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Abstract 

Major depression is a common and debilitating condition. However, initial treatment 

is ineffective for almost half of all patients. This thesis aims to clarify the mechanisms 

of a novel putative treatment for depression, transcranial direct current stimulation 

(tDCS), which targets the dorsolateral prefrontal cortex (DLPFC). The first 

experimental chapter tests whether DLPFC tDCS alters emotional face perception, 

akin to the acute effects of antidepressant drugs. Our analyses revealed that tDCS 

does not exert an antidepressant-like effect on emotion perception, but may affect 

non-emotional cognition. The second experimental chapter examines neural 

activation in depressed patients, unaffected first-degree relatives of depressed 

patients, and healthy controls during the n-back working memory task and a facial 

emotion processing task. During the n-back, depressed patients showed pronounced 

DLPFC hypoactivation, while at-risk participants were indistinguishable from healthy 

controls, consistent with the hypothesis that DLPFC dysfunction might be a useful 

target for depression treatment. In the final two chapters, I report results from a 

double-blind randomized controlled trial that for the first time tested DLPFC tDCS as 

an augmentation strategy to psychotherapy in depression, measuring its neural, 

cognitive, and clinical effects. On the primary outcome measure (observer-rated 

depressive symptoms) active tDCS did not show a significant improvement over 

sham stimulation, although the difference was in the hypothesised direction. 

However, baseline DLPFC activation during the n-back strongly predicted clinical 

outcome, with this association specific to the active tDCS condition. Thus, baseline 

DLPFC activation might serve as a putative ‘biomarker’ for clinical response to tDCS. 

In the general discussion, these experimental findings are discussed in the context of 

contemporary theories of depression. This thesis adds new insights into the possible 

mechanisms of tDCS as a treatment for depression. It also demonstrates the added 

value of neuroimaging to psychiatry clinical trials, highlighting a potential role for 

predicting treatment outcome.  
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Chapter 1: General Introduction 

1.1 Major depressive disorder 

Written descriptions of depression date as far back as classical antiquity. In his 

Aphorisms, Hippocrates defines a melancholy as a “fright or despondency which 

lasts for a long time,” characterised by an “aversion to food, despondency, 

sleeplessness, irritability, and restlessness” (Hippocrates). In perhaps the earliest 

medical theory of depression, he attributes melancholic states to cerebral 

dysfunction resulting from an excess of black bile, one of the four humours according 

to the Ancient Greeks. Ishaq ibn Imran, a physician in Baghdad circa 900 A.D., 

suggested that “melancholy is a feeling of dejection and isolation which forms in the 

soul because of something which the sufferer thinks is real but which is actually 

unreal” (Davison, 2006). These early descriptions illustrate the nature of depression 

as linked to typical feelings (despondency; dejection; isolation) but transcending the 

normal bounds of emotions, lasting longer and incurring substantial physiological 

and psychological disturbance.       

The current Diagnostic and Statistical Manual of Mental Disorders (DSM-5) requires 

at least two weeks of a substantially lowered mood and/or a loss of interest of 

pleasure in daily activities to meet criteria for major depressive disorder (also known 

as unipolar depression) (American Psychiatric Association, 2003); these symptoms, 

also known as dysphoria and anhedonia, are the cardinal symptoms of depression. 

In addition, four (or three if both cardinal symptoms are present) of the following 

symptoms are required to have been present nearly every day: significant weight 

change or change in appetite; activity changes (psychomotor agitation or 
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retardation); fatigue or loss of energy; guilt or worthlessness; concentration 

difficulties; suicidality; and insomnia or hypersomnia (one of Hippocrates’ Aphorisms 

also states: “both sleep and insomnolency, when immoderate, are bad”).  

The ICD-10 uses broadly similar, though not identical criteria: in addition to low mood 

and anhedonia, fatigue (or low energy) is considered a key symptom (World Health 

Organization, 1992). Patients experiencing any of these three key symptoms (most 

of the time for at least two weeks) are then asked about the remaining six symptoms 

in the DSM diagnostic criteria, with the addition of a seventh symptom, low self-

confidence. From this, the degree of depression is designated as ‘not depressed’ 

(presenting with fewer than four symptoms); ‘mild depression’ (four symptoms); 

‘moderate depression’ (five or six symptoms); or ‘severe depression (seven or more 

symptoms, with or without psychotic symptoms).  

It is notable that to meet DSM diagnostic criteria for depression, the above 

symptoms must not only be present but must produce a functional impairment. This 

is common to all psychiatric disorders, and originates from the psychiatrist Robert 

Spitzer. Tasked with deciding whether or not to include homosexuality as a diagnosis 

in the DSM-II, Spitzer feared that eliminating homosexuality from the DSM-II would 

give weight to antipsychiatrists’ claims that all diagnoses were merely artificial social 

constructs (Lieberman and Ogas, 2015). To resolve this, he invented the concept of 

subjective distress, requiring any psychiatric diagnosis to cause emotional distress or 

functional impairment, which would prove fundamental to future editions of the DSM. 

In the current DSM, the diagnostic criteria for a major depressive episode require 

symptoms to have caused clinically significant distress or impairment in social, 

occupation, or other important areas of functioning (American Psychiatric 
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Association, 2003). Arguably, this functional impairment is also one of the most 

important measures of a successful intervention.  

Today, depression is the leading global cause of disability, affecting more than 300 

million people worldwide (World Health Organization, 2017). It contributes to 

significant premature mortality, due to elevated suicide rates and circulatory 

disorders in depressed patients (Angst et al., 2002). Together, depression and 

anxiety cost the global economy $1 trillion each year, equivalent to nearly 1/3 of the 

UK’s gross domestic product (GDP) (Chisholm et al., 2016). Despite extensive 

research for new treatment targets, pharmacological and psychological interventions 

for depression have changed little in the past thirty years. The difficulty in developing 

new treatments arises in part because depression is a syndrome of unknown and 

possibly heterogeneous aetiology. However, both pharmacological and 

psychological treatments alter a number of neural and cognitive abnormalities in 

depression, shedding light on the origins of the disorder, and potentially informing 

the development of novel interventions.   

In the first half of this introductory chapter, I will describe how two of the most 

common treatments for depression, antidepressant medication and psychotherapy 

(in particular cognitive behavioural therapy: CBT) might alter the major neural 

circuitry disrupted in depression. I will synthesize research showing evidence for the 

effect of antidepressant medication on low-level affective biases, the effect of CBT 

on high-level negative schemata, and the role of non-emotional cognition (in 

particular cognitive control) on the effectiveness of both treatment types. I will 

describe how these findings are integrated in the cognitive neuropsychological model 

of depression (Harmer et al., 2009a; Roiser et al., 2012). From this basis, I will 
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hypothesize how the cognitive neuropsychological model might account for the 

antidepressant effects of experimental non-invasive neurostimulation treatments in 

depression, in particular transcranial direct current stimulation (tDCS).  

In the second half of the chapter, I will review the neurophysiological, behavioural 

and neural circuit effects of tDCS, before evaluating the efficacy of dorsolateral 

prefrontal cortex (DLPFC) tDCS as a treatment for depression. Next, I will explain 

the logic underlying a prediction that DLPFC tDCS exerts its beneficial effects in 

depression through its actions on top-down cognitive control, via direct modulation of 

the DLPFC. This is consistent with one of the hypotheses of the cognitive 

neuropsychological model, that cognitive control (and corresponding DLPFC activity) 

might both confer resilience against depression and facilitate response to CBT. I will 

then explain how symptoms of depression might be targeted by combining tDCS of 

the DLPFC with CBT. Finally, I will outline how I propose to test these hypotheses in 

this thesis. 

1.2 Common treatments for depression  

In the majority of patients, depression is treatable. Psychotherapy and 

antidepressant medication constitute the primary treatment options for the vast 

majority of patients with depression today. For individuals who fail to respond to 

either, electroconvulsive therapy (ECT) can also be highly effective, though it is only 

used in patients who have not benefited from a series of treatments (UK ECT 

Review Group, 2003). CBT and antidepressant medication have similar efficacies in 

treating depression (Arroll et al., 2005; Cuijpers et al., 2008a). Traditionally, however, 

these treatments have been explained via radically distinct mechanisms.  
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The explanation for effects of antidepressant medication (predominantly selective 

serotonin reuptake inhibitors, SSRIs, but also drugs that act on the noradrenaline 

system) is usually couched in terms of neurochemical models of depression 

(reviewed in more detail in section 1.2.1 below), specifically an increase in 

monoamine neurotransmission. The classic monoamine hypothesis of depression 

proposed that such treatments correct an underlying deficiency in monoamine 

transmission (Coppen, 1967; Cowen and Browning, 2015). While some 

neuroimaging (Meyer et al., 2006), candidate gene association (Caspi et al., 2003; 

Kendler et al., 2001), and peripheral biochemical (Banki, 1978; Paul-Savoie et al., 

2011) studies support the hypothesis that serotonin is disrupted in depression, 

findings are generally inconsistent, and the precise nature, direction and role of this 

disruption remains unclear (Delgado, 2000; Delgado et al., 1999). 

In contrast, the explanation for the effects of CBT is usually couched in terms of 

Beck’s classic cognitive model of depression (reviewed in more detail in section 

1.2.2 below), in which symptoms originate from stressor-activated latent negative 

schemata, which directly influence mood and additionally alter basic information 

processing (Beck, 1979; Disner et al., 2011). In the context of this model, addressing 

these schemata directly, through CBT, targets the primary psychological mechanism 

that gives rise to symptoms.  

1.2.1 Antidepressant medication 

The discovery of antidepressant drugs began when patients with tuberculosis were 

treated with iproniazid and reported mood-elevating side effects. Within a year of 

publishing a report on these effects, over 40,000 depressed patients were treated 

with iproniazid (Shulman et al., 2013). Soon thereafter, the mechanism of action was 



19 
 

discovered: iproniazid was found to inhibit the enzyme monoamine oxidase. Tricylic 

antidepressants, which were discovered soon after and elicited less severe side 

effects than iproniazid, were found to have the same mechanism of action (Shulman 

et al., 2013).  

The discovery of antidepressant medications (and their actions on the monoamine 

system) caused a paradigm shift in the field of psychiatry, opening a window into 

investigating the possible neural mechanisms of depression. The finding that 

antidepressant medications improve mood through monoaminergic-dependent 

effects contributed perhaps the most influential theory of depression aetiology to 

date: the monoamine-deficiency hypothesis (Coppen, 1967). The monoamine 

deficiency hypothesis implicates serotonergic, noradrenergic, and dopaminergic 

neural circuitry in the aetiology of depression, postulating that depression originates 

from a deficiency in monoamine transmission in the brain. The monoamine-

deficiency hypothesis of depression has had particularly strong predictive power in 

relation to treatments. Over the decades since the discovery that iproniazid elevated 

mood, numerous novel compounds typically targeting serotonergic and 

noradrenergic systems have been developed into effective antidepressant 

medications (Belmaker and Agam, 2008). These medications have had a prodigious 

impact on the lives of many depressed patients. The majority of depressed patients 

eventually respond to a course of antidepressant medication (Arroll et al., 2005); 

approximately one-third remit after their first course of medication (Rush et al., 

2006). Moreover, long term medication treatment (most commonly with 

antidepressants, but also including medications such as neuroleptics and lithium) 

substantially lowers suicide rate in depressed patients (Angst et al., 2002).  
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Proving the central tenet of the monoamine hypothesis – that some deficiency in 

monoamine neurotransmission exists in patients with depression – has been more 

difficult. Attempts to evaluate monoamine systems via the plasma, urine, or 

cerebrospinal metabolites of depressed patients, as well as the brains of post-

mortem depressed patients, have yielded largely inconsistent results (Belmaker and 

Agam, 2008; Ordway et al., 2002). Molecular imaging studies have produced 

somewhat clearer findings: a meta-analysis of positron emission tomography (PET) 

and single-photon emission computed tomography (SPECT) studies found 

reductions in midbrain and amygdala serotonin transporter density; this meta-

analysis also found a relationship between depression severity and reduction in 

serotonin transporter density in the amygdala (Gryglewski et al., 2014). However, 

these reductions were so subtle that no individual study had sufficient power to 

detect them (Gryglewski et al., 2014). Additionally, the precise interpretation of these 

results is unclear, as reduced serotonin transporter density should in theory result in 

an increase in serotonin transmission (analogous to the actions of antidepressant 

drugs). One possibility is that such reductions may reflect a reduced number of 

serotonin neuron terminals, but direct evidence for this is lacking. 

Perhaps the strongest evidence for the involvement of the serotonin system emerges 

from amino acid depletion studies: dietary depletion of tryptophan, the essential 

amino acid precursor to serotonin, can induce a transient return of some symptoms 

in remitted depressed patients (Neumeister et al., 2004). A meta-analysis of 

monoamine depletion studies found tryptophan depletion decreased mood in 

remitted patients and healthy controls with a family history of MDD, but not healthy 

controls (Ruhé et al., 2007). Other studies have inhibited the rate-limiting enzyme in 

the synthesis of noradrenaline using alpha-methyl-para-tyrosine (AMPT), but this 
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often has no effect on mood (Ruhé et al., 2007), even in currently-depressed 

patients (Miller et al., 1996). Thus, reductions in monoamine transmission do not 

seem to fully account for the complexities of human depression.   

Studies over the past few decades have suggested that a course of antidepressant 

medication seems to normalize the typical dysfunctional pattern of brain activity in 

depression: hypometabolism in neocortical regions, including prefrontal and parietal 

cortices, and hypermetabolism in limbic and paralimbic areas (Delaveau et al., 2011; 

Fitzgerald et al., 2008). A meta-analysis of fMRI studies showed that antidepressant 

drug treatment increases hypoactive regions in the dorsolateral, dorsomedial, and 

ventrolateral prefrontal cortices, and decreases hyperactivity of the amygdala, 

hippocampus, parahippocampal region, ventral anterior cingulate cortex, orbitofrontal 

cortex, and insula (Delaveau et al., 2011). Activation in some of these regions also 

seems predictive of clinical response: baseline activation in regions including the 

subgenual anterior cingulate cortex and the amygdala is associated with response to 

antidepressant medication (Chen et al., 2007; Davidson et al., 2003; Keedwell et al., 

2009, 2010; Langenecker et al., 2007; Siegle et al., 2007a), shedding light on the 

possible neural mechanisms driving treatment response.   

In sum, research on the monoamine hypothesis has shown relatively definitively that 

the effects of the most common antidepressant drugs on mood are related, at least 

in part, to their actions on serotonergic and noradrenergic neurotransmitter systems. 

However, it has not shown definitively that a monoamine deficiency exists in 

depression (and, if it exists, what aspect of neurotransmission is affected). Indeed, 

one of the strongest arguments against the monoamine-deficiency hypothesis is that 

the drugs purportedly remedying this deficiency – antidepressants – have no clinical 
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effect in up to 40% of patients with depression (Arroll et al., 2005). A meta-analysis 

of antidepressant efficacy found that in cases of severe depression, antidepressant 

medication does slightly exceed placebo treatment (i.e., has a small but significant 

effect size), but seems to have a weaker effect relative to placebo in mild-to-

moderate depression (Fournier et al., 2010). Thus, there is a critical need for other 

effective antidepressant treatments, and with it, a more complete understanding of 

the neural mechanisms contributing to symptoms.   

1.2.2 Psychotherapy 

Psychotherapy is the other major class of treatments for depression. It aims to treat 

mental illness through talking therapy, sometimes in addition to pharmacological 

therapy. Despite its popularity since the start of the 20th century, until 1970 no study 

had shown psychological therapy to be more effective than no-treatment control 

conditions in depression (Kendall and Hollon, 2013). However, the growing rejection 

of psychoanalytic techniques by the mid-to-late 20th century led many psychiatrists 

and psychologists to develop new, empirically-tested talking therapies, some of 

which show treatment efficacies at least equal to antidepressant medication. 

There are a number of approaches to psychotherapy, which in general all involve 

semi-guided dialogue with a therapist. In traditional psychodynamic forms, which 

derive from psychoanalytical theory, the eventual goal is a patient acquiring insight 

into the phenomenology and supposed origins of his or her symptoms. In the context 

of depression, this might involve a patient’s exploring early-life experiences or 

current relationship dynamics that have led to their current feelings of guilt or 

sadness. Such psychoanalytic forms of psychotherapy do not involve direct 

manipulation of observable (often behavioural) outcomes (Kendall and Hollon, 2013). 
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On the other side of the therapeutic spectrum lie behavioural therapies, which aim to 

explicitly change a patient’s maladaptive behaviours. In the context of depression, 

this might involve setting pragmatic, feasible goals (‘see friends’, ‘apply for job’), but 

involve little or no discussion of his or her symptoms’ origins or phenomenology.  

CBT is based on Beck’s cognitive theory of depression, in which depression is 

conceptualised as a disorder of cognitive processing, with emotional biases arising in 

memory, attention, and interpretation of events. In Beck’s model, negative mood is 

thought to originate from negative thoughts and beliefs; negative thoughts are also 

thought to impair normal behaviour (Kendall and Hollon, 2013). CBT adopts many of 

the techniques of purely behavioural therapies (e.g., setting pragmatic goals), but 

differs from behavioural therapy on several accounts, most notably the use of 

cognitive techniques (e.g., testing various belief systems) often to attain the same 

eventual (behavioural) goal as behavioural therapy (Kendall and Hollon, 2013). As a 

consequence, CBT directly targets negative cognitions in depression, identifying, 

evaluating, and trying to change maladaptive belief systems and dysfunctional 

negative information processing (Beck, 1979; Kendall and Hollon, 2013).  

Today, CBT is one of the most common and effective treatments for major 

depression (Churchill et al., 2002) with a similar effect size to antidepressant 

medication (DeRubeis et al., 2005). Likewise, only about 60% of patients show an 

adequate response to CBT (Rush et al., 2006). There is some evidence that 

combined pharmacotherapy and psychotherapy is more effective than 

antidepressant medication alone, and that the effects of pharmacotherapy and 

psychotherapy are largely independent from each other (Cuijpers et al., 2014). There 

also may be a difference in the durability of response: patients treated to remission 
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with CBT are less likely to subsequently relapse than those treated with 

antidepressant medication (Gloaguen et al., 1998).  

However, a major problem in determining the efficacy of psychotherapy is selection 

of a control condition. Comparing all psychotherapies to wait-list controls, 

psychotherapy has a large effect size: Cohen’s d=0.88 (Cuijpers et al., 2008b). But 

comparing to care-as-usual or placebo control groups, this effect size is more than 

halved (Cohen’s d=0.35). This demonstrates the necessity of stringent control 

conditions in trials evaluating the efficacy of psychotherapies. Unfortunately, there is 

a relative dearth of psychotherapy trials with adequately strong control arms (such as 

medication or other bona fide therapies), contributing to highly variable reports of 

efficacy.  

Even using stringent control conditions, the efficacy of psychotherapy interventions 

for depression varies widely between different therapeutic approaches. A systematic 

review of 125 clinical trials using psychotherapy to treat major depression found 

strong evidence to support the use of CBT, interpersonal therapy (IPT), and 

behavioural therapy in the treatment of depression (Hollon and Ponniah, 2010), while 

there was only preliminary evidence (i.e, results had not yet been replicated) for the 

use of brief dynamic therapy and emotion-focused therapy. More traditional 

psychodynamic, experiential-humanistic, and marital and family approaches were 

met with little empirical support in clinical trials.  

Like antidepressant medication, there is also a substantial proportion of non-

responders to psychological therapy (Cuijpers et al., 2008a). Perhaps surprisingly, 

the finding that antidepressant drugs are efficacious in severe depression but not 
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milder cases (Fournier et al., 2010) is mirrored for psychological therapies. A meta-

analysis of 132 studies found a greater efficacy of psychological therapies in patients 

with high-severity (Cohen’s d=0.63) than in those with low-severity depression 

(Cohen’s d=0.22), when compared with stringent controls (pill placebos or other 

psychological therapies) (Driessen et al., 2010). This modulatory influence of 

severity may be driven by a greater efficacy of nonspecific control interventions in 

remediating milder forms of depression (Hollon and Ponniah, 2010). It may also 

complicate study design of (and conclusions from) randomised controlled trials 

(RCTs), if a substantial proportion of patients’ depression responds to the 

expectation of change (whether from a pill or from contact with a therapist).   

While some studies show similar neural mechanisms between antidepressant 

medication and psychotherapy (e.g., normalized prefrontal cortex metabolism (Brody 

et al., 2001a)), it has been theorized that CBT operates by normalising disrupted 

prefrontal function in depression (possibly in a manner akin to cognitive training, 

which is effective in other psychiatric disorders, e.g. (Genevsky et al., 2010)), but 

that antidepressant medication operates more directly on emotion-dependent 

regions, such as the amygdala (DeRubeis et al., 2005). Variation in response to CBT 

can also to some degree be predicted by baseline neural activation. Heightened 

baseline amygdala activation during emotional processing has been implicated in 

response to both CBT and antidepressant medication (Siegle et al., 2006, 2007a). 

By contrast, baseline sgACC deactivation to emotional stimuli seems to differentiate 

response to medication versus CBT: sgACC deactivation at baseline predicts worse 

response to antidepressant medication (Chen et al., 2007; Davidson et al., 2003), 

but better response to CBT (Fu et al., 2008a; Siegle et al., 2006) and behavioural 

activation therapy (Dichter et al., 2010).  
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1.2.3 Electroconvulsive therapy 

A third common treatment in severe depression is ECT. ECT has been described as 

the most potent, rapidly-acting antidepressant agent (Perrin et al., 2012), with 

evidence suggesting it is significantly more effective than drug therapy (UK ECT 

Review Group, 2003). The effect of ECT on the brain is global and non-specific. 

While it has been postulated that its antidepressant effects are driven by ‘resetting’ 

resting aberrant functional connectivity (Farzan et al., 2014), in fact substantially less 

is known regarding the neural and cognitive mechanisms of ECT than for 

antidepressant medication or psychotherapy (Van Waarde et al., 2015). However, it 

bears mentioning that ECT treatment has also been shown to alter limbic regions 

(increasing amygdala volume) (Tendolkar et al., 2013) as well as prefrontal regions 

(decreasing frontal connectivity, centred on the left DLPFC) (Perrin et al., 2012). 

Sustained reductions in cerebral blood flow following ECT in a network including 

frontal and temporal cortices were also found to predict clinical response to ECT 

(Michael et al., 2003). These findings are in keeping with the idea that ECT has 

wide-reaching effects, potentially an intervention affecting more global cognitive and 

neural processes than either antidepressant medication or CBT (relatively non-

specific treatments themselves).  

1.3 The cognitive neuroscience of mood disorders and their treatment 

Antidepressant medication and CBT have traditionally been explained within the 

relatively distinct theoretical frameworks described above (1.2.1 and 1.2.2). More 

recently, accounts emerging from the cognitive neuroscience literature attempt to 

explain the effects of both antidepressant drugs and psychological therapies, as well 

as experimental brain stimulation treatments, within a unitary theoretical framework 
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based around neural circuit or cognitive findings. In contemporary literature this is 

usually referred to as the cognitive neuropsychological model (Harmer et al., 2003b, 

2009a; Mayberg et al., 1999; Roiser and Sahakian, 2013; Roiser et al., 2012).  

These theories arose out of the long literature of cognitive and circuit-level neural 

abnormalities identified in depression. Depression is marked by a number of 

changes in perception and information processing, which span both emotional and 

non-emotional cognition (known as ‘hot’ and ‘cold’ cognitive processing, 

respectively). Non-depressed individuals typically show a bias for positive stimuli, 

while depressed patients do not; depressed patients are also impaired on many 

higher cognitive function tasks, such as working memory (Roiser and Sahakian, 

2013). These behavioural changes map (approximately) on to two major brain 

circuits implicated in depression: subcortical limbic activation to emotional stimuli, for 

example in the amygdala; and prefrontal activation during difficult cognitive tasks, 

particularly in the dorsolateral prefrontal cortex (DLPFC) (Siegle et al., 2007a).  

Prefrontal and amygdala circuits also interact with one another: for example, during 

top-down control over emotion processing (Ochsner et al., 2004), or in the ability of 

emotional stimuli to exert bottom-up influence on cognitive tasks (Hare et al., 2005). 

In an early form of this model it was suggested that depression arises due to 

dysfunctional prefrontal cortical control over the amygdala, which leads to abnormal 

emotion processing (Drevets, 1999; Mayberg et al., 1999). Additionally, the 

subgenual anterior cingulate cortex (sgACC) exerts influence on both dorsal 

prefrontal regions and the amygdala and insula; numerous studies implicate sgACC 

disruption in depression, as well as response to treatments for depression (Hamani 

et al., 2011). As discussed in the next sections, investigating the cognitive 
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disruptions that occur in depression, and the neural circuitry driving those 

disruptions, has proven useful in understanding the mechanisms of antidepressant 

drugs and CBT, and may also provide a framework for conceptualizing novel 

experimental treatments for depression.  

1.3.1 The effect of antidepressant medication on low-level affective biases 

In the case of antidepressant medication, the cognitive neuropsychological model of 

depression has provided useful insight in explaining the delay between the 

pharmacological action of antidepressant medication (blockade of transporters, 

which can be detected almost immediately after administration) and their therapeutic 

effect, which takes several weeks if not months (Frazer and Benmansour, 2002; 

Harmer et al., 2009a). This model suggests that the time lag in action does not 

originate purely from a delay in downstream neuroadaptive effects (for example, due 

to autoreceptor desensitisation (Blier et al., 1987)), but rather that antidepressant 

medication exerts immediate effects on negative biases in information processing in 

depressed patients, which over time can improve mood (Harmer et al., 2009a).  

This model is supported by extensive empirical studies reporting mood-congruent 

biases in depression, toward negative and away from positive information 

processing. This pattern appears in memory, where depressed patients show a bias 

for remembering negative material (Matt et al., 1992); in perception, as difficulty 

identifying positive facial expressions (Joormann and Gotlib, 2006); and in attention, 

where patients are impaired at disengaging from negative emotional stimuli (Mogg et 

al., 1995). Neuroimaging studies have attributed these affective biases to alterations 

in limbic circuitry (Leppänen, 2006) and the modulation of these circuits by 

monoamine neurotransmission (Harmer et al., 2009a; Roiser and Sahakian, 2013). 
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For example, depressed patients exhibit substantially more intense and prolonged 

amygdala reactivity to self-relevant negative information than healthy controls (Siegle 

et al., 2002), and greater amygdala responses to masked emotional faces, both of 

which normalize with antidepressant treatment (Sheline et al., 2001; Victor et al., 

2010). In addition, dysfunction in the sgACC is thought to influence a wide network of 

self-referent processes attributed to the default-mode network (DMN), a network of 

brain regions active during the resting state (and attenuated during cognitive 

processing) (Greicius et al., 2003), including the ventromedial PFC and posterior 

cingulate cortex (Hamilton et al., 2015). Increased sgACC-DMN functional 

connectivity predicts levels of depressive rumination, repetitive and self-reflective 

depressive thoughts (Hamilton et al., 2015), often considered a central aspect of the 

phenomenology of depression (Lyubomirsky et al., 1999). Rumination could be 

conceptualised as an affective bias in mind-wandering; mind-wandering itself 

negatively correlates with happiness (Killingsworth and Gilbert, 2010), and has been 

suggested as a marker for depressive thinking (Smallwood et al., 2007).  

The cognitive neuropsychological model provides a common framework between 

Beck’s cognitive theory of depression (and the effects of CBT) and the mechanisms 

of antidepressant medication (see Figure 1.1). According to this model, low-level 

negative biases instantiated by aberrant responses in limbic circuitry contribute to 

the development of negative schemata (Roiser and Sahakian, 2013). In support of 

this, such emotion processing biases seem to coincide with vulnerability to 

depression: they are found in never-depressed people with high neuroticism, a risk 

factor for depression (Chan et al., 2007), and in unaffected first-degree relatives of 

depressed patients (Le Masurier et al., 2007). 
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Figure 1.1 The cognitive neuropsychological model of depression. Black boxes contain factors 
contributing to depressive symptoms; blue boxes indicate which aspects of the model are targeted by 
treatments; and red and green boxes indicate risk and resilience factors, respectively. Figure adapted 
from Roiser, et al. (2012), Neuropsychopharmacology. 

Crucially, both cognitive and neural measures of low-level negative biases can be 

reversed by antidepressant drugs relatively quickly. A single dose of the 

noradrenaline reuptake inhibitor reboxetine improves positive facial expression 

recognition and memory for positive information in depressed patients, despite 

inducing no change in mood (Harmer et al., 2009b). Even in healthy controls (who do 

not show any modulation of mood by chronic antidepressant treatment), a single 

dose of the SSRI citalopram increases positive facial expression recognition (Harmer 

et al., 2003a) and attentional bias towards positive cues (Browning et al., 2007) 

(though it should be noted that in this study citalopram also increased processing of 
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anxiety-related stimuli). Neuroimaging studies have found that a single dose of 

citalopram acutely reduces amygdala responses to fearful faces in healthy controls 

(Murphy et al., 2009). Short-term (7-day) treatment with citalopram also normalises 

amygdala hyperactivation in depressed patients (Godlewska et al., 2012); the same 

group found these short-term changes in emotional processing were also predictive 

of long-term clinical outcome (Godlewska et al., 2016).  

In summary, empirical work strongly supports the existence of negative biases in 

depression; the normalisation of these biases with acute doses of antidepressant 

medication; and the role of the limbic system, particularly the amygdala, in mediating 

negative biases and their alleviation with antidepressant medication.  

1.3.2 The effect of CBT on high-level negative schemata   

As described above, in the framework of the cognitive neuropsychological model 

antidepressant medication directly targets low-level negative biases; for example, 

shifting negatively biased perceptions of emotional stimuli more positively (see 

Figure 1.1). The model propoes that in patients who respond to antidepressant 

medication, repeated exposure to these more positive perceptions – decreasing or 

eliminating negative perceptual biases – eventually improves mood. However, mood 

improvement can only take place if a second set of biases are sufficiently malleable: 

higher-level emotional biases, which can be conceptualised as negative 

expectations, termed schemata by Beck.  

In Beck’s cognitive theory, these negative schemata entail an expectation of 

negative information. Negative schemata may be thought of as a Bayesian prior 

expectation or belief: a model of the world that heavily influences all information 
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processing. In the case of depression, a highly precise prior for negative outcomes 

could outweigh the influence of positive input, such that no amount of positive 

perceptions can override the negative expectation. In turn, low-level biases could 

both contribute to and be induced by strong negative expectations. In the cognitive 

neuropsychological model, negative schemata arise, at least in part, due to the 

cumulative influence of low-level emotional biases, which can alter prior expectations 

and thereby contribute to negative schemata.  

Antidepressant drugs may show a weaker ability to treat patients with particularly 

entrenched negative schemata (which can be thought of as very precise Bayesian 

priors). CBT is thought to address top-down biases more directly than antidepressant 

drugs, a mechanism that could be underpinned by effects on the prefrontal cortex 

(DeRubeis et al., 2005). CBT aims to challenge and undermine the perceived 

accuracy of high-level negative biases (in other words, resolve negative schemata) 

by training patients to challenge their negative expectations. If these prior 

expectations are malleable, CBT weakens negative expectations, and could also 

have indirect effects on low-level negative biases. However, in contrast to 

antidepressant medication, CBT does not directly ameliorate low-level negative 

biases. In keeping with this, amygdala activation does not always normalize following 

treatment with CBT (or IPT) (Brody et al., 2001b; Goldapple et al., 2004; Martin et 

al., 2001). As such, according to this model, patients with particularly strong low-level 

negative biases may be resistant to a course of CBT without concurrent medication.  

1.3.3 Cold cognitive impairments in depression  

According to the cognitive neuropsychological model, whether or not high-level 

negative expectations can be challenged (either in a clinician-directed manner 
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through CBT, or independently by patients) is heavily dependent on a feature of 

depressive illness thought to be separate to the emotion processing findings 

reviewed so far: cold (or non-emotional) cognitive processing. Cold cognitive deficits 

contribute to a diagnostic criterion of depression, concentration difficulties, which 

manifests as indecisiveness and a diminished ability to think or concentrate 

(American Psychiatric Association, 2003). Cold cognitive impairments also likely 

contribute to a significant portion of the functional impairment experienced in 

depression, including deterioration of performance at work or school.  

Altering negative expectations – the goal of CBT – is a cognitively effortful process. 

The process of challenging one’s own entrenched negative beliefs involves working 

memory, reality monitoring, counter-factual thinking and emotional regulation (a form 

of inhibitory control). As such, successful CBT is thought to rely heavily on one 

aspect of cold cognition in particular: cognitive control (Roiser and Sahakian, 2013). 

It has been suggested that deficits in cold cognition might compromise patients’ 

abilities to benefit from psychological therapies (Roiser and Sahakian, 2013) (see 

Figure 1.1). Particularly if negative expectations are strongly entrenched – if the 

Bayesian prior for negative outcomes is very precise – deficits in cold cognition could 

weaken patients’ ability to challenge their negative expectations through CBT.  

The same may be true for antidepressant medication. According to the model, while 

antidepressant drugs directly target low-level negative biases, changes in these low-

level perceptions can only positively influence negative expectations (and ultimately 

mood) if patients engage with reality-monitoring. This process allows positive 

perceptions and outcomes to gradually reshape expectations, but is likewise effortful 

and may be dependent on intact cognitive control. These predictions are 
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substantiated by studies finding that executive function deficits predict poor response 

to antidepressant medication (McLennan and Mathias, 2010), and in older adults, 

non-response to antidepressant treatment was predicted by attenuated prefrontal 

responses (Potter et al., 2004).  

Cold cognitive deficits in depression may in particular be driven by aberrant 

processing in the DLPFC. Abnormal metabolism in the DLPFC is one of the most 

established neural correlates of depression: resting-state studies (e.g. using PET) 

have largely reported reductions in DLPFC metabolism in depressed patients (Baxter 

et al., 1989; Biver et al., 1994; Galynker et al., 1998), which normalizes somewhat 

following symptom remission (Brody et al., 2001a). By contrast, task-related 

activation (e.g. during working memory) in depression is sometimes increased 

(Harvey et al., 2005; Wang et al., 2015), but in other cases decreased (Fales et al., 

2009). This may be accounted for by between-study differences in task difficulty: a 

meta-analysis examining only studies where working memory performance was 

matched between depressed patients and healthy controls found DLPFC 

hyperactivation in depressed patients (Wang et al., 2015). Lesion studies also 

support findings of DLPFC dysfunction in depression: patients with lesions 

incorporating the DLPFC show higher levels of depression than those whose lesions 

spare the DLPFC (Koenigs and Grafman, 2009). Normalising DLPFC activity is 

thought to be critical to effective CBT (DeRubeis et al., 2005) and antidepressant 

treatment (Fales et al., 2009), as originally posited in an early form of the cognitive 

neuropsychological model (Mayberg et al., 1999).  

In theory, boosting cold cognition should improve response to both major forms of 

treatment for depression (CBT and medication). One meta-analysis found that 
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cognitive impairments persist even in patients whose depressive symptoms have 

remitted (Rock et al., 2014). In the case of medication, antidepressant treatment per 

se does not appear to improve cold cognition (Halahakoon and Roiser, 2016; 

Shilyansky et al., 2016).  However, better cold cognition may make patients more 

likely to engage in reality-monitoring during antidepressant treatment, allowing 

positively-shifted low-level biases to indirectly change negative expectations. For 

CBT, improved cold cognition might make patients more able to engage in the types 

of effortful cognitive processes that CBT requires. There is some evidence that 

enhancing cold cognition has knock-on effects on mood: cognitive training improves 

mood in patients with dementia (Davis et al., 2001; Loewenstein et al., 2004; Sitzer 

et al., 2006) and geriatric patients with depression (Arean et al., 1993; Motter et al., 

2016). Pharmacological interventions that enhance cold cognition have also been 

shown to improve antidepressant therapy. A meta-analysis revealed that the 

stimulant-like agent modafinil, which improves executive function in depression 

(DeBattista et al., 2004), significantly augmented the effects of first-line medications 

for unipolar and bipolar depression (Goss et al., 2013). Similarly, several studies 

(and one RCT) show that targeting cognitive deficits with erythropoietin has effects 

on mood, as well as on measures of cold cognition (Miskowiak et al., 2012, 2014) 

and DLPFC activation (Miskowiak et al., 2016).  

1.3.4 Future directions for the cognitive neuroscience of mood disorders 

According to the cognitive neuropsychological model, in patients who respond to 

antidepressant medication, mood improvement will occur after several weeks of 

experiencing the world with more positive perceptions and immediate interpretations 

of environmental stimuli. In these patients, the actions of antidepressant drugs on 
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monoaminergic systems in limbic regions, and resulting effects on negative biases 

(Harmer et al., 2003b), is sufficient to alleviate depression. In others, these changes 

in low-level biases will be inadequate because high-level expectations (priors) are 

very precise and/or cold cognitive impairment is sufficiently severe to maintain them. 

Using this logic, cognitive and fMRI tests assessing cognitive control could identify 

patients as likely responders (or nonresponders) to antidepressants.  

Therefore, one potential direction emerging from cognitive neuroscience studies of 

depression is the stratified delivery of existing treatments according to patients’ brain 

activation in specific structures/circuits, or behaviour on relevant cognitive tasks. 

Potentially, treatment plans could be adjusted according to baseline performance or 

neural activation. To this end, both the sgACC and the amygdala have been 

suggested as potential ‘biomarkers’ of treatment response in depression (Dunlop 

and Mayberg, 2014; Fu et al., 2013). However, many patients may still not respond. 

In patients who do not respond, or who respond only minimally, the search for novel 

treatments and ways to augment current treatments is essential. Thus, a second 

direction could be to develop novel brain circuit-based treatment options that directly 

target these circuits implicated in depression.  

1.4 Targeted brain stimulation in depression 

Antidepressant medication, CBT, and ECT can in many cases be highly effective. 

Although medication and CBT are less invasive, neither – along with ECT – were 

developed to target specific neural mechanisms of depression (although they do 

produce specific effects with respect to brain circuitry). If the neural basis of 

depressed mood is really centred on particular neural loci and circuits, which are 
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indirectly altered by these more global depression interventions, it may be more 

effective to alter activity in particular neural loci using a targeted approach. This 

approach might also be able to improve symptoms not usually affected by typical 

treatments but with specific neural correlates (such as the DLPFC in cognitive 

control), or, indeed, target patients who do not respond to other interventions.  

Several techniques to directly stimulate the brain in a targeted manner have arisen. 

In general, neurostimulation tends to allow more specific targeting than 

antidepressant drugs, CBT, and ECT, though brain stimulation techniques differ 

widely in their specificity and relative invasiveness (see Figure 1.2). These 

techniques fall broadly into three categories: deep brain stimulation (DBS), which 

has high specificity but is also highly invasive; transcranial magnetic stimulation 

(TMS), which has moderate specificity and low invasiveness; and noninvasive 

electrical stimulation (most commonly, transcranial direct current stimulation, tDCS), 

which has moderate specificity (though lower than TMS) and low invasiveness. In 

addition, although it has a poor reputation among the general public, ablative brain 

surgery is (infrequently) used in depression, and seems to show similar efficacy to 

DBS (Volpini et al., 2017).  
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Figure 1.2 Treatment options for depression. Schematic of relative invasiveness (horizontal axis) 
and specificity of targeting (vertical axis) of six treatment options for depression. CBT=cognitive 
behavioural therapy; SSRI=selective serotonin reuptake inhibitor; ECT=electroconvulsive therapy 
(ECT); TMS=transcranial magnetic stimulation (TMS); tDCS=transcranial electrical current 
stimulation.   

1.4.1 Deep brain stimulation  

The discovery of deep brain stimulation in depression arose as a result of 

advancements in treating another brain disorder, Parkinson’s disease (PD). Like 

depression, PD alters a distributed neural system due to loss of dopamine 

transmission. In PD, impairments initiating movements and pathological tremor 

originate from destabilisation of dynamic fronto-striatal-thalamic loops (Obeso et al., 

2017). PD is initially treated with a global intervention: the medication levodopa 

increases the availability of dopamine in the brain, alleviating disabling motor 

symptoms caused by the death of dopamine neurons in the substantial nigra (Lloyd 

et al., 1975). Unfortunately, after several years of treatment, levodopa ceases to be 

effective at lower doses, and higher doses produce debilitating side-effects in most 
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patients, in the form of involuntary movements called dyskinesias (Dauer and 

Przedborski, 2003). In the early 1990s, a group found that electrical stimulation of 

the thalamus could alleviate tremor in PD (and patients with essential tremor) 

(Benabid et al., 1991). Today, more than 100,000 patients with PD have been 

implanted with DBS electrodes, placed in locations known to be dysfunctional in PD 

(the subthalamic nucleus or the internal aspect of the globus pallidus are most 

common) (McIntyre et al., 2015). The discovery of DBS as an effective treatment for 

PD combined with emerging knowledge about the neural circuitry disrupted in 

depression spurred the field of psychiatry into developing similar targeted invasive 

electrical stimulation for psychiatric disorders.  

In a seminal experiment by Mayberg and her colleagues, DBS electrodes were 

implanted in the sgACC in six patients with intractable depression (Mayberg et al., 

2005). This work was built on the theoretical basis of the sgACC as a ‘node’ in 

depression circuitry, mediating both diminished activity in dorsal neocortical regions 

and increased activity in ventral paralimbic regions in depression (Mayberg, 2003). 

Of the six patients with intractable depression, four showed a striking and sustained 

remission of symptoms, as well as local and distal changes in neural metabolism 

(Mayberg et al., 2005). Before electrode implantation, depressed patients showed 

elevated blood flow in the sgACC, compared to healthy controls, as well as changes 

in other regions associated with depression, including decreased blood flow in the 

DLPFC. After DBS, patients who responded to DBS showed decreases in sgACC 

blood flow, and increased blood flow in the DLPFC (among other regions) (Mayberg 

et al., 2005). Therefore, DBS might directly restore normative activation in the 

sgACC itself (in responders), but additionally, via connections from the sgACC, exert 

widespread effects on a larger network, including in the DLPFC. In the context of the 
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cognitive neuropsychological model of depression, DBS may be interpreted as 

targeting negative biases directly, through its direct actions on the sgACC and 

interconnected regions involved in hot cognitive processing, including the amygdala. 

In support of this, one study found a reduction in negative self-bias following DBS 

(Hilimire et al., 2015). In contrast, DBS does not seems to directly improve cold 

cognition in depression (Bergfeld et al., 2017). 

Since the initial report in 2005, a number of patients with severe depression have 

been treated with DBS (usually those who have not responded to any conventional 

treatment). Electrodes have been implanted in several different regions implicated in 

depression, including the nucleus accumbens, ventral striatum/ventral capsule, 

sgACC, lateral habenula, inferior thalamic nucleus, and the medial forebrain bundle 

(Morishita et al., 2014). However, RCTs adhering to sham-controlled designs (the 

gold standard for clinical efficacy) have reported mixed results. Among these, only 

one RCT has reported clinical efficacy of active DBS (in the anterior limb of the 

internal capsule) over sham DBS (Bergfeld et al., 2016). Interestngly, this study 

found no improvement (even practice effects) in cold cognition following DBS 

(Bergfeld et al., 2017). Other randomized sham-controlled trials have produced 

negative findings (Dougherty et al., 2015), or failed a futility analysis (Morishita et al., 

2014; Schlaepfer, 2015). Many methodological factors have likely contributed to 

these negative outcomes, including specific stimulation parameters (time at which 

stimulation begins; selection of sham condition DBS target) (Schlaepfer, 2015). In 

future, DBS trials may be improved by more individualised protocols; for example, 

using white matter tractography to identify individually-optimised electrode locations 

(Riva-Posse et al., 2014).  
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1.4.2 Transcranial magnetic stimulation  

One of the best-known forms of noninvasive brain stimulation is transcranial 

magnetic stimulation (TMS). TMS uses brief, high-current pulses to induce a 

magnetic field, generating an electric field perpendicular to the magnetic field, and 

indirectly activates corticospinal neurons through synaptic inputs (Hallett, 2000). 

High-frequency repetitive TMS (rTMS), the form most commonly used in depression, 

can produce long-lasting effects on cortical excitability (by contrast, low-frequency 

rTMS can decrease cortical excitability), potentially due to effect on neural long-term 

potentiation and depression (Hallett, 2000).   

Unlike DBS, TMS (and other forms of noninvasive brain stimulation) are limited in 

that they target primarily superficial regions of the brain. Direct targeting of the 

deeper structures is challenging (although there are some claims along these lines, 

e.g. sgACC modulation via rTMS of the supplementary motor area (Vanneste et al., 

2014)). In depression, high-frequency rTMS has typically been used to target the left 

DLPFC (George et al., 1995).  Several large randomized sham-controlled trials have 

shown clear antidepressant effects of daily left prefrontal rTMS over sham 

stimulation (Loo and Mitchell, 2005; O’Reardon et al., 2007). Based on these results, 

rTMS of the left DLPFC has been approved as an alternative treatment option for 

patients with treatment-resistant depression since 2008 by the US Food and Drug 

Administration, and since 2015 by the UK National Institute for Health and Care 

Excellence.  

Clinical response to rTMS seems to depend on both frontal and subcortical 

mechanisms. Behaviourally, rTMS of the DLPFC has been reported to result in 

improvements in cognitive control (Martis et al., 2003), unlike other treatments for 
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depression. Even a single rTMS session, which is insufficient to cause mood 

improvement, can improve attentional control; this improvement has been shown to 

predict subsequent response to rTMS treatment (Vanderhasselt et al., 2009). 

However, a single rTMS session is also reported to attenuate amygdala activation 

during negative emotion processing (Baeken et al., 2010). An early clinical trial found 

that rTMS responders showed higher inferior frontal lobe metabolism at baseline, 

compared to nonresponders (measured using single photon emission computed 

tomography: SPECT); following 10 days of rTMS treatment, there was an even 

greater difference in inferior frontal lobe metabolism between responders and 

nonresponders (Teneback et al., 1999). More recently, a PET study found that 

nonresponders in an RCT of TMS showed heightened left amygdala activation at 

baseline, compared to responders (Martinot et al., 2011). These results accord with 

the predictions of the cognitive neuropsychological model of depression: that TMS 

may target cold top-down processing, with attendant possible indirect effects on low-

level hot cognitive processing (Roiser and Sahakian, 2013). 

However, there are some important drawbacks of rTMS treatment for depression. 

High-frequency rTMS has the potential to cause seizures, even in those without a 

history of seizures, though this is extremely rare (Hallett, 2000). Additionally, placebo 

(sham) blinding of studies is difficult. There are two commonly-used options for sham 

TMS: tilting the coil such that cortical stimulation is reduced but scalp sensation is 

preserved, which itself may cause low levels of cortical stimulation (Loo et al., 2000), 

or delivering low or no stimulation, where subject blinding may be ineffective (Loo 

and Mitchell, 2005). This complicates interpretations of effect sizes both within the 

rTMS field and when comparing rTMS to other interventions. Indeed, differences in 

stimulation parameters for both active and sham treatment arms likely contributes to 
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the substantial heterogeneity between different rTMS trials for depression (Loo and 

Mitchell, 2005).  

1.4.3 Transcranial direct current stimulation 

The second main form of noninvasive brain stimulation that has been suggested as a 

treatment for depression is transcranial direct current stimulation (tDCS), again 

predominantly over the DLPFC (Nord and Roiser, 2015). The practical advantages of 

tDCS (in comparison to rTMS and DBS) are many: tDCS is comparatively 

inexpensive, portable, and safe. Very few serious side effects have been reported in 

any tDCS trials for depression (in contrast to the potential for induction of seizures 

from rTMS (Hallett, 2000)). The most common side effects from DLPFC tDCS 

include temporary itching, tingling, or skin redness, and very limited reports of 

hypomania (Brunoni et al., 2013; Loo et al., 2012). In common with other brain 

stimulation therapies, tDCS has the advantage over medication and CBT that it can 

directly target putative neural circuit abnormalities in depression, though arguably 

with less specificity than rTMS and DBS since the current is much more diffuse. 

Nevertheless, it provides another means of directly altering an established neural 

correlate of depression.  

As with rTMS, in the context of the cognitive neuropsychological model, tDCS could 

be predicted to improve cognitive control and enhance regulation over limbic areas in 

depression (Disner et al., 2011). The idea that tDCS might improve cognitive control 

in depression is based in part on the well-described ability of tDCS to improve 

performance in tasks involving cognitive control, such as working memory, which 

tDCS has been reported to enhance in healthy individuals (Fregni et al., 2005; Lally 

et al., 2013) as well as depressed patients (Oliveira et al., 2013). A number of other 
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improvements seen under tDCS – for example in selective attention (Gladwin et al., 

2012) and planning (Dockery et al., 2009) – indicate that it may have particular 

capacity to treat cold cognitive impairment in depression. However, it is unclear if 

corresponding neural changes (i.e., in the DLPFC) underpin any effects on 

depressive symptoms, as only a small number of RCTs have been conducted, none 

of which used PET or fMRI to assess the mechanistic changes accompanying 

treatment. In addition, there is some scepticism as to whether the effects of tDCS on 

cold cognitive function are robust (Horvath et al., 2015).   

It is also possible that tDCS has indirect effects on low-level hot cognitive processing 

through distal effects on subcortical regions: one study found that DLPFC tDCS 

evoked an anxiolytic-like effect on threat vigilance in healthy volunteers, although 

tDCS did not change performance on other emotion processing tasks typically 

affected by antidepressant drug treatment (Ironside et al., 2015). Although few such 

studies have been conducted, this suggests that DLPFC tDCS may directly alter cold 

cognitive processing, but possibly also indirectly affect negative biases, for example 

through improving attentional control over threatening stimuli. However, this 

hypothesis has not yet been tested in depressed patients.  

In the next section, I will discuss the basis of tDCS as a treatment for depression. 

First, I will outline its historical use, its resurgence in modern years, and current 

theoretical advances in understanding its mechanism. Then, I will discuss research 

supporting the use of DLPFC tDCS in depression, and outline the major obstacles to 

making tDCS clinically useful on a large scale, in particular the need for experimental 

work to clarify the cognitive and neural mechanisms of depression it targets. Finally, I 

will attempt to integrate the antidepressant effects of DLPFC tDCS into the cognitive 
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neuropsychological model of depression, hypothesizing that it may improve cognitive 

control, and thereby improve top-down regulation of responses to negative emotional 

information. This will then form one of the central hypotheses tested in the 

experimental work in this thesis. 

1.4.3.1 tDCS as an historical treatment for depression 

Transcranial direct current stimulation is often cited as a “new noninvasive 

neurostimulation treatment” (Brunelin et al., 2012; Steinberg, 2013). Per contra, the 

use of electrical currents to excite the brain in the service of clinical intervention has 

a very long history: in ancient Mesopotamia, Scribonius Largus described the use of 

electrical torpedo fish to produce pain and headache relief (Largus and Bernhold, 

1786). More recent neurostimulation treatments appeared around the turn of the 19th 

century, when Giovanni Aldini conducted a series of experiments applying electric 

current to animal and human bodies, becoming famous for corpse ‘reanimations’ 

(Aldini, 1804; Parent, 2004). These studies led him to test galvanic stimulation as a 

treatment for various psychiatric disorders, employing transcranial direct electric 

current to cure a patient hospitalized with major depression (“melancholy madness”) 

(Aldini, 1804).  

The first studies of electrical stimulation on larger groups of psychiatric patients 

emerged in the late 19th century, conducted by psychiatrists Rudolph Gottfried Arndt 

(Arndt, 1870) and Wilhelm Tigges (Tigges, 1883). Tigges distinguished patients 

suffering from depression (for whom he concluded that electrical brain stimulation 

was reasonably effective when conventional therapy could no longer help) from 

patients with psychosis, whose delusions and hallucinations showed little response 

to brain stimulation (Steinberg, 2013; Tigges, 1883). Following these accounts, 
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electrotherapeutic clinics became commonplace across Europe; spas and seaside 

resorts frequently offered such facilities (Steinberg, 2011).  

In the 1890s, criticism against the neurostimulation movement began, spurred in a 

large part by German neurologist Paul Julius Mobius, who had observed a large 

degree of variability in response to electrotherapy, and postulated that the effects of 

electricity may be entirely suggestive in nature (Mobius, 1891; Steinberg, 2011). 

Thereafter, direct electric current as a psychiatric therapy fell out of favour (although 

other types of electrotherapy, in particularly early forms of ECT, soon replaced it).  

1.4.3.2 Modern tDCS research 

Over the past 20 years there has been a resurgence of interest in tDCS, both as an 

experimental and clinical technique. This arose from an influential study in healthy 

humans (Nitsche and Paulus, 2000). In the mid-20th century, studies had reported a 

mood-enhancing effect of ‘brain polarisation’ (i.e. direct current stimulation) in 

depressed patients (Costain et al., 1964; Ramsay and Schlagenhauf, 1966; 

Redfearn et al., 1964). In one double-blind trial in 24 depressed patients, there was a 

significant improvement during a two-week period of stimulation, but not during two 

weeks of placebo stimulation (here the montage involved two anodal electrodes, one 

over each eyebrow, and the cathodal on the left leg) (Costain et al., 1964). However, 

for the most part, 20th century tDCS was primarily used in animal research (Bindman 

et al., 1962; Creutzfeldt et al., 1962; Eccles et al., 1962; Purpura and McMurtry, 

1965; Terzuolo and Bullock, 1956), or in the context of invasive pre-surgical epilepsy 

diagnostics, where surface stimulation of about 1.5mA induces intracranial currents 

(Dymond et al., 1975).  
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In the first study to apply modern tDCS methods noninvasively in humans, Nitsche 

and Paulus (2000) used a battery-driven stimulator emitting 1 mA of anodal direct 

current to stimulate the motor cortex (with the cathodal electrode positioned on the 

contralateral orbit). They recorded excitability in the motor cortex using TMS motor 

evoked potentials at baseline and after short phases of anodal or cathodal tDCS. 

tDCS induced a significant increase in motor-cortical excitability (about 20%) during 

anodal stimulation, and a similar significant decrease during cathodal stimulation. 

This finding – that cerebral excitability is diminished by cathodal stimulation, but 

increased by anodal stimulation – has become a central tenet of tDCS research. 

1.4.3.3 Physiological mechanisms of tDCS 

All electrical brain stimulation capitalizes on the inherent electrochemical properties 

of neuron membranes (Hodgkin and Huxley, 1952). tDCS uses a weak electric 

current to stimulate a localized area of the brain (‘direct’ indicates that the current 

flows in a single direction, in contrast to ‘alternating’ current stimulation). The earlier 

term “polarisation” refers to the effects of tDCS on neuronal resting membrane 

potentials (Bishop and O’Leary, 1950). This effect is polarity-specific: anodal tDCS 

decreases the resting membrane potential of the neuronal soma, increasing the 

likelihood of depolarization, whereas cathodal tDCS raises the membrane potential 

of the soma towards hyperpolarization (Wachter et al., 2011) (see Figure 1.3 insert). 
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Figure 1.3 Diagram of a typical tDCS setup for depression. The anodal electrode is placed over 
the left DLPFC (red) and cathodal electrode over the ipsilateral shoulder (blue). Note the direction of 
current towards the electrode in the case of anodal stimulation, and away from the electrode in the 
case of cathodal stimulation. Insert: schematic illustration of neuronal resting membrane potential 
without tDCS, and after anodal (red) and cathodal (blue) tDCS. Figure adapted from Nord & Roiser 
(2015), Advances in Clinical Neuroscience and Rehabilitation.  

In cognitive research, the most common placement of the anodal electrode is over 

the left DLPFC, in theory to improve its excitability (as anodal tDCS does to the 

motor cortex). Note, however, that the tDCS current is relatively diffuse, compared to 

the spatial specificity of TMS and certainly of DBS. Despite this, tDCS of the DLPFC 

has been reported to produce marked behavioural effects (usually improvements) in 

a diverse set of cognitive processes, including working memory (Andrews et al., 

2011; Fregni et al., 2005; Hoy et al., 2013; Lally et al., 2013; Zaehle et al., 2011), 

mind-wandering (Axelrod et al., 2015; Kajimura and Nomura, 2015), and mood 

(Boggio et al., 2008; Brunoni et al., 2013; Fregni et al., 2006a; Loo et al., 2012; 

Martin et al., 2011), both during and after stimulation (known as ‘online’ and ‘offline’ 
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stimulation protocols, respectively). The cathodal electrode varies in placement: it is 

often positioned supraorbitally (Lally et al., 2013) or over the ipsilateral deltoid (see 

Figure 1.3 for a diagram of a typical tDCS for depression set-up); a bifrontal monage, 

with the cathodal electrode over the right DLPFC, is also sometimes employed 

(Brunoni et al., 2017). In all instances, this creates an electrical circuit with current 

travelling from the anodal (positive) to the cathodal (negative) electrode. Montages 

for tDCS treatment of depression usually use current of between 1 and 2 mA, which 

delivers low levels of electrical stimulation through the skull immediately under the 

anode, with a small proportion (~10%) penetrating to the cortex beneath. This 

stimulation has the capacity to facilitate (but not directly evoke) neuronal activity. 

However, the precise mechanisms of tDCS are not fully understood. 

The measurable behavioural changes during and after DLPFC tDCS are attributed to 

alterations in the membrane potential due to the passage of direct current. The usual 

interpretation is that depolarization produces an increase in the frequency of nerve 

impulses discharged, while hyperpolarization decreases the rate of discharge 

(Bindman et al., 1962; Lippold et al., 1960). This is difficult to test directly in humans, 

but one study investigating the neurophysiology of DLPFC tDCS did find evidence 

consistent with such an explanation, with a polarity-specific effect on both working 

memory performance and EEG measures: anodal tDCS improved behavioural 

performance and its electrophysiological correlates, while cathodal stimulation 

decreased both measures (Zaehle et al., 2011). In currently-depressed patients, 

DLPFC tDCS was reported to induce neurophysiological changes extending over the 

medial frontal cortex during working memory performance (Powell et al., 2014).  
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Most explanations for the cognitive effects of DLPFC tDCS rely strongly on the 

assumption that anodal current induces cortical excitability, while cathodal current 

induces inhibition. However, this assumes that tDCS will have the same effect on the 

DLPFC as it has on the motor cortex (Nitsche and Paulus, 2000). In reality, the effect 

of current depends heavily on local neuroanatomy: varying the location can elicit 

opposite effects, even within the same cortical layers (Purpura and McMurtry, 1965). 

Indeed, a mild anodal current can sometimes even inhibit neuronal activity (Priori et 

al., 1998). Furthermore, tDCS induces widespread neural changes (i.e. away from 

the stimulation site), as well as local non-neuronal effects, including local changes in 

ionic concentrations, levels of cyclic adenosine monophosphate, protein synthesis, 

and N-methyl-D-aspartate receptor efficacy (Arul-Anandam and Loo, 2009; Zaehle et 

al., 2011), all of which alter its local cortical effects. Thus the physiological basis of 

DLPFC tDCS may be much more complex than simply increased excitability.   

1.4.3.4 Explaining the behavioural effect of DLPFC tDCS 

It is perhaps unsurprising, then, that the behavioural effects of DLPFC tDCS also 

seem more complex than one would expect simply from local effects on DLPFC 

excitability. tDCS does have local effects on DLPFC activation, but it also seems to 

cause distal changes, including in regions more closely involved in hot cognitive 

processing such as the rostral ACC and OFC (Weber et al., 2014). tDCS also 

increases coupling between the left DLPFC and primary sensorimotor cortices, and 

decreases coupling between the DLPFC and bilateral thalami (Stagg et al., 2013), 

potentially driving the more complex behavioural effects of tDCS.  

Several theoretical models have proposed potential mechanisms that might explain 

the behavioural effects of tDCS (in particular over the DLPFC). Three in particular 
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have gained prominence: excitation/inhibition balance models, zero-sum models, 

and input-selectivity models. Excitation/inhibition balance models propose that tDCS 

instates an optimal excitation/inhibition balance in the region stimulated (Krause et 

al., 2013). These models hypothesize that tDCS can be used to artificially modulate 

excitation/inhibition to optimise task performance, as well as in disorders with 

purported regional excitation/inhibition imbalances (such as autism (Rubenstein and 

Merzenich, 2003)). However, neural circuit models have demonstrated that shifts in 

the excitation/inhibition balance only alter speed-accuracy trade-offs (Wang et al., 

2013). This finding may more closely support the next class of models, zero-sum 

models, which predict that performance enhancements via tDCS are always 

balanced by costs elsewhere (i.e., the net change in function is always zero) (Luber, 

2014). The prospect of potential behavioural costs of tDCS is rarely discussed but is 

certainly important, especially in the context of possible risks of experimental clinical 

treatments (Bestmann et al., 2015; Luber, 2014). A third class of model, activity- or 

input-selectivity models, does not claim that tDCS is always a zero-sum intervention. 

Instead, it theorises that tDCS specifically enhances the function of already-active 

networks in the brain (Bestmann et al., 2015). This is supported behaviourally by 

evidence that combining tDCS of the DLPFC with a DLPFC-dependent task (the n-

back task) results in greater performance benefits than tDCS alone (Andrews et al., 

2011). Still, all three classes of models provide only a heuristic, conceptual 

understanding of what tDCS might do. This is problematic: there is an explanatory 

gap between understanding the effect of tDCS on local and distal physiology, and 

understanding its effect on behaviour. 

This gap in understanding probably contributes to the substantial variability in the 

behavioural effects of tDCS reported in experimental studies. After initial studies 
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showed cognitive enhancement resulting from DLPFC tDCS, criticism began to 

emerge, particularly because the behavioural outcome of DLPFC tDCS varies 

substantially between studies. Between-experiment differences in protocol (e.g. 

placement of ‘ground’ electrode, size/shape of electrodes, use of electrode gel 

versus saline sponges, etc.) and inter-individual differences in anatomy and 

physiology (Tremblay et al., 2014) contribute to highly variable outcomes and 

behavioural results that have proven difficult to replicate. Notably, a recent widely-

reported meta-analysis claimed to find no effect of single-session tDCS in healthy 

subjects on 42 different cognitive outcomes (Horvath et al., 2015). Several 

substantial issues have since been raised with the methodology of this meta-

analysis, including inconsistent data selection methods and underpowered 

comparisons (Price and Hamilton, 2015). Nevertheless, it is essential to consider 

individual differences in response to tDCS. In future, tDCS studies might employ 

physiological measures (as well as already-existing software that accounts for 

anatomical variability) to guide stimulation parameters. This could be particularly 

useful when refining DLPFC tDCS parameters to best address a relatively 

heterogeneous disorder such as depression.  

1.4.3.5 Clinical trials of tDCS in depression 

The first double-blind, sham-controlled RCT of tDCS for depression reported very 

pronounced effects of tDCS on mood symptoms (Fregni et al., 2006a) after twenty 

minutes of stimulation. Differences between active and sham (placebo) tDCS even 

persisted over the succeeding month. Less marked (but nonetheless substantial) 

effects of tDCS were later reported in a three-week trial: tDCS improved mood 

significantly more than sham, but no difference between active and sham was found 
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in response rates (Loo et al., 2012). Cognitive effects were also smaller than 

reported in previous trials, with attention and working memory improvements found 

after the first tDCS session, but no cumulative cognitive enhancements independent 

of mood effects.  

One RCT tested a combination of DLPFC tDCS and an SSRI (sertraline), reporting 

that combined tDCS-SSRI treatment was more effective than either treatment alone 

(Brunoni et al., 2013). Although this work also suggested that tDCS had a similar 

effect size to antidepressant medication, a more recent RCT failed to show 

noninferiority of tDCS to the SSRI escitalopram (though both were statistically 

superior to sham tDCS combined with placebo) (Brunoni et al., 2017). This 

inconsistency is less surprising in the context of the widely variable effect of tDCS on 

depression symptoms throughout the literature: some studies find substantially larger 

effect sizes than others; others fail to show an effect of tDCS on depression 

symptoms at all (see Figure 1.4) (Shiozawa et al., 2014).  
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Figure 1.4 tDCS trials in MDD. Forest plot of effect sizes (Hedges’ g) to illustrate the relative strength 
of treatment effects for each selected study, including the overall effect (vertical line), the 
standardised mean difference (SMD), and confidence interval (CI). Figure reproduced from Shiozawa 
et al (2014), Int. J. Neuropsychopharmacol.  

As with behavioural studies, differences in stimulation parameters, outcome 

measures, and timing of tDCS delivery could all account for variation in its 

effectiveness at treating depression. A meta-analysis of individual patient data from 

clinical trials of tDCS in depression identified several contributors to tDCS efficacy, 

most notably stimulation dose (number of sessions and amount of current delivered) 

(Brunoni et al., 2016). Interestingly, the trial that failed to show non-inferiority of tDCS 

relative to escitalopram employed an unusually high dose of tDCS (22 sessions at 2 

mA). Clearly, the optimal schedule for tDCS intervention in depression still requires 

clarification.  

From a pragmatic perspective, tDCS has great potential as a safe non-invasive brain 

stimulation treatment for depression. However, its effectiveness is still in question. 

To date, most research on tDCS for depression has adopted one of two strategies: 

RCTs to determine whether tDCS improves depressive symptoms; or experimental 

studies, usually in healthy subjects, to determine its mechanism of effect. This 

division obscures a better understanding of the specific mechanisms driving the 

Figure removed for copyright reasons. See original paper (Shiozawa et 
al (2014), Int. J. Neuropsychopharmacol) 
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antidepressant effects of tDCS. Studies combining both strategies have the ability to 

resolve this, and determine how tDCS may target symptoms of depression.  

A small number of studies have introduced mechanistic measures to tDCS RCTs, 

which begin to answer this question. For example, baseline cortical inhibition in tests 

of motor-cortex excitability (measured using motor-evoked potentials) was 

associated with worse response to tDCS (but also to escitalopram; thus the predictor 

was not treatment-specific) (Brunoni et al., 2017)). However, to date, no RCT of 

tDCS in depression has included neuroimaging measures to assess the neural 

effects of this intervention. Such a design would also be extremely useful in 

identifying potential ‘biomarkers’ of tDCS response. As with other treatment-specific 

predictors, it could have potential use in patient selection; and because tDCS is an 

experimental treatment, it would also provide invaluable mechanistic insight.  

1.5 Thesis aims, hypotheses, and predictions 

The overall aim of this thesis was to investigate the role of DLPFC dysfunction in 

depression, and whether this impairment could be targeted with noninvasive brain 

stimulation. This aim emerges from two separate lines of research. First, it draws on 

the predictions of the cognitive neuropsychological model of depression in testing 

whether cold cognitive processing (and DLPFC function) may promote resilience to 

and recovery from depression, in unaffected at-risk populations and in patients who 

are receiving an intervention. It also emerges from clinical brain stimulation research 

indicating that the DLPFC can be targeted noninvasively with tDCS, and that this 

targeting may improve mood in depression. Because these lines of research have 

rarely been explored in tandem, the neural and cognitive mechanisms of DLPFC 
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tDCS in depression are still extremely unclear, obscuring how these processes might 

best be harnessed in a clinical setting. Therefore, I set out to investigate the 

cognitive and neural mechanisms of DLPFC tDCS as a treatment for depression, 

testing whether DLPFC tDCS affects hot and cold cognitive processing, whether 

DLPFC activation is related to risk for depression, and, lastly, whether DLPFC tDCS 

would augment the efficacy of CBT in a randomized, sham-controlled clinical trial. 

Chapter 2 provides a brief overview of some of the common methodological 

approaches used in the thesis. Chapter 7 provides a general discussion of the 

results of each of the experimental chapters and attempts to draw some conclusions 

across the different chapters. The content of the experimental chapters (Chapters 3-

6) of the thesis is as follows: 

Chapter 3 

Chapter 3 investigates the cognitive mechanisms of DLPFC tDCS in healthy 

volunteers, during a single stimulation session with parameters similar to those used 

in RCTs for depression. The aim was to test whether DLPFC tDCS acutely 

modulates hot emotional processing biases, in a manner similar to the acute effect of 

antidepressant drugs. I test this using an emotion identification task, where faces are 

morphed along a continuum from an extreme emotion (e.g. anger) to a neutral face. 

Participants identified facial emotions during active or sham tDCS of the left DLPFC. 

I hypothesised that tDCS would modulate hot cognitive processing by eliciting a 

positive bias (in accuracy or reaction time) in emotional face identification.   
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Chapter 4 

In Chapter 4 my aim was to clarify the neural mechanisms involved in hot and cold 

cognition in three populations: healthy controls, currently-depressed patients, and 

individuals at risk for depression (unaffected first-degree relatives of depressed 

patients). To this end, I measured DLPFC activation (using fMRI) during working 

memory, and sgACC and amygdala activation during emotion processing. I intended 

to test two specific predictions arising from the cognitive neuropsychological model 

of depression: that DLPFC activation during cold cognitive processing would be 

preserved in the unaffected relatives of depressed patients, compared to patients 

currently experiencing symptoms; and that amygdala and sgACC activation during 

emotion identification would be negatively biased in both at-risk and currently 

depressed groups. In particular, evidence of preserved DLPFC activation in the 

unaffected relatives group could potentially indicate a neural mechanism of resilience 

that could be harnessed as a possible target of interventions in depression.  

Chapter 5  

In Chapter 5, I report the results of a double-blind RCT to test whether anodal tDCS 

of the left DLPFC augments the effects of CBT for depression. The primary outcome 

measure was clinical response, measured with the Hamilton Rating Scale for 

Depression (HAM-D). At the time of writing, this was the first RCT to combine tDCS 

with CBT, and was also unusual in measuring neural activation during hot and cold 

cognitive processing at baseline and post-intervention with fMRI (in addition to more 

typical symptom and cognitive measures). We hoped not only to test a novel 

intervention for depression, but also to characterise the mechanism driving any 

effects. I expected the group receiving anodal tDCS (and CBT) to show a greater 



58 
 

reduction in depression symptoms than those receiving sham tDCS (and CBT), and 

that this difference would be accompanied by improvements in working memory and 

increases in DLPFC activation.  

Chapter 6 

In Chapter 6, I sought to uncover whether any variables collected at baseline 

accurately predicted clinical response in the RCT reported in the previous chapter. 

To this end, I tested how well symptom, cognitive, and neural measures predicted 

change in our primary outcome measure, the HAM-D. I tested which baseline 

variables predicted clinical response specifically to active tDCS, as well as general 

response to CBT (irrespective of tDCS group). I had two primary hypotheses: that 

activation at baseline in the left DLPFC would predict response to tDCS specifically 

(a prospect that has never been explored in previous work); and that, as reported in 

previous studies, amygdala activation would generally predict response to CBT, 

independent of active or sham stimulation.   



59 
 

Chapter 2. Experimental Methods 

This chapter will describe the materials and methods common throughout the 

experimental chapters of this thesis. I will describe the psychiatric screening 

procedures and self-report questionnaires used in Chapters 4 through 6, and the 

tDCS parameters common to Chapters 3, 5, and 6. I will also describe two types of 

cognitive paradigms: emotional face tasks, used in all chapters, and the working 

memory n-back task, used in Chapters 4 through 6.  

2.1 Montreal International Neuropsychiatric Interview 

For the studies presented in Chapter 4, 5, and 6, all participants were screened 

using the Mini International Neuropsychiatric Interview (MINI, Sheehan et al., 1998). 

This screening interview is used to assess presence or history of psychiatric illness 

for clinical trials and other research studies. The MINI consists of a structured 

diagnostic interview in accordance with the Diagnostic and Statistical Manual of 

Mental Disorder-IV (DSM-IV). We employed a condensed version of the MINI, 

comprising 12 of the original 16 subsections, assessing presence and history of a 

major depressive episode, a (hypo) manic episode, panic disorder, agoraphobia, 

obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), 

alcohol abuse and dependence, non-alcohol psychoactive substance use disorders, 

psychotic disorders (including mood disorder with psychotic features), anorexia 

nervosa (both restrictive and binge-purge subtypes), bulimia nervosa, and 

generalized anxiety disorder. The sections not included in the condensed version 

were: dysthymia, suicidality, social phobia, and antisocial personality disorder. 
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Separately, a structured suicide risk assessment procedure was employed in any 

patients reporting thoughts of death or self-harm. 

Healthy volunteers and unaffected first-degree relatives of depressed patients 

(Chapter 4) were excluded if they met criteria for any current or previous psychiatric 

condition, as assessed by the MINI. Depressed patients (Chapters 4, 5, and 6) were 

included only if their current symptoms met criteria for a major depressive episode, 

but were excluded if they met criteria for a manic or hypomanic episode (past or 

current), or a psychotic episode (past or current), with the exception of those meeting 

criteria for a mood disorder with psychotic features. Current or previous substance 

use disorders, including alcohol, were excluded unless substance 

abuse/dependence was confined to previous depressive episodes. Other disorders, 

including panic disorder, agoraphobia, OCD, PTSD, anorexia and bulimia nervosa, 

and generalized anxiety disorder were not exclusion criteria for depressed patients, 

given the extremely high comorbidity between depression and these other 

conditions.  

2.2 Self-report questionnaires and Weschler Test of Adult Reading 

Even among healthy controls not meeting criteria for any psychiatric condition, mood 

and anxiety symptoms vary considerably between individuals. Specific symptoms 

and their severity also vary between depressed patients, and within the same patient 

at different times, particularly in the context of an RCT. For this reason, healthy 

controls and unaffected relatives of depressed patients completed three self-report 

questionnaires, measuring subjective mood, anxiety, and anhedonia, the inability to 

experience pleasure from normally-pleasurable activities (Chapter 4). These three 
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questionnaires were also completed by all depressed patients (Chapters 4, 5, and 6). 

In the case of the RCT (Chapters 5 and 6), these three questionnaires enabled us to 

track mood and anxiety within patients across nine assessment time points. The 

three questionnaires we administered were: the revised Beck Depression Inventory 

(BDI: Beck et al., 1996), the Beck Anxiety Inventory (BAI: Steer and Beck, 1997), 

and the Snaith-Hamilton Pleasure Scale (SHAPS: Snaith et al., 1995).  

The BDI is a 21-item questionnaire in which participants are instructed to select from 

a group of four statements the statement that best describes how they have been 

feeling during the past few days. Each item consists of statements scored 0 to 3, 

with statements scoring 0 including “I do not feel sad” and “I do not feel like a failure”; 

statements scoring 1 including “I feel sad”; statements scoring 2 including “I am sad 

all the time and I can’t snap out of it”, and statements scoring 3 including “I am so 

sad or unhappy that I can’t stand it”. Each participant’s score is calculated by 

summing the scores for each question, and can range from 0 to 63; a score above 

15 is typically considered clinically relevant (Sprinkle et al., 2002). The BDI has been 

shown to have high internal consistency for both psychiatric and nonpsychiatric 

populations (Beck et al., 1988).  

The BAI is a 21-item self-report scale developed for the assessment of anxiety in 

psychiatric patients (Steer and Beck, 1997).  The 21-items scale lists common 

anxiety symptoms, which have been found to load onto four factors: subjective 

symptoms of anxiety (e.g., “unsteady”), neurophysiological symptoms of anxiety 

(e.g., “numbness or tingling”), autonomic symptoms of anxiety (e.g., “indigestion”), 

and panic symptoms of anxiety (e.g., “fear of worst happening”) (Leyfer et al., 2006). 

Participants or patients are instructed to indicate how much they have been bothered 
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by that symptom during the past week, by circling the numbers corresponding to “Not 

at all” (0); “Mildly but it didn’t bother me much” (1); “Moderately – it wasn’t pleasant at 

times” (2); and “Severely – it bothered me a lot” (3). Summing these numeric scores, 

participants can fall anywhere on the scale of 0 to 21 (no to low anxiety) to 36 and 

above (high anxiety). The BAI has been shown to be highly internally consistent and 

acceptably reliable over 11 days in a sample of patients with anxiety disorders 

(Fydrich et al., 1992). The BAI also compares favourably with other common 

subjective measures of anxiety, such as the State-Trait Anxiety Inventory (STAI): BAI 

scores were found to be significantly less confounded with depression than STAI 

scores (Fydrich et al., 1992). Its high internal reliability makes it particularly suitable 

for within-subjects designs (e.g., tracking any anxiolytic effects of an intervention, 

Chapters 5 and 6), as well as for distinguishing anxious traits from depression in 

samples suffering from (or at risk of) depression (Chapters 4-6).  

The SHAPS is a 14-item scale used to assess hedonic tone and its absence, 

anhedonia. Anhedonia is classically defined as a loss of the ability to experience 

pleasure (Snaith, 1993), though more recent definitions incorporate broader 

constructs of motivation, anticipation, and reward valuation (Der-Avakian and 

Markou, 2012). The scale comprises four domains of pleasure response: interests 

and pastimes, social interaction, sensory experience, and food or drink (Snaith et al., 

1995). Each of the 14 items consists of a statement which the participants rate on a 

scale from “Definitely agree” (scored as 0), “Agree” (scored as 1), and “Disagree” 

(scored as 2), to “Strongly disagree” (scored as 3). Statements include: “I would 

enjoy my favourite television or radio programme”; “I would find pleasure in the scent 

of flowers of the smell of a fresh sea breeze or freshly baked bread”; and “I would 

enjoy a cup of tea or coffee or my favourite drink”. After a participant has rated every 
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question, his or her score is calculated by summing the scores to a total, ranging 

from 0 to 42. Age and sex have not been found to have any major effect on scores 

(Snaith et al., 1995). 

In all studies except Chapter 3, participants were also administered the Weschler 

Test of Adult Reading (WTAR: Wechsler, 2001). This is an oral test of verbal 

intelligence, which we used to attempt to match the groups according to intelligence 

quotient (IQ) (Chapter 4) and confirm that two arms of the clinical trial were 

adequately matched (Chapter 5). Participants were instructed to read a list of 50 

words aloud; the list is made up of (relatively) infrequently-used words (‘perspicuity’; 

‘lugubrious’; ‘hegemony’). Each correctly-read word scores the participant one point, 

and participants’ final scores can be converted to an IQ score using standard score 

conversion tables and age. We did not administer the WTAR to any participant who 

was not fluent in English, and excluded these participants from all IQ analyses (non-

native English speakers who were educated in English were administered the 

WTAR).  

In Chapters 3 and 5 only, participants were administered the tDCS Adverse Effects 

Questionnaire (Brunoni et al., 2011). In Chapter 5, we administered this 

questionnaire in all patients at least once; in Chapter 3, we administered this 

questionnaire in only a subset of participants (N=45). This adverse effects 

questionnaire was developed following a systematic review and meta-analysis of 

tDCS clinical trials, proposed to improve systematic reporting of tDCS-related side-

effects (Brunoni et al., 2011). It assesses ten commonly-reported side-effects of 

tDCS (headache, neck pain, scalp pain, tingling, itching, burning sensation, skin 

redness, sleepiness, trouble concentration, and acute mood change), plus space for 
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a specified ‘other’ adverse event. For each side-effect (including ‘other’), participants 

indiciate whether a symptom was absent, mild, moderate, or severe. If a symptom is 

present, participants also indicate whether they believe it is related to the stimulation 

(not at all; remotely possible; probable; definite). This questionnaire allowed us to 

examine whether side-effects differed between active and sham stimulation 

conditions, which may affect efficacy of blinding.  

2.3 Hot cognitive measures (emotional face tasks) 

A tendency to process negatively-valenced stimuli over positive stimuli has been 

reported in depression across many domains, including memory (Matt et al., 1992), 

reward processing (Pizzagalli et al., 2009) and attention (Gotlib and Joormann, 

2010). In the perceptual domain, depressed patient show disrupted behavioural 

(reaction times; accuracy of emotion identification) and neural responses to 

emotional face stimuli (e.g., Joormann and Gotlib, 2006; Surguladze et al., 2005, 

2010; Suslow et al., 2010). Emotional face tasks can take several forms, including 

explicit emotional identification (e.g., “respond only to sad faces” in a sequence of 

emotional faces), incidental emotional face tasks (e.g., “respond only to old faces” in 

a sequence of emotional faces), and implicitly-presented emotional face tasks (i.e., 

when the presentation of each face is of a duration below the participant’s threshold 

of perception). In this thesis, we employ the first two types of tasks.  

In Chapter 3, I employ an explicit emotion identification task in the context of a 

behavioural tDCS study in healthy controls. In Chapters 4-6, I use an incidental 

emotion identification (gender identification) task in the fMRI scanner. Both are 

intended to probe disruptions in hot cognition in depression: in Chapter 3, measuring 
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emotion identification, and in Chapters 4-6, measuring neural reactivity to negative 

and positive emotional faces.  

2.3.1 Explicit emotional face task  

Depressed patients show a decreased sensitivity to positive facial expressions, 

compared to healthy controls during explicit emotion identification (i.e., a higher 

intensity of expression is needed for patients to correctly detect positive emotions) 

(Joormann and Gotlib, 2006). Conversely, patients show an increased sensitivity to 

sad facial expressions (Joormann and Gotlib, 2006).  

In Chapter 3, I employed an explicit emotional face identification task sensitive to 

emotional biases (Bamford et al., 2015). This task is unusual in its employment of a 

prototypical emotional face, rather than the more typical neutral face. This has the 

advantage of making the comparison stimulus genuinely emotionally ambiguous. It 

also bears a closer resemblance to how visual representations are thought to be 

coded: with reference to a prototypical, not a neutral, face (Skinner and Benton, 

2010).  

The paradigm uses photographs from twelve young adult males with posed facial 

expressions (happy, sad, angry, disgusted, fearful, surprised, and neutral) (Bamford 

et al., 2015). Each face has been morphed along the axis of prototypical to each 

specific emotion using Active Shape Models (Tiddeman et al., 2001). The 

prototypical face is a composition of all 12 individuals’ seven facial expressions (six 

emotions, and neutral). The final face stimuli used in the task comprise faces 

morphed along each axis of emotion intensity; for instance: a face 5% along the 



66 
 

dimension of prototypical to disgusted (95% prototypical), or a face that was 90% 

along the dimension of prototypical to angry (90% angry) (see Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Axis of emotional expression. Centre represents morphed prototypical emotional face; 
outer circle represents maximum emotion expression. Emotions from centre top, clockwise: 
disgusted, happy, surprised, angry, sad, and fearful. Figure adapted from Bamford et al. (2015), 
Journal of Psychopharmacology.  

2.3.2 Incidental emotional face task 

Incidental emotional face tasks require participants to respond to non-emotional 

features of faces (e.g., gender; age), while manipulating the emotion of face stimuli 

(e.g., happy; fearful) to measure the effects of emotionality on behavioural or neural 

measures. When combined with neuroimaging techniques, incidental emotional face 

tasks have revealed exaggerated limbic responsivity to negative facial expressions in 

depression, a putative neural mechanism for negative bias (e.g., Surguladze et al., 

2005, 2010). In Chapters 4-6, I use an incidental emotional face task where 

Figure removed for copyright reasons. See original paper 

Bamford et al. (2015), Journal of Psychopharmacology. 
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participants were instructed to identify the gender of each face during blocks of 

happy, fearful, and neutral faces presented inside the MRI scanner (see Figure 2.2). 

Previously, this task has been found to evoke amygdala and subgenual anterior 

cingulate cortex (de)activation (O’Nions et al., 2011). In Chapter 4, we used this task 

to measure differences in limbic responsivity between depressed patients, healthy 

controls, and unaffected relatives of depressed patients. In Chapter 5, we used the 

same task to detect neural changes in emotion processing resulting from a clinical 

trial of tDCS and CBT, providing a measure of within-subject changes in limbic 

reactivity following clinical interventions. Lastly, we used the same task to uncover 

regions potentially predictive of clinical response to tDCS and psychotherapy in 

Chapter 6. 

 

Figure 2.2 Incidental emotion processing task. Three example trials of a ‘sad faces’ block. 
Participants were not told to attend to the emotions of each face, and instead made speeded 
responses to classify each face’s gender.  

2.4 Cold cognitive measures (working memory and distractibility tasks) 

In addition to emotional face tasks, we also employed measures of cold cognitive 

processing in all chapters of the thesis: the n-back task (Chapters 4-6) and the 
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distractibility task (Chapter 3). Both involve making speeded judgements that involve 

a relatively high working memory load (n-back task) or attentional load (distractibility 

task); ostensibly, neither involve any aspect of emotion processing. These tasks 

were used to assess non-emotional mechanisms affected by brain stimulation 

(Chapter 3, 5, and 6) or risk for depression (Chapter 4).     

2.4.1 N-back task 

The n-back task measures working memory, the cognitive system providing 

temporary storage and manipulation of information necessary to execute complex 

tasks (Baddeley, 1992). It is a paradigm frequently used to quantify individual 

differences in working memory, and predicts inter-individual differences in other 

higher cognitive functions, such as fluid intelligence (Jaeggi et al., 2010).  The n-

back task manipulates working memory load by varying the task to be performed 

while keeping the sensory stimulus constant (Conway et al., 2005), making it a 

useful, flexible measure of working memory.  

Typically, the n-back task involves the successive presentation of stimuli (letters, 

numbers, words, pictures, etc.). Throughout this stream of stimuli, the participant is 

instructed to make a response when the stimulus on-screen matches the one N-back 

(see Figure 2.3). In a version with very light working memory load, the 1-back (N=1), 

participants respond every time the stimulus on the screen matched the previous 

stimulus. In a more difficult version, the 3-back (N=3), participants respond every 

time the on-screen stimulus matched the stimulus presented 3 stimuli ago (i.e., a ; b  

; c  ; a : the final a is a 3-back hit). In our version, we used four consonants easy to 

distinguish from one another: f, p, k, and h. Participants completed nine interspersed 

blocks of the 1-back, nine blocks of the 3-back, and nine short periods of fixation 
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(rest). By manipulating the value of N, we systematically varied processing load (and 

therefore difficulty).  

 
Figure 2.3 N-back task. Four example n-back trials. In the 3-back condition, the participant should 
respond to the fourth letter (‘f’); in the 1-back condition, they should respond to the third letter (‘k’).  

We calculate performance on the n-back task using d-prime (d’), defined as: 

d’= Z(hit rate) – Z(false alarm rate) 

where Z is the inverse of the cumulative Gaussian distribution. Hit rate is calculated 

as the proportion of correct button presses, and false alarm rate the proportion of 

incorrect button presses (i.e. the number of hits and false alarms, divided by the total 

number of opportunities for hits or false alarms, respectively). 

In an imaging context, a design that parametrically manipulates load makes it 

possible to distinguish working memory-specific and non-specific neural activation 

(Chapters 4-6). This is particularly useful in studies with patient populations. In 

psychiatric disorders, including depression and schizophrenia, behavioural 
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performance on the n-back task is frequently impaired (Harvey et al., 2004; Krieger 

et al., 2005). The design of the n-back task makes it possible to measure the 

difference between neural responses to the high-load (3-back) and low-load (1-back) 

conditions, isolating the regions involved in load-sensitive (specific to working 

memory) processing from load-insensitive regions that perform other supportive 

functions, such as perception and action. Thus, specific deficits in the neural 

mechanisms of working memory in patients can be distinguished from more general 

deficits in motor responding, sensory processing, or other basic processes 

potentially disrupted by depression.  

2.4.2 Distractibility task 

In Chapter 3 only, I use an irrelevant-distractor paradigm to measure individual 

differences in attentional distractibility (see Figure 2.4). This paradigm was 

developed to measure the effect of task-irrelevant distractors on speeded behaviour 

(both task-relevant and irrelevant distractors interfere with performance, typically by 

slowing reaction times) (Forster and Lavie, 2008). The effect of task-irrelevant 

distractors on behaviour also correlates with self-reported mind wandering, indicating 

there is a general trait of susceptibility to both external and internal distractors 

(Forster and Lavie, 2014). Impairments in distractibility and failure to focus attention 

are commonly reported in patients with depression (Lemelin et al., 1997). The 

attention-distractibility trait also varies substantially within healthy populations 

(Forster and Lavie, 2015), providing a useful means of indexing variability between 

participants, which we exploit in Chapter 3. 

The attentional-distractor paradigm involves fast, serial target detection (Forster and 

Lavie, 2008), in the vein of traditional response-competition tasks. Such tasks 
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require participants to make speeded responses to serially presented letters while 

distractors are presented in the periphery; distractors are usually response-

congruent (distractor Y for target Y) or incongruent (distractor O for target Y) 

(Eriksen, 1995; Forster and Lavie, 2014). However, it has been suggested that in 

traditional response-competition paradigms, distractors are closely related to the task 

at hand, either through response associations or locations (Forster and Lavie, 2008, 

2014). Therefore, the attentional-distractor paradigm uses salient but task-irrelevant 

images (e.g., a cartoon figure). These distractors appear in the minority of trials, and 

(arguably) provide a more realistic measure of everyday distraction: a reader of this 

thesis is more likely to be distracted by a recent salient news item— the UK’s exit 

from the European Union, for example—than words in the previous or forthcoming 

sentence.  
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Figure 2.4 Structure of the distraction task. Participants were instructed to press 0 for the target 
letter X, or 2 for the target letter N, as quickly and accurately as possible. The left trial is an example 
of an irrelevant distractor trial (10% of trials), and the right trial is an example of a typical trial (90% of 
trials). Figure reproduced from Nord et al. (2017), Social Cognitive and Affective Neuroscience.   

2.5 Transcranial direct current stimulation 

Throughout this thesis, I employ a neuromodulatory technique, anodal tDCS of the 

left DLPFC, to probe its effect on behaviour, mood, and neural activation (Chapter 3; 

Chapters 5 and 6). This technique alters neuronal excitability by delivering a low 

amplitude of constant direct current using electrodes placed on the scalp (Nitsche 

and Paulus, 2000).  

tDCS is delivered by a battery-driven stimulator, and typically applied via a pair of 

saline-soaked (35cm2) electrodes (Nitsche and Paulus, 2000), one anodal (positively 

charged) electrode, and one cathodal (negatively charged) electrode. Placing one or 

the other electrode over the primary motor cortex (M1) exerts a very different effect: 
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the anodal electrode increases M1 excitability, while the cathodal electrode 

decreases M1 excitability, as measured using transcranial magnetic stimulation 

(Nitsche and Paulus, 2000). Although studies typically report having used ‘anodal’ or 

‘cathodal’ stimulation, this classification is imprecise, as both electrodes are always 

used. Indeed, the montages of two studies using anodal tDCS of the left DLPFC 

could be very different, depending on the placement of the cathodal (or ‘reference’) 

electrode (Tremblay et al., 2014).  

Placement of the reference electrode demonstrably changes current distribution, 

even with identical placement of the “active” electrode (Bikson et al., 2010; Moliadze 

et al., 2010). This limits to the degree to which a montage could be considered 

‘excitatory’ or ‘inhibitory’ (Bikson et al., 2010). For example, only an M1-contralateral 

forehead montage induces significant excitability changes in M1 (Nitsche and 

Paulus, 2001), but this setup has the significant drawback of inducing excitability 

changes under the reference electrode. To avoid this, some have suggested using a 

reference electrode elsewhere on the body (Moliadze et al., 2010). However, there is 

an inverse relationship between the magnitude of excitability changes induced by 

tDCS and the distance between the two electrodes (Moliadze et al., 2010).  

I endeavoured to minimize the direct cortical effects of the cathodal electrode in our 

left anodal DLPFC montage by placing it over the ipsilateral shoulder (superior 

trapezius), i.e. as close as possible to the head without having any chance of 

inducing brain excitability changes (this is known as an extraencenphalic cathode) 

(see Figure 1.3). Other studies have used a supraorbital cathodal electrode 

placement with DLPFC tDCS (Fregni et al., 2005; Lally et al., 2013; Loo et al., 2012) 

or a bifrontal montage, with the cathodal electrode on the right DLPFC (Brunoni et 
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al., 2014b), but arguably it is harder to discount the role of the cathodal electrode in 

these montages. It is important to note, however, that although the position of our 

cathodal electrode would not have directly affected any cortex itself, its position still 

has a substantial effect on the distribution of current under and surrounding the 

anodal electrode (Bikson et al., 2010). In a computational modelling study of tDCS 

montages used in depression, this left DLPFC anode – extraencaphalic cathode 

montage was also suggested to induce current flow in central structures, including 

the anterior cingulate cortex (Bai et al., 2014). The efficacy of this montage received 

preliminary empirical support in an open-label depression trial (Martin et al., 2011). I 

employ this montage (left DLPFC anode – extraencaphalic cathode) in Chapter 3, as 

well as the RCT presented in Chapters 5 and 6.  
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Chapter 3. Prefrontal cortex stimulation does not affect emotional 

bias, but may slow emotion identification 

3.1 Abstract 

Transcranial direct current stimulation (tDCS) has recently garnered attention as a 

putative depression treatment. However, the cognitive mechanisms by which it 

exerts an antidepressant effect are unclear: tDCS may directly alter hot emotional 

processing biases, or alleviate depression through changes in cold (non-emotional) 

cognitive function. Here, 75 healthy participants performed a facial emotion 

identification task during 20 minutes of anodal or sham tDCS over the left 

dorsolateral prefrontal cortex (DLPFC) in a double-blind, within-subject crossover 

design. A subset of 31 participants additionally completed a task measuring 

attentional distraction during stimulation. Compared to sham stimulation, anodal 

tDCS of the left DLPFC resulted in an increase in response latency across all 

emotional conditions. We failed to show any emotion-dependent effect of tDCS on 

behaviour. Thus, we find that anodal tDCS produces a general, rather than an 

emotion-specific, effect. We also report a preliminary finding in the subset of 

participants who completed the distractibility task: increased distractibility during 

active stimulation correlated significantly with the degree to which tDCS slowed 

emotion identification. Our results provide insight into the possible mechanisms by 

which DLPFC tDCS may treat symptoms of depression, suggesting that it may not 

alter emotional biases, but instead may affect ‘cold’ cognitive processes. 
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3.2 Introduction  

Over the past decade a form of noninvasive brain stimulation, anodal transcranial 

direct current stimulation (tDCS), has been reported to be effective in treating 

depression, both alone (Boggio et al., 2008; Fregni et al., 2006a; Loo et al., 2012), 

and in combination with antidepressant medication (Brunoni et al., 2013). Anodal 

tDCS delivers a weak electric current that modulates cortical excitability, although 

the precise mechanisms underlying its effects are largely unknown.  

Anodal tDCS has been used to directly target one of the most reliably identified 

neural correlates of depression, dysfunction of the dorsolateral prefrontal cortex 

(DLPFC) (Fales et al., 2009; Koenigs and Grafman, 2009). At rest, metabolism in the 

DLPFC has been found to be reduced in depression (Baxter et al., 1989; Biver et al., 

1994; Galynker et al., 1998). By contrast, task-related functional magnetic resonance 

imaging (fMRI) studies have reported both hyper- and hypoactivation in the DLPFC 

(Elliott et al., 1997a; Harvey et al., 2005; Siegle et al., 2007a; Wang et al., 2015). 

Hypoactivity in the DLPFC is interpreted as a weaker ability to harness DLPFC 

activity during difficult tasks (Elliott et al., 1997a; Siegle et al., 2007a); while 

hyperactivity is interpreted as cortical inefficiency (Harvey et al., 2005). These 

inconsistencies may be related to between-study differences in task difficulty, with 

more difficult tasks— when patients are impaired— finding hypoactivation, and vice 

versa (Wang et al., 2015). Targeting the DLPFC with tDCS therefore aims to remedy 

this dysfunctional DLPFC activation (Nord and Roiser, 2015), with possible 

downstream effects on dysregulation in other circuits driving biased emotional 

processing (Roiser et al., 2012). However, despite preliminary findings of its 
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antidepressant efficacy (Shiozawa et al., 2014), there is a dearth of research on the 

cognitive mechanisms that may drive the beneficial effects of DLPFC tDCS.   

3.2.1 Hot and cold cognition in depression 

As outlined in Chapter 1, among the neural systems implicated in the neurobiology of 

depression, two networks are thought to play a particularly important role, and have 

been targeted in the context of novel treatments for depression. The first system is 

implicated in emotion and reward processing, often termed hot cognition, and 

includes limbic structures as well as the ventral prefrontal cortex, in particular the 

sgACC (Drevets et al., 2008). Disruptions in this system are thought to drive the 

characteristic depressive bias in hot cognition, away from positive and towards 

negative information processing (Bradley and Mathews, 1983). The second system 

is associated particularly with effortful ‘cold’ (non-emotional) cognitive processing, 

and includes the dorsal anterior cingulate cortex, the hippocampus, and the DLPFC 

(Roiser and Sahakian, 2013). 

If the mechanism driving any antidepressant effects of DLPFC stimulation were 

similar to that of traditional pharmacological treatments, there might occur an acute 

effect of tDCS on hot cognition. Although the therapeutic effect of antidepressant 

drugs typically takes 4-6 weeks, acute doses have been shown to produce positive 

emotional biases, in both healthy controls (Harmer et al., 2003b) and depressed 

patients (Harmer et al., 2009b). According to the cognitive neuropsychological 

model, these effects elicit downstream changes, through the relearning of internal 

models of the environment (schemata), ultimately resulting in symptom remission 

(Harmer et al., 2009a).  
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Despite the central importance of hot cognitive processing in contemporary theories 

of depression, this area has been almost entirely neglected in tDCS research, 

though a small number of exceptions exist. In one study, DLPFC tDCS did not elicit 

subjective emotional changes, but subtly improved identification of positive emotional 

expressions in healthy subjects (Nitsche et al., 2012); in another, DLPFC tDCS 

decreased vigilance to threatening stimuli (Ironside et al., 2015), a result akin to the 

effect of anxiolytic drugs such as diazepam (Murphy et al., 2008). However, in the 

latter study, tDCS did not affect any other measures of emotional processing in a 

comprehensive battery of tasks (Ironside et al., 2015). 

Another possibility is that DLPFC tDCS exerts an antidepressant effect through 

mechanisms altogether distinct from those involved in antidepressant drug 

treatment. Instead, tDCS might only directly affect cold cognitive processing in 

depression, but this could potentially catalyse the changes in top-down emotional 

processing that are thought to drive the remission of symptoms, for example by 

improving reality checking (Roiser et al., 2012). Disruptions in cold cognition in 

depression, which are part of standard diagnostic criteria, typically manifest as 

impairments in attention, cognitive control, and working memory, and have been 

hypothesised to be caused by dysfunction in regions such as the DLPFC (Harvey et 

al., 2005). There is evidence that anodal DLPFC tDCS improves working memory 

(Andrews et al., 2011; Lally et al., 2013) and cognitive control (Vanderhasselt et al., 

2013). However, there is also evidence that anodal DLPFC tDCS increases self-

reported mind-wandering, as measured using subjective reports of task-unrelated 

thoughts (e.g., “what shall I eat for lunch today?”; versus a task-related thought such 

as “what is the correct button to press now?”). This is of particular relevance to 

depression, as a central symptom of depression, rumination, involves fixation on 
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negative thoughts. Depressive thinking is associated with mind-wandering 

(Smallwood et al., 2007), but mind-wandering itself does not appear to decrease 

mood (Poerio et al., 2013). However, distraction has been shown to alleviate 

depressed mood, potentially through interruption of rumination (Nolen-Hoeksema 

and Morrow, 1993). If tDCS does indeed increase mind-wandering (Axelrod et al., 

2015; Kajimura and Nomura, 2015), this could provide a second possible 

mechanism for its antidepressant effects: an increase in distraction from negative 

thoughts.  

Drawing on the consistent reports of emotional processing biases in depression, and 

the evidence that standard antidepressant drugs normalize these, the main aim of 

this study was to test whether DLPFC tDCS positively biases emotional processing. 

We used a well-validated task involving the identification of morphed emotional 

expressions. We hypothesized that if anodal left DLPFC tDCS exerts antidepressant 

effects through modulating hot cognition, it should elicit a positive bias in emotional 

face identification, similar to the acute effects of antidepressant drugs. In a subgroup 

of participants, we also tested a specific hypothesis that tDCS might increase 

distractibility, due to its previously-reported effect on mind-wandering (Axelrod et al., 

2015). To this end, we employed an experimental paradigm that measures the effect 

of irrelevant distractors on attentional performance (Forster and Lavie, 2008), which 

has been shown to correlate with internal distraction from mind-wandering (Forster 

and Lavie, 2014), allowing us to use this as an index of individual variability in 

distractibility.  
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3.3 Methods 

3.3.1 Participants and procedure 

Seventy-five healthy participants (40 females; mean age 25.6) were recruited via the 

online University College London Psychology Subject Pool. Exclusion criteria 

included any history of seizures, and any known neurological or psychiatric 

disorders, which were assessed by telephone interview prior to the first testing 

session. All participants gave written informed consent before proceeding with the 

first day of the experiment, for which they were randomized to either active or sham 

stimulation, which was delivered while completing the cognitive tasks. Both 

experimenter and participant were blind to stimulation. Participants attended on a 

second day, at least 24 hours after the first, on which they received the other 

stimulation type. Participants were compensated for their time and travel, and the 

study was approved by the NHS Research Ethics Committee for London Queen 

Square.   

3.3.2 Brain stimulation 

As described in Chapter 2, anodal transcranial direct current stimulation at 1 mA was 

generated by a battery-driven stimulator (neuroConn DC-stimulator, Ilmenau, 

Germany). Sponge coverings were soaked in saline and applied to a pair of 5 x 7 cm 

electrodes. The anodal electrode was placed over the left DLPFC using the 

international 10-20 system of electrode placement (Jasper, 1958). The reference 

electrode was placed on the ipsilateral shoulder deltoid muscle, to ensure that the 

effects on the brain originated from the anodal stimulation alone (Priori et al., 2008; 

Wolkenstein and Plewnia, 2013). Anodal and sham stimulation both used an 



81 
 

identical electrode montage with the anodal electrode located at F3 in the 10-20 

system, and lasted 20 minutes, but anodal stimulation involved a 5-second ramp-up 

of stimulation after which the current was delivered continuously, whereas sham 

stimulation delivered a current for only 30 seconds. Participants were randomized 

using pre-determined codes to allocate the order of sham versus active stimulation 

days, with order counterbalanced across participants. In a subset of participants 

(N=45), we also assessed side-effects using the tDCS Adverse Events 

Questionnaire (Brunoni et al., 2011) (in N=30 participants, we only assessed 

spontaneously-reported side-effects).  

3.3.3 Emotional faces task 

The Emotion Recognition Task, programmed in E-Prime, is a six-alternative forced-

choice paradigm to measure sensitivity to six emotions (happy, sad, fearful, angry, 

surprised, and disgusted). Each trial begins with a central fixation cross lasting 1500-

2500ms and presents a morphed face stimulus for 150ms, followed by a 250ms 

noise mask, to prevent afterimages (Bamford et al., 2015). Participants are then 

required to select the emotion best describing the facial stimulus, using the mouse to 

click on one of the six emotion types displayed on screen (see Figure 3.1). The 

emotion type options appear for 10,000ms or until the participant responds. 

Participants completed the task in an average of 6.65 minutes (SD=1.18).  

The 350 x 457 pixel face stimuli were created from photographs of 12 young adults 

photographed under controlled conditions, and merged into composite images 

depicting each of the six emotions (Bamford et al., 2015). A face depicting a 

prototypical expression was also constructed, made up of a composite of 6 

emotional and one neutral expression (Bamford et al., 2015). This was so the face 
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would appear genuinely emotionally ambiguous, since recent evidence suggests that 

emotions are coded with reference to a prototype of this nature (rather than a neutral 

face) (Skinner and Benton, 2010). A 15-image morph sequence that ran along the 

continuum from the prototypical face to the full-intensity emotional expression was 

created for each of the six emotions, with the first image displaying 5% intensity, and 

the final image displaying 100% intensity. In the task, ninety-six choices were made, 

sixteen per emotion (half male, half female faces).  

One participant experienced inconsistent stimulation on both days due to high 

electrical impedance (which may have occurred due to thick hair (Horvath et al., 

2014)), and a data saving failure occurred for a second participant (but whose 

distractibility task data were saved). Both these participants were therefore excluded 

from all emotion identification data leaving N=73 in the final analysis.  

 
Figure 3.1 Structure of the emotion identification task. Each trial begins with a fixation cross, 
followed by a very brief presentation (150 ms) of an emotional face which is replaced by a mask. 
Participants responded using the mouse to identify the emotion presented.  

3.3.4 Distractibility task 

In a subset of the participants (N=31) we administered an attentional distraction task 

in addition to the emotional faces task, which was also programmed in E-Prime 

(Forster and Lavie, 2008). For these participants the distractibility task was always 

administered first during the stimulation session. All stimuli were presented on a 
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laptop screen at a viewing distance of 60cm. Each trial begins with a centrally-

presented fixation point shown for 500ms, followed by the stimulus, which consists of 

a 1.6º radius circle of grey letters (‘o’) presented on a black background. Participants 

are instructed to search the stimulus display for a target letter (either X or N, 

presented for 500ms), for which they make a rapid keyboard response (pressing 0 or 

2 for X or N, respectively). Participants complete three slow (1000ms) example trials, 

and 12 fast (500ms) practice trials, before beginning the full version (480 trials). The 

task last an average of 8.19 minutes (SD=30.6 seconds). An irrelevant distractor (a 

cartoon character) is presented in the periphery of the screen, outside the letter 

circle, on 10% of trials (distractor condition). Participants are directed to respond as 

quickly and accurately as possible, and to focus only on the letter circle, ignoring any 

stimulus outside the circle (see Figure 2.4). Feedback for errors is provided by a brief 

tone.  

The main outcome measure on this task contrasts responses on trials where no 

distractor was presented with those on which the irrelevant distractor was presented 

(Forster and Lavie, 2008). In other words, it provides a measure of how distractible a 

participant is by measuring the degree to which distracting stimuli affect errors and 

reaction times. This enabled us to test whether (1) anodal tDCS of the DLPFC 

increased distraction on the task, and (2) whether the effect of tDCS on distraction 

correlated with any effects of tDCS on emotion identification. 

At eight intervals throughout the task, participants were additionally presented with 

thought probes asking “What were you thinking about just now?”, and instructed to 

answer whether or not they had experienced task-unrelated thoughts (TUTs) in the 

trials leading up to the question.  
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In the thought probes, participants were instructed to report the thought that had 

been passing through their mind in the moment immediately before the probe 

appeared. Participants were instructed to press A if they were thinking about the task 

that they were performing (they were given examples of “where is the target letter?” 

and “oops I’ve pressed the wrong button”), and to press Z if they were thinking about 

something unrelated to the task at hand. Thus, our measure of TUTs reflects only 

the proportion of probes to which participants reported task-unrelated versus task-

related thoughts. 

3.3.5 Statistical analysis 

Statistical analyses were performed in SPSS 22.0 (IBM Comp, Armonk, NY). 

Repeated-measured analyses of variance (ANOVAs) were constructed to examine 

how sham or active tDCS affected accuracy and reaction times for each of the six 

emotion types (for the emotion task) or the two distraction conditions (for the 

distraction task). We initially included order as a between-subjects factor in all 

models, and removed it if there was no significant effect of order or any interactions.  

Finally, in the subgroup of participants who completed both tasks, we calculated a 

measure of the degree to which distractibility (measured by reaction time) was 

altered by tDCS as: 

[distractor condition (active tDCS) – no distractor condition (active tDCS)] –  

[distractor condition (sham tDCS) – no distractor condition (sham tDCS)] 
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We correlated this tDCS-induced distractibility measure with tDCS-induced changes 

in reaction times on the emotion identification task, using Pearson’s correlation 

coefficient. 

3.3.6 Power analysis 

A previous report of tDCS on attentional vigilance reported an effect size of d=0.87 

(Ironside et al., 2015). Therefore, for a within-subjects design, 20 subjects were 

required to achieve 95% power (2-tailed test). However, we powered our study to 

detect a smaller effect size (d=0.5), since initial effect size estimates are frequently 

inflated (Button et al., 2013). Therefore, in the emotion task, with 73 participants, we 

had 99% power to detect an effect size of 0.5 at α = 0.05 (2-tailed); in the 

distractibility task, with 31 subjects, we had 77% power to detect this moderate effect 

size (and 99% power to detect the previous effect size of 0.87). Finally, for the 

between-task correlation, with 31 subjects, we had 86% power to detect a true 

association of r=0.5 at α=0.05 (2-tailed).   

3.4 Results 

3.4.1 Side effects 

Common side-effects of tDCS were recorded for both active and sham tDCS 

sessions, including itching, burning, and tingling. These effects were no more 

common under active tDCS than sham stimulation (for a full list of reported side-

effects, see Table 3.1).  
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% Reporting Active tDCS  Sham tDCS 

Headache 7%  7% 

Neck pain 4%  5% 

Scalp pain 9%  9% 

Tingling 37%  35% 

Itching 37%  31% 

Burning sensation 17%  17% 

Skin redness 9%  5% 

Sleepiness 24%  28% 

Trouble concentrating 17%  27% 

Acute mood change 8%  9% 

Others  1%  4% 

Table 3.1 Side effects reported by participants. “Others” included abnormal metallic taste (reported 
during sham), and numbness in the contralateral side of the face (reported during active).  

3.4.2 Emotion identification task  

For the reaction time analysis, there was a significant stimulation-by-order interaction 

(F(1,71)=26.39, p<0.001), representing a practice effect by which participants 

responded faster on the second testing session regardless of stimulation. Therefore 

order (and where relevant the stimulation-by-order interaction) was retained in the 

reaction time model.  

For the accuracy analysis, order of stimulation was removed since no significant 

interaction between order and stimulation condition was found. 

3.4.2.1 Effect of tDCS and emotion on reaction times 

The analyses below were performed using reaction time data for correct responses 

only, but the results were similar when including all responses (data not shown). 

Participants responded significantly more slowly under tDCS (F(1,71)=6.02, 
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p=0.017). Reaction times were also significantly affected by emotional valence 

(F(5,355)=7.4, p<0.001), with happy, sad, and surprise eliciting shorter reaction 

times than fear, anger, and disgust (Figure 3.2A). Paired contrasts revealed that 

reaction times to angry faces were significantly longer than to happy (t(72)=3.98, 

p<0.001), sad (t(72)=3.29, p=0.002), and surprised faces (t(72)=5.80, p<0.001), but 

not fearful (t(72)=1.29, p=0.201) or disgusted  (t(72)=1.63, p=0.108); while disgusted 

faces were identified significantly more slowly than happy (t(72)=2.82, p=0.006) and 

surprised faces (t(72)=3.97, p<0.001) (but not fearful (t(72)=-0.18, p=0.862) or sad 

(t(72)=1.35, p=0.182)). Additionally, fearful faces were identified significantly more 

slowly than happy (t(72)=2.40, p<0.019) and surprised faces (t(72)=3.94, p<0.001) 

(but not sad (t(72)=1.40, p=0.166)), and sad faces were identified significantly more 

slowly than surprised faces (t(72)=2.68, p=0.009). There was no interaction between 

stimulation and emotion type on reaction times (F(5,355)=0.26, p=0.93). 

3.4.2.2 Effect of tDCS and emotion on accuracy 

We did not find a significant main effect of stimulation on accuracy (F(1,72)=1.62, 

p=0.21). However, accuracy depended significantly on emotion (F(5,360)=31.95, 

p<0.001) (Figure 3.2B). Accuracy was higher for identifying happy, sad, and 

surprised faces, and lower for identifying fearful, angry, and disgusted faces. Paired 

contrasts revealed that fear was identified significantly less accurately than all other 

emotions: anger (t(72)=4.48, p<0.001), disgust (t(72)=6.70, p<0.001), happy 

(t(72)=8.68, p<0.001), sad (t(72)=8.30, p<0.001), and surprise (t(72)=7.59, p<0.001). 

Anger was also identified significantly less accurately than: disgust (t(72)=3.87, 

p<0.001), sad (t(72)=5.76, p<0.001), happy (t(72)=6.58, p<0.001) and surprise 

(t(72)=5.84, p<0.001). Disgust was identified significantly less accurately than happy 
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(t(72)=2.67, p=0.009), but not sad (t(72)=1.07, p=0.290) or surprise (t(72)=0.91, 

p=0.367); while happy was identified significantly more accurately than surprise 

(t(72)=2.1, p=0.039), but not sad (t(72)=1.86, p=0.068). We did not find a significant 

stimulation-by-emotion interaction (F(1,72)=1.33, p=0.25).  

The slowing effect of tDCS on emotional face identification did not correlate with 

either the severity or frequency of side effects. We calculated the difference in 

severity and number of side effects between active and sham conditions, and tested 

its association with the slowing effet of tDCS on emotional face identification 

(severity: Pearson’s r(45)=0.051, p=0.737; frequency: r(45) =0.205, p=0.178). These 

correlations were only performed in the subset of participants who completed a 

systematic side-effects questionnaire (Brunoni et al., 2011); 30 participants were not 

included in this analysis because we only recorded spontaneous reports of side-

effects in that subset.   
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Figure 3.2 Behaviour on the emotion task. 3.2A: Mean reaction times by emotion category. Sham 
stimulation (light grey bars), was associated with shorter reaction times across all emotions on 
average than active (anodal) tDCS stimulation (dark grey bars) (p=0.017). 3.2B: Mean percent 
accuracy by emotion category. There was no significant difference in accuracy between sham 
stimulation and anodal tDCS stimulation. Error bars represent standard errors of the mean.  

3.4.3 Distraction task 

There was a significant stimulation-by-order interaction for both reaction time 

(F(1,29)=12.33, p=0.001) and accuracy (F(1,29)=10.04, p=0.004). These results 

represent practice effects by which participants performed faster and more 

accurately on the second testing session, regardless of stimulation. Therefore order 

(and where relevant the stimulation-by-order interaction) was retained in both 

models.  
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TUT responses had a highly skewed distribution, so we employed a non-parametric 

Wilcoxon Signed-Ranks Test. This showed that task-unrelated thoughts increased 

under active stimulation relative to sham, though this effect narrowly missed 

statistical significance (Z=1.84, p=0.067). 

3.4.3.1 Effect of tDCS and distraction on reaction times 

As expected, distraction significantly slowed responses (F(1,29)=65.6, p<0.001; 

Figure 3.3A). There was no main effect of stimulation on reaction times 

(F(1,29)=0.059, p=0.81), and no interaction between stimulation and distraction 

condition (F(1,29)=0.35, p=0.56). We additionally examined whether subjective 

ratings of mind-wandering (TUTs) were associated with slower reaction times in the 

distractor condition, but could not confirm this hypothesis (correlations employed 

Spearman’s rank-order correlation, due to the skewed distribution of TUTs. For 

active stimulation: rs(31)=0.037, p=0.903; for sham stimulation: rs(31)=-0.023, 

p=0.842). 

3.4.3.2 Effect of tDCS and distraction on accuracy 

tDCS significantly improved overall accuracy compared with sham stimulation 

(F(1,29)=7.30, p=0.011, Figure 3.3B), and distraction significantly impaired accuracy 

(F(1,29)=5.46, p=0.027). No significant interaction was found between stimulation 

and distraction condition (F(1,29)=0.92, p=0.345, Figure 3.3B).  
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Figure 3.3 Behaviour on the distraction task. 3.3A: The effects of tDCS and distraction condition 
on reaction times. As expected, the condition with distractors elicited significantly slower responses 
(*p<0.001), but there was no significant effect of tDCS on reaction times. 3.3B: The effects of tDCS 
and distraction condition on accuracy. The presence of distractors decreased accuracy, and accuracy 
was higher in the active (anodal tDCS: dark grey bars) condition than in the sham (light grey bars) 
condition (*p=0.011), but the interaction was non-significant. Error bars represent standard errors of 
the mean.  

3.4.3.3 Relationship between distractibility and emotion identification latency 

We calculated a variable reflecting the effect of anodal tDCS on distractibility as 

assessed by reaction times (RTs). This was essentially the interaction effect 

between distractibility and tDCS: distractibility (distractor – no distractor condition 

RT) under active tDCS minus distractibility (distractor – no distractor condition RT) 

under sham tDCS.  This enabled us to test whether the effect of tDCS on 

lengthening reaction times on the emotional face identification task was driven by its 

effect on distractibility. We found that the extent to which tDCS slowed responses to 
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emotional faces correlated positively with the increase in distractibility under tDCS 

(r=0.37, p=0.043; Figure 3.4).  

 
Figure 3.4 Relationship between tDCS effects on latency and distractibility. There was a positive 
relationship between increased distractibility (the increase in reaction time in the distractor condition, 
relative to the no-distractor condition, on the distractibility task) under tDCS, and increased reaction 
times on the emotional faces task under tDCS. *p=0.043. 
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3.5 Discussion 

The main aim of this experiment was to test whether DLPFC tDCS affected hot and 

cold cognitive processing. We first investigated whether anodal DLPFC tDCS had 

acute effects on emotion identification. We hypothesized that tDCS might have an 

effect similar to antidepressant drugs, improving or speeding responses to positively-

valenced faces, and/or impairing or slowing responses to negatively-valenced faces. 

We did not find this predicted interaction in either reaction times or accuracy scores. 

Instead, we identified a significant slowing of responses by tDCS on average across 

all emotional conditions. This suggests that tDCS did not have a valence-specific 

effect on emotional face identification. Additionally, we did not identify a 

corresponding improvement in accuracy (i.e., a speed/accuracy trade-off) as a result 

of tDCS; in other words, participants became slower, but not better, at categorizing 

emotional faces. This pattern of results indicates that tDCS may have an effect on 

emotional deliberation. One interpretation is that tDCS may make participants more 

uncertain about what emotional category a face belongs to. 

In a subset of our participants, we tested a specific hypothesis that anodal DLPFC 

tDCS has an effect on distraction, using a task with the ability to index distractibility 

during active and sham tDCS sessions. We found that those participants whose 

distractibility increased most under tDCS were also those who showed an increased 

latency in the emotion identification task under tDCS. This task, which has previously 

been shown to correlate with internal distraction from mind-wandering (Forster and 

Lavie, 2014), also enabled us to test the basic effect of tDCS on distractibility with 

somewhat surprising results. We found that overall accuracy increased significantly 

under anodal tDCS, but that distractibility itself was not affected. Significantly 
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improved accuracy under anodal tDCS is consistent with the finding that anodal 

tDCS over the frontal cortex increases alertness (Coffman et al., 2014), perhaps by 

enhancing vigilance (Nelson et al., 2014). We also found a trend towards increased 

mind-wandering during anodal tDCS, which has been previously reported (Axelrod et 

al., 2015). However, it should be noted that the behavioural effects of tDCS vary 

substantially between studies (Tremblay et al., 2014), causing some authors to cast 

doubt on the effects of tDCS on cognition altogether (Horvath et al., 2015). 

3.5.1 Relationship to mind-wandering in depression 

Our findings suggest that tDCS does not instantiate a positive emotional bias in 

emotion identification, unlike antidepressant medication. Instead, our findings could 

implicate cold cognitive processes in the acute effects of tDCS. The possibility that 

attentional mechanisms, such as distractibility, might mediate the effects of tDCS 

has particular implications for treating attentional symptoms of depression. Two 

previous studies reported increased mind-wandering (task-unrelated thoughts) under 

anodal tDCS of the DLPFC (Axelrod et al., 2015) and left PFC (Kajimura and 

Nomura, 2015), although in our study this effect narrowly missed statistical 

significance. However, the relationship between the recently-described effect of 

tDCS on self-reported mind-wandering (Axelrod et al., 2015) and its putative 

antidepressant effects has so far been unexplored. Some studies have supported 

the notion that negative mood increases task-unrelated thoughts (Smallwood et al., 

2009), enhancing focus on task-irrelevant personal concerns; indeed, mind-

wandering has even been suggested as a marker for ruminative thinking (Smallwood 

et al., 2007). Yet there seems to be an inherent contradiction in the notion that mind-

wandering is increased in depression (Smallwood et al., 2007), that tDCS increases 
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mind-wandering (Axelrod et al., 2015), and that tDCS is an effective treatment for 

depression (Shiozawa et al., 2014). 

One possible resolution to this apparent contradiction lies in whether mind-

wandering is truly a unidimensional phenomenon. While mind-wandering is typically 

measured in a binary way (e.g., “Have you had any task-unrelated thoughts?”), it is 

much more likely that factors such as the valence of mind-wandering or when the 

mind wanders affect the subjective experience. For example, if mind-wandering 

occurs in a distressing environment, or while trapped in a train of negative thought, 

then it may be adaptive and useful. This idea is supported by a finding that mind-

wandering itself does not precede the onset of depressive thoughts (though the 

inverse is true): only affectively negative mind-wandering has mood dampening 

effects (Poerio et al., 2013). Since we did not test depressed patients, our study 

cannot address whether the tendency of tDCS to increase mind-wandering is related 

to its putative antidepressant effects. It will be important to test this hypothesis in 

future studies. Indeed, the well-described symptom of rumination in depression could 

be viewed as the inverse of mind-wandering, reflecting a single circular, repetitive 

train of negative thoughts. This is substantiated by evidence that a brief distraction 

induction reduces over-general autobiographical memory (Watkins et al., 2000), a 

phenomenon in depression that is associated with poor outcome (Kuyken and 

Brewin, 1995). In the same study, rumination induction maintained over-general 

memory (Watkins et al., 2000). In other words, rumination and mind-wandering are 

not only separable, but they may even function in opposition to one another in some 

cases. The previous hypothesis of increased mind-wandering in depression 

(Smallwood et al., 2007, 2009) does not take these components of the phenomenon 

into account. This hypothesis could be tested directly by measuring the effect of 
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tDCS on attentional set shifting; the explanation proposed above would predict that 

tDCS would improve set shifting, a marker for cognitive flexibility, on which 

depressed patients are known to perform poorly (Rock et al., 2014).  

3.5.2 Limitations 

Two important caveats to our results bear mentioning: first, the reaction time 

measurement in this task involved a fairly complex motor action (moving the mouse 

to click), and may differ substantially from more typical (highly speeded) reaction 

time measurements. This limits our ability to draw parallels with other reaction time 

tasks, though would not affect the differences we report between sham and anodal 

stimulation. Additionally, although we employ a typical tDCS montage used in 

depression (anodal left DLPFC stimulation), we specifically recruited healthy 

controls. It would be essential to show a similar pattern findings in a depressed 

sample to draw clear conclusions about the role of cold cognition and distractibility in 

tDCS for depression. We also note that, while our finding of a lack of emotional bias 

induced by tDCS was robust, the observed relationship between slowing of 

emotional identification and distractibility was weak and should be interpreted with 

caution. In particular, we cannot rule out the possibility that the latter correlation 

might reflect a generic disruptive effect of tDCS on the demanding aspects of 

cognitive and emotional tasks, which requires testing in future studies. 

3.5.3 Conclusion 

Few previous studies have investigated the effects of tDCS on hot and cold 

cognition, though both are thought to contribute to the pathogenesis of depression 

(American Psychiatric Association, 2003), and are associated with response to 
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antidepressant medication (Potter et al., 2004). We show that a tDCS montage 

commonly used in depression trials does not affect low-level hot cognition, but may 

slow emotion identification by increasing distractibility. This finding suggests that the 

antidepressant effects of tDCS may involve relatively distinct cognitive mechanisms 

from antidepressant medication. We further investigate the cognitive and neural 

mechanisms associated with DLPFC tDCS in a depressed population in Chapters 5 

and 6, after characterising the nature of DLPFC dysfunction in risk for depression in 

Chapter 4.  
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Chapter 4. Prefrontal and subcortical responsivity in patients with 

depression, unaffected first-degree relatives, and healthy controls  

4.1 Abstract  

The neural features governing risk and resilience to depression are largely unknown. 

The cognitive neuropsychological model of depression posits that biased emotional 

(hot) processing confers risk for depression, while preserved non-emotional (cold) 

cognition might help mitigate this risk. However, few studies have compared samples 

at risk of depression and those currently experiencing a major depressive episode on 

neural responses during hot and cold cognition, which could test this theory. We 

recruited 99 participants: 39 unmedicated currently-depressed patients, 30 

unaffected (and unrelated) first-degree relatives of depressed individuals, and 30 

age- and sex-matched healthy controls. We assessed two potential neural 

mechanisms that have previously been associated with depression: dorsolateral 

prefrontal cortex (DLPFC) responsivity during working memory, using the n-back 

task; and amygdala and subgenual anterior cingulate cortex responsivity during 

emotion processing, using an incidental emotion processing task. Our findings 

indicate that unaffected first-degree relatives of depressed patients show bilateral 

DLPFC activation that is similar to healthy controls, while depressed patients show 

attenuated activation during working memory. These results are consistent with 

preserved cold cognitive processing in unaffected relatives of depressed individuals, 

consistent with the notion that preserved cold cognitive function may confer 

resilience to depression. However, we did not observe a complementary pattern on 

the emotion processing task: here, neither unaffected relatives nor currently 
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depressed patients showed aberrant sgACC or amygdala responsivity compared to 

healthy controls. These results have important implications for understanding the 

neural mechanisms of risk and resilience in depression, which we interpret in the 

context of the cognitive neuropsychological model of depression. Specifically, these 

results are at least partially consistent with the proposal that preserved “cold” dorsal 

prefrontal cortical function might furnish resistance to developing depression. 

However, we did not find evidence that risk in unaffected relatives might be 

conferred through disrupted processing of “hot” emotional stimuli.   
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4.2 Introduction 

Family history plays a large role in the development and maintenance of major 

depressive disorder (MDD). First-degree relatives of patients with MDD have a two-

to-fourfold increased risk for MDD than those without a family history of depression 

(Weissman et al., 1993). Depressed patients with a family history of MDD show a 

lower age of onset, and are more likely to have recurrent depression (Hollon et al., 

2006a). Indeed, a recent epidemiological study found that this risk is compounded in 

individuals with two previous generations affected by MDD, who show an even 

higher risk (Weissman et al., 2016).  

MDD is notably less heritable than other mental illnesses. The heritability of 

depression is estimated at approximately 40% (Kendler et al., 2001; McGuffin et al., 

1991, 1996; Sullivan et al., 2000; Torgersen, 1986), in contrast to psychotic 

disorders, estimated at over 80% (Cardno et al., 1999). Therefore, an at-risk sample 

(with a positive family history, but no personal history of mood disorder) would also 

be expected to show protective or resilience factors in relation to the development of 

MDD. 

Over the past decade, fMRI studies have begun to shed light on the neural basis of 

risk and resilience factors for depression, with most focusing on emotional (hot) 

cognitive processing, and neural dysfunction in relevant limbic regions. For the most 

part, these studies report differences in activation between at-risk relatives and 

healthy controls that mirror neural abnormalities in MDD. In some studies, both MDD 

patients and at-risk samples showed heightened activation in subcortical regions 

(Monk et al., 2008), though this was not found in all studies (Mannie et al., 2011). 
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First-degree relatives of patients with bipolar depression showed exaggerated 

amygdalar responses to emotional faces compared to healthy controls, comparable 

to bipolar patients themselves (Olsavsky et al., 2012; Surguladze et al., 2010). 

Similarly, participants who scored highly on neuroticism (which is associated with a 

heightened risk of MDD) showed greater activation in the right fusiform gyrus and 

middle temporal gyrus to facial expressions of increasing fear intensity (Chan et al., 

2009). Neural responses to reward processing in at-risk individuals also follow a 

pattern akin to that observed in MDD patients, with diminished responses reported in 

the orbitofrontal cortex (OFC) to rewards (McCabe et al., 2012), and greater OFC 

activation to aversive outcomes (McCabe et al., 2012) and omitted rewards 

(Macoveanu et al., 2014); the latter was attenuated following administration of the 

antidepressant escitalopram (Macoveanu et al., 2014). Thus, at least in the domain 

of hot cognition, at-risk samples frequently show neural commonalities with MDD 

patients. 

Far fewer studies have examined the neural basis of cold (non-emotional) cognition 

in samples at risk of MDD. During the n-back verbal working memory task, at-risk 

participants showed greater activation in the lateral occipital cortex, superior 

temporal cortex, and superior parietal cortex, compared to healthy controls (Mannie 

et al., 2010). This was interpreted as indicating that successful working memory 

requires proportionately greater activation in these cortical regions in at-risk 

individuals. Although no depressed patients were included in this sample, there is 

separate evidence that MDD patients also show aberrant activation in working 

memory-related regions, particularly the dorsolateral prefrontal cortex (DLPFC), with 

some studies reporting greater DLPFC activation than matched healthy controls 

(Harvey et al., 2005). A recent meta-analysis of 11 studies reported greater lateral 
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prefrontal cortex activation during n-back performance, which may reflect 

compensatory neural processes (Wang et al., 2015). However, somewhat 

paradoxically, a number of other studies have found DLPFC hypoactivation during 

working memory in MDD (Baxter et al., 1989; Bench et al., 1993; Siegle et al., 

2007a). Additionally, normalizing DLPFC activity has been suggested as critical in 

both psychological and pharmacological therapy for depression (Brody et al., 2001b; 

Goldapple et al., 2004).  

Few studies have investigated both hot and cold cognition-related neural activation 

in depression (Siegle et al., 2002, 2007a), and none (to our knowledge) also include 

at-risk groups. The cognitive neuropsychological model of depression predicts that 

top-down prefrontal mechanisms (corresponding to cold cognitive processing) may 

mediate resilience by dampening down bottom-up emotional (hot cognitive) biases 

which confer risk in depression (Roiser et al., 2012). However, because the neural 

correlates of emotional and non-emotional cognition are typically investigated in 

separate studies, the relationship between prefrontal and limbic regions in 

depression and their role in risk and resilience has not yet been established.   

Some studies have suggested distinct roles for hot and cold cognitive mechanisms in 

the risk for depression. In one PET study, induced sadness evoked greater anterior 

cingulate and anterior insula blood flow in both at-risk siblings and medicated bipolar 

patients, compared to healthy controls. By contrast, at-risk individuals showed 

greater medial frontal cortex blood flow, while patients showed less, compared to 

controls (Krüger et al., 2006). This difference between the patient and at-risk groups 

was interpreted as a compensatory response, potentially conferring resilience. 

Another study using fMRI suggested that intact prefrontal function might constrain 
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aberrant limbic activity: exaggerated limbic responses to fearful faces were only 

apparent when attention was unconstrained (i.e., passive viewing): the at-risk 

sample showed no differences when attention was constrained (Monk et al., 2008). 

Constraining attention was interpreted to have harnessed prefrontal cortex 

mechanisms in the high-risk sample, tempering the otherwise-abnormal limbic 

responses.  

Hence, it is possible that family risk for depression differentially affects frontal 

activation during cold cognitive processing and subcortical emotion circuitry during 

hot cognitive processing. This would align with the predictions of the cognitive 

neuropsychological model of depression, which hypothesizes that disrupted emotion 

processing might mediate risk of developing depression, while intact cold cognitive 

mechanisms might confer a protective factor that promotes resilience (Roiser et al., 

2012). To our knowledge, this hypothesis has never been tested directly. Therefore 

we probed the function of both executive and emotion processing circuits in a 

sample of depressed patients, unaffected first-degree relatives of depressed 

patients, and healthy controls without a family history of depression. To this end, we 

employed two cognitive tasks, one a measure of hot cognition (incidental emotional 

faces), and the other cold cognition (working memory). We then examined 

differences between the groups in a priori hypothesized regions: the DLPFC (for the 

working memory task) and the amygdalae and subgenual anterior cingulate cortex 

(for the emotional faces task).  
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 4.3. Methods 

4.3.1 Participants 

Ninety-nine participants (46 males) fluent in English were recruited through the UCL 

Institute of Cognitive Neuroscience subject database (in the case of healthy controls 

(N=30) and first-degree relatives (N=30)) and Camden and Islington NHS 

Foundation Trust (in the case of depressed patients (N=39)).  

All participants were screened for current or past psychiatric disorders using the Mini 

International Neuropsychiatric Interview (MINI), version 5.0.0 (Sheehan et al., 1998). 

Exclusion criteria for the healthy control group and the at-risk sample included 

history of any neurological or mental health conditions, including: unipolar or bipolar 

depression, mania or hypomania, generalized anxiety disorder, obsessive-

compulsive disorder, panic disorder, agoraphobia, post-traumatic stress disorder, 

psychosis, substance abuse or dependence, and bulimia or anorexia nervosa. 

Additionally, in all three groups, illegal substance use was prohibited in the six weeks 

preceding the MRI scan, and standard MRI safety restrictions applied. The healthy 

control and first-degree relative groups were also administered the Family Interview 

for Genetic Studies (FIGS), which screened for history of depression in any first-

degree relatives (an inclusion criterion for the first-degree relative group, and an 

exclusion criterion for the healthy control group).  

All depressed patients met DSM-IV criteria for a current major depressive episode. 

Exclusion criteria for the depressed patients were: any history of mania (including 

hypomanic episodes), substance abuse or dependence (save for a remote history of 

abuse/dependence restricted to a prior major depressive episode), and use of any 
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psychotropic medication in the previous six weeks. Family history of depression was 

assessed as part of the clinical interview in depressed patients (with the question “do 

you have a parent, sibling, or child who has ever been diagnosed or treated for 

depression?”).  

Participants were compensated £10/hour. The study was approved by the London 

Queen Square NHS Research Ethics Committee (ID: 13/LO/1028).   

4.3.2 Clinical and cognitive measures 

We collected the following measures from all participants: mood, measured using the 

BDI and the HAM-D; anxiety, measured using the BAI; and anhedonia, measured 

using the SHAPS. In participants who were native English speakers (N=73), we also 

measured FSIQ, which we calculated using the WTAR (Wechsler, 2001). In 

depressed patients we also recorded age of onset, number of depressed episodes, 

treatment history (medication and behavioural therapy), history of hospitalizations, 

and history of suicide attempts.  

4.3.3 Experimental procedure 

Subjects were tested on two separate days. The first day involved initial screening 

for psychiatric conditions and MRI contraindications and a practice session of the n-

back task, to ensure participants understood all task instructions. On the second 

testing day, participants completed the MRI scan, which involved the acquisition of 

one anatomical scan, and two functional scans (with echo planar imaging, EPI) and 

fieldmaps (one for each task). Subjects used an MRI-compatible button box to make 

responses during the tasks. See Table 4.1 for task characteristics.  



106 
 

4.3.2.1 n-back working memory task (Lally et al., 2013) 

The n-back consisted of a continuous sequence of letters (four consonants, chosen 

to be visually distinct from one another), which were centrally presented for 1000 ms, 

interleaved with fixation crosses presented for 500 ms. Participants were instructed 

to press a button with the index finger of their right hand whenever the on-screen 

letter matched the letter 3-back (in the 3-back blocks) or when the on-screen letter 

matched the letter 1-back (in the 1-back blocks). The task consisted of 27 blocks in 

total: 9 blocks of 12 letters each for the 3-back and 1-back, and 9 rest blocks. The 

task was coded in MATALB (release 2015a for Windows, Mathworks, Natick, MA, 

USA) using the Cogent Toolbox (http://www.vislab.ucl.ac.uk/cogent_2000.php).  

Participants were trained on the n-back task on the screening day by briefly exposing 

them to a 1-back, 2-back, and finally 3-back version. After successfully performing all 

three levels, participants then completed a shortened (5 minute) version of the 

scanner task. We calculated accuracy (d’) for each participant’s n-back data 

collected in the scanner.  

4.3.2.2 Incidental emotion processing task (O’Nions et al., 2011) 

Participants viewed faces displaying happy, fearful, and neutral emotions, and were 

instructed to classify the gender of each face. Participants were instructed to press 

their index finger to respond to female faces, and their middle finger to respond to 

male faces. Each participant was presented with a random order of male and female 

faces, with an equal proportion of male and female faces. The task was made up of 

twelve blocks, each consisting of a single emotion, with eight stimuli per block; each 

emotional condition block occurred four times in each run. Faces were displayed for 

http://www.vislab.ucl.ac.uk/cogent_2000.php


107 
 

2 seconds, with each block lasting 16 seconds. Between each block, a central 

fixation cross was displayed for 16 seconds. All face stimuli were sourced from the 

NimStim Face Stimulus Set (http://www.macbrain.org/resources.htm) (Tottenham et 

al., 2009).  

 
Table 4.1 Characteristics of each task. 

4.3.3 MRI acquisition and analysis 

For each task, we acquired gradient-echo T2*-weighted images using a Siemens 

Avanto 1.5 Tesla MRI scanner (32-channel head coil), with 36 slices per volume. For 

the emotion processing task, slice thickness was 2 mm; slice thickness was 2.5 mm 

in the n-back task to allow fuller brain coverage including the dorsal prefrontal cortex. 

All other parameters were the same between the tasks: echo time was 50 ms, 

repetition time per slice was 87 msec, and in-plane resolution was 2 x 2 mm. We 

http://www.macbrain.org/resources.htm
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acquired one fieldmap per subject per day with the identical volume and parameters 

of each EPI scan, and one five-minute magnetization-prepared rapid gradient-echo 

T1-weighted 1 mm isotropic anatomical scan for each subject. 

EPI data were analysed using Statistical Parametric Mapping (SPM12; Wellcome 

Trust Centre for Neuroimaging, London, www.fil.ion.uck.ac.uk/spm) in Matlab 

R2015a. After removing the first six volumes from each time series to allow for T1 

equilibration, the remaining volumes were realigned to the seventh volume, 

coregistered to each subject’s anatomical scan, normalized into standardized space 

(Montreal Neurological Institute template), and smoothed using an 8 mm full width at 

half maximum Gaussian kernel. Following the realignment stage, all image 

sequences were checked for movements greater than 1.5 mm or rotations greater 

than 1 degree in any direction – corrupted images were removed and replaced using 

interpolation. Following normalization, anatomical images were manually checked for 

artefacts related to overfitting.  

One participant (a first-degree relative) was excluded from all subsequent n-back 

task analysis due to a large amount of head movement, which could not be corrected 

(total analysed in n-back task: N=98); however, this participant was included in all 

analyses of the emotion processing task (N=99). 

Regressors of interest (see Table 4.1) were convolved with a synthetic 

hemodynamic response function time-locked to the onset of the corresponding event 

(for the faces task, each 16-second emotion block; for the n-back task, each 18-

second 3- or 1-back block). We included six movement regressors of no interest in 

all subjects, and an error regressor of no interest only in subjects who made gender 
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discrimination errors on the emotion processing task. In the emotion processing task, 

fixation periods constituted an implicit baseline. Using the general linear model, 

parameter estimate images were estimated for each regressor, and combined to 

create contrasts for each task (see Table 4.1).  

Second-level analyses were conducted using the standard summary statistics 

approach to random effects analysis. To identify the DLPFC, we used a 10 mm-

radius sphere centred on coordinates for the left DLPFC from a meta-analysis of 13 

studies using the n-back task in depressed patients and healthy controls 

(coordinates: -44, 20, 30) (Wang et al., 2015). We also used the corresponding 

coordinate on the right (44, 20, 30: the right DLPFC was not significant in this meta-

analysis). We used anatomical ROIs to identify the amygdalae (WFU Pickatlas, 

version 3.0.5) and sgACC (Nord et al., 2017a). For any small volume-corrected 

results, we also corrected for the number of ROIs applied.   

We first report whole-brain activation across all participants for the 3-back>1-back 

contrast and its inverse in the n-back task, and for the fearful>neutral, 

happy>neutral, and faces>fixation contrasts (and their inverses) for the emotion 

processing task. For these analyses of the main task effects we applied a cluster-

forming threshold of p<0.05 (family-wise error (FWE)-corrected) and report p-values 

at the voxel- and cluster-corrected levels. We also report small volume-corrected 

(SVC) activation in our ROIs (for the n-back task, right and left DLPFC; for the 

emotion processing task, the amygdalae and sgACC).  

We then tested for group effects in two ways. First, we extracted the average 

parameter estimate across all voxels in each ROI for each subject. For the emotion 
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processing task, we extracted the average parameter estimate for each subject for 

our two contrasts of interest (happy>neutral and fearful>neutral faces) for the 

amygdalae and sgACC ROIs. For the n-back task, we used our one contrast of 

interest (3-back>1-back) to extract the average parameter estimate for the left and 

right DLPFC ROIs. We analysed these average ROI values using mixed ANOVAs in 

SPSS. We tested for any associations between these average ROI values and 

symptom measures (depression (BDI), anxiety (BAI), and anhedonia (SHAPS)). In 

line with our predictions about the interaction between cold and hot cognitive 

mechanisms, we also tested for an association between DLPFC activation during 

cold cognition and amygdala or sgACC activation during hot cognition. 

For our secondary exploratory analyses, we performed a whole-brain one-way 

ANOVA (using an F-test) for the effect of group in SPM (cluster forming threshold 

p<0.001 uncorrected). For the n-back task, the F-test was performed on the 3-

back>1-back contrast. For the faces task, we performed the F-test on all three 

contrasts: the two contrasts of interest, and the faces>fixation contrast.  

4.3.4 Power analyses 

To determine our sample size, we ran power analyses separately for each region 

using G*Power 3.1.9.2; F-tests; ANOVA: repeated measures, between factors, α = 

0.05). In both cases, we expected to find a moderate effect size (Cohen’s d of 0.5 to 

0.6), as previous studies have shown effect sizes of 0.58 and 0.83 for the right and 

left amygdala, respectively (comparing healthy controls and an at-risk sample during 

emotional face processing (Monk et al., 2008)) and up to 1.85 for the left DLPFC 

(comparing healthy controls and depressed patients on the n-back task (Wang et al., 

2015)). 
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The DLPFC and sgACC each had two repeated measurements (for the DLPFC: left 

and right DLPFC; for the sgACC: fearful and neutral contrasts). For these regions, a 

three-group study with two moderately-correlated (0.5) repeated measurements 

required 24-33 participants per group to achieve 80% power with an assumed effect 

size of 0.5-0.6. For a three-group study with four repeated measurements, as in the 

amygdala (left/right; fearful/neutral), we needed between 21 and 30 people to 

achieve 80% power, again assuming an effect size between 0.5 and 0.6.  

Similar sample sizes were obtained for a priori power calculations for correlation 

analyses within the depressed group (i.e., relationship between activation in each 

region and symptom measures). A previous study found a moderate effect size 

(r=0.63) for the relationship between amygdala responsivity and BDI scores in 

patients with depression (Hamilton and Gotlib, 2008). However, we have previously 

identified smaller effect sizes (r=0.36) for the relationship between anhedonia 

(SHAPS) and activation in another subcortical structure, the habenula, in patients 

with depression (Lawson et al., 2016). Using an intermediate effect size of r=0.45 

(correlation tests: point biserial model), we calculated that we required 33 subjects to 

achieve 80% power. However, for smaller effects (e.g., r=0.3), we would have 

required 82 subjects per group. Therefore, our study did not have the power to 

detect more subtle correlations between symptoms and neural activation.   

4.4 Results 

4.4.1 Clinical, demographic and behavioural data 

In one-way ANOVAs with group as the between-subjects factor, there was no effect 

of group on age or FSIQ (both p>0.1); a chi-square test also revealed no effect of 
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group on sex (X2=0.734, p=0.693). There were significant effects of group on HAM-D 

(F(2,96)=828.19, p<0.001), BDI (F(2,96)=346.61, p<0.001), SHAPS (F(2,96)=64.01, 

p<0.001), and BAI scores (F(2,96)=72.55, p<0.001). Post-hoc linear comparisons 

showed that healthy controls did not differ significantly from first-degree relatives on 

any measure (all p>0.05), but differed from depressed patients on all clinical scales: 

HAM-D (t(67)=20.47, p<0.001), BDI (t(67)=25.88, p<0.001), BAI (t(67)=22.59, 

p<0.001), and SHAPS (t(67)=13.61, p<0.001). First-degree relatives also differed 

from depressed patients on all clinical measures (HAM-D (t(67)=30.20, p<0.001), 

BDI (t(67)=19.06, p<0.001), BAI (t(67)=8.60, p<0.001), and SHAPS (t(67)=9.25, 

p<0.001)). See Table 4.2 for full participant characteristics of each group.  

Accuracy data collected in the scanner did not conform to assumptions of normality 

(Komolgorov-Smirnov test: for the n-back task, d’=0.123, p=0.001; for the emotion 

processing task, d’=0.266, p<0.001). To test for an effect of group, we therefore 

conducted nonparametric Kruskal-Wallis tests, which did not reveal any group 

differences in d’ for the n-back task (p=0.149, controls: M=2.03 SD=0.93; relatives: 

M=1.85, SD=0.98; patients: M=1.56, SD=0.87) or accuracy at gender classification 

during the emotion processing task: p=0.102, controls: M=96.4% SD=1.04; relatives: 

M=96.6%, SD=0.60; patients: M=97.3%, SD=0.90).  

Reaction time data conformed to assumptions of normality (Komolgorov-Smirnov 

tests, p>0.05). To test for an effect of group on n-back reaction times (correct 

responses only), we conducted a one-way ANOVA, finding no effect of group 

(F(2,97)=1.51, p=0.227). For the emotion processing task, we conducted a repeated-

measures ANOVA with the within-subjects factor emotion (happy, fearful, or neutral 
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faces), finding no main effect of emotion (F(2,192)=0.768, p=0.466), interaction with 

group (F(4,192)=0.564, p=0.689) or effect of group (F(2,96)=1.35, p=0.263).  

 

 Controls Relatives Patients 

N 30 30 39 

% F 50 60 51 

Age 32.10 (8.68) 28.67 (8.40) 33.38 (10.97) 

FSIQ 110.54 (0.91) 109.73 (0.93) 107.30 (1.62) 

HAM-D 1.17 (1.47) 2.40 (4.95) 21.64 (3.30) * 

BDI 1.53 (2.15) 1.86 (3.09) 27.41 (6.76) * 

SHAPS 5.37 (5.21) 5.07 (4.93) 18.97 (9.09) * 

BAI 3.00 (4.21) 4.17 (5.84) 25.59 (12.69) * 

Age onset n/a n/a 19.97 (9.09) 

No. episodes n/a n/a 2.77 (1.63) 

% first-degree 
relative w/ MDD 

0 100 46.15 

% attempted 
suicide 

n/a n/a 31 

% past ADM n/a n/a 41 

% past PT n/a n/a 64 

Table 4.2 Participant characteristics. F = female; FSIQ = Full Scale Intelligence Quotient; HAM-D = 
Hamilton Rating Scale for Depression; BDI = Beck Depression Inventory; BAI = Beck Anxiety 
Inventory; SHAPS = Snaith Hamilton Pleasure Scale; No. = number; MDD = Major Depressive 
Disorder; % past ADM = per cent of patients with any previous history antidepressant medication use 
(no patients were currently-medicated: see Methods); % past PT = per cent of patients with a history 
of psychological therapy; * F-test p<0.05 for effect of group. 

4.4.2 fMRI results 

We first report whole-brain activation for both tasks, collapsing across all groups for 

all contrasts and their respective inverses. We then test for group differences in 

average activation across our a priori ROIs for our contrasts of interest only. Lastly, 

we report the results of whole-brain F-tests for group differences (using a cluster-

forming threshold of p<0.001 uncorrected).  
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4.4.2.1 Activation across groups: n-back task 

The effect of high vs low working memory condition (3-back versus 1-back; whole-

brain p<0.05, voxel-level FWE-corrected) evoked very large clusters of activation 

extending from a peak in the insula to the bilateral DLPFC, as well as several 

significant clusters elsewhere, including a large cluster with a peak in the posterior 

parietal cortex (see Table 4.3). The inverse contrast evoked substantial VMPFC and 

posterior cingulate activation. An anatomical mask including Brodmann areas 9 and 

46 confirmed substantial activation in the left and right DLPFC in the 3-back<1-back 

contrast (see Table 4.4).  

Table 4.3 Whole brain activation results: n-back task. Whole-brain significant activation during n-
back task, for the 3-back>1-back contrast and its inverse, 1-back>3-back (cluster-forming threshold 
p<0.05, voxel-level FWE corrected). BA=Brodmann area; L=left; R=right. DLPFC=dorsolateral 
prefrontal cortex; PPC=posterior parietal cortex; VMPFC=ventromedial prefrontal cortex; 
VLPFC=ventrolateral prefrontal cortex; lat.=lateral.  

  

Contrast p (cluster-
corrected) 

Extent p (voxel-
corrected) 

t(97) X Y Z region 

3-back > 
1-back <0.001 4561 <0.001 12.36 33 20 -1 insula, DLPFC  

<0.001 289 <0.001 12.24 30 -64 -31 R cerebellum  

<0.001 2073 <0.001 10.99 42 -43 44 R PPC  

0.001 17 <0.001 7.54 57 -52 -10 R fusiform  

<0.001 63 <0.001 6.52 -12 -4 2 L thalamus  

<0.001 51 <0.001 6.28 15 -4 -1 R thalamus 

 0.017 2 0.002 5.70 3 14 23 R mid-cingulate  

0.017 2 0.009 5.29 0 -52 -16 cerebellum  

0.026 1 0.014 5.18 -21 47 -10 L VMPFC 

 0.026 1 0.030 4.97 57 -34 -13 lat. temporal 

1-back > 
3-back <0.001 1430 <0.001 13.20 -3 29 -19 L VMPFC  

<0.001 8026 <0.001 11.30 -9 -52 11 
L posterior 
cingulate cortex  

0.013 3 0.006 5.39 54 35 2 R VLPFC 

 0.026 1 0.030 4.97 24 11 -10 R putamen 

 0.026 1 0.032 4.94 15 -28 -1 R thalamus 

 0.026 1 0.045 4.85 12 -31 5 R thalamus 
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Table 4.4 DLPFC activation: n-back task. Small volume (SV)-corrected activation for the contrast of 
interest in the n-back task, using a separate anatomical mask for left (L) and right (R) dorsolateral 
prefrontal cortex (DLPFC, here including Brodmann area 9 and Brodmann area 46) for the 3-back>1-
back contrast (cluster-forming threshold p<0.05, voxel-level FWE corrected). DLPFC=dorsolateral 
prefrontal cortex.  

4.4.2.2 Activation across groups: faces task 

In the emotion processing task, the effect of fearful (versus neutral) faces (whole-

brain p<0.05, voxel-level FWE-corrected) evoked bilateral activation in the fusiform 

gyri, as well as a large cluster in the lateral temporal cortex, and a cluster in the 

ventrolateral prefrontal cortex. There were no whole-brain significant results for the 

inverse contrast, or for the effect of happy (versus neutral) faces (or its inverse) at 

this threshold. The effect of faces in general (versus the fixation cross baseline) 

evoked widespread activation, including large clusters in the visual associative area, 

hippocampus, supplementary motor area, and orbitofrontal regions. The inverse 

contrast also evoked distributed activation, with the largest clusters in the sgACC 

and posterior cingulate, and smaller ones in sensory, parietal, and temporal regions. 

See Table 4.5 for all whole-brain results. 

We explored whether significant activation was present in our a priori ROIs using a 

small-volume correction (SVC) for anatomical masks of the amygdalae and sgACC 

Contrast p (cluster-
corrected) 

Extent p (voxel-
corrected) 

t(97) X Y Z region 

3-back > 
1-back <0.001 91 <0.001 9.72 -45 11 32 L DLPFC  

<0.001 8 <0.001 8.47 -6 29 38 L DLPFC  

<0.001 29 <0.001 7.72 -45 29 23 L DLPFC  

0.001 1 <0.001 6.68 -42 50 17 L DLPFC 

 0.001 1 <0.001 5.18 -9 35 29 L DLPFC 

 <0.001 41 <0.001 10.51 45 41 23 R DLPFC 

 <0.001 94 <0.001 9.57 42 32 35 R DLPFC 

 <0.001 23 <0.001 9.41 3 29 38 R DLPFC 

 0.017 2 <0.001 9.15 42 50 20 R DLPFC 

 0.006 6 <0.001 7.54 33 41 29 R DLPFC 

 0.007 5 0.002 5.72 51 23 26 R DLPFC 
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(cluster-forming threshold p<0.001, uncorrected; see Table 4.6) for each contrast 

and its inverse. As expected from our whole-brain results, the effect of all faces vs 

fixation evoked significant activation in the bilateral amygdalae, and its inverse 

(fixation>faces) evoked significant activation in the sgACC. The fearful>neutral 

contrast also yielded significant activation in the bilateral amygdalae. The inverse 

emotion-specific contrasts (and the happy>neutral contrast) did not yield significant 

activation in any of our ROIs at this threshold.  
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Table 4.5 Whole brain activation results: emotion processing task. Whole brain activation 
(cluster-forming threshold p<0.05, FWE-corrected). R=right; L=left. VLPFC=ventrolateral prefrontal 
cortex; OFC=orbitofrontal cortex; mPFC=medial prefrontal cortex; SMA=supplementary motor area; 
sgACC=subgenual anterior cingulate cortex; vis. assoc.=visual associative; prim.=primary; 
sup.=superior; M1=primary motor cortex. Both cluster-level and voxel level p-values are whole-brain 
FWE corrected.  

  

Contrast 
p (cluster 
level) 

Extent 
(k) 

p (voxel 
level) t(98) X Y Z region 

fearful>neutral 
<0.001 233 <0.001 7.56 51 -37 5 

R lateral 
temporal 

 <0.001 39 <0.001 6.84 -42 -52 -16 L fusiform 

 <0.001 26 <0.001 6.26 45 -43 -16 R fusiform 

 <0.001 22 <0.001 5.88 54 32 2 R VLPFC 

 <0.001 45 0.001 5.83 -51 -49 5 L lateral temporal 

 <0.001 12 0.004 5.49 51 14 -19 R temporal pole 

 0.010 4 0.020 5.06 30 -94 5 R vis. assoc. 

neutral>fearful none        

happy>neutral none        

neutral>happy none        

faces>fixation <0.001 5558 <0.001 26.85 36 -85 -7 R vis. assoc. 

 <0.001 2571 <0.001 15.17 -24 -31 -1 L hipp. 

 
<0.001 491 <0.001 9.36 -39 -1 17 

L premotor 
cortex 

 <0.001 104 <0.001 8.74 -6 8 50 L SMA 

 <0.001 138 <0.001 7.77 -39 -28 41 L parietal 

 <0.001 34 <0.001 7.7 3 44 -22 R OFC 

 <0.001 65 <0.001 6.89 30 35 -19 R VLPFC 

 <0.001 18 <0.001 5.52 0 14 11 Bilateral caudate 

 0.010 4 <0.001 5.48 -39 47 29 L rostral PFC 

fixation>faces <0.001 2493 <0.001 14.66 9 44 -4 sgACC 

 <0.001 1685 <0.001 14.4 -12 -64 20 L post.cingulate 

 <0.001 270 <0.001 11.13 27 29 38 R mPFC 

 <0.001 654 <0.001 11.09 39 -19 17 R prim. sensory 

 <0.001 414 <0.001 8.27 -54 -7 -13 L sup. temporal 

 <0.001 73 <0.001 8.13 42 -16 41 R M1 

 <0.001 49 <0.001 7.01 -57 -58 26 L parietal 

 <0.001 33 <0.001 6.66 60 -58 26 R inferior parietal 

 <0.001 12 <0.001 6.38 -60 -55 -7 L fusiform 

 0.001 4 0.020 5.06 18 50 23 R rostral PFC 
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Table 4.6 Amygdala and sgACC activation: faces task. SV-corrected activation for all contrasts in 
the faces task using separate anatomical masks for the subgenual anterior cingulate cortex (sgACC), 
and right (R) and left (L) amygdalae (Amyg) (cluster-forming threshold p<0.001, uncorrected).  

4.4.2.3 Group differences in DLPFC activation during working memory (average over 

ROI) 

We extracted average activation from each DLPFC ROI for each subject (n-back 

task: 3-back>1-back contrast). The extracted average activation met assumptions of 

normality (Komolgorov-Smirnov test, both p>0.05). We conducted a repeated-

measures ANOVA, with a within-subjects factor of laterality and a between-subjects 

factor of group. We initially included sex and age in the model, but found no 

significant main or interaction effects of either variable (all p>0.3), so we excluded 

both from subsequent models. We found a significant effect of group on DLPFC 

activation (F(2,95)=4.55, p=0.013, ηp
2=0.087), as well as stronger activation in the 

left than the right DLPFC (F(1,95)=8.08, p=0.005, ηp
2=0.078). The laterality-by-group 

interaction was non-significant (F(2,95)=0.296, p=0.744). Post-hoc analysis (least-

squared difference (LSD) tests) revealed that patients had significantly lower DLPFC 

activation compared to both unaffected relatives (mean difference=0.169, p=0.007, 

Cohen’s d=0.674) and healthy controls (mean difference=0.162, p=0.024, Cohen’s 

d=0.560). There were no differences between DLPFC activation in controls and 

Contrast p (cluster-
corrected) 

Extent p (voxel-
corrected) 

t(98) X Y Z region 

happy>neutral 0.989 1 0.849 3.66 3 41 2 sgACC 

 0.989 1 0.969 3.43 0 14 -7 sgACC 

 0.989 1 0.996 3.22 -3 29 4  

neutral>happy n/a n/a n/a n/a n/a n/a n/a n/a 

fearful>neutral 0.002 28 <0.001 4.71 -30 -1 -19 L Amyg 

 0.004 16 0.001 4.31 30 2 -22 R Amyg 

neutral>fearful n/a 
 

n/a n/a n/a n/a n/a n/a n/a 

faces>fixation 0.001 38 <0.001 9.98 -24 -7 -13 L Amyg 

 <0.001 51 <0.001 9.24 27 -4 -19 R Amyg 

fixation>faces <0.001 299 <0.001 13.82 9 38 -7 sgACC 
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unaffected relatives (mean difference=0.006, p=0.923). See Figure 4.1 for 

distribution and mean of average DLPFC contrast estimates.  

 
Figure 4.1 Distribution and mean of average DLPFC contrast estimates. A-B: Distribution of 
means ((+) represents one subject in the left (A) and right (B) DLPFC ROIs). C: Mean contrast 
estimate across each DLPFC ROI for each group. In 4.1C, (*) indicates a significant main effect of 
group (p=0.010). There was also a significant main effect of laterality (p=0.004). L=left; R=right; 
DLPFC=dorsolateral prefrontal cortex. Error bars represent standard error of the mean.  

4.4.2.4 Correlations with DLPFC in the depressed sample 

There was a much wider distribution of self-report symptoms in the patients’ 

questionnaire responses than in the other groups (see Table 4.1). For this reason, 

we explored associations between depressive symptoms and mean DLPFC 

activation only in the patient group. All questionnaire measures met assumptions of 

normality (Kolmogorov-Smirnov test, all p>0.2). We employed eight parametric 

Pearson correlations to test associations between our four symptom measures 
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(depression (BDI and HAM-D), anhedonia (SHAPS), and anxiety (BAI)) and DLPFC 

activation (Bonferroni-corrected p=0.0063) and each DLPFC. We did not find any 

significant associations even at a nominally significant level (all p>0.1).    

4.4.2.5 Group differences in amygdala activation during emotion processing 

(average over ROI) 

All but two average parameter estimates for the amygdala met the assumption of 

normality (Kolmogorov-Smirnov test, all p>0.2). In the two that did not (amygdala 

activation in the fearful>neutral faces contrast: left: p=0.049; right: p=0.036), we 

performed two nonparametric independent samples Kruskal-Wallis tests to confirm 

the results of the ANOVA. We conducted a repeated-measures ANOVA, with within-

subjects factor of emotion (fear, happy) and laterality, and between-subjects factor of 

group. We initially included sex and age in the model, but found no significant main 

or interaction effects of either variable (all p>0.2); therefore, neither were included in 

our model. Amygdala activation for the fearful>neutral contrast was significantly 

stronger than for the happy>neutral contrast (F(1,96)=17.05, p<0.001, ηp
2=0.151). 

There was no significant effect of laterality (F(1,96)=0.513, p=0.476) or significant 

interaction between laterality and group (F(2,96)=0.079, p=0.924) (see Figure 4.2). 

There was no significant interaction between emotion and laterality (F(1,96)=0.088, 

p=0.767) or between emotion, group, and laterality (F(2,96)=1.325, p=0.271). 

We did not find a significant effect of group (F(2,96)=0.538, p=0.586), which was 

confirmed by the two non-parametric independent samples Kruskal-Wallis test in the 

amygdala fearful faces contrasts (left: p=0.573, right: p=0.916); the interaction 

between group and emotion was also not significant (F(1,96)=2.28, p=0.108). See 
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Figure 4.2 for distribution and means of activations across contrasts in each 

amygdala.  

 

 
Figure 4.2 Distribution and mean of average amygdala contrast estimates. A-B: Distribution of 
means ((+) represents one subject in the left (A) and right (B) amygdala) for the happy>neutral 
contrast. C: Mean contrast estimate across each amygdala ROI for the happy>neutral contrast. D-E: 
Distribution of means ((+) represents one subject in the left (D) and right (E) amygdala) for the 
fearful>neutral contrast. F: Mean contrast estimate across each amygdala ROI for the fearful>neutral 
contrast. L=left; R=right; Amyg=amygdala. Error bars represent standard error of the mean.   
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4.4.2.6 Correlations with amygdala activation in the depressed sample  

We explored in the patient group whether there was any association between 

depressive symptoms and amygdala activation (averaged across both amygdalae; 

separately for each emotion). As before, we calculated eight Pearson correlation 

coefficients (for each questionnaire measure). No correlations were nominally 

significant (corrected significance threshold: p=0.0063; all p>0.05).  

4.4.2.7 Group differences in sgACC activation during emotion processing (average 

over ROI) 

For the sgACC, all average parameter estimates met the assumption of normality 

(Kolmogorov-Smirnov test, all p>0.2). We conducted a repeated-measures ANOVA, 

with a within-subjects factor of emotion (fear, happy), and the between-subjects 

factor of group. We initially included sex and age in the model, but found no 

significant main or interaction effects of either (all p>0.2), therefore, neither were 

included in our model. We found no significant main effect of group (F(2,96)=0.105, 

p=0.900) (see Figure 4.3). The happy>neutral contrasts evoked significantly larger 

activation than the fearful>neutral contrast (F(1,96)=5.09, p=0.026), but there was no 

significant emotion-by-group interaction (F(2,96)=0.249, p=0.780).  
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Figure 4.3 Distribution and mean of average sgACC contrast estimates. A-B: Distribution of 
means ((+) represents one subject) for the fearful>neutral (A) and happy>neutral (B) contrasts for the 
sgACC. C: Mean contrast estimate across the sgACC for both contrasts. sgACC=subgenual anterior 
cingulate cortex. Error bars indicate standard error of the mean.  

4.4.2.8 Correlations with sgACC activation in the depressed sample  

We explored in the patient group whether there was any association between 

depressive symptoms and sgACC activation. We calculated eight Pearson 

correlation coefficients, for each emotion contrast. We found that sgACC activation 

to happy faces negatively correlated with both measures of depression at a 

nominally significant level: HAM-D (r=-0.348, p=0.030) and BDI (r=-0.317, p=0.049) 

(see Figure 4.4). Both indicated that lower sgACC responses (i.e., more deactivation 

to emotional faces) were associated with higher levels of depressive symptoms. 

Bonferroni correction for multiple comparisons yielded a significance threshold of 

p=0.0063; thus, both missed significance at the corrected threshold. In the case of 

sgACC activation to fearful faces, neither HAM-D nor BDI scores correlated with 
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activation (HAM-D (r=-0.284, p=0.080) and BDI (r=-0.302, p=0.062)), though both 

were marginally significant in the same direction: lower sgACC responses 

corresponded with higher levels of depression. There were no associations with 

anxiety (BAI) or anhedonia (SHAPS) scores for sgACC responses to either happy or 

fearful faces, (all p>0.4).  

 
Figure 4.4 Association between sgACC activation and depression scores. Relationship between 
subgenual anterior cingulate cortex (sgACC) activation to happy faces and symptom scores in 
depressed patients for Beck Depression Inventory (BDI, p=0.049, non-significant at corrected 
threshold of p=0.0063, A) and Hamilton Depression rating scale (HAM-D, p=0.030, non-significant at 
corrected threshold of p=0.0063, B).  

4.4.2.9 Correlations between activation evoked during working memory and emotion 

processing 

We tested across all participants whether there was an association between left or 

right DLPFC activation during the n-back task and activation in the amygdala 

(collapsed across left and right) or sgACC, separately during fearful and happy faces 

(N=98; 8 correlations). There was a nominally significant negative relationship 

between right DLPFC activation (during the n-back task) and amygdala activation to 

happy faces, r=-0.237, p=0.019, such that participants with the highest DLPFC 

activation had the lowest amygdala activation during happy faces (see Figure 4.5). 

However, this was not significant after applying Bonferroni correction for multiple 



125 
 

comparisons (corrected significance threshold: p=0.0063). No other correlations met 

criteria for nominal significance (all p>0.1).  

 
Figure 4.5 Association between amygdala and DLPFC activation. Correlation between amygdala 
activation to happy faces (average across left and right) and right dorsolateral prefrontal cortex (R 
DLPFC) activation during the n-back task (r=-0.237, p=0.019, non-significant at corrected threshold of 
p=0.0063).  

4.4.2.10 Whole-brain group differences: n-back task 

In each task, for each contrast, we also ran an exploratory whole-brain ANOVAs (F-

test) in SPM to test for group differences.  

In the n-back task, no group differences survived whole-brain FWE correction (either 

cluster- or voxel-level). For completeness, we report all results exceeding a threshold 

of p<0.001 (uncorrected) in Table 4.7. Employing a SV correction using a bilateral 

DLPFC anatomical mask, the L DLPFC cluster did not survive FWE correction 

(either cluster- or voxel-level); for completeness, all SV-corrected results exceeding 

a threshold of p<0.001 (uncorrected) are reported in Table 4.8.   
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Table 4.7 Whole brain group differences: n-back task. Whole brain group differences on the n-
back task (p<0.001 uncorrected). Note: the F-test tests for effects in both directions (i.e., the contrast 
and its inverse). L=left; DLPFC=dorsolateral prefrontal cortex; dACC=dorsal anterior cingulate cortex; 
VLPFC=ventrolateral prefrontal cortex. 

Table 4.8 SVC group differences: n-back task. SVC group differences on the n-back task (p<0.001 
uncorrected). Note: the F-test tests for effects in both directions (i.e., the contrast and its inverse). 
L=left; DLPFC=dorsolateral prefrontal cortex. 

4.4.2.11 Whole-brain group differences: faces task 

There were no whole-brain significant differences in the emotion processing task in 

the three ROIs (amygdalae and sgACC), corrected for 3 ROIs. For completeness we 

report all results exceeding a threshold of p<0.001 (uncorrected) in Table 4.9. 

Employing a SV correction using anatomical masks of each ROI (amygdalae and 

sgACC), there were no clusters that survived, using either cluster- or voxel-

correction.   

Contrast p (cluster-
corrected) 

Extent p (voxel-
corrected) 

F(2,95) 
 

X Y Z region 

3-back> 
1-back 0.978 3 0.981 8.55 -12 -13 47 Mid-cingulate 

 0.990 2 0.982 8.54 15 -10 35 dACC 

 0.990 2 0.990 8.32 -21 32 -7 L VLPFC  

0.848 8 0.995 8.12 -45 20 29 L DLPFC  

0.978 3 0.997 7.99 36 23 -7 R insula 

 
0.997 1 0.998 7.84 36 -37 -10 

R 
hippocampus 

 0.990 2 0.999 7.72 -15 -85 -22 L cerebellum  

0.997 1 0.999 7.67 -42 -1 32 L premotor  

0.990 2 0.999 7.64 -27 -34 8 L thalamus  

0.997 1 0.999 7.63 27 -40 -1 
R 
hippocampus 

 0.997 1 0.999 7.58 -39 17 14 L VLPFC 

Contrast p (cluster-
corrected) 

Extent p (voxel-
corrected) 

F(2,95) X Y Z region 

3-back> 
1-back 0.530 1 0.624 7.59 -45 17 26 L DLPFC 
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Table 4.9 Whole brain group differences: emotion processing task. Whole brain group 
differences on the emotion processing task (p<0.001 uncorrected). Note: the F-test tests for effects in 
both directions (i.e., the contrast and its inverse). R=right; L=left; prim.=primary; WM=white matter.  

  

Contrast p (cluster-
corrected) 

Extent p (voxel-
corrected) 

F(2,96) X Y Z region 

faces>baseline 0.201 26 0.695 10.32 -42 -64 -31 L cerebellum 

 0.995 1 0.996 8.03 21 -22 38 WM 

 0.995 1 0.999 7.72 -33 -52 17 L parietal 

fearful>neutral  
0.951 4 0.959 12.83 

 
-27 

 
-16 

 
20 

L dorsal 
thalamus 

 0.986 2 0.188 8.76 -3 -34 -43 L pons 

happy>neutral 0.969 3 0.733 10.11 -36 -25 26 L prim. sensory  

 
0.997 1 0.999 8.65 15 -34 11 

R dorsal 
thalamus 

 0.990 2 0.980 7.74 6 -22 -16 Midbrain 
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4.5 Discussion  

We report results from a relatively large three-group fMRI study, comparing neural 

activation in unmedicated patients with depression, unaffected first-degree relatives 

of depressed patients, and healthy controls. We probed two different circuits: dorsal 

prefrontal (cold, executive function), using an n-back working memory task, and 

ventral prefrontal/subcortical (hot, emotion processing), using an incidental emotion 

task. We found that unaffected first-degree relatives show intact dorsolateral 

prefrontal cortex activation during working memory processing, while depressed 

patients show hypoactivation in the DLPFC, compared with healthy controls. 

However, we failed to detect any group differences in the emotion processing task.  

Our findings support a large literature of DLPFC abnormalities in depression (Baxter 

et al., 1989; Bench et al., 1993; Drevets, 1999; Harvey et al., 2005; Siegle et al., 

2007a; Wagner et al., 2006; Walter et al., 2007; Wang et al., 2015). Few studies 

have directly probed this region in unaffected first-degree relatives of depressed 

patients. One report found diminished DLPFC responses to the presentation of 

fearful faces in first-degree relatives of depressed patients, but in this sample first-

degree relatives showed higher depressive symptoms than controls (Mannie et al., 

2011). By contrast, in our study, there were no differences in any symptom measure 

between first-degree relatives and healthy controls. Therefore, it is possible our 

sample reflects a more resilient group than previous ‘at-risk’ samples. Our report of 

intact DLPFC activity during working memory in those with a familial risk for 

depression may represent a protective factor in at-risk populations. To test this, 

future research might better characterise first-degree relatives using polygenic risk 

scores: a recent study found healthy controls with high polygenic risk scores for 
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depression showed lower activation in fronto-parietal brain areas in the n-back task 

(resembling our patient group) than those with a low polygenic risk score (Yüksel et 

al., 2017).  

On the other hand, we did not find any group effect on sgACC or amygdala 

responsivity to emotional faces. Previous studies have shown aberrant neural 

activation during hot cognitive processing in first-degree relatives, compared to 

healthy controls (Chan et al., 2009; Monk et al., 2008; Olsavsky et al., 2012; 

Surguladze et al., 2010), though this has not always been reported (Mannie et al., 

2011). Drawing on this work, as well as the cognitive neuropsychological model of 

depression, we predicted that depressed patients, and possibly unaffected relatives, 

would show aberrant sgACC and amygdala responses to fearful faces compared to 

healthy controls. Our data did not support this prediction. However, in the case of 

sgACC responses, there is notable individual variation in activation within depressed 

patients. In a large prospective study, baseline sgACC activation (in response to 

negative words) predicted response to cognitive therapy (Siegle et al., 2012): 

patients with lower sgACC activation relative to healthy controls showed a stronger 

therapeutic response than those with higher sgACC activation. Thus, it is possible 

that heterogeneity within our patient sample may have obscured any group 

differences. In tentative support of this, we found sgACC deactivation to happy faces 

was weakly associated with lower depression scores, on both interviewer (HAM-D) 

and self-report (BDI) measures of depression in the patient group; however, these 

correlations did not survive correction for multiple comparisons. 
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4.5.1 Relationship between executive control and emotion processing 

Although we investigate executive control and emotion processing separately here, 

these mechanisms interact strongly with one another in the aetiology of depressive 

symptoms. For instance, the DLPFC is thought to regulate emotions via inhibition of 

limbic regions such as the amygdala (Davidson et al., 2003; Mayberg et al., 1999; 

Ochsner et al., 2002, 2004). Thus, emotional reactivity (and corresponding neural 

abnormalities in the limbic circuit) could in part originate through inefficient frontal 

mechanisms. In support of this idea, both healthy individuals (Dolcos and McCarthy, 

2006) and depressed patients (Siegle et al., 2002) show amygdala hyperactivation 

that is linked to decreased DLPFC activation (Siegle et al., 2007a). We found that 

higher amygdala activation (during happy emotion processing) was weakly 

associated with lower DLPFC activation (in the n-back task) across all subjects. 

Again, however, this association did not survive correction for multiple comparisons. 

Additionally, we did not observe even a nominally significant correlation for the 

equivalent correlation with fearful faces, which casts some doubt on this result. 

4.5.2 Limitations 

Our study included a moderately large sample size (N=99), and probed the role of 

two separate cognitive and neural processes in risk and resilience for depression. 

Our power analysis indicated this sample was sufficient to detect a small-to-

moderate effect of group. However, a larger sample size would be needed to detect 

more subtle relationships between brain activation and symptom measures, as our 

previous work has found these to be relatively weak (Lawson et al., 2016). We 

identified two correlations between depressive symptoms and sgACC activation, but 

neither survived Bonferroni correction for multiple comparisons; similarly, a 
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preliminary relationship between amygdala and DLPFC activation across the two 

tasks did not survive Bonferroni correction. It is also possible that a larger sample 

size might yield group differences in the emotion processing task, since differences 

in emotion processing between depressed patients and healthy controls are well-

replicated, and inclusion of the third group may have masked any overall group 

effect. This would be particularly helpful in the depressed group, already our largest 

sample (N=39), but whom we might expect to show the largest variability in sgACC 

responses (Siegle et al., 2012).  

4.5.3 Future directions and conclusion 

It is important to understand the deviations in neural circuitry conferring risk or 

resilience for psychiatric disorders. A better understanding of neural risk factors 

could clarify the mechanisms of successful treatment, or even shed light on ways to 

prevent symptoms in the first place. For instance, working memory training in 

dysphoric patients using the n-back task resulted in improved working memory 

capacity, with concomitant increases in the neural filtering of irrelevant information 

(measured using electroencephalography, EEG) (McGuffin et al., 1991). In older 

adults particularly, an important predictor of antidepressant response is executive 

dysfunction (Alexopoulos et al., 1997). Improving executive control might represent 

one way of treating or preventing depression, through top-down control of emotional 

processing regions. Studies are beginning to explore this possibility: several trials 

found unexpectedly that cognitive training in dementia improved depression 

symptoms (Davis et al., 2001; Loewenstein et al., 2004; Sitzer et al., 2006).  

There have been two treatments developed specifically to target executive 

dysfunction in geriatric depression: computerized cognitive therapy (CCT) (Motter et 
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al., 2016) and problem-solving therapy (Arean et al., 1993). Both show effects on 

depression symptoms (Arean et al., 1993; Motter et al., 2015, 2016), though in a 

meta-analysis of 9 trials, CCT had an inconsistent effect on executive functioning 

itself (Motter et al., 2016). Nevertheless, cognitive training seems to have an effect 

on depression symptoms in patients with dementia; future trials should establish 

whether targeting executive symptoms is similarly effective in depressed patients 

without dementia (Roiser et al., 2012). An alternative approach involves directly 

targeting prefrontal mechanisms in depression with noninvasive brain stimulation. 

Transcranial magnetic stimulation (George et al., 2000) and transcranial direct 

current stimulation (Loo et al., 2012; Nord and Roiser, 2015) have both shown 

efficacy at treating depression; the latter in particular may work by targeting cold 

cognitive mechanisms in depression, as hypothesized in Chapter 3 (Metuki et al., 

2012; Nord et al., 2017b). We test this last prospect in an RCT in Chapter 5. 

Our findings provide novel insights about preserved dorsal prefrontal function in 

healthy participants with a family history of depression. This has important 

implications for understanding the neural basis of risk and resilience for major 

depression. Future work needs to better clarify the interaction between dorsal 

prefrontal and ventral prefrontal/subcortical responses in individuals at-risk for 

depression, with the view to preventing at-risk populations from developing 

depression, and better treating those who do.   
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Chapter 5. Neural, cognitive, and clinical effects of prefrontal cortex 

stimulation to enhance psychotherapy in depression: a double-blind 

randomized controlled trial 

 

5.1 Abstract 

Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex 

(DLPFC) has recently shown efficacy as a treatment for depression. Here we 

combined tDCS with cognitive behavioural therapy (CBT) to determine whether 

DLPFC tDCS could enhance therapeutic outcome. We conducted a double-blind, 

sham-controlled, randomized controlled trial of tDCS in unmedicated depressed 

patients receiving a course of CBT (N=39). Patients received eight 20-minute 

sessions of either active or sham tDCS over the left DLPFC immediately before 

weekly CBT. The primary outcome was response (defined as >50% reduction in 

symptoms) on the Hamilton Rating Scale for Depression (HAM-D). Secondary 

outcomes included functional magnetic resonance imaging (fMRI) collected before 

and after the intervention during two paradigms, measuring neural responses elicited 

during working memory and emotion processing; weekly self-report symptoms; and 

weekly performance on the n-back working memory task. We also systematically 

assessed side-effects reported in each stimulation group. The intervention was 

relatively well tolerated, with 15% attrition (N=33 completers: 19 in the active group; 

14 in the sham). Using an intent-to-treat analysis (last observation carried forward), 

more patients responded (active: 50%; sham: 31.6%; odds ratio: 2.16) and remitted 
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(active: 30%; sham: 10.5%; odds ratio: 3.65) following CBT with active than with 

sham tDCS; however, these differences did not achieve statistical significance: 

(response: X2=1.37, p=0.12; remission: X2=2.27, p=0.066). There were also no 

differences in working memory performance between active and sham conditions. 

We found a substantial increase in DLPFC activation during working memory 

following the intervention (using a priori ROIs, but also detectable at the whole-brain 

level), but this did not differ between active and sham tDCS conditions. However, 

during emotion processing, we found a group-by-time interaction for both amygdala 

and left DLPFC activation, such that activation generally decreased over the course 

of the study in both regions in the sham group, but increased in the active group from 

pre- to post-intervention. 

The current findings provide support for the safety and tolerability of tDCS to 

augment CBT in depression. Additionally, they reveal some possible neural 

mechanisms associated with CBT (independent of tDCS effects) and tDCS 

interventions. However, they do not support a substantial clinical effect of tDCS 

combined with CBT for depression. These results have important implications for the 

clinical use of tDCS in depression: clinical response appears to be highly variable, 

and if an augmentative effect does exist it is likely to have a smaller effect size than 

initially anticipated. We discuss possible reasons for this variability in response, 

which may be due to the heterogeneity in the neural mechanisms of depression, as 

well as the lack of anatomical specificity in targeting the DLPFC with tDCS.  
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5.2 Introduction 

Cognitive behavioural therapy (CBT) is a common, effective treatment for major 

depression (Churchill et al., 2002; Gloaguen et al., 1998). Nevertheless, only 60% of 

patients show an adequate response to therapy, and even fewer achieve remission 

(Rush et al., 2006). Some researchers have suggested enhancing CBT response 

with augmentative strategies, such as cognitive enhancing drugs (Frye et al., 2007), 

to improve outcome. More recently, noninvasive brain stimulation, including 

repetitive transcranial magnetic stimulation (rTMS) (Vedeniapin et al., 2010) and 

tDCS (D’Urso et al., 2013), has been suggested as an augmentative strategy to 

enhance response to CBT.      

CBT is thought to target specific limbic and cortical brain regions, with CBT 

treatment, relative to antidepressant medication, in particular ameliorating several 

regional abnormalities in depression, including (measured at rest), the prefrontal 

cortex, cingulate, and hippocampus (Goldapple et al., 2004). However, some studies 

suggest that euthymic patients who have recovered from a major depressive episode 

continue to show persistent abnormalities, particularly in the DLPFC during high 

cognitive load tasks (Hooley et al., 2005; Kerestes et al., 2012). This may underpin 

the common report of executive dysfunction in remitted depression: patients show 

widespread deficits in attentional and executive functions compared to healthy 

controls, even in the absence of depressive symptomatology (Paelecke-Habermann 

et al., 2005; Rock et al., 2014). Directly targeting DLPFC abnormalities that underlie 

executive dysfunction could therefore improve clinical outcomes over and above 

current treatment options. 
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Noninvasive brain stimulation provides a possible means to target such persistent 

abnormalities. Both rTMS and tDCS of the DLPFC have been shown to have local 

and distal effects on neural activation - in the targeted DLPFC, but also in other 

regions including the cingulate cortex (Cho and Strafella, 2009; Stagg et al., 2013). 

Several previous trials have shown that DLPFC tDCS has a moderately strong 

antidepressant effect, comparable to that of CBT or antidepressant medication 

(Boggio et al., 2008; Brunoni et al., 2013; Fregni et al., 2006a; Loo et al., 2012; Nord 

and Roiser, 2015; Shiozawa et al., 2014). Indeed, an RCT has also tested DLPFC 

tDCS as an augmentative strategy to a typical course of the antidepressant 

medication sertraline, finding that the combined treatment showed significantly 

greater efficacy than either medication or tDCS alone (Brunoni et al., 2013).  

In the case of CBT, the argument for a putative augmentative effect of tDCS is even 

stronger. A wealth of studies claim that DLPFC tDCS can cognitively ‘enhance’ many 

difficult tasks, including planning (Dockery et al., 2009), insight (Metuki et al., 2012), 

and selective attention (Gladwin et al., 2012). Among these, a number of studies 

suggest a consistent improvement in cognitive control during or after tDCS delivery, 

in particular working memory, in both healthy controls (Fregni et al., 2005; Lally et 

al., 2013), and depressed patients (Oliveira et al., 2013). Recent work even suggests 

that tDCS may induce a sustained improvement on working memory, lasting several 

months (Au et al., 2016; Ruf et al., 2017).  That said, it must be acknowledged that 

the effect of tDCS on working memory varies widely between studies (Horvath et al., 

2015); even within the same study, tDCS has been reported to improve one measure 

of working memory but not another (Andrews et al., 2011). In particular, while some 

work indicates a cumulative positive effect of tDCS on working memory in depressed 

patients (Fregni et al., 2006b; Richmond et al., 2014), others have failed to show any 
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cumulative effect on cognition with multiple stimulation sessions (Lally et al., 2013; 

Martin et al., 2013; Talsma et al., 2017). Indeed, one meta-analysis reported a non-

significant effect of tDCS across multiple types of working memory paradigms 

(Horvath et al., 2015).  

If DLPFC tDCS does improve difficult cognitive tasks, then based on the cognitive 

neuropsychological model we would predict that it might improve patients’ ability to 

benefit from CBT, which entails many different types of difficult cognitive processing, 

including planning, working memory, and counterfactual thinking. This notion is 

strengthened by studies showing that tDCS improves cognitive control in healthy 

controls (Vanderhasselt et al., 2013) and depressed patients (Wolkenstein and 

Plewnia, 2013), and preliminary evidence suggesting that tDCS successfully 

enhances the antidepressant effect of other forms of psychological therapy, cognitive 

control training (Brunoni et al., 2014a; Segrave et al., 2014) and psychodynamic 

psychotherapy (Nejati et al., 2017) (note that in the latter study, only four patients 

received tDCS and therapy, and there was no sham tDCS condition). However, 

tDCS has not yet been tested in combination with CBT, the most widely-used 

psychological therapy for depression.  

This chapter reports on the first randomized controlled trial of tDCS to augment CBT 

in depression. This was a mechanistic, proof-of-principle trial to establish (1) whether 

tDCS augments the ability of CBT to treat depression over and above our placebo 

condition, sham tDCS; (2) whether any clinical effects of tDCS were driven by 

changes in working memory, measured using the n-back task; and (3) the neural 

changes resulting from CBT and tDCS (compared to CBT and sham stimulation). We 

also investigated predictors of treatment response in this trial, which will be 
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presented in Chapter 6: in this chapter, we focus solely on the clinical, cognitive, and 

neural effects resulting from combining tDCS and CBT.  

5.3 Methods 

5.3.1 Participants 

We recruited 39 patients who met criteria for a current major depressive disorder 

episode through the Camden and Islington NHS Foundation Trust Improving Access 

to Psychological Therapies (IAPT) Service. Potential patients were initially identified 

by a member of the IAPT clinical team if they met the following criteria: willingness to 

take part in research, a patient health questionnaire (PHQ-9) score of 15 or above, 

indicating moderate depression; not currently taking antidepressant medication; and 

internal NHS criteria for one-on-one cognitive behavioural therapy for depression 

(“Step 3” therapy).  

To determine the latter, a clinician at the NHS centre made an in-person assessment 

of severity and risk. Patients with less severe symptoms were assigned to low-

intensity psychotherapy sessions, typically with a more junior (non-doctoral level) 

clinician (“Step 2” therapy) while patients with severe personality disorders were 

assigned to a clinician specializing in more complex cases (“Step 4” therapy). At the 

clinic, an assessment was also made about the primary complaint: in many cases, a 

patient met the eligibility criteria for the trial, but the assessing therapist believed the 

focus of the therapy was better placed on another presenting issue, for example, 

bulimia nervosa or body dysmorphic disorder. Additionally, some patients were given 

more than one psychotherapeutic option by the assessing clinician, leading to non-

eligibility for the trial in cases where the patient elected to receive a different type of 
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therapy (e.g., couples’ therapy; dialectical behavioural therapy). Only patients 

meeting criteria for moderate depression where the clinic assigned “Step 3” CBT for 

depression were included in the trial. 

After this initial assessment of eligibility, all eligible and interested patients (N=71) 

were contacted and screened in person by the lead researcher (C.N.). At this 

session, patients practiced the working memory task (the n-back task), completed 

baseline questionnaires and depression scales, and those who were native English 

speakers or who had been educated in English during high-school (N=23) were 

administered the WTAR, which we used to estimate FSIQ. All patients were 

screened for current or past psychiatric disorders using the MINI, version 5.0.0 

(Sheehan et al., 1998). We screened for use of any psychotropic medication, past or 

present substance or alcohol dependence (save for a remote history of abuse or 

dependence restricted to a prior major depressive episode), illegal drug use within 

the past month, neurological illness, major health conditions likely to affect cognitive 

performance, and prior or present manic or psychotic symptoms (with the exception 

of psychotic depression). Additionally, we excluded patients who did not meet MRI 

safety criteria, which included presence of any irremovable ferromagnetic metal in or 

on the body, and medical conditions that might increase the risk of the MRI scan: 

pregnancy, severe claustrophobia, back pain, or severe asthma.  

Following the screening session, eligible patients were recruited to the study, after 

which they were placed on the IAPT waiting list for one-on-one CBT. Between one 

week and six months after the initial assessment (mean=58.6 days; SD=40.2 days), 

patients received their first MRI scan and began their course of CBT. All MRI scans 

were collected between 1 and 6 days before starting therapy. In the case of more 
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than one month elapsing between initial assessment and the beginning of CBT, our 

primary depression measure (the HAM-D) was repeated.  

The 39 patients who were not excluded before their first therapy session were 

randomly allocated to active (N=20) or sham (N=19) tDCS conditions. Patients, trial 

investigators, and therapists were all blind to tDCS condition for the duration of the 

trial. Following randomization, six patients discontinued therapy and/or tDCS at 

some point during the subsequent seven sessions. Thirty-three completed a short 

course of CBT (19 assigned to active stimulation, and 14 to sham; the dropout rates 

were not significantly different from one another (p=0.091)). For 31 patients, this 

included 8 sessions of CBT; 2 patients received only 7 sessions of CBT. See Figure 

5.1 for Consort diagram. 
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Figure 5.1 Consort diagram describing recruitment, randomization, and attrition in the clinical 
trial.  
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5.3.2 Study procedures  

5.3.2.1 Protocol 

The study protocol was registered on clinicaltrials.gov (Identifier: NCT01875419). 

The registered primary outcome measure was clinical response according to 

interview-rated mood score, measured using the 17-item HAM-D. All HAM-D 

interviews were conducted by the same researcher (C.N.). A minority of stimulation 

sessions were conducted by other trial researchers, who were trained by C.N. on 

stimulation delivery.  

The structure of the trial is depicted in Figure 5.2. At the initial screening and 

recruitment session, baseline depression (HAM-D and BDI), anxiety (BAI), and 

anhedonia (SHAPS) measures were collected. Following the wait time for therapy, 

patients underwent an MRI scan shortly (0-6 days) before starting CBT. The MRI 

scan involved a short anatomical scan, two functional scans (during the n-back 

working memory task, and the emotional processing task, respectively), and two 

fieldmap scans (one per functional scan), and lasted 30 minutes in total. Patients 

were then randomized to active or sham conditions. For all patients who did not drop 

out during the intervention (N=33), a second MRI scan was scheduled shortly (0-6 

days) after their final CBT session. The second MRI scan was identical to the first, 

and was followed by a final HAM-D interview. 

5.3.2.2 Stimulation procedure 

The tDCS sessions took place at the clinic directly preceding each CBT session. At 

each tDCS session (up to 8, but a minimum of 1, including dropouts), patients 

completed the BDI, BAI, and SHAPS, and performed the n-back working memory 
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task while receiving tDCS. At each session, patients also completed a questionnaire 

measuring tDCS side-effects 

We delivered 1 mA of constant current for 20 minutes using a neuroConn DC-

stimulator (neuroConn, Ilmenau, Germany) with double-blind sham stimulation 

control. The anodal electrode was placed near location F9 on the international 10-20 

EEG system (using an EEG cap for placement), secured in place with an elasticated 

head strap, and the cathodal electrode was placed on the ipsilateral deltoid muscle. 

Both electrodes were 30cm2, rubber, and placed inside electrode sponges that had 

been briefly soaked in saline to conduct the current. Sham stimulation involved 30 

seconds of direct current followed by 1,170 seconds without stimulation (i.e., the rest 

of the 20 minutes). The initial 30 seconds of stimulation produces a similar sensation 

to active tDCS, resulting in effective blinding. Random assignment of stimulation 

condition was performed using custom-written MATLAB code by a researcher not 

involved in the trial. Researchers involved in the trial were given a list of five-digit 

codes to input to the stimulator, half of which corresponded to active stimulation and 

half to sham.  

5.3.2.3 Therapy procedure 

For patients in both arms of the trial, therapy sessions were delivered a minimum of 

6 days apart. We attempted to decrease potential between-therapist variance by 

working with a selected team of nine therapists, all senior doctoral-level clinical 

psychologists in the local IAPT service. Additionally, to ensure therapists’ techniques 

were relatively comparable, we ran a day-long training course for all trial therapists 

before recruitment began, delivered by a world expert in CBT for depression (S. 

Hollon). Briefly, CBT relies on the assumption that depressive beliefs and thoughts 
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are learned, and that actively changing related cognitions and behaviours will modify 

depressive symptoms (Beck, 1979; Beck et al., 1979). The psychological 

intervention consists of therapists training patients to systematically document 

information, including habits, plans, and emotions to offset negative biases in 

cognition, and to challenge negative beliefs (Beck et al., 1979; Hollon et al., 2006b).  
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Figure 5.2 Trial protocol and typical timeline of trial patients. HAM-D = Hamilton Rating Scale for 
Depression; tDCS = transcranial direct current stimulation; CBT = cognitive behavioural therapy; 
(f)MRI = functional magnetic resonance imaging.  
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5.3.2.4 MRI 

We used the same two tasks employed in Chapter 4: the n-back working memory 

task, and the emotion processing task (see Chapter 4 for full task details). MRI scans 

involved the acquisition of one anatomical scan, and two functional scans (with echo 

planar imaging, EPI) and fieldmaps (one for each task). Subjects used an MRI-

compatible button box to make responses during the tasks. All acquisition 

parameters were identical to those reported in Chapter 4. 

5.3.2.5 Side effect data 

Following each tDCS session, we conducted the tDCS Adverse Events 

Questionnaire (Brunoni et al., 2011). We collected this data on 269 sessions in total; 

for four participants, side effect data was not collected on one session due to time 

constraints, so each only contributed seven sessions of data.  

5.3.2.6 Verification of blinding 

At the end of each stimulation session, participants guessed their blinding condition 

(“placebo” or “active” stimulation). We recorded the most frequent guess for each 

participant, and compared it with the actual stimulation group to verify blinding.  

5.3.3 Analysis 

Weekly scores were calculated for the BDI, BAI, and SHAPS, and weekly 

performance on the n-back task was measured as d-prime on the n-back task, which 

incorporates both hits and false alarms in the 3-back condition (see Chapter 2 for 

detailed description of calculation).  
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Our primary outcome measure was response rate according to the HAM-D, defined 

as a reduction of at least 50% from the baseline score; we also report remission rate, 

defined as a score of 7 or below. We analysed our primary outcome using an intent-

to-treat analysis (using last observation carried forward), since we could not assume 

that trial attrition occurred completely at random. As a sensitivity analysis we also 

report the results using a per-protocol approach (i.e., including only the 33 patients 

who completed the trial). As a secondary measure, we also analyse HAM-D treated 

as a continuous measure using both intent-to-treat and per-protocol approaches. 

We also analysed secondary measures of mood (BDI), anxiety (BAI), and 

anhedonia, as well as working memory (n-back performance) using a linear mixed 

model (SPSS, Version 22, IBM Corp., New York: 2012) which accounts for missing 

data by estimating the trajectory of change for the subjects who did provide data. 

These variables were collected at every stimulation session. For these variables the 

model included effects of time (i.e., for the majority of patients, 8 sessions), 

stimulation group (active/sham), and the interaction between the two as fixed effects, 

and participant as a random effect. We employed a heterogenous first order 

autoregressive covariance structure, which does not assume homogenous variance 

between conditions, but which is useful for data where each measurement is most 

closely correlated with its proximal measurements, with correlations decreasing with 

distance.  

For the fMRI data, we could only reasonably examine the effects of the intervention 

on scans in the patients who completed the trial (i.e., those for whom we had a 

second scan); thus, all fMRI analyses are based on the per-protocol sample (N=33). 

We initially analysed fMRI results using a similar approach to Chapter 4. Our primary 
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analysis extracted average activation across our ROIs of interest: for the n-back 

task, the bilateral DLPFC (using coordinates from a previous meta-analysis of the n-

back task in depression (Wang et al., 2015)); for the emotion processing faces task, 

the amygdalae (anatomical ROI: WFU Pick Atlas, version 3.0.5) and the subgenual 

anterior cingulate cortex (using a custom-made ventral anterior cingulate ROI, which 

comprised Brodmann Area 25 and the ventral portion of Brodmann Area 24). 

However, unlike in Chapter 4, we also examined a fourth ROI in the emotion 

processing task: the region of stimulation, i.e. left DLPFC.  

We additionally conducted a flexible factorial analysis across the whole brain in a 

voxel-wise fashion in SPM data to reveal the effect of therapy and stimulation 

condition in regions not hypothesized a priori to differ between active and sham 

tDCS conditions. These analyses were submitted to whole-brain correction for 

multiple comparisons, controlling the family-wise error rate (cluster-forming threshold 

of p<0.001 (uncorrected)). 

5.3.4 Power calculation 

This trial was a preliminary study to assess feasibility and safety of augmenting CBT 

with tDCS, and to explore possible mechanistic measures associated with response 

to treatment. Therefore, a power analysis was not carried out based on the primary 

outcome measure, response rate according to the HAM-D. However, a previous 

report of tDCS in depression reported a large effect size (d~0.9) for our secondary 

outcome, HAM-D treated as a continuous measure (Fregni et al., 2006a); with this 

effect size, at α = 0.05, we required a sample size of N=20 per group to achieve 80% 

power. 
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5.4 Results 

5.4.1 Clinical and demographic data 

Independent-samples t-tests with group as the between-subjects factor revealed no 

differences between the study arms in terms of age, age of onset of depression, 

FSIQ, number of episodes, or any baseline clinical measure (HAM-D, BDI, BAI, or 

SHAPS scores, all p>0.1) (see Table 5.1). Pearson Chi-Square tests also showed no 

differences between the study arms in terms of sex, family history of depression, or 

previous history of hospitalization, suicide, antidepressant medication, or 

psychotherapy (all p>0.09).  
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Table 5.1 Participant characteristics by stimulation condition. SD = standard deviation; F = 
female; FSIQ = Full Scale Intelligence Quotient (calculated from Weschler Test of Adult Reading); 
HAM-D = Hamilton Rating Scale for Depression; BDI = Beck Depression Inventory; BAI = Beck 
Anxiety Inventory; SHAPS = Snaith-Hamilton Pleasure Scale; No. = number; % past ADM = percent 
of patients with any previous history antidepressant medication use (no patients were currently-
medicated: see Methods); % past PT = percent of patients with a history of psychological therapy.  

5.4.2 Side effect analysis 

All patients reported at least one side effect on at least one stimulation session. The 

most common symptom reported was tingling, reported on 80% of active and 73% of 

sham stimulation sessions (no significant difference between stimulation conditions, 

X2=1.60, p=0.206). Headache was reported significantly more in the sham condition 

(X2=11.26, p=0.001), as was burning sensation (X2=5.10, p=0.024), sleepiness 

(X2=17.79, p<0.001), and trouble concentrating (X2=22.26, p<0.001; note that side-

effects were assessed immediately following the n-back task). Itching and skin 

redness were reported significantly more frequently in the active condition (X2=16.05, 

p<0.001; X2=35.28, p<0.001). Correcting for multiple comparisons (N=10 side-

 active tDCS mean (SD) sham tDCS mean (SD) group difference  

N 20 19 n/a 

% F 45.00 57.89 X2
(1)=0.65, p=0.527 

Age 35.60 (12.91) 31.05 (8.17) t(37)=1.32, p=0.196 

FSIQ 110.10 (7.49) 105.15 (7.54) t(21)=1.56, p=0.133 

Baseline HAM-D 21.95 (3.20) 21.05 (3.27) t(37)=0.87, p=0.393 

Baseline BDI 25.70 (8.01) 27.79 (5.34) t(37)=0.34, p=0.738 

Baseline SHAPS 19.85 (7.25) 18.05 (7.25) t(37)=0.80, p=0.429 

Baseline BAI 25.70 (13.57) 25.47 (12.06) t(37)=0.06, p=0.956 

Age of onset 22.80 (10.09) 18.37 (8.23) t(37)=1.50, p=0.143 

No. episodes 2.50 (1.67) 3.05 (1.58) t(37)=1.06, p=0.296 

% hospitalized 15.00 15.79  X2
(1)=0.01, p=1.00 

% suicide attempt 30.00 21.05 X2
(1)=0.41, p=0.716 

% past ADM 55.00 42.10 X2
(1)=0.65, p=0.527 

% past PT 50.00 78.9 X2
(1)=3.55, p=0.096 
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effects), there was no longer a significant difference in burning sensation between 

the groups (Bonferroni-adjusted threshold: p=0.005), though the other differences 

remained significant. Note that the false positive rate is likely to be elevated for these 

analyses as observations over successive trial sessions within an individual are 

probably not independent from one another. See Table 5.2 for a full description of 

reported side effects across all tDCS sessions.  
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 Table 5.2 Side effects in active and sham groups. No.=number. 

Side effects  
(active 
stimulation) 

% 
sessions No. instances 

%  
mild 

% 
moderate 

% 
severe 

% "unrelated" 
to stimulation 

% “remotely” 
related 

% “possibly” 
related 

% “probably” 
related 

% “definitely” 
related 

Headache 
12.1 18 61.1 16.7 22.2 33.3 11.1 22.2 0.0 0.0 

Neck pain 
6.7 10 90.0 0.0 10.0 50.0 10.0 10.0 20.0 0.0 

Scalp pain 
18.8 28 60.7 35.7 3.6 17.9 0.0 28.6 39.3 0.0 

Tingling 
79.9 119 63.0 27.7 9.2 9.2 16.0 17.6 53.8 1.7 

Itching 
54.4 81 50.6 32.1 17.3 8.6 17.3 17.3 53.1 1.2 

Burning 
25.5 38 65.8 23.7 10.5 10.5 7.9 18.4 65.8 2.6 

Skin redness 
28.9 43 69.8 23.3 7.0 14.0 18.6 2.3 62.8 0.0 

Sleepiness 
34.2 51 41.2 33.3 25.5 11.8 35.3 31.4 9.8 3.9 

Trouble 
concentrating 46.6 68 38.2 38.2 23.5 13.2 38.2 16.2 8.8 2.9 

Mood changes 
16.1 24 41.7 29.2 29.2 33.3 33.3 12.5 16.7 8.3 

Side effects 
(sham 
stimulation) 

% 
sessions No. instances 

%  
Mild 

% 
moderate 

% 
severe 

% "unrelated" 
to stimulation 

% “remotely” 
related 

% “possibly” 
related 

% “probably” 
related 

% “definitely” 
related 

Headache 
28.3 34 73.5 14.7 11.8 32.4 32.4 14.7 0.0 0.0 

Neck pain 
12.5 15 66.7 33.3 0.0 33.3 20.0 13.3 0.0 0.0 

Scalp pain 
19.2 23 56.5 43.5 0.0 8.7 13.0 39.1 39.1 0.0 

Tingling 
73.3 88 54.5 43.2 2.3 1.1 15.9 45.5 31.8 5.7 

Itching 
30.0 36 58.3 27.8 13.9 5.6 27.8 16.7 41.7 5.6 

Burning 
38.3 46 58.7 32.6 8.7 4.3 8.7 47.8 30.4 4.3 

Skin redness 
1.7 2 50.0 50.0 0.0 100.0 0.0 0.0 0.0 0.0 

Sleepiness 
60.0 72 41.7 31.9 26.4 27.8 23.6 26.4 8.3 1.4 

Trouble 
concentrating 74.2 89 48.3 40.4 11.2 31.5 27.0 14.6 4.5 0.0 

Mood changes 
13.3 16 81.3 12.5 6.3 25.0 56.3 6.3 0.0 0.0 
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5.4.3 Assessment of blinding 

We assessed the blinding by testing whether patients guessed their condition better 

than chance: patients correctly guessed their condition in only 38.5% of cases (not 

significantly different from chance: p=0.337). Across both groups there was a bias for 

patients to believe they were in the active condition: most (69.2%) guessed they 

were on active stimulation. In the sham group, 78.9% guessed they were receiving 

active stimulation (21.1% guessed sham); in the active group, 60% guessed they 

were receiving active stimulation (40% guessed sham); there was no significant 

difference in the proportion of active and sham guesses between the groups 

(X2=1.64, p=0.301). This suggests that, despite some differences in reported side-

effects (described above), the blinding procedure was effective. 

5.4.4 Primary outcome: clinical response 

Our primary outcome measure was clinical response, defined as a reduction of 50% 

or more in the HAM-D. We also examined clinical remission, defined as a total score 

of 7 or less on the HAM-D. For these measures only, we report one-tailed tests due 

to the directionality of our hypothesis (i.e., that active tDCS would result in a greater 

proportion of clinical response and remission than sham). Using an intention-to-treat 

(ITT) analysis (last observation carried forward, N=39), more patients responded 

(active: 50%; sham: 31.6%; odds ratio: 2.16, 95%CI=0.59—7.99) and remitted 

(active: 30%; sham: 10.5%; odds ratio: 3.65, 95%CI=0.63—20.96) following CBT 

with active than with sham tDCS (Figure 5.3A). However, these differences did not 

achieve statistical significance (response: X2=1.37, p=0.12 (one-tailed); remission: 

X2=2.27, p=0.066 (one-tailed)). The results were similar when analysing the per-

protocol sample (i.e., patients who completed the trial), with differences in the 
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direction for both response (active: 52.6%; sham: 42.9%; odds ratio: 1.48; X2=1.313, 

p=0.420 (one-tailed)) and remission (active: 31.6%; sham: 14.3%; odds ratio: 2.76; 

X2=0.308, p=0.234 (one-tailed)). 

5.4.5 Secondary outcome: HAM-D score change over time 

We also examined HAM-D score continuously using repeated-measures ANOVA, 

with a within-subjects factor of time (pre- and post-therapy) and a between-subjects 

factor of stimulation condition. Both pre- and post-therapy HAM-D scores conformed 

to assumptions of normality (Kolmogorov-Smirnov test, both p>0.08).  

There were no baseline differences in HAM-D between the active and sham groups, 

either in the full sample (ITT analysis: t(37)=0.845, p=0.393) or only those treated 

per-protocol (t(31)=0.410, p=0.685).  

In the ITT analysis using LOCF, depression scores reduced significantly from pre- to 

post-intervention (F(1,37)=56.09, p<0.001, ηp
2=0.603), but there was no interaction 

with stimulation condition (F(1,37)=1.50, p=0.228). In the sham group, HAM-D 

decreased from a mean of 21.05 (SD = 3.27) to 14.37 (SD = 5.81), a mean 

difference of 6.68 points (SD = 6.49). In the active group, HAM-D decreased from a 

mean of 21.95 (SD = 3.20) to 12.65 (SD = 6.91), a mean difference of 9.30 points 

(SD = 6.82). There was no main effect of stimulation condition (F(1,37)=0.112, 

p=0.739) (Figure 5.3B).  

The per-protocol analysis yielded similar results: HAM-D scores reduced significantly 

from pre- to post-intervention (F(1,31)=64.07, p<0.001, ηp
2=0.674), but there was no 

interaction with stimulation condition (F(1,31)=0.02, p=0.881). Again, there was no 
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main effect of stimulation condition (F(1,31)=0.048, p=0.828). Here, the active group 

decreased from a HAM-D score of 21.89 (SD = 3.28) to 12.42 (SD = 7.05), a mean 

difference of 9.42 (SD = 6.99) points; the sham group decreased from a HAM-D of 

21.43 (SD = 3.16) to 12.36 (SD = 5.09), a mean difference of 9.07 (SD = 5.92) 

points.  
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Figure 5.3 Clinical outcomes. Percent of patients meeting criteria for clinical response and 
remission (A) and patients’ overall change in depression score (B), both measured using the Hamilton 
Depression Rating Scale (HAM-D) (ITT analysis). The effect of stimulation was non-significant for 
both (p>0.05). In (B), horizontal lines represent the median; x represents the mean; lower error bars 
represent the distance between the first quartile and the minimum score, while upper error bars 
represent the distance between the third quartile and maximum score.  

5.4.6 Secondary outcome: BDI 

There were no significant differences between the active and sham groups’ baseline 

(pre-intervention) BDI scores, either including the whole sample (ITT analysis: 

t(37)=0.337, p=0.738), or only the sample who completed the trial (per-protocol 

analysis: t(31)=0.920, p=0.364).  
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In the ITT analysis using a mixed linear model, BDI scores decreased significantly 

from pre- to post-intervention (F(7, 108.80)=2.99, p=0.007), but this did not interact 

with stimulation condition (F(7, 108.80)=0.274, p=0.963), nor was there a main effect 

of stimulation condition (F(1, 35.82)=0.081, p=0.777). Data are presented in Figure 

5.4A. 

5.4.7 Secondary outcome: BAI 

There were no significant differences between active and sham groups’ baseline 

anxiety scores, as measured with the BAI, either including the whole sample (ITT 

analysis: t(37)=0.055, p=0.956), or only the sample who completed the trial (per-

protocol analysis: t(31)=0.226, p=0.823).  

In the ITT analysis using a mixed linear model, BAI scores also improved 

significantly with time (F(7, 139.56)=2.16, p=0.042). There was no effect of 

stimulation condition (F(1, 40.10)=0.332, p=0.568), nor an interaction between time 

and stimulation condition (F(7, 139.56)=0.871, p=0.531). Data are presented in 

Figure 5.4B. 

5.4.8 Secondary outcome: SHAPS   

There were no significant differences between active and sham groups’ baseline 

anhedonia scores, as measured with the SHAPS, either including the whole sample 

(ITT analysis: t(37)=0.8, p=0.429), or only the sample who completed the trial (per-

protocol analysis: t(31)=0.049, p=0.961).  

In the ITT analysis using a mixed linear model, SHAPS scores did not improve 

significantly with time (F(7,131.56)=0.685, p=0.684), nor was there an effect of 
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stimulation condition (F(1, 39.52)=0.343, p=0.561), or an interaction between the two 

(F(7, 131.56)=0.561, p=0.794). Data are presented in Figure 5.4C. 

5.4.9 Working memory measure: n-back task 

Surprisingly, in the ITT analysis using a mixed linear model, the improvement over 

time in n-back performance did not reach significance (F(7,149.96)=1.99, p=0.060), 

and there was no effect of stimulation condition (F(1,40.57)=0.340, p=0.563) or 

interaction between the two (F(7,149.96)=0.421, p=0.888). Data are presented in 

Figure 5.4D. 
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Figure 5.4 Effect of intervention on clinical and cognitive measures. Weekly mood (A), anxiety 
(B), and anhedonia (C) self-report scores ratings, and performance on the working memory (n-back) 
task (D), for each stimulation condition. Error bars represent standard error of the mean. BDI = Beck 
Depression Inventory; BAI = Beck Anxiety Inventory; SHAPS = Snaith-Hamilton Pleasure Scale.  

5.4.10 Secondary outcome: effect of tDCS on neural activation  

For consistency with the fMRI analysis, behavioural data collected inside the MRI 

scanner were analysed using a per-protocol approach. 

Behavioural data on the n-back task (d-prime) acquired inside the scanner met 

assumptions of normality on both sessions (Kolmogorov-Smirnov test, both p=0.2), 

but behavioural data on the emotion processing task (% correct gender 

classification) did not, either pre- or post-intervention (both p<0.001). 
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In a repeated-measures ANOVA with a within-subjects factor time (pre- or post-

intervention) and a between-subjects factor of stimulation condition, n-back 

performance improved significantly over time (F(1,31)=28.46, p<0.001). There was 

no main effect of group (F(1,31)=1.01, p=0.323). Surprisingly, performance improved 

more in the sham than the active group (significant group-by-time interaction: 

(F(1,31)=6.17, p=0.019). In the sham group, baseline d’ was 1.41 (SD = 0.82), rising 

to 2.76 (SD = 1.37), a mean improvement of 1.35 (SD = 1.27); in the active 

stimulation group, baseline d’ was 1.55 (SD = 0.72), rising to 2.04 (SD = 0.89), a 

mean improvement of 0.49 (SD = 0.70).  

There was no effect of group on performance in the emotion processing task: a non-

parametric Mann-Whitney U test revealed no effect of group on the difference 

between post-intervention and pre-intervention accuracy at gender identification 

(examined separately, there were also no group differences before (p=0.439) or after 

(p=0.483) the intervention: in the sham group, baseline accuracy was 98.1% (SD = 

0.02), and post-intervention accuracy was 97.5% (SD = 0.03), a mean difference of -

0.01 (SD = 0.02); in the active group, baseline accuracy was 96.5% (SD = 0.08), and 

post-intervention accuracy was 95.0% (SD = 0.08), a mean difference of -0.02 (SD = 

0.07).  

For the fMRI analysis, for each task, we constructed ANOVAs examining the effects 

of stimulation group, time and their interaction on activation (averaged across the 

ROI): in the case of the n-back task this was in the bilateral DLPFC; in the case of 

the emotional faces task this was in the sgACC, amygdalae, and left DLPFC.  
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To identify effects of stimulation and time outside of our hypothesized ROIs, we 

conducted a flexible factorial model in SPM, including the effects of group (active or 

sham), time (pre- or post-intervention) and their interaction. For this exploratory 

analysis, we report all cluster- or voxel-level FWE significant (p<0.05) activations at 

the whole-brain level (results reported in tables: initial cluster forming threshold: 

p<0.001 (uncorrected), minimum cluster size k=4). In cases where we found no 

significant whole-brain activation in our hypothesized ROIs, we also present 

significant small volume-corrected (SVC) results.   

5.4.10.1 Effect of tDCS and time on DLPFC activation during working memory 

(average over ROI)  

To examine the effect of stimulation on DLPFC activation (3- vs 1-back contrast), we 

conducted a repeated-measures ANOVA with within-subjects factors of laterality 

(left, right) and time (pre-, post-intervention) and a between-subjects factor of 

stimulation (active or sham). With the exception of right DLPFC activation on the 

post-intervention scan, data met the assumption of normality. For the right DLPFC, 

we conducted a nonparametric independent samples Kruskal-Wallis test, testing the 

effect of group on the post-intervention scan, which confirmed the results of the 

ANOVA (p>0.1).  

Activation was stronger in the left than the right DLPFC (main effect of laterality: 

F(1,31)=5.00, p=0.033, ηp
2=0.139) and increased after the intervention (main effect 

of time: F(1,31)=20.95, p<0.001, ηp
2=0.403) (see Figure 5.5), but the interaction was 

non-significant (F(1,31)=0.363, p=0.551). There was also no interaction between 

laterality and stimulation condition (F(1,31)=2.84, p=0.102), between time and 

stimulation condition (F(1,31)=0.095, p=0.760), or between laterality, time, and 
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stimulation condition (F(1,31)=1.330, p=0.258). The main effect of stimulation 

condition was non-significant (F(1,31)=1.29, p=0.266).  

At baseline patients showed significantly lower bilateral DLPFC activation than 

matched healthy controls (as reported in Chapter 4; this was also the case in the 

sample of 33 patients in the per-protocol analysis: significant main effect of group: 

F(1,61)=8.24, p=0.006, ηp
2=0.119). However, a similar analysis did not reveal any 

significant difference in post-intervention DLPFC activation between patients and 

healthy controls (main effect of group: F(1,61)=0.191, p=0.664). There was no 

association between the increase in DLPFC activation and improvement on the n-

back task (r(33)=0.064, p=0.725).  

5.4.10.2 Whole-brain effects of tDCS and time on working memory 

From the flexible factorial analysis in SPM, an F-contrast for the main effect of time 

(pre- versus post-intervention) revealed significantly increased activation from pre- to 

post-intervention in the bilateral parietal cortices and bilateral DLPFC, and 

significantly decreased activation in the medial prefrontal cortex (mPFC), extending 

into the perigenual ACC (all p<0.001, cluster-level FWE-corrected) (Table 5.3).  

A contrast for the main effect of stimulation condition revealed that patients receiving 

active stimulation showed greater activation in the right posterior parietal cortex 

(rPPC) (k=33) compared to sham (see Table 5.3); this was significant with whole-

brain voxel-level correction (voxel-level corrected p=0.02; cluster-level corrected 

p=0.153). Although an F-contrast for the interaction between group and time found 

no whole-brain significant activation (all p<0.9, cluster-level), the group effect in the 

rPPC did not seem to be driven by baseline differences between the groups (see 
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Figure 5.5E). Instead, rPPC activation increased numerically over time in the active 

stimulation condition but decreased numerically in the sham condition (see Figure 

5.5F). See Table 5.3 for all activation data (cluster-forming threshold: p<0.001, 

uncorrected; minimum cluster size k=4).  
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Figure 5.5. Effect of intervention on fMRI ROI activation (working memory). Activation in left 
dorsolateral prefrontal cortex (L DLPFC) predefined region-of-interest (A) and right dorsolateral 
prefrontal cortex (R DLPFC) predefined region-of-interest (B) pre- and post-intervention, separated by 
active (magenta) and sham (cyan) tDCS condition. Across L&R DLPFC, activation increased after the 
intervention (F(1,31)=20.95, p<0.001, μ2=0.403). C: Whole brain effect of day (pre- versus post-
intervention) from the flexible factorial model (contrast: 3-back > 1-back). Significant clusters in the 
bilateral DLPFC (increased over time – coronal section) and medial PFC/perigenual anterior cingulate 
cortex (decreased over time – sagittal section) are shown. D: Mean eigenvariate of left DLPFC cluster 
in F-test for main effect of day, pre- and post-intervention. E: Whole brain effect of group (active vs 
sham) from the flexible factorial model (contrast; 3-back>1-back). A significant cluster in the right 
posterior parietal cortex (rPPC) is shown. F: Mean eigenvariate of right PPC cluster in F-test for main 
effect of group, pre- and post-intervention. Overlays are thresholded at p<0.001, uncorrected, 
minimum cluster size k=4 and colour bars indicate F-values. 
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Table 5.3 N-back task: whole-brain results. Whole-brain results of flexible factorial for n-back task 
(all contrasts: 3-back>1-back; cluster-forming threshold p<0.001, uncorrected; minimum cluster 
size=4) for both main effects (day, i.e. pre-invention or post-intervention; group, i.e. active or sham 
tDCS) and interaction effect. R=right; L=left; lat.=lateral; sup.=superior; prim.=primary; FG=frontal 
gyrus; PPC=posterior parietal cortex; mPFC=medial prefrontal cortex; OFC=orbitofrontal cortex; 
VLPFC=ventrolateral prefrontal cortex; pgACC=perigenual anterior cingulate cortex; sup.=superior; 
prim.=primary; DLPFC = dorsolateral prefrontal cortex.  

  

Effect p 
(cluster 
level) 

Extent 
(k) 

p 
(voxel 
level) 

F(1,31) X Y Z Region Direction of 
effect 

day <0.001 243 0.024 38.31 -30 -61 41 L PPC post > pre 

 <0.001 326 0.040 35.64 27 -64 38 R PPC post > pre 

 <0.001 354 0.061 33.50 -6 47 -1 mPFC/pgACC pre > post 

 <0.001 196 0.062 33.48 39 8 35 R DLPFC post > pre 

 <0.001 333 0.063 33.33 -48 8 29 L DLPFC post > pre 

 
0.865 7 0.489 22.77 -57 -13 -16 

L lat. 
temporal   

pre > post 

 
0.164 32 0.544 22.10 51 -37 53 

R inferior 
parietal 

post > pre 

 
0.037 54 0.651 20.89 -42 -37 50 

L inferior 
parietal 

post > pre 

 0.387 20 0.690 20.46 -45 -61 -13 L fusiform post > pre 

 0.120 34 0.739 19.90 33 23 5 R insula post > pre 

 
0.071 44 0.803 19.13 -6 -46 29 

L posterior 
cingulate 

pre > post 

 
0.600 12 0.857 18.42 33 -82 29 

R angular 
gyrus 

post > pre 

 
0.922 5 0.897 17.80 54 -37 14 

R sup. 
temporal 

post > pre 

 0.621 13 0.935 17.09 -39 47 11 L DLPFC post>pre 

 0.922 5 0.992 14.89 -48 17 -4 L OFC post > pre 

 
0.948 4 0.997 14.26 9 -49 26 

R posterior 
cingulate 

pre > post 

group 
0.153 33 0.020 39.40 48 -55 17 R PPC 

active > 
sham 

 
0.700 11 0.187 27.92 -39 38 -13 L VLPFC 

active > 
sham 

 
0.740 10 0.479 22.89 -21 53 8 L rostral PFC 

sham > 
active 

 
0.922 5 0.485 22.82 -15 2 53 L sup. FG 

sham > 
active 

 
0.740 10 0.533 22.24 33 -46 56 

R sup. 
parietal  

active > 
sham 

 
0.948 4 0.929 17.21 30 20 -10 R insula 

active > 
sham  

 
0.948 4 0.963 16.35 42 -7 17 R prim. motor 

active > 
sham 

 
0.948 4 0.990 

 
15.09 -21 -61 32 L sup. parietal 

sham > 
active 

day*group none         
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5.4.10.3 Effect of tDCS and time on amygdala activation during emotion processing 

(average over ROI)  

All distributions of parameter estimates for the amygdalae met the assumption of 

normality (Kolmogorov-Smirnov test, all p>0.08). We conducted a repeated-

measures ANOVA, with within-subjects factors of emotion (fear, happy), laterality 

(left, right), and time (pre-, post-intervention), and a between-subjects factor of 

stimulation condition.  

There was no significant effect of laterality (F(1,31)=0.336, p=0.566). The interaction 

between laterality and group narrowly missed significance (F(1,31)=4.11, p=0.051) 

and was not analysed further. Amygdala activation for the fearful>neutral contrast 

was significantly stronger than for the happy>neutral contrast (F(1,31)=20.54, 

p<0.001, ηp
2=0.399). Emotion interacted with stimulation condition (F(1,31)=8.41, 

p=0.007, ηp
2=0.213), such that those in the sham group showed greater amygdala 

activation for fearful faces, but lower amygdala activation for happy faces than those 

in the active group (however, post-hoc contrasts averaging across days and laterality 

did not show significant differences between the groups in either the fearful 

(t(31)=1.110, p=0.276) or happy (t(31)=2.02, p=0.052) conditions). Emotion did not 

interact with laterality (F(1,31)=2.84, p=0.102), and the three-way interaction 

between emotion, stimulation condition, and laterality narrowly missed significance 

(F(1,31)=3.65, p=0.065).  

Although there was no main effect of time (F(1,31)=2.00, p=0.168), importantly there 

was a significant time-by-simulation condition interaction (F(1,31)=5.04, p=0.032, 

ηp
2=0.140), such that those in the sham group showed decreased amygdala 

activation (averaged across fear and happy) at post- relative to pre-intervention 
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(t(14)=2.63, p=0.021), while those in the active stimulation condition did not 

(t(19)=0.605, p=0.553) (see Figure 5.6A-D). However, independent-samples t-tests 

did not reveal significant differences between the active and sham conditions either 

pre- (t(31)=1.74, p=0.092) or post-intervention (t(31)=1.96, p=0.059).  

There was no interaction between time and laterality (F(1,31)=0.146, p=0.705), 

between time and emotion (F(1,31)=0.022, p=0.882), between time, laterality, and 

stimulation condition (F(1,31)=0.605, p=0.443), between time, emotion, and laterality 

(F(1,31)=0.699, p=0.409), or between time, emotion, and stimulation condition 

(F(1,31)=1.86, p=0.182). There was also no four-way interaction between time, 

emotion, laterality, and stimulation condition (F(1,31)=2.29, p=0.140). 

5.4.10.4 Effect of tDCS and time on sgACC activation during emotion processing 

(average over ROI)  

We conducted a similar analysis (though without laterality) for the sgACC. All but one 

distribution of parameter estimates met the assumption of normality (Kolmogorov-

Smirnov test, all p>0.2). In the one that did not (post-intervention sgACC activation in 

the happy>neutral faces contrast: p=0.042), we performed a nonparametric 

independent samples Kruskal-Wallis test, testing the effect of group on post-

intervention activation, which confirmed the results of the ANOVA (p>0.3).   

We found no significant main effect of stimulation condition (F(1,31)=1.61, p=0.214). 

There was also no main effect of emotion (F(1,31)=1.41, p=0.244), no emotion-by-

stimulation condition interaction (F(1,31)=0.851, p=0.363), no main effect of time 

(F(1,31)=0.043, p=0.837), no time-by-stimulation condition interaction 

(F(1,31)=0.006, p=0.937), no time-by-emotion interaction (F(1,31)=1.28, p=0.267), 
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and no three-way interaction between time, emotion, and stimulation condition 

(F(1,31)=0.325, p=0.573) (Figure 5.6E-F).  

5.4.10.5 Effect of tDCS and time on left DLPFC activation during emotion processing 

(average over ROI)  

We conducted a similar analysis for our final ROI, the stimulated region, left DLPFC. 

The distributions of parameter estimates all met the assumption of normality 

(Kolmogorov-Smirnov test, all p>0.2).  

The main effect of emotion narrowly missed significance (F(1,31)=3.91, p=0.054), 

and there was no emotion-by-stimulation condition interaction (F(1,31)=0.002, 

p=0.962), no main effect of time (F(1,31)=0.361, p=0.552), no time-by-emotion 

interaction (F(1,31)=0.038, p=0.846), and no three-way interaction between time, 

emotion, and stimulation condition (F(1,31)=0.245, p=0.624). There was no main 

effect of stimulation condition (F(1,31)=0.116, p=0.736).  

We found a significant interaction between time and stimulation condition which 

mirrored the findings observed in the amygdala (F(1,31)=10.95, p=0.002, ηp
2=0.261). 

In patients receiving active stimulation, left DLPFC activation increased from pre-to 

post-intervention, though this narrowly missed significance (t(18)=2.06, p=0.055); in 

patients receiving sham stimulation, left DLPFC activation decreased significantly 

over time (t(13)=2.62, p=0.021). Collapsing across both emotions, independent-

samples t-tests revealed no difference between the stimulation conditions at baseline 

(t(31)=1.88, p=0.07), but post-intervention there was significantly greater activation in 

the left DLPFC in the active stimulation group compared to the sham group 

(t(31)=2.08, p=0.046) (see Figure 5.6G-H). 
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Figure 5.6. Effect of intervention on fMRI activation (emotion processing). Activation pre- and 
post-intervention, separated for active (magenta) and sham (cyan) tDCS conditions, for the left 
amygdala (L Amyg, A-B), right amygdala (R Amyg, C-D), subgenual anterior cingulate cortex (sgACC, 
E-F), and left dorsolateral prefrontal cortex (L DLPFC, G-H) for fearful>neutral (left column) and 
happy>neutral (right column) contrasts. In the amygdalae (A-D), time interacted significantly with 
emotion condition, (F(1,31)=5.04, p=0.032, ηp

2=0.140), such that under sham activation decreased 
from pre- to post-intervention. This was not the case in the sgACC (E-F). However, in the left DLPFC, 
we found a similar interaction in the same direction as the amygdala (F(1,31)=10.95, p=0.002, 
ηp

2=0.261). *=significant group difference (p<0.05).   
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5.4.10.6 Whole-brain effects of tDCS and time on emotion processing 

We conducted three separate flexible factorial models, testing for the effect of tDCS 

group and time (before/after therapy) on (1) activation to faces, compared with 

fixation cross; (2) activation to happy compared to neutral faces; (3) activation to 

fearful compared to neutral faces.  

Faces vs fixation 

An F-contrast for the main effect of time revealed no whole-brain family-wise error 

significant clusters (see Table 5.4 for all clusters reaching a threshold of p<0.001, 

uncorrected; minimum cluster size k=4). An F-contrast for the main effect of 

stimulation group revealed significantly greater activation in the sham group than the 

active group in several extensive clusters with peaks in the bilateral posterior parietal 

cortices (k=2425 and k=763, both p<0.001, cluster-corrected for right and left, 

respectively) and the left angular gyrus (k=1015, p<0.001, cluster-corrected) (note 

that this collapses across both days, i.e. before and after the intervention). There 

were also significant clusters in the prefrontal cortices (the majority, including a left 

DLPFC cluster, indicating higher activation in the sham group, with the exception of 

a cluster in the right DLPFC (p<0.001, cluster-corrected), which showed greater 

activation in those receiving active stimulation). These group differences are hard to 

interpret as they were already present at baseline (see Figure 5.7). The F-contrast 

for the interaction between stimulation group and time did not identify any whole-

brain significant clusters (see Table 5.4).  

We also examined activation in our four ROIs (bilateral amygdala, sgACC, and left 

DLPFC) using small volume correction (SVC). This reiterated the group effect driven 
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by baseline differences found in our whole-brain analysis: there was significantly 

greater activation in the sham group than the active group in the left DLPFC 

(p<0.001, voxel-level SVC), which survived Bonferroni correction across our four 

ROIs (Table 5.5). No results survived correction in the other ROIs.   

Fearful vs neutral 

F-contrasts for the main effect of time, stimulation group, and their interaction 

revealed no significant effects at the whole-brain level (all p>0.3, cluster-level, FWE-

corrected). There were also no significant effects of group, day, or any interactions in 

the four ROIs examined following SVC.  

Happy vs neutral  

F-contrasts for the main effects of time and stimulation condition revealed no 

significant effects at the whole-brain level; an F-contrast for the interaction between 

stimulation group and time also did not find any significant clusters at the whole-brain 

level. SVC within our four ROIs revealed a group-by-time interaction in the left 

DLPFC (p=0.038 SVC): from pre- to post intervention, patients receiving sham 

stimulation showed decreased left DLPFC activation over time, while those receiving 

active showed increased left DLPFC activation over time (though this did not survive 

correction for four ROIs (see Table 5.5)).  
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Figure 5.7. Effect of intervention on whole-brain activation (emotion processing). Whole-brain 
significant group differences in the faces>fixation contrast. A: F-test for effect of group; crosshairs in 
peak coordinate of right posterior parietal cortex (rPPC) cluster (p<0.001, voxel-level corrected); B, C: 
Plotted eigenvariate of clusters in right (B) and left (C) PPC pre- and post-intervention, separated for 
active (magenta) and sham (cyan) tDCS conditions. D: F-test for effect of group; crosshairs in peak 
coordinate of left dorsolateral prefrontal cortex (DLPFC) cluster (p=0.002, voxel-corrected). E, F: 
Plotted eigenvariate of clusters in left (E) and right (F) DLPFC pre- and post-intervention, separated 
for active (magenta) and sham (cyan) tDCS conditions. L=left; R=right. Overlays are thresholded at 
p<0.001, uncorrected, minimum cluster size k=4 and colour bars indicate F-values. 
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p (cluster-

corrected) Extent 

p (voxel-

corrected) F(1,31) X Y Z region 

 
 
direction 

faces > 
fixation 

 
day 0.707 11 0.657 21.65 21 -40 14 R fusiform  

Day 2 > 
day 1 

  
0.246 25 0.718 20.96 -30 -55 -13 L fusiform 

Day 1 > 
day 2 

  

0.500 16 0.779 20.24 -30 -55 5 L occipital 
Day 2 > 
day 1 

  
0.939 5 0.866 19.08 36 -49 -10 R fusiform 

Day 2 > 
day 1 

  
0.620 13 0.909 18.39 -48 -1 2 L premotor  

Day 1 > 
day 2 

  

0.874 7 0.953 17.43 -33 29 -10 L VLPFC 
Day 1 > 
day 2 

  
0.963 4 0.982 16.33 3 2 32 R dACC 

Day 1 > 
day 2 

  
0.794 9 0.986 16.12 30 -79 -16 R occipital 

Day 1 > 
day 2 

  

0.874 7 0.994 15.4 -45 -70 -10 L occipital 
Day 2 > 
day 1 

  
0.874 7 0.994 15.38 30 -73 -4 R occipital 

Day 1 > 
day 2 

  
0.963 4 0.996 15.21 24 14 50 R DLPFC 

Day 1 > 
day 2 

  
group 

<0.001 2425 <0.001 124.21 63 -25 26 R PPC 

Sham > 
active 

  

<0.001 1015 <0.001 98.83 -48 -67 17 
L angular 
gyrus  

Sham > 
active 

  

<0.001 763 <0.001 58.06 -54 -25 26 L PPC 

Sham > 
active 

  

<0.001 313 0.002 51.74 -21 38 32 L DLPFC 

Sham > 
active 

  

0.081 39 0.004 48.15 -36 11 23 L VLPFC 

Sham > 
active 

  

<0.001 132 0.013 42.08 24 38 29 R DLPFC 
Active > 
sham 

  

0.004 82 0.075 33.49 -21 50 5 
L 
frontopolar 

Sham > 
active  

  

0.178 29 0.165 29.46 -3 -94 2 L V1 

Active > 
sham  

  

0.500 16 0.229 27.8 24 17 -19 R VLPFC 

Sham > 
active 

  

0.289 23 0.23 27.78 -51 -4 5 L premotor  

Sham > 
active 

  

0.001 109 0.252 27.29 -6 -34 44 
L posterior 
cingulate 

Sham > 
active 

Table 5.4 Emotion processing task: whole brain results (1). Whole-brain results from flexible 
factorial for emotion processing task (thresholded at p<0.001, uncorrected) for both main effects (day, 
i.e. pre- versus post-intervention; group, i.e. active versus sham tDCS) and interaction effect. R=right; 
L=left; dACC=dorsal anterior cingulate cortex; V1=primary visual cortex; PPC=posterior parietal 
cortex; VLPFC=ventrolateral prefrontal cortex; DLPFC = dorsolateral prefrontal cortex.  
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p (cluster-

corrected) Extent 

p (voxel-

corrected) F (1,31) X Y Z region 

 
 
direction 

faces> 
fixation 
(cont.) 

group 
(cont.) 

0.963 4 0.324 25.97 33 -64 29 R occipital 

Sham > 
active 

  

0.500 16 0.326 25.93 6 -49 20 
R posterior 
cingulate 

Sham > 
active 

  

0.794 9 0.355 25.47 30 -55 -19 R fusiform 

Active > 
sham 

  

0.835 8 0.419 24.54 27 -70 -22 
R 
cerebellum 

Active > 
sham 

  

0.463 17 0.459 24.01 6 5 23 R dACC 

Active > 
sham 

  

0.429 18 0.520 23.25 42 38 35 R DLPFC 

Active > 
sham 

  

0.874 7 0.522 23.21 -18 14 50 L premotor 

Active > 
sham 

  

0.227 26 0.581 22.52 18 -61 29 
R posterior 
cingulate 

Sham > 
active 

  

0.500 16 0.616 22.13 -48 -49 -25 L fusiform 

Sham > 
active 

  

0.060 43 0.618 22.1 -51 -10 -7 L STG 

Sham > 
active 

  

0.429 18 0.786 20.15 -9 5 20 L caudate 

Active > 
sham 

  

0.909 6 0.817 19.76 -54 29 -1 L VLPFC 

Sham > 
active 

  

0.874 7 0.818 19.75 15 41 -7 R VMPFC 

Sham > 
active 

  

0.751 10 0.82 19.72 -24 17 -7 L putamen 

Sham > 
active 

  

0.939 5 0.875 18.95 -21 -58 17 
L vis. 
assoc. 

Sham > 
active 

  

0.707 11 0.882 18.83 18 17 2 R caudate 

Sham > 
active 

  

0.874 7 0.9 18.54 15 56 -10 
R rostral 
PFC 

Sham > 
active 

  

0.963 4 0.926 18.05 27 -94 2 
R vis. 
assoc. 

Active > 
sham 

  

0.939 5 0.994 15.49 -33 -25 8 L insula 

Sham > 
active 

  

0.963 4 0.997 14.97 63 -28 -7 R lat. temp. 

Sham > 
active 

 day * 
group 0.874 7 0.723 20.90 -30 -49 2 L occipital 

Active ↑ 
Sham ↓ 

Table 5.4 Emotion processing task: whole brain results (2). Whole-brain results from flexible 
factorial for emotion processing task (thresholded at p<0.001, uncorrected; minimum cluster size=4) 
for both main effects (day, i.e. pre- versus post-intervention; group, i.e. active versus sham tDCS) and 
interaction effect. R=right; L=left; dACC=dorsal anterior cingulate cortex; STG=superior temporal 
gyrus; PFC=prefrontal cortex; VMPFC=ventromedial PFC; VLPFC=ventrolateral PFC; DLPFC = 
dorsolateral PFC.; vis=visual; assoc.=associative; lat.=lateral; temp.=temporal.   
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p (cluster-

corrected) Extent 

p (voxel-

corrected) F(1,31) X Y Z region 

 
 
direction 

happy > 
neutral 

day 
0.909 6 0.805 20.38 -30 -22 26 WM  

Day 1> 
day 2 

  
0.275 22 0.837 19.95 51 38 -10 R OFC 

Day 1 > 
day 2 

  

0.639 12 0.889 19.17 -24 -16 44 L SFG 
Day 1 > 
day 2 

  
0.941 5 0.957 17.74 3 -40 17 

R post. 
cing. 

Day 1 > 
day 2 

  

0.966 4 0.987 16.48 36 -64 26 

R 
angular 
gyrus 

Day 1 > 
day 2 

  
0.966 4 0.998 14.99 0 -40 5 

Lat. 
ventricle 

Day 1 > 
day2 

 group 
0.087 35 0.095 32.83 -15 11 50 

L 
premotor 

Active > 
sham 

  
0.941 5 0.676 21.91 24 -28 44 

R prim. 
sensory 

Active > 
sham 

  
0.966 4 0.832 20.02 15 5 44 R dACC 

Active > 
sham 

  
0.941 5 0.988 16.44 12 20 53 R SMA 

Active > 
sham 

 day * 
group 0.547 14 0.902 18.95 57 -1 -19 

R lat. 
temp. 

Active ↑ 
Sham ↓ 

  

0.735 10 0.997 15.40 -42 14 35 L DLPFC 
Active ↑ 
Sham ↓ 

  
0.966 4 0.997 15.36 -12 65 8 L FPC 

Active ↑ 
Sham ↓ 

fearful > 
neutral 

day 
0.783 9 0.289 27.05 -24 -31 -22 

L 
fusiform 

Day 1 > 
day 2 

  

0.966 4 0.995 15.73 -3 65 17 L FPC 
Day 1 > 
day 2 

 group 
0.303 21 0.588 22.88 30 -7 14 R insula 

Sham > 
active 

  
0.829 8 0.955 17.77 42 -52 8 

R 
fusiform 

Sham > 
active 

  

0.909 6 0.987 16.45 30 -52 -16 
R 
fusiform 

Sham > 
active 

 day * 
group 0.871 7 0.957 17.72 -33 -1 26 L PCG 

Active ↑ 
Sham ↓ 

Table 5.4 Emotion processing task: whole brain results (3). Whole-brain results from flexible 
factorial for emotion processing task (thresholded at p<0.001, uncorrected; minimum cluster size=4) 
for both main effects (day, i.e. pre- versus post-intervention; group, i.e. active versus sham tDCS) and 
interaction effect. R=right; L=left; WM=white matter; OFC=orbitofrontal cortex; SFG=superior frontal 
gyrus; lat.=lateral; prim.=primary; post.=posterior; cing.=cingulate; dACC=dorosal anterior cingulate 
cortex; SMA=supplementary motor area; temp.=temporal cortex; DLPFC = dorsolateral prefrontal 
cortex; FPC=frontopolar cortex; PCG=precentral gyrus. 
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Table 5.5 Emotion processing task: small-volume corrected results. Small-volume corrected 
results of flexible factorial for emotion processing task (p<0.001, uncorrected, cluster-forming 
threshold=4) for both main effects (day, i.e. pre- versus post-intervention; group, i.e. active versus 
sham tDCS) and interaction effect, for all ROIs of interest (left and right amygdala; sgACC; left 
DLPFC). L=left; DLPFC = dorsolateral prefrontal cortex. *=remained significant after correction for 
multiple comparisons (N=4 ROIs).  

  

 Effect  

p (cluster-
corrected) Extent 

p (voxel-
corrected) F(1,31) X Y Z region 

Direction 

Faces > 
fixation 

day 
none        

 

 group 
0.020 5 0.001* 28.91 -39 14 26 

L 
DLPFC 

Sham > 
Active 

 day * 
group none        

 

Fearful > 
neutral 

day 
none        

 

 group none         

 day * 
group none        

 

Happy > 
neutral 

day 
none        

 

 group none         

 day * 
group 0.023 4 0.038 15.40 -42 14 35 

L 
DLPFC 

Active ↑ 
Sham ↓ 
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5.5 Discussion 

We conducted the first RCT of tDCS combined with CBT for depression. We 

hypothesised that tDCS would enhance the therapeutic effect of CBT, compared to 

sham stimulation combined with CBT. We show a modest and non-significant effect 

of the combined intervention on our primary outcome measure, clinical response on 

the HAM-D. Although the trial provides evidence for the safety and feasibility of 

augmenting CBT with tDCS for depression, we did not find a substantial effect of 

tDCS on any mood or cognitive measure. Specifically, we failed to detect any 

advantage of tDCS over sham on our secondary outcome measures, including self-

report measures of mood, anxiety, anhedonia, and performance on the n-back task.  

We found a substantial effect of psychological intervention (irrespective of active or 

sham stimulation) on DLPFC activation during the n-back working memory task, 

which would be consistent with the notion that the DLPFC plays a role in in CBT. 

However, it must be noted that this activation change did not differ between active 

and sham groups and cannot be distinguished from a simple effect of familiarity with 

the task (i.e. a practice effect). Whole-brain analyses revealed a significant 

interaction between stimulation group and time on activation in the right PPC during 

n-back performance: activation increased from pre- to post-intervention only in the 

active stimulation group (with a non-significant decrease in the sham group). In the 

emotion processing task, we found a similar pattern in the left DLPFC (both using a 

priori ROI approach collapsing across both emotions, and using a whole-brain 

analyses for the happy>neutral faces contrast). Activation increased non-significantly 

over time in the active group, but decreased significantly in the sham group.  
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5.5.1 Possible interpretations of null clinical effect 

There are several possible interpretations of our null clinical finding. Augmenting 

CBT with tDCS was a logical extension from findings that tDCS successfully 

enhances the antidepressant effect of cognitive control training (Brunoni et al., 

2014a; Segrave et al., 2014). However, the intervention itself had never been tested, 

so the most straightforward interpretation is that tDCS does not enhance the efficacy 

of CBT.  

That said, in our study, the odds ratios between active and sham condition groups 

were relatively large (ITT analysis: response: 2.16; remission: 3.65), and with only 39 

patients in the trial our study was underpowered to detect all but very large effects. 

This is somewhat substantiated by the difference in mood improvements seen under 

tDCS for depression between earlier findings (i.e., (Fregni et al., 2006a), who 

reported ~60% improvement in the active condition (~14% in sham)), and more 

recent studies (i.e., (Loo et al., 2012), who reported 28% improvement in the active 

condition (~11% in sham)). However, this possibility would be strengthened if there 

were also any effect of tDCS on our secondary measure of depression, BDI, which 

we did not find. It is worth noting there are important differences between the HAM-D 

and the BDI as measures of depression that could have contributed to this 

discrepancy, most notably its self-report nature: for instance, patients with low 

extraversion and high neuroticism are more likely to endorse depressive symptoms 

on the BDI compared to the HAM-D (Schneibel et al., 2012).  

There are other aspects of our design that might have influenced this null finding. It 

is worth noting that many previous trials have used different stimulation montages. 

While the anodal electrode is placed, like ours, over the left DLPFC in many 
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depression trials, a bifrontal montage is often used, with the cathodal electrode over 

the right DLPFC (Brunoni et al., 2013); in others, the cathodal electrode is placed 

over the right contralateral orbit (Loo et al., 2012). We placed the cathodal electrode 

over the ipsilateral deltoid in order to minimize effects of the cathodal electrode on 

the brain (Priori et al., 2008; Wolkenstein and Plewnia, 2013); however, it is possible 

the effects of the cathodal electrode on the brain contribute to an antidepressant 

response (or simply that our montage elicits a less optimal current distribution for 

depression). 

A second factor that could have contributed to a null result was stimulation 

frequency. Our stimulation sessions were delivered at a relatively low frequency (at 

least 6 days between tDCS sessions), while previous trials of tDCS in depression 

typically deliver stimulation daily or near-daily (Boggio et al., 2008; Brunoni et al., 

2013; Fregni et al., 2006a; Loo et al., 2012). However, our trial sought to be a 

pragmatic test of tDCS as an adjunct to standard CBT treatment, so we adhered to 

weekly CBT sessions, as is typical practice in the UK NHS for outpatients with 

moderate-to-severe depression (National Institute for Health and Clinical Excellence, 

2009).  

A final potential contributor was that we were restricted to 1 mA of stimulation, as 

advised by our ethics committee, whereas other trials have typically used 2 mA. For 

example, a previous study successfully combining tDCS and sertraline delivered 10 

sessions of 2 mA current over a two week period, followed by two more sessions 

(delivered every other week for the next four weeks) (Brunoni et al., 2013). 

Compared to that study, our patients received substantially less stimulation current. 

This is important because a recent meta-analysis found that the efficacy of DLPFC 
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tDCS in depression was related to stimulation current and duration (Brunoni et al., 

2016).  

5.5.2 Null effect of tDCS on n-back performance 

All of the above factors could have also contributed to the null effect of tDCS on n-

back task performance. However, there was also a surprising effect of tDCS on n-

back behaviour, though only when measured inside the scanner: patients receiving 

sham stimulation improved significantly more than those receiving active stimulation. 

To our knowledge, no comparable findings of apparent deleterious effects of 

multiple-session anodal DLPFC tDCS have been reported. Several other studies 

(with varying montages and stimulation protocols) have shown no additional 

enhancing effects of multiple tDCS sessions on the n-back task (Lally et al., 2013; 

Martin et al., 2013; Talsma et al., 2017). Additionally, a recent meta-analysis found 

that anodal DLPFC tDCS stimulation has no offline effect (i.e., an effect not observed 

during tDCS administration itself) on working memory accuracy in neuropsychiatric 

populations (and only a trend for improvements in healthy populations) (Hill et al., 

2016). One study in this meta-analysis even reported numerically (but not 

significantly) worse n-back performance in patients with schizophrenia following a 

session of active 1 mA anodal stimulation (with a numerical, non-significant 

improvement in the sham group) (Hoy et al., 2013). Therefore, a combination of the 

multiple sessions, neuropsychiatric population, offline measurement and the other 

elements of our trial that were relatively distinct (as discussed in the previous 

section) could all have contributed to this surprising result. If even the acute effects 

of tDCS on n-back performance are very variable (Horvath et al., 2015), our sample 

may simply have shown a heretofore unseen detrimental effect of active tDCS on 
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offline working memory (i.e., working memory measured after tDCS delivery, as 

opposed to the “online” effects of tDCS on working memory, measured at weekly 

stimulation sessions).  

5.5.3 Effects of tDCS on neural activation 

To our knowledge, this was the first tDCS trial for depression to include fMRI, as well 

as clinical and cognitive measures. We found a substantial effect of psychological 

intervention (irrespective of tDCS condition) on DLPFC activation, which increased in 

both study arms over time and was indistinguishable from a sample of healthy 

controls at the end of the trial (while at baseline patients showed DLPFC 

hypoactivation). These results accord with the only other CBT trial to measure fMRI 

activation: in a small sample (N=9), prefrontal activation during the digit-sorting task 

increased after a 16-week CBT course, following baseline hypoactivation (Siegle et 

al., 2007a). Low DLPFC activation in depression has been suggested to result in 

impaired cognitive control, contributing to an impaired ability to inhibit attention 

toward negative stimuli, dysfunctional emotional processing, and rumination (Disner 

et al., 2011). CBT is thought to counteract patients’ perceived accuracy of negative 

schema, ameliorating cognitive biases (Butler et al., 2006). Furthermore, cognitive 

control training increases DLPFC activation during cognitive tasks (Siegle et al., 

2007b); training on another prefrontal executive task, the n-back task, could certainly 

contribute to our finding of increased DLPFC activation after the intervention.  

However, we found no effect of stimulation condition on DLPFC activation during 

working memory. Instead, we found preliminary results (that we did not anticipate) 

for a differential effect of tDCS on right PPC activation which survived whole-brain 

correction for multiple comparisons: activation increased from pre- to post-
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intervention only in the active stimulation group, but did not (and indeed was 

numerically decreased) in the sham group. The PPC is reliably activated in fMRI 

studies of the n-back task (Owen et al., 2005), including in our whole-brain activation 

results for the same contrast in the sample reported in Chapter 4. Additionally, in the 

left parietal cortex, perfusion was reported to increase during anodal tDCS of the 

DLPFC (Stagg et al., 2013). Therefore, it is plausible that the increase we observed 

over time in the active group reflects a true change in activation elicited by the 

combination of active tDCS with the n-back task at weekly sessions. However, it 

should be noted that this did not seem to result in improved performance on the task 

itself. 

The stimulation groups also differed in terms of neural activation during emotional 

face processing, particularly in the left DLPFC (in the ROI results, collapsing across 

both emotion contrasts; in the whole-brain SVC results, in the happy>neutral 

contrast). While patients assigned to sham stimulation showed significantly 

decreased activation over time in the left DLPFC, this was not the case in those 

assigned to active stimulation, in whom activation increased over time (though this 

was only marginally significant). This tentatively showed an effect of active tDCS on 

left DLPFC activation during emotion processing (but not apparently during working 

memory) that differs from CBT combined with sham stimulation; interestingly, a 

similar pattern was observed in the amygdala. Since there were no significant group 

differences on clinical scores, this differential effect may reflect a neural mechanism 

of tDCS that our other measures (clinical and cognitive) could not capture.  

However, the interpretation of the above finding is complicated by the significant and 

widespread difference between treatment arms observed in the faces>fixation 
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contrast, which was already present at baseline. It is possible that this could have 

contributed to the other group differences observed in this task, albeit in contrasts 

that did not show group differences at baseline. Presumably these differences arose 

from imperfect randomization (despite no observed differences in our clinical and 

demographic measures). This may have been exacerbated by the asymmetric drop-

out between groups (1 active; 5 sham, though this difference was not significant): 

importantly, no group differences were significant on the faces>fixation contrast in a 

2-sample t-test at baseline with the full (N=20 active; N=19 sham) sample. One 

possible interpretation of this finding is that patients with lower activation to faces 

(relative to fixation) are more likely to drop out of psychotherapy – unfortunately our 

sample was too small to provide a meaningful test of this hypothesis, but it would be 

worth examining in larger studies. 

5.5.4 Conclusion 

Our data do not provide immediate support for the use of tDCS to augment CBT in 

depression. Contrary to our hypotheses, we found no effect of tDCS on scales of 

depression, anxiety, and anhedonia, or on neural and cognitive measures of working 

memory. We identified a strong effect of psychotherapy (irrespective of tDCS 

condition) on DLPFC activation, and some preliminary effects of active tDCS on left 

DLPFC and amygdala activation during emotion processing. It is possible that the 

intervention itself (the timing, stimulation parameters, and protocol of administration) 

may have affected the results; and it is also very likely that our study was 

underpowered, at least for the primary outcome measure.  

Although the above mentioned caveats are important, another possibility is that 

tDCS has a variable effect that we may be able to predict with baseline measures of 
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cognitive and neural processing. There is evidence that baseline neural activation 

(measured with task-based and resting state fMRI, as well as PET) can predict 

response to common treatments for depression, including antidepressant medication 

and CBT (Roiser et al., 2012) as well as ECT (Van Waarde et al., 2015). Could it 

also predict therapeutic response to tDCS? It is this prospect that I explore in 

Chapter 6.  
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Chapter 6. Predicting response to noninvasive brain stimulation and 

psychotherapy for depression 

6.1 Abstract 

Transcranial direct current stimulation (tDCS) has been suggested as a putative 

treatment for depression, but results from clinical trials are mixed. This may be in 

part due to variability between patients. In other treatment strategies for depression, 

baseline measurements (including, more recently, neuroimaging measurements) 

have been shown to predict a patient’s likelihood of response (Drysdale et al., 2017; 

Dunlop and Mayberg, 2014). However, no neuroimaging predictor of treatment 

response to tDCS for depression has yet been described in an RCT (indeed, to our 

knowledge, no fMRI predictor has been described for any depression treatment in 

the context of an RCT). Using regression analyses, we tested whether baseline 

neural activation measured in fMRI paradigms (working memory and emotion 

processing) was associated with the degree of depression improvement following an 

RCT that tested active or sham tDCS combined with CBT (described in Chapter 5). 

We also examined other predictors of treatment outcome: baseline depression, 

anxiety, anhedonia, and working memory capacity. The RCT design enabled us to 

test both specific predictors of response to tDCS/CBT (i.e. in the active stimulation 

group alone), and general predictors of response to CBT (i.e. across both groups). 

We hypothesized that activation in the region of stimulation, the left DLPFC 

(measured during working memory prior to treatment), would predict clinical 

response to tDCS. The results were consistent with our hypothesis: left DLPFC 

activation during working memory specifically predicted response to active, but not 
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sham tDCS. Furthermore, the left DLPFC showed good within-subject reliability 

between scans several months apart, an important determinant of clinical utility. By 

contrast, consistent with previous reports (Siegle et al., 2006), right amygdala 

activation during emotion processing predicted improvement to CBT irrespective of 

treatment arm; however, it showed low within-subject reliability between scans, 

raising some uncertainty regarding the interpretation of this finding. An exploratory 

whole-brain analysis also revealed two significant clusters, in the left rostral PFC and 

left posterior parietal cortex (PPC) that were both predictive of clinical outcome 

irrespective of treatment arm. In summary, we report a potential predictor of 

response to tDCS combined with CBT in depression, providing a possible means of 

identifying future responders to this intervention with fMRI. This work additionally 

adds to previous findings describing pre-treatment neural activations associated with 

a favourable response to CBT.  
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6.2 Introduction 

The standard procedure for identifying appropriate treatments for a group of patients 

involves running an RCT, and reporting an aggregate (group) effect, as employed in 

Chapter 5. However, this may mask important and informative differences between 

patients. A key priority for medical research is identifying objective measures (or 

‘biomarkers’) that may help to optimize treatment selection (Dunlop and Mayberg, 

2014). Outside of psychiatry, there have been several notable successes on this 

front, chief among them the use of specific breast tumour biomarkers (oestrogen; 

epidural growth factors) to select or avoid particular chemotherapy treatments 

(Dunlop and Mayberg, 2014; Ellsworth et al., 2010). 

To identify outcome predictors, an RCT needs to include relevant mechanistic 

measurements prior to randomisation. In psychiatry, where most disorders are of 

unknown aetiology, trials typically measure only symptoms at baseline. Outside 

RCTs there have been substantial efforts to characterize response to treatment 

according to symptom measures. These have yielded varying degrees of success: 

for instance, anhedonia (and a cluster of associated symptoms related to interest 

and activity) is generally predictive of antidepressant non-response (McMakin et al., 

2012; Uher et al., 2012), while depression subtype seems not to be (Arnow et al., 

2015). Several factors other than symptom profile, such as age, severity, and 

chronicity have been consistently reported to predict poor response to 

antidepressant treatment (Hamilton and Dobson, 2002). However, these predictors 

usually provide only a general marker of treatment responsiveness, rarely predicting 

response to specific treatments, or an active intervention relative to placebo (Frank 

et al., 2011; Roiser et al., 2012) (though one notable exception is the use of 
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machine-learning models to identify patients likely to respond to specific 

antidepressants (Chekroud et al., 2016, 2017)).  

Over the past 15 years, as neuroimaging techniques have revealed the brain circuits 

consistently implicated in depression, the suggestion has emerged that responsivity 

in these regions might provide useful information about mechanistic heterogeneity in 

the disorder, and insight into differential treatment response (Dunlop and Mayberg, 

2014; Roiser et al., 2012). Ideally, a potential predictor would be related to the 

pathophysiology of depression (Dunlop and Mayberg, 2014). A number of groups 

have identified a network of regions where activation is associated with treatment 

response.  

Two regions in particular have emerged as strong candidates for predictors of 

treatment response in depression: the anterior cingulate cortex, particularly the 

rostral and subgenual (sgACC) portions, and the amygdala. Early work using PET 

indicated that anterior cingulate hypermetabolism may predict better response to 

antidepressant medication (Mayberg et al., 1997) and sleep deprivation therapy (Wu 

et al., 1999). More recent PET work has shown an effect in the opposite direction, 

with nonresponders to both venlafaxine and CBT showing pretreatment 

hypermetabolism in the pregenual/sgACC (Konarski et al., 2009). This study (as well 

as the Mayberg 1997 paper) suffered from a small sample size (N<10 in each 

group), limiting its ability to reveal treatment-specific activation. A small number of 

other PET studies have compared brain metabolism changes in responders to 

psychological therapies with metabolism changes in antidepressant medication 

responders (Brody et al., 2001a; Kennedy et al., 2007; Martin et al., 2001). Two 

studies compared medication (paroxetine and venlafaxine) responders with IPT 



189 
 

responders. The first found both interventions decreased anterior cingulate gyrus 

activation (Brody et al., 2001a); the second found both interventions increased basal 

ganglia metabolism, but that only interpersonal therapy increased posterior cingulate 

metabolism (Martin et al., 2001). However, both studies showed greater clinical 

response in the medication group relative to IPT, and neither study used random 

treatment assignment.  

One of the few RCTs to explore this question found changes in metabolism in the 

posterior cingulate differentiated venlafaxine and CBT treatment responders: 

venlafaxine response was associated with increases in the posterior cingulate cortex 

over the course of the 16-week treatment, while response to CBT was associated 

with decreased activation in the posterior cingulate (Kennedy et al., 2007). Another 

RCT from the same group found that insula hypometabolism was associated with 

remission to CBT and poor resonse to escitalopram, while insula hypermetabolism 

was associated with remission to escitalopram and poor response to CBT (McGrath 

et al., 2013). However, these studies are limited in several respects, most notably 

that all examine resting-state metabolism, rather than task-evoked brain responses 

during cognition. Instead, the use of disorder-relevant cognitive tasks during task-

related fMRI has revealed several regions that may predict response to specific 

treatments.  

In the fMRI literature, the sgACC and amygdalae have been most frequently 

implicated as potential baseline predictors of treatment response. Pre-treatment 

activation in the perigenual anterior cingulate cortex (ACC; including rostral and 

sgACC), particularly during emotion processing, may predict differential response to 

standard antidepressant treatment (Chen et al., 2007; Davidson et al., 2003; 
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Keedwell et al., 2009, 2010). Pre-treatment perigenual ACC deactivation to negative 

stimuli has been reported to predict worse response to antidepressant treatment with 

two different medications, fluoxetine (Chen et al., 2007) and venlafaxine (Davidson 

et al., 2003). By contrast, in other studies sgACC deactivation to negative stimuli 

predicted better response to cognitive behavioural therapy (Fu et al., 2008a; Siegle 

et al., 2006) and behavioural activation therapy (Dichter et al., 2010). As with the 

PET findings, however, these studies usually lack comparison groups (or, if two 

treatments are used, treatment assignment is non-random). The amygdala, in 

contrast to the sgACC, may represent a more non-specific predictor: heightened 

amygdala activation during inhibitory control (Langenecker et al., 2007) and negative 

information processing (Siegle et al., 2006, 2007a) has been reported as a predictor 

of favourable treatment response in depression irrespective of treatment approach, 

with positive findings for both antidepressant medication and CBT, respectively.  

Most fMRI studies of putative predictors of treatment response in depression have 

focused on activation to emotional faces (Frodl et al., 2010; Fu et al., 2008a, 2008b, 

Keedwell et al., 2009, 2010). Despite robust activation when averaging across 

individuals, and the evidence discussed above that activation may differentiate 

between responders and non-responders (Fu et al., 2008a; Keedwell et al., 2009, 

2010; Langenecker et al., 2007), many authors have acknowledged that clinically 

relevant prognostic markers require high measurement accuracy at the level of the 

individual (Fu et al., 2013). To achieve this with fMRI, the reliability of measurement 

of BOLD responses should be good. We have recently reported that sgACC and 

amygdalae activation in response to emotional faces has quite low within-subject 

reliability, while a control region (the FFA) showed high reliability (Nord et al., 

2017a). Therefore, it is possible that more reliable predictors might be found in other 
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brain regions using paradigms that do not focus on emotional face processing (e.g., 

(Walsh et al., 2007)).  

Another cognitive activation paradigm frequently investigated in depression is the n-

back working memory task. Previous studies have found fair-to-good within-subject 

reliability of the BOLD signal in the n-back task in healthy volunteers (Plichta et al., 

2012), and, measuring graph theoretical properties, superior global and local 

network properties of the n-back task relative to an emotional face processing task 

(Cao et al., 2014). Whether this would extend to psychiatric patient populations 

remains to be determined. One of the main regions of activation of the n-back task, 

the DLPFC, has been less frequently implicated as a putative predictor of treatment 

response for standard interventions in depression, though there are some 

exceptions: lower baseline activation in the left middle frontal cortex (as well as 

dorsal anterior cingulate and lateral temporal cortices) during the n-back task was 

associated with improved clinical outcome following treatment with fluoxetine (Walsh 

et al., 2007). A recent systematic review of rTMS treatments for depression showed 

that clinical response was related to baseline cerebral blood flow in the frontal lobe 

(Silverstein et al., 2015). A small study included in this meta-analysis (13 patients, 6 

responders) reported greater baseline resting-state cerebral perfusion in the left 

DLPFC was associated with clinical response to left DLPFC rTMS (Weiduschat and 

Dubin, 2013). However, other studies in the meta-analysis reported the opposite 

(Kito et al., 2008) or no significant relationship (Kito et al., 2012).  

Other studies have suggested that the effect of tDCS on the DLPFC may depend on 

baseline cortical activity, a source of variability in experimental effects induced by 

DLPFC tDCS (Tremblay et al., 2014). Recently, a small study showed a machine 
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learning algorithm could accurately classify clinical response to tDCS in 8 out of 10 

depressed patients (5 tDCS responders) using resting-state EEG measures (Al-

Kaysi et al., 2017). In this study, the algorithm showed above chance accuracy when 

using spectral power in frontal scalp channels, although due to the machine learning 

approach, the direction of activity associated with better response was not reported. 

The channel pair identified corresponded with regions stimulated by tDCS, according 

to computer modelling of their tDCS montage (Bai et al., 2014). However, in such a 

small study, without replication, the chance of model over-fitting is very high.  

In depression, it is still unusual to use neural or cognitive measures in the context of 

an RCT. One notable exception is the iSPOT-D trial (Etkin et al., 2015; Williams et 

al., 2015), which found that in a subgroup of cognitively-impaired depressed patients, 

reduced performance on a number of cognitive tests predicted treatment non-

response following citalopram, but not sertraline or venlafaxine treatment (Etkin et 

al., 2015); however, it should be noted that this study did not include a placebo arm). 

More typically, attempts to identify predictors of treatment response are conducted 

post-hoc and are not incorporated into RCTs. This introduces the most important 

limitation of most findings in the literature: Without a comparison arm, studies cannot 

separate treatment-nonspecific from treatment-specific predictors.  

Our clinical trial combined CBT with tDCS (or sham tDCS) (Chapter 5), and allowed 

us to test for treatment-specific predictors for tDCS. We hypothesized that greater 

baseline task-evoked activation in the location of stimulation, the left DLPFC, would 

specifically predict response to tDCS, over and above general response to CBT. 

Activation was measured during an fMRI working memory paradigm (the n-back 

task) that reliably evokes left DLPFC activation; this activation was lower in the 
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depressed patients compared with healthy controls (Chapter 4), and increased over 

the course of this intervention in both treatment arms (Chapter 5). We also 

hypothesized that greater amygdala activation during fearful face processing would 

predict CBT response, as reported in prior studies (Siegle et al., 2006, 2007a), 

irrespective of stimulation condition. This is motivated by the hypothesis that CBT is 

most useful to patients with heightened amygdala activity, potentially by improving 

emotional control in patients with particularly sustained emotional reactivity (Siegle et 

al., 2006).  

6.3 Methods 

We analysed data from N=33 patients who met criteria for a diagnosis of major 

depressive disorder (MDD), all of whom completed the RCT combining tDCS and 

CBT described in Chapter 5. Our aim in the present chapter was to determine which 

baseline variables could predict clinical response, across both groups and 

specifically for the active stimulation group. Measured variables were: mean 

activation across our task-specific ROIs (left and right DLPFC activation during the n-

back task (contrast: 3-back>1-back); left and right amygdalae and sgACC activation 

during the emotion processing task (contrasts: fearful>neutral and happy>neutral)); 

working memory performance, quantified as d’ in the 3-back condition of the n-back 

working memory task; and baseline symptoms: depression (HAM-D and BDI), 

anxiety (BAI), and anhedonia (SHAPS). All aspects of data collection, including 

recruitment, behavioural testing, trial design, and MRI pre-processing steps are 

described in Chapter 5. 
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6.3.1 Analysis 

We first mean-corrected all baseline variables: right and left DLPFC activation, right 

and left amygdala activation, sgACC activation, n-back d’, SHAPS score, BAI score, 

and HAM-D.   

All models sought to predict the same outcome variable: the degree of clinical 

improvement, quantified as percent change in HAM-D score from baseline to final 

assessment. We tested this in two ways: our primary analyses tested whether pre-

randomization activation in each region of interest (ROIs: the DLPFC during the n-

back task; the amygdalae and sgACC during the emotional faces task) could predict 

degree of clinical improvement (single-predictor model). In addition to activation over 

the ROI, each regression model included the fixed effect of stimulation group (active 

or sham). If the single-predictor model was significant, we also conducted sensitivity 

analyses (described below) that tested whether any significant predictor survived 

inclusion of additional baseline variables to the model (HAM-D, BAI, and SHAPS 

scores, as well as baseline n-back performance). For each contrast (for the n-back 

task: 3-back>1-back; for the emotion processing task: happy>neutral and 

fearful>neutral), we also ran an exploratory whole-brain analysis to identify activation 

predictive of response to treatment in regions we had not hypothesised a priori.  

6.3.1.1 Sensitivity analyses 

For regions with significant single-predictor models, we conducted sensitivity 

analyses. Here, we first tested for multicollinearity for each predictor separately; we 

assumed evidence of multicollinearity if the variance inflation factor (VIF) between 

any two variables was greater than 3. Next, we constructed the model including all 
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six predictors (if there was no evidence for multicollinearity) and their interactions 

with stimulation group. If the overall model was not significant, we did not proceed 

with stepwise regression. If the overall model was significant, we used a backwards 

stepwise regression technique to test which of the measures significantly predicted 

clinical response (percent change in HAM-D). Using backward step-wise elimination, 

we removed any variables with p>0.1, until all variables, or their interactions with 

stimulation group, predicted percent change in HAM-D sufficiently (i.e., had a p value 

exceeding 0.1). We then report these significant predictor variables.  

6.3.1.2 Assessing the reliability of significant predictors 

Again for regions with significant single-predictor models, we also assessed within-

subject reliability of activation between the baseline scan and the post-intervention 

scan. Note that although we expected (and have reported in Chapter 5) group-level 

changes between baseline and post-intervention activation, our measure of within-

subject reliability assesses only the relative consistency of activation between scans 

(i.e., the subjects with greater activation on day 1, relative to the rest of the group, 

are also those with greater activation on day 2). Particularly in the case of an 

interventional design such as this, we would not expect absolute agreement between 

individual subjects’ activation.  

We calculated intra-class correlation coefficients (ICCs) for each ROI that was 

significantly predictive of response. The ICC is a standard method to quantify the 

stability of measurements between test and retest sessions (Bennett and Miller, 

2010). To calculate ICCs, we used the same approach as in our previous work (Nord 

et al., 2017a), assessing reliability using ICC(3,1), a 2-way mixed effects ICC, 

defined by Shrout and Fleiss (Shrout and Fleiss, 1979) as: 
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ICC(3,1) = BMS-EMS/BMS+(k-1)*EMS 

Where BMS = between-subjects mean square; EMS = error mean square; k = 

number of repeated sessions (i.e., 2 in the case of this RCT).  

This can be interpreted as a ratio of variances (Bartko, 1966), with ICCs approaching 

1.0 indicating near-perfect correlation between BOLD response parameter estimates 

between sessions (i.e., before and after the intervention), and ICCs approaching 0 

indicating little or no reliability. This approach has also been used in a number of 

studies assessing the reliability of amygdala activation (Johnstone et al., 2005; Lipp 

et al., 2014; Plichta et al., 2012; Sauder et al., 2013). The form of ICC we calculated 

has several important elements: first, the effect of measure (i.e., the scanner) is 

assumed to be fixed rather than random, while the effects of subjects are assumed 

to be random. Second, we employ a “consistency” measure of ICC, rather than 

testing the absolute agreement between days or runs, due to the possibility that 

participants might habituate to the stimuli over time. Last, we report average 

measures ICC statistics as the calculation of parameter estimates in fMRI inherently 

involves averaging over many trials. 

We adhere to a conventional interpretation of ICCs to quantify the degree of 

reliability: ICC<0.4 = poor reliability; 0.4—0.75 = moderate to good reliability; >0.75 = 

excellent reliability (Fleiss, 1986; Nord et al., 2017a; Plichta et al., 2012). A negative 

ICC is usually interpreted as a reliability of zero (Bartko, 1976), since the theoretical 

limits of the ICC are 0—1 (negative values can occur when the within-groups 

variance exceeds the between group variance, but are outside the theoretical range 

of the ICC (Lahey et al., 1983)). We also report p-values for all reliable activations, 
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and 95% confidence intervals for all ICCs, obtained from an F-test against the null 

hypothesis. 

6.3.1.3 Exploratory whole-brain analyses 

For each contrast (nback: 3-back>1-back; emotion processing: fearful>neutral; 

happy>neutral), we also conducted an exploratory whole-brain analysis. We 

constructed an independent samples t-test in SPM testing for the effect of group 

(active or sham) on each contrast, and including our outcome measure, percent 

change in HAM-D, as a covariate in the model. We report all whole-brain activations 

associated with response across both groups, and all interactions between group 

and per cent change HAM-D (p<0.001 (uncorrected), minimum cluster size k=4). 

Whole-brain corrected p-values are reported at the cluster and voxel levels. For each 

contrast, we also report small volume corrected (SVC) results within our task-specific 

ROIs.  

6.3.1.4 Power analysis 

In the case of the single-predictor regression models, an N of 33 gave us 84% power 

to detect a large effect size (f) of 0.6 (given an alpha of 0.05, and 2 groups). In the 

case of the sensitivity analyses (multiple regression models), we had 83.7% power to 

detect an effect size of f=0.6 (given an alpha of 0.05, 2 groups, and five covariates 

(ROI, HAM-D, BAI, SHAPS, and n-back d’).  
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6.4 Results 

6.4.1 A priori analysis: left DLPFC  

The single-predictor model including only left DLPFC activation and stimulation 

group was significant overall (F(3,29)=5.32, p=0.005). In the model, greater baseline 

left DLPFC activation significantly predicted greater subsequent percent change in 

HAM-D (F(1,29)=12.77, p=0.001). The interaction between left DLPFC activation and 

stimulation group was also significant (F(1,29)=6.83, p=0.014). Analysing the 

stimulation groups separately, greater activation in the left DLPFC at baseline was 

associated with a significantly larger percent reduction in HAM-D in the active 

stimulation group (r=0.711, p=0.001), but not in the sham stimulation group (r=0.205, 

p=0.482) (see Figure 6.1). 
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Figure 6.1 Association between DLPFC and mood improvement. The relationship between 
baseline left dorsolateral prefrontal cortex (DLPFC) activation and response to intervention, measured 
as percent decrease in Hamilton Depression Rating Scale (HAM-D) score. The interaction between 
left DLPFC activation and stimulation group was significant (F(1,29)=6.83, p=0.014).In the group 
receiving active stimulation (magenta), greater activation in the left DLPFC at baseline was 
associated with a larger percent change in HAM-D (r=0.711, p=0.001); this was not the case in sham 
stimulation group (r=0.205, p=0.482). 

6.4.1.1 Sensitivity analysis: left DLPFC 

We then tested the sentitivity of the left DLPFC model. We first iteratively tested for 

multicollinearity between all independent variables. The variance inflation factor (VIF) 

did not exceed our threshold of 3 (all VIF<1.5). Therefore, the initial sensitivity model 

included all six variables: left DLPFC activation, baseline HAM-D, SHAPS, and BAI 

scores, baseline n-back performance (d’), and stimulation group (dependent 

variable: percent change in HAM-D score), as well as interactions with stimulation 

group. The initial model was significant (F(1,21)=3.46, p=0.007). All variables except 

SHAPS and n-back performance (or their interaction with stimulation group) were at 

least marginally predictive of clinical outcome (p<0.1). Following our backwards 

stepwise elimination procedure, we first eliminated SHAPS from the model. The 

model was still significant (F(9,23)=3.90, p=0.004), but n-back performance still was 
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not a significant predictor (F(1,23)=0.30, p=0.591), nor did its interaction with 

stimulation group predict outcome (F(1,23)=0.18, p=0.673). We next eliminated n-

back performance from the model. The model remained significant overall 

(F(7,25)=5.28, p=0.001), and we lastly eliminated the nonsignificant interaction 

between HAM-D and stimulation group (F(1,25)=0.607, p=0.443) to determine the 

final model, which was significant itself (F(6,26)=6.15, p<0.001), and where all 

remaining baseline variables (or their interactions with stimulation group) were 

significant predictors of clinical outcome. 

In the final sensitivity model, left DLPFC activation remained a significant individual 

predictor of clinical outcome (F(1,26)=29.90, p<0.001); its interaction with stimulation 

group also still significantly predicted outcome (F(1,26)=10.87, p=0.003). Baseline 

HAM-D was also a significant predictor overall (F(1,26)=12.38, p=0.002). BAI was 

only a marginally significant predictor alone (F(1,26)=3.12, p=0.089), but its 

interaction with stimulation group was a significant predictor of clinical outcome 

(F(1,26)=5.38, p=0.029). 

Although baseline HAM-D was a significant positive predictor of HAM-D change in 

the full model (p=0.002), a model including only HAM-D and stimulation group was 

non-significant (F(3,29)=0.23, p=0.877), nor was HAM-D a significant predictor 

independently (F(3,29)=0.578, p=0.453) or interacting with stimulation group 

(F(3,29)=0.193, p=0.664) (see Figure 6.2A) in this model.  

Similarly, higher baseline anxiety (BAI) also did not individually predict percent 

change in HAM-D (with stimulation group as a fixed factor): the full model was not 

significant (F(3,29)=0.21, p=0.888); BAI was not a significant predictor independently 
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(F(1,29)=0.024, p=0.878) or interacting with stimulation group (F(1,29)=0.55, 

p=0.465) in this model, again despite its significant interaction with stimulation group 

in the full model (p=0.029) (note the sign differences in the directions of the non-

significant correlations: active (r=0.153, p=0.533); sham (r=-0.125, p=0.670)) (see 

Figure 6.2B).  

 

 
Figure 6.2 Relationship between baseline mood and improvement. A. Baseline HAM-D score was 
not predictive of subsequent change in HAM-D independently (r=0.127, p=0.480); full left DLPFC 
model: p=0.002). B. In the full model, baseline BAI interacted with stimulation group to predict clinical 
outcome, but was not significant in either group alone. Separately, neither active (r=0.153, p=0.533) 
nor sham (r=-0.125, p=0.670) groups showed a significant relationship with subsequent percent 
change in BAI. 

6.4.1.2 Reliability analysis: left DLPFC 

We also quantified the within-subject reliability of left DLPFC activation. Left DLPFC 

activation showed very good reliability (ICC=0.67, 95%CI=0.33—0.84, p=0.001). 

This was the case in both active (ICC=0.69, 95%CI=0.19—0.88, p=0.009) and sham 

groups (ICC=0.65, 95%CI=-0.08—0.89, p=0.034) (see Figure 6.3A). 
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Figure 6.3 Reliability of DLPFC and amydala activation. Distribution of parameter estimates for the 
left DLPFC (A) and right amygdala (B) on day 1 (pre-intervention) and day 2 (post-intervention). A: in 
the left DLPFC, within-subject reliability was good (ICC=0.67, 95%CI=0.33—0.84, p=0.001) in both 
active (ICC=0.69, 95%CI=0.19—0.88, p=0.009) and sham groups (ICC=0.65, 95%CI=-0.08—0.89, 
p=0.034). B: in the right amygdala, within-subject reliability was very poor (ICC=-1.630, 95%CI=-
4.325– -0.299, p=0.996), in both active (ICC=-1.83, 95%CI=-6.35– -0.09, p=0.984) and sham groups 
(ICC=-1.26, 95%CI=-6.04– -0.27, p=0.923).   

6.4.2 A priori analysis: left amygdala (fearful>neutral contrast) 

In a model containing only left amygdala activation and stimulation group, left 

amygdala activation did not predict percent change HAM-D, either alone 

(F(1,29)=2.30, p=0.140, or interacting with stimulation group (F(1,29)=0.57, 

p=0.457). Therefore, we did not continue with sensitivity or reliability analyses.  

6.4.3 A priori analysis: right amygdala (fearful>neutral contrast) 

In a model containing only right amygdala activation and stimulation group, higher 

baseline left amygdala activation was associated with greater percent reduction in 

HAM-D (F(1,29)=7.69, p=0.010); its interaction with stimulation group was non-

(F(1,29)=0.54, p=0.469) (see Figure 6.4). 
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Figure 6.4 Association between right amygdala activation and mood improvement. The 
relationship between baseline right amygdala activation (to fearful>neutral faces) and response to 
intervention, measured as percent reduction in Hamilton Depression Rating Scale (HAM-D). Right 
amygdala activation at baseline was positively predictive of subsequent per cent change in HAM-D, in 
the full model and individually (r=0.406, p=0.019, collapsing across active (magenta) and sham (cyan) 
conditions). There was no interaction with stimulation group (F(1,29)=0.544, p=0.469). 

6.4.3.1 Sensitivity analysis: right amygdala (fearful>neutral contrast) 

To test the sensitivity of the right amygdala model, we iteratively tested for 

multicollinearity between all independent variables. The variance inflation factor (VIF) 

did not exceed our threshold of 3 (all VIF<1.5). Therefore, the initial model included 

all six variables, as well as interactions with stimulation group. The overall model 

was non-significant (F(11,29)=0.93, p=0.532); therefore, we did not continue with 

backwards elimination. However, in the initial model, right amygdala activation 

remained a significant predictor of outcome (F(1,29)=6.52, p=0.019) (all other 

predictors and their interactions with stimulation group were not, p>0.2).  

6.4.3.2 Reliability analysis: right amygdala (fearful>neutral contrast) 

We next calculated the within-subject reliability of right amygdala activation to fearful 

faces. The right amygdala showed poor reliability between scans: ICC=-1.630, 
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95%CI=-4.325– -0.299, p=0.996. This did not differ between the groups (active: 

ICC=-1.83, 95%CI=-6.35– -0.09, p=0.984. sham: ICC=-1.26, 95%CI=-6.04– -0.27, 

p=0.923) (see Figure 6.3B). 

6.4.4 Right DLPFC model 

In a model containing only right DLPFC activation and stimulation group, right 

DLPFC activation did not predict percent change HAM-D, either alone (F(1,29)=1.05, 

p=0.314), or interacting with stimulation group (F(1,29)=0.46, p=0.503). Therefore, 

we did not continue with sensitivity or reliability analyses.  

6.4.5 Left amygdala model (happy>neutral contrast) 

In a model containing only left amygdala activation (happy>neutral contrast), left 

amygdala activation did not predict percent change HAM-D, either alone 

(F(1,29)=0.18, p=0.676), or interacting with stimulation group (F(1,29)=0.72, 

p=0.405). Therefore, we did not continue with sensitivity or reliability analyses.  

6.4.6 Right amygdala model (happy>neutral contrast) 

In a model containing only right amygdala activation (happy>neutral contrast), right 

amygdala activation did not predict percent change HAM-D, either alone 

(F(1,29)=0.73, p=0.399), or interacting with stimulation group (F(1,29)=0.007, 

p=0.935). Therefore, we did not continue with sensitivity or reliability analyses.  

6.4.7 sgACC model (fearful>neutral contrast) 

In a model containing only sgACC activation (fearful>neutral contrast), sgACC 

activation did not predict percent change HAM-D, either alone (F(1,29)=1.12, 



205 
 

p=0.299), or interacting with stimulation group (F(1,29)=1.62, p=0.214). Therefore, 

we did not continue with sensitivity or reliability analyses.  

6.4.8 sgACC model (happy>neutral contrast) 

In a model containing only sgACC activation (happy>neutral contrast), sgACC 

activation did not predict percent change HAM-D, either alone (F(1,29)=0.52, 

p=0.475), or interacting with stimulation group (F(1,29)=0.60, p=0.444). Therefore, 

we did not continue with sensitivity or reliability analyses.  

6.4.9 Exploratory whole brain analyses: n-back task 

A whole-brain analysis examining potential predictors of response from baseline n-

back task activation (implemented as an independent samples t-test with percent 

change in HAM-D as a covariate) revealed only one cluster significantly associated 

with the degree of response. This was the case collapsing across both groups, and 

examining the interaction with stimulation group, at whole-brain level as well as using 

small-volume correction in the left and right DLPFC (no clusters survived a threshold 

of p<0.001 (uncorrected) after SVC). Activation in the posterior parietal cortex (PPC, 

k=69) was significantly associated with symptom reduction (p=0.027, FWE cluster-

corrected) (see Figure 6.5). See Table 6.1 for full results (p<0.001 (uncorrected), 

minimum cluster size k=4). 
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Figure 6.5 Association between Left PPC and mood improvement. A. Results of whole-brain 
exploratory analysis for regions predictive of outcome in the n-back task (3-back>1-back contrast) 
(p<0.001 uncorrected, minimum cluster size k=4). Crosshairs located at peak voxel in left posterior 
parietal cortex (L PPC). B. Relationship between L PPC activation (eigenvariate of cluster) and 
percent reduction in Hamilton Depression Rating Scale (HAM-D) over the trial (p=0.027, cluster-
corrected) in active (magenta) and sham (cyan) groups.   
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Table 6.1 N-back task: whole-brain correlates of response. Whole-brain correlates of response for 
n-back task (cluster-forming threshold p<0.001, (uncorrected); minimum cluster size=4). R=right; 
L=left; PPC=posterior parietal cortex; SMA=supplementary motor area.  

6.4.10 Exploratory whole brain analyses: emotional faces task (fearful>neutral 

contrast) 

We repeated this exploratory analysis for baseline emotion processing activation, 

using the fearful>neutral faces contrast (whole-brain analysis: independent samples 

t-test with covariate percent change in HAM-D). Here, we found a cluster in the 

rostral PFC and orbitofrontal cortex (OFC) in which stronger activation was 

associated with a greater improvement in HAM-D across both stimulation groups 

(p=0.001, cluster-corrected) (see Figure 6.6). We did not find any other clusters 

positively or negatively associated with the degree of symptom improvement, either 

across both groups, or examining the interaction with stimulation group (sham>active 

and active>sham), at whole-brain level or using small-volume correction in our three 

ROIs (sgACC and amygdalae) (no clusters below p<0.001 (uncorrected) after any of 

Effect (all 
contrasts 3-
back > 1-
back) 

p (cluster-
corrected) Extent 

p (voxel-
corrected) t(29) Z Y Z region 

Response 
(both) 0.118 43 0.143 5.26 6 -22 -4 L thalamus 

 0.074 51 0.451 4.64 -30 14 56 L premotor 

 0.158 38 0.580 4.47 24 20 53 R premotor 

 0.027 69 0.633 4.40 -30 -79 32 L PPC 

 0.132 41 0.755 4.24 -27 -46 41 L parietal 

 
0.791 10 0.814 4.15 -15 -61 26 

L posterior 
cingulate 

 0.912 6 0.847 4.10 -33 -70 -31 L cerebellum  
0.824 9 0.932 3.92 -48 -52 11 L PPC 

 0.957 4 0.962 3.82 18 11 8 R caudate 

Nonresponse 
(both) none        

Sham>active 0.688 13 0.320 4.85 -3 -16 2 L thalamus 

 0.937 5 0.719 4.29 12 -40 -10 R cerebellum 

 0.791 10 0.908 3.98 -27 -19 59 L premotor 

 0.937 5 0.966 3.80 -9 2 47 L SMA 

Active>sham none        
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the SVCs). See Table 6.2 for full results (p<0.001 (uncorrected), minimum cluster 

size k=4).  

 
Figure 6.6 Association between left rostral PFC and mood improvement. A. Results of whole-
brain exploratory analysis for regions predictive of outcome in the emotion processing task 
(fearful>neutral contrast) (p<0.001 uncorrected, minimum cluster size k=4). Crosshairs located at 
peak voxel in left rostral prefrontal cortex (PFC); activation extends into bilateral OFC. B. Relationship 
between left rostral PFC activation (eigenvariate of cluster) and percent reduction in Hamilton 
Depression Rating Scale (HAM-D) over the trial (p=0.001, cluster-corrected) in active (magenta) and 
sham (cyan) groups.  

Table 6.2 Whole-brain correlates of response (fearful>neutral). Whole-brain correlates of 
response for emotion processing task (cluster-forming threshold p<0.001 (uncorrected); minimum 
cluster size=4). R=right; L=left; PFC=prefrontal cortex; VMPFC=ventromedial prefrontal cortex; 
GP=globus pallidus.   

Effect 
(fearful> 
neutral) p (cluster-

corrected) Extent 
p (voxel-
corrected) t(29) Z Y Z region 

Response 
(both) 0.001 121 0.110 5.49 -18 59 -7 L rostral PFC 

 0.966 4 0.932 4.04 -21 -16 -1 L GP 

 0.678 12 0.933 4.04 12 -82 -28 L cerebellum 

 
0.845 8 0.945 4.01 6 -4 -16 

R 
hypothalamus 

 0.915 6 0.982 3.84 27 -61 -37 R cerebellum 

 0.915 6 0.993 3.73 60 -16 -25 R temporal 

Non-
response 
(both)         

Sham>active 
0.882 7 0.383 4.86 6 -25 -10 

R substantia 
nigra  

0.915 6 0.730 4.39 -9 17 11 L caudate 

 0.882 7 0.946 4.00 3 5 8 R thalamus 

 0.678 12 0.994 3.72 6 47 -10 R rostral PFC 

 0.966 4 0.999 3.55 -3 44 -22 L VMPFC 

Active>sham none        
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6.4.11 Exploratory whole brain analyses: emotional faces task (happy>neutral 

contrast) 

We again conducted an exploratory analysis examining potential predictors of 

response (percent change in HAM-D) from the baseline emotion processing scan, 

using the happy>neutral faces contrast (whole-brain analysis: independent samples 

t-test with covariate per cent change in HAM-D). Here, we did not find any significant 

clusters positively or negatively associated with the degree of response, collapsing 

across both groups or examining the interaction with stimulation group, either at 

whole-brain level or using small-volume correction in our three ROIs (sgACC and 

amygdalae: no clusters p<0.001 uncorrected for the any SVC). See Table 6.3 for full 

results (p<0.001, minimum cluster size k=4).  

Effect (all 
contrasts 
happy > 
neutral) 

p (cluster-
corrected) Extent 

p (voxel-
corrected) t(29) X Y Z region 

Response 
(both) 0.526 16 0.872 4.16 -18 5 29 Cingulate gyrus 

 0.882 7 0.954 3.96 6 2 -7 BNST 

Non-
response 
(both) .915 6 0.805 4.27 -24 2 5 L putamen 

Sham>active none        

Active>sham 
0.767 19 0.812 4.26 24 32 -4 

Basal 
operculum 

Table 6.3 Whole-brain correlates of response (happy>neutral). Whole-brain correlates of 
response for the happy>neutral faces contrast in the emotion processing task (cluster-forming 
threshold p<0.001, uncorrected; minimum cluster size=4). BNST=bed nucleus of the stria terminalis.   
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6.5 Discussion 

We conducted an analysis of potential predictors of clinical response to tDCS and 

CBT. We identified an fMRI measurement that specifically predicted response to 

active relative to sham tDCS for depression when combined with CBT: left DLPFC 

activation during working memory processing. We also report three general 

predictors of treatment response in our trial, which potentially indicate likelihood of 

response to CBT irrespective of stimulation: right amygdala activation (in line with 

previous reports (Siegle et al., 2006, 2007a)) and rostral PFC activation, both during 

fearful face processing; and left PPC activation during the n-back task. Left DLPFC 

activation, but not right amygdala activation, showed high within-subject reliability 

between the two scan dates, supporting its potential use as a predictor of treatment 

response.   

6.5.1 The left DLPFC as a predictor of response for antidepressant tDCS 

We predicted a priori that the left DLPFC (for tDCS) and the amygdalae (for CBT in 

general) might be associated with clinical outcome. We revealed a strong positive 

association between greater baseline left DLPFC activation during working memory 

(3-back>1-back contrast) and clinical outcome in the trial (measured as percent 

decrease in HAM-D score). Crucially, in both models (i.e., the single-predictor model 

and the sensitivity analysis), left DLPFC activation interacted with stimulation group, 

indicating differential associations with clinical outcome between the groups. Splitting 

by group, the left DLPFC strongly predicted clinical outcome in the group receiving 

active tDCS; this was not the case in the sham group. Thus, we show specificity for 

this predictor for our combined tDCS/CBT intervention. 
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The left DLPFC finding represents one of the first fMRI ‘biomarkers’ of tDCS 

response (as far as we are aware, the first for depression). It follows more tentative 

recent findings that spectral power in frontal scalp channels can classify clinical 

response to tDCS with above chance accuracy using a machine learning algorithm 

(Al-Kaysi et al., 2017). Additionally, one study has shown clinical response to left 

DLPFC TMS is associated with baseline perfusion in the left DLPFC (Weiduschat & 

Dubin, 2013) (though this finding is not consistent across studies (Kito et al., 2008, 

2012)).  

The DLPFC has rarely been suggested as a predictor of treatment response in 

psychiatry, but our results suggest it may hold particular potential in predicting 

response to neurostimulation to this area in depression, at least in the case of tDCS 

with CBT. One useful feature of activation in DLPFC during n-back performance is its 

relatively strong within-subject reliability, which is an important criterion for a clinically 

useful predictor. This suggests the BOLD response in the left DLPFC during working 

memory processing is more stable than regions such as the sgACC and amygdalae 

during emotion processing, which are often proposed as ‘biomarkers’ but have been 

reported to have very low within-subject reliability (Nord et al., 2017a). This finding 

was replicated in our analyses of the right amygdala in this chapter.  

It may be important that a specific predictor of clinical response to tDCS was found 

during the task performed concurrently with tDCS delivery during the intervention 

(see Chapter 5 for details). The acute effects of tDCS on behaviour are known to be 

dependent on the state of the specific network targeted: theoretically, the electrical 

current causes firing specifically in the neurons closest to depolarization (Tremblay 

et al., 2014). This “state-dependency” of tDCS has been suggested as one factor 
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mediating the inter-individual differences in susceptibility to tDCS effects. It is 

possible that our relatively low level of current (1 mA) was only sufficient to evoke 

clinical changes in patients with already-strong activity in that region during the n-

back task at baseline. Possibly, patients with lower baseline activity may require a 

greater tDCS current to produce an antidepressant effect, though this needs to be 

confirmed in future studies. This could be one explanation for the association 

between greater current levels and antidepressant efficacy reported in a meta-

analysis (Brunoni et al., 2016). Baseline DLPFC activation might index the relative 

sensitivity of the cortex to tDCS, and could in future be used to adjust dose. This 

prospect would be very interesting to investigate in future studies: at the moment, 

rTMS dose for depression is adjusted according to local physiology (i.e., motor 

evoked potentials) (George et al., 2000), yet tDCS dose is usually delivered 

identically across all patients.  

Our sensitivity analyses showed that baseline activation in the left DLPFC predicts 

clinical outcome, even after accounting for other possible predictors. For instance, n-

back performance (d’) was not a significant predictor of response, implying that the 

association between left DLPFC activation and clinical response does not appear to 

be a proxy for a relationship between better working memory and clinical outcome. 

Additionally, the symptom measures associated with clinical response in the left 

DLPFC model (baseline depression and anxiety symptoms) were not associated with 

clinical response when examined independently outside the full regression. 

Therefore, baseline left DLPFC activation seems to provide useful information about 

clinical outcome, over and above other characteristics.   
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6.5.2 The right amygdala as a possible predictor of response to CBT 

Our right amygdala (fearful>neutral contrast) single-predictor model was also 

significantly associated with clinical outcome. In contrast to the left DLPFC, this 

association did not differ between the groups. This suggests that clinical response to 

tDCS is not mediated by baseline activation in the amygdala, but that response to 

CBT may be. This replicates two previous reports that greater baseline amygdala 

activation during negative information processing predicts improvement following a 

course of CBT (Siegle et al., 2006, 2007a). However, our results also replicate 

recent findings that amygdala activation to emotional faces has very poor within-

subject reliability, which would indicate it has less use as a potential predictor of 

treatment response (Nord et al., 2017a). What might explain this discrepancy?  

Our finding of unreliable amygdala activation during fearful face processing could be 

interpreted in several ways. It could simply indicate noise in the region measured, 

the amygdala. Alternatively, amygdala activity itself might be perfectly stable, but our 

measurement tool (fMRI) or its measure (the BOLD response) might not be. In either 

of these cases, the amygdala would show poor within-subject reliability in fMRI 

studies, as we have shown (Nord et al., 2017a). However, if this were the case, one 

would also expect the association between amygdala activation and treatment 

response to show poor replicability. Since our results replicated two previous 

associations between amygdala activation and treatment response (Siegle et al., 

2006, 2007a), this seems somewhat contradictory. For this reason, it is worth 

considering another possible explanation. Potentially, the initial exposure to 

emotional faces evokes specific amygdala activation (e.g., amygdala ‘reactivity’) that 

is not evoked by future runs, but is itself a reliable predictor of treatment-
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responsiveness. If this were the case, separate groups of individuals might all show 

such an association, but the individuals themselves would not necessarily show 

reliable responses when scanned on multiple occasions. If this were the case, we 

would predict that a second run of the task at baseline (which we have previously 

shown is not associated with activation in the first run (Nord et al., 2017a)) would not 

be associated with treatment response, and we would recommend future studies not 

to collapse across two runs to examine associations with clinical outcome variables. 

However, as we only included a single run of emotional face processing in our 

scanning session, we cannot test this proposal. 

6.5.3 Other ROI analyses and exploratory whole-brain results 

The remaining single-predictor ROI analyses did not reveal any other outcome 

predictors: the right DLPFC (to 3-back>1-back), right amygdala (to happy>neutral 

faces), left amygdala (to fearful and happy>neutral faces), and sgACC (to fearful and 

happy>neutral faces) were not associated with clinical outcome. Exploratory whole-

brain analyses for the happy>neutral contrast of the emotion processing task also did 

not show an association between any regions and clinical response, either overall or 

interacting with group.  

However, exporatory whole-brain analysis of the n-back task (3-back>1-back 

contrast) showed a large cluster in the posterior parietal cortex associated with 

symptom reduction across both groups. This suggests patients with greater posterior 

parietal activation during working memory are more responsive to CBT (or perhaps 

to treatment in general). The parietal cortex forms an essential component of the 

verbal working memory network activated in the n-back task in both healthy controls 

and depressed patients (Harvey et al., 2005), including in the present study (Chapter 
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4). Several studies have reported increased parietal cortex metabolism after CBT 

(though both used PET, not fMRI) (Goldapple et al., 2004; Kennedy et al., 2007). 

Given the involvement of the parietal cortex in both working memory and CBT, it is 

plausible that baseline PPC activation could be associated with a patient’s likelihood 

of responding to CBT. However, from our trial design we cannot distinguish between 

predictors of response to CBT specifically and predictors of any other intervention 

(including placebo); therefore, it is possible that PPC activation is also simply a non-

specific predictor of response to treatment in general.  

Another general predictor of treatment response was found in the whole-brain 

analyses of the emotion processing task (fearful>neutral contrast), which showed a 

cluster of activation associated with clinical outcome across both groups in the 

anterior PFC, with the peak in the right rostral PFC, extending into bilateral OFC. 

This suggests that patients with greater activation in this region at baseline are more 

responsive to CBT (or potentially to treatment in general). In a previous study, 

activation in the vmPFC/OFC was associated with greater symptom improvement 

from CBT (however, the contrast used was all pictures (negative, positive, and 

neutral) versus baseline; i.e. this result was not found for negative stimuli 

specifically) (Ritchey et al., 2011). Additionally, a prominent theory suggests the 

rostral PFC functions as a ‘supervisory attentional gateway’, enabling attention to be 

directed toward either external environmental stimuli or internal mental 

representations (Burgess et al., 2007). This function, in combination with the role of 

the OFC in top-down control of negative emotion (Agustín-Pavón et al., 2012) may 

be crucial for successful engagement with CBT. In particular, this might help patients 

learn to disengage from internal ruminative thinking patterns, and re-direct attention 

toward pragmatic (external) goals.  
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6.5.4 Limitations and future directions 

Our results should be interpreted with several caveats. Our findings lead us to 

propose the left DLPFC as a novel predictor of response to tDCS/CBT in depression. 

However, since our trial combined tDCS with CBT for depression and no group 

received tDCS without CBT, it is not clear whether this would generalise to tDCS 

treatment alone. Therefore, future studies should test whether this replicates in a 

sample treated only with tDCS. Additionally, our findings may not extend to tDCS 

interventions with different parameters (including different montages, stimulation 

intensities, and delivery protocols). It also bears mentioning that the association 

between amygdala activation and response to CBT was found only in the right 

amygdala, and that the right amygdala showed very poor within-subject reliability, 

unlike the left DLPFC. On its own, this would not support the amygdala as a potential 

predictor of response to CBT response. However, given this finding replicates 

previous results (Siegle et al., 2006, 2007a), and particularly if it is replicated again in 

future, the amygdala could represent a predictor for CBT response (or possibly 

response generally). Finally, while our sample (N=33) represents one of the larger 

trials of tDCS in depression, it is almost certainly underpowered to detect more 

subtle associations, which might become apparent with a larger sample size. 

6.5.5 Conclusion 

This study begins to clarify the common and distinct mechanisms involved in 

response to interventions in depression. Our results raise the possibility of a novel 

predictor of response to tDCS in depression, left DLPFC activation during working 

memory, which appears to be relatively strong and specific. In the n-back task, we 

also found a relationship between increased baseline left PPC activation and better 
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response to CBT. We also found an association between greater right amygdala 

activation and rostral PFC/OFC activation during fearful face processing and better 

response to CBT, replicating and extending a small number of previous findings 

implicating the amygdala and ventral PFC in CBT (Ritchey et al., 2011; Siegle et al., 

2006, 2007a). More generally, our findings provide evidence that neuroimaging 

techniques can provide valuable information when included in RCTs, not only 

illuminating the neural changes associated with treatments, but also identifying 

measurements that may eventually guide treatment selection in psychiatry.   
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Chapter 7: General discussion 

This general discussion chapter will begin by summarising the experimental findings 

presented in this thesis. It will then integrate the findings of the experimental 

chapters, discussing the possible role of DLPFC dysfunction in depression, and 

whether tDCS targets cold cognitive mechanisms involved in generating depressive 

symptoms, as proposed by the cognitive neuropsychological model. It will also briefly 

discuss the less-clear role (at least in the work presented in this thesis) for hot 

cognitive mechanisms in the effects of DLPFC tDCS. Lastly, it will discuss how (and 

whether) these findings could inform clinical treatment in depression, examine the 

limitations of the studies presented in the thesis, and suggest some techniques to 

refine the approach of DLPFC tDCS clinical trials in the future.  

7.1 Summary of chapters 

Chapter 3  

In Chapter 3, I aimed to test whether anodal tDCS of the DLPFC (the montage used 

in depression trials) acutely modulated a measure of low-level hot cognitive 

processing, facial emotion identification. tDCS did not show an emotion-dependent 

effect on behaviour. Instead, anodal tDCS substantially slowed reaction times across 

all emotions. In a subset of participants, we found that the degree to which 

participants were slowed by tDCS (relative to sham) was related to their distractibility 

during active stimulation. These findings suggest that tDCS does not modulate low-

level hot cognition, unlike many antidepressant drugs, which acutely shift emotion 

identification towards positive emotions (Harmer et al., 2003b, 2009b). Rather, we 
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speculated that tDCS may improve mood via effects on cold cognitive processes 

associated with depression.  

Chapter 4 

tDCS purportedly targets dysfunctional DLPFC activation in depression, but the 

directionality of this dysfunction, and its role in risk and resilience for depression, 

remains unclear. In Chapter 4, I measured the extent and direction of DLPFC 

dysfunction in an fMRI paradigm using the working memory n-back task, comparing 

patients with unipolar depression to matched healthy controls and a group of at-risk 

unaffected first-degree relatives. I also measured sgACC and amygdala activation 

during hot cognitive processing using an incidental emotion processing task. 

Together, these paradigms tested an important prediction of the cognitive 

neuropsychological model: that biased hot cognition confers risk for depression, 

while preserved cold cognitive processing might mitigate this risk.  

I found that depressed patients showed blunted DLPFC responses during working 

memory processing (contrast: 3-back>1-back) compared to healthy controls. In 

contrast, at-risk relatives showed intact DLPFC activation, indistinguishable from 

healthy controls. However, I did not find a complementary pattern in sgACC or 

amygdala response to emotion processing. I found a preliminary relationship 

between amygdala activation during happy (but not fearful) emotion processing and 

DLPFC activation during working memory processing across all three groups: 

individuals with lower DLPFC activation showed higher amygdala activation, 

consistent with the notion that the DLPFC may play a role in downregulating 

amygdala activation in both healthy and depressed states. Thus, the pattern of 

results only partially confirmed our prediction, finding preserved DLPFC activation in 
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at-risk relatives, suggesting that the DLPFC may play a role in promoting resilience 

against risk for depression. However, the idea that this risk is associated with 

amygdala responses to negative stimuli was not supported. This finding could also 

support potentially targeting dysfunctional DLPFC activity in the treatment of 

depression, a notion I tested in Chapter 5.  

Chapter 5 

I conducted a double-blind RCT to test whether tDCS enhanced the effects of CBT 

for depression in Chapter 5. Unmedicated patients with unipolar depression received 

eight weekly sessions of CBT, immediately preceded by 20 minutes of either active 

or sham tDCS. Patients received two fMRI scans, before and after the intervention, 

measuring neural activation during hot and cold cognitive processing. Active tDCS 

did not have a significant effect on response (odds ratio: 2.16, p=0.12) and remission 

(odds ratio: 3.65, p=0.066) rates, compared to sham. There were also no significant 

differences in weekly working memory performance between active and sham 

conditions. There was a substantial increase in DLPFC activation (during working 

memory: 3-back vs 1-back) following the CBT intervention, but this was the case 

across both treatment arms. By contrast, amygdala and left DLPFC activation during 

emotion processing differed between the groups at the end of the trial: both generally 

decreased over the course of the study in patients receiving sham, but not in patients 

receiving active stimulation. These results inform our mechanistic understanding of 

tDCS, but do not support a benefit of active over sham stimulation on depressive 

symptoms. However, this result may be driven by variability in response to both 

tDCS and to psychotherapeutic interventions in general. I tested this notion in 

Chapter 6. 
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Chapter 6 

Chapter 6 investigated whether baseline neural responses could predict clinical 

outcome following the tDCS/CBT intervention. I showed that activation at baseline in 

the left DLPFC specifically predicted mood improvement following active, but not 

sham stimulation. I also found that baseline right amygdala activation during emotion 

processing predicted outcome irrespective of stimulation group. This confirms 

previous reports that baseline amygdala activation could predict general treatment 

response in depression (Siegle et al., 2006, 2007a). Finally, I conducted a whole-

brain exploratory analysis which identified two regions surviving correction for 

multiple comparisons, the left rostral PFC (during emotion processing) and left 

posterior parietal cortex (during working memory); greater activation in both of these 

regions predicted better response to CBT across both stimulation arms. In summary, 

this chapter identified several regions that may be useful in predicting treatment 

response. In particular, the left DLPFC may represent the first putative fMRI 

‘biomarker’ of treatment response to tDCS in depression. 

7.2 Are cold cognitive mechanisms a putative treatment target in 

depression? 

Much of this thesis draws on the hypothesis that cold cognitive deficits and their 

neural correlates are central to the development of depressive symptoms, and that 

targeting these processes might be helpful in the treatment of depression. We 

focused on one such neural correlate of cold cognition in particular: DLPFC 

activation during the n-back working memory task, specifically, how the DLPFC 

contributes to risk for depression (Chapter 4), whether stimulating the DLPFC would 

ameliorate depressive symptoms (Chapter 5), and whether DLPFC activation could 
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predict clinical response (Chapter 6). These predictions were derived in part from the 

cognitive neuropsychological model of depression, in which DLPFC dysfunction is 

proposed to underlie certain symptoms of depression, including diminished cognitive 

control (Roiser and Sahakian, 2013).  

7.2.1 DLPFC in depression: hypo- or hyperactivity? 

There is substantial evidence to support the existence of DLPFC abnormalities in 

depression (Baxter et al., 1989; Bench et al., 1993; Fales et al., 2009; Harvey et al., 

2005; Siegle et al., 2007a). However, it is unclear why functional imaging studies 

during cold cognitive tasks, most commonly the n-back, sometimes report excessive 

activation of the DLPFC in depression (Harvey et al., 2005), while others find lower 

activation, as in our patient group (Chapter 4) and previous reports (Elliott et al., 

1997a). 

Previous studies have explained this discrepancy as an example of imperfect 

matching of behavioural performance between patients and controls. According to 

this explanation, when patients are behaviourally impaired, they will appear 

“hypofrontal”, compared to healthy controls; when patients and controls are 

behaviourally matched, patients will show hyperfrontality (Harvey et al., 2005). This 

is supported by a meta-analysis finding that when behaviour is matched, patients 

show DLPFC hyperactivation during the n-back task (Wang et al., 2015). This 

scenario – when groups are matched for working memory performance – was 

treated as the optimal context to measure group differences in DLPFC activation in 

this meta-analysis. However, it is not clear that ‘behavioural matching’ is truly optimal 

for an fMRI study. If patients are impaired at a particular cognitive function relevant 

to the phenomenology of depression (for example, if they show a ‘catastrophic’ 
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response to perceived failure (Elliott et al., 1997b)), matching the behavioural 

performance of patients with controls before drawing conclusions about the neural 

mechanisms might mask the mechanisms underpinning the very behaviours thought 

to be abnormal in the first place (Murray et al., 2010). Indeed, even if performance 

was matched, most researchers would assume that any neural differences affected 

task-relevant behaviours.  

In our study (Chapter 4), we did not detect a significant main effect of group on 

behavioural performance in the 3-group ANOVA (p=0.149), and so did not perform 

post-hoc analysis. However, patients did perform numerically worse than controls 

(controls: M=2.03 SD=0.93; patients: M=1.56, SD=0.87; Cohen’s d=0.52). However, 

it should be noted that we had limited power (approximately 70%) to detect a 

difference between groups in working memory performance on the order of d~0.6, as 

reported in meta-analyses (Snyder, 2013), which complicates the interpretation of 

this non-significant result. In summary, while our finding of DLPFC hypoactivation 

could fit with the explanation of imperfect group matching on behavioural 

performance, the study was underpowered to support this explanation unequivocally.  

7.2.2 Inverted U-shaped curve hypothesis of DLPFC activity 

A similar association between behavioural performance and the direction of group 

differences appears in the schizophrenia literature (Callicott et al., 2003). In 

schizophrenia, there is evidence that patients with poor n-back performance show 

hypofrontality during the n-back task, but as performance approaches the level of 

healthy controls, hyperfrontality emerges (Manoach, 2003). Callicott and colleagues 

proposed that the relationship between increasing working memory load and DLPFC 

activation followed an inverted U-shaped curve, which is shifted in schizophrenia 
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(Callicott et al., 2003). In this model, very low load working memory tasks are 

insufficient to activate the DLPFC; moderately high load tasks evoke peak DLPFC 

activation; and high load tasks that exceed working memory capacity no longer 

activate the DLPFC. In schizophrenia, the model posits that a shifted inverted U-

shaped curve results in patients appearing hypofrontal under easier working memory 

load conditions, but hypofrontal under more difficult conditions (in other words, 

patients exceed working memory capacity sooner). In a similar manner, such an 

explanation could also account for the discrepancies in group differences in 

depression (see Figure 7.1).  

 

Figure 7.1 Suggested inverted U-shaped relationship between DLPFC activation during n-back 
task and working memory load in depression. Figure adapted from its prosed role in schizophrenia 
(Callicott et al., 2003). This model is characterized by a shifted inverted U-shape load-response curve 
in depressed patients, which accounts for hypofrontality reported in Chapter 4 (and elsewhere) in 
depressed patients (right side of the figure: when working memory load exceeds capacity more in 
patients than controls, the DLPFC appears underactive) and hyperfrontality reported in previous 
studies (left side of the figure: when low working memory load is closer to peak capacity in patients 
than controls).  

In depression, studies with matched behaviour between patients and controls might 

sample from the left side of these inverted U-shaped curves (for instance by using an 

easier task, such as the 2-back), and therefore find DLPFC hyperactivation in 

patients (see Figure 7.1). By contrast, where patients are impaired on the n-back 
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task (or slightly impaired, like ours), group differences in DLPFC activation would 

resemble the right side of the curve (hypofrontality), when working memory has 

exceeded patients’, but not controls’, working memory capacity.  

This might also explain the pattern observed in Chapter 5: post-intervention, patients 

showed increased DLPFC activation in both trial arms, which was statistically 

indistinguishable from the healthy control sample in Chapter 3 (post-intervention 

patients: M=2.24, SD=0.93; controls: M=2.03, SD=0.93). In patients, n-back 

performance improved substantially over the course of the trial. Possibly, repeated 

practice of the task made the difficult 3-back condition easier for patients, such that it 

no longer exceeding working memory capacity (in Figure 7.1, this would be 

equivalent to moving towards the left side of the curve). However, one caveat to this 

explanation is that we did not observe an association between n-back task 

improvement and change in DLPFC activation. One might predict that if we had 

repeatedly tested healthy volunteers on the n-back such that they also showed 

performance improvements, they may have shown decreased DLPFC activation 

after repeated practice, such that patients would then appear hyperactive. This 

hypothesis is consistent with studies showing decreases in DLPFC activation (in 

healthy controls) after practicing a working memory task (Garavan et al., 2000), but it 

remains to be tested in depressed patients.  

The subsequent chapters (5 and 6) explore whether dysfunctional DLPFC activation 

in depression (potentially represented as a shifted inverted U-curve) could be 

targeted directly with tDCS to harness resilience mechanisms and ameliorate 

symptoms.  
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7.3 Does tDCS affect cold cognitive mechanisms? 

Although in Chapter 3 we initially predicted tDCS would produce acute effects on 

low-level hot cognition, we found that tDCS had emotion-independent effects. This 

suggested that tDCS might instead acutely modulate cold cognition. This was 

supported by previous findings that tDCS acutely affected other cold cognitive 

processes, most notably working memory, in both healthy controls and depressed 

patients (Lally et al., 2013; Oliveira et al., 2013). In the context of the cognitive 

neuropsychological model of depression, tDCS is posited to increase cognitive 

control, and by extension engagement with CBT and reality-monitoring in general: its 

hypothesized role is depicted in Figure 2.  

 
Figure 7.2. The cognitive neuropsychological model of depression. Primary hypothesis for the 
role of tDCS on cognitive control indicated with an asterisk (*). Figure adapted from (Roiser et al., 
2012).  
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7.3.1 Null effect of tDCS on behavioural measures of cold cognition 

However, these hypothesized effects of tDCS on cold cognition (working memory) 

were not borne out in Chapter 5: we showed no effect of stimulation group on 

working memory performance over the eight trial sessions. Recent work has also 

failed to show an additive effect of multiple stimulation sessions on n-back 

performance in healthy volunteers (Talsma et al., 2017), consistent with our findings. 

Therefore, the cognitive mechanisms underlying any potential antidepressant effects 

of tDCS cannot be explained by a substantial improvement in cold cognitive function, 

at least not as measured by the n-back. Furthermore, we did not detect a significant 

effect of DLPFC tDCS (plus CBT) on depression symptoms themselves, relative to 

sham stimulation plus CBT (discussed in more detail in section 7.5). It is possible 

that with a larger sample size, we might have had the power to detect an effect on 

depression scores. However, it is unlikely that a lack of power alone can explain our 

null result on n-back working memory performance, particularly because the sham 

tDCS group showed a significantly greater improvement in working memory 

performance measured inside the scanner (from pre- to post-intervention) than the 

active tDCS group.  

There were no group differences in behavioural performance outside the scanner; 

crucially, in the tDCS literature, the in-scanner performance is classified as an 

“offline” tDCS protocol measure (i.e., a measure assessed after, rather than during, 

stimulation), while performance outside the scanner was always measured during 

tDCS delivery (“online”). Within the context of the trial, this result might imply that 

CBT (or simply practice on the task) simply improves n-back task performance, but 

that this improvement is lessened under anodal tDCS. A deleterious effect of anodal 
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tDCS of the DLPFC on offline working memory performance has not been reported 

to our knowledge, but could be a cautionary tale for research on tDCS as a putative 

‘cognitive enhancer’. Interestingly, the possibility that tDCS could exert a deleterious 

effect is not incompatible with our results from Chapter 3, which showed substantially 

slower reaction times to identify emotions under anodal tDCS (however, we also 

found that tDCS improves accuracy on the distraction task, which is more consistent 

with typical ‘enhancement’ reports).  

It bears mentioning that in Chapter 5 we found a large difference between active and 

sham conditions on one adverse effect, trouble concentrating: patients receiving 

sham stimulation reported substantially (~60%) more instances of trouble 

concentrating than those receiving active stimulation (X2=22.26, p<0.001) (this effect 

was in the same direction in Chapter 3). It seems unlikely that this is an adverse 

effect of sham stimulation, which involves very low amounts of stimulation (30 

seconds ramping to 1 mA at the beginning, then no stimulation for the rest of the 20 

minutes). Rather, this could imply that active tDCS improves concentration. This 

certainly fits with studies reporting effects of tDCS on attention, learning, and 

memory (Coffman et al., 2014). However, it does not fit with the lack of effect of 

tDCS on n-back performance in our study. It is possible tDCS improves subjective 

feelings of concentration, even in the absence of behavioural enhacements. Still, our 

results suggest that the effect of tDCS on concentration should be investigated 

explicitly in future, potentially using both a cognitive task that directly measures 

concentration, as well as self-report measures of concentration.    
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7.3.2 Effect of tDCS and CBT on neural measures of cold cognition  

While we did not show specific effects of tDCS on cold cognitive performance or 

related activation in the DLPFC, we did show a general effect of our intervention (or 

practice on the task) on DLPFC activation, irrespective of stimulation group. Thus, 

some aspect of the intervention (or practice on the task) did target DLPFC 

hypoactivation: patients were statistically indistinguishable from healthy controls (and 

first-degree relatives) after the intervention. In addition to practice effects on the n-

back task, which could increase DLPFC activation by decreasing the difficulty of the 

n-back task (i.e., moving left in the direction of peak activation on the inverted U-

curve), CBT itself may also have increased DLPFC activation in both active and 

sham stimulation groups. This would be consistent with the suggestion that CBT 

remediates pre-treatment DLPFC hypoactivation (DeRubeis et al., 2008).   

This finding was qualified by our result from Chapter 6, where we showed that higher 

baseline activation in the left DLPFC pre-intervention specifically predicted response 

to active, but not sham, tDCS. Thus, cold cognitive function (as putatively measured 

by left DLPFC activation during the n-back task) seems to relate specifically to the 

mechanism of tDCS, which broadly supports our conclusions from Chapter 3, and 

perhaps indicates that these patients show a degree of resilience (in-line with 

Chapter 4), but that this resilience was only harnessed through tDCS and CBT in 

combination, not by CBT alone. A caveat to this explanation is that cold cognitive 

function as assessed by the n-back task did not predict clinical outcome (in general, 

or to tDCS specifically). It is possible that this relationship would emerge in a larger 

sample (i.e., the DLPFC-outcome relationship may simply have a larger effect size, 

and therefore be easier to detect in a small sample such as ours). It is also possible 
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that DLPFC activation during the n-back task is reflective of a more general cold 

cognitive capacity than working memory ability per se; other measures of executive 

function (or perhaps a combined measure) may be better predictors of outcome than 

the n-back.   

7.4 Does DLPFC tDCS also affect hot cognitive mechanisms? 

Few previous studies have investigated the effect of DLPFC tDCS on hot cognitive 

processing. Chapter 3 provided strong evidence that tDCS did not modulate emotion 

identification, one important measure of low-level hot cognitive processing. However, 

emotion identification is only one measure of hot cognition, and it is certainly 

possible there are other aspects of hot cognition affected by tDCS. This possibility is 

supported by two previous studies (Ironside et al., 2015; Vanderhasselt et al., 2013); 

in the RCT, we also found tentative evidence for the involvement of hot cognitive 

mechanisms in the neural effects of multiple-session tDCS (Chapter 5).  

7.4.1 Effect of tDCS on behavioural measures of hot cognition  

In Chapter 3, an important limitation of our task was its measurement of purely low-

level hot cognitive processing (i.e., perceptual biases). Although we find evidence 

against acute effects of tDCS on these measures, it is possible that DLPFC tDCS 

has an effect on other measures of hot cognition not measured by this task. In 

support of this, a previous study found tDCS acutely improved inhibition of habitual 

responses to happy compared to sad facial expressions (Vanderhasselt et al., 2013). 

Thus, acute effects of tDCS on hot cognition might be more indirect, and relate to 

higher-level cold cognitive processes such as cognitive control. A second study 

reported that DLPFC tDCS acutely decreased threat vigilance, similar to the effects 
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of anxiolytic drugs (Ironside et al., 2015). Importantly, this study found no effect of 

tDCS on any emotion processing task usually affected by antidepressant medication. 

These results suggest that tDCS may affect top-down cold cognitive mechanisms, 

such as attentional control, with possible indirect effects on hot cognition, but not 

bottom-up hot cognitive processing, which is consistent with the results of Chapter 3.  

Therefore, while our measure of hot cognition was not affected by acute tDCS 

administration, the conclusions of Chapter 3 should be treated with some caution: 

tDCS does not appear to alter low-level hot cognitive processing, but it remains 

possible that it may affect cognitive control over low-level emotional responses. 

7.4.2 Effect of tDCS and CBT on neural measures of hot cognition  

If tDCS has more indirect effects on hot cognitive processing (via cold top-down 

control), this may explain the inconsistency between the results of Chapter 3 (where 

we find no acute effect of tDCS on hot cognition) and Chapter 5, in which we report 

stimulation-dependent effects of the intervention on amygdala activation and DLPFC 

activation during emotion processing.  

In Chapter 5, there was a time-by-condition interaction, such that patients receiving 

sham stimulation showed decreased amygdala activation during emotion processing 

over the course of the study (collapsed across emotion conditions due to non-

significant interactions with emotion). This was abated or mildly increased in patients 

receiving active stimulation. The interaction in the DLPFC (again during emotional 

processing) followed a similar (and clearer) pattern, decreasing from pre- to post-

intervention in the sham group, but increasing in the active stimulation group. This 

could certainly fit with the previous reports that tDCS improves cognitive control over 
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emotional stimuli (Vanderhasselt et al., 2013), although we did not find any emotion-

dependent effects. However, the amygdala results are more surprising: the 

amygdala is typically found to be hyperactive in depression (Hamilton et al., 2012) 

(though not in our sample: see Chapter 4). According to a meta-analysis, amygdala 

activation decreases following a course of antidepressant drugs (Delaveau et al., 

2011), the same direction as patients receiving sham stimulation (plus CBT) in our 

trial. Therefore, it is possible that tDCS operates via somewhat distinct neural 

mechanisms in terms of hot cognition to either CBT or antidepressant drugs (and 

similar mechanisms to CBT in terms of cold cognitive processes, as both increased 

DLPFC activation). However, the lack of difference between the groups in amygdala 

activation at baseline complicates the interpretation of this result. 

Although the neural mechanisms seem to differ between CBT and tDCS in terms of 

hot cognition, mood improvement from both interventions was predictable by 

baseline neural activation during hot cognition. Specifically, baseline amygdala 

activation to happy (but not fearful) faces predicted subsequent treatment response 

across both treatment arms (Chapter 6). This finding partially replicates previous 

work (Siegle et al., 2006, 2007a), suggesting baseline amygdala activation may 

function as a general predictor of treatment response. However, since all patients 

received CBT, it remains to be tested if this would extend to trials using tDCS alone. 

In summary, the effects of tDCS on hot cognition in this thesis are not 

straightforward: on the one hand, the strong evidence for a lack of an effect of tDCS 

on low-level hot cognition is supported by previous work; on the other hand, the 

results of our trial indicate that CBT, but not tDCS, decreases amygdala and DLPFC 
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activation during emotion processing. Additionally, greater amygdala activation to 

positive stimuli predicted mood improvement in both groups.  

In future, it will be important to delineate task-specific differences in hot cognitive 

processing during tDCS. In this thesis, the task in Chapter 3 differed in several 

important ways from the task used in Chapters 4 through 6: the most important of 

these was that it measured explicit (rather than incidental) emotion processing. The 

incidental scanner task (in which participants were required to focus on the gender, 

not the emotion, of the face) may have required a greater degree of top-down control 

to supress emotion-related activation in order to perform the task efficiently. 

Additionally, since only threat vigilance was acutely affected by tDCS in a previous 

study of several emotion-processing tasks (Ironside et al., 2015), it would be useful 

to include this as a measure in future clinical trials, characterising the effects of tDCS 

on threat-related neural activation, and potentially testing whether immediate effects 

of tDCS on threat-related activation could predict subsequent mood improvement 

from tDCS.  

7.5 Implications for clinical treatment and development of interventions 

Having discussed the implications of this thesis for the cognitive and neural 

mechanisms of depression, I will now address its relevance for clinical treatment 

development. First, I will discuss whether this work supports the use of tDCS as an 

augmentative therapy to CBT in depression. Then, I will outline the significance of 

our findings for treatment response prediction in depression, and make suggestions 

for development of novel treatments in psychiatry in general.  
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7.5.1 Should CBT be augmented with tDCS in depression? 

This thesis does not provide strong evidence that tDCS should be used to augment 

CBT for depression. Unfortunately – for the purposes of clarity – it also does not 

provide strong evidence against this prospect. In our trial, patients who received 

active tDCS showed a non-significant improvement in mood (HAM-D) over those 

receiving sham. This lack of effect does not support hypotheses emerging from the 

preceding chapters’ findings: from Chapter 3, the suggestion that tDCS might 

improve cold cognition (which according to the model should have knock-on effects 

on mood, as found in cognitive training studies (Davis et al., 2001; Loewenstein et 

al., 2004; Sitzer et al., 2006)); and from Chapter 4, the hypothesis that increasing 

DLPFC activity with tDCS would increase resilience against depression.  

It is likely the trial was underpowered to detect a clinically relevant effect, as 

discussed in Chapter 5, but it is also possible that the addition of more patients 

would have revealed a clearer null effect. Therefore, it would be premature to draw 

any strong conclusions, despite the odds ratios for response and remission (2.16 

and 3.65, respectively; though note the confidence intervals were very wide: 

95%CI=0.59—7.99, and 95%CI=0.63—20.96, respectively). It might be useful to 

conduct a similar trial using a higher dose of tDCS (for example, 2mA for 20 CBT 

sessions), since previous work suggests higher tDCS doses tend to produce larger 

effect sizes (Brunoni et al., 2016). Alternatively, it may be the case that tDCS is not 

the optimal technique to enhance cold cognition in CBT for depression.  

If tDCS is not the ideal augmentative technique, enhancing CBT by improving cold 

cognition could still prove useful. Both modafinil and erythropoietin could be ideal 

augmentative therapies for CBT, as both improve measures of cold cognition in 
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depression and are associated with few side-effects (DeBattista et al., 2004; 

Miskowiak et al., 2012, 2014). The cognitive neuropsychological model would predict 

that cognitive enhancement would improve patients’ ability to engage with therapy, 

potentially by enhancing cognitive control. Neither has been tested in an RCT with 

CBT, despite evidence that modafinil improves depressive symptoms in depressed 

patients treated with standard antidepressant medications (Goss et al., 2013). 

A second possible avenue for augmenting CBT is another type of brain stimulation: 

rTMS. Practically, tDCS has several advantages over rTMS, most obviously that 

tDCS does not have to be delivered simultaneously, and that tDCS is portable 

enough to transport by hand across several clinics. However, rTMS is a more 

established therapy for depression, with known parameters for delivery, and is 

established as efficacious in many patients (Carpenter et al., 2012; Loo and Mitchell, 

2005). Currently, case reports suggest that it is feasible to perform modified CBT 

while a patient is receiving left DLPFC rTMS (Vedeniapin et al., 2010). Therefore, 

rTMS may prove to be more effective than tDCS for improving CBT for depression.  

In sum, our results are relatively inconclusive on the matter of our primary clinical 

endpoint, whether tDCS augments CBT for depression. However, our trial was small, 

and demonstrated feasibility, as well as uncovering potentially important mechanistic 

differences between the trial arms, most importantly about individual differences in 

response variability.   

7.5.2 Predicting response to CBT and tDCS 

It has been suggested that RCTs, in addition to being the gold standard for 

evaluating treatment efficacy, can also play an essential role in uncovering potential 
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moderators of treatment response (Kraemer et al., 2002). Here, moderators refer to 

a measure taken at baseline (before randomisation) that provides explanatory power 

over individual differences in treatment response. By definition, in an RCT this 

baseline measure is uncorrelated with treatment arm (Kraemer et al., 2002).  

Our findings suggest several potential moderators of treatment response (Chapter 

6). Most notably, working memory-associated activation in our primary a priori ROI – 

the left DLPFC, our stimulation site – showed a specific ability to predict response to 

our combined intervention (active tDCS + CBT), but not the control arm (sham tDCS 

+ CBT). Therefore, the left DLPFC could be an important moderator of treatment 

response. If replicated in larger samples, this could eventually help allocate 

treatment to those patients who might be most responsive (high-DLPFC patients), 

and suggest that other treatment avenues should be pursued in those who might not 

respond (low-DLPFC patients). In addition, it would be important to test whether this 

measurement also predicts response to tDCS alone (in the absence of combinatory 

CBT). 

There is also an alternative interpretation of this result: that baseline activation could 

index the dose of current required to produce a clinical response (not just whether a 

patient would respond or not). A third possible RCT could test this more speculative 

suggestion. In this trial, patients would be randomly assigned to one of two groups: a 

“tailored” condition; or an “average” condition, where all patients would receive the 

same amount of stimulation (as in all tDCS trials to date). In the “tailored” condition, 

patients with relatively high baseline DLPFC activation during working memory (here 

interpreted as those with the most susceptible cortex to stimulation) would be 

allocated 1 mA stimulation, as in our study. Those with lower baseline DLPFC 



237 
 

activation would be allocated a greater amount of stimulation (e.g., 2 mA). Dose 

could also be adjusted with number of sessions, or duration of stimulation. This 

dose-tailoring would be an interesting hypothesis to test, and could eventually inform 

development of a personalized brain stimulation intervention. One might also 

hypothesize that tailoring tDCS dose could reduce the instance of mania following 

tDCS for depression (not reported in any patient we tested, but found in a very small 

number of cases in previous trials of tDCS in depression (Brunoni et al., 2017; Loo et 

al., 2012)).  

7.5.3 Implications for treatment development 

In developing novel interventions in psychiatry, two important considerations have 

emerged from the past several decades of research. First, the consideration of 

mechanism. The serendipitous discovery of many psychiatric drugs meant that any 

mechanistic understanding of treatment long followed the treatment itself. This is 

particularly true of cognitive and systems-level mechanisms, which only emerged in 

in the past fifteen years. The same need not be true in novel treatment development. 

Instead, treatments could be tailored to specifically target a specific neural or 

cognitive mechanism of depression; clinical trials could be designed to measure the 

effect of an intervention on this specific mechanism (in addition to – or in more 

experimental trials, instead of – more traditional subjective clinical measures). In the 

case of our trial, this mechanistic tailoring (focused on the DLPFC and cognitive 

control) was not entirely successful, at least at the group level. Nevertheless, this 

general principle could be particularly useful in developing brain stimulation therapies 

(and, indeed, has informed development of DBS therapy for depression (Mayberg et 

al., 2005)). 
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The second consideration, variability of response, has received substantial attention 

in studies of existing treatments. Despite this, it is exceedingly rare to see variability 

explored at the treatment development stage (in fact, the structure of RCTs typically 

rely on testing effects at the group level, without reference to individual differences). 

Trial designs that incorporate measures of potential sources of response variability 

could lead to more tailored interventions, identifying responders at the early stage of 

treatment development and potentially transforming our understanding of novel 

treatment efficacy (i.e., what works for whom?).    

7.6 Limitations and future directions 

While the experiments discussed clarify the role of tDCS in depression, and test its 

specific use in a clinical trial, there are several important limitations to our findings. 

We discuss general limitations of each chapter, and how they could be improved 

upon in future studies, before discussing the specific limitations associated with our 

tDCS montage that should in future be addressed with current modelling and better 

characterisations of different tDCS montages.  

7.6.1 General limitations 

7.6.1.1 Statistical power 

An influential meta-analysis found that most neuroscience research is severely 

underpowered (Button et al., 2013) (although note we have recently re-analysed this 

data to show that low power is not universal across the field, and varies substantially 

across subfields (Nord et al., 2017c)). We conducted power analyses in all chapters 

to determine sample size. Unfortunately, the issue of power still affected several of 

our analyses: most notably, in Chapter 5, the clinical trial was a proof-of-concept, 
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mechanistic RCT that was not adequately powered to detect smaller effect sizes, as 

seen in more recent tDCS trials in depression (Brunoni et al., 2017) (our secondary 

outcome, change in depression scores, was powered to detect a large effect size 

(d~0.9), in line with earlier tDCS depression trials (Fregni et al., 2006a)). Therefore, 

stronger statements about an augmentative effect (or lack thereof) of tDCS on CBT 

must be predicated on results from a larger trial. Similarly, in Chapter 4, our primary 

analyses (group comparisons) were adequately powered (~80%), but our correlation 

analyses had relatively low power to detect more subtle relationships between 

symptoms and neural activations (for small effect sizes (d~0.3), as reported in a 

previous study of ours (Lawson et al., 2016), we would have required 82 subjects per 

group, which would not have been feasible in the context of recruitment time and 

cost). This may have compromised our ability to detect relationships between 

DLPFC, amygdala, and sgACC activation and specific symptoms. Therefore, while 

we would encourage replication of our results (both negative and positive), the 

majority necessitate larger sample sizes (with the possible exception of our null 

effect of tDCS on emotion identification in Chapter 3, since we had very high power 

(>99%) for that analysis, even using a more conservative effect size than reported in 

a previous study (Ironside et al., 2015)).  

7.6.1.2 Clinical populations 

A second consideration is our selection of the depressed population in Chapters 4-6. 

We included only unmedicated patients, to allow us to make inferences about the 

effect of depression on neural activation (or tDCS on depression) without the 

influence of antidepressant drugs. However, this itself is problematic for two reasons: 

first, depressed patients who have previously tried antidepressant drugs but no 
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longer take medication (~50% of our sample) may be more treatment-resistant than 

those currently taking medication; second, depressed patients who have never taken 

antidepressants (~50%) may also show distinct cognitive profiles compared to 

patients who have taken medication, which in turn could have affected their 

response to tDCS. Perhaps most importantly, in a real-world CBT scenario, many 

patients with severe depression are currently medicated, and tDCS may show 

stronger augmentative effects in these patients than in our sample, a hypothesis 

supported by the additive effect of tDCS and sertraline (Brunoni et al., 2013). 

Additionally, there is notable heterogeneity in our sample: while we excluded patients 

with bipolar depression, our patients presented with psychiatric comorbidities 

including eating disorders (bulimia nervosa, N=2), obsessive-compulsive disorder 

(N=7), GAD (N=25), and psychotic depression (N=1). Although this more accurately 

reflects the makeup of depressed patients in clinic than ‘pure’ depression, it 

nevertheless complicates our results, possibly adding to the mechanistic variability 

within the clinical group (Chapters 4-6) as well as clinical outcomes (Chapters 5 and 

6). This heterogeneity increases the importance of replication of these findings in 

independent samples of depressed patients. 

7.6.1.3 Chapter 3 

Chapter 3 had several specific limitations: most significantly, we tested low-level hot 

cognitive in only one task (an emotion recognition task). Future studies should test a 

more comprehensive battery of emotion processing tasks (as well as cold cognitive 

paradigms), as in previous work (Ironside et al., 2015). Additionally, this was our only 

chapter without a patient group: the acute effect of tDCS might differ crucially in 
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currently-depressed patients, and may not necessarily affect healthy controls in the 

same manner.  

There are additional controls that we optimally would have tested for in this chapter, 

as suggested by a previous commentary (Walsh, 2013). These include a control 

brain region (for example, placing the anode on the primary visual cortex), a control 

task, and multiple stimulation sessions. These would aid in understanding the 

specificity of cognitive effects of tDCS, and should be incorporated into future studies 

to better characterise the effects of tDCS on hot and cold cognition.  

7.6.1.4 Chapter 4 

An important limitation of Chapter 4 was our use of an incidental emotion processing 

task to measure the neural correlates of hot cognition. This may have contributed to 

our failure to find an effect of group on the emotion processing task. Using a different 

task— for example, an emotion identification task— may have yielded different 

results; differences in neural activation during emotion processing is a well-replicated 

feature of depression (e.g. (Groenewold et al., 2013), and there is some evidence 

that these differences extend to at-risk populations (Monk et al., 2008). It is also 

possible that our failure to find group differences was an effect of low power, or that it 

was influenced by factors related to low within-subject reliability of amygdala and 

sgACC activation to emotion processing (Nord et al., 2017a).  

7.6.1.5 Chapter 5 

Chapter 5 suffered from a number of limitations. Our aim to test the feasibility of 

tDCS as an augmentative treatment to CBT on the NHS led to issues inherent with 

trials that add on to existing treatment schedules. Patients’ and therapists’ schedules 
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frequently required that weekly sessions were missed, resulting in total durations 

longer than the 8 weeks initially planned. It is possible that sessions closer together 

would have resulted in more effective tDCS dosing. Future trials should test the 

effect of session timing: in fact, an optimal design might deliver multiple sessions per 

week, as adhered to in trials testing tDCS alone or in combination with SSRIs 

(Brunoni et al., 2013, 2017; Fregni et al., 2006a; Loo et al., 2012).  

We also observed asymmetric attrition between real and sham groups (5 patients 

receiving sham stimulation dropped out of the trial, whereas only 1 patient receiving 

active stimulation dropped out). This is difficult to anticipate (and a good argument 

for conducting intention-to-treat analyses, as we did). However, our fMRI analyses 

could only by design include patients who completed the trial; therefore, there is a 

possible confounding effect of this differential dropout on some of the fMRI results, in 

particular those seen on the faces>fixation task in Chapter 5. Although the difference 

in attrition was non-significant, our study was underpowered to detect this, and future 

trials should take this possible pattern into consideration.  

7.6.1.6 Chapter 6 

The most important limitation of Chapter 6 is that the ability of baseline DLPFC 

activation to predict specific response to tDCS has never been reported before; 

therefore, it is by nature preliminary and must be replicated. In such a replication, it 

would also be important to establish whether this putative ‘biomarker’ predicted 

response to tDCS alone (and/or in combination with medication), as our trial only 

tested tDCS in combination with CBT.  
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There were also a number of limitations of our tDCS montage specifically, which 

affected the results of Chapters 3, 5, and 6. We discuss these below, as well as their 

implications for future research.  

7.6.2 Limitations of our tDCS montage 

When designing our RCT, at the time, the existing experimental methods for DLPFC 

tDCS were relatively limited. Studies typically employed two large (35 cm2) 

electrodes, placing the anodal electrode over the DLPFC and the cathodal 

elsewhere (subraorbital ridge; the right DLPFC; or extra-encephalically). With this 

montage, the distribution of tDCS current is relatively diffuse, and therefore electrode 

placement is somewhat rudimentary (typically, as in our studies, using the 10-20 

EEG system, in comparison to MRI-guided TMS coil placement). Since starting the 

RCT, the field of experimental tDCS has progressed substantially: today, software 

exists to simulate current distributions to determine optimal electrode locations, and 

has been employed in some experimental work (Hämmerer et al., 2016). No trial in 

depression has yet employed this technique, though the most recent trial used a 

previously-simulated current distribution study to select the optimal electrode 

placement technique (Brunoni et al., 2017) (however, only bifrontal montages were 

compared in the previous simulations, and current distributions were also shown to 

be highly affected by head size (Seibt et al., 2015): see Figure 7.3). Additionally, a 

much larger number of montages are now available, including high-density 

montages that claim to target particular regions with much greater specificity (Nikolin 

et al., 2015).  
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Figure 7.3. Example of current distribution modelling. This figure compares four localization 
methods (clockwise from upper left: “F3-F4”; “Beam-F3 system”; “OLE-System”; “5-5cm-Rule” on an 
MNI standard head; similar figures were produced for small, medium, and large-sized heads. For 
each methods, the authors display the resulting electric field distribution on the cortical surface 
following 2 mA, injected from the anode (red) to the cathode (blue) electrode. Figure reproduced from 
Seibt et al. (2015).   

7.6.3 Refining future tDCS montages 

In future trials, use of current simulations could prove highly useful in targeting the 

left DLPFC: individual patient parameters could optimize electrode montage, 

including electrode placement (for both anode and cathode) and size. Current 

Figure removed for copyright reasons. See original publication (Seibt 

et al. (2015)).   
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simulations could also inform studies that compare the differing effects of montages. 

At the moment, it is unclear whether results from one RCT extend to RCTs 

employing a different montage. As yet, no study has compared the effect of different 

DLPFC tDCS montages on depression, which could contribute to substantial 

between-trial variability. Testing this in combination with current simulations could 

lend mechanistic insight into the advantages and disadvantages of different DLPFC 

tDCS montages for depression: for example, does the cathodal targeting of the right 

DLPFC in bifrontal montages hinder or help symptom improvement in depression? 

Arguably, the true potential efficacy of tDCS in any RCT (including ours) cannot be 

uncovered until the optimal delivery parameters have been established. Rigorous 

trials that employ techniques from advanced tDCS experimental work, such as 

current simulations, will be crucial to reveal the relationship between specific tDCS 

parameters and clinical efficacy.   

7.7 Summary and general conclusion 

In this thesis, I have explored the role of the DLPFC in depression, and whether 

DLPFC tDCS targets DLPFC dysfunction as a putative intervention for depression. 

Several of the studies were the first or one of the first of their kind (Chapter 3, 

Chapters 5 and 6): therefore these findings should be interpreted with caution before 

replication. Nevertheless, we observed strong evidence that tDCS did not evoke low-

level changes in hot cognition, which seems compatible with the small number of 

previous studies on this topic (Ironside et al., 2015; Vanderhasselt et al., 2013), and 

may indicate a distinct mechanism from that of antidepressant medication. Our 

results in Chapter 4 found profound hypoactivation in the DLPFC in depression 

during working memory, compared to controls. These results support only a subset 
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of the literature on DLPFC abnormalities in depression. Many studies instead report 

DLPFC hyperactivation (Wang et al., 2015); as discussed, a shifted inverted U-

shaped curve may account for both of these findings. We also find preserved DLPFC 

activation in first-degree relatives during working memory, potentially reflecting a 

neural mechanism of resilience, which could be directly targeted in depressed 

patients. We tested this in an RCT in Chapter 5, where we did not find that tDCS 

significantly enhances CBT in depression, and therefore cannot conclude that it 

should be used as an adjunct therapy in this context. However, we did establish the 

feasibility of applying this technique, as well as its safety and acceptability to 

patients. The results of Chapter 5 were qualified by the analyses in Chapter 6, which 

found baseline DLPFC activation predicted clinical outcome specifically to the tDCS 

intervention: if replicated, this could represent the first fMRI ‘biomarker’ for tDCS.  

7.7.1 Conclusion 

At the turn of the millennium, it was suggested that one of the central questions 

psychiatry must begin to address is: how do our treatments, including 

psychotherapy, work? (Hyman, 2000). This question motivated much of the work 

presented here. This thesis attempted to develop a mechanistic framework for 

testing and using tDCS in the context of depression. Unfortunately, testing the utility 

of tDCS in clinic is severely handicapped by variability across the field in methods 

and montage – an enormous challenge not solved by this thesis. In spite of this 

limitation, this thesis provides justification for the testing of more targeted tDCS 

interventions in future trials, with the tentative suggestion that patients suitable for 

tDCS might eventually be identified according to baseline DLPFC activation, a 
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prospect that (if true) would be extremely useful in the development and refinement 

of tDCS for depression.   

The pathophysiology of most mental illness is still, regrettably, unknown. This 

hinders development of potential interventions, and obscures our understanding of 

treatment mechanisms. It also makes it all the more essential that treatment 

development be coupled with mechanistic insight into the possible mediators and 

moderators of treatment response. This thesis suggests that the techniques of 

cognitive neuroscience are particularly well-placed to shed light on the mechanisms 

of established and novel treatments in psychiatry. Perhaps the strongest 

recommendation emerging from this work is the utility of neuroimaging and cognitive 

paradigms in the context of an RCT, including for psychotherapeutic interventions. 

Too often, treatment development is segregated in psychiatry according to 

explanatory model: psychological models of mental illness inform psychotherapy 

RCTs; biological models inform RCTs of novel medications. This approach stymies 

treatment innovation. Psychological, brain circuit and cellular models of mental 

illness can all inform putative treatments, but frameworks that integrate insights from 

multiple levels could help develop radical new approaches to intervention, potentially 

transforming our ability to treat mental illness.  
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