because it cannot be conveniently controlled
and can cause severe signal degradation. One of the most compromising phenomenons is fog.
When light propagates through it, the electromagnetic waves interact with the water droplets
suspended in the air. This interaction causes the light to attenuate and scatter. Light atten-
uation in a medium occurs due to absorption and scattering but due to fog size particles light
attenuation is negligible and only the scatter effect is considered. Scatter effect varies with the
droplet size and their concentration. Some studies are being conducted to provide intelligent
lighting systems with the dynamic changing of the photometric characteristics of luminaires
and the luminance of the road surface depending on weather conditions [49]. Isotropic scat-
tering which occurs when outgoing light scatters into every direction with equal likehood
depends on the wavelength of the light, where shorter wavelengths (blue,violet) scatter more,
loosing light directionality. Channel blockage is other challenge to overcome. Shadowing, as
well as, lost of LOS are some of its examples. The last error source is multipath that is more
present in indoor scenarios and is due to reflections and signal time dispersion. A particular
issue raised by this last one is InterSymbol Interference (ISI) that occurs when one symbol
interferes with subsequent symbols.

All these can contribute to errors that can be characterized in two types: random and
burst errors. The random and burst errors induced by these phenomenons must be handled in
order to guarantee a minimum system performance. When errors occur in many consecutive
bits rather than occurring independently of each other, methods of burst error correction are
employed. Interleaving is a technique that introduces more robustness with respect to burst
errors. It is used to improve the performance of the forward error correcting codes. This
technique shuffles source symbols across several code words transforming the burst error into
a more uniform distribution of errors. In the VLCLightning project, FEC techniques such
as ReedSolomon (RS) and/or convolutional codes provide the receiver error detection and
correction capabilities. RS codes have both random and burst errors correction capabilities,
while convolutional codes handle random errors better at the cost of higher implementation
complexity and larger code words for the same performance.

To find the sweet spot to achieve optimal values for the project, as previously said, a
compromise between FEC and the DLL frame size has to be accomplished. Performance
equations of the DLL frame can be seen in 3.4 and RS efficiency calculation is achieved
through the use of 3.6.

Frame efficiency =
Payload size

Frame size
(3.4)

Frame size = Header size+ Payload size (3.5)
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Reed Solomon efficiency =
K

N
(3.6)

Prior to this efficiency study a total of 64bits (8 Bytes) were identified as required to
all header information and with this value in mind, different frame efficiencies are obtained
with payload size variation (Equation 3.5). The DLL frame efficiency is given by the payload
size divided by the total size of the frame, as it can be seen in 3.4. On the other hand, the
Reed-Solomon code efficiency is calculated with the information symbols (K) and the length
of the non-binary code in elements (N). A systematic (N, K) block code consists of the already
mentioned K information symbols and N-K parity check symbols. This N-K extra number of
elements guarantee the code correction up to t = 1

2 (N −K) symbols and can detect up to
N −K erroneous elements as shown in the equations 3.8 [50].

Dmin = N −K + 1 (3.7)

t =

[
1

2
(Dmin − 1)

]
=

[
1

2
(N −K)

]
(3.8)

Paper [51] provides the basis for the SNR value that will be later discussed. Preliminary
results show a 1 × 10−3 BER result with a single Blue LED over 1,75m distance. Since this
experiment was conducted with a single LED and the project aims at the exploitation of 255
LED matrix over even further distances, the SNR value is expected to be higher because it
has a close relation with the optical power. Aside from this collected data, a study with both
convolutional and RS techniques was conducted, showing greater benefit from the usage of
the last ones for SNR values higher than 5.8dB (Figure 3.7).

Figure 3.7: Error Correcting codes comparison

Bearing in mind the previous Figure 3.7, the reader can perceive that RS(255,213) code
with an efficiency of 83,53% outperforms a convolutional code with only 50% of efficiency after
a certain SNR value (5.8dB). Given this efficiency gain, RS codes were the obvious choice and
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will be the focus of the present discussion. It is important to remark that RS symbol size is
given by: 2k where k was considered to be 8bits (1Byte) that correspond to the addressing of
the majority information also performed in bytes. This matching criteria makes the size of
the smaller unit of the FEC codes easier to match the sizing of its adjacent blocks.

With the 8bits k value it is possible to achieve RS N value with Equation 3.9. As stated
before, this N represents the length of the non-binary code in elements that multiplied by k
gives the total binary size of one codeword (255 Bytes).

N = 2k − 1 (3.9)

One reason for the importance of the RS codes is their good distance properties [50]. The
minimum distance of non-binary code is denoted by Dmin and the error-correcting ability of
a RS code is determined by its minimum distance as previously stated in Equation 3.8. The
minimum distance is given by 3.7.

After FEC technique choice (RS), the next step was to estimate BER value over an
Additive White Gaussian Noise (AWGN) memoryless channel with OFDM and QPSK modu-
lation. AWGN is a basic noise model used to simulate the effect of many stochastic processes
that usually occur in reality. AWGN is often used as a channel model where a linear addition
of wideband or white noise occurs with a constant spectral density and a Gaussian distribu-
tion of amplitude. It is important to take into account that this model does not account for
non-linearity, dispersion, interference and fading phenomenons.

Figure 3.8: QPSK performance over AWGN channel

The BER against SNR curve is presented in Figure 3.8. The value of 7dB SNR was
considered because it presents a good approximation to the 1× 10−3 probability obtained in
[51]. As can be seen in Figure 3.8, the 7dB SNR results in a BER of 7.2×10−4. The simulated
BER value was conducted for only QPSK modulation because it bases on a channel response
approximation. This approach of the channel response considers that the project modulation
with OFDM and QPSK can be approximated with a narrowband channel where only the last
one was used, therefore a study contemplating only QPSK is considered in this study.
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“A nonbinary code is particularly matched to an M-ary modulation technique for trans-
mitting the 2k possible symbols. Each of the 2k symbols in the q-ary alphabet is mapped to
one of the M = 2k orthogonal signals. Thus, the transmission of a code word is accomplished
by transmitting N orthogonal signals, where each signal is selected from the set of M = 2k

possible signals. The symbol error prabibility PM and the code parameters are sufficient
to characterize the performance of the decoder” [50]. The modulator, the AWGN channel
and the demodulator form an equivalent (M-ary) input, discrete (M-ary) output, symmetric
memoryless channel, where the channel model can be illustrated as in Figure 3.9.

Figure 3.9: M-ary input, M-ary output, symmetric memoryless channel [50]

In figure 3.9 the reader can observe a graphical representation of a symmetric memoryless
channel with different probabilities of the correctly reception of a symbol. The p referred in
the equation 3.10 is the probability of occurrence of a symbol change. Since PM is the symbol
error probability, 1− PM is the symbol successfully received probability.

p =
PM

M − 1
(3.10)

PM = 1−
(

1−Q
(√

2R× SNR
))m

(3.11)

It is important to mention that all MatLab code elaborated for this efficiency study can
be found in Appendix A, and if further questions arise in this section its reading is strongly
recommended.

In order to perform a study of BER at the output against different RS codes efficiencies,
a set of probabilistic formulas were considered and deduced. As it can be seen in [50], the
symbol error probability is given by the equation 3.12. Then, if the symbols are converted to
binary digits the bit error probability can be calculated with the equation 3.13 [50].

Pes =
1

N

N∑
i=t+1

i

(
N

i

)
P i
M (1− PM )N−i (3.12)

Peb =
2k−1

2k − 1
Pes (3.13)
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However, in this case study the bit error probability was considered to be equal to the
symbol error probability. This approach was done because in this study we have really small
error probability and it is therefore highly unlike to have more than one incorrect bit per
symbol. This small probability does not mean that more than one bit cannot be incorrect
but it simplifies the calculation without comprising accuracy.

The simulation in Figure 3.10 assumes several RS(255, K) codes which results in 255
codewords storing K symbols of data. With this graph, the minimum code that is worth
choosing could be extrapolated, in other words, it indicates that the right RS code to use is
above RS(255,165).

Figure 3.10: Bit Error Rate vs efficiency

Despite the obvious tendency of a decrease in code efficiency with the increase of parity
bits (Figure 3.10), the reader can observe that with that compromise, the BER does not go
below a certain value. After it, it is not worth the sacrifice in code efficiency. This effect was
expected, because since the energy per bit is reduced with stronger RS codes, the SNR will
increase. This SNR increase will lead to a bigger error probability as can see in Equation
3.11. With this given threshold in mind, simulations with different N sizes in RS codes were
made from it (RS(255,165)) up to RS(255,253) with a step of 2.

To choose the appropriate combination between FEC code and DLL frame size, Pes, Block
Error Rate (BLER) and Frame Error Rate (FER) were estimated in the respective order.
Before going into the details of the mathematical statements in equation 3.14 and in equation
3.15 it is important to point out that the equation 3.12 is used to achieve the symbol error
probability (Pes). This Pes corresponds to the sum of different RS codes with different number
of information symbols then divided by the number of elements. With simple probabilistic
rules, the reader can comprehend the meaning of the BLER and FER formulas. Since this
variable (Pes) provides information on the probability of having one erroneous symbol, 1−Pes
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gives the probability of having one correctly received symbol. When (1−Pes)
Number of symbols

is calculated the probability of having all correctly received symbols is obtained and then it
is subtracted to one which gives the probability of having all incorrectly received symbols.
As it can be seen in equation 3.15, the FER calculation has the same logic of the BLER, but
instead of using the probability of having one erroneous symbol, it uses the probability of
having one erroneous block. It was considered that a codeword is incorrect when at least one
incorrect symbol reception occurs.

BLER = 1− (1−BER)Number of symbols (3.14)

FER = 1− (1−BLER)Number of blocks (3.15)

In figure 3.11 the result of the different FER versus the total efficiency can be seen, where
the last one is the result of the FEC code efficiency times the DLL frame efficiency.

Figure 3.11: Efficiency vs FER Frame

After different FER estimations, the next step is to choose which of the estimated FER
is better to meet the system requirements. Since VLCLighting project aims at infotainment
broadcast, it was defined a total of 60 minutes without errors as a goal. This error-free
time was considered to be ideal to provide the combination of information and entertainment
purposes that strongly focus in the video broadcast main objective. FER calculation regarding
the system’s error free time can be achieved with the help of equation 3.16. The bitrate used
in this equation was considered to be 24Mbits/sec, which was the experimental result at 2m
transmission over an indoor free space channel with 12MHz bandwidth as shown in the paper
[51]. During this work, all mentioned frame sizes were in bytes to maintain coherence and in
order to use 3.16, it is crucial to convert them to bits by simply multiplying them by 8. The
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reader will find that the error-free time should be used in seconds and that with these two
last criteria both frame size and time units match the bitrate (Mbits/sec).

FER =
FrameSize× Timewithout error

Bitrate
(3.16)

With all these constraints in mind, the maximum FER to be achieved was calculated
to be 3, 7926 × 10−7 which is obtained with the maximum considered frame size that was
4096Bytes. Each curve in Figure 3.11 represents a different RS code where each asterisk
represents a different frame size. Figure 3.11 is a good representation of the impact on FER
on the Total efficiency of the code and frame size variation. The maximum FER means that
a RS code curve should be chosen below this value.

This approach to choose the FEC code and DLL frame size by only considering the
system’s total efficiency was proven to be difficult and not ideal. However this study gives
useful insight to adapt system frame size and FEC code to different scenario demands and
their variation implications. If the frame is too long, it can introduce extra delays to the
other requests from the same service. The more bytes transmitted in a frame, the longer each
receiver must wait until transmission completes, therefore increasing the packet jitter. It is
not worth the effort of having a big frame size where each request filling a small percentage,
because only one request from each service will be provided per frame. In other words, shorter
bursts of data mean that other requests from the same service got a faster opportunity to
transmit, decreasing the delay of received requests. From Figure 3.11 with the increase of
frame size there is a gain in total efficiency at a small cost of FER increase. This would
increase dramatically the delay between each request and constitute the reason to reconsider
this study. So, a step back was taken and a study to understand VLCLighting DLL frame
size demands performed.

As previously stated, VLCLighting main goal is video broadcast, so this should be the
major concern when choosing the frame size. Video broadcast architectures like the Digital
Video Broadcasting - Terrestrial (DVB-T), DVB-T2, Digital Video Broadcasting - Satellite
(DVB-S), DVB-S2 and Advanced Television Systems Committee (ATSC) standards were
analysed. It was found that DVB-T, DVB-S and ATSC use a standard container format
called MPEG Transport Stream (MPEG-TS). Where DVB-T2 and DVB-S2 technologies are
an extension of the respective existing standards DVB-T and DVB-S. Besides integrating edge
cutting signal processing technologies to allow a better use of the spectral resources, these
technologies use a DLL protocol defined by the DVB called Generic Stream Encapsulation
(GSE).

GSE concept resides at the same level as MPEG-TS because it provides a compatible
broadcast mode for carrying MPEG-TS with the possibility of carrying variable size generic
data in base-band frames [52]. The main goal of GSE is to complement MPEG-TS by enabling
DVB systems with high flexibility to match the input traffic with the minimum overhead
possible. In other words, GSE payload may be encapsulated in a single GSE packet or sliced
into fragments and encapsulated in several GSE packets. In VLCLighting project to ensure
the lighting functionality, a regular frame needs to be sent with a certain time limit, therefore
a variable size frame could compromise it. With this in mind, the framing structure will be
based in the MPEG-TS with fixed size frame.

MPEG-TS is a container format for audio, video and metadata transmission. It is clear
to understand its formatting purpose of audio and video because it is used in DVB systems.
However, its other motive is metadata tranmission, which provides transmission of ”data
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about data”. This metadata has information about the video and audio (such as author,
origin and destination locationsn and security restrictions). MPEG-TS packet size is constant
(188 Bytes) and it is always divided into a header and a payload. As it can be seen in figure
3.12 the header has a minimum size of 4 Bytes, making the maximum possible payload size
to be 184 Bytes.

Figure 3.12: Structure of MPEG-TS packet [53]

With MPEG-TS frame size of 188 Bytes in mind and previous study, the choice regarding
the DLL frame size should be 256 Bytes. The 256 Bytes value guarantee the adequate means
to furnish the HDR service requests and leaves a room of 68 Bytes for the other identified
value added service for the VLCLighting project (MDR). The mentioned figure 3.11 shows
the result of different 256 frame size with different RS codes that combined with calculated
FER of 3, 7926× 10−7 gives the basics for system parameters choice. That same information
can also be seen in figure 3.13 that has the DLL frame size fixed to 256 and varies the RS code
number of data symbols (from 165 to 253). The RS(255,215) is the first RS code to appear
below the calculated FER, therefore it will be the one considered in the following discussion.

With all previous discussion concerning the motives for these values selection it was of
greater importance to show the reader a more detailed graph of FER versus total efficiency.
The following figure 3.13 and 3.14 are the consequence of the restriction imposed in frame
size and RS code, respectively. It shows in greater detail the already discussed tendency of
both FER and Total efficiency with the variation of RS codes and frame size. It is important
to notice that both figures have a small circle that calls attention to the considered value of
RS code in the case of figure 3.13 and the considered frame size in the case of figure 3.14.

Both figure 3.13 and 3.14 show that the total system efficiency value of 81, 76% could be
increased with a sacrifice on the FER and would surpass the limit given by calculated FER
with 60 minutes error-free transmission.
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Figure 3.13: Efficiency vs FER for Frame Size = 256

Figure 3.14: Efficiency vs FER for RS(255,215)
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With RS(255,215) code fixed and frame size fixed as 256 Bytes another constraint was
identified as a consequence of their usage. These results were found to be useful to give an
approach required for FEC and frame size selection but small adjustments are required. It is
important to regard that with these adjustments MDR size in a DLL frame will be calculated.
As previously said, RS(N,K) have a codeword size of N with K information symbols. Taking
into account that the RS(255,215) is only able to provide 215 symbols transmission, which
are 215 Bytes (each symbol has a size of 8 bits), the DLL frame size of 256 Bytes cannot
fit in one codeword. In order to send the 256 Bytes it would be required two RS(255,215)
codewords to be used, which would drastically lower the code efficiency (second codeword
would only contain 41 Bytes of data). A small adjustment in both was performed with the
goal of optimizing the DLL frame to fit in only one codeword. In the light of this objective,
the best possible scenario achieved was a RS(255,209) and a DLL frame size of 208 Bytes that
provide a total system efficiency of 78, 43%. However, this means that 1Byte of information
will be junk. Nevertheless it was found to be the best compromise scenario. The choice of
208 Bytes was also based on CDMA configuration requirements in memory alignment that
will be discussed in greater detail in Chapter 4. CDMA address configuration needs to be 4
or 16 Bytes aligned that compelled this study for the best frame size choice. It was found
that 13 CDMA transfers of 16 Bytes was the closest value to 215 Bytes and the already
pointed 208 Bytes became the wise choice of frame size. Another crucial improvement needs
to be referred. With the goal of improving system’s reliability, 32-bit Cyclic Redundancy
Check (CRC) will be implemented. This error-detecting code requires 32 parity bits that
will transform the FEC code from RS(255,209) to RS(255,213) without changing the frame
size. Therefore, the DLL frame size will be considered on this work as 208 Bytes and DLL
functionalities will be now discussed in the next section.

3.3 Functionality description

VLCLighting project has identified two types of value added services to be introduced
in public lighting systems. A MDR to furnish adequate means for control and management,
advertising and infotainment services and a HDR for video broadcast. The broadcast nature
of the VLCLighting project requires the use of a DLL to arbitrate the access among these
multiple services while enabling flow control and reliability on the transmission. With this
goal in mind, OMEGA Sequence Control concept was adapted and introduced in the proposed
DLL frame defined in figure 3.15.

Since DLL frame size was set as 208 Bytes in last section and, as will be seen in this
section, Header was identified with 8 Bytes, payload size will have 200 Bytes. With the
previously identified MPEG-TS frames of 188 Bytes to be sent in the HDR service, MDR
service is left with 12 Bytes.

The Sequence Control proposed in this DLL study is intended to fragment both services
into the same frame. It is composed by a More Fragmentation flag, Fragment Number and
Request Size for both types of services. The Fragmentation Flag is set if the Transmission
Frame Data Field holds data that is part of a larger fragmented packet. The Fragment
Number is set to the number of the fragment within the frame and it is zero in the first or
only fragment. Request Size is set to the fragment byte size of the service request. Protocol
Version was inserted regarding future versions and optimizations on the proposed DLL, it is
currently set to 1. It indicates which protocol version is being transmitted and avoids frame
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misinterpretations by future outdated devices. During the study of this DLL several header
parameters were evaluated, but then abandoned due to project constraints. Since DLL will
operate in a broadcast system, different frame types was proven to be unessential. With
system unidirectionality we cannot do the medium sensing and therefore evaluate the correct
reception and/or its reception time. It was also studied a frame subtype to service prioritiza-
tion that would avoid starvation of the MDR. Nevertheless, a solution able to split a frame
according to each service needs was thought to be a better solution. VLCLighting broadcast
characteristics makes MAC Source address and MAC Destination Address unnecessary but
with localization purposes and user handover warnings in mind, MAC Source address was
inserted in the frame. Due to OFDM usage in the project a start and stop beacons were
not considered. OFDM already provides frame synchronization because it identifies in the
receiving end where the DLL frames start and provides the upper layers with the useful data.
Fragment Number size was thought to be 12 bits in order to send a maximum service request
size of 4096 bytes to leave room for possible future work on a variable payload length. This
dynamic length is used in OMEGA project (with a 4095 maximum size), as well as, in many
other communication systems. This feature could accommodate higher quality services for
VLCLighting project usage. During this work, the frame size was considered to be constant
due to existing time restrictions on the data sending, that requires the data to be sent within
a maximum period of time. The reader will notice that in figure 3.15 the payload size is set
to 200 bytes, as explained in section 3.2.

Figure 3.15: DLL frame format

In order to accommodate all the DLL discussed frame parameters, the DLL emitter was
structured into five blocks (functions) called Operations Controller, Admission Control, Frag-
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mentation Control, Header Coder and Link Management, where the Operations Controller
is responsible for managing the remaining blocks (figure 3.16). Admission control, as the
name suggests, is responsible for controlling the admission of data. Fragmentation control
packages and fragments the data into the so called frames. Header coder is responsible for
header calculation and link management for controlling the outgoing data flow. All of these
blocks with the exception of Fragmentation Control are connected to a shared memory where
the frame is formed before exiting the DLL. On the other hand, the DLL receiver functions
are Link Management, Header Decoder, Defragmentation Control, Higher Layer Control and
Operations Controller, where the Operations Controller, as in the emitter, is responsible for
controlling all the remaining (figure 3.17). The remaining blocks on the receiver are respon-
sible for striping the header and re-assembly the Higher Layer data. All these functions
behaviour will be fully detailed in the next section, which will provide the full behaviour of
the proposed DLL.

Figure 3.16: Emitter DLL Figure 3.17: Receiver DLL

3.4 Data Link Layer flowcharts

Figure 3.18 shows the proposed DLL emitter that is responsible for structuring the two
identified services (MDR and HDR) into frames that are stored in a temporary memory of
one frame size (208 Bytes) to then be sent to the different Physical Layers. The Higher Layer
signals the DLL with a Service Request Flag and with the Request Size that indicates the
request data size inserted in the Higher Layer buffers. When Operations Controller receives
this information, it signals Fragmentation Control to calculate the byte size of both services
to be stored in the DLL internal memory. During this calculation, Fragmentation Control
favours the HDR requests that was thought to require 188 Bytes (MPEG-TS payload size) and
leaves 12 Bytes for the MDR service. It is very important to regard that these values are not
fixed, and are only considered when fragmentation of both services is required. When both
services fragmentation is not required, Fragmentation Control tries to maximize payload size
usage, making the attendance of service requests flexible. After Fragmentation Control, the
Admission Control transfers the data from the Higher Layer buffers to DLL internal memory,
and the Header calculates and inserts the header information at the same time. Once the
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Operations Controller is signalled that all data was transferred, meaning that the frame is
ready to exit the DLL, the Link Management inserts the Source Address and sends it to the
proper Physical Layer.

Figure 3.18: Emitter DLL

Bearing in mind the discussed asynchronous architecture of the VLCLighting project, the
DLL needs to provide and obey a certain set of signals to be integrated between the Higher
Layer and the FEC block. While keeping track of its buffer level, the DLL emitter needs to
signal FEC block of the Almost Empty (AE) state, which indicates that the next block must
stop processing. This flag ensures that the next block buffer is never empty controlling the
flow of data between both. To guarantee the proper functioning of DLL, a flag from FEC is
required to signal when a frame from its buffer has been removed. This is required to update
all memory addressing parameters and perform the correct address writing on the FEC block
buffer. The flowchart of the DLL emitter Operations Controller is depicted in figure 3.19.
Since it was established that the maximum number of requests is 32, a buffer for the HDR
and MDR request sizes was created with 32 positions. The AE flag is initialized with 1,
because no information was sent yet. It was established a minimum FEC buffer level of one
DLL frame size, meaning that the AE flag will be set to 0 after one DLL frame is sent. The
flag responsible for the Almost Full state is initialized with 0, due to DLL buffer being empty
at the beginning.

The first operation to be performed by the Operations Controller is to check the FEC buffer
level and see if it is Almost Full. If the condition is true, then DLL must stop processing and
wait for FEC block to empty the buffer below a certain threshold that was defined as one DLL
frame size. The second task is to ensure that FEC block receives a frame at a certain rhythm.
If the measured time is superior to the defined maximum time, a junk frame needs to be sent.
After ensuring these operations, Fragmentation Control function is called to calculate the
HDR and MDR data size to be sent. Then, it gives the HDR data size , if a HDR request was
made, to the Admission Control. Admission Control function is called to configure the DMA
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parameters to transfer the HDR data from Higher Level buffer to DLL buffer, then High Level
buffer state parameters are updated. After this, Header Coder function is called to calculate
and transfer the header information to the DLL buffer. If a MDR request was performed
the Operations Controller will wait for the DMA transfer to finish the HDR request transfer
and to configure the DMA with the MDR request information. After Admission Control
completion, Link Management function is called to insert the Source Address and configure
the DMA for the DLL frame transfer to the FEC block buffer.

Figure 3.19: Emitter Operations Controller
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Figure 3.20: Emitter Fragmentation Controller
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The Framentation Control function behaviour can be seen in figure 3.20. Fragmentation
Control is responsible for providing the Operations Controller with the fragment number
calculation and the More Fragment parameter for both services. When Fragmentation Control
function is called for the first time, fragment numbers are initialized with 0 and More Fragment
flags are initialized as false. An additional flag called HDR will be required, initiated as false.
The first operation of this layer is to read the buffer created by the Operations Controller that
contains all request sizes. If a HDR request is available, its value is read. Due to Fragment
Number frame parameter size of 5 bits, a maximum of 32 fragments can be performed which
limits the maximum request size to 6400 Bytes (32fragments×200Bytes(FrameSize)). The
request size read is compared to this maximum request size and if the request is bigger than
the allowed it is discarded and a new request is fetched from the buffer. If no more HDR
requests exist in the buffer, the HDR auxiliary flag is set to one. After, the MDR request
buffer level is checked and if a request exists its size is compared with the maximum allowed
request size. With these informations, the Fragmentation Control block is able to calculate
the HDR and MDR data size to be sent. This calculation is different depending on the
five scenarios shown in the flowchart. If HDR and MDR request size is zero, no data will
be sent. If the sum of both requests does not surpass the frame size no fragmentation is
required and the data to be sent is given by the request sizes. If the sum of both requests
surpasses the frame size and the MDR request is lower than a given maximum (16 Bytes)
only HDR fragmentation occurs, which means that the MDR data size is given by the MDR
request size. The HDR data size is given by the frame size −MDRrequestsize, the HDR
remainder request size is saved. If the sum of both requests surpasses the frame size and
the HDR is lower than a given maximum (188 Bytes) both HDR and MDR fragmentation
occurs, which implies that the data to be sent is given by the previous maximums and their
request remainders are saved. Last case is when the requests sum overpasses the frame size
and the HDR is lower than the said maximum, which implies the MDR fragmentation. Once
the calculation is performed, the values are returned to the Operations Controller that will
resume his processing.

The Admission Control is the following function, its flowchart is shown in figure 3.21. Since
DMA configuration requires memory and transfer size alignment, the Admission control first
step is to assure that the transfer size is aligned. It does not need to align memory addresses
because the Operations Controller already perform those. The next step is to check whether
or not the DMA is busy with an concurrent transfer. If DMA is busy, the Admission Control
waits for its finish and then configures with parameters given by the Operations Controller.

The Header Coder flowchart is not present in this section because it only has calculations
to perform and those are not relevant to enumerate in a flowchart diagram. The Header
Coder performs the bitwise operations to fill correctly all header fields that were previously
discussed and stores them in the DLL temporary memory.
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Figure 3.21: Emitter Admission Controller

The last DLL emitter block is the Link Management. Its behaviour can be seen in figure
3.22. The Link Management contains a buffer with all physical addresses and uses that buffer
to fill the Source Address frame parameter. The Link Management initializes with 0 an
auxiliary variable called iteration, and will increase its number while sending the DLL frame
to different Physical Layers. The first task to perform is to check if the iteration variable is
lower than the number of Physical Layers. If this condition is true, the Physical Address will
be fetched from its buffer and inserted in the DLL buffer, the iteration variable incremented.
Then, like the Admission Control, the Link Management needs to wait for DMA completion
to configure it. This DMA configuration is performed by the Link Management as many
times as the number of Physical Layers. Once finished, it returns to Operations Controller
with information regarding the transfers.
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Figure 3.22: Emitter Link Management

During the elaboration of the Receiver DLL functions, similar but inverse reasoning of the
Emitter DLL was used. The Receiver DLL structure can be seen in figure 3.26.

The Receiver DLL is signalled by the Physical Layer when a frame is in its buffers. After
this signal arrival, the Operations Controller block calls the Link Management function to
transfer the data from FEC block buffer to the DLL buffer. As soon as transfer finishes, the
Header Decoder is called to evaluate the received frame header. It communicates the HDR
and MDR data size present in the frame payload. It is also the Header Decoder function that
establishes if the frame was correctly received. Then, Operations Controller calls Defrag-
mentation Control to calculate the data re-assemble parameters to the Higher Layer buffers
and check if the received fragment is the one expected. After, the Higher Layer Control is
called to transfer the data from the DLL buffer to the corresponding Higher Layer buffer. As
soon as the Operations Controller has the information that a Higher Layer request has been
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completed, it signals the corresponding Service that a complete received request is present in
its buffer.

Figure 3.23: Receiver DLL

The Operations Controller is once again the “brain” block that controls the remaining
blocks. Its usage in the Receiver DLL ensures the proper functioning of the receiver. The
Operations Controller flowchart is represented in figure 3.24 and the reader can already ob-
serve that it is simpler than the Operations Controller presented for the Emitter DLL. As
previously said, the maximum number of Higher Layer requests considered in the frame header
is 32 and with this in mind, a buffer with 32 positions is created to contain all request sizes.
In the asynchronous architecture of VLCLighting each block at the receiving part must have
a buffer at the input of each processing block that must never be full. With this constraint
in mind, the DLL must use a flag to signal the FEC block of Almost Full buffer scenarios to
indicate the stop processing condition. Since in the beginning the DLL buffer has no data,
the AF flag is set to false (0).

51



Figure 3.24: Receiver Operations Controller
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The first task of the Operations Controller is to check buffer size and see if its level got
to the AF state. Then, once it is sure that input buffer is capable of receiving more DLL
frames from the FEC block, it checks the output buffers flag from the Higher Layer Services
to see if they are capable of handling more data transfers. After this, the Link Management
function is called to transfer one frame from the input buffer to the buffer intended for the
temporary frame. Link Management returns with the information of data transfer completion
success. If the transfer had errors, the frame is discarded and a new frame is fetched from
the input buffer. After having the frame in the DLL buffer, Header Coder, Defragmentation
Control and Higher Layer Control functions are called. Once the frame is transformed into
Higher Layer data and inserted in the respective Services, all Buffer parameters need to be
updated, this concludes one Operations Controller iteration. Now that the reader has an idea
of the data flow in the receiver and Operations Controller tasks, a detailed explanation of the
remaining blocks will be performed with the help of flowcharts.

Figure 3.25: Receiver Link Management

The Link Management (seen in figure 3.25) function starts by checking if DMA is being
used. If DMA is busy, the Link Management waits until it is able to configure the DMA with
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the transfer parameters given by the Operations Controller. These given transfer parameters
when set are responsible for the transfer between the input buffer and the DLL buffer. Once
configuration is done, Link management waits and reports to Operations Controller the result.

Figure 3.26: Receiver Defragmentation Controller
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Figure 3.27: Receiver Higher Layer Controller
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The next block is the Header Decoder that is responsible for header interpretation. The
header interpretation will give the data size to be transferred to Higher Layer Services and
provides information regarding the correct data reception. If the header contains a non-
expected fragment size, the frame is incorrect and needs to be discarded.

The Defragmentation Controller block is responsible for data counting while receiving
frames with fragmented requests. This means that the Defragmentation Controller block is
responsible for the re-assembly parameters calculation of the fragmented Higher Layer data.
Its behaviour can be seen in figure 3.26. In order to check the fragmentation information,
Defragmentation Controller needs to possess auxiliary variables that store the HDR and
MDR More Fragment parameters from the last frame. These auxiliary variables are crucial
to understand which of the four possible cases of one Service Fragmentation request is in
the frame (no fragmentation, first fragment arrival, last fragment arrival and next fragment
arrival).

The Higher Layer Controller behaviour can be seen in figure 3.27. This block is responsible
for transferring the Higher Layer data to the corresponding Service. This is performed with
the parameters calculated in the Defragmentation Controller function. The first operation
performed in Higher Layer Controller is to check if a Higher Layer request was in the received
frame. Then, it aligns the transfer size parameter given by the Defragmentation Controller,
to configure the DMA. Before configuring the DMA, the Higher Layer Controller checks
if DMA is busy and if required, waits for its transfer conclusion. The first data transfer
made is from the HDR Service requests and the same process occurs to the MDR Service
requests. After transferring both, the Higher Layer Controller checks the calculated flag from
the Defragmentation Controller. If the flag says that the fragment is the last one, it signals
Higher Layer Services of fragmentation completion.
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Chapter 4

DLL implementation on FPGA

In order to design the DLL that was discussed in the previous chapter, several key concepts
and design tools proved to be fundamental. This chapter will provide a brief overview of
FPGA basic blocks, FPGA design flow, and Xilinx ISE tools.

A FPGA is a programmable logic device based on a matrix of Configurable Logic Blocks
(CLBs) that are connected through programmable interconnects. FPGAs can be programmed
to the desired application or functionalities, as opposed to Application Specific Integrated
Circuits (ASICs), where the device is custom built for the particular design. There are,
however, One-Time Programmable (OTP) FPGAs. The majority are SRAM-based which
can be reprogrammed as many times as required in the design. CLBs are the basic logic
unit that consists of a configurable switch matrix with 4 or 6 inputs, some selection circuitry
and flip-flops. Their number varies from device to device. While the CLB provides the logic
capability, the interconnects provide the routing between CLBs and the Inputs/Outputs for
the signals. The design software makes the interconnect routing task transparent to the user,
thus reducing the design complexity in such devices [54].

In a microcontroller the chip is already designed to be used so, software can be written,
compiled into a hex file and loaded into it without requiring hardware setup. The microcon-
troller stores the program in flash memory and keeps it until it is erased or replaced, meaning
that with microcontrollers we only have control over the software. On the other hand, FPGAs
offer higher level of configuration, because we also have control over the hardware. To create
an FPGA design, Hardware Description Language (HDL) is normally used to describe the
hardware needed to meet project needs. This HDL is then synthesized into a bit file that
is used to configure the FPGA, providing full control over the hardware. One of the very
interesting things about FPGAs is that a processor can be designed and used to run soft-
ware specific tasks. In fact many companies that design digital circuits often use FPGAs
to prototype their chips before creating them, reducing tremendously design costs. However
FPGAs when compared to microcontrollers have a superior power consumption as well as
high learning curve due to their design complexity.

The FPGA is a prime part of the proposed VLCLighting architecture due to their high
flexibility and rapid prototyping capabilities. Their usage allows a reasonable cost system
construction when compared to other existing real-time VLC demonstrators, which is one of
the thriving reasons of VLCLighting project. It also presents high speed signal processing
capabilities and high integration as well as debug tools that help their usage.
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4.1 Overview of Spartan605 evaluation kit

In order to explain the DLL implementation properly, an overview of the kit that was used,
will be presented. An evaluation kit from the famous brand Xilinx was used in the design of
this work. Xilinx offers a comprehensive number of FPGAs to address the requirements of a
wide set of applications, and these are divided in four “families” (Spartan (low-power), Artix
(low-cost), Kintex (mid-range) and Virtex (high-performance)).

The evaluation kit used at the Integrated Circuits lab in the Telecommunications Institute
of Aveiro was the Spartan-6 FPGA SP605, that can be seen in figure 4.1. This kit is part of the
Spartan series that targets applications with a low-power footprint, extreme cost sensitivity
and high-volume. The Spartan-6 family is built on a 45nm, 9-metal layer, dual-oxide process
technology. “It comes in LX and LXT versions, where the LX includes DSP slices for fast
parallel ALU work and the LXT includes high-speed serial communications” [55]. Being
part of Xilinx All Programmable low-end portfolio, Spartan-6 FPGAs offer advanced power
management technology, up to 150K 6-input CLBs, integrated PCI Express blocks, advanced
memory support, 250MHz DSP slices, and 3.2Gbps low-power transceivers.

The Spartan-6 FPGA SP605 Evaluation Kit enables hardware and software developers
to create or evaluate designs targeting the Spartan-6 XC6SLX45T-3FGG484 FPGA, that
delivers an optimal balance of low risk, low cost, and low power for cost-sensitive applications.
The SP605 Evaluation Kit contains all basic components, Intellectual Property (IP) cores and
software design tools to explore all its reconfigurability capability. This evaluation kit was
used in the DLL, FEC and modulation with the already discussed asynchronous architecture
that enables the reusage of these blocks in many other FPGA families. This SP605 kit provides
a flexible environment for system design with pre-verified reference designs and examples on
how to explore its features, such as high-speed serial transceivers, PCI Express, DVI, a 128MB
DDR3 Component Memory, a USB JTAG Download Port, a Serial USB-UART, an Ethernet
RJ45 and three oscillators, being the main one a differential 200MHz oscillator. This kit also
includes an industry-standard FPGA Mezzanine Card (FMC) connector that was used to
connect the ODAC to the development board.

Figure 4.1: Spartan605 Evaluation Kit
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Before designing the embedded processor system, some background information needs to
be provided to inform the reader about the processor to be used and some items about the
Xilinx EDK software tools. The microprocessors available for use in Xilinx FPGAs with
Xilinx EDK software tools can be broken down into two broad categories. There are soft-core
microprocessors (MicroBlaze) and the hard-core embedded microprocessor (PowerPC). This
study will only focus on the soft-core MicroBlaze microprocessor, which will be discussed in
the next section.

4.1.1 Microblaze architecture

The DLL implementation was accomplished in an embedded design with the Microblaze
soft processor core. It was imperative that some of Microblaze characteristics were explored
before hands. The MicroBlaze embedded processor soft core is a Reduced Instruction Set
Computer (RISC) optimized for implementation in Xilinx FPGAs. Its functional block dia-
gram can be seen in figure 4.2.

Figure 4.2: Microblaze architecture [56]

The MicroBlaze is a virtual microprocessor that is built by combining blocks of code
called cores inside a Xilinx FPGA. This allows the developer to tailor the project according
to his needs. Microblaze is an FPGA-based soft processor with advanced architecture options
like Advanced eXtensible Interface (AXI) and Programmable Logic Block (PLB) interfaces,
Memory Management Unit (MMU), instruction and data-side cache, configurable pipeline
depth, Floating-Point unit (FPU), and much more. Microblaze is a 32-bit RISC Harvard
architecture soft processor core that is included free in Xilinx Design Software (Vivado or the
older Xilinx EDK). It is a highly flexible architecture with a rich instruction set optimized for
embedded applications, that can deliver the exact processing system required at the lowest
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system cost possible.

As it can be seen in figure 4.2, the Microblaze architecture possesses an Instruction bus
interface and a separate Data bus-interface connected to the MMU. An instruction is fetched
from the MMU and then processed according to its specifications.

It is important to note that Microblaze has an orthogonal instruction set architecture with
thirty-two 32-bit general purpose registers and up to eighteen 32-bit special purpose registers,
but their numbers depend on configured options. Later, in this study Program Counter (PC)
will be mentioned, so it is of particular interest that the reader knows that it is part of the
Special Purpose Registers that holds the memory 32-bit address of the current instruction
being executed. All MicroBlaze instructions are 32 bits and are defined as either Type A or
Type B. Type A instructions have up to two source register operands and one destination
register operand. Type B instructions have one source register, a 16-bit immediate operand
(that can be extended to 32 bits) and a single destination register operand. Instructions can
be categorized in arithmetic, logical, branch, load/store, and special. MicroBlaze instruction
execution is pipelined. For most instructions, each stage takes one clock cycle to complete.
Consequently, the number of clock cycles necessary for a specific instruction to complete is
equal to the number of pipeline stages, one instruction is completed on every cycle. Few
instructions require multiple clock cycles in the execute stage to complete, this is achieved
by stalling the pipeline. When executing from a slower memory, instruction fetches may take
several cycles which introduce additional latency and affect the efficiency of the pipeline.
In order to overcome this issue, MicroBlaze implements an instruction prefetch buffer that
reduces the impact of such multi-cycle instruction memory latency [57].

MicroBlaze is implemented with a Harvard memory architecture, which means that in-
struction and data accesses are done in separate address spaces. Each address space has a
32-bit range, that is able to handle up to 4GB of instructions and data memory respectively.
The instruction and data memory ranges can be made to overlap by mapping them both
to the same physical memory, a feature useful for software debugging. As previously said,
a major concern to take into account is address alignment. Data accesses must be aligned
(word accesses must be on word boundaries, halfword on halfword boundaries), unless the
processor is configured to support unaligned exceptions (which decreases tremendously its
performance). So, all instruction accesses must be word aligned.

In this Microblaze architecture, data accesses are not separated between Inputs/Outputs
and memory. The processor has up to three interfaces for memory accesses: Local Memory
Bus (LMB), AXI for peripheral access and AXI or AXI Coherency Extension (ACE) for cache
access [57].

4.1.2 Advanced eXtensible Interface

Advanced eXtensible Interface 4 (AXI4) is the fourth generation of the AMBA (a family
of micro controller buses) interface specification from ARM. Xilinx offers a broad set of
AXI4 based IPs with a single open standard interface across the Embedded, DSP, and Logic
domains.

AXI4 provides improvements and enhancements across the board, providing benefits to
Productivity, Flexibility and Availability. Due to the current standardizing on the AXI in-
terface, learning only a single protocol for IP usage is required, increasing productivity. The
AXI4 provides flexibility for the required application with its three subsets (AXI4, AXI4-Lite,
AXI4-Stream). The understanding of these subsets and their application scenarios was cru-
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cial for this work. “The AXI4 is for memory mapped interfaces and allows burst of up to
256 data transfer cycles with just a single address phase. AXI4-Lite is a light-weight, single
transaction memory mapped interface. It has a small logic footprint and is a simple interface
to work with both in design and usage. AXI4-Stream removes the requirement for an address
phase altogether and allows unlimited data burst size. AXI4-Stream interfaces and transfers
do not have address phases and are therefore not considered to be memory-mapped” [58]. Its
usage benefits with availability because by moving to an industry-standard, developers can
have access to an worldwide community of ARM Partners and not being restricted to Xilinx
IP catalogue .

Its adoption makes all interface subsets use the same transfer protocol while including
standard models and checkers for designers usage. It provides a unified interface on IP across
communications, video, embedded and DSP functions and enables Xilinx to efficiently deliver
enhanced native memory, external memory interface and memory controller solutions across
all application domains.

“In memory mapped AXI, all transactions involve the concept of a target address within
a system memory space and data to be transferred. Memory mapped systems often provide a
more homogeneous way to view the system, because the IPs operate around a defined memory
map” [58]. AXI specifications describe an interface between a single AXI master and a single
AXI slave, that represent different IP cores exchange of information. The connection between
AXI masters and slaves is performed using an Interconnect. “The Xilinx AXI Interconnect
IP contains AXI-compliant master and slave interfaces, and can be used to route transactions
between one or more AXI masters and slaves” [58]. It is very important to remark that the
data can move between the master and slave in both directions simultaneously, and that their
transfer sizes can vary. As previously said, the AXI4 has a burst transaction limit of 256
data transfers while AXI4-Lite interface only allows 1 data transfer per transaction. The
AXI4-Stream protocol defines a single channel for transmission of streaming data and can
burst an unlimited amount of data. Bidirectional data transfer can be achieved with AXI4
usage, because it provides separate data and address connections for reads and writes. AXI4
can also specify different clock for each AXI master-slave pair at hardware level.

The AXI was used together with Xilinx IP cores (will be specified later on) to develop the
DLL on the SP605.

4.1.3 Memories

SP605 Evaluation Board contains four memories that are the 128 MB DDR3 component
memory, the 32 MB parallel (BPI) flash memory, the 8 Kb IIC EEPROM and the 8 MB
Quad SPI flash memory. It also comes with an Xilinx System ACE CompactFlash (CF) that
allows a CompactFlash card to be used to expand board memory. As the reader will see,
DDR3 was the main memory block used in this work. As the User Guide specifies, “the 1-
Gb Micron MT41J64M16LA-187E (96-ball) DDR3 memory component is accessible through
Bank 3 of the LX45T device, where the Spartan-6 FPGA hard memory controller is used for
data transfer across the DDR3 memory interfaces 16-bit data path using SSTL15 signaling”
[59].

The Microblaze processor has up to three interfaces for memory accesses that are called
Local Memory Bus (LMB), Processor Local Bus (PLB) or On-Chip Peripheral Bus (OPB)
and Xilinx CacheLink (XCL). The LMB memory address range must not overlap with the
range of the remaining. The LMB is a synchronous bus primarily designed to have fast
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access, typically to on-chip block RAM (BRAM) memories. The PLB and OPB represent
general purpose bus interfaces to on-chip or off-chip memories, as well as other non-memory
peripherals. The Xilinx CacheLink interface is a high performance solution intended for
specialized external memory controllers.

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache
read hits, except with area optimization enabled when data side accesses and data cache read
hits require two clock cycles. A data cache write normally has two cycles of latency. The
MicroBlaze instruction and data caches can be configured to use 4 or 8 word cache lines. When
using a longer cache line, more bytes are prefetched, which generally improves performance
for software with sequential access patterns. However, for software with a more random access
pattern, the performance can be decreased for a given cache size. This is caused by a reduced
cache hit rate due to fewer available cache lines [56].

Local memory is used for data and program storage and is implemented using Block
RAM. The size of the local memory is parameterized between 4kB and 64kB. The local
memory is connected to MicroBlaze through the Local Memory Bus (LMB) and the LMB
BRAM Interface Controllers [60].

MicroBlaze can be used with an optional data cache for improved performance. It is
important that the cached memory range must not include addresses in the LMB address
range. MicroBlaze may be used with an optional instruction cache for improved performance
when executing code that resides outside the LMB address range. When the instruction
cache is used, the memory addresses space is split into two segments: a cacheable segment
and a non-cacheable segment. The cacheable segment is determined by two parameters:
C ICACHE BASEADDR and C ICACHE HIGHADDR. All addresses within these ranges
correspond to the cacheable address segment. All other addresses are non-cacheable. The
MicroBlaze instruction cache can be configured from 2kB to 64 kB. For every instruction
fetched, the instruction cache detects if the instruction address belongs to the cacheable
segment. If the address is non-cacheable, the cache controller ignores the instruction and lets
the OPB or LMB complete the request. If the address is cacheable, a lookup is performed on
the tag memory to check if the requested address is currently cached [56].

MicroBlaze can be configured to cache data over either the OPB interface, or the dedicated
Xilinx CacheLink interface. CacheLink uses dedicated interface for memory accesses, thus
reducing the traffic on the OPB.

4.1.4 Xilinx ISE Design Suite

Xilinx ISE Design Suite is the software that supports Spartan 6 FPGA family. It is
important to regard that in order for this Design Suite to work properly, a set of software
requirements need to be fulfilled. Therefore, the Xilinx ISE Design Suite used in this work,
was installed in a Windows 7 machine.

The ISE Design Suite (Embedded Edition) is the development package for building Mi-
croBlaze embedded processor systems in Xilinx FPGAs. It includes XPS, SDK, a large
repository of plug and play IP that include MicroBlaze Soft Processor and peripherals, and a
complete Register-Transfer Level (RTL) to bit stream design flow. This Design Suite provides
the fundamental tools, technologies and familiar design flow to achieve optimal design results.
These include intelligent clock gating for dynamic power reduction, team design for multi-site
design teams, design preservation for timing repeatability and a partial reconfiguration option
for greater system flexibility, size, power and cost reduction [61].
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XPS is used to configure and build the hardware specification of their embedded system
(processor core, memory-controller, I/O peripherals, etc.). The XPS converts the designer’s
platform specification into a synthesizeable RTL description, and writes a set of scripts to
automate the implementation of the embedded system (from RTL to a bitstream file). RTL
abstraction is used in hardware description languages HDLs, like Verilog and VHDL to create
the high-level representations of a circuit (RTL). For the MicroBlaze core, the EDK nor-
mally generates an encrypted netlist, but the processor description (written in VHDL) can
be purchased from Xilinx. It is also worth mentioning that XPS provides a block-based sys-
tem assembly tool for connecting blocks of IPs together using many bus interfaces (including
AXI) and create embedded systems. In other words, XPS provides a graphical interface for
connection of processors, peripherals, and bus interfaces [58, 61].

On the other hand, the SDK is responsible for creating embedded applications for the
designed embedded system. It is built on Eclipse 4.3.2 and it directly interfaces with the
XPS embedded hardware design. SDK offers editors, compilers, build tools, flash memory
management, full suite of libraries and device driver, and JTAG/GDB debug integration.
Powered by the GNU toolchain (GNU Compiler Collection, GNU Debugger), the SDK en-
ables programmers to write, compile, and debug C/C++ applications for their embedded
system. Xilinx includes a cycle-accurate instruction set simulator (ISS), giving program-
mers the choice of testing their software in simulation or using a suitable FPGA-board to
download and execute on the actual system. It is also noteworthy that SDK is the software
development environment for application projects. The integration between XPS and SDK in
AXI-based embedded systems is achieved with XML format export of the hardware platform
specifications [58, 61].

“Xilinx IP cores and host drivers supply a simple end-to-end solution for the data trans-
port. Together with High-Level Synthesis (HLS), a fullblown coprocessing system having a
simple programming interface can be set up without any FPGA expertise” [62]. Xilinx and
its partners offer hundreds of free and for-purchase IP, verified and guaranteed to meet timing
parameters, thus speeding up the design cycle and allowing you to focus on the value add
components of the design instead of standards compliance [54].

4.2 Embedded design process

The tools provided in EDK are designed to assist in all phases of the embedded design
process, as illustrated in Figure 4.3 [63]. Before going to the process flow detail, an overview
on the typically generated design files, as well as, their purpose, is mandatory.

An embedded hardware platform typically consists of one or more processors, peripherals
and memory blocks, interconnected via processor buses. Each of the processor cores (also
referred to as pcores or processor IPs) has a number of parameters that can be adjusted to
customize its behaviour, which can also define the address map of peripherals and memories.
XPS lets the designer select from various optional features. This allows an implementation
of a subset of the FPGA functionalities required by the desired application [64]. These bus
architecture, peripherals, processor, system connectivity and address space characterization
are made in the graphical interface of XPS, so that then a Microprocessor Hardware Spec-
ification (MHS) file is generated. The MHS serves as an input to the Platform Generator
(Platgen) tool. On the other hand, the port listing and default connectivity for bus interfaces
are defined in the Microprocessor Pheripheral Definition (MPD) file. It is very important to

63



regard that any MPD parameter is overwritten by the equivalent MHS assignment. Another
important file configuration is the User Constraints File (UCF) that specifies timing and
placement constraints for the FPGA design [65]. All the above mentioned files constitute the
input files of XPS Project.

The Xilinx Microprocessor Project (XMP) file is the top-level project file for an EDK
design and is used for project management. The Base System Builder (BSB) output file
together with XMP constitutes the general project files [65].

Some of the XPS output files that are worth mentioning are the BMM, the ELF, the MHS,
the NGC and XML. A Block RAM Memory Map (BMM) file contains a syntactic description
of how individual block RAMs constitute a contiguous logical data space. The Executable and
Linkable Format (ELF) is a common standard in computing. An executable or executable
file, in computer science, is a file whose contents are meant to be interpreted as a program by
a computer. Most often they contain the binary representation of machine instructions of a
specific processor, but can also contain an intermediate form that requires the services of an
interpreter to run. The MHS file defines the hardware component and serves as an input to
the Platform Generator (Platgen) tool. The NGC file is a netlist that contains logical design
data and constraints. This file replaces both Electronic Data Interchange Format (EDIF)
and Netlist Constraints File (NCF) files [65]. The XML file contains all of the hardware
specification necessary to the software development and deploy software applications for the
FPGA.

The process flow steps can be followed in figure 4.3.

Figure 4.3: Basic Embedded Design Process Flow [63]
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Typically, the ISE development software is used to add an Embedded Processor source,
which is then created in XPS using the Base System Builder. Then hardware is inserted from
the Xilinx provided IP Catalogue or if extra customization is required by the developer. A
Custom IP can be created with Create and Import Peripheral Wizard of XPS. Once an IP
Core is added to the system, it is included into the MHS file. After adding an hardware to
the system, the next step is to make sure that it is connected through a bus instance to the
remaining ones, according to the system design aim. Next, address assignment is required,
where specific address ranges are defined for the communication between microblaze and ex-
ternal devices, performed through the use of registers or memories. Now that instances are
connected through buses with their addresses assigned, configuration of the inserted IPs can
be performed to meet the desired system requisites. After this, ports parameters are assigned
in the Net field of XPS, where external ports in the design need to be set as external. As pre-
viously said, the UCF specifies timing and placement constraints of the design, and its editing
is the next step in the design (Pin constraints present in the Board User Manual are here
entered). With MHS and MPD files set, hardware netlists are generated with PlatGen. Plat-
Gen customizes and generates the embedded processor system through the use of hardware
netlists HDL files. PlatGen also generates the system-level HDL file that interconnects all the
IP cores, which can then be synthesized as part of the overall design flow. After the hardware
platform design is complete. The FPGA configuration bitstream (.bit) can be generated with
the Generate Bitstream command in XPS. However, this hardware bitstream is not ready to
be applied to an FPGA until a software component of the embedded system is made. The
Export to SDK command exports the Hardware Platform Description (XML - system.xml)
to the SDK, so that the development of the desired embedded software application can be
performed, and the bistream and BMM files downloaded to the FPGA.

The SDK application development starts with the identification of the hardware configu-
ration from the Hardware Platform Specification (XML). Before being able to create software
applications in SDK, a Board Support Package (BSP) needs to be created. BSP is the col-
lective term referring to all of the software components required to match a given operating
system to a given hardware design. It is a collection of libraries and drivers that will form
the lowest layer of the developed application software stack.

There are two board support packages available for application development (Standalone
and Xilkernel). Standalone is a single-threaded, simple Operating System platform that pro-
vides the lowest layer of software modules used to access processor-specific functions (some
typical functions include setting up the interrupts and exceptions, configuring caches, and
other hardware specific functions) [66]. On the other hand, Xilkernel is a simple embedded
processor kernel that can be customized to a large degree for a given system (some of its key
features are multi-tasking, priority-driven pre-emptive scheduling and inter-process commu-
nication) [66]. Due to their different main goals, the natural choice for the project was the
Standalone, because not many processes will be running in the DLL at a given time. The
Xilkernel choice would not be beneficial, because its advantages (e.g. multi-taking) would
only bring higher complexity with no real extra value for the proposed work.

The next step in the application development is to create a software project attached to
this BSP project, thus concluding the SDK setup for the application programming. After
compiling the C/C++ application code with a platform-specific gcc/g++ compiler (Figure
4.4), the object files from the application are linked to the BSP, resulting in an ELF file
creation. This step is performed by a linker which takes as input a set of object files and a
linker script that specifies where object files should be placed in memory [67]. SDK provides
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a linker script generator, where the only action required is to assign different code and data
sections in the ELF file to different memory regions.

Figure 4.4: Software workflow in SDK [67]

Once the FPGA is configured with the bitstream containing the embedded design, the
ELF file from the software project can be downloaded and debugged. It is important to note
that for a given application, a Release and Debug configuration can be made, being that the
Debug is created by default. Debugging is the process of downloading and running C/C++
code on the target hardware to evaluate whether the code is performing correctly. Because
this is an FPGA, configuring the FPGA with a bitstream that loads a design into the FPGA is
required even when debugging. The process of programming FPGA is achieved with the USB
JTAG Download Port and its control is accomplished with the USB UART Cable between
the demo board and the computer [63].

4.3 Xilinx Platform Studio

XPS provides a set of IP cores that were used to expedite the embedded design process
flow and accomplish the proposed work. Since this DLL will follow the structure already
mentioned in section 3.3, where the main goal is data transfer between different memory
addresses or even different memories, the first step was to understand all Xilinx memory and
respective IP Controllers available for the development board and identify which ones comply
with the structural requirements.

One of the essential devices for maximizing performance in FPGA designs is the DMA
Engine. DMA stands for Direct Memory Access, and a DMA engine allows the transfer of
data from one part of the system to another. The simplest usage of a DMA is the transfer
of data from one part of the memory to another, but a DMA engine can also be used to
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transfer data from any data producer (eg. an ADC) to a memory, and even from a memory
to any data consumer (eg. a DAC). This means that a DMA engine allows certain hardware
to access system memory independently of the central processing unit (CPU). In interruption
cases the DMA engine is configured and initialized by the CPU and while DMA engine ensures
the transfer, CPU can resume to its other operations and is interrupted when operation is
completed. This is particularly useful when CPU cannot keep up with the rate of data transfer,
or when working with relatively slow I/O data transfers that could lead to an processor
overhead increase.

Xilinx provides the developer with three different DMA engines IPs that are the AXI
DMA, the AXI Video DMA and the AXI Central DMA. Each of these soft IPs use the same
core (DataMover), but target to different peripherals that use different AXI protocols. The
AXI DMA IP provides high-bandwidth direct memory access between memory and AXI4-
Stream-type target peripherals. On the other hand, the AXI VDMA core is a soft Xilinx
IP core that provides high-bandwidth direct memory access between memory and AXI4-
Stream type video target peripherals. Finally, the AXI CDMA provides high-bandwidth
direct memory access between a memory-mapped source address and a memory-mapped
destination address using the AXI4 protocol.

Due to the asynchronous architecture (Figure 3.2) present in VLCLighting project, where
each block contains a memory that is shared with the remaining blocks, the DMA choice has
fallen on the AXI CDMA. The usage of the AXI CDMA will provide data transfer between
DLL and its adjacent blocks, while offloading the CPU from the data transfer and enabling
his usage to the control and sequencing tasks of the DLL only. While data transfer is achieved
with AXI4 protocol, the initialization, status, and management registers are accessed through
the use of an AXI4-Lite protocol, suitable for the MicroBlaze microprocessor. AXI CDMA
supports primary AXI Memory Map data width of 32, 64, 128, 256, 512, and 1,024 bits, and
also supports a Scatter Gather (SG) optional feature that increases the offloading CPU man-
agement tasks to hardware automation. As previously said, the CDMA uses the DataMover.
DataMover is used to achieve high-throughput transfer of data with 4KB address boundary
protection, automatic burst partitioning and to queue multiple transfer requests. One feature
that was not used but that is also present in the AXI CDMA is the Data Realignment Engine
(DRE), responsible for data alignment at the byte level. This CDMA IP can also perform
an optional asynchronous operation mode, that signals with an interruption the Microblaze
once the transfer is completed.

As stated in 3.4, a DLL frame needs to be sent within a certain time. To provide DLL
with this requirement, an AXI Timer needs to be inserted in the embedded design. An AXI
Timer is a 32 bit timer module that interfaces to the AXI4-Lite interface, and that can be
configured with different widths. Each timer module has an associated load register that is
used to hold either the initial value for the counter for event generation or a capture value,
depending on the mode of the timer. The generate value, which is the value loaded into
the load register, is used to generate a single interrupt at the expiration of an interval or a
continuous series of interrupts with a programmable interval.

In order to use interruptions, an Interrupt Controller that concentrates the interrupt
inputs from the Timer to a single interrupt output, is required. The used AXI Interrupt
Controller is based on AXI4-Lite specification and it prioritizes the different interrupt requests
from the different interrupt sources to then signal the Microblaze of their occurrence.

The first step when implementing the embedded design in the XPS is to set the intercon-
nect type (AXI or PLB). The previously described AXI was the chosen one, because of the
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stated reasons in section 4.1.2 that makes it the newly standard interface adopted by Xilinx
and made the PLB a legacy bus standard that is not supported by newer FPGA families. Af-
ter interconnect type selection, XPS needs to be set with the desired target board and System
Configuration. As previously said the target board in this study is the Spartan-6 SP605 Eval-
uation Platform, and Single Microblaze Edition and Area Optimization Strategy constitute
the System Configuration parameters. Next step is Processor, Cache and Peripheral config-
uration, where processor frequency was set to its maximum (100MHz), Local Memory Size
set to 32KB, Instruction Cache set to 16KB, Data Cache set to 16KB and all the peripherals
removed with the exception of RS232 Uart (that will be required for the board communica-
tion), and DDR3. The Local Memory Size was set to 32KB, because of a pre-warning from
XPS literature concerning timing closure problems of large-sized BRAM. All these steps led
to XPS Project and Design files generation, that form the base system project.

The required AXI CDMA IP and AXI Timer IP were added, from the ”DMA and Timer”
branch of the provided IP catalog, and the AXI Timer was added from the Clock, Reset and
Interrupt branch. Once these IPs were added, their configuration was performed according
to project needs.

The AXI CDMA was configured as in figure 4.5, where it is important to notice the data
width of 32bits with a maximum burst of 64 transfers. The maximum burst parameter was
due to the DLL frame size (208bytes), that in order to be transferred with a data width of
32bits requires a total of 52 burst transfers. It is important to regard that these values will be
changed in chapter 5 to demonstrate their impact on the system performance. Include Data
Realignment was left unchecked because this feature restricts the allowed data width values
to 32 and 64 and increases the resources required in the system design. Scatter Gather mode
is a mechanism that allows automated data transfer scheduling through a pre-programmed
instruction list of transfer descriptors. AXI CDMA can perform these transfers automatically
without the need to have each transfer programmed by the CPU. Since this system design
constitutes a first approach and simplicity was required, Scatter Gather mode was considered
to be a value added feature to be studied in future work, and was left unchecked. As rec-
ommended in XPS litterature, Store and Forward functionality was left checked because it
provides data buffering and management of the DataMovers address request pipelining.

Figure 4.5: AXI CDMA Configuration
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The AXI Timer configuration can be seen in figure 4.6, where most of its parameters
were left as default. Since this AXI Timer was the only timer in the design, the Only Timer
parameter, that can be seen in that figure, was checked.

Figure 4.6: AXI Timer Configuration

The AXI Interrupt Controller setting can be seen in figure 4.7. In order to be able to read
the register that indicates the presence of an active interrupt, the Interrupt Pending Register
(IPR) parameter was left checked. On the other hand, Set Interrupt Enables (SIE) enables
the IER (Interrupt Enable Register) bits set in a single atomic operation, rather than using a
read, modify or write sequences. The reason to leave Clear Interrupt Enables (CIE) checked
was similar to last one, but this operation is responsible for clearing rather than enabling
the IER. Interrupt Vector Register (IVR) was left enabled to contain the ordinal value of the
highest priority, enabled, and active interrupt input. The IRQ Output Use Level parameter
can be edge-sensitive or level-sensitive. The difference between both is that level-sensitive
stores the interrupt condition and retains it until acknowledgement even if the input level
becomes inactive during this time, therefore it was the chosen one to be used.

Figure 4.7: AXI Interrupt Controller Configuration
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Figure 4.8: XPS Interrupt Connection Dialog

Figure 4.9: XPS System Assembly View
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Now that the AXI Interrupt Controller is present in the design AXI Timer interruption
needs to be connected to it. Since the DLL design requires to send a junk frame if a certain
time as passed, AXI Timer needs to use an interruption (Figure 4.8). The Bus connections
that ensures communication between the peripheral devices and microblaze was performed
as in Figure 4.9. The microblaze interrupt port was connected to the Interrupt Controller
output. Timer S AXI was connected to Interrupt Controller S AXI through AXI4-Lite Bus.
Microblaze M AXI IC and M AXI DC were connected to DDR3 S AXI through AXI4 Bus.
The result of these connections can also be seen in XPS Ports section (Figure 4.10) that was
left as default.

Figure 4.10: XPS Ports

The next step in the design is to assign addresses. Addresses can be inserted manually by
changing the base address and then XPS will calculate the high address from base address
and size entries. However, XPS presents the developer with a Generate Address button that
can automate this process and automatically fill all addresses fields. The addresses that were
assigned in the project can be seen in figure 4.11.

Figure 4.11: XPS Addresses
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Figure 4.12: XPS Clock Wizard

Before bitstream generation, the developer can go to the Clock Wizard in Project Tab
and check all clock constrains required. XPS automatically fills the different clock ports
and frequencies of each component, but it is good pratice that the developer validates them
(Figure 4.12).

Figure 4.13: XPS Synthesis Summary (estimated values)
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Once the implementation of the project is finished, the developer needs to go through the
reports to see if this implementation met expectations and decide what to do if it did not.
The Design Summary in XPS allows to quickly access design overview information, messages
and reports. It is in this section that the developer can find the XPS reports after generating
the netlist from the various source files and also after bitstream generation. It presents the
device utilization summary, which shows the estimated utilization (Figure 4.13) after XST
synthesis and the actual utilization after mapping (Table 4.1).

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 4,294 54,576 7%
Number used as Flip Flops 4,284
Number used as Latches 0
Number used as Latch-thrus 0
Number used as AND/OR logics 10

Number of Slice LUTs 4,665 27,288 17%
Number used as logic 4,163 27,288 15%
Number using O6 output only 3,124
Number using O5 output only 90
Number using O5 and O6 949
Number used as ROM 0

Number used as Memory 287 6,408 4%
Number used as Dual Port RAM 88
Number using O6 output only 4
Number using O5 output only 0
Number using O5 and O6 84

Number used as Single Port RAM 0
Number used as Shift Register 199
Number using O6 output only 60
Number using O5 output only 1
Number using O5 and O6 138

Number used exclusively as route-thrus 215
Number with same-slice register load 190
Number with same-slice carry load 25
Number with other load 0

Number of occupied Slices 1,921 6,822 28%
Number of MUXCYs used 780 13,644 5%
Number of LUT Flip Flop pairs used 5,641
Number with an unused Flip Flop 1,841 5,641 32%
Number with an unused LUT 976 5,641 17%
Number of fully used LUT-FF pairs 2,824 5,641 50%
Number of unique control sets 306
Number of slice register sites lost to control set 1,199 54,576 2%

restrictions to control set restrictions

Table 4.1: Device Utilization Summary (actual values)
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4.4 Software Development Kit

As described in the SDK application development in section 4.2, the creation of a Board
Support Package that contains a library of routines for the application use, is the first step.
When making the BSP, SDK asks the developer for the target hardware device and the
operating system to be used in the project. Therefore, the exported files from the XPS
were selected to specify the target device and, due to the reasons already stated in section
4.2, Standalone operating system was chosen. These selections are followed by the Board
Support Package settings that provides extra support libraries selection (no extra selection
was made), ports for the standard input/output stream (RS2323 uart selected), Profiling that
will be used and explained after, drivers selection to each component (were left as default)
and configuration for cpu driver that will be also changed due to profiling. The next step is
Application Project creation, where target Hardware files were selected, OS Platform set as
Standalone and programming language was selected as C++.

Then, the linker script needs to be set as can be seen in figure 4.14. A Linker script
controls the linking process and it is required if the design contains a discontinuous memory
space. It is responsible for mapping the code and data to a specified memory space, setting
the entry point to the executable and reserving space for the heap and stack. SDK allows the
developer to describe all memory layout of the target machine and specify where each section
of the program should be placed in memory. The Linker script is used, as previously said, by
the linker to perform the final step for the creation of an executable.

Figure 4.14: SDK Linker Script

Linker Script editing allows the change size of each executable file sections according to
table 4.2, as well as, the selection of the memory region to be used (DDR3 or BRAM are the
available ones in this case study).
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.text Text section

.rodata Read-only data section

.sdata2 Small read-only data section

.sbss2 Small read-only uninitialized data section

.data Read-write data section

.sdata Small read-write data section

.sbss Small uninitialized data section

.bss Uninitialized data section

Table 4.2: Sectional layout of an executable file

To debug, run, and profile an application, a configuration that captures the settings for
executing the application, must be created. The configurations for debugging, running, and
profiling an application are similar; differences between them will be explained below. It is
important to regard that to profile an application, Run configuration must be created [68].

The SDK debugger enables the developer to see what is happening to a program while it
executes. A set of breakpoints or watchpoints to stop the processor can be set to achieve a
step through program execution, to view the program variables and stack, and to view the
contents of the memory in the system. The SDK debugger uses the GNU Debugger (GDB)
with Xilinx Microprocessor Debugger (XMD) as the underlying debug engine. It translates
each user interface action into a sequence of GDB commands and processes the output from
GDB to display the current state of the program being debugged. It communicates to the
processor on the hardware and Instruction Set Simulator (ISS) target using XMD [68].

The developer can also run software applications on a hardware target using SDK. The
program will run up to termination or when expressed command from the developer, that
can be made at any time of execution. The run workflow is similar to debugging with the
exception that the executable is performed by the SDK Run Console instead of the SDK
Debug Perspective that is used for debugging [68].

Xilinx SDK includes profiling tools that help to identify bottle necks that might occur
in the developed code due to the interaction of functions that are executed within the pro-
grammable logic and functions executed on the processor [69]. SDK supports hierarchical
profiling, allowing the developer to view which called functions, or which calling functions
are affecting processor performance the most. In order to use Profiling, enable sw intrusive -
profiling field should be set to true and the handed over timer needs to be selected for its
usage by the profile libraries. Furthermore, BSP also requires to have the -pg flag added
in the extra compiler flags option of the cpu compiler. Besides setting up the BSP, software
application code modification to enable interrupts is required. Then, profile run configuration
needs to be done in the Profiler Options tab of the Run Configurations as shown in figure
4.15.

The sampling frequency determines the frequency of which timer interrupts are generated.
When set to a higher frequency, more samples are obtained which provides more accuracy,
but it is highly software-intrusive due to the number of calls that are inserted to collect data.
Therefore, it is crucial to choose sampling frequency according to a compromise between
accuracy and program delay, which increases with the sampling frequency.
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Figure 4.15: SDK Profile Options

The program text region is divided into multiple bins. When a program is interrupted
because of the sampling frequency, the Histogram Bin size sets the counter value at which
Program Counter (PC) value is incremented and determiness how accurate the PC location
is in the sample. When a smaller bin size is set, more accurate samples can be achieved.
However, using a smaller bin size requires a large number of bins to cover the entire text
region, so a large amount of memory space is required for storing the profile data. On the
other hand, if a larger bin size is set, more difficulty to identify specific text regions occurs
and leads to inaccurate PC detection.

A valid system address that is not used by the software application should be set in Scratch
memory field, value which indicates where in memory the profile data must be stored.

When profiling the program on a hardware target, SDK uses Xilinx Microprocessor De-
bugger (XMD) for communication to the processor using a JTAG interface on the board.

Once the application finishes running (reaches exit), or when the stop button is pressed to
stop the program, SDK downloads the profile data and stores it in a file named gmon.out. To
view the profile results, double click on the gmon.out file associated with the application in
the Project Explorer view. The Xilinx Profiling view in SDK presents a view of the profiling
results to visualize the statistics for the profiled Executable and Linkable Format (ELF) file.
Profiling results are composed by: Name which is the function name and file name where it
resides; Samples that provide the number of times the profile timer interrupt handler detected
that the program executed the corresponding function; Calls which is the number of calls made
to the corresponding function; Time/Call that gives time usage per function call invocation;
and %Time which is the amount of time spent in a function. In order to validate profiling
results, an application using the AXI Timer to measure the functions time was developed.
Results will be shown in Chapter 5.

4.5 DLL code overview

The previous discussion on XPS and SDK enables the reader with the steps required to
understand embedded system implementation. This is required to develop applications with
HLS in SDK. The SDK HLS accelerates IP creation by enabling C/C++ specifications to
be directly targeted into Xilinx devices without the need to manually create RTL with High
Description Languages (HDL)s (VHDL or Verilog). SDK HLS is a major tool for reducing
the application development cycle and is able to achieve FPGA resource utilization levels
comparable to hand-written RTL code, as said in the Berkeley Design Technology independent
evaluation [70]. Based on this analysis, it is believed that the productivity of the proposed
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work could be highly increase with HLS tools usage, and therefore C++ code was chosen to
be used.

The considerations on the decision of C++ programming over C were numerous. The
object oriented programming language C++ is often considered to be a superset of C, which
is not strictly true because there are a few differences that can cause some valid C code to
be invalid or behave differently in C++. The chosen C++ language has: a much richer
standard library with a stronger type checking (use of classes and inheritance); a safe linkage
that assures no accidentally call of one routine with wrong type or arguments from another;
complex data type with all standard arithmetic operations implemented as operators; a more
logically organised code with necessary declarations not requiring to be at the top; a modular
programming with classes that promote code reuse and data scope limiting (functions and
variables protection with private and protected keywords).

The forthcoming discussion implies that the reader acknowledges the presence of the per-
formed C++ code for the DLL functions in Appendix B. The mentioned C++ code of this
work was structured in four classes called DLL, DLLFrame, FIFO and FPGA. The DLL
class contains all DLL functions that were discussed in Section 3.4, DLLFrame contains all
DLL frame parameters mentioned in Section 3.3, FIFO accommodates all functions for Higher
Layer requests attendance and FPGA has all the required driver Application Programming
Interface (API) functions for the CDMA, Timer and Interrupt Controller usage. This code di-
vision was performed to provide a cleaner and less error prone programming that also provides
the ability to test every phase of the processing independently, leading to a more accurate
code debugging. This division also envisions to implement data encapsulation, meaning that
the implementation details of a class are kept hidden from the remaining ones. This way,
classes can only perform a restricted set of operations on the hidden members of the other
classes by executing special functions, usually called methods, that were carefully chosen not
be overly flexible or too restrictive. The advantage of using this data encapsulation comes
when the implementation of the class changes but the interface remains the same and this is
achieved through the use of the public, protected and private keywords which are placed in
the declaration of the class. Anything in the class placed after the public keyword is accessible
to all the users of the class; elements placed after the protected keyword are accessible only to
the methods of the class or classes derived from that class; elements placed after the private
keyword are accessible only to the methods of the class. However, the four classes division
main reason was to enable DLL code usage in other FPGA designs and models or even other
hardware by simply modifying the driver functions used on the FPGA class, providing an
easy and fast way to adapt the proposed work to any needs.

Now that code structure was introduced, a brief overview highlighting the used SDK key
concepts will be reviewed.

The mentioned Xilinx EDK software libraries comprise the generated libraries and BSP
files for a given project. The XPS output file XML is used by the Library Generator (LibGen)
tool to configure these libraries, device drivers, file systems and interrupt handlers for the
embedded processor system. Then, taking libraries and drivers, SDK is able to compile the
desired application by including them into a Executable Linked Format (ELF) files that are
ready to run on the processor hardware platform.

The include file, xparameters.h, is one of the files created through LibGen and it holds
important parameters for each device in the embedded system (base and high addresses
of the peripherals and peripheral IDs required by the drivers and user programs). These
parameters are needed by the application code software, written in C++ language, to be able
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to communicate with the devices in the embedded system, so its reading was mandatory.
In order to develop application code software, the full description of the features of the

AXI CDMA, AXI Timer and Interrupt Controller is provided for consultation by the SDK.
This can be found in xaxicdma.h for the AXI CDMA, xtmrctr l.h for AXI Timer and xintc.h
for the Interrupt Controller, or by simply going to the BSP Documentation folder present in
the project directory that has the web-page links for the Xilinx Processor IP Library to each
of them.

As can be seen in the FPGA.cpp part of the Appendix B, the CDMA was configured for
simple DMA transfers without interruptions. However, the hardware supports another type
of transfer called the Scatter Gather (SG) that requires setting up a Buffer Descriptor (BD),
which keeps the transfer information and is updated by the hardware (it provides queuing
of multiple transfers). Using the simple DMA transfer has the advantage of ease of use (no
need to manage the memory for the buffer descriptors) and for an individual DMA transfer,
simple DMA transfer is also faster because of simplicity in software and hardware. Simple
DMA transfer was also chosen because it is sufficient in the present design where DMA is
used exclusively by this application and one DMA transfer at a time is enough to send the
whole frame. A simple DMA transfer only needs the source buffer address, the destination
buffer address and the transfer length to perform the DMA transfer, and only one transfer
can be submitted to the hardware each time.

The header file, xacicdma.h, contains all the features of the AXI CDMA engine and the
functions used to access the engine in the embedded system. In the FPGA.cpp file the
following functions were used: XAxiCdma IsBusy to check whether or not the hardware is
doing a transfer; XAxiCdma CfgInitialize to initialize the CDMA; XAxiCdma ResetIsDone
to check whether the hardware reset was done; Xil DCacheInvalidateRange to prevent cache
inconsistency (invalidates receive buffer range before passing it to the hardware) and XAxi-
Cdma SimpleTransfer to perform one simple transfer submission. Since interrupt is enabled,
a call back function is registered to signal the transfer completion. The XAxiCdma Simple-
Transfer function needs the pointer to the driver instance, the address of the source buffer,
the address of the destination buffer and the length of the transfer as required arguments.
Since CDMA without interruptions was used the callback function and the callback reference
pointer arguments are not required and were filled as NULL. It is important to regard that in
order to set CDMA properly, addresses and transfer size are required to be aligned to 4Bytes.
This is why after changing pointers or transfer size variables their values are checked to see
if they do not fullfill the condition if(size%4 ! = 0) and if they do not, their value needs to
be adjusted to assure memory alignment.

The used timer counter can operate in two primary modes: compare and capture. In
either mode the timer counter may count up or down, being that up is the default. As can
be seen in Appendix B, the timer was configured in compared mode with auto reload such
that the timer counter will reload itself (with the compare value) automatically and continue
repeatedly. The timer functions present in xtmrctr l.h that were used are: XTmrCtr Start
to start the specified timer counter; XTmrCtr Stop to stop the timer counter by disabling it;
XTmrCtr ReadReg to read the register contents and XTmrCtr Reset to reset the specified
timer counter.

In order to use Timer with interrupts, the Interrupt Controller needs to be configured.
The required functions that were used are: XIntc Initialize to initialize a specific interrupt
controller instance/driver; XIntc Connect to make the connection between the Id of the inter-
rupt source and the associated handler; XIntc SetOptions to set the options for the interrupt
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controller driver; XIntc Start to start the interrupt controller by enabling the output from
the controller to the processor; XIntc Enable to enable the interrupt source provided as the
argument Id and XIntc Acknowledge to acknowledge the interrupt source provided as the
argument Id. Each interrupt connected to the Interrupt controller has a unique Interrupt
vector address that the processor jumps to for servicing that particular interrupt. In the used
normal interrupt mode, the interrupt vector addresses are determined by the software drivers
application. Setting up interrupts is largely driver-API dependent, but the general procedure
is the same: 1)Use the peripheral API to initialize the hardware if an initialize function is
provided; 2)Use the peripheral API to customize the hardware; 3)Register the Handler with
XIntc RegisterHandler 4)Master enable the interrupt controller with XIntc mMasterEnable;
5)Enable the individual interrupts with the interrupt controller using Xintc mEnableIntr ;
6)Use the peripheral API to enable the peripheral interrupt; 7)Create a function with the
handler name and program it to do the desired task.

It is also important to regard that the I/O function commands of xil printf were used in
the program instead of printf, because they have been optimized for embedded systems with
limited memory by being much smaller in code size.

All previous discussion enabled the reader with the used functions on the fpga.cpp that, in
turn, was divided in a TransferCDMA to configure the transfer request, a DataTransferCheck
test function to determine the transfer success, a StartTimer to start timer counter, a StopTi-
mer to stop timer counter, a GetCounterValue to return timer value, a ResetCounter to reset
timer counter, a ConfigTimerCDMA that runs first time FPGA class is called and configures
all CDMA and Timer parameters, a SetupIntrSystem that is called by ConfigTimerCDMA
and configures all interruption settings and a TimerCounterHandler that is the callback func-
tion of Timer. It is important to regard that functions initialized with FPGA class were set
private, so no change in configurations could be performed by outside functions. While func-
tions that request data transfer or the timer were set public so DLL class could call them.
The header, dllframe.h, contains all mentioned frame constants required to perform data
encapsulation and fragmentation, while dllframe.cpp has a function for junk frame creation
(initjunkframe).

A very important key concept taken into account in its study was the use of interruptions.
AXI Timer interruption configuration was performed, because Junk Frame is required to be
sent before a predefined time (to maintain the lighting functionality of the VLC transceiver (in
cases of no DC-OFDM usage) and to fullfill the project asynchronous architecture criteria of
buffer fill levels). On the other hand, CDMA was not configured to benefit from interruptions,
due to its usage in Simple Mode only together with functions order. The proposed DLL
functions were organized in a such way that a transfer of the CDMA will be preceded and
proceeded by a processing function, allowing transfers to occur while frame processing is
ongoing. With this strategy and with this strategy only, the interruptions do not bring extra
value. As will be further discussed, CDMA would benefit from interruptions in cases of Scatter
Gather mode usage, allowing the CDMA to store multiple requests instead of only one.

The class FIFO is responsible for Higher Layer requests (HDR and MDR) management. It
has functions that store a request (In) , remove a request (Out) , change a request (Change),
return request value without removing it from buffer (Check), delete all requests (Delete)
and check the request buffer state (isEmpty and isFull). To provide data encapsulation from
the DLL class, that is the one using this class, FIFO class has all the previously mentioned
functions set as public and requires the push, pop, change and check private functions to
perform the required tasks without risking buffer exposure.
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All DLL class main functions behaviour was already discussed in section 3.4, but in order
to make the link with the remaining classes, a set of extra functions were required to be
programmed. These extra functions are test mode, Images Request, Data Request and dll -
check that are test functions used for the program debug. The first one is responsible for
changing the emitter output buffer addresses to the receiver input buffer address, since DLL
was tested separately from the remaining VLCLighting blocks. HDR Request and MDR -
Request were introduced to simulate Higher Layer requests input, because, again, the DLL
was tested separately from remaining VLCLighting blocks. By its turn, dll check was a test
function perform to check DLL success by comparing the emitter and receiver frames.

80



Chapter 5

Experimental validation

In order to accomplish all the following DLL results, three embedded designs were per-
formed in XPS. In each of these embedded designs, CDMA, MIG and AXI Interconnect were
configured with matching sizes with 32, 64 and 128 bits. The first results performed are from
the CDMA. CDMA results show which of the three designs is the best for the proposed DLL.

5.1 Central Direct Memory Access

As stated, in order to test the proposed DLL design, a set of XPS designs were synthesized
with different CDMA data transfer widths, different DDR3 data port settings and different
AXI Interconnect data widths. In these design synthesis it was observed that CDMA and
AXI Interconnect allow data transfer widths from 32 to 1024 bits, more specifically of 32,
64, 128, 256, 512 and 1024 bits. However, the Xilinx Memory Interface Generator (MIG)
that is responsible for generating memory interfaces for the Xilinx FPGAs (in this study
is responsible for generating the DDR3 interface for the Spartan 605) only accepts 32, 64
and 128 bits of port configuration values. Taken this into account, the CDMA and AXI
Interconnect were configured together with MIG in three XPS designs of 32, 64 and 128 bits
of data width, that will be addressed in this chapter as 32, 64 and 128-DLL configurations.
Another important aspect is that all these three configurations present no issues in the data
alignment given that the DLL frame size is of 208 Bytes.

After the creation of the three DLL configurations, it was performed an analysis of the
TransferCDMA function time for the DLL frame size of 208 Bytes (Table 5.1). It is important
to regard that results shown contain the time for the configuration, the transfer, the validation
and invalidation of memory, but can be the comparison basis between each embedded design.
The results in this Table were performed with a Timer at a 50 MHz frequency. A total of
5 samples of the timer counter were taken to each case to achieve the best average value of
the transfer time. This means that to calculate the transfer time, the average timer samples
taken need to be multiplied by 20 ns.
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Sample CDMA data width
number 32 64 128

#1 2356 434 533
#2 2211 424 533
#3 2195 407 533
#4 2211 411 534
#5 2206 410 533

Average: 2236 418 534

Time (µs): 40 8 10

Table 5.1: Timer samples comparison between different CDMA data widths

As can be seen in Table 5.1, 64-DLL outperforms 32-DLL by a factor of more than five,
while 128-DLL design shows, as expected, a decrease in DLL frame transfer time. The
efficiency decrease from 64-DLL to 128-DLL was expected due to Spartan 605 Evaluation Kit
limitations in the XPS design. After reading Micron MT41J64M16LA-187E Datasheet [71],
it can be seen that this model has 16 data ports that are able to perform a 16bits read/write
operation each DDR3 clock. Since the MIG clock is limited to 600MHz in the XPS design,
the transfer of 128bits is not possible to be made in one clock cycle of the AXI bus that
has a clock frequency of 100MHz. In order to perform 128bits transfer with the DDR3 at
the 100MHz bus frequency, a 800MHz clock frequency configuration is required to the MIG.
Therefore, the 128-DLL choice is proven to be inefficient, since a 128bit transfer cannot be
completed in one AXI bus clock. Given that 64-DLL outperforms the remaining two, it was
the design used in the DLL study and will be the one addressed further on.

Other results considering only the CDMA transfer time for 64-DLL case show a counter
of 42 samples. This result shows that the transfer itself takes 0.84µs, which is a fraction of
the required time for the transfer. With this result in mind, it can be seen that the maximum
CDMA throughput will be 1,980 Gbits/sec.

5.2 Profiling

As previously stated, this work main focus was to design an efficient DLL, specifically
in terms of throughput. In order to measure throughput, accurate time measurements are
vital so, logically, part of this chapter is dedicated to the discussion of the results obtained
with the available time measurement tools. In this section, software profiling (discussed in
Section 4.4) parameters choosing, as well as, its comparison with timer measurements will be
addressed.

The profiling configuration is achieved with two main parameters, the profiling frequency
and the Bin size. Tests with a fixed Bin size and different profiling frequencies can be seen in
Tables 5.2 and 5.3. These tests were performed in the 64-DLL architecture and they show a
great variation in the measured Time/Call of the TransferCDMA function that is responsible
for transferring a DLL frame. So, in order to understand the profiling results inconsistency,
graphs 5.1 and 5.2 that show the Sampling Frequency affinity with the transfer function time,
were plotted.
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Profiling
Frequency (MHz)

Total
Samples

Sample
Number

Sample counts
as (ns)

Calls
Time/Call

(µs)

2 10145 97 500 3 11
2,1 8896 98 476 3 15,55
2,2 11345 130 454 3 19,69
2,25 11604 146 444 3 22,12
2,3 12357 144 434 3 20,87
2,4 12329 133 416 3 18,47
2,5 12334 22 400 3 8,8
3 12600 169 333 3 18,77

3,5 12540 168 285 3 16

Table 5.2: Profiling of TransferCDMA function with 4words (16bytes) Bin size

Profiling
Frequency (MHz)

Total
Samples

Sample
Number

Sample counts
as (ns)

Calls
Time/Call

(µs)

2 10092 91 500 3 15,16
2,1 8896 98 476 3 15,55
2,2 11321 117 454 3 17,72
2,25 11521 140 444 3 20,74
2,3 12269 137 434 3 19,85
2,4 12355 150 416 3 20,83
2,5 12437 150 400 3 20
3 12502 153 333 3 17

3,5 12582 175 285 3 16,66

Table 5.3: Profiling of TransferCDMA function with 2words (8bytes) Bin size

Figure 5.1: 4 Bin Words(16bytes) Figure 5.2: 2 Bin Words(8bytes)

As can be seen in Table 5.2, the measured time by the profiling varies between 8,8µs and
22,12µs. An identical variation of the measured values can be seen in Table 5.3 with 16,66µs
and 20,84µs. As expected, all profiling results are higher than the 8µs measured with timer
(Table 5.1). This is due to the software intrusive nature of the profiling that requires the
program to be periodically interrupted to obtain a sample of its program counter location
and store the profile information in the memory. Since the achieved profiling results present
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big discrepancies between different Profiling frequencies and the ones obtained with timer,
the timer will be the measurement tool used in the DLL tests.

5.3 Higher Layer services requests

To prove the functional behaviour and show the reader the DLL steps made to perform
the attendance of the higher layer requests, this section will present DLL buffers data that
can be seen in the Debug mode. In order to be easier to understand, all data was highlighted
according to its meaning. The HDR request data was highlighted on blue, MDR request data
was highlighted on green and the header was highlighted on red.

Figure 5.3: HDR Input Buffer Figure 5.4: MDR Input Buffer

Figure 5.5: DLL Emitter internal Buffer Figure 5.6: Output Buffer DLL Emitter
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Figure 5.7: DLL Receiver internal Buffer Figure 5.8: Output Buffer DLL Receiver

Figure 5.9: HDR Output Buffer Figure 5.10: MDR Output Buffer

Figure 5.3 represents the DLL emitter input buffer of the HDR requests, while Figure 5.9
the DLL receiver output buffer for those same requests. Similarly, Figure 5.4 shows the DLL
emitter input buffer of the MDR requests and Figure 5.10 shows the DLL receiver output
buffer of those requests. As can be seen in the referred images, the HDR and MDR requests
were correctly transmitted. In order to achieve frame transfer, the correct header according
to what was discussed in Section 3.3 needs to be performed. In Figures 5.5, 5.6, 5.7 and 5.8
the calculated header for the MDR Fragmentation case (HDR=192, MDR=16) can be seen,
as mentioned, highlighted in red. That same header is fully explained in Figure 5.11 where
the reader can see the parameters considered to its calculation and understand the reason for
the corresponding values of [0x20 0x06 0x04 0x20 0x10 0x00 0x20 0x00]. It is important to
notice that the reserved field is currently not being used, so the 0x20 that can be seen in the
header has no meaning in the DLL transfer.
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Figure 5.11: Calculated Header MDR Fragmentation

5.4 DLL functions time results

Now that the DLL Emitter and Receiver functioning was illustrated in the previous Sec-
tion, DLL function time with respective throughput results will be presented. In order to
measure the time of the DLL functions regarding all plausible fragmentation cases, four sce-
narios were sighted in this work, which were no services fragmentation, HDR fragmentation,
MDR fragmentation and fragmentation of both services.

5.4.1 No Fragmentation

The first considered case is the no fragmentation of both HDR and MDR requests that
can be seen in Tables 5.4 and 5.5. As can be seen in those Tables, five counter (AXI Timer)
samples of each function were taken and since DLL code has some extra instructions outside
those functions, samples with the total time of the DLL Emitter and DLL Receiver were also
included in the respective Tables. Since AXI Timer is known to be 50MHz, the time taken
by each function can be calculated by simply multiplying the sampling period (20ns) by the
number of samples. Furthermore, an average of the five samples of DLL Emitter and DLL
Receiver will be used in the respective throughput calculation using Equation 5.1.
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Sample
number

Fragment
Control

Admission
Control HDR

Header
Coder

Admission
Control MDR

Link
Management

DLL
Emitter

#1 804 570 174 292 398 2262
#2 789 568 174 292 398 2244
#3 788 569 174 292 398 2250
#4 794 569 175 292 406 2263
#5 798 569 174 292 398 2266

Average: 795 569 175 292 400 2257

Time (µs): 15,9 11,38 3,5 5,84 8 45,14

Table 5.4: Timer samples of DLL Emitter with no Fragmentation

Sample
number

Link
Management

Header
Decoder

Defragmentation
Control

Higher
Layer Control

DLL
Receiver

#1 366 181 151 609 1413
#2 366 179 142 609 1423
#3 374 179 142 616 1423
#4 372 179 142 609 1415
#5 366 179 142 609 1423

Average: 369 180 144 611 1420

Time (µs): 7,38 3,6 2,88 12,22 28,4

Table 5.5: Timer samples of DLL Receiver with no fragmentation

Throughput =
Payload size(200Bytes)× 8bits

DLLTime
(5.1)

By considering that 1600 bits are sent in the 45,14 µs, the Emitter Throughput can be
calculated (Equation 5.2);

ThroughputEmitter = 35, 45Mbits/sec (5.2)

With the same reasoning, the Receiver Throughput can be calculated (Equation 5.3).

ThroughputReceiver = 56, 34Mbits/sec (5.3)

Since the throughput of the DLL Emitter is lower than the one obtained in the DLL
Receiver, it will be the one conditioning the total DLL throughput. This reason being that
receiver cannot outperform the emitter and the maximum DLL throughput is given by the
DLL Emitter throughput.

5.4.2 HDR Fragmentation

After the no fragmentation analysis, the second case is the fragmentation of the HDR
request. Since HDR fragmentation occurs with requests larger than 192 Bytes, a 250 Bytes
of HDR request was tested and four Tables are presented below to show the two frame
construction in Emitter and defragmentation in the Receiver. The first frame will consist of
the HDR maximum 192 Bytes and the MDR maximum of 8 Bytes, while the second frame

87



will have no MDR request and will transmit the remaining 58 Bytes of the HDR request that
was fragmented.

Sample
number

Fragment
Control

Admission
Control HDR

Header
Coder

Admission
Control MDR

Link
Management

DLL
Emitter

#1 795 572 178 292 302 2218
#2 799 567 174 292 302 2231
#3 790 563 174 292 302 2222
#4 798 566 174 292 302 2227
#5 785 565 178 294 302 2222

Average: 794 567 176 293 302 2224

Time (µs): 15,88 11,34 3,52 5,86 6,04 44,48

Table 5.6: Timer samples of DLL Emitter with HDR Fragmentation First Frame

Sample
number

Fragment
Control

Admission
Control HDR

Header
Coder

Admission
Control MDR

Link
Management

DLL
Emitter

#1 527 282 138 0 268 1227
#2 531 282 138 0 268 1221
#3 526 282 138 0 268 1226
#4 536 282 138 0 268 1221
#5 527 282 138 0 268 1230

Average: 530 282 138 0 268 1225

Time (µs): 10,6 5,64 2,76 0 5,36 24,5

Table 5.7: Timer samples of DLL Emitter with HDR Fragmentation Second Frame

Sample
number

Link
Management

Header
Decoder

Defragmentation
Control

Higher
Layer Control

DLL
Receiver

#1 313 185 147 609 1415
#2 313 180 151 609 1412
#3 313 179 146 609 1419
#4 313 179 151 609 1412
#5 313 189 146 615 1415

Average: 313 183 149 611 1415

Time (µs): 6,26 3,66 2,98 12,22 28,3

Table 5.8: Timer samples of DLL Receiver with HDR fragmentation First Frame
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Sample
number

Link
Management

Header
Decoder

Defragmentation
Control

Higher
Layer Control

DLL
Receiver

#1 269 141 92 528 1146
#2 269 141 92 528 1138
#3 269 141 92 528 1145
#4 269 141 92 528 1138
#5 269 141 92 528 1144

Average: 269 141 92 528 1143

Time (µs): 5,38 2,82 1,84 10,56 22,86

Table 5.9: Timer samples of DLL Receiver with HDR fragmentation Second Frame

Since in this scenario the second frame is not full, the DLL throughput is expected to
be lower. It is important to remark that this case scenario (HDR Fragmentation) will not
be very usual, due to the proper sizing of the DLL frame size to fit one MPEG-TS frame,
as previously mentioned. That said, this scenario only poses a mere illustration of the time
differences between the DLL functions with and without HDR fragmentation, so the reader
can have an idea of the fragmentation impact in the DLL functions time.

In this case, different amount of bits were sent (2064), but the Emitter throughput follow
same logic as previous case. The result can be seen in the Equation 5.4. Receiver throughput
result is shown in Equation 5.5.

ThroughputEmitter = 23, 20Mbits/sec (5.4)

ThroughputReceiver =
2064bits

50, 86µs
= 31, 27Mbits/sec (5.5)

5.4.3 MDR Fragmentation

The third case considered is similar to the last one, but instead of having HDR Fragmen-
tation, it was considered to exist MDR Fragmentation. Again, the first frame sent contains
192 Bytes of HDR request and 8 Bytes of MDR request, while the second frame only contains
8 Bytes of the MDR request.

Sample
number

Fragment
Control

Admission
Control HDR

Header
Coder

Admission
Control MDR

Link
Management

DLL
Emitter

#1 860 574 178 292 302 2326
#2 865 563 174 292 302 2323
#3 867 569 174 292 302 2329
#4 875 567 174 292 302 2331
#5 876 563 174 292 302 2337

Average: 869 568 175 292 302 2330

Time (µs): 17,38 11,36 3,5 5,84 6,04 46,6

Table 5.10: Timer samples of DLL Emitter with MDR Fragmentation First Frame
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Sample
number

Fragment
Control

Admission
Control HDR

Header
Coder

Admission
Control MDR

Link
Management

DLL
Emitter

#1 342 0 138 251 268 996
#2 352 0 138 251 268 996
#3 342 0 138 251 268 996
#4 342 0 138 251 268 996
#5 342 0 138 251 268 996

Average: 344 0 138 251 268 996

Time (µs): 6,88 0 2,76 5,02 5,36 19,92

Table 5.11: Timer samples of DLL Emitter with MDR Fragmentation Second Frame

Sample
number

Link
Management

Header
Decoder

Defragmentation
Control

Higher
Layer Control

DLL
Receiver

#1 313 181 155 609 1415
#2 312 179 146 609 1416
#3 312 179 146 609 1407
#4 313 183 151 609 1420
#5 313 179 155 609 1414

Average: 313 181 151 609 1415

Time (µs): 6,26 3,62 3,02 12,18 28,3

Table 5.12: Timer samples of DLL Receiver with MDR fragmentation First Frame

Sample
number

Link
Management

Header
Decoder

Defragmentation
Control

Higher
Layer Control

DLL
Receiver

#1 269 141 92 515 1125
#2 269 141 91 515 1123
#3 271 141 92 515 1126
#4 269 141 92 515 1130
#5 269 141 92 515 1126

Average: 270 141 92 515 1126

Time (µs): 5,4 2,82 1,84 10,3 22,52

Table 5.13: Timer samples of DLL Receiver with MDR fragmentation Second Frame

In this case, a total of 1664 bits were sent in the two frames. Therefore, the Emitter
throughput can be calculated as in Equation 5.6.

ThroughputEmitter = 24, 05Mbits/sec (5.6)

Since receiver shows a different time result, the Receiver throughput of MDR Fragmenta-
tion case can be seen in Equation 5.7.

ThroughputReceiver = 31, 48Mbits/sec (5.7)

As expected the throughput shows worst performance when compared to the no fragmen-
tation case. This MDR Fragmentation scenario when compared to the HDR Fragmentation
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scenario shows similar performance, which confirms the premiss that the DLL throughput is
mainly affected by the processing functions and not the CDMA transfers (in HDR Fragmen-
tation scenario 50 extra Bytes were sent).

5.4.4 HDR and MDR Fragmentation

The fourth and last considered scenario is the fragmentation of both HDR and MDR
requests. This test was performed with 250 Bytes of HDR request and 18 Bytes of MDR
request, which means that first frame contains HDR=192 Bytes and MDR=8 Bytes and the
second frame only contains HDR=58 Bytes and MDR=8 Bytes.

Sample
number

Fragment
Control

Admission
Control HDR

Header
Coder

Admission
Control MDR

Link
Management

DLL
Emitter

#1 791 565 174 292 302 2217
#2 782 570 174 292 302 2227
#3 783 572 174 292 305 2228
#4 782 572 174 292 302 2215
#5 797 567 176 292 302 2222

Average: 787 570 175 292 303 2222

Time (µs): 15,74 11,4 3,5 5,84 6,06 44,44

Table 5.14: Timer samples of DLL Emitter with HDR and MDR Fragmentation First Frame

Sample
number

Fragment
Control

Admission
Control HDR

Header
Coder

Admission
Control MDR

Link
Management

DLL
Emitter

#1 532 282 150 256 268 1485
#2 533 282 150 256 268 1481
#3 526 282 150 256 268 1490
#4 526 282 150 256 268 1481
#5 527 282 150 256 268 1488

Average: 529 282 150 256 268 1485

Time (µs): 10,58 5,64 3 5,12 5,36 29,7

Table 5.15: Timer samples of DLL Emitter with HDR and MDR Fragmentation Second Frame

Sample
number

Link
Management

Header
Decoder

Defragmentation
Control

Higher
Layer Control

DLL
Receiver

#1 312 179 146 609 1416
#2 321 179 155 609 1415
#3 312 179 146 609 1417
#4 312 179 146 617 1420
#5 313 188 133 609 1413

Average: 314 181 146 611 1417

Time (µs): 6,28 3,62 2,92 12,22 28,34

Table 5.16: Timer samples of DLL Receiver with HDR and MDR fragmentation First Frame
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Sample
number

Link
Management

Header
Decoder

Defragmentation
Control

Higher
Layer Control

DLL
Receiver

#1 269 141 92 515 1125
#2 269 141 92 515 1125
#3 269 141 92 515 1125
#4 269 141 92 515 1125
#5 269 141 92 515 1125

Average: 269 141 92 515 1125

Time (µs): 5,38 2,82 1,84 10,3 22,5

Table 5.17: Timer samples of DLL Receiver with HDR and MDR fragmentation Second Frame

In this last considered case, a total of 2128 bits were sent in both frames. This size
considered with the DLL Emitter time can be used to achieve the throughput in Equation
5.8. On the other hand, the Receiver throughput result can be seen in Equation 5.9.

ThroughputEmitter = 21, 58Mbits/sec (5.8)

ThroughputReceiver = 31, 47Mbits/sec (5.9)

As can be seen, the DLL Emitter and Receiver Throughput are lower than the remaining
two previous fragmentation scenarios. This is due to the extra instructions performed for
such small size of HDR and MDR transfers.

In order to better show the difference of the four cases, Figure 5.12 was traced. There,
it can be seen small differences between the considered cases, mainly because of the different
information size sent.

Figure 5.12: Results of the Fragmentation Cases
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5.4.5 Time elapsed with different frame sizes

In this section it will be shown the DLL processing functions impact in the system through-
put. Since these processing functions have a similar duration despite the fragmentation or
data transfer sizes, increasing the DLL frame from the 208 Bytes to 4096 Bytes reveals no real
time change in the required functions. Thus, the 4096 Bytes frame size with no fragmentation
will be shown in this section as proof of the throughput improvement that is the result of the
small differences in the measured times with the big improvement in data transfer size.

Sample
number

Fragment
Control

Admission
Control HDR

Header
Coder

Admission
Control MDR

Link
Management

DLL
Emitter

#1 892 861 179 291 495 3055
#2 881 873 179 291 489 3078
#3 881 822 179 291 501 3065
#4 880 855 179 291 492 3071
#5 882 861 179 291 495 3054

Average: 884 855 179 291 495 3065

Time (µs): 17,68 17,1 3,58 5,82 9,9 61,3

Table 5.18: Timer samples of DLL Emitter with no fragmentation FrameSize=4096 Bytes

Sample
number

Link
Management

Header
Decoder

Defragmentation
Control

Higher
Layer Control

DLL
Receiver

#1 504 171 122 1008 2206
#2 494 171 122 1015 2204
#3 506 177 122 993 2209
#4 500 171 122 1001 2203
#5 503 171 122 1006 2206

Average: 502 173 122 1005 2206

Time (µs): 10,04 3,46 2,44 20,1 44,12

Table 5.19: Timer samples of DLL Receiver with no fragmentation FrameSize=4096Bytes

Given the mentioned timer frequency of 50MHz that corresponds to 20ns of sampling
period, the last row of 5.18 and 5.19 can be calculated to later be used in the throughput
equations. The Emitter throughput result is given in Equation 5.12, where Receiver through-
put result is shown in 5.13.

Emitter T ime = EmitterMeasuredSamples× Sampling Period = 61, 3µs (5.10)

Receiver T ime = ReceiverMeasuredSamples× Sampling Period = 44, 12µs (5.11)

ThroughputEmitter =
FrameSize (4088Bytes)

Emitter T ime
= 533, 51Mbits/s (5.12)
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ThroughputReceiver =
FrameSize (4088Bytes)

Receiver T ime
= 741, 25Mbits/s (5.13)

It is clear that the DLL Emitter and the DLL Receiver have a tremendous throughput
increase with the frame size increase. Thus, it is clear that the responsible function for
slowing the proposed DLL design is mainly the Fragmentation Control. It is important to
remember that Fragmentation Control is responsible for HDR and MDR transfer size control,
fragmentation control and input buffer requests control.

Figure 5.13: DLL Emitter Different frame sizes comparison

Figure 5.14: DLL Receiver Different frame sizes comparison
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With the throughput results obtained with the frame size of 4096 Bytes, it was clear that
further study of frame size impact in the system throughput was required. Therefore, frame
size was varied between 208 Bytes and 4096 Bytes (maximum addressable frame size due to
the header parameters) with values that would not pose addresses alignment issues. These
values were 256, 512, 1024 and 4096 Bytes, and their expected impact can be seen in Figures
5.13 and 5.14. Even though these results encourage frame size increase, they were merely
tests to show the potential when big transfers are required. All things considered, 208 Bytes
frame size present a better choice for the current VLCLighting project demands. It is the
best frame size regarding that MPEG-TS frames of 188 Bytes would not completely fill the
4096 Bytes DLL frame size, and the high throughput would be proven to be not worth it.

5.5 Final result analysis

In the previous section 5.4, the DLL function time measurements and their overall analysis
on this work was conducted. According to the objectives in designing an efficient DLL with
high throughput, the previous shown results were proven to be according to the expected. It
is important to notice that the modulation in VLCLighting project, according to the paper
[51], is able to provide 24Mb/s, value that according with expected FEC techniques and DLL
efficiencies lowers 21, 67% , leaving a system throughput of 18, 82Mb/s. So, it is clear that
the current DLL is capable of achieving the necessary throughput with the 208 Bytes frame
size (35,54 Mbits/sec) and stills leaves room if further improvements in the performance of
the remaining blocks occurs.

24Mbit/s× 78, 43% = 18, 82Mbits/s < DLLThroughtput (35, 54Mbits/s) (5.14)
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Chapter 6

Conclusions

This work presented and explored the design of a DLL for VLC broadcast systems with
special focus on the VLCLighting project where this work was immersed.

In order to provide the video broadcast (HDR) together with generic data broadcast
(MDR), a study of efficiencies trade-off with adjacent blocks in the system architecture was
required. This study concluded that the best choice for the proposed system were fixed
frames with 208 Bytes of size. This frame size definition together with FEC technique choice
of RS(255,213) represents a total system efficiency of 78, 43% and was proven to be the best
choice regarding VLCLighting project constraints.

After header and payload size establishment, embedded system design was performed in
XPS. In this embedded design, a CDMA and Timer IP cores were chosen to fullfill DLL goals.
It was also identified that the XPS generated reports show the usage of a small percentage of
the available LUTs (7%) of the Spartan 605.

Then, after proper embedded system design and code development, a series of tests were
performed to show the DLL capabilities. With these tests, it was left clear that the throughput
of the proposed work was limited by the DLL processing functions which are required to handle
the fragmentation and data transfer calculations. It was also observed that in this particular
FPGA model, the best data transfer size was 64 bits, due to MIG clock frequency limitations.
This 64 bits data size choice shows a 8µs CDMA time to transfer a 208 Bytes. Before
measuring implemented functions time, a study of the software profiling and timer limitations
was performed. This study concluded that profiling technique was highly unreliable, so Timer
was the chosen time measurement. The Timer measurements proved that the proposed DLL
could achieve a throughput of 35, 45Mbits/sec. Since Modulation results show a throughput
of 24Mbits/sec and the system efficiency with DLL and FEC usage is imposed as 78, 43% (for
every 200 Bytes of payload a 255 Bytes need to be sent), the proposed DLL largely suffices
the present need of the 18, 82Mbits/sec.

Even with this satisfactory results, a study of the DLL payload size impact in the DLL
throughput was envisioned. This study showed a tremendous DLL performance increase to
533, 51Mbits/sec with 4096 frame size and opened the debate for new and improved DLL
approaches for future research.

This study opens ground to an improvement in VLC technology data management. During
its implementation, it was clear that this DLL could benefit the general VLC broadcast
research community with a standard for data packaging and requests management of the OSI
Layer3 model.
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As for the obtained results, the proposed DLL seems viable to the project where it is
inserted. The presented results are satisfactory, because they can cope with current project
needs and still leaves many opportunities of improvement that will be presented in the fol-
lowing Section.

6.1 Recommendations and future research

Although the experimental results of the designed DLL are within the required project
throughput, it was left clear that further work can be done to improve the proposed layer
even further.

The proposed DLL could have a tremendous improvement if the CDMA was configured
in Scatter-Gather (SG) mode. For that to happen, the CDMA would also require to be
configured with interruptions and the programmed FPGA class code adapted accordingly
(SG or Hybrid modes). This future work would largely benefit the transfer data functions
that would not require the termination of the DLL processing functions. This would enable
transfer requests stacking instead of processor single request configuration each time a transfer
is required.

Another identified value added feature in this study was encryption. With data encryption,
DLL could ensure the confidentiality of the delivered data to the correct receiver and improve
the system protection, especially in this broadcast architecture.

Since the results achieved in Chapter 5 show a huge dependence on the Microblaze pro-
cessing instructions, the next step to this study improvement would be the DLL programming
in a more efficient language like assembly. Therefore, it is with best interest that now that
this higher language programming is proved to be a big value added, it could be adapted to
a more low level programming and obtain even higher throughputs.

In the performed study, a fixed size DLL frame was identified as the best choice to maintain
the lighting functionality of a general VLC architecture. However, in DCO-OFDM or ACO-
OFDM modulation cases, that demand would be performed by the modulation and could
open a new DLL approach with variable frame size. With this variable frame size, the DLL
could obtain a massive throughput improvement, possibly going from the 35, 45Mb/s to the
533, 51Mb/s identified. It is very important to regard that this feature would require a new
study in the system performance with the remaining blocks. A suggested solution would be
FEC codes to take DLL frame, split it in a different number of codewords. This codewords
could be treated as the previous codewords size (RS(255,213)), improving system throughput
without many changes in the FEC techniques implemented approach. Again, this change
would only be justified if value added features would be identified that could benefit from
this throughput improvement. In the considered case of HD video broadcast, the MPEG-TS
frames will suffice project needs of sending a video frame each time and would not require
this increase of frame size. A considered advantage for this scenario would be the sending of
more than one MPEG-TS frames or even in cases of video broadcast quality increase.

It is important to remind that the present DLL frame was left with DLL source address
field, so further usage of this parameter for localization scenarios or even hand-over warnings
could be performed.

DLL frame was also left with reserved bits to implement more required functionalities,
like extra requests attendance. With more requests field in the header, DLL could transport
two or more requests of the same type and could diminish system packet-jitter time.
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Due to code organization, this work presents an easy way to be adapted for different
VLC broadcast scenarios. With this in mind, any programmer could for instance adapt the
implemented FPGA class to any required FPGA or even run it in any microcontroller (if
function calls compatibility with other classes is fulfilled).

Another future work in mind would be the proposed DLL adaptation to bidirectional
transmission for VLC systems or heterogeneous systems that combine for example VLC with
a return channel in RF.
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Appendix A

MatLab code

1 %% QPSK BER over AWGN channel
2 SNR = 0:0.1:10;
3 BER QPSK = berawgn(SNR, 'psk', 4, 'nondiff')
4 figure()
5 semilogy(SNR, BER QPSK, 'LineWidth',2)
6

7 hold on
8 grid on
9

10 semilogy(7,BER QPSK(70+1), '*r', 'LineWidth', 2)
11

12 strQPSK = strcat('BER = 7.2e-4 @ 7.0dB');
13 text(6.5, BER QPSK(70+1),strQPSK,'HorizontalAlignment','right', ...

'FontSize', 12, 'Color', 'k', 'FontWeight', 'bold', 'Margin', 1, ...
'BackgroundColor', 'w')

14

15 %semilogy(SNR, berawgn(SNR, 'qam', 4), '*r')
16 xlabel('SNR','FontSize', 12)
17 ylabel('BER', 'FontSize', 12)
18 %title('QPSK performance over AWGN channel', 'FontSize', 12)
19 legend('QPSK')
20

21 %% BER out vs Code efficiency
22

23 N = 255;
24 K vector = 1:2:249;
25 R = K vector./N;
26

27 figure()
28

29 SNR = 7;
30

31 for i=1:length(K vector)
32 K = K vector(i);
33

34 BER out(i) = bercoding(SNR, 'RS', 'hard', N, K, 'psk', 4, 'nondiff');
35 end
36

37 semilogx(BER out, R, 'LineWidth', 2)
38 hold on
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39 grid on
40

41 [minimo,indice]=min(BER out);
42 semilogx(minimo, R(indice), '*r','LineWidth', 2)
43

44 strRScode = strcat('\rightarrow RS(',num2str(K vector(indice)),',255); ...
efficiency=', num2str(R(indice),4));

45 text(minimo*4,R(indice),strRScode,'FontSize', 10, 'Color', 'k', ...
'FontWeight', 'bold', 'Margin', 3, 'BackgroundColor', 'w');

46

47

48 xlabel('Bit Error Rate @ output', 'FontSize', 12)
49 ylabel('Code efficiency', 'FontSize', 12)
50 %title('Bit Error Rate vs efficiency', 'FontSize', 12)
51 legend(strcat('SNR = ', num2str(SNR), 'dB'))
52

53

54

55 %% Efficiency vs FER
56 clear all
57

58 frame size = [128 256 512 1024 2048 4096]; % frame size in Bytes
59

60 N = 255;
61 K = 165:2:253;
62

63 k = ceil(log2(N+1)); % Elements dimension
64 M = 2ˆk; % Number of different symbols
65 R = K/N; % Code rate
66 t = (N-K)/2; % Error correction RS capability
67

68 SNR = 7;
69

70 EbNo = 10.ˆ((SNR)/10); % Linear SNR values
71

72 %p = (1/N)*(1-(1-qfunc(sqrt(2*R.*EbNo))).ˆk);
73 %PM = p.*(M-1); % Symbol error probability
74

75 for f=1:length(frame size)
76 for c=1:length(K)
77

78 k = ceil(log2(N+1)); % Elements dimension
79 M = 2ˆk; % Number of different symbols
80 R = K(c)/N; % Code rate
81 t = (N-K(c))/2; % Error correction RS capability
82

83 s = (1-qfunc(sqrt(2*R.*EbNo))).ˆk; % Probability of symbol is correctly ...
received

84 PM = 1-s; % Probability of code-word symbol error
85

86 Pes=0;
87 for i = (t+1):N
88 Pes = Pes + (i*nchoosek(N,i).*(PM.ˆi).*(1-PM).ˆ(N-i));
89 end
90 Pes(f,c) = Pes./N;
91

92 BLER(f,c) = 1-(1-Pes(f,c)).ˆK(c);
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93

94 NBLOCKS = ceil(frame size(f)/K(c));
95

96 FER(f,c) = (1-(1-BLER(f,c)).ˆNBLOCKS);
97

98 end
99

100 end
101

102 %% Efficiency vs FER plots
103 figure()
104 for i=1:length(K)
105 x(:,i)=(K(i)./N) .* (frame size./(frame size+8));
106 semilogy((K(i)./N) .* (frame size./(frame size+8)), FER(:,i), '-*')
107 hold on
108 grid on
109

110 end
111

112 hold on
113

114 plot(get(gca,'xlim'), [ 2.3704e-08 2.3704e-08])
115

116 %title('Efficiency vs FER Frame ','FontSize', 12)
117 axis([0.65 1 10e-15 2])
118 ylabel('FER','FontSize', 12)
119 xlabel('Total Efficiency','FontSize', 12)
120

121

122 %% Eff vs FER for framesize=256 for all RS codes
123 figure()
124 for i=1:length(K)
125

126 semilogy((K(i)./N) .* (frame size(2)./(frame size(2)+8)), FER(2,i), '-*', ...
'Linewidth', 1.5)

127

128 hold on
129 grid on
130 end
131

132 plot(get(gca,'xlim'), [ 2.3704e-08 2.3704e-08])
133 semilogy((K(25)./N) .* (frame size(2)./(frame size(2)+8)), FER(2,25), ...

'-rO', 'Linewidth', 2)
134

135 strRScode = strcat('\leftarrow RS(',num2str(K(25)),',255); efficiency=', ...
num2str((K(25)./N) .* (frame size(2)./(frame size(2)+8))));

136 text((K(27)./N) .* (frame size(2)./(frame size(2)+8)), ...
FER(2,25),strRScode,'FontSize', 10, 'Color', 'k', 'FontWeight', ...
'bold', 'Margin', 1, 'BackgroundColor', 'w');

137

138 hold on
139

140 %title('Efficiency vs FER for Frame Size = 256','FontSize', 12)
141 axis([0.65 1 10e-15 2])
142 ylabel('FER','FontSize', 12)
143 xlabel('Total Efficiency','FontSize', 12)
144
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145 %% Efficiency vs BER for one code
146 figure()
147

148 i=25;
149

150 semilogy((K(i)./N) .* (frame size./(frame size+8)), FER(:,i), '-*')
151 hold on
152 grid on
153 semilogy((K(i)./N) .* (frame size(2)./(frame size(2)+8)), FER(2,i), ...

'-rO', 'Linewidth', 2)
154

155 axis([0.785 0.85 3e-9 2e-7])
156 ylabel('FER','FontSize', 12)
157 xlabel('Total Efficiency','FontSize', 12)
158

159

160 %% Auxiliar calculations
161 %% Horas a funcionar sem errros para FER
162 bitrate=24e6; %24Mbits/seg
163 framesize=256; %em bytes
164 frameporseg=bitrate/(8*framesize);
165 tempo=60*60; %tempo em segundos
166 FER=1/(frameporseg*tempo)
167 %% FER para horas
168 FER=1.95*10ˆ-9;
169 bitrate=24000000; %24Mbits/seg
170 framesize=128; %em bytes
171 tempo horas=(1/FER)/(bitrate/(framesize*8))/3600
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Appendix B

DLL C++ code

1 /************ Source file of project ***************/

2 #include "dll.h"

3

4 d l l DLL(20) ; //Maximum Requests is 32

5

6 void HDR Insert ( unsigned int s i z e ) ;
7 void MDR Insert ( unsigned int s i z e ) ;
8 /********************** Main **********************/

9 int main ( void )
10 {
11 /* Enable the instruction cache */

12 Xil ICacheEnable ( ) ;
13 /* Enable the data cache */

14 Xil DCacheEnable ( ) ;
15

16 /* Functions for test purposes */

17 DLL.de l e teBuf f e r s ( ) ;
18 DLL.test mode ( ) ;
19 /* Insert Requests */

20 HDR Insert (64000) ;
21 MDR Insert (3200) ;
22 HDR Insert (32) ;
23 MDR Insert (600) ;
24 MDR Insert (400) ;
25

26 /* Enter DLL Class */

27 x i l p r i n t f ("Going to enter DLL Class! \r\n" ) ;
28

29 DLL.start ( ) ;
30

31 /* Exit DLL Class */

32 x i l p r i n t f ("--- Exiting main() --- \r\n" ) ;
33

34 /* Disable the data cache */

35 Xil DCacheDisable ( ) ;
36 /* Disable the instruction cache */

37 Xi l ICacheDi sab l e ( ) ;
38

39 return 0 ;
40 }

109



41 /* Fills HDR Buffer In */

42 void HDR Insert ( unsigned int s i z e ) {
43

44 u32* hdr ptr = DLL.getHDRInputPointer ( ) ;
45 unsigned int t a i l = DLL.getHDRInputTail ( ) ;
46 unsigned int i ;
47 unsigned int value = 40000;
48 unsigned int words ;
49

50 if ( s i z e % 8 != 0)
51 s i z e += (8 - s i z e %8) ;
52

53 words = s i z e /8 ;
54

55 for ( i =0; i<words ; i++)
56 * ( ( hdr ptr+t a i l )+i ) = value++;
57

58 DLL.HDR Request ( s i z e ) ;
59 }
60

61 /* Fills MDR Buffer In */

62 void MDR Insert ( unsigned int s i z e ) {
63

64 u32* data pt r = DLL.getMDRInputPointer ( ) ;
65 unsigned int t a i l = DLL.getMDRInputTail ( ) ;
66 unsigned int i ;
67 unsigned int value = 5000 ;
68 unsigned int words ;
69

70 if ( s i z e % 8 != 0)
71 s i z e += (8 - s i z e %8) ;
72

73 words = s i z e /8 ;
74

75 for ( i = 0 ; i < words ; i++)
76 * ( ( mdr ptr+t a i l )+i ) = value++;
77

78 DLL.MDR Request ( s i z e ) ;
79 }
80 /***************** End of main ******************/

81

82 /****************** fifo.h **********************/

83 #include <stdint.h>
84

85 /* Defines for abstraction and errors */

86 #define HDR 0
87 #define MDR 1
88 #define SUCCESS 0
89 #define ERROR TYPE INVALID -1
90 #define ERROR REQUEST FIFO EMPTY -2
91 #define ERROR REQUEST FIFO FULL -3
92 #define ERROR UNEXPECTED -4
93

94 #ifndef FIFO H
95 #define FIFO H
96

97
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98 /* FIFO Structure */

99 struct b u f f e r {
100 unsigned short s i z e ; //size of buffer

101 unsigned short s t a r t ; //write and read position

102 unsigned short count ; //number of elements in buffer

103 unsigned int *data ; //array of unsigned short pointers

104 } ;
105 typedef struct b u f f e r b u f f e r t ;
106

107 class f i f o {
108

109 public :
110 f i f o ( ) ;
111 f i f o ( unsigned short f i f o s i z e ) ;
112 virtual ∼ f i f o ( ) ;
113

114 /* Public Prototypes */

115 int In ( unsigned short type , unsigned int value ) ;
116 int Out( unsigned short type ) ;
117 int Check ( unsigned short type ) ;
118 int Change ( unsigned short type , unsigned int value ) ;
119 void Delete ( unsigned short type ) ;
120 bool isEmpty ( unsigned short type ) ;
121 bool i s F u l l ( unsigned short type ) ;
122

123 private :
124 /* Private Variables */

125 unsigned short f i f o s i z e ;
126 /* FIFO Structure Declaration */

127 b u f f e r t b u f f h d r r e q ;
128 b u f f e r t bu f f mdr req ;
129 /* Private Circular FIFO Prototypes */

130 void i n i t ( b u f f e r t * bu f f e r , unsigned short s i z e ) ;
131 void push ( b u f f e r t * bu f f e r , unsigned int value ) ;
132 void change ( b u f f e r t * bu f f e r , unsigned int value ) ;
133 unsigned int pop ( b u f f e r t * b u f f e r ) ;
134 unsigned int check ( b u f f e r t * b u f f e r ) ;
135

136 } ;
137 #endif /* FIFO_H_ */

138 /**************** End fifo.h *********************/

139

140 /***************** fifo.cpp **********************/

141 #include "fifo.h"

142

143 /* FIFO Class Parameterized Constructor */

144 f i f o : : f i f o ( unsigned short f i f o s i z e = 30) {
145 i n i t (& bu f f hd r r eq , f i f o s i z e ) ;
146 i n i t (&buf f mdr req , f i f o s i z e ) ;
147 f i f o s i z e = f i f o s i z e ;
148 }
149

150 /* FIFO Class Destructor */

151 f i f o : :∼ f i f o ( ) {
152 Delete (HDR) ;
153 Delete (MDR) ;
154 }
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155 /* Add Request to FIFO */

156 int f i f o : : In ( unsigned short type , unsigned int value ) {
157

158 if ( type != HDR && type != MDR) // Check if Request is Valid

159 return ERROR TYPE INVALID; // ERROR: REQUEST TYPE INVALID

160

161 if ( type == HDR) { // HDR type

162 if ( ! i s F u l l (HDR) ) { // Check if FIFO HDR is Full

163 push(& bu f f hd r r eq , va lue ) ; // Push Request Size to FIFO

164 return SUCCESS;
165 }
166 else

167 return ERROR REQUEST FIFO FULL; // ERROR: BUFFER is Full

168 }
169 else if ( type == MDR) { // MDR type

170 if ( ! i s F u l l (MDR) ) { // Check if FIFO MDR is Full

171 push(&buf f mdr req , va lue ) ; // Push Request Size to FIFO

172 return SUCCESS;
173 }
174 else

175 return ERROR REQUEST FIFO FULL; // ERROR: BUFFER is Full

176 }
177 return ERROR UNEXPECTED; // ERROR: Unexpected error

178

179 }
180

181 //Remove Request from FIFO

182 int f i f o : : Out( unsigned short type ) {
183

184 if ( type != HDR && type != MDR) // Check if Request is Valid

185 return ERROR TYPE INVALID; // ERROR: REQUEST TYPE INVALID

186

187 if ( type == HDR) { // HDR type

188 if ( ! isEmpty (HDR) ) { // Check if FIFO HDR is Empty

189 return pop(& b u f f h d r r e q ) ; // Return Value of Request

190 }
191 else

192 return ERROR REQUEST FIFO EMPTY; // ERROR: BUFFER is EMPTY

193 }
194 else if ( type == MDR) { // MDR type

195 if ( ! isEmpty (MDR) ) { // Check if FIFO MDR is Empty

196 return pop(&buf f mdr req ) ; // Return Value of Request

197 }
198 else

199 return ERROR REQUEST FIFO EMPTY; // ERROR: BUFFER is EMPTY

200 }
201 return ERROR UNEXPECTED; // ERROR: Unexpected error

202

203 }
204

205 //Return Request Value without removing it

206 int f i f o : : Check ( unsigned short type ) {
207

208 if ( type != HDR && type != MDR) // Check if Request is Valid

209 return ERROR TYPE INVALID; // ERROR: REQUEST TYPE INVALID

210

211 if ( type == HDR) {
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212 if ( ! isEmpty (HDR) ) { // Check if FIFO HDR is Empty

213 return check(& b u f f h d r r e q ) ; // Return Value of Request

214 }
215 else

216 return ERROR REQUEST FIFO EMPTY; // ERROR: HDR BUFFER IS EMPTY

217 }
218 else if ( type == MDR) {
219 if ( ! isEmpty (MDR) ) { // Check if FIFO MDR is Empty

220 return check(&buf f mdr req ) ; // Return Value of Request

221 }
222 else

223 return ERROR REQUEST FIFO EMPTY; // ERROR: MDR BUFFER IS EMPTY

224 }
225 return ERROR UNEXPECTED; // ERROR: UNEXPECTED ERROR

226 }
227

228 //Change Request Value

229 int f i f o : : Change ( unsigned short type , unsigned int value ) {
230

231 if ( type != HDR && type != MDR) // Check if Request is Valid

232 return ERROR TYPE INVALID; // ERROR: REQUEST TYPE INVALID

233

234 if ( type == HDR) {
235 if ( ! isEmpty (HDR) ) { // Check if FIFO HDR is Empty

236 change(& bu f f hd r r eq , va lue ) ; // Change value in FIFO HDR

237 return SUCCESS;
238 }
239 else

240 return ERROR REQUEST FIFO EMPTY; // ERROR: HDR BUFFER IS EMPTY

241 }
242 else if ( type == MDR) {
243 if ( ! isEmpty (MDR) ) { // Check if FIFO MDR is Empty

244 change(&buf f mdr req , va lue ) ; // Change value in FIFO MDR

245 return SUCCESS;
246 }
247 else

248 return ERROR REQUEST FIFO EMPTY; // ERROR: MDR BUFFER IS EMPTY

249 }
250 return ERROR UNEXPECTED; // ERROR: UNEXPECTED ERROR

251 }
252

253 //Remove all Requests in FIFO for that Type

254 void f i f o : : De lete ( unsigned short type ) {
255

256 if ( type==HDR) {
257 b u f f h d r r e q . s t a r t = 0 ;
258 b u f f h d r r e q . c o u n t = 0 ;
259 b u f f h d r r e q . s i z e = 0 ;
260 delete [ ] b u f f h d r r e q . d a t a ; // Clear HDR FIFO

261 }
262 else if ( type==MDR) {
263 b u f f m d r r e q . s t a r t = 0 ;
264 bu f f mdr req . count = 0 ;
265 b u f f m d r r e q . s i z e = 0 ;
266 delete [ ] bu f f mdr r eq .da ta ; // Clear MDR FIFO

267 }
268 }
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269 //Check if Request FIFO is empty

270 bool f i f o : : isEmpty ( unsigned short type ) {
271

272 if ( type==HDR) { // HDR type

273 return b u f f h d r r e q . c o u n t == 0 ;
274 }
275 else if ( type==MDR) { // MDR type

276 return bu f f mdr req . count == 0 ;
277 }
278 return true ; // Unexpected type

279 }
280

281 //Check if Request FIFO is full

282 bool f i f o : : i s F u l l ( unsigned short type ) {
283

284 if ( type==HDR) { // HDR type

285 return b u f f h d r r e q . c o u n t == b u f f h d r r e q . s i z e ;
286 }
287 else if ( type==MDR) { // MDR type

288 return bu f f mdr req . count == b u f f m d r r e q . s i z e ;
289 }
290 return true ; // Unexpected type

291 }
292

293 /***************** Private Functions *****************/

294

295 //Initialize the Buffer Variables

296 void f i f o : : i n i t ( b u f f e r t * bu f f e r , unsigned short s i z e ) {
297

298 bu f f e r - >s ize = s i z e ;
299 bu f f e r - >start = 0 ;
300 bu f f e r ->count = 0 ;
301 bu f f e r ->data = new unsigned int [ s i z e ] ;
302 }
303

304 //Push Value to that FIFO

305 void f i f o : : push ( b u f f e r t * bu f f e r , unsigned int data ) {
306

307 unsigned short index ;
308 index = buf f e r - >start + buf f e r ->count++;
309 if ( index >= buf f e r - >s ize ) {
310 index = 0 ;
311 }
312 bu f f e r ->data [ index ] = data ;
313 }
314

315 //Pop Value from that FIFO

316 unsigned int f i f o : : pop ( b u f f e r t * b u f f e r ) {
317

318 unsigned int data ;
319 data = buf f e r ->data [ bu f f e r - >start ] ;
320 bu f f e r - >start++;
321 bu f f e r ->count - - ;
322 if ( bu f f e r - >start == buf f e r - >s ize )
323 bu f f e r - >start = 0 ;
324 return data ;
325 }
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326 //Change Value of that FIFO

327 void f i f o : : change ( b u f f e r t * bu f f e r , unsigned int value ) {
328

329 bu f f e r ->data [ bu f f e r - >start ]= value ;
330 }
331

332 //Check Value of that FIFO

333 unsigned int f i f o : : check ( b u f f e r t * b u f f e r ) {
334

335 return ( bu f f e r ->data [ bu f f e r - >start ] ) ;
336 }
337 /***************** End fifo.cpp *******************/

338

339 /***************** dllframe.h *********************/

340 #include "xparameters.h"

341 #include "xbasic_types.h"

342

343 #define JUNK (XPAR MCB DDR3 S0 AXI BASEADDR + 0x00637000 )
344

345 #ifndef DLLFRAME H
346 #define DLLFRAME H
347

348 class d l l f r ame {
349

350 protected :
351 d l l f r ame ( ) ;
352 virtual ∼d l l f r ame ( ) ;
353 /* Frame size = 208 Bytes */

354 static const unsigned short DLL FRAME SIZE = 208 ;
355 /* Required CDMA Transfers of 64bits(8bytes) for frame transfer */

356 static const unsigned short DLL FRAME SIZE BLOCKS = 26 ;
357 /* Header size = 8 Bytes */

358 static const unsigned short HEADER SIZE = 8 ;
359 /* Required size of 32bits(4bytes) for header transfer */

360 static const unsigned short HEADER SIZE BLOCKS = 2 ;
361 /* Payload size calculation = 200 Bytes */

362 static const unsigned short PAYLOAD SIZE = DLL FRAME SIZE - HEADER SIZE;
363 /* Maximum allowed fragment number */

364 static const unsigned short MAXFRAGMENTNUMBER = 31 ;
365 /* Maximum allowed request size */

366 static const unsigned int MAX REQUEST SIZE = (MAXFRAGMENTNUMBER * ...
PAYLOAD SIZE) ;

367 /* Maximum HDR size in frame in case of both HDR and MDR Fragmentation */

368 static const unsigned int MAX HDR SIZE = 188 ;
369 /* Maximum MDR size in frame in case of both HDR and MDR Fragmentation */

370 static const unsigned short MAX MDR SIZE = PAYLOAD SIZE - MAX HDR SIZE;
371 /* Maximum established PHY layers to serve */

372 static const unsigned short MAX NUMBER PHY LAYERS = 3 ;
373 /* DLL Protocol Version set to 1 */

374 static const u32 PROTOCOL VERSION = 0x01 ;
375

376 friend class d l l ;
377 u32* tx e ; //DLLFrame TX Emitter

378 u32* rx e ; //DLLFrame RX Emitter

379 u32* t x r ; //DLLFrame TX Receiver

380 u32* r x r ; //DLLFrame RX Receiver

381 u32* junk ; //Junk Frame
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382 private :
383 void i n i t j unk f rame ( void ) ;
384 } ;
385 #endif /* DLLFRAME_H_ */

386 /*************** End dllframe.h ******************/

387

388 /**************** dllframe.cpp *******************/

389 #include "dllframe.h"

390

391 /*** Regular Frame ***/

392 d l l f r ame : : d l l f r ame ( ) {
393

394 //Initialize the Junk Frame

395 i n i t j unk f rame ( ) ;
396 } ;
397

398 /*** Destructor Function ***/

399 d l l f r ame : :∼d l l f r ame ( ) {
400 }
401

402 void d l l f r ame : : i n i t j unk f rame ( void ) {
403

404 junk = ( u32 *) JUNK;
405 for ( unsigned int i=0 ; i< DLL FRAME SIZE BLOCKS ; i++){
406 *( junk+i ) = 1431655765;
407 }
408 }
409 /*************** End dllframe.cpp *****************/

410

411 /******************** dll.h ***********************/

412 #include "dllframe.h"

413 #include "fifo.h"

414 #include "fpga.h"

415 #include <stdio.h>
416 #include <stdint.h>
417

418 /*** Constant Definitions ***/

419 #define HDR 0 // HDR parameter by default is 0

420 #define MDR 1 // MDR parameter by default is 1

421 #define FRAME false // CDMA requests transfer

422 #define NO FRAME true // CDMA complete frame transfer

423

424 /* ERROR DEFINITIONS */

425 #define ERROR TYPE INVALID -1
426 #define ERROR REQUEST FIFO EMPTY -2
427 #define ERROR REQUEST FIFO FULL -3
428 #define ERROR UNEXPECTED -4
429 #define ERROR TRANSFER BOTH -5
430 #define ERROR TRANSFER -6
431 #define ERROR TRANSFER DATA -7
432 #define ERROR CONFIGURATION CDMA -8
433

434 #ifndef DLL H
435 #define DLL H
436

437 class d l l {
438 public :
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439 d l l ( unsigned short b u f f s i z e ) ;
440 virtual ∼d l l ( ) ;
441 void s t a r t ( void ) ;
442 void test mode ( void ) ;
443 void d e l e t e B u f f e r s ( void ) ;
444 void HDR Request ( unsigned int value ) ;
445 void MDR Request ( unsigned int value ) ;
446

447 /* Public Prototypes for Higher Layer Access to Image and Data Buffers */

448 u32* getHDRInputPointer ( void ) ;
449 u32* getMDRInputPointer ( void ) ;
450 unsigned int getHDRInputTail ( void ) ;
451 unsigned int getMDRInputTail ( void ) ;
452 unsigned int getHDRInputHead ( void ) ;
453 unsigned int getMDRInputHead ( void ) ;
454 u32* getHDROutputPointer ( void ) ;
455 u32* getMDROutputPointer ( void ) ;
456 unsigned int getHDROutputTail ( void ) ;
457 unsigned int getMDROutputTail ( void ) ;
458 unsigned int getHDROutputHead( void ) ;
459 unsigned int getMDROutputHead( void ) ;
460

461 bool HDR TO HIGHER LAYER;
462 bool MDR TO HIGHER LAYER;
463 bool HIGHER LAYER HDR CLEAR;
464 bool HIGHER LAYER MDR CLEAR;
465

466 protected :
467 /************ Prototypes ************/

468 void d l l c h e c k ( u32* emitter hdr , u32* r e c e i v e r h d r , unsigned short ...
hdr s i z e , u32* emitter mdr , u32* rece iver mdr , unsigned short mdr s ize ) ;

469

470 /* Emitter */

471 void e m i t t e r i n i t ( void ) ;
472 void o p e r a t i o n s c o n t r o l l e r e m i t t e r ( void ) ;
473 void f r agmenta t i on con t ro l ( void ) ;
474 void header coder ( u8* tx header ) ;
475 int ad mi s s i o n co n t r o l ( u32* tx payload , u32* rx payload , unsigned short ...

t r a n s f e r s i z e ) ;
476 int l ink management emitter ( u32* tx , u32* rx ) ;
477

478 /* Receiver */

479 void r e c e i v e r i n i t ( void ) ;
480 void o p e r a t i o n s c o n t r o l l e r r e c e i v e r ( void ) ;
481 int l ink management rece iver ( u32* tx , u32* rx ) ;
482 void header decoder ( u8* rx header ) ;
483 void de f r agmenta t i on cont ro l ( void ) ;
484 int h i g h e r l a y e r c o n t r o l ( u32* rx , u32* bu f f e r hdr , u32* buf fer mdr ) ;
485

486 private :
487 d l l f r ame frame ;
488 f i f o r eque s t ;
489 fpga Fpga ;
490

491 /** Structure Declaration DLL Emitter and DLL Receiver Variables **/

492 struct d l l b l o c k {
493 bool more hdr f rag ;
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494 bool more mdr frag ;
495 bool almost empty ;
496 bool a l m o s t f u l l ;
497 unsigned short p r o t o c o l v e r s i o n ;
498 unsigned short s ou r c e addr e s s ;
499 unsigned short h d r s i z e ;
500 unsigned short mdr s ize ;
501 unsigned short hdr frag number ;
502 unsigned short mdr frag number ;
503 unsigned short HDR LOST;
504 unsigned short MDR LOST;
505 unsigned short HDR COUNTER;
506 unsigned short MDR COUNTER;
507 } ;
508 d l l b l o c k r e c e i v e r ; /** Variables Declaration DLL Receiver **/

509 d l l b l o c k emi t t e r ; /** Variables Declaration DLL Emitter **/

510

511 struct h i g h e r l a y e r b u f f e r {
512 u32* ptr ;
513 unsigned int t a i l ;
514 unsigned int head ;
515 unsigned int count ;
516 } ;
517 h i g h e r l a y e r b u f f e r hdr in ;
518 h i g h e r l a y e r b u f f e r mdr in ;
519 h i g h e r l a y e r b u f f e r hdr out ;
520 h i g h e r l a y e r b u f f e r mdr out ;
521

522 /* Higher Layer Receiver Control */

523 unsigned short r e c e i v e d h d r s i z e ;
524 unsigned short r e c e i v e d m d r s i z e ;
525 bool h d r f r a g m e n t a u x i l i a r ;
526 bool mdr f ragment aux i l i a r ;
527 bool l a s t h d r f r a gm e nt ;
528 bool l a s t mdr f ragment ;
529 } ;
530 #endif /* DLL_H_ */

531 /****************** End dll.h *********************/

532

533 /******************* dll.cpp **********************/

534 #include "dll.h"

535

536 d l l : : d l l ( unsigned short b u f f s i z e ) : r eque s t ( b u f f s i z e ) {
537

538 if ( bu f f s i z e>31 )
539 b u f f s i z e = 31 ;
540

541 e m i t t e r i n i t ( ) ;
542 r e c e i v e r i n i t ( ) ;
543 F p g a . i n i t ( ) ;
544 }
545

546 d l l : :∼d l l ( ) {
547 }
548

549 /*** Initialize the Data Link Layer ***/

550 void d l l : : s t a r t ( void ) {
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551

552 while ( ( ! request . i sEmpty (HDR) ) | | ( ! request . i sEmpty (MDR) ) ) {
553

554 // DLL EMITTER

555 o p e r a t i o n s c o n t r o l l e r e m i t t e r ( ) ;
556 // DLL RECEIVER

557 o p e r a t i o n s c o n t r o l l e r r e c e i v e r ( ) ;
558 d l l c h e c k ( h d r i n . p t r , hdr out .p t r , e m i t t e r . h d r s i z e , mdr in .ptr , ...

mdr out.ptr , e m i t t e r . m d r s i z e ) ;
559 }
560 }
561

562 /*** Delete all data in Buffers ***/

563 void d l l : : d e l e t e B u f f e r s ( void ) {
564

565 unsigned short Index ;
566 //Reset buffers of emitter and receiver

567 u32* TX Emitter = ( u32 *) TX EMITTER BUFFER BASE;
568 u32* RX Emitter = ( u32 *) Fpga.RX EMITTER BUFFER BASE ;
569 u32* TX Receiver = ( u32 *) Fpga.TX RECEIVER BUFFER BASE ;
570 u32* RX Receiver = ( u32 *) RX RECEIVER BUFFER BASE;
571 for ( Index = 0 ; Index < frame.DLL FRAME SIZE BLOCKS ; Index++){
572 *( TX Emitter+Index ) = 0 ;
573 *( RX Emitter+Index ) = 0 ;
574 *( TX Receiver+Index ) = 0 ;
575 *( RX Receiver+Index ) = 0 ;
576 }
577 }
578

579 /*** Initialize DLL in Test Mode ***/

580 void d l l : : test mode ( void ) {
581

582 /* Change DLL Receiver End Buffer to DLL Emitter Start Buffer */

583 Fpga.change to test mode ( ) ;
584 f r a m e . t x r = ( u32 *) Fpga.TX RECEIVER BUFFER BASE ;
585 }
586

587 /*** HDR Request ***/

588 void d l l : : HDR Request ( unsigned int value ) {
589

590 unsigned int words ;
591 if ( va lue % 8 != 0)
592 value += (8 - va lue%8) ;
593 words = value /8 ;
594 h d r i n . t a i l += words ;
595 hdr in . c ount += words ;
596 r e q u e s t . I n (HDR, value ) ;
597 }
598

599 /*** MDR Request ***/

600 void d l l : : MDR Request ( unsigned int value ) {
601

602 unsigned int words ;
603 if ( va lue % 8 != 0)
604 value += (8 - va lue%8) ;
605 words = value /8 ;
606 m d r i n . t a i l += words ;
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607 mdr in .count += words ;
608 r e q u e s t . I n (MDR, value ) ;
609 }
610

611 /**************** EMITTER ********************/

612 void d l l : : e m i t t e r i n i t ( void ) {
613

614 // TX is the origin buffer of DLL Emitter

615 f r a me . t x e = ( u32 *) TX EMITTER BUFFER BASE;
616 // RX is the destination buffer of DLL Emitter

617 f r ame . rx e = ( u32 *) Fpga.RX EMITTER BUFFER BASE ;
618 // Buffer with HDR Data

619 h d r i n . p t r = ( u32 *) REQ BUFFER BASE;
620 hdr in .head = 0 ;
621 h d r i n . t a i l = 0 ;
622 hdr in . c ount = 0 ;
623 // Buffer with MDR Data

624 mdr in .pt r = ( u32 *) REQ DATA BUFFER BASE;
625 mdr in.head = 0 ;
626 m d r i n . t a i l = 0 ;
627 mdr in .count = 0 ;
628 emitter.HDR COUNTER=0;
629 emitter.MDR COUNTER=0;
630 emi t te r .more mdr f rag = false ;
631 e m i t t e r . s o u r c e a d d r e s s = 0 ;
632 e m i t t e r . h d r s i z e = 0 ;
633 e m i t t e r . m d r s i z e = 0 ;
634 emi t t e r .hdr f rag number = 0 ;
635 emitter .mdr f rag number = 0 ;
636 emitter.HDR LOST = 0 ;
637 emitter.MDR LOST = 0 ;
638 emitter .a lmost empty = true ;
639 e m i t t e r . a l m o s t f u l l = false ;
640 }
641

642 /*** OPERATIONS CONTROLLER (EMITTER) ***/

643 void d l l : : o p e r a t i o n s c o n t r o l l e r e m i t t e r ( void ) {
644

645 unsigned short s i z e ;
646 unsigned short word ;
647 int Status ;
648

649 Fpga.StartTimer ( ) ;
650 f r agmenta t i o n con t ro l ( ) ;
651 // Transfer HDR Request Payload to Temporary Frame

652 if ( e m i t t e r . h d r s i z e != 0) {
653 Status=ad mi s s i on co n t r o l ( h d r i n . p t r+hdr in .head , ...

f r a me . t x e+frame.HEADER SIZE BLOCKS , e m i t t e r . h d r s i z e ) ;
654 if ( Status != XST SUCCESS)
655 emitter.HDR LOST++;
656 s i z e = e m i t t e r . h d r s i z e ;
657 if ( s i z e % 8 != 0)
658 s i z e += (8 - s i z e %8) ;
659 word = s i z e /8 ;
660 hdr in .head += word ;
661 hdr in . c ount -= word ;
662 }
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663 // Transfer Header to Temporary Frame

664 header coder ( ( u8 *) f r a m e . tx e ) ;
665 // Transfer MDR Request Payload to Temporary Frame

666 if ( e m i t t e r . m d r s i z e != 0) {
667 word = e m i t t e r . h d r s i z e ;
668 if ( word % 8 != 0)
669 word += (8 - word%8) ;
670 Status=ad mi s s i on co n t r o l ( mdr in .p t r+mdr in.head , ( f r a me . tx e + ...

frame.HEADER SIZE BLOCKS + ( word /4) ) , e m i t t e r . m d r s i z e ) ;
671 if ( Status != XST SUCCESS)
672 emitter.MDR LOST++;
673 s i z e = e m i t t e r . m d r s i z e ;
674 if ( s i z e % 8 != 0)
675 s i z e += (8 - s i z e %8) ;
676 word = s i z e /8 ;
677 mdr in.head += word ;
678 mdr in .count -= word ;
679 }
680

681 Fpga.StopTimer ( ) ;
682 // Wait while FEC Buffer is Almost Full

683 while ( e m i t t e r . a l m o s t f u l l == true ) ;
684 Status = l ink management emitter ( f rame . tx e , f r a me . rx e ) ;
685 // Check if Transfer was successful and if not add fragment lost to ...

statistics

686 if ( Status != XST SUCCESS) {
687 if ( e m i t t e r . h d r s i z e != 0)
688 emitter.HDR LOST++;
689 if ( e m i t t e r . m d r s i z e != 0)
690 emitter.MDR LOST++;
691 }
692 else{
693 if ( e m i t t e r . h d r s i z e != 0)
694 emitter.HDR COUNTER++;
695 if ( e m i t t e r . m d r s i z e != 0)
696 emitter.MDR LOST++;
697 }
698 }
699

700 /*** FRAGMENTATION CONTROL (EMITTER) ***/

701 void d l l : : f r a gmenta t i on con t ro l ( void ) {
702

703 unsigned int hdr r eque s t ;
704 unsigned int mdr request ;
705

706 /* Variables to check requests size */

707 if ( ! request . i sEmpty (HDR) )
708 hdr r eque s t = request .Check (HDR) ;
709 else

710 hdr r eque s t = 0 ;
711 if ( ! request . i sEmpty (MDR) )
712 mdr request = request .Check (MDR) ;
713 else

714 mdr request =0;
715

716 // Check if HDR requests are bigger than MAX_REQUEST_SIZE = ...
MAX_REQUESTS * PAYLOAD_SIZE
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717 while ( ( hdr r eque s t > frame.MAX REQUEST SIZE) && ( ! request . i sEmpty (HDR) ) ) {
718 hdr r eque s t = request .Out (HDR) ;
719 emitter.HDR LOST++;
720 hdr r eque s t = request .Check (HDR) ; ;
721 }
722 // Check if MDR requests are bigger than MAX_REQUEST_SIZE = ...

MAX_REQUESTS * PAYLOAD_SIZE

723 while ( ( mdr request > frame.MAX REQUEST SIZE) && ( ! request . i sEmpty (MDR) ) ) {
724 mdr request = request .Out (MDR) ;
725 emitter.MDR LOST++;
726 data r eque s t = request .Check (MDR) ; ;
727 }
728

729 /* RESET counters of fragment number */

730 if ( e m i t t e r . m o r e h d r f r a g == false )
731 emi t t e r .hdr f rag number = 0 ;
732 if ( emi t t e r .more mdr f rag == false )
733 emitter .mdr f rag number = 0 ;
734

735 /*** HDR + MDR > PAYLOAD_SIZE ***/

736 if ( hdr r eque s t + mdr request > frame.PAYLOAD SIZE) {
737 unsigned int s i z e h d r r e m a i n i n g ;
738 unsigned int s i z e mdr remain ing ;
739

740 /*** HDR + MDR > PAYLOAD_SIZE & MDR < 10% <- Fragments HDR ***/

741 if ( mdr request < frame.MAX MDR SIZE) {
742 e m i t t e r . m o r e h d r f r a g = true ;
743 emit te r .more mdr f rag = false ;
744 e m i t t e r . h d r s i z e = ( frame.PAYLOAD SIZE - mdr request ) ;
745 s i z e h d r r e m a i n i n g = hdr r eque s t - e m i t t e r . h d r s i z e ;
746 s i z e mdr remain ing = 0 ;
747 request .Change (HDR, s i z e h d r r e m a i n i n g ) ;
748 if ( ! request . i sEmpty (MDR) )
749 e m i t t e r . m d r s i z e = request .Out (MDR) ;
750 else

751 e m i t t e r . m d r s i z e = 0 ;
752 emi t t e r .hdr f rag number++;
753 emitter .mdr f rag number = 0 ;
754 }
755 else {
756

757 /*** HDR + MDR > PAYLOAD_SIZE & MDR > 10% & HDR > 90% <- ...
Fragments HDR and MDR ***/

758 if ( hdr r eque s t > frame.MAX HDR SIZE) {
759 e m i t t e r . m o r e h d r f r a g = true ;
760 emit te r .more mdr f rag = true ;
761 e m i t t e r . i m a g e s s i z e = frame.MAX HDR SIZE ;
762 e m i t t e r . d a t a s i z e = frame.MAX MDR SIZE ;
763 s i z e h d r r e m a i n i n g = hdr r eque s t - e m i t t e r . h d r s i z e ;
764 s i z e mdr remain ing = mdr request - e m i t t e r . m d r s i z e ;
765 request .Change (HDR, s i z e h d r r e m a i n i n g ) ;
766 request .Change (MDR, s i ze mdr remain ing ) ;
767 emi t t e r .hdr f rag number++;
768 emitter .mdr f rag number++;
769 }
770

771 /*** HDR + MDR > PAYLOAD_SIZE & MDR > 10% & HDR < 90% <- ...
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Fragments MDR ***/

772 else{
773 e m i t t e r . m o r e h d r f r a g = false ;
774 emit te r .more mdr f rag = true ;
775 if ( ! request . i sEmpty (HDR) )
776 e m i t t e r . h d r s i z e = request .Out (HDR) ;
777 else

778 e m i t t e r . h d r s i z e = 0 ;
779 e m i t t e r . m d r s i z e = frame.PAYLOAD SIZE - e m i t t e r . h d r s i z e ;
780 s i z e mdr remain ing = mdr request - e m i t t e r . m d r s i z e ;
781 s i z e h d r r e m a i n i n g = 0 ;
782 request .Change (MDR, s i ze mdr remain ing ) ;
783 emitter .mdr f rag number++;
784 emi t t e r .hdr f rag number = 0 ;
785 }
786 }
787 }
788

789 /*** HDR + MDR < PAYLOAD_SIZE <- NO FRAGMENTATION ***/

790 else {
791 e m i t t e r . m o r e h d r f r a g = false ;
792 emit te r .more mdr f rag = false ;
793

794 if ( ! request . i sEmpty (HDR) )
795 e m i t t e r . h d r s i z e = request .Out (HDR) ;
796 else

797 e m i t t e r . h d r s i z e = 0 ;
798

799 if ( ! request . i sEmpty (MDR) )
800 e m i t t e r . m d r s i z e = request .Out (MDR) ;
801 else

802 e m i t t e r . m d r s i z e = 0 ;
803

804 emi t t e r .hdr f rag number = 0 ;
805 emitter .mdr f rag number = 0 ;
806 }
807 }
808

809 /*** ADMISSION CONTROL (EMITTER) ***/

810 int d l l : : adm i s s i o n co n t r o l ( u32* bu f f e r , u32* tx payload , unsigned short ...
t r a n s f e r s i z e ) {

811

812 int Status ;
813 if ( t r a n s f e r s i z e % 8 !=0)
814 t r a n s f e r s i z e += (8 - t r a n s f e r s i z e %8) ;
815 Status = Fpga.TransferCDMA ( bu f f e r , tx payload , t r a n s f e r s i z e , NO FRAME, 3) ;
816 if ( Status != XST SUCCESS)
817 return ERROR CONFIGURATION CDMA;
818 return XST SUCCESS ;
819 }
820

821 /*** HEADER CODER (EMITTER) ***/

822 void d l l : : header coder ( u8* tx header ) {
823

824 e m i t t e r . p r o t o c o l v e r s i o n= ( unsigned short )frame.PROTOCOL VERSION ;
825 e m i t t e r . s o u r c e a d d r e s s = 1 ;
826
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827 // header[0]= protocol_vers(3bits)+more_hdr_frag(1bit)+hdr_frag_numb(4bits)

828 * tx header = ( ( e m i t t e r . p r o t o c o l v e r s i o n & 0x03 ) << 5) | ...
( ( e m i t t e r . m o r e h d r f r a g & 0x01 ) << 4) | ( ( emi t t e r .hdr f rag number & ...
0x001E ) >> 1) ;

829 // header[1]= hdr_frag_number(1bit)+hdr_size(7bits)

830 *( tx header +1) = ( ( emi t t e r .hdr f rag number & 0x0001 ) << 7) | ...
( ( e m i t t e r . h d r s i z e & 0x0FE0) >> 5) ;

831 // header[2]=hdr_size(5bits)+more_mdr_frag(1bit)+mdr_frag_number(2bit)

832 *( tx header +2) = ( ( e m i t t e r . h d r s i z e & 0x001F ) << 3) | ...
( ( emi t te r .more mdr f rag & 0x01 ) << 2) | ( ( emitter .mdr f rag number & ...
0x0018 ) >> 3) ;

833 // header[3]= mdr_frag_number(3bits) + mdr_size(5bits)

834 *( tx header +3) = ( ( emitter .mdr f rag number & 0x0007 ) << 5) | ...
( ( e m i t t e r . m d r s i z e & 0x0F80 ) >> 7) ;

835 // header[4]=mdr_size(7 bits) + source_address(1bit)

836 *( tx header +4) = ( ( e m i t t e r . m d r s i z e & 0x007F ) << 1) | ...
( ( e m i t t e r . s o u r c e a d d r e s s & 0x0800 ) >> 11) ;

837 // header[5]= source_address(8bits)

838 *( tx header +5) = ( ( e m i t t e r . s o u r c e a d d r e s s & 0x07F8 ) >> 3) ;
839 // header[6] = source_address(3bits)+reserved(5bits)

840 *( tx header +6) = ( ( e m i t t e r . s o u r c e a d d r e s s & 0x0007 ) << 5 ) & 0xE0 ;
841 // header[7] = 0

842 *( tx header +7) = 0x00 ;
843 }
844

845 /*** LINK MANAGEMENT (EMITTER) ***/

846 int d l l : : l ink management emitter ( u32* tx , u32* rx ) {
847

848 int Status ;
849

850 Status = Fpga.TransferCDMA ( tx , rx , frame.DLL FRAME SIZE , FRAME, 3) ;
851 if ( Status != XST SUCCESS)
852 return ERROR TRANSFER BOTH;
853 return XST SUCCESS ;
854 }
855 /********************* END EMITTER ************************/

856

857 /*********************** RECEIVER ************************/

858 void d l l : : r e c e i v e r i n i t ( void ) {
859

860 // TX is the origin buffer of the DLL Receiver

861 f r a m e . t x r = ( u32 *) Fpga.TX RECEIVER BUFFER BASE ;
862 // RX is the destination buffer of the DLL Receiver

863 f r a m e . r x r = ( u32 *) RX RECEIVER BUFFER BASE;
864 // Exit DLL Buffer with HDR Information

865 h d r o u t . p t r = ( u32 *) RECEIVED HDR BUFFER BASE;
866 hdr out .head =0;
867 h d r o u t . t a i l =0;
868 hdr out . count =0;
869 // Exit DLL Buffer with MDR Information

870 mdr out .ptr =(u32 *) RECEIVED MDR BUFFER BASE;
871 mdr out.head =0;
872 m d r o u t . t a i l =0;
873 mdr out.count =0;
874 r e c e i v e r . mo r e md r f r a g = false ;
875 r e c e i v e r . s o u r c e a d d r e s s = 0 ;
876 r e c e i v e r . h d r s i z e = 0 ;
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877 r e c e i v e r . m d r s i z e = 0 ;
878 r e c e i v e r . h d r f r a g n u m b e r = 0 ;
879 r ece ive r .mdr f rag number = 0 ;
880 receiver.HDR COUNTER=0;
881 receiver.MDR COUNTER=0;
882 receiver.HDR LOST = 0 ;
883 receiver.MDR LOST = 0 ;
884 r e c e i v e d h d r s i z e =0;
885 r e c e i v e d m d r s i z e =0;
886 h d r f r a g m e n t a u x i l i a r=true ;
887 mdr f ragment aux i l i a r=true ;
888 l a s t h d r f r a gm e nt = false ;
889 l a s t mdr f ragment = false ;
890 HDR TO HIGHER LAYER = false ;
891 MDR TO HIGHER LAYER = false ;
892 HIGHER LAYER HDR CLEAR = false ;
893 HIGHER LAYER MDR CLEAR = false ;
894 r e c e i v e r . a l m o s t f u l l = false ;
895 r e c e i v e r . a lmos t empty = true ;
896

897 }
898

899 /*** OPERATIONS CONTROLLER (RECEIVER) ***/

900 void d l l : : o p e r a t i o n s c o n t r o l l e r r e c e i v e r ( void ) {
901

902 int Status ;
903 unsigned short s i z e ;
904 unsigned short word ;
905

906 // DLL buffer Almost Empty , DLL must stop

907 while ( r e c e i v e r . a lmos t empty==true )
908

909

910 Status = l ink management rece iver ( f r ame . tx r , f r a m e . r x r ) ;
911 if ( Status !=ERROR TRANSFER BOTH) {
912

913 header decoder ( ( u8 *) f r a m e . r x r ) ;
914 de f r agmenta t i on cont ro l ( ) ;
915 h i g h e r l a y e r c o n t r o l ( ( f r a m e . r x r+frame.HEADER SIZE BLOCKS) , ...

( h d r o u t . p t r+hdr out .head ) , ( mdr out .ptr+ mdr out.head ) ) ;
916

917 s i z e = r e c e i v e r . h d r s i z e ;
918 if ( s i z e % 8 != 0)
919 s i z e += (8 - s i z e %8) ;
920 word = s i z e /8 ;
921 hdr out .head += word ;
922 hdr out . count -= word ;
923

924 s i z e = r e c e i v e r . m d r s i z e ;
925 if ( s i z e % 8 != 0)
926 s i z e += (8 - s i z e %8) ;
927 word = s i z e /8 ;
928 mdr out.head += word ;
929 mdr out.count -= word ;
930

931 if ( r e c e i v e r . h d r s i z e != 0)
932 receiver.HDR COUNTER++;
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933 if ( r e c e i v e r . m d r s i z e != 0)
934 receiver.MDR COUNTER++;
935

936 //HDR Request Complete

937 if ( l a s t h d r f r a gm e nt == true )
938 HDR TO HIGHER LAYER = true ;
939 //MDR Request Complete

940 if ( la s t mdr f ragment == true )
941 MDR TO HIGHER LAYER = true ;
942 }
943 else{
944 /* FRAME IS LOST */

945 if ( r e c e i v e r . h d r s i z e != 0)
946 receiver.HDR LOST++;
947 if ( r e c e i v e r . m d r s i z e != 0)
948 receiver.MDR LOST++;
949 }
950 }
951

952 /*** LINK MANAGEMENT (RECEIVER) ***/

953 int d l l : : l ink management rece iver ( u32* tx , u32* rx ) {
954

955 int Status ;
956

957 Status = Fpga.TransferCDMA ( tx , rx , frame.DLL FRAME SIZE , FRAME, 3) ;
958 if ( Status != XST SUCCESS)
959 return ERROR TRANSFER BOTH;
960 return XST SUCCESS ;
961 }
962

963 /*** HEADER DECODER (RECEIVER) ***/

964 void d l l : : header decoder ( u8* rx header ) {
965

966 r e c e i v e r . p r o t o c o l v e r s i o n = ((* rx header & 0xE0) >> 5) ;
967 r e c e i v e r . m o r e h d r f r a g = ((* rx header & 0x10 ) >> 4) ;
968 r e c e i v e r . h d r f r a g n u m b e r = ((* rx header & 0x0F) << 1) | ...

( (* ( rx header +1) & 0x80 ) >> 7) ;
969 r e c e i v e r . h d r s i z e = ( (* ( rx header +1) & 0x7F) << 5) | ( (* ( rx header +2) & ...

0xF8) >> 3) ;
970 r e c e i v e r . mo r e md r f r a g = ( (* ( rx header +2) & 0x04 ) >> 2) ;
971 r ece ive r .mdr f rag number = ( (* ( rx header +2) & 0x03 ) << 5) | ...

( (* ( rx header +3) & 0xE0) >> 5) ;
972 r e c e i v e r . m d r s i z e = ( (* ( rx header +3) & 0x1F) << 7) | ( (* ( rx header +4) & ...

0xFE) >> 1) ;
973 r e c e i v e r . s o u r c e a d d r e s s = ( (* ( rx header +4) & 0x01 ) << 11) | ...

(* ( rx header +5) << 3) | ( (* ( rx header +6) & 0xE0) >> 5) ;
974

975 }
976

977 /*** DEFFRAGMENTATION CONTROL (RECEIVER) ***/

978 void d l l : : d e f r agmenta t i on cont ro l ( void ) {
979

980 /* TOTAL HDR SIZE CALCULATION AND SIGNALING OF LAST FRAGMENT */

981 // No fragmentation and Start of Fragmentation

982 if ( h d r f r a g m e n t a u x i l i a r == false )
983 r e c e i v e d h d r s i z e = r e c e i v e r . h d r s i z e ;
984 // Last Fragment and still waiting for last fragment
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985 else if ( h d r f r a g m e n t a u x i l i a r == true )
986 r e c e i v e d h d r s i z e += r e c e i v e r . h d r s i z e ;
987 // No fragmentation and Last Fragment

988 if ( r e c e i v e r . m o r e h d r f r a g == false )
989 l a s t h d r f r a gm e nt = true ;
990 // Start of Fragmentation and still waiting for last fragment

991 else if ( r e c e i v e r . m o r e h d r f r a g == true )
992 l a s t h d r f r a gm e nt = false ;
993

994 /* TOTAL DATA SIZE CALCULATION AND SIGNALING OF LAST FRAGMENT */

995 // No fragmentation and Start of Fragmentation

996 if ( mdr f ragment aux i l i a r == false )
997 r e c e i v e d m d r s i z e = r e c e i v e r . m d r s i z e ;
998 // Last Fragment and still waiting for last fragment

999 else if ( mdr f ragment aux i l i a r == true )
1000 r e c e i v e d m d r s i z e += r e c e i v e r . m d r s i z e ;
1001 // No fragmentation and Last Fragment

1002 if ( r e c e i v e r . mo r e md r f r a g == false )
1003 l a s t mdr f ragment = true ;
1004 // Start of Fragmentation and still waiting for last fragment

1005 else if ( r e c e i v e r . mo r e md r f r a g == true )
1006 l a s t mdr f ragment = false ;
1007

1008 // Store value of current flag of fragmentation

1009 h d r f r a g m e n t a u x i l i a r = r e c e i v e r . m o r e h d r f r a g ;
1010 mdr f ragment aux i l i a r = re c e i v e r .m o r e m dr f r a g ;
1011 }
1012

1013 /*** DATA MANAGEMENT (RECEIVER) ***/

1014 int d l l : : h i g h e r l a y e r c o n t r o l ( u32* rx , u32* bu f f e r hdr , u32* buf fer mdr ) {
1015

1016 int Status ;
1017 bool t r a n s f e r h d r = true ;
1018 bool t rans f e r mdr = true ;
1019 unsigned short t r a n s f e r s i z e ;
1020 unsigned short word ;
1021

1022 // Align Request to 4bytes=32bits due to CDMA

1023 t r a n s f e r s i z e = r e c e i v e r . h d r s i z e ;
1024 if ( t r a n s f e r s i z e % 8 !=0)
1025 t r a n s f e r s i z e = t r a n s f e r s i z e + (8 - t r a n s f e r s i z e %8) ;
1026 if ( t r a n s f e r s i z e != 0) {
1027 Status = Fpga.TransferCDMA ( rx , bu f f e r hdr , t r a n s f e r s i z e , NO FRAME, 3) ;
1028 if ( Status != XST SUCCESS) {
1029 t r a n s f e r h d r = false ;
1030 x i l p r i n t f ("ERROR: HDR TRANSFER TO HIGHER LAYER FAILED! " ) ;
1031 }
1032 }
1033

1034 // Align Request to 4bytes=32bits due to CDMA

1035 t r a n s f e r s i z e = r e c e i v e r . m d r s i z e ;
1036 if ( t r a n s f e r s i z e % 8 !=0)
1037 t r a n s f e r s i z e = t r a n s f e r s i z e + (8 - t r a n s f e r s i z e %8) ;
1038 if ( t r a n s f e r s i z e != 0) {
1039 //Calculate HDR Block transfer

1040 word = r e c e i v e r . h d r s i z e ;
1041 if ( word % 8 != 0)
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1042 word += (8 - word%8) ;
1043 Status = Fpga.TransferCDMA ( rx+(word /4) ) , buf fer mdr , t r a n s f e r s i z e , ...

NO FRAME, 3) ;
1044 if ( Status != XST SUCCESS) {
1045 t rans f e r mdr = false ;
1046 x i l p r i n t f ("ERROR: MDR TRANSFER TO HIGHER LAYER FAILED! " ) ;
1047 }
1048 }
1049 if ( t r a n s f e r h d r == false && trans f e r mdr == false )
1050 return ERROR TRANSFER BOTH;
1051 else if ( t r a n s f e r h d r == false )
1052 return ERROR TRANSFER HDR;
1053 else if ( t rans f e r mdr == false )
1054 return ERROR TRANSFER MDR;
1055 else

1056 return XST SUCCESS ;
1057 }
1058 /*********************** END RECEIVER ************************/

1059

1060 /*** TEST FUNCTION : DLL frame check ***/

1061 void d l l : : d l l c h e c k ( u32* emitter hdr , u32* r e c e i v e r h d r , unsigned short ...
hdr s i z e , u32* emitter mdr , u32* rece iver mdr , unsigned short mdr s ize ) {

1062

1063 bool e r r o r = false ;
1064

1065 for ( int i =0; i< h d r s i z e /8 ; i++){
1066 if (* ( emi t t e r hdr+i ) != *( r e c e i v e r h d r+i ) ) {
1067 x i l p r i n t f ("HDR SENT INCORRECTLY! \r\n" ) ;
1068 e r r o r = true ;
1069 break ;
1070 }
1071 }
1072 for ( int i =0; i< d a t a s i z e /8 ; i++){
1073 if (* ( emitter mdr+i ) != *( r e ce ive r mdr+i ) ) {
1074 x i l p r i n t f ("MDR SENT INCORRECTLY! \r\n" ) ;
1075 e r r o r = true ;
1076 break ;
1077 }
1078 }
1079

1080 if ( e r r o r != true )
1081 x i l p r i n t f ("MDR AND HDR SENT CORRECTLY! \r\n" ) ;
1082 }
1083

1084 /*** Public Prototypes for Higher Layer Access to HDR and MDR Buffers ***/

1085 u32* d l l : : getHDRInputPointer ( void ) {
1086 return h d r i n . p t r ;
1087 }
1088 u32* d l l : : getMDRInputPointer ( void ) {
1089 return mdr in .pt r ;
1090 }
1091 unsigned int d l l : : getHDRInputTail ( void ) {
1092 return h d r i n . t a i l ;
1093 }
1094 unsigned int d l l : : getMDRInputTail ( void ) {
1095 return m d r i n . t a i l ;
1096 }
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1097 unsigned int d l l : : getHDRInputHead ( void ) {
1098 return hdr in .head ;
1099 }
1100 unsigned int d l l : : getMDRInputHead ( void ) {
1101 return mdr in.head ;
1102 }
1103 u32* d l l : : getHDROutputPointer ( void ) {
1104 return h d r o u t . p t r ;
1105 }
1106 u32* d l l : : getMDROutputPointer ( void ) {
1107 return mdr out .ptr ;
1108 }
1109 unsigned int d l l : : getHDROutputTail ( void ) {
1110 return h d r o u t . t a i l ;
1111 }
1112 unsigned int d l l : : getMDROutputTail ( void ) {
1113 return m d r o u t . t a i l ;
1114 }
1115 unsigned int d l l : : getHDROutputHead( void ) {
1116 return hdr out .head ;
1117 }
1118 unsigned int d l l : : getMDROutputHead( void ) {
1119 return mdr out.head ;
1120 }
1121 /**************** End dll.cpp *********************/

1122

1123 /******************* fpga.h ***********************/

1124 #include "xparameters.h" //defines addresses of all peripherals , ...
declares the interrupt service routines , declare STDIN/STDOUT devices

1125 #include "xaxicdma.h" //access the central DMA

1126 #include "xil_exception.h" //access exception handlers

1127 #include "xintc.h" //access interrupt controller

1128 #include "xtmrctr.h" //to access the timer

1129 #include "xbasic_types.h"

1130 #include "xil_cache.h"

1131 #include "xdebug.h"

1132

1133 /**************** Defines *******************/

1134

1135 #define MEMORY BASE XPAR MCB DDR3 S0 AXI BASEADDR
1136 /*** DLL EMITTER BUFFER ADDRESSES ***/

1137 #define JUNK BUFFER BASE (MEMORY BASE + 0x00637000 )
1138 #define JUNK BUFFER HIGH (JUNK BUFFER BASE + FRAME SIZE)
1139 #define TX EMITTER BUFFER BASE (MEMORY BASE + 0x00635000 )
1140 #define TX EMITTER BUFFER HIGH (TX EMITTER BUFFER BASE + FRAME SIZE)
1141 /*** DLL RECEIVER BUFFER ADDRESSES TX Defined in Constructor***/

1142 #define RX RECEIVER BUFFER BASE (MEMORY BASE + 0x00839000 )
1143 #define RX RECEIVER BUFFER HIGH (RX RECEIVER BUFFER BASE + FRAME SIZE)
1144 /*** DLL EMITTER INFORMATION IN BUFFER ADDRESSES ***/

1145 #define REQ DATA BUFFER BASE (MEMORY BASE + 0x03000000 )
1146 #define REQ DATA BUFFER HIGH (MEMORY BASE + 0x03500000 )
1147 #define REQ BUFFER BASE (MEMORY BASE + 0x04000000 )
1148 #define REQ BUFFER HIGH XPAR MCB DDR3 S0 AXI HIGHADDR
1149 /*** DLL RECEIVER INFORMATION OUT BUFFER ADDRESSES ***/

1150 #define RECEIVED BUFFER BASE (MEMORY BASE + 0x01000000 )
1151 #define RECEIVED BUFFER HIGH (MEMORY BASE + 0x01500000 )
1152 #define RECEIVED DATA BUFFER BASE (MEMORY BASE + 0x02000000 )
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1153 #define RECEIVED DATA BUFFER HIGH (MEMORY BASE + 0x02500000 )
1154 /********** Constant Definitions ***********/

1155 #define FRAME SIZE 0x00D0 // 208Bytes

1156 #define HEADER SIZE 8 // 8Bytes

1157 #define FRAME true // Transfer DLL Frame

1158 #define NO FRAME false // Transfer Higher Layer requests

1159

1160 /* Device hardware build related constants. */

1161

1162 /* Interrupt constants */

1163 #define INTC XIntc
1164 #define INTC HANDLER XIntc Inter ruptHandle r
1165 #define INTC DEVICE ID XPAR INTC 0 DEVICE ID
1166 /* Timer constants */

1167 #define TMRCTR DEVICE ID XPAR TMRCTR 0 DEVICE ID
1168 #define TMRCTR INTERRUPT ID XPAR INTC 0 TMRCTR 0 VEC ID
1169 #define TIMER CNTR 0 0
1170 #define RESET VALUE 0xFD050F80 //Reset value of timer -0xFD050F80=1sec

1171 /* Central DMA constants */

1172 #define DMA CTRL DEVICE ID XPAR AXICDMA 0 DEVICE ID
1173 #define DMA CTRL IRPT INTR XPAR INTC 0 AXICDMA 0 VEC ID
1174 /* Shared variables used to test the callbacks. */

1175 volatile static int TimerExpired ; /* Inserted static */

1176

1177 #ifndef FPGA H
1178 #define FPGA H
1179

1180 class fpga {
1181

1182 public :
1183 fpga ( ) ; // Constructor FPGA Class

1184 virtual ∼fpga ( ) ; // Destructor FPGA Class

1185

1186 /************ Public Prototypes ************/

1187 unsigned short i n i t ( void ) ;
1188 void change to tes t mode ( void ) ;
1189 static unsigned int TransferCDMA( u32* tx , u32* rx , int Length , bool ...

i s f r ame , int R e t r i e s ) ;
1190 static void StartTimer ( void ) ;
1191 static void StopTimer ( void ) ;
1192

1193 u32 GetCounterValue ( void ) ;
1194 void ResetCounter ( void ) ;
1195

1196 u32 TX RECEIVER BUFFER BASE;
1197 u32 TX RECEIVER BUFFER HIGH;
1198 u32 RX EMITTER BUFFER BASE;
1199 u32 RX EMITTER BUFFER HIGH;
1200

1201 private :
1202 /************ Private Prototypes ************/

1203 /* Central DMA Prototypes */

1204 static unsigned int ConfigTimerCDMA( void ) ;
1205 static void DataTransferCheck ( u32* SourceBuf fer , u32* DestBuffer , int ...

S i z e ) ;
1206

1207 /* Timer Prototypes */
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1208 static int SetupIntrSystem ( XIntc* Intc Ins tancePtr , u8 TmrCtrNumber) ;
1209 static void TimerCounterHandler ( void *CallBackRef , u8 TmrCtrNumber) ;
1210 } ;
1211

1212 #endif /* FPGA_H_ */

1213 /***************** End fpga.h *********************/

1214

1215 /****************** fpga.cpp **********************/

1216 #include "fpga.h"

1217

1218 /************** Variable Definitions ***************/

1219 static XIntc I n t e r r u p t C o n t r o l l e r ; /* The instance to the Int. Controller */

1220 static XTmrCtr TimerCounterInst ; /* The instance to the Timer Counter */

1221 static XAxiCdma AxiCdmaInstance ; /* The instance to the XAxiCdma */

1222

1223 /* Temporary Variables to Save Buffer Pointers */

1224 static u32* SavedRXPtr ;
1225 static u32* SavedTXPtr ;
1226 static u32* PtrJunk ;
1227 static int SavedLength ;
1228

1229 fpga : : fpga ( ) {
1230 /*** DLL RECEIVER BUFFER ADDRESSES ***/

1231 TX RECEIVER BUFFER BASE = (MEMORY BASE + 0x00835000 ) ;
1232 TX RECEIVER BUFFER HIGH = (TX RECEIVER BUFFER BASE + FRAME SIZE) ;
1233 RX EMITTER BUFFER BASE = (MEMORY BASE + 0x00639000 ) ;
1234 RX EMITTER BUFFER HIGH = (RX EMITTER BUFFER BASE + FRAME SIZE) ;
1235 PtrJunk = ( u32 *) JUNK BUFFER BASE;
1236 //Initialize Transfer Pointer

1237 SavedRXPtr = ( u32 *) RX EMITTER BUFFER BASE;
1238

1239 }
1240

1241 fpga : :∼fpga ( ) {
1242 }
1243

1244 unsigned short fpga : : i n i t ( void ) {
1245

1246 unsigned short Status ;
1247 Status = ConfigTimerCDMA ( ) ;
1248 if ( Status != XST SUCCESS) {
1249 x i l p r i n t f ("Configuration of CDMA and Timer Failed! \r\n" ) ;
1250 return XST FAILURE;
1251 }
1252 return XST SUCCESS ;
1253 }
1254

1255 void fpga : : change to tes t mode ( void ) {
1256

1257 TX RECEIVER BUFFER BASE = RX EMITTER BUFFER BASE;
1258 TX RECEIVER BUFFER HIGH = RX EMITTER BUFFER HIGH;
1259 }
1260

1261 unsigned int fpga : : TransferCDMA( u32* tx , u32* rx , int Length , bool ...
i s f r ame , int R e t r i e s ) {

1262

1263 int Status ;
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1264 SavedRXPtr = rx ;
1265

1266 /* Check if CDMA is currently doing transfer */

1267 while ( XAxiCdma IsBusy(&AxiCdmaInstance ) ) ;
1268

1269 /* Flush the SrcBuffer of Header addresses before the DMA transfer */

1270 if ( i s f r a m e==FRAME)
1271 Xil DCacheFlushRange ( ( u32 )&tx , 2) ;
1272

1273 /*** DMA Configuration <- Starts when Length is Configured ***/

1274 while ( R e t r i e s ) {
1275 Retr i e s -=1;
1276

1277 Status = XAxiCdma SimpleTransfer(&AxiCdmaInstance , ( u32 ) tx , ( u32 ) rx , ...
Length , NULL, NULL) ;

1278

1279 if ( Status == XST SUCCESS)
1280 break ;
1281 }
1282

1283 /* Invalidate the DestBuffer of Header addresses before receiving the ...
data */

1284 if ( i s f r a m e==FRAME)
1285 Xil DCacheInval idateRange ( ( u32 )&rx , 2) ;
1286

1287 return XST SUCCESS ;
1288 }
1289

1290 /*** TEST FUNCTION: DataTransferCheck ***/

1291 void fpga : : DataTransferCheck ( u32* SourceBuf fer , u32* DestBuffer , int S i z e ) {
1292

1293 bool e r r o r r e s u l t=false ;
1294 u32 Index ;
1295

1296 for ( Index =0; Index < ( u32 ) S i z e ; Index++){
1297 if ( DestBuf fer [ Index ] != SourceBuf f e r [ Index ] ) {
1298 x i l p r i n t f ("Checked Transfer Function returned with Error! ...

Transfer not Successful! \r\n" ) ;
1299 e r r o r r e s u l t = true ;
1300 break ;
1301 }
1302 }
1303 if ( e r r o r r e s u l t == false )
1304 x i l p r i n t f ("Checked Sequence with Success! \r\n" ) ;
1305 }
1306

1307 void fpga : : StartTimer ( void ) {
1308

1309 x i l p r i n t f ("Timer Started! \r\n" ) ;
1310 XTmrCtr Start(&TimerCounterInst , TIMER CNTR 0) ;
1311 }
1312 void fpga : : StopTimer ( void ) {
1313

1314 x i l p r i n t f ("Timer Stopped! \r\n" ) ;
1315 XTmrCtr Stop(&TimerCounterInst , TIMER CNTR 0) ;
1316 }
1317
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1318 u32 fpga : : GetCounterValue ( void ) {
1319

1320 return XTmrCtr ReadReg ( TimerCounterInst.BaseAddress , TMRCTR DEVICE ID, ...
XTC TCR OFFSET) ;

1321 }
1322

1323 void fpga : : ResetCounter ( void ) {
1324

1325 XTmrCtr Reset(&TimerCounterInst , TMRCTR DEVICE ID) ;
1326 }
1327

1328 /* Configurations of CDMA and Timer */

1329 unsigned int fpga : : ConfigTimerCDMA( void ) {
1330

1331 XAxiCdma Config *CDMA CfgPtr ;
1332 int Status ;
1333

1334 /* Initialize the timer counter so that it's ready to use, specify the ...
device ID that is generated in xparameters.h */

1335 Status = XTmrCtr In i t i a l i z e (&TimerCounterInst , TMRCTR DEVICE ID) ;
1336 if ( Status != XST SUCCESS) {
1337 return XST FAILURE;
1338 }
1339

1340 /* Initialize the XAxiCdma device. */

1341 CDMA CfgPtr = XAxiCdma LookupConfig (DMA CTRL DEVICE ID) ;
1342 Status = XAxiCdma CfgInit ia l ize (&AxiCdmaInstance , CDMA CfgPtr , ...

CDMA CfgPtr ->BaseAddress ) ;
1343 if ( Status != XST SUCCESS) {
1344 return XST FAILURE;
1345 }
1346

1347 /* Connect the timer counter to the interrupt subsystem such that ...
interrupts can occur. This function is application specific.*/

1348 Status = SetupIntrSystem(& I n t e r r u p t Co n t r o l l e r , &TimerCounterInst , ...
TIMER CNTR 0) ;

1349 if ( Status != XST SUCCESS) {
1350 return XST FAILURE;
1351 }
1352

1353 /* Setup the handler for the timer counter that will be called from the

1354 * interrupt context when the timer expires , specify a pointer to the

1355 * timer counter driver instance as the call back reference so the ...
handler is able to access the instance data */

1356 XTmrCtr SetHandler(&TimerCounterInst , TimerCounterHandler , ( void ...
*)&TimerCounterInst ) ;

1357

1358 /* Enable the interrupt of the timer counter so interrupts will occur

1359 * and use auto reload mode such that the timer counter will reload

1360 * itself automatically and continue repeatedly , without this option

1361 * it would expire once only */

1362 XTmrCtr SetOptions(&TimerCounterInst , TIMER CNTR 0, ...
XTC CAPTURE MODE OPTION | XTC AUTO RELOAD OPTION) ;

1363

1364 /* Set a reset value for the timer counter such that it will expire ...
earlier than letting it roll over from 0, the reset value is loaded ...
into the timer counter when it is started */
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1365 XTmrCtr SetResetValue(&TimerCounterInst , TIMER CNTR 0, RESET VALUE) ;
1366

1367 return XST SUCCESS ;
1368 }
1369

1370 int fpga : : SetupIntrSystem ( XIntc* Intc Ins tancePtr , XTmrCtr* ...
TmrCtrInstancePtr , u8 TmrCtrNumber) {

1371

1372 int Status ;
1373 /* Initialize the interrupt controller driver so that it's ready to ...

use, specify the device ID that is generated in xparameters.h */

1374 Status = X I n t c I n i t i a l i z e ( Intc Ins tancePtr , INTC DEVICE ID) ;
1375 if ( Status != XST SUCCESS) {
1376 return XST FAILURE;
1377 }
1378

1379 /* Connect the Timer device driver handler that will be called when an ...
interrupt for the device occurs , the device driver handler performs ...
the specific interrupt processing for the device */

1380 Status = XIntc Connect ( Intc Ins tancePtr , ...
TMRCTR INTERRUPT ID, ( XInterruptHandler ) XTmrCtr InterruptHandler , ...
( void *) TmrCtrInstancePtr ) ;

1381 if ( Status != XST SUCCESS) {
1382 return XST FAILURE;
1383 }
1384

1385 /* Set Options of Interrupt Controller to Return the one with Highest ...
Priority */

1386 Status = XIntc SetOptions ( Intc Ins tancePtr , XIN SVC SGL ISR OPTION) ;
1387 if ( Status != XST SUCCESS) {
1388 return XST FAILURE;
1389 }
1390

1391 /* Start the interrupt controller such that interrupts are enabled for

1392 * all devices that cause interrupts , specific real mode so that

1393 * the timer counter can cause interrupts thru the interrupt controller */

1394 Status = XIntc Star t ( Intc Ins tancePtr , XIN REAL MODE) ;
1395 if ( Status != XST SUCCESS) {
1396 return XST FAILURE;
1397 }
1398

1399 /* Enable the interrupt for the timer counter */

1400 XIntc Enable ( Intc Ins tancePtr , TMRCTR INTERRUPT ID) ;
1401 /* Initialize the exception table. */

1402 X i l E x c e p t i o n I n i t ( ) ;
1403 /* Register the interrupt controller handler with the exception table. */

1404 Xi l Except ionReg i s t e rHand le r (XIL EXCEPTION ID INT , ...
( Xi l Except ionHandler )INTC HANDLER, In t c In s tancePt r ) ;

1405 /* Enable non-critical exceptions. */

1406 Xil Except ionEnable ( ) ;
1407

1408 return XST SUCCESS ;
1409 }
1410

1411 /*************** Callback Functions ****************/

1412

1413 void fpga : : TimerCounterHandler ( void *CallBackRef , u8 TmrCtrNumber) {
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1414

1415 x i l p r i n t f ("Timer Interruption Handler Called! \r\n" ) ;
1416 XTmrCtr * Ins tancePtr = (XTmrCtr *) CallBackRef ;
1417 if ( XTmrCtr IsExpired ( InstancePtr , TmrCtrNumber) ) {
1418

1419 x i l p r i n t f ("Timer Expired! JUNK FRAME WILL BE SENT! \r\n" ) ;
1420

1421 /* Stops CDMA and Timer */

1422 XAxiCdma Reset(&AxiCdmaInstance ) ;
1423 while ( ! XAxiCdma ResetIsDone(&AxiCdmaInstance ) ) ;
1424

1425 /* Transfer Junk Frame */

1426 int S i z e = XPAR AXI CDMA 0 M AXI DATA WIDTH * ...
XPAR AXI CDMA 0 M AXI MAX BURST LEN;

1427 TransferCDMA( PtrJunk , SavedRXPtr , S ize , FRAME, 3) ;
1428

1429 /* Acknowledge the Timer Interruption */

1430 XTmrCtr Reset ( InstancePtr , TmrCtrNumber) ;
1431 XIntc Acknowledge(& I n t e r r u p t C o n t r o l l e r , TMRCTR INTERRUPT ID) ;
1432 }
1433 }
1434

1435 /**************** End fpga.cpp ********************/
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