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Abstract The remarkable number of real applications under
dynamic scenarios are driving a novel ability to generate and
gather information. Nowadays, a massive amount of informa-
tion is generated at a high-speed rate, known as data streams.
Moreover, data is collected under evolving environments.
Due to memory restrictions, data must be promptly processed
and discarded immediately. Therefore, dealing with evolving
data streams raises two main questions: i) how to remember
discarded data? and ii) how to forget outdated data? To main-
tain an updated representation of the time-evolving data this
paper proposes fading histograms. Regarding the dynamics
of nature, changes in data are detected through a windowing
scheme that compares data distributions computed by the fad-
ing histograms: the Adaptive Cumulative Windows Model
(ACWM). The online monitoring of the distance between
data distributions is evaluated using a dissimilarity measure
based on the asymmetry of the Kullback-Leibler divergence.
The experimental results support the ability of fading his-
tograms in providing an updated representation of data. Such
property works in favor of detecting distribution changes
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with smaller detection delay time when compared with stan-
dard histograms. With respect to the detection of concept
changes, the ACWM is compared with 3 known algorithms
taken from the literature, using artificial data and using pub-
lic data sets, presenting better results. Furthermore, we the
proposed method was extended for multidimensinal and the
experiments performed show the ability of the ACWM for
detecting distribution changes in these settings.

Keywords Data Streams · Fading Histograms · Data
monitoring · Distribution Changes · Concept Changes

1 Introduction

The most recent developments in science and information
technology are spreading the computational capacity of smart
devices, which are capable to produce massive amounts of in-
formation at a high-speed rate, known as data streams. A data
stream is a sequence of information in the form of transient
data that arrives continuously (possibly at varying times) and
is potentially infinite. Therefore, it is unreasonable to assume
that machine learning systems have sufficient memory ca-
pacity to store the complete history of the stream. Indeed,
stream learning algorithms must process data promptly and
discard it immediately. In this context, it is essential to create
synopses structures of data, keeping only a small and finite
representation of the gathered information and allowing the
discarded data to be remembered.

Along with this, as data flows continuously for large
periods of time, the process generating data is not strictly
stationary and evolves over time. Therefore, it is of utmost
importance to maintain a stream learning model consistent
with the most recent data. When dealing with data streams
in dynamics environments, besides remembering discarded
data, it is necessary to forget outdated data. To accomplish
such assignments, this paper advances fading histograms,
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which weight data examples according to their age. Thus,
while remembering the discarded data, fading histograms
gradually forget old data.

Moreover, the dynamics of environments faced nowadays
raise the need of performing online change detection tests. In
this context, the delay between the occurrence of a change
and its detection must be minimal. When data flows over time
and for large periods of time, it is unlikely the assumption
that the observations are generated, at random, according to
a stationary probability distribution [5]. As the underlying
distribution of data may change over time, old observations
do not describe the current state of nature and are useless.
Therefore, it is of paramount interest to perceive if and when
there is a change.

Despite aging, the problem of dealing with changes in a
signal has caught the attention of the scientific community in
recent years due to the emergence of real word applications.
The online analysis of the gathered signals is of foremost
importance, especially in those cases where actions must be
taken after the occurrence of a change. From this point of
view, it is essential to detect a change as soon as possible,
ideally immediately after it occurs. Minimizing the detec-
tion delay time is of great importance in applications such
as real-time monitoring in biomedicine and industrial pro-
cesses, automatic control, fraud detection, safety of complex
systems and many others. Widely used in the data stream
context [25, 13, 7, 35], windowing approaches for detecting
changes in data consist of monitoring distributions over two
different time-windows, performing tests to compare distri-
butions and decide if there is a change. This paper proposes
a windowing model for change detection, which evaluates,
through a dissimilarity measure based on the asymmetry of
the Kullback-Leibler divergence, the distance between data
distributions provided by fading histograms.

Previous work, contributions and paper outline

A previous work [37] presented a detailed description of
the construction of fading histograms and compared the per-
formance of these with sliding histograms, both feasible
approaches to cope with the problem of remember data in
the context of high-speed and massive data streams and to
forget outdated data when in dynamic scenarios. Other pre-
vious work [36] introduces an adaptive model for detecting
changes in data distribution, employing this summarization
approach to compute distributions.

The main contribution of this paper is the detailed descrip-
tion of the Adaptive Cumulative Windows Model (ACWM)
for detecting data distribution and concept changes and the
introduction of this model in multidimensinal settings. More-
over, the experimental section evaluate the overall perfor-
mance of the ACWM in detecting distribution changes in

different evolving scenarios and it is compared with other
algorithms when detecting concept drift.

This paper is organized as follows. It starts with the prob-
lem of constructing fading histograms from data streams.
Section 3 addresses the problem of detecting distribution
and concept changes. In Section 4 windowing schemes for
change detection are presented and Section 5 proposes a
windowing model to compare data for detecting changes
in data distribution. Section 6 evaluates the performance of
the ACWM with respect to the ability to detect distribution
changes, in artificial and real world data sets and compares
results with those obtained with the Page-Hinkley Test (PHT).
In section 7 the ability to detect concept changes is assessed
and the presented approach is compared with 3 algorithms:
DDM (Drift Detection Method), ADWIN (ADaptive WIND-
dowing) and PHT. The performance of the ACWM when
detecting changes in multimensional data is also evaluated.
Finally, Section 8 presents conclusions on the ACWM and
advances directions for further research.

2 Data summarization

When very large volumes of data arrive at a high-speed rate,
it is impractical to accumulate and archive in memory all
observations for later use. Nowadays, the scenario of finite
stored data sets is no longer appropriate because information
is gathered assuming the form of transient and infinite data
streams, and may not even be stored permanently. Therefore,
it is unreasonable to assume that machine learning systems
have sufficient memory capacity to store the complete history
of the stream.

This implies to create compact representations of data
when dealing with massive data streams. Memory restric-
tions preclude keeping all received data in memory. These
restrictions impose that in the data stream systems, the data
elements are quickly and continuously received, promptly
processed and discarded immediately. Since data elements
are not stored after being processed it is necessary to use
synopses structures to create compact summaries of data,
keeping only a small and finite representation of the received
information. As a result of the summarization process, the
size of a synopsis structure is small in relation to the length
of the data stream represented. Reducing memory occupancy
is of utmost importance when handling a huge amount of
data. Along with this, without the need of accessing the
entire stream, data synopses allow fast and relative approxi-
mations to be obtained in a wide range of problems, such as:
range queries, selectivity estimation, similarity searching and
database applications, classification tasks, change detection
and concept drift.

As for the wide range of problems in which data synopses
are useful, it is of paramount interest that these structures
have broad applicability. This is a fundamental requirement



Fading Histograms in Detecting Distribution and Concept Changes 3

for using the same data synopsis structure in different applica-
tions, reducing time and space efficiency in the construction
process. The data stream context under which these synopses
are used also imposes that their construction algorithms must
be single pass, time efficient and have, at most, space com-
plexity linear in relation to the size of the stream. Moreover,
in most cases, data is not static and evolves over time. Syn-
opses construction algorithms must allow online updates on
the synopses structures to keep up with the current state of
the stream.

Different kinds of summarization techniques can be con-
sidered in order to provide approximated answers to different
queries. The online update of such structures in a dynamic
scenario is also a required property. Sampling [39], hot lists
[30, 11], wavelets [9, 18, 24], sketches [10] and histograms
[20, 22, 23] are examples of synopses methods to obtain fast
and approximated answers.

Fading histograms

A histogram is a synopsis structure that allows accurate ap-
proximations of the underlying data distribution and provides
a graphical representation of a random variable. Histograms
are widely applied to compute aggregate statistics, to approx-
imate query answering, query optimization and selectivity
estimation [22].

Consisting of a set of k non-overlapping intervals (also
known as buckets or bins), a histogram is visualized as a bar
graph that shows frequency data. The values of the random
variable are placed into non-overlapping intervals and the
height of the bar drawn on each interval is proportional to
the number of observed values within that interval.

To construct histograms in the stream mining context,
there are some requirements that need to be fulfilled: the
algorithms must be one-pass, supporting incremental main-
tenance of the histograms, and must be efficient in time and
space [21, 20]. Moreover, the updating facility and the error
of the histogram are the major concerns to embrace when
constructing online histograms from data streams.

In the proposed histograms, the definition of the number
of buckets is related with the error of the histogram: follow-
ing the equi-width strategy, the number of buckets is chosen
under error constraints [37]. Let ε be the admissible error
for the mean square error of a histogram Hk with k buck-
ets. Then, considering that R is the admissible range of the
variable under study, the mean square error of an equi-width
histogram with at least R

2
√

ε
buckets is, at most, ε . With re-

spect to the binning strategy, the equi-width histograms were
chosen based on the following reasons:

– The construction is effortless: it simply divides the ad-
missible range R of the random variable into k non-
overlapping intervals with equal width.

– The updating process is easy: each time a new data ob-
servation arrives, it just identifies the interval where it
belongs and increments the count of that interval.

– Information visualization is simple: the value axis is di-
vided into buckets of equal width.

Let i be the current number of observations of a given
variable X from which a histogram is being constructed. A
histogram Hk is defined by a set of k buckets B1, . . . ,Bk in the
range of the random variable and a set of frequency counts
F1(i), . . . ,Fk(i).

Definition 1 Let k be the number of non-overlapping inter-
vals of a histogram. For each time instance i, the histogram
frequencies are defined as:

Fj(i) =

i
∑

l=1
C j(l)

i
, ∀ j = 1, . . . ,k (1)

where C j is the count of bucket B j:

C j(i) =

{
1 i f xi ∈ B j

0 otherwise
∀ j = 1, . . . ,k

A standard histogram attributes the same importance to
all observations. However, in dynamic scenarios, recent data
is usually more important than old data. Therefore, outdated
data can be gradually forgotten attributing different weights
to data observations. In an exponential approach, the weight
of data observations decreases exponentially with time. Ex-
ponential fading factors have been applied successfully in
data stream evaluation [15]. Figure 1 illustrates the weight of
examples according to their age, considering an exponential
approach.

Following an exponential forgetting, histograms can be
computed using fading factors, henceforth referred to as fad-
ing histograms. In this sense, data observations with high
weight (the recent ones) contribute more to the fading his-
togram than observations with low weight (the old ones).

Definition 2 Let k be the number of buckets of a fading his-
togram. For each observation xi of a given variable X, the
histogram α-frequencies are defined as:

Fα, j(i) =

i
∑

l=1
α i−lC j(l)

k
∑
j=1

i
∑

l=1
α i−lC j(l)

=

i
∑

l=1
α i−lC j(l)

1−α i

1−α

,∀ j = 1, . . . ,k,

(2)

where α , real number parameter, is the exponential fading
factor such that 0� α < 1.
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Fig. 1 The weight of examples as a function of age, in an exponential approach.

According to this definition, old data is forgotten grad-
ually, since it contributes less than recent data. Assuming
that the observation xi belongs to bin m (with 1 ≤ m ≤ k),
the recursive form enables the construction of the fading
histograms counts in the flow:

C j = α ∗C j−1,∀ j = 1, . . . ,k

Cm = Cm +1,1≤ m≤ k (3)

To exemplify the forgetting ability of fading histograms
with respect to histograms constructed over the entire stream,
artificial data was generated from two normal distributions.
The initial 2500 observations follow a normal distribution
with mean 5 and standard deviation 1 and the remaining 2500
observations follow a normal distribution with mean 10 and
the same standard deviation.

For illustrative purposes, the number of buckets in each
histogram was set to 20 (considering an admissible error
ε = 0.1 for the mean square error of the histograms and
using the approach proposed in [37]) and the value of the
fading factor for the fading histograms was set to α = 0.997.

Figure 2 (top) shows the artificial data with a change at
observation 2500. The remaining plots display fading his-
tograms and histograms constructed over the entire stream,
at different observations: 2000, 3000 and 4000.

From the first representations, while in the presence of
a stationary distribution, it turns out that both histograms
produce similar representations of the data distribution. The
second and the third representations present a different sce-
nario. At observation 3000, after the change occurred at
observation 2500, the representations provided by both his-
tograms strategies become quite different. It can be observed
that in the fading histogram representation, the buckets for
the second distributions are reinforced, which does not occur

on the histogram constructed over the entire stream. Indeed,
contrary to the histograms constructed over the entire stream,
fading histograms capture the change better as there is an
enhancement of the fulfillment of the buckets for the second
distribution. At observation 4000, it can be seen that the fad-
ing histogram produces a representation that keeps up with
the current state of nature, forgetting outdated data (it must be
pointed out that although they appear to be empty, the buckets
for the first distribution present very low frequencies). At the
same observation, in the histogram constructed over the entire
stream, the buckets for the first distribution still quite filled,
which is not in accordance with the current observations.
From these representations, it can be observed the ability of
fading histograms to forget outdated data, since the buckets
from the initial distribution presented smaller values than the
corresponding ones in the histogram constructed over the
entire data, while the buckets from the second distribution
have higher values. Indeed, fading histograms reinforces the
capture of changes in evolving stream scenarios.

3 The change detection problem

A data stream is a sequence of information in the form of
transient data that arrives continuously (possibly at varying
times) and is potentially infinite. Along with this, as data
flows for long periods of time, the process generating data is
not strictly stationary and evolves over time.

Despite aging, the problem of detecting changes in a
signal has caught the attention of the scientific community in
recent years due to the emergence of real word applications.
Such applications require the online analysis of the gathered
signals: especially in those cases where actions must be taken
after the occurrence of a change. From this point of view it is
essential to maintain a stream learning model consistent with
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Fig. 2 Comparison of histograms computed with a fading factor of α = 0.997 (FH) and histograms constructed over the entire stream (AH).

the most recent data, forgetting outdated data. Moreover, it is
of utmost importance to detect a change as soon as possible,
ideally immediately after it occurs. This reduces the delay
time between the occurrence of the change and its detection.
Minimizing the detection delay time is of great importance
in applications such as real-time monitoring in biomedicine
and industrial processes, automatic control, fraud detection,
safety of complex systems and many others.

3.1 Distribution changes

In the dynamic scenarios faced nowadays it is an unlikely the
assumption that the observations are generated, at random,
according to a stationary probability distribution [5]. Changes
in the distribution of the data are expected. As the underlying
distribution of data may change over time, it is of utmost
importance to perceive if and when there is a change.

The distribution change detection problem is concerned
with the identification of the time of occurrence of a change
(or several changes) in the probability distribution of a data
sequence. Figure 3 illustrates this problem. In this example,
P0 is the probability distribution of the observations seen in
the past and P1 is the probability distribution of the most
recent observed data.

Consider that x1,x2, . . . is a sequence of random obser-
vations, such that xt ∈ R, t = 1,2, . . . (unidimensional data
stream). Consider that there is a change point at time t∗ with
t∗ ≥ 1, such that the subsequence x1,x2, . . . ,xt∗−1 is gener-
ated from a distribution P0 and the subsequence xt∗ ,xt∗+1, . . .

is generated from a distribution P1.

A change is assigned if the distribution P0 differs signifi-
cantly from the distribution P1. In this context, it means that
the distance between both distributions is greater than a given
threshold.

The change detection problem relies on testing the hy-
pothesis that the observations are generated from the same
distribution and the alternative hypothesis that they are
generated from different distributions: H0 : P0 ≡ P1 versus
H1 : P0 ∼= P1. The goal of a change detection method is to
decide whether or not to reject H0.

Whenever the alternative hypothesis is verified, the
change detection method reports an alarm. The correct de-
tection of a change is a hit; a non-detection of an occurred
change is a miss or a false positive. Incorrectly detecting a
change that does not occur is a false alarm or false negative.
An effective change detection method must present few false
events and detect changes with a short delay time.

The essence of a distribution change can be categorized
according to three main characteristics:

– Rate - the rate of a change (also known as speed) is
extremely important in a change detection problem, de-
scribing whether a signal changes between distributions
suddenly, incrementally, gradually or recurrently. Besides
the intrinsic difficulties that each of these kinds of rates
impose to change detection methods, real data streams
often present several combinations of different rates of
change.

– Magnitude - the magnitude of change (also known as
severity) is also a characteristic of paramount importance.
In the presence of a change, the difference between dis-
tributions of the signal can be high or low. Despite being
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Fig. 3 Illustration of a distribution change.

closely related, the magnitude and the rate of a change de-
scribe a different pattern of a change. Abrupt changes are
easily observed and detected. Hence, in most cases, they
do not pose great difficulties to change detection methods.
What is more, these changes are the most critical ones
because the distribution of the signal changes abruptly.
However, smooth changes are more difficult to be iden-
tified. At least in the initial phases, smooth changes can
easily be confused with noise [16]. Since noise and ex-
amples from another distribution are differentiated by
permanence, the detection of a smooth change in an early
phase, tough to accomplish, is of foremost interest.

– Source - besides other features that also describe a distri-
bution of a data set (such as skewness, kurtosis, median,
mode), in most cases, a distribution is characterized by
the mean and variance. In this sense, a change in data
distribution can be translated by a change in the mean or
by a change in variance. While a change in the mean does
not pose great challenges to a change detection method,
a change in the variance tends to be more difficult to
detect (considering that both presented similar rate and
magnitude).

3.2 Concept changes

The concept change problem is found in the field of machine
learning and is closely related to the distribution change
problem. A change in the concept means that the underlying
distribution of the target concept may change over time [40].
In this context, concept change describes changes that occur
in a learned structure.

Consider a learning scenario, where a sequence of in-
stances X1, X2, . . . is being observed (one at a time and

possibly at varying times), such that Xt ∈ Rp, t = 1,2, . . .
is an instance p-dimensional feature vector and yt is the
corresponding label, yt ∈ {C1,C2, ...,Ck}. Each example
(Xt ,yt), t = 1,2, . . . is drawn from the distribution that gener-
ates the data P( Xt ,yt). The goal of a stream learning model is
to output the label yt+1 of the target instance Xt+1, minimiz-
ing the cumulative prediction errors during the learning pro-
cess. This is remarkably challenging in environments where
the distribution that is generating the examples changes: P(
Xt+1,yt+1) may be different from P(Xt ,yt).

For evolving data streams, some properties of the prob-
lem might change over time, namely the target concept on
which data is obtained may shift from time to time, on each
occasion after some minimum of permanence [16]. This time
of permanence is known by context and represents a set of
examples from the data stream where the underlying distribu-
tion is stationary. In learning scenarios, changes may occur
due to modifications in the context of learning (caused by
changes in hidden variables) or in the intrinsic properties of
the observed variables.

Concept change can be formalized as a change in the
joint probability distribution P(X,y):

P(X,y) = P(y| X)×P( X)

Therefore, a concept change can be explained through a
change in the class conditional probability (conditional
change) and/or in the feature probability (feature change)
[17].

Concept changes can be addressed by assessing changes
in the probability distribution (class-conditional distributions
or prior probabilities for the classes), changes due to differ-
ent feature relevance patterns, modifications in the learning
model complexity and increases in the classification accuracy
[27].
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In a supervised learning problem, at each time stamp t,
the class prediction ŷt of the instance Xt is outputted. After
checking the class yt the error of the algorithm is computed.
For consistent learners, according to the Probability Approxi-
mately Correct (PAC) learning model [31] if the distribution
of examples is stationary, the error rate of the learning model
will decrease when the number of examples increases.

Detecting concept changes under non-stationary environ-
ments is, in most of the cases, inferred by monitoring the
error rate of the learning model [14, 4, 33]. In such problems,
the key to figuring out if there is a change in the concept is to
monitor the evolution of the error rate. A significant increase
in the error rate suggests a change in the process generating
data. For long periods of time, it is reasonable to assume
that the process generating data will evolve. When there is
a concept change, the current learning model no longer cor-
responds to the current state of the data. Indeed, whenever
new concepts replace old ones, the old observations become
irrelevant and thus the model will become inaccurate. There-
fore the predictions outputted are no longer correct and the
error rate will increase. In such cases, the learning model
must be adapted in accordance with the current state of the
phenomena under observation.

As well as for the distribution changes, concept change
can also be categorized according to the rate, magnitude and
source of concept change. Although, regarding the source,
a change in the concept can be translated as a change in
the mean, variance and correlation of the feature value dis-
tribution. Moreover, literature categorizes concept changes
into concept drift and concept shift according to the rate and
magnitude of the change. A concept drift occurs when the
change presents a sudden rate and an high magnitude, whilst
a concept shift designates a change with gradual rate and low
magnitude.

4 Windowing methods for change detection

A windows-based change detection method consists of mon-
itoring distributions over two different time-windows, per-
forming tests to compare distributions and decide if there is
a change. It assumes that the observations in the first window
of length L0 are generated according to a stationary distri-
bution P0 and that the observations in the second window
of length L1 are generated according to a distribution P1. A
change is assigned if the distribution P0 differs significantly
from the distribution P1:

Dt∗(P0||P1) = max
L0<t

Dt(P0||P1)> λ , where λ is known as

the detection threshold.
The method outputs that distribution changes at the

change point estimate t∗. In this context, it means that the
distance between both distributions is greater than a given
threshold.

In such models, the data distribution on a reference win-
dow, which usually represents past information, is compared
to the data distribution computed over a window from recent
examples [25, 13, 35]. Within a different conception, (au-
thor?) [7] proposes an adaptive windowing scheme to detect
changes: the ADaptive WINDdowing (ADWIN) method. The
ADWIN keeps a sliding window W with the most recently
received examples and compares the distribution in two sub-
windows (W0 and W1) of the former. Instead of being fixed a
priori, the size of the sliding window W is determined online
according to the rate of change observed in the window itself
(growing when the data is stationary and shrinking other-
wise). Based on the use of the Hoeffding bound, whenever
two large enough sub-windows, W0 and W1, exhibit distinct
enough averages, the older sub-window is dropped and a
change in the distribution of examples is assigned. When a
change is detected, the examples inside W0 are thrown away
and the window W slides keeping the examples belonging
to W1. With the advantage of providing guarantees on the
rates of false positives and false negatives, the ADWIN is
computationally expensive, as it compares all possible sub-
windows of the recent window. To cut off the number of
possible sub-windows in the recent window, the authors have
enhanced ADWIN. Using a data structure that is a variation
of exponential histograms and a memory parameter, AD-
WIN2 reduces the number of possible sub-windows within
the recent window.

The windows based approach proposed by (author?)
[25] provides statistical guarantees on the reliability of de-
tected changes and meaningful descriptions and quantifica-
tion of these changes. The data distributions are computed
over an ensemble of windows with different sizes and the dis-
crepancy of distributions between two pairs of windows (with
the same size) is evaluated performing statistical hypothesis
tests, such as Kolmogorov-Smirnov and Wilcoxon, among
others. Avoiding statistical tests, the adjacent windows model
proposed by (author?) [13] measures the difference between
data distributions by the Kullback-Leibler distance and ap-
plies bootstrapping theory to determine whether such differ-
ences are statistically significant. This method was applied to
multidimensinal and categorical data, showing to be efficient
and accurate in higher dimensions.

Addressing concept change detection, the method pro-
posed by (author?) [33] detects concept changes in online
learning problems, assuming that the concept is changing if
the accuracy of the classifier in a recent window of examples
decreases significantly compared to the accuracy computed
over the stream hitherto. This method is based on the compar-
ison of a computed statistic, equivalent to the Chi-Square test
with Yates’s continuity correction, and the percentile of the
standard normal distribution. Using two levels of significance
the method stores examples in short-term memory during
a warning period. If the detection threshold is reached, the
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examples stored are used to rebuild the classifier and all vari-
ables are reset. Later, (author?) [3] propose paired learners
to cope with concept drifts. The stable learner predicts based
on all examples, while the active learner predicts based on a
recent window of examples. Using differences in accuracy
between the two learners over the recent window, drift detec-
tion is performed and whenever the target concept changes
the stable learner is replaced by the reactive one.

The work presented in (author?) [27] goes beyond the
methods addressed in this section. Instead of using a change
detector, it proposes an ensemble of windows-based change
detectors. Addressing adaptive classification problems, the
proposed approach is suitable for detecting concept changes
either in labeled and unlabeled data. For the labeled data
the classification error is recorded and a change is signaled
comparing the error on a sliding window with the mean error
hitherto. For labeled data, computing the classification error
is straightforward, hence it is quite common to monitor the
error or some error-based statistic to detect concept drift on
the assumption that an increase in the error results from a
change. However, when the labels of the data are not avail-
able, the error rate cannot be used as a performance measure
of drifts. Therefore, changes in unlabeled data are handled
by comparing cluster structures from windows with different
length sizes. The advantage of an ensemble of change detec-
tors is disclosed by their ability to effectively detect different
kinds of changes.

The evaluation of the performance of change detection
methods in time-changing environments is quantitatively as-
sessed by measuring the following standard criteria:

– Detection delay time: the number of examples required
to detect a change after the occurrence of one.

– Missed detections: ability to not fail the detection of real
changes.

– False alarms: resilience to false alarms when there is no
change, which means that the change detection method
is not detecting changes under static scenarios.

5 Adaptive Cumulative Windows Model (ACWM)

The ACWM for change detection is based on online monitor-
ing of the distance between data distributions (provided by
fading histograms), which is evaluated using the Kullback-
Leibler divergence (KLD) [26]. Within this approach, the
reference window (RW) has a fixed length and reflects the
data distribution observed in the past. The current window
(CW) is cumulative and it is updated sliding forward and
receiving the most recent data. The evaluation step is deter-
mined automatically depending on the data similarity.

In change detection problems, it is mandatory to detect
changes as soon as possible, minimizing the delay time in
detection. Along with this, the false and the missed detections

must be minimal. Therefore, the main challenge when propos-
ing an approach for change detection is reaching a trade-off
between the robustness to false detections (and noise) and
sensitivity to true changes.

It must be pointed out that the ACWM is a non-parametric
approach, which means that it makes no assumptions on the
form of the distribution. This is a property of major inter-
est, since real data streams rarely follow known and well-
behavior distributions.

Figure 4 shows the workflow of the ACWM for change
detection. The histograms representations were constructed
from the observed data, with different number of observa-
tions. At every evaluation step, the data distribution in the
Current Window (CW) is compared with the distribution of
the data in the Reference Window (RW). If a change in the
distribution of the data in the CW with respect to the dis-
tribution of the data in the RW is not detected, the CW is
updated with more data observations. Otherwise, if a change
is detected, the data in both windows is cleaned, new data is
used to fulfill both windows and a new comparison starts.

5.1 Distance between distributions

From information theory [6], the Relative Entropy is one of
the most general ways of representing the distance between
two distributions [13]. Contrary to the Mutual Information
this measure assesses the dissimilarity between two variables.
Also known as the Kullback-Leibler divergence, it measures
the distance between two probability distributions and there-
fore is suitable for use in comparison purposes.

Assuming that the data in the reference window has dis-
tribution PRW and that data in the current window has distri-
bution PCW , the Kullback-Leibler Divergence (KLD) is used
as a measure to detect whenever a change in the distribution
has occurred.

Considering two discrete distributions with empirical
probabilities PRW (i) and PCW (i), the relative entropy of PRW
with respect to PCW is defined by:

KLD(PRW ||PCW ) = ∑i PRW (i)log PRW (i)
PCW (i) .

Since it is asymmetric, the Kullback-Leibler divergence
is a quasi-metric:

KLD(PRW ||PCW ) 6= KLD(PCW ||PRW ).

Nevertheless, it satisfies many important mathematical prop-
erties: is a non-negative measure, it is a convex function of
PRW (i) and equals zero only if PRW (i) = PCW (i).

Consider a reference window with empirical probabil-
ities PRW (i), and a current sliding window with probabili-
ties PCW (i). Taking into account the asymmetric property
of the Kullback-Leibler divergence and that the minimal
value of the absolute difference between KLD(PRW ||PCW )

and KLD(PCW ||PRW ), which is zero, is achieved when P=Q:
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Fig. 4 Workflow of the Adaptive Cumulative Windows Model (ACWM) for change detection.

smaller values of this difference correspond to smaller dis-
persion between both data distributions, meaning that the
data is similar; and higher values of this difference suggest
that distributions are further apart. Other metrics, namely
the Entropy Absolute Difference and the Cosine Distance,
were considered in (author?) [35]. When compared with the
Kullback-Leibler divergence, this measure outperforms the
others.

5.2 Decision rule

Consider a reference window with empirical probabilities
PRW (i) and a current sliding window with probabilities
PCW (i): lower values of KLD(PRW ||PCW ) corresponds to
smaller dispersion between both data distributions, meaning
that the data is similar. A higher value of KLD(PRW ||PCW )

suggests that distributions are further apart. Therefore, due
to the asymmetric property of the KLD, if the distributions
are similar, the absolute difference between KLD(PRW ||PCW )

and KLD(PCW ||PRW ) is small. In the ACWM, the decision
rule used to assess changes in data distribution is a dissimilar-
ity measure based on the asymmetry of the Kullback-Leibler
divergence. It is defined that a change has occurred in the

data distribution of the current window relatively to the data
distribution of the reference window, if:

|KLD(PRW ||PCW )−KLD(PCW ||PRW )|> δ ,

where δ is a user defined threshold, empirically defined and
that establishes a trade-off between the false alarms and the
missed detections. Increasing δ will entail fewer false alarms,
but might miss or delay some changes.

If a change in the distribution of the data in the CW
with respect to the distribution of the data in the RW is not
detected, the CW is updated with more data observations.
Otherwise, if a change is detected, the data in both windows
is cleaned, new data is used to fulfill both windows and a new
comparison starts.

Figure 5 presents the dissimilarity measure against the
detection threshold to detect a change. As desired, it can
be observed that this dissimilarity highly increases in the
presence of a change.

5.3 Evaluation step for data distributions comparison

In the ACWM, the evaluation step is the increment of the cu-
mulative current window. When comparing data distributions
over sliding windows, at each evaluation step the change de-
tection method is induced by the examples that are included
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Fig. 5 Behavior of the dissimilarity measure for detecting changes.

in the sliding window. Here, the key difficulty is how to select
the appropriate evaluation step. A small evaluation step may
ensure fast adaptability in phases where the data distribution
changes. However, a small evaluation step implies that more
data comparisons are made. Therefore, it tends to be compu-
tationally costly, which can affect the overall performance of
the change detection method. On the other hand, with a large
evaluation step, the number of data distribution comparisons
decreases, increasing the performance of the change detec-
tion method in stable phases but not allowing quick reactions
when a change in the distribution occurs.

Therefore, the a priori definition of the evaluation step
to perform data distribution comparisons is a compromise
between computational costs and detection delay time. In
the proposed approach, the evaluation step, instead of being
fixed and selected by the user, is automatically defined ac-
cording to the data stationarity and to the distance between
data distributions. Starting with an initial evaluation step
of IniEvalStep, the step length is increased if the distance
between distributions is small (which suggests that data is
generated according to a similar distribution, hence it is a
stationary phase) and is decreased if the distance between dis-
tributions is high (which means that data from both windows
is further apart), according to the following relation:

EvalStep = max(1,round(IniEvalStep∗ (1− 1
δ
)∗

|KLD(PRW ||PCW )−KLD(PCW ||PRW )|)).

Figure 6 illustrates the dependency of the evaluation step
on the distance between data distributions of an artificial data
set (for a change detection threshold δ = 0.1).

5.4 Pseudocode

The presented Adaptive Cumulative Windows Model
(ACWM) was designed to detect changes online in the distri-
bution of streams of data. The data distribution is computed
by the histograms presented in subsection 2. In order to de-
tect changes, the data distributions in two time windows are

Fig. 6 Representation of the evaluation step for data distributions com-
parison with respect to the absolute difference between KLD(PRW ||PCW )
and KLD(PCW ||PRW ) (for a change detection threshold of δ = 0.1).

compared using the Kullback-Leibler divergence. Algorithm
1 presents the pseudocode for this ACWM.

Algorithm 1 ACWM

Input: Data set: x1, x2, . . .
Number of buckets in the histogram nBuckets
Length of the Reference window: LRW
Initial evaluation step IniEvalStep
Change detection threshold δ

Output: Time of the detected changes: t∗

ti← 0
Init← True
while not at the end of the stream do

if init = True then
Initialize the histogram in the reference window (PRW ) as empty
Initialize the histogram in the current window (PCW )as empty
Define the first evaluation point: EvalPoint = LRW +
IniEvalStep
Init← False

end if
if t ≤ ti +LRW then

Init← False
Compute the histogram in the RW : PRW
Compute the histogram counts for the CW

else if t = EvalPoint then
Compute the histogram in the CW : PCW
Compute the next evaluation step:
EvalStep = max(1,round(IniEvalStep(1− 1

δ
)∗
∣∣KLD(PRW ||PCW )−KLD(PCW ||PRW )

∣∣))
Compute the next evaluation point:
EvalPoint = EvalPoint +EvalStep
if |KLD(PRW ||PCW )−KLD(PCW ||PRW )|> δ then

ti← i
report a change at time t: t∗ = t
Init← True

end if
else

Compute the histogram counts for the CW
end if

end while
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5.5 Complexity Analysis

The complexity of the proposed CWM is linear with the
number of observations (n). To show that the CWM is O(n),
experiments were performed using artificial data with and
without changes. The data set without change was generated
according to a normal distribution with zero mean and stan-
dard deviation equals to 1. The data set with changes (which
was forced at the middle of the data set) was generated from
a normal distribution with standard deviation equals to 1 and
with zero mean in the first part and with mean equals to 10
in the second part. For both cases, with and without changes,
the size was increased from 1.000 to 10.000.000 examples,
and 10 different data streams were generated with different
seeds. Table 1 shows that the execution time increases lin-
early with the size of the data (average and standard deviation
of 10 runs on data generated with different seeds), either for
the cases with or without changes and using a fixed or an
adaptive evaluation step. Moreover, it can be observed that
the execution time when using fixed or adaptive evaluation
step is similar.

Table 1 Execution time of the FCWM and ACWM when detecting
changes in artificial data with different sizes, with and without changes
(average and standard deviation of 10 runs).

Execution time (sec)

Fixed Step Adaptive Step

Data Size No Change Change No Change Change
1000 0.04 ± 0.04 0.01 ± 0 0.02 ± 0.01 0.01 ± 0
10000 0.23 ± 0.01 0.10 ± 0 0.25 ± 0.01 0.11 ± 0
100000 2.30 ± 0.04 1.02 ± 0.01 2.35 ± 0.11 1.06 ± 0.04
1000000 22.70 ± 0.24 10.19 ± 0.04 22.89 ± 0.94 10.31 ± 0.22
10000000 215.51 ± 4.49 102.29 ± 0.94 241.55 ± 43.32 104.19 ± 2.55

5.6 Mutidimensinal Setting

The proposed approach for detecting changes in multidi-
mensinal data assumes the independence between the fea-
tures. For multidimensinal data sets, the ACWM is computed
as follows:

– For each dimension:
– computes the probabilities PRW (i) and PCW (i) in the

reference and in the current sliding windows, respec-
tively;

– computes
absKLDd = |KLD(PRW ||PCW )−KLD(PCW ||PRW )|;

– Computes the mean of the absKLDd , considering all the
dimensions:

M_absKLD =

D
∑

d=1
absKLDd

D ,

where D is the number of dimensions.

– Signals a change if M_absKLD > δ , where δ is the
change detection threshold.

6 Results on Distribution Change Detection

This section presents the performance of the CWM (Cumula-
tive Windows Model) in detecting distribution changes, using
a fixed and an adaptive evaluation step. To detect distribution
changes, the model is evaluated using artificial data, present-
ing distribution changes with different magnitudes and rates,
and using real world data from an industrial process and a
medical field. The efficiency of ACWM is also compared
with the PHT when detecting distribution changes on a real
data set.

The artificial data was obtained in MATLAB [29]. All
the experiments were implemented in MATLAB, as well as
the graphics produced.

6.1 Experiments with artificial data

The data sets and the experimental designs were outlined in
order to evaluate the overall performance of the ACWM in
detecting distribution changes in different evolving scenarios,
namely to:

1. Evaluate the advantage of using an adaptive evaluation
step instead of a fixed one.

2. Evaluate the benefit, in detection delay time, of using
fading histograms when comparing data distributions to
detect changes.

3. Evaluate robustness to detect changes against different
amounts of noise.

4. Evaluate the stability in static phases with different
lengths and how it affects the ability to detect changes.

The data sets were generated according to a normal dis-
tribution with certain parameters. Both the mean and the
standard deviation parameters were varied, generating 2 dif-
ferent problems according to the source of the change. Each
data stream consists of 2 parts, where the size of the second
is N.

Two data sets were generated. In the first data set, the
length of the first part of data streams was set to N. In the
second data set, the length of the first part was set to 1N, 2N,
3N 4N and 5N, in order to simulate different lengths of static
phases.

The first data set was used to carry out the first, the second
and the third experimental designs and the second data set
was used to perform the fourth experimental design, evaluat-
ing the effect of different extensions of the stationary phase
on the performance of the ACWM in detecting changes.

Within each part of the data streams the parameters stay
the same, which means that only 1 change happens between
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Table 2 Magnitude levels of the designed data sets.

Parameter Value of the Parameter variation Magnitude
changed fixed parameter (before→ after change) of change

µ σ = 1
µ = 0→ µ = 5 High
µ = 0→ µ = 3 Medium
µ = 0→ µ = 2 Low

σ µ = 0
σ = 1→ σ = 5 High
σ = 1→ σ = 3 Medium
σ = 1→ σ = 2 Low

both parts and different changes were simulated by varying
among 3 levels of magnitude (or severity) and 3 rates (or
speed) of change, obtaining a total of 9 types of changes for
each changing source (therefore, a total of 18 data streams
with different kind of changes). Although there is no golden
rule to classify the magnitude levels, they were defined in
relation to one another, as high, medium and low according
to the variation of the distribution parameter, as shown in
Table 2. For each type of changes, 30 different data streams
were generated with different seeds.

The rates of change were defined assuming that the
examples from the first part of data streams are from
the old distribution and the N −ChangeLength last exam-
ples are from the new distribution, where ChangeLength
is the number of examples required before the change is
complete. During the length of the change, the examples
from the new distribution are generated with probability
pnew(t) = t−N

ChangeLength and the examples from the old distri-
bution are generated with probability pold(t) = 1− pnew(t),
where N < t < N +ChangeLength. As for the magnitude
levels, the rates of change were defined in relation to one
another, as sudden, medium and low, for a ChangeLength of
1, 0.25N and 0.5N, respectively. The value of N was set to
1000.

Therefore, the first data set is composed by a total of 540
data streams with 2000 examples each, and the second data
set consists of a total of 2700 data streams with five different
lengths, 540 data streams of each length.

Setting the parameters of the CWM and of the online
histograms

The CWM and the online histograms require the setting of
the following parameters:

– LRW - length of the reference window (CWM);
– IniEvalStep - initial evaluation step (CWM);
– δ - change detection threshold (CWM);
– ε - admissible mean square error of the histogram;

As stated before, the number of buckets is chosen under
error constraints [37] and is computed as k = R

2
√

ε
, where R

is the admissible range of the variable and ε is the admissible

Table 3 Precision, Recall and F1 score, obtained when performing the
CWM, with a reference window of length 5k and 10k and a change
detection threshold of 0.05 and 0.1.

LRW
5k 10k

δ

0.05
Precision = 0.87 Precision = 0.98

Recall = 1 Recall = 0.97
F1 = 0.93 F1 = 0.98

0.1
Precision = 0.97 Precision = 1

Recall = 0.96 Recall = 0.88
F1 = 0.97 F1 = 0.93

mean square error of the histogram. It was established that
5% was an admissible mean square error of the histogram.
To investigate the values for the remaining parameters, an ex-
periment was performed on a training data set with the same
characteristics as the first data set, varying the LRW within
1k,2k, . . .10k (where k is the number of buckets in the online
histograms) and δ within 0.01,0.05,0.1,0.2. However, in
this training data set, only 10 data streams were generated
with different seeds for each type of drift, obtaining a total
of 118 data streams with length 2N (N = 1000). In this ex-
periment, the CWM was performed with a unitary evaluation
step and the summary results were analyzed. Table 3 presents
the precision, recall and F1 score for a reference window
of length 50k and 10k and for a change detection threshold
of 0.05 and 0.1, for a total of 180 true changes. Although
compromising the delay time in change detection, the best
F1 score is obtained for a reference window of 10k examples
and a change detection threshold of 0.05.

Figure 7 shows the detection delay time (average of 10
runs) and the total number of false alarms (FA) and missed
detections (MD), for a total of 180 true changes, depending
on the length of reference window of length (LRW ) and on
the change detection threshold (δ ). It can be observed, that
an increase in the detection delay time, controlled by the
value of δ , is followed by a decrease in the number of false
alarms (and an increase in the number of missed detections).
However, for LRW = 10k and δ = 0.05, the false alarm rate
(3/180) and the miss detection rate (5/180) are admissible.

From now forward, unless otherwise stated, the settings
for the parameters of the CWM were the following:

– The length of the reference window was set to 10k
(LRW = 10k);

– The initial evaluation interval was set to k
(IniEvalStep = k);

– The threshold for detecting changes was set to 5% (δ =

0.05);
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Fig. 7 Detection delay time, total number of false alarms (FA) and missed detections (MD), depending on the LRW and δ .

Evaluate the advantage of using an adaptive evaluation
step instead of a fixed one

This experiment was designed to study the advantage of per-
forming the CWM with an adaptive evaluation step (ACWM)
against a fixed evaluation step (FCWM). Figure 8 shows the
advantage, in detection delay time, of an adaptive evaluation
step over the fixed one (average results for 30 runs on data
generated with different seeds). Except for the distribution
change in the mean parameter, with low magnitude and sud-
den rate, the detection delay time is shorter when performing
the ACWM. This decrease in the detection delay time, when
performing ACWM, is obtained without compromising the
false alarm and miss detection rates (except for one case:
change with low magnitude and sudden rate, in the mean
parameter, see Table 4).

Using the results of the 30 replicas of the data, a paired,
two-sided Wilcoxon signed rank test was performed to assess
the statistical significance of the comparison results. It was
tested the null hypothesis that the difference between the
detection delay times of the ACWM and the FCWM comes
from a continuous, symmetric distribution with zero median,
against the alternative that the distribution does not have zero
median. For all types of changes in both mean and standard
deviation parameters, the null hypothesis of zero median in
the differences was rejected, at a significance level of 1%.
Therefore, considering the very low p-values obtained, there

is strong statistical evidence that the detection delay time of
ACWM is smaller than of FCWM.

In Table 4, besides the detection delay time using the
CWM with an adaptive and a fixed evaluation steps, the total
number of missed detections and the total number of false
alarms are also presented. The results report the average and
standard deviation of 30 runs.

As expected, greater distribution changes (high magni-
tudes and sudden rates) are easier to detect by the CWM,
either using an adaptive or a fixed evaluation step. On the
other hand, for smaller distribution changes (low magnitudes
and low rates) the detection delay time increases. The de-
crease in the detection delay time in this experiment sustains
the use of an adaptive evaluation step, when performing the
CWM. Although the decrease in detection delay time is small,
these results must be taken into account that the length of
the data was also small. With data with higher length, the
decrease of detection delay time will be reinforced. More-
over, for both strategies, the execution time of performing
the CWM is comparable.

Evaluate the advantage, in detection delay time, of using
fading histograms when comparing data distributions to
detect changes

As stated before, fading histograms attribute more weight
to recent data. In an evolving scenario, this could be a huge
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Fig. 8 Detection delay time (average of 30 runs) using the CWM with an adaptive (ACWM) and a fixed (FCWM) evaluation steps.

advantage since it enhances small changes. Therefore, when
comparing data distributions to detect changes, the detection
of such changes will be easier. This experimental design in-
tends to evaluate the advantage of using fading histograms
as a synopsis structure to represent the data distributions that
will be compared, for detecting changes, within the ACWM
(which will be referred to as ACWM-fh). Thus, data distri-
butions, within the reference and the current windows, were
computed using fading histograms with different values of
fading factors: 1 (no forgetting at all), 0.9994, 0.9993, 0.999,
0.9985 and 0.997.

Using the results of the 30 replicas of the data, a paired,
two-sided Wilcoxon signed rank test (with Bonferroni correc-
tion for multiple comparisons) was performed to assess the

statistical significance of differences between ACWM and
ACWM-fh. With the exception of the change in the mean
parameter with high magnitude and sudden rate (for the fad-
ing factors tested except 0.997), for all the other types of
changes in both mean and standard deviation parameters, the
null hypothesis of zero median in the differences between
detection delay times was rejected, at a significance level of
1%. Therefore, considering the very low p-values obtained,
there is strong statistical evidence that the detection delay
time of ACWM-fh is smaller than of ACWM.

Table 5 presents a summary of the detection delay time
(average and standard deviation from 30 runs on data gener-
ated with different seeds) using the ACWM-fh for comparing
the data distributions. The total number of missed detec-
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Table 4 Detection delay time (DDT) using the ACWM and the FCWM.
The results report the average and standard deviation of 30 runs. In
parenthesis is the number of runs, if any, where the algorithm misses
detection or signals a false alarm: they are in the form (Miss; False
Alarm).

Parameter
Mag. Rate

Adaptive Step Fixed Step
changed DDT (µ±σ ) DDT (µ±σ )

Mean

High
Low 260 ± 57 275 ± 53 (0;0)

Medium 153 ± 24 (1;1) 178 ± 59 (0;1)
Sudden 19 ± 4 (0;1) 24 ± 0 (0;1)

Medium
Low 410 ± 131 (0;1) 424 ± 138 (0;1)

Medium 242 ± 125 (0;1) 259 ± 122 (0;1)
Sudden 36 ± 22 (0;1) 52 ± 26 (0;1)

Low
Low 516 ± 171 (7;2) 535 ± 177 (7;2)

Medium 371 ± 233 (5;0) 389 ± 232 (5;0)
Sudden 233 ± 229 (1;0) 223 ± 193 (3;0)

STD

High
Low 240 ± 34 284 ± 42

Medium 168 ± 16 198 ± 30
Sudden 71 ± 10 104 ± 0

Medium
Low 368 ± 87 399 ± 93

Medium 213 ± 28 245 ± 32
Sudden 65 ± 15 83 ± 27

Low
Low 517 ± 158 542 ± 154

Medium 362 ± 127 387 ± 129
Sudden 162 ± 60 (1;0) 189 ± 63 (1;0)

tions and the total number of false alarms are also presented.
This experiment underlines the advantage of using fading
histograms to compute the data distributions: the detection
delay time decreases by decreasing the fading factor and
without compromising the number of missed detections and
false alarms (except when using a fading factor of 0.997).
The increase of false alarms when using a fading factor of
0.997 suggests that fading histograms computed with this
value are over reactive, therefore fading factors of values
equal or smaller than 0.997 are not suitable for use in this
data set.

The detection delay time (average of 30 runs on data
generated with different seeds) of this experimental design
is shown in Figure 9. It can be observed that the advantage
of using fading histograms is strengthened when detecting
small changes, which is explained by the greater importance
attributed to recent examples that enhances a change and
eases its detection by the ACWM.

Evaluate the robustness to detect changes against differ-
ent amounts of noise

Within this experimental design, the robustness of the
ACWM against noise was evaluated. Noisy data was gen-
erated by adding different percentages of Gaussian noise
with zero mean and unit variance to the original data set.
Figure 10 shows the obtained results by varying the amount
of noise from 10% to 50%.

The detection delay time (average of 30 runs on data
generated with different seeds) of this experimental design is

shown in Figure 10. The ACWM presents a similar perfor-
mance along the different amounts of noise, with the excep-
tion of a change in the standard deviation parameter with high
magnitude and medium and sudden rates (for a level of noise
of 30%). In these cases, the average detection delay time
increases when compared with other amounts of noise. This
experiment sustains the argument that the ACWM is robust
against noise while effectively detects distribution changes
in the data.

Table 6 presents a summary of the detection delay time
(average and standard deviation from 30 runs on data gener-
ated with different seeds) using the ACWM for comparing
the data distributions in the first data set. The total number
of missed detections and the total number of false alarms
are also presented. Regarding the total number of missed
detections and false alarms, with an amount of 50% of noise
a slight increase is noticeable for both, mainly for changes in
the mean parameter.

To assess the statistical significance of differences be-
tween the detection delay time of the ACWM when per-
formed on data without and with different amounts of noise,
a paired, two-sided Wilcoxon signed rank test (with Bon-
ferroni correction for multiple comparisons) was performed.
For most of the cases, at a significance level of 1%, there
are no statistical evidence to reject the null hypothesis of
zero median in the differences (exceptions are indicated in
Table 6 with **). This experiment sustains the argument that
the ACWM is robust against noise while effectively detects
distribution changes in the data.

Evaluate the stability in static phases with different
lengths and how it affects the ability to detect changes

This experiment was carried out with the second data set. The
performance of the ACWM was evaluated varying the length
of stationary phases from 1N to 5N (N = 1000).

Overall, it can be observed that the detection delay time
for the ACWM increases within the increase of the stationary
phase. This is even more evident in distribution changes with
sudden rates. Indeed, the stability of the ACWM in stationary
phases, compromises the ability to effectively detect changes.
However, this can be overthrown by using fading histograms
to compute the data distributions, as shown in Figure 11.

Actually, in stationary phases, the ability of the fading
histograms to forget outdated data works in favor of the
change detection model, by decreasing the detection delay
time. However, a decrease in the value of the fading factor
results in the increase of the number of false alarms. Table 7
presents the detection delay time (average and standard de-
viation of 30 runs on data generated with different seeds for
the 9 types of changes for each source parameter) using the
ACWM-fh in different stationary phases. The total number
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Table 5 Detection delay time (average and standard deviation), using the ACWM and computing data distributions with fading histograms (with
different fading factors). The results report the average and standard deviation of 30 runs. In parenthesis is the number of runs, if any, where the
ACWM-fh misses detection or signals a false alarm: they are in the form (Miss; False Alarm).

Parameter
Mag. Rate

Fading Factor

changed 1 0.9994 0.9993 0.999 0.9985 0.997

Mean

High
Low 260 ± 57 246 ± 64 246 ± 64 241 ± 68 233 ± 77 226 ± 70 (0;5)

Medium 153 ± 24 (1;1) 145 ± 27 (0;1) 150 ± 33 (0;2) 140 ± 31 (0;2) 140 ± 32 (0;2) 125 ± 36 (0;2)

Sudden 19 ± 4 (0;1) 19 ± 5 (0;1) 19 ± 5 (0;1) 18 ± 6 (0;1) 16 ± 6 (0;1) 13 ± 6 (0;1)

Medium
Low 410 ± 131 (0;1) 387 ± 142 (0;1) 385 ± 144 (0;1) 381 ± 151 (0;1) 365 ± 148 (0;2) 311 ± 96 (0;5)

Medium 242 ± 125 (0;1) 215 ± 69 (0;2) 213 ± 69 (0;2) 211 ± 58 (0;3) 205 ± 58 (0;3) 186 ± 54 (0;5)

Sudden 36 ± 22 (0;1) 27 ± 16 (0;1) 25 ± 15 (0;1) 23 ± 11 (0;1) 22 ± 9 (0;1) 36 ± 110 (0;2)

Low
Low 516 ± 171 (7;2) 510 ± 202 (4;2) 496 ± 204 (4;2) 496 ± 197 (3;2) 448 ± 173 (2;2) 369 ± 150 (0;9)

Medium 371 ± 233 (5;0) 338 ± 208 (3;0) 327 ± 193 (3;0) 324 ± 209 (1;0) 289 ± 168 250 ± 151 (0;4)

Sudden 233 ± 229 (1;0) 165 ± 170 (1;0) 159 ± 168 (1;0) 139 ± 159 (1;0) 138 ± 180 66 ± 76 (0;1)

STD

High
Low 240 ± 34 219 ± 36 216 ± 38 208 ± 41 204 ± 45 186 ± 52

Medium 168 ± 16 157 ± 18 155 ± 19 151 ± 22 143 ± 25 138 ± 40

Sudden 71 ± 10 60 ± 13 58 ± 14 52 ± 16 42 ± 19 23 ± 18

Medium
Low 368 ± 87 327 ± 76 322 ± 76 310 ± 76 294 ± 79 249 ± 92

Medium 213 ± 28 185 ± 30 180 ± 30 170 ± 32 159 ± 35 140 ± 40

Sudden 65 ± 15 53 ± 13 52 ± 14 49 ± 13 43 ± 13 39 ± 14

Low
Low 517 ± 158 445 ± 140 435 ± 137 411 ± 136 380 ± 145 316 ± 113 (0;2)

Medium 362 ± 127 305 ± 101 295 ± 92 278 ± 88 260 ± 85 204 ± 52

Sudden 162 ± 60 (1;0) 116 ± 41 (1;0) 122 ± 74 109 ± 74 87 ± 46 62 ± 40

Table 6 Detection delay time (average and standard deviation), using the ACWM with different amounts of noise. The results report the average
and standard deviation of 30 runs. In parenthesis is the number of runs, if any, where the ACWM misses detection or signals a false alarm: they are
in the form (Miss; False Alarm).

Parameter
Mag. Rate

Noise Scale

changed 10% 20% 30% 40% 50%

Mean

High

Low 245 ± 62 246 ± 67 235 ± 44 242 ± 82 256 ± 75 (0;3)

Medium 146 ± 25 (0;2) 143 ± 29 (0;1) 150 ± 30 (0;1) 167 ± 148 (0;2) 152 ± 36 (0;2)

Sudden 19 ± 5 18 ± 4 22 ± 6 17 ± 4 42 ± 150 (0;1)

Medium

Low 360 ± 152 (1;0) 416 ± 123 (1;2) 383 ± 90 (1;1) 380 ± 127 (1;1) 429 ± 144 (1;4)

Medium 223 ± 77 (0;3) 225 ± 70 (0;1) 201 ± 50 235 ± 72 (0;2) 246 ± 112 (1;5)

Sudden 27 ± 12 (0;1) 51 ± 138 (0;2) 28 ± 9 (0;1) 29 ± 13 (0;1) 65 ± 120 (0;1)

Low
Low 475 ± 201 (4;1) 456 ± 165 (6;1) 451 ± 137 (5;0) 464 ± 138 (7;2) 461 ± 144 (6;5)

Medium 382 ± 237 (6;1) 344 ± 206 (5;1) 322 ± 166 (5;1) 336 ± 237 (4;1) 375 ± 205 (5;1)

Sudden 203 ± 226 (0;1) 204 ± 234 (3;1) 187 ± 235 (1;0) 197 ± 221 (2;1) 139 ± 203 (3;9)

STD

High
Low 231 ± 35 240 ± 38 239 ± 36 234 ± 38 223 ± 53

Medium 153 ± 17 ** 154 ± 15 ** 222 ± 89 (1;0) ** 153 ± 17 ** 150 ± 27 **

Sudden 53 ± 14 ** 61 ± 14 ** 245 ± 163 (2;0) ** 54 ± 13 ** 36 ± 7 **

Medium

Low 316 ± 47 332 ± 49 310 ± 63 ** 317 ± 64 ** 349 ± 79

Medium 208 ± 24 205 ± 31 210 ± 29 209 ± 33 217 ± 56

Sudden 61 ± 16 60 ± 18 63 ± 14 59 ± 14 67 ± 17

Low

Low 481 ± 117 472 ± 129 472 ± 141 (1;0) 499 ± 128 (1;0) 513 ± 181 (2;1)

Medium 316 ± 142 (1;0) 331 ± 107 338 ± 104 350 ± 134 386 ± 210 (0;1)

Sudden 146 ± 80 153 ± 69 132 ± 63 154 ± 77 202 ± 152 (1;0)
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Fig. 9 Detection delay time (average of 30 runs) of the ACWM-fh.

of missed detections and the total number of false alarms are
also presented. From the results presented, it can be noted
that a decrease in the detection delay time is achieved, es-
tablishing a commitment with respect to the number of false
alarms and missed detections.

6.2 Experiments with an industrial data set

This industrial data set was obtained within the scope of
the work presented in (author?) [12], with the objective
of designing different machine learning classification meth-
ods for predicting surface roughness in high-speed machin-
ing. Data was obtained by performing tests in a Kondia
HS1000 machining center equipped with a Siemens 840D

open-architecture CNC. The blank material used for the tests
was 170 × 100 × 25 aluminum samples with hardness rang-
ing from 65 to 152 Brinell, which is a material commonly
used in automotive and aeronautical applications. These tests
were done with different cutting parameters, using sensors
for registry vibration and cutting forces. A multi-component
dynamometer with an upper plate was used to measure the in-
process cutting forces and piezoelectric accelerometers in the
X and Y axis for vibrations measures. Each record includes
information on several variables used in a cutting process
and the measurements for each test were saved individually.

For change detection purposes, the measurements of the
cutting speed on X axes from 7 tests were joined sequentially
in order to have only one data set with 6 changes with differ-
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Fig. 10 Detection delay time (average of 30 runs) of the ACWM with different amounts of noise.

Fig. 11 Detection delay time (average of 30 runs for the 9 types of changes) of the ACWM-fh with different lengths of stationary phases.
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Table 7 Detection delay time (average and standard deviation) using the ACWM-fh in different stationary phases. The results report the average and
standard deviation of 30 runs for the 9 types of changes for each source parameter. In parenthesis is the number of runs, if any, where the ACWM-fh
misses detection or signals a false alarm: they are in the form (Miss; False Alarm).

Parameter
Fading Factor

Length of Stationary Phase

changed 1k 2k 3k 4k 5k

Mean

1 249 ± 166 (14;7) 282 ± 172 (25;11) 300 ± 171 (31;7) 334 ± 183 (31;7) 365 ± 189 (35;7)

0.9994 228 ± 163 (8;8) 248 ± 163 (12;14) 260 ± 159 (14;15) 258 ± 164 (12;17) 254 ± 159 (15;21)

0.9993 224 ± 159 (8;9) 246 ± 170 (9;16) 247 ± 151 (14;18) 252 ± 162 (10;21) 250 ± 162 (11;24)

0.999 219 ± 160 (5;10) 228 ± 161 (9;17) 229 ± 150 (10;23) 227 ± 153 (10;30) 228 ± 155 (11:34)

0.9985 206 ± 146 (2;11) 221 ± 157 (4;20) 219 ± 162 (3;33) 228 ± 164 (1;47) 223 ± 163 (4;60)

0.997 176 ± 125 (0;34) 188 ± 121 (0;79) 182 ± 127 (3;121) 177 ± 131 (0;146) 187 ± 122 (0;182)

Standard deviation

1 241 ± 150 (1;0) 317 ± 185 (4;0) 385 ± 203 (11;0) 441 ± 208 (23;0) 495 ± 220 (34;0)

0.9994 207 ± 131 (1;0) 235 ± 141 (1;0) 251 ± 148 (1;0) 257 ± 151 (1;0) 263 ± 152 (1;0)

0.9993 204 ± 127 227 ± 137 (1;0) 238 ± 142 (1;0) 243 ± 143 (1;0) 246 ± 144 (1;0)

0.999 193 ± 122 208 ± 128 (1;0) 212 ± 130 (1;0) 213 ± 129 (1;1) 214 ± 131 (1;1)

0.9985 179 ± 116 188 ± 118 186 ± 117 (1;1) 189 ± 124 (2;6) 187 ± 118 (0;9)

0.997 151 ± 99 (0;2) 155 ± 96 (1;10) 160 ± 97 (1;21) 162 ± 105 (4;42) 162 ± 103 (3;60)

Fig. 12 The cutting speed on X axes from 7 tests sequentially joined.

ent magnitudes and sudden and low rates. Figure 12 shows
this data set.

The goal of this experiment is to evaluate the feasibility
of the proposed ACWM with an industrial problem and com-
paring the advantage of using fading histograms. To this end,
data distributions, within the reference and the current win-
dows, were computed using fading histograms with different
values of fading factors: 1 (no forgetting at all), 0.999994
and 0.99999. Furthermore, the ability for detecting changes
in data distribution of the ACWM-fh was also compared with
the Page-Hinkley Test (PHT) [34].

The PHT is a sequential analysis technique typically used
for monitoring change detection in the average of a Gaussian
signal [32]. The two-sided PHT tests both increases and de-
creases in the mean of a sequence. For testing online changes,
it runs two tests in parallel, considering a cumulative variable
UT defined as the accumulated difference between the ob-

served values and their mean until the current moment. The
tests performed are the following:

For increase cases: For decrease cases:
U0 = 0 L0 = 0
UT = (UT−1 + xT − x̄T −δ ) LT = (LT−1 + xT − x̄T +δ )

(x̄T is the mean of the signal until the current example.)
mT = min(Ut , t = 1 . . .T ) MT = max(Lt , t = 1 . . .T )
PHU =UT −mT PHL = MT −LT

At every observation, the two PH statistics (PHU and
PHL) are monitored and a change is reported whenever one
of them rises above a given threshold λ . The threshold λ

depends on the admissible false alarm rate. A higher λ will
guarantee few false alarms, but it may lead to missed detec-
tions or delay them.
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Table 8 Detection delay time of the ACWM, of the ACWM-fh and of
the PHT, on the industrial data set.

True ACWM ACWM-fh PHTchange α = 0.999994 α = 0.99999

45000 906 910 959 190
90000 988 1331 988 270
210000 2865 2100 1749 7060
255000 9142 8452 7900 4500
375000 2496 1806 1493 8890
420000 1340 1018 1268 500

Average 2956 2603 2393 3568

To adjust the PHT input parameters, an analysis was
previously conducted on collected data with similar charac-
teristics. From that, the parameters δ and λ were set equal to
1 and 1000, respectively.

The ACWM-fh is able to detect the 6 changes in the
data with smaller detection delay time than when using his-
tograms constructed over the entire data. Moreover, with both
approaches for data representations, the model did not miss
any change. Although data has different kinds of changes, ei-
ther ACWM and ACWM-fh presented a performance which
was highly resilient to false alarms. Although detecting all
changes, the PHT presented 18 false alarms in this experi-
ment. Moreover, the average detection delay time obtained
with the PHT is greater than when performing the ACWM-fh.
Concerning the fourth change, all methods requires too much
examples to detect it. This is reasonable since before and
after the fourth change, the average of the data is similar
and the change in the standard deviation is also small. There-
fore, all methods analyzed several examples before signed a
change. Although, it should be noticed that the PHT, detected
this change with almost half the examples than the others.
With respect to the third and the fifth change, the PHT re-
quired much more examples than ACWM or ACWM-fh to
detect these changes, which are similar: the average of data
before and after the change is similar and the standard devia-
tion slightly increases. Therefore, the high delay in detecting
these kind of changes is due to the design of the PHT.

Regarding the delay between the occurrence of changes
and the detections, the number of false alarms and the missed
detections, the ACWM-fh outperforms the ACWM and the
PHT.

Table 8 presents the detection delay time of the com-
pared methods when applied to this industrial data set. It can
be observed that ACWM presents a high delay time when
detecting the fourth change (with low magnitude).

6.3 Experiments with a Medical Data Set - CTGs

The CWM was evaluated on five Fetal Cardiotocographic
(CTG) problems, collected at the Hospital de São João, in

Porto. Fetal Cardiotocography is one of the most important
methods of assessment of fetal well-being. CTG signals con-
tain information about the fetal heart rate (FHR) and uterine
contractions (UC).

Five antepartum FHR with a median duration of 70 min
(min-max: 59 - 103) were obtained and analyzed by the
SisPorto R© system. These cases corresponded to a median
gestational age of 39 weeks and 5 days (min-max: 35 weeks
and 4 days - 42 weeks and 1 day).

The SisPorto R© system, developed at INEB (Instituto
Nacional de Engenharia Biomédica), starts the computer pro-
cessing of CTG features automatically after 11 min of tracing
acquisition and updates it every minute [2], providing the
FHR baseline estimation, identifying accelerations and decel-
erations and quantifying short-term and long-term variability
according to algorithms described in (author?) [1]. Along
with these features, the system also triggers alerts, such as
"Normality criteria met alert", "Non-reassuring alerts" and
"Very non-reassuring alerts" (further details can be founded
in (author?) [1]). However, the system usually takes about
10 min to detect these different behaviors. In the "Normal"
stage of FHR tracing four different patterns may be consid-
ered [19]:

– A - corresponding to calm or non-eye movement (REM)
sleep;

– B - active or rapid eye movement (REM) sleep;
– C - calm wakefulness;
– D - active wakefulness;

Figure 13 shows an example of the analysis of a CTG
exam exactly as it is produced by the SisPorto R© system.
The FHR and UC tracings are represented at the top and
at the bottom, respectively. The FHR baseline estimation,
accelerations and decelerations and different alerts stages
also can be observed in this figure. The "Normal" stage is
represented with a green bar in between the FHR and UC
tracings. The "Suspicious" stage is represented with yellow
and orange bars and the "Problematic" stage with a red bar.

The aim is to apply the FCWM and the ACWM for this
clinical data and assess whether the changes detected are in
accordance with the changes identified by the SisPorto R©
system. Ideally these changes should be detected earlier with
CWM. The CWM was applied to the FHR tracings.

The achieved results are consistent with the system anal-
ysis and the CWM detects the changes between the different
stages earlier than the SisPorto R© system. Further than the
analysis of this program, the method is able to detect some
changes between different patterns of the "Normal" stage.
Due to difficulties in ascertaining the exact change points
between these behaviors it is not possible to perform a detec-
tion delay evaluation. However the preference of the ACWM
is again supported by the detections results in this data set.
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Fig. 13 FHR (top) and UC (bottom) tracings. This figure also includes the FHR baseline estimation, accelerations and decelerations and patterns
classification.

7 Results on Concept Change Detection

Concerning the detection of concept changes, a comparison
of the ACWM with three well known methods taken from
the literature was undertaken, namely:

– Drift Detection Method (DDM), presented by (author?)
[14];

– ADaptive WINDdowing (ADWIN) method, introduced
by (author?) [7];

– Page-Hinkley Test (PHT), described in (author?) [34];

Such comparison was done using artificial data and public
data sets. This section ends presenting results on the ability to
detect changes of the ACWM under multimensional settings.

The artificial data was obtained in MATLAB and all the
experiments were implemented in MATLAB, as well as the
graphics produced.

Drift Detection Method (DDM)

This online drift detection method monitors the trace of the
error rate of an online classifier, for streaming observations,
and considers that the error rate follows the binomial distribu-
tion. At each time t, the error rate of the online classifier is the
probability of misclassifying, pt , with a standard deviation
st =

√
pt(1− pt)/t. According to the Probability Approxi-

mately Correct (PAC) learning model, this method assumes
that in a stationary concept, the error rate decreases with the
number of observations. Therefore an increase in the error
rate indicates a change in the concept. While monitoring the
error rate, the DDM stores pmin and smin, which correspond
to the minimum probability and minimum standard devia-
tion (respectively), and are obtained when pt + st reaches its
minimum value. Based on these minimum values, the DDM
establishes two levels as follows:

– The warning level: when pt + st ≥ pmin +2smin;
– The drift level: pt + st ≥ pmin +3smin;

When the error rate exceeds the lower threshold, the sys-
tem enters in a warning mode and stores the observations
within the warning level in a short-term memory. If the error
drops below the threshold again, the warning mode is can-
celed. However, if the error increases reaching the second
(higher) threshold, a change in the concept is assigned. The
online classifier is retrained using only the observations in
the buffer and reinitializes the variables.

ADaptive WINdowing (ADWIN)

The ADaptive WINDdowing method keeps a sliding window
W (with length n) with the most recently received exam-
ples and compares the distribution on two sub-windows of
W . Whenever two large enough sub-windows, W0 and W1,
exhibit distinct enough averages, the older sub-window is
dropped and a change in the distribution of examples is as-
signed. The window cut threshold is computed as follows:

εcut =
√

1
2m ln 4

D , with m = 1
1/n0+1/n1

, where n0 and n1

denote the lengths of W0 and W1.
A confidence value D is used within the algorithm, which

establishes a bound on the false positive rate. However, as
this first version was computationally expensive, the authors
propose to use a data structure (a variation of exponential
histograms), in which the information on the number of 1’s
is kept as a series of buckets (in the Boolean case). It keeps at
most M buckets of each size 2i, where M is a user defined pa-
rameter. For each bucket, two (integer) elements are recorded:
capacity and content (size or the number of 1s it contains).
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Page Hinkley Test (PHT)

To detect increases, the Page-Hinkley Test (PHT) computes
the minimum value of cumulative variable: mT = min(Ut , t =
1 . . .T ) and monitors the difference between UT and mT :
PHT =UT −mT . When the difference PHT is greater than a
given threshold (λ ) a change in the distribution is assigned.
Controlling this detection threshold parameter makes it pos-
sible to establish a trade-off between the false alarms and the
missed detections.

7.1 Experiments with artificial data

To assess the performance of these methods in detecting
concept changes in different scenarios, different experiments
were carried out. The number of false alarms, the missed
detections and detection delay time were evaluated using
data underlying a Bernoulli distribution and public data sets.

This set of experiments uses data streams of lengths L =
2.000, 5.000 and 10.000, underlying a stationary Bernoulli
distribution of parameter µ = 0.2 during the first L−1.000
examples. During the last 1.000 examples the parameter is
linearly increased to simulate concept drifts with different
magnitudes. The following slopes were used: 0 (no change),
10−4, 2.10−4, 3.10−4 and 4.10−4. For each type of simulated
drift, 100 data streams were generated with different seeds.
These experiments also allow to analyze the influence, in the
delay time until detections, of the length of the stationary part
(the first L−1.000 samples). With respect to the ACWM-fh,
since in this experiment data was binary, the number of bins
in the histograms is k = R

2
√

ε
= 3 and, therefore, the length of

the reference window was set as L/5 (instead as k) and the
initial evaluation step (IniEvalStep) was set to 50. Note that
the choice of IniEvalStep does not great affect the detection
delay time results. The change detection threshold (δ ) was set
to 10−4. The parameters δ and λ of the PHT were set equal
to 0.05 and 10, respectively. For the ADWIN, the values of 5
and 0.05 were used for the parameters M and δ , in order to
present similar false alarm rates to DDM. These parameters
values were decided using similar training data.

Table 9 shows a summary of the performance of the four
methods compared: ADWIN, DDM, PHT and ACWM-fh
(with fading factor α = 0.9994). The rows are indexed by
the value of L and corresponding slope, presenting the delay
time (DDT ) until the detection of the change that occurs at
time stamp L−1.000 (averaged over the 100 runs), the total
number of missed detections (#MD) and the total number of
false alarms (#FA).

For different stream lengths, the first row (slope 0) gives
the number of false alarms. The PHT tends to present more
false alarms than any of the other methods. The ACWM-fh
only presents false alarms for streams with a length of 10.000.

For these cases, the number of false alarms of ACWM-fh and
ADWIN is similar.

In general, the increase of the data streams length leads
to an increase in the number of false alarms and missed detec-
tions. As is reasonable for all the methods, the increase in the
slope of Bernoulli’s parameter contributes to a decrease in
the time until the change is detected. Fewer false alarms and
missed detections resulted also from slope increases. For all
the streams and looking at the detection delay time, the AD-
WIN wins over DDM, presenting a similar number of false
alarms and missed detections. For detection delay time, in all
the cases, the PHT outperforms the ADWIN. Additionally,
in most cases, PHT does not miss changes. However, PHT
results are compromised with the highest number of false
alarms among the four methods. In a concept drift problem,
when a change detector is embedded in a learning algorithm,
this is a huge drawback. The occurrence of a concept drift
implies the relearning of a new model in order to keep up
with the current state of nature. In the presence of a false
detection, the model, which is updated, will be unnecessarily
replaced by a new one. On the other hand, in learning scenar-
ios, missed detections are also harmful. They entail outdated
models that are not describing the new evolving data.

Regarding this trade-off between false alarms and missed
detections, the ACWM-fh presents the best results, with de-
tection delay times almost as low as the ADWIN.

7.2 Experiments on a public data set

In the previous experiment, the data set did not allow the
performance of the different change detection methods to be
evaluated in large problems, which is important since con-
cept drift mostly occurs in huge amounts of data arriving in
the form of streams. To overcome this drawback, an eval-
uation of the change detection algorithms was performed
using the SEA concepts data set [38], a benchmark problem
for concept drift. Figure 14 shows the error rate (computed
using a naive-Bayes classifier), which presents three drifts.
The drifts and the corresponding detections, signed by the
analyzed methods, are represented by dashed and solid lines,
respectively. Concerning the ACWM-fh, since k = 3 and
considering the length of the stream, the length of the refer-
ence window was set as 1000k (instead as k) and the initial
evaluation step (IniEvalStep) was set to 100k. The change
detection threshold (δ ) was set to 10−4. The input parame-
ters for the other three methods remain the same as in the
previous experiment.

Table 10 presents the delay time in detecting concept
drifts in this data set. In can be seen that all the algorithms
require too many examples to detect the first drift. The ex-
ception is ACWM-fh (α = 0.9994), which takes only almost
half the examples of the second "best" method (ADWIN) to
detect the first drift. For all the methods, the resilience to
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Fig. 14 Evolution of the error rate and the delay times in drift detection using the four presented methods (ACWM was performed using fading
factors - α = 0.9994). Vertical dashed lines indicate drift in data, and vertical solid lines indicate when drift was detected.
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Table 9 Average detection delay time (DDT ), number of false alarms (#FA) and the number of missed detections (#MD), for the four methods,
using the data streams with lengths 2.000, 5.000 and 10.000 and with different slopes in the Bernoulli parameter distribution. For slope = 0 (no
change) the measurements DDT and #MD are not applicable.

Length Slope
ADWIN DDM PHT ACWM-fh (α = 0.9994)

DDT #FA #MD DDT #FA #MD DDT #FA #MD DDT #FA #MD

2.000

0 (n.a.) 5 (n.a.) (n.a.) 0 (n.a.) (n.a.) 4 (n.a.) (n.a.) 0 (n.a.)

1.10−4 582 0 3 627 0 2 573 0 3 629 100 5

2.10−4 578 0 0 687 0 16 523 0 0 620 0 0

3.10−4 428 0 0 537 0 0 397 0 0 550 0 0

4.10−4 359 0 0 534 0 0 331 0 0 430 0 0

5.000

0 (n.a.) 17 (n.a.) (n.a.) 17 (n.a.) (n.a.) 41 (n.a.) na 0 (n.a.)

1.10−4 722 16 30 866 21 77 650 23 13 849 0 27

2.10−4 512 13 13 732 19 37 463 25 0 632 0 0

3.10−4 383 14 14 668 20 17 337 32 0 539 0 0

4.10−4 320 10 10 587 9 12 279 29 0 273 0 0

10.000

0 (n.a.) 15 (n.a.) (n.a.) 44 (n.a.) (n.a.) 68 (n.a.) (n.a.) 20 (n.a.)

1.10−4 722 19 35 829 39 94 650 60 10 828 14 54

2.10−4 505 19 19 843 56 57 466 71 0 678 15 5

3.10−4 401 17 17 720 29 53 344 68 0 576 16 1

4.10−4 327 23 23 642 52 41 280 66 0 507 22 6

Table 10 Detection delay time of the compared methods, when per-
formed in the SEA data set.

# Drift
Detection Delay Time

ADWIN DDM PHT ACWM-fh

1 826 3314 1404 553
2 115 607 118 234
3 242 489 258 288

false alarms and the ability to reveal changes without missing
detections must be stressed.

Comparing the results in detecting the first drift, the
ACWM-fh has a clear advantage, significantly reducing the
detection delay time. For the second drift, with respect to
detection delay times, the performance of ADWIN and PHT
is similar, and smaller than the one presented by ACWM-fh.
Concerning the third drift, the performance of ADWIN, PHT
and ACWM-fh is similar. These three methods clearly per-
form better than DDM. It must be pointed out that, with the
exception of PHT (which presents 1 false alarm), the other
three methods were resilient to false alarms.

In evolving learning scenarios, the time required to pro-
cess examples plays an important role. When comparing the
MATLAB execution time of these methods, the ACWM-fh

Table 11 MATLAB execution time when performing the methods ana-
lyzed.

# Drift
Execution Time

ADWIN DDM PHT ACWM-fh

1 0.9424 0.9387 2.4780 0.0607
2 0.6145 0.4774 1.2605 0.2386
3 0.7360 0.6219 1.8829 0.0715

presents smaller exectution time against the other methods
(for the three drifts), as shown it Table 11. It must be pointed
out that ADWIN was performed in MATLAB but the code
was implemented in JAVA, which may increase the execution
time.

7.3 Experiments on generated data streams

To compare the performance of the different change detec-
tion methods in drift scenarios, several data streams were
generated. The data stream generators are Waveform, LED,
RT and RBF as implemented in MOA [8]. The Waveform
stream is a three class problem defined by 21 numerical
attributes, the RBF and the RT streams are two-class prob-
lems defined by 10 attributes. The data was generated by
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emulating a concept drift event as a combination of two dis-
tributions. For the Waveform and RBF data sets the first
distribution was generated with the WaveformGenerator and
the RandomRBFGenerator (respectively) and the second dis-
tribution was generated with the WaveformGeneratorDrift
and the RandomRBFGeneratorDrift (respectively). For sec-
ond stream of Waveform data set, the number of attributes
with drift were set to 21. The second RBF stream was gener-
ated setting the seed for the random generation of the model
to 10 and adding speed drift to the centroids of the model
(0.01). For the RT data set, both distributions were gener-
ated with the RandomTreeGenerator, varying the seed of
the second concept. For all the streams the change occurs at
example 32k. The learning algorithms are VFDT majority
class (VFDT-MC) and VFDT Naive-Bayes adaptive (VFDT-
NBa) as implemented in MOA. Figure 15 presents, for both
learning algorithms, the prequential error in each data set.
After an initial and abrupt decrease, it is possible to observe
that around example 32k, the prequential error increases as
expected and as a result of the concept drift emulated.

Table 12 presents a summary of the performance of the
four methods compared: ADWIN, DDM, PHT and ACWM-
fh (with fading factor α = 0.9994). Besides the detection
delay time and the execution time, the total number of missed
detections and the total number of false alarms are also shown.
The results report the average and standard deviation of 5
runs.

From table 12 it can be noticed that the drift in the RBF
data set is the most difficult to detect, since when using the
error from both the learning algorithms, all the 4 methods
presented higher detection delay time (with the exception of
the ACWM-fh, with fading factor α = 0.9994, when applied
to the error of the VFDT-NBa algorithm). It also be stressed
out the ability of the 4 change detection methods in detecting
drifts and their resilience to false alarms (only the DDM pre-
sented 3 false alarms when detecting drifts on the waveform
error of the VFDT-NBa algorithm). It can also be observed,
that for the 3 data sets and both learning algorithms, the AD-
WIN outperforms the other 3 methods, presenting smaller
detection delay time. However, it requires more time to pro-
cess the data than the other 3 methods (it must be pointed
out that ADWIN was performed in MATLAB but the code
was implemented in JAVA, which may increase the execution
time). With respect to the other 3 methods, regarding the
detection delay and execution times, the ACWM-ff presents
the smallest results.

Moreover, as stated before, when learning in dynamic
scenarios, the time required to process examples is of utmost
importance. When embedding a change detection method
in a learning algorithm it must be taking into account the
trade-off between detection delay and execution times. The
overall accuracy of the learning algorithm will depend of the
earlier adaptation in the presence of drifts. On the other hand,

the time required to process examples must be minimal to
guarantee that the process is performed at the arrival rate of
data. Considering the results from this experiment, it seems
that the ACWM is the best method to embed in a learning
algorithm.

7.4 Numerical High Dimensional Data set: MAGIC Gamma
Telescope Benchmark

To evaluate the performance of the ACWM in multidimensi-
nal data, the UCI MAGIC Gamma Telescope [28] data set
was used. The use of such data set has the advantage of con-
sisting of two known classes, allowing an easy validation of
the splits. This data set, which consists of 19020 data points
in 2 classes with 10 numerical (real) attributes (’fLength’,
’fWidth’, ’fSize’, ’fConc’, ’fConc1’, ’fAsym’, ’fM3Long’,
’fM3Trans’, ’fAlpha’ and ’fDist’). To transform this data set
into a data stream with a change, the data set was split on
class label, simulating a single stream composed first by the
examples of class ’gamma’ (12332 data points) and followed
by the examples of class ’hadron’ (6688 data points), and
the class labels were removed. Figure 16 shows the modified
data for each attribute in this data set, in some attributes the
change is easily observed, while for other is not noticeable.

Since the data is not ’time labeled’ and to obtain results
independent from the examples order, for each attribute, the
examples within each class were shuffled. This strategy was
repeated obtaining 100 different ordered data sets.

This approach for detecting changes was evaluated in
all these simulated data sets. Performing the change detec-
tion test (using ACWM and FCWM) it was expected to
detect changes around the class change point (12332). In
multidimensinal settings, the comparison of distributions
must be performed at the same evaluation point for each
attribute. Therefore, the initial evaluation step was set to
IniEvalStep = min

i=1,...D
(ki), where D is the number of dimen-

sions. In this experiment, the length of the reference window,
needed to be adjusted because the range of attribute ’fAsym’
was around 1000. Therefore, the LRW was set to 3k. The
remaining parameters were not adjusted.

Figures 17 and 18 present the detection delay time (aver-
age results for 100 runs) and execution time, respectively, of
the CMW when performed in this multidimensinal data set. It
can be observed that, along the different fading factors used
in the histograms, the ACWM outperforms FCWM (with sim-
ilar execution time, as show in figure 18). The use of fading
factors reveal to be advantageous, significantly reducing the
detection delay time. It must be pointed out that this decrease
in the detection delay time was obtained in similar execution
time as presented in figure 18. The resilience to false alarms
and the ability to reveal changes without missing detections
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Fig. 15 Prequential error, for VFDT-MC and VFDT-NBa learning algorithms, for the 3 data sets considered.

Table 12 Detection delay time (DDT) and execution time for the 4 compared change detection methods. The results report the average and standard
deviation of 5 runs. In parenthesis is the number of runs, if any, where the algorithm misses detection or signals a false alarm: they are in the form
(Miss; False Alarm).

ADWIN DDM PHT ACWD-ff0.994
DDT ExTime (av.) DDT ExTime DDT ExTime DDT ExTime

VFTD-MC
RBF 109 ± 56 6,09 1144 ± 139 4,94 767 ± 156 1,53 365 ± 117 0,41
RT 31 ± 14 4,73 436 ± 78 5,51 317 ± 57 1,64 249 ± 71 0,53

WAVE 46 ± 16 3,82 787 ± 120 5,53 458 ± 89 1,74 361 ± 125 0,65

VFTD-Nba
RBF 36 ± 16 5,52 615 ± 67 5,07 443 ± 55 1,35 206 ± 64 0,22
RT 26 ± 15 4,47 351 ± 38 5,51 280 ± 26 1,67 302 ± 157 0,12

WAVE 22 ± 10 3,36 220 ± 186 (0;3) 5,01 281 ± 202 1,30 189 ± 102 0,62
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Fig. 16 Data distribution of each attribute in the MAGIC Gamma Telescope data set.

Fig. 17 Detection delay time (average over 100 runs) in the MAGIC
Gamma Telescope data set.

must be stressed (only in the ACWM-fh with α = 0.9994
was obtained 2 false alarms and 2 missed detections).

8 Conclusions and further research

This paper presents a windowing scheme to detect distri-
bution and concept changes. The ACWM is based on the
online monitoring of the distance between data distributions,
which is evaluated through a dissimilarity measure based
on the asymmetry of the Kullback-Leibler divergence. The
novelty relies on the approach that provides the representa-
tion of the data distribution. The fading histograms provide a

Fig. 18 Execution time (over 100 runs) in the MAGIC Gamma Tele-
scope data set.

more updated representation of the data since outdated data is
gradually forgotten. The advantage of such a representation
structure works in favor of the detection of changes. The
experimental results on artificial and real data, show that
when using fading histograms to represent data instead of
standard histograms, the time to detect a change is signif-
icantly reduced. The obtained results also sustain that the
ACWM to detect distribution changes is robust to noise and
exhibit a good performance under several stationary phases.
Moreover, the experiments carried out with respect to the
detection of concept changes show that, considering both
the false alarms and the missed detections, the ACWM-fh
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outperforms the other methods and presents detection delay
times similar to ADWIN. The advantage of using fading his-
tograms to compare data distributions is also disclosed in a
multidimensinal data set. Overall, the ACWM-fh presented a
performance which was highly resilient to false alarms, under
different kinds of distribution changes. However, this win-
dowing model detects changes but does not provide insights
on the description of a change. Nowadays, data is becoming
increasingly evolved, making mandatory to go beyond the
detection of changes and performing change analysis. For in-
stance, it is important to identify if a change is an increase or
a decrease and explore if there are relations or explanations
on the occurrence of changes. Furthermore, the construction
of the fading histograms must take into consideration that in
dynamic scenarios, the range of the variable may shrinks or
stretches over time. Therefore, the intervals must be adaptive,
evolving over time. Moreover, when embracing the multi-
dimensinal data, the ACWM must take into consideration
possible correlations between features.
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