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Abstract

The financial markets have changed radically since the startof the 2007 credit crisis. Fol-

lowing the bankruptcies of large financial institutions as well as bailouts of multiple banks

and asset management institutions like Bear Sterns, LehmanBrothers, and AIG, the market

participants recognised the serious credit and liquidity risks present in the widely traded

interest rate derivatives. The effect of rising credit and liquidity risks was observed by the

spike in the spreads between nearly risk-free OIS rates usedfor collateral and risky un-

secured LIBOR loan rates. Most of the classical interest rate models used by mentioned

market participants relied on the assumption that there exists a risk-free and unique LIBOR

lending rate, which is no longer true. This has opened new ground for complex, hybrid

models for interest rate derivatives.

This PhD thesis presents my work on developing novel interest rate models which are

mathematically and historically sound and can be used for pricing interest rate derivatives

including stochastic basis spreads between unsecured LIBOR and OIS rates. This work is

split into two problems: first we analyse the discrepancies between forward-LIBOR lending

rates and their classic replication strategy with spot-LIBOR rates. For this problem, we

propose an extension of a known LIBOR Panel Model, which enables us to jointly model

OIS and spot- and forward-LIBOR rates with an error within the quoted bid-ask spreads.

The second part of this thesis looks into the problem of pricing non-linear derivatives

like caps linked to rates on multiple LIBOR tenors. We propose a novel hybrid credit-

interest rate model, which allows to jointly model OIS and multi-tenor LIBOR rates and to

price multi-tenor caps. The proposed hybrid short-rate model is intuitive, semi-analytically

tractable and can be calibrated using liquid, available market data. We compare the market

data fit with a benchmark model using fixed LIBOR-OIS spread assumption. The last

chapter shows the impact of this model on credit value adjustments for interest rate trades.
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Nomenclature

Symbol Description

E(·) Expectation operator.

EQ Expectation operator with respect to probability measureQ.

EQT Expectation operator with respect to OIS-T Forward measure.

r(t) Instantaneous short-term interest rate at timet.

bp Basis point, equal to0.01%, used for small interest rate measurement.

B(t) Money-savings account at timet.

t Calendar time.

T Maturity time (final trading date).

τ Tenor (difference between rate fixing and payout dates).

K Strike price.

P (t, T ) Zero-coupon bond paying1 at timeT , priced at timet.

FM(t, T, S) A market forward rate between timeT andS, valued at timet.

R(t, T , N,K) A market swap rate valued at timet with coupon scheduleT , notionalN

and strikeK.

CDS Credit default swap. A contract exchanging fixed fee for protection against

a default of some company or government entity.

DTCC Depository trust and clearing corporation. It is a global repository that

records all the details of CDS trades in the global markets.

LIBOR The London interbank offer rate. Rate at which large banks are willing to

lend to other premium banks in unsecured fashion.

EURIBOR The Euro interbank offer rate. Similar to LIBOR, butset by a larger Euro-

pean panel of banks.



EONIA Euro over-night index average. An effective overnight interest rate com-

puted as a weighted average of all over-night unsecured lending transactions

in the market.

OIS Overnight indexed swap. A swap that is indexed to daily values of either

EONIA or FED funds rates. The swap exchanges a fixed interest rate versus

the dynamic daily index.

LOIS LIBOR-OIS spread.

CSA Collateral support annex. A document specifying how twocounterparties

will post collateral for the underlying contract.

CVA Counterparty valuation adjustment.

DVA Debt value adjustment.

FRA A forward rate agreement.

IRS Interest rate swap, a contract usually swapping fixed interest rate for floating

LIBOR-linked payments.

Swaption An option allowing the bearer to enter into and IRS at the expiry of the

option.

Bootstrapping Refers to a method for constructing a yield curve from the prices of coupon-

bearing products, e.g. bonds or swaps.

HW Hull-White model.

DD Displaced-diffusion model.

HW1F One factor Hull-White model.

HW2F Two factor Hull-White model.

CIR Cox-Ingersoll-Ross model.

HCIR Hybrid Hull-White and Cox-Ingersoll-Ross model introduced in this thesis.

LMM LIBOR market model.

GBM Geometric Brownian motion.

PDF Probability density function.

CDF Cumulative density function.

VaR Value at risk. A commonly used measure of risk.

SDE Stochastic differential equation.

ZCB Zero coupon bond.
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Chapter 1

Introduction: Basis Risk

1.1 Introduction

At the core of modern financial markets there are four main traded asset classes:

• equity (stocks),

• debt (bonds, loans),

• commodities (oil, gas),

• and foreign exchange.

The debt markets are probably the most diverse regarding complexity and structure of the

products traded. These can be split into more fine-grained categories, such as:

1. retail lending,

2. commercial and governmental debt (usually in the form of bonds),

3. structured products (asset-backed securities),

4. and interest rate derivatives ( swaps, caps, etc.).

The main interest of this thesis is looking into how the aboveinstruments are priced. To

issue the most elementary loan for some fixed period, the issuer (e.g. a bank) needs to set

the effective interest rate for this loan. In a classic textbook approach, one would take the

so-called “risk-free” rate and add an estimated credit and liquidity premium to it, obtaining

the final interest rate of the loan.

In practice, the risk-free rate does not exist. However, there are liquid assets and

contracts which are nearly risk-free and are excellent proxies of the real riskless interest

rate. The classic examples of close-to-riskless rates are given by the US Treasury bonds

and notes, OIS (overnight indexed swap) rates and up until the credit crisis of 2007-2008,



the LIBOR and EURIBOR rates.

The risk-less rate is the most important concept in modern finance. It is used at the

very core of finance, discounting (potential) future cash flows to obtain their present value.

The modern financial pricing theory relies on having a unique, risk-free rate as it is used in

the pricing of bonds, equity forwards, derivatives (options), futures, etc.

The most commonly used risk-free rate proxies were LIBOR andEuribor rates. They

are publicly quoted indices. LIBOR, for example, is the “London Inter-Bank Offer Rate”.

It is computed as a trimmed average of quotes submitted by a panel of banks. Each of these

banks must quote the borrowing rate at which a prime London bank can get an unsecured

short-term loan. The LIBOR rate is used as a benchmark for interbank borrowing and

pricing various derivatives.

Before the 2007-08 credit crisis, market participants assumed the LIBOR-based lend-

ing to be risk-free. This led to widespread use of few fundamental relations between risk-

free loans, which were not entirely true. One of them, which we shall discuss extensively

in this thesis is the ability to replicate a future-dated loan with two other loans starting

immediately. The replication strategy is very simple:

1. A forward-loan is issued starting from timeT to timeS at a forward-LIBOR rate.

2. To finance the loan, we borrow at the LIBOR rate forS years,

3. The money is lent out for the firstT years as we don’t need it until then.

The above strategy works if we can borrow at the LIBOR rate andalso if there is no credit-

liquidity risk in either of related parties or embedded in the LIBOR rates themselves. If any

of our assumptions does not hold, we may get a gap in the replication strategy, often named

“a basis”, which is one of the few problems that broke the standard financial models during

and after the credit crunch.

1.2 Problem Statement

Basis risk and stochastic basis modelling have become an important subject in mathemat-

ical finance since the beginning of the credit crisis in 2007.Standard textbooks refer to

basis spreads when describing the spread between the pricesor levels of two nearly identi-

cal assets, e.g. they refer to the same cash flows in the future, or they are highly correlated

(Gupta, 2005). Basis risk comes into place when this spread is non-deterministic and hedg-
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ing movements of one asset, using another, can result in a loss. There are multiple classical

examples of basis risk, such as the difference between an index and its future contract.

A modern and highly relevant example of a basis spread is the gap between OIS and

the LIBOR rates, otherwise known as the LIBOR-OIS spread. The larger of the two rates

is the LIBOR. LIBOR refers to unsecured short-to-mid term lending rates between panels

of banks. These rates were conventionally thought to be risk-free and were nearly identi-

cal to the OIS rates, which refer to a stream of overnight loans that can be interrupted if

there are any concerns about credit risk or liquidity. Theserates started diverging since the

beginning of the credit crisis in September 2007, as market participants realised that LI-

BOR contracts carry significant counterparty credit risk, as opposed to still nearly risk-free

OIS rates (Bianchetti, 2012). This was followed up by a sharp decrease in LIBOR lending,

which further increased the LIBOR-OIS spread.

Now, LIBOR-based lending is negligible, as the market movedto collateralized, OIS-

based, lending, but LIBOR reference rates are still used in various long-term interest rate

swaps, caps and other derivatives. To avoid potentially massive losses, every interest rates

derivatives trading desk must have a consistent pricing andhedging model for LIBOR-

based derivatives. Additionally, every risk-management desk must have a model to assess

the Value-At-Risk of their LIBOR-linked portfolios as wellas their credit risk and CVA

charges as these are required by the regulatory authoritiesafter passing the Basel III reg-

ulations (BIS, 2010). An important additional requirement by BIS is to account for the

wrong-way risk in the CVA for the interest rate portfolios. This wrong-way risk is observed

as a correlation between interest rates and a higher probability of counterparty default,

which would lead to increased losses in case of defaults.

1.3 Research Questions

At the moment, there is no market-wide consensus about whichmodels to use in pricing

and risk management of interest rates with stochastic basis. Lack of consensus yields many

problems in determining the present value of future cash flows, the risk that the trades carry

and more. Disagreements on the latter can lead to a lack of trading with certain counter-

parties, even lawsuits regarding existing contracts if they involve clauses, like collateral

margins, as parties may not agree on how much collateral mustbe posted.
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While multiple models have been proposed, we have identifiedtwo subject areas in

the literature that were not well explored. First, there aremultiple works with econometric

analysis on the LIBOR-OIS basis spreads, but very few try to incorporate these econometric

facts into derivatives pricing models. Additionally, manyof the new proposed models are

over-parametrised versions of classical models which are hard to calibrate and interpret. We

reviewed multiple interest rate models and their extensions to the multi-curve derivatives

pricing setting in detail in Chapter2.2.

In this thesis, we will propose solutions to two main objectives of post-crisis interest

rate modelling:

1. First, we investigate whether we can jointly model risk-free OIS rates together with

directly observable spot-LIBOR rates and forward-LIBOR rates, visible via traded

derivative contracts.

2. Then, we look into joint modeling of the forward-LIBOR rates, which now depend

on the LIBOR-tenor. We investigate whether we can design a model which would

allow pricing volatility-dependent derivatives like capsand floors consistently in the

multi-curve setting?

Secondary objectives of this thesis are to find out if:

• Is it possible to include historically observed stylistic facts about the risk-free, LIBOR

rates as well as credit and liquidity impact on them?

• Can we design the models to be analytically or semi-analytically tractable and easy

to calibrate to liquid, available market data?

• How do the proposed models compare to benchmarks, if any?

• Can they be used for CVA assessment and what is the impact?

1.4 Contributions

In this thesis we have made a number of contributions:

• In-depth analysis of the LIBOR panel model on different datasets and discussion of

its limitations.

• Introduction of the implied-volatility framework for the panel podel, which yields

a brand new look at the data. Using global optimisation techniques for the implied

volatilities we were able to find the best possible fit of the panel model when re-
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pricing liquidly traded market FRAs.

• Extension of the LIBOR panel model using uncertain volatility parameters. The

resulting model allows for re-pricing of market data withinbid-ask spreads. The

follow-up parameter study of the extended model shows how one can identify major

events of the credit crisis simply from the dynamics of implied volatility parameters.

(Quantitative Methods in Finance, 2013.)

• Definition of a novel hybrid short rate model, mixing two well-known Hull-White and

CIR short-rate models. This model, by construction, allowscalibrating to single-tenor

interest rate options and re-pricing illiquid multi-tenoroptions by using information

from basis spreads. We derive analytical and semi-analytical pricing formulas for

bond and options pricing (presented inSavickas(2015) ).

• Analysis of market data fit of our model and comparison with available benchmark

models.

• Guide for pricing counterparty valuation adjustments withthe hybrid model and the

inclusion of wrong-way risk. The latter analysis includes comparison with a chosen

benchmark model.

1.5 Thesis Structure

We start this thesis by introducing the basic formulas for pricing interest rate derivatives in

Chapter2. In Chapter2.2we discuss the related articles and approaches for modelling basis

spreads in the literature and introduce the most known stochastic basis models in section

2.3. In Chapter3 we will provide an in-depth study of a LIBOR panel model. We show the

mechanics and the assumptions of the model, analyse its limits and propose an extension to

achieve a possible fit to market data with errors close to the bid-ask spread. We conclude

this chapter with an intermediate summary of achievements and a discussion of the panel

model limitations. Chapter4 discusses a novel hybrid short-rate model, which can be cali-

brated to liquid market data, like swaps and single tenor caps and then used to price illiquid

off-market caps and supply missing volatility informationfor risk management measures

like CVA. In this chapter, we demonstrate the semi-analyticcalibration techniques for the

model as well as pricing formulas for interest rate derivatives and benchmark the model

performance against a popular displaced diffusion-type model. The following Chapter5 is
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a study of the application of the latter model to credit valuation adjustments. We analyse

the model performance in CVA assessment in multiple scenarios and compare it to a bench-

mark model. Finally, general conclusions of this work are made in Chapter6 along with a

description of ways to take this work forward in the future.
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Chapter 2

Background

In this chapter, we give the basic definitions of interest rates and interest rate derivatives

and introduce the notation and terminology which will be used throughout this thesis.

2.1 Definitions

2.1.1 Fundamental Theorem of Asset Pricing

The concept of no-arbitrage says, in principle, that it is impossible to make money out of

nothing. Therefore, to make a return larger than some risk-free rate, one has to take on

some risk.

This concept will be used throughout this thesis, as we will price derivatives under the

so-called ‘risk-neutral’ measure. It stems from the fundamental theorem of asset pricing.

It states that a bounded processS = (St)0≥t≥T admits no-arbitrage if and only if there

is a probability measureQ equivalent toP (real measure) such thatS is a martingale un-

derQ . For more details about arbitrage-free pricing, we refer the reader to the book by

Brigo and Mercurio(2006). The definitions and models in this thesis were constructedwith

the arbitrage-free assumption in mind.



2.1.2 Interest Rates and Discount Factors

The most important quantities that we will consider in this thesis are the discounting factors

and zero-coupon bonds. In the following we give the textbook(Brigo and Mercurio, 2006),

definitions of the most important concepts, such as different types of interest rates, like the

collateral rates, interbank rates and government rates, which shall be used throughout this

work.

Definition 2.1 (Bank Account). We defineB(t) to the value of a bank account at time

t ≥ 0. We shall assume thatB(0) = 1 and that it evolves according to the differential

equation

dB(t) = r(t)B(t)dt, B(0) = 1, (2.1)

wherer(t) is a function of time. The solution toB(t) is

B(t) = exp





t
∫

0

r(s)ds



 . (2.2)

The rater(s) is also called the short rate. It is an instantaneous interest rate valid in

the period(s, s+ ds), whereds in an infinitesimally small increment.

Definition 2.2 (Stochastic Discount Factor). The (stochastic) discount factorD(t, T ) be-

tween timest andT , t ≤ T is the amount we need to invest at timet to obtain exactly one

unit of the currency at timeT . The discount factor is given by

D(t, T ) =
B(t)

B(T )
= exp



−
T
∫

t

r(s)ds



 . (2.3)

Here the timeT is in the future, hence if the short-rater(s) is stochastic the discount

factorD(t, T ) is as well.

Definition 2.3 (Discount Bond or Zero-Coupon Bond (ZCB)). A zero-coupon bond (or

pure discount bond) is a contract that pays one unit of currency at maturity timeT with

no intermediate coupon payments. The value of a ZCB (relatedto the short rater) at time

t < T is obtained under risk-neutral numeraireQ as

P (t, T ) = EQ [D(t, T )] = EQ



exp



−
t
∫

0

r(s)ds







 . (2.4)
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If the short rate processr(s) is deterministic, thenP (t, T ) = D(t, T ), otherwise the

P (t, T ) is the expectation of the stochastic discount factor (w.r.t. risk-neutral measureQ)

and theD(t, T ) is a random variable depending on the future evolution of theshort rate.

The discount factors are usually derived from the LIBOR and Euribor rates, or the

collateral rates.

Definition 2.4 (Collateralized Zero-Coupon Bond). A collateralized zero-coupon bond

is nearly equivalent to a ZCB, but here the interest rate matches the collateral rate and this

bond is secured from default risk by collateral. The collateralized zero-coupon bond price

can be calculated as

Pc(t, T ) = EQ [Dc(t, T )] = EQ



exp



−
T
∫

t

c(s)ds







 . (2.5)

In this dissertation, we will mostly refer to this as the discounting factor, or the OIS

discounting factor if we have in mind the collateral ratec(s). It is market-wide practice do

pay EONIA or OIS rate for posted collateral. Hence, the collateralized discount rate and

OIS-discount rate coincide.

Definition 2.5 (OIS T-Forward Pricing Measure). We define a new measure, the

OIS T-Forward pricing measureQc,T by means of a Radon-Nikodym derivative

(Brigo and Mercurio, 2006):

dQc,T

dQ
|t :=

Et[Dc(0, T )]

Pc(0, T )
=
Dc(0, t)Pc(t, T )

Pc(0, T )
, (2.6)

which is aQ-martingale and we use it normalized, e.g.

∀T dQc,T

dQ
|0 = 1. (2.7)

Definition 2.6 (Year Fraction, Day-Count Convention). We denote byτ(t, T ) the chosen

time measure betweent andT . Since most of the interest rates are publicly reported in

an annualised form,τ(t, T ) will be equal to the distance betweent andT in years. There

are many day-count conventions that can be used, but in this thesis, we choose Actual/365,

where the year is 365 days long and the year fraction between the two dates is the actual

number of days between them divided by 365.
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Definition 2.7 (Simply-Compounded Spot Interest Rate). The simply-compounded spot

interest rate at timet with maturityT is denoted by L(t,T) and is the constant rate at which

P (t, T ) units of currency have to be invested at timet to produce one unit of currency at

maturity. Its relation with the discount bonds can be expressed as

L(t, T ) =
1− P (t, T )

τ(t, T )P (t, T )
. (2.8)

The market quoted LIBOR, EURIBOR and collateral rates are simply-compounded

rates. Using the latter definition we can express the zero-coupon bond price as

P (t, T ) =
1

1 + L(t, T )τ(t, T )
. (2.9)

Definition 2.8 (Annually-Compounded Spot Interest Rate). The annually-compounding

spot interest rate at timet with maturityT is denoted byY (t, T ) and is the constant interest

rate at which one must investP (t, T ) units of currency at timet, reinvest the obtained

amounts once a year and finally obtain unit at timeT

Y (t, T ) =
1

[P (t, T )]1/τ(t,T )
− 1, (2.10)

P (t, T ) =
1

(1 + Y (t, T ))τ(t,T )
. (2.11)

Definition 2.9 (Continuously-Compounded Spot Interest Rate). The continuously com-

pounding spot interest rate at timet for the maturityT is denoted

R(t, T ) = − lnP (t, T )

τ(t, T )
. (2.12)

R(t, T ) is the constant rate at which continuously reinvestingP (t, T ) units of some

currency yields a return of one unit at maturity timeT . In particular

P (t, T )eR(t,T )τ(t,T ) = 1, (2.13)

P (t, T ) = e−R(t,T )τ(t,T ). (2.14)

Definition 2.10 (Yield Curve). The yield curve is the graph of the function

T →











L(t, T ), t < T ≤ t+ 1

Y (t, T ), T > t+ 1

(2.15)
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The yield-curve is often referred to when talking about the term-structure of interest

rates at timet. Up to one year from valuation datet, this is equal to the simply compounded

rate, but after one year this becomes an annually compoundedrate. A flat yield curve would

show that the interest rates for an investment of any maturity is the same. This is usually

not the case and the yield curve shows this so-called term-structure, as illustrated in Figure

2.1.
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Figure 2.1: Yield curve representing the interest rate derived from the EUR OIS (EONIA)
swaps. Data taken from Reuters, 2009-01-26.

Definition 2.11(Forward Rates). The simply-compounded forward interest rate measured

at timet, expiring at timeT > t and maturing atS > T is denoted byF (t;T, S) and defined

by

F (t;T, S) =
1

τ(T, S)

(

P (t, T )

P (t, S)
− 1

)

. (2.16)

The forward rate gives the borrowing cost or the lending ratefor a loan starting at

future timeT and maturing atS, but measured at current timet.

2.1.3 Linear Interest Rate Derivatives

The first class of interest rate derivatives that we will use extensively throughout the thesis

is the linear derivatives. The value of these contracts depends linearly on the reference
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interest rates.

Definition 2.12 ( Forward Rate Agreement ). A forward rate agreement (FRA) is a con-

tract where one party agrees to pay floating (LIBOR, EURIBOR)rate in exchange for a

fixed rateK payment for the same period in the future[T, S]. The market price of this

contractFM is the discounted expected payoff under the risk-neutral measure, in formulas:

FM(t, T, S,N,K) = Nτ(T, S)EQ[D(t, S)(K − L(T, S))], (2.17)

whereN is the notional of the contract,D(t, S) is the discounting factor (can be based

on LIBOR or collateral rates) andL(T, S) is the simply-compounded LIBOR rate, fixed at

future timeT and maturing at timeS. Since we do not know the future LIBOR fixing, the

value of a FRA is an expectation under risk-neutral measure.

Definition 2.13 ( Interest Rate Swap (IRS)). Interest rate swap valued at timet, starting

at timeT0 and maturing at timeTM is a contract specifying a series of exchanges of fixed

and floating cashflows an a set of pre-determined datesT ={T1, ..., TM}. Just like a FRA

2.12, the floating side of the cashflows is usually indexed with LIBOR or EURIBOR interest

rates, but the fixed rateK is fixed at timet and remains the same until maturity of the swap.

In formulas:

R(t, T , N,K) =
M
∑

i=1

FM(t, Ti−1, Ti, N,K). (2.18)

In the market the FRAs and IRS’s are quoted using fair rates. Afair rate is such a

fixed rateK, which renders the value of the contract zero. It is convenient to look at fair

swap rates, because these are independent on the notional ofthe contract. A FRA contract

becomes zero if we set the fixed rate to be the expected LIBOR rateK = EQ[L(T, S)].

The fair rate of an interest rate swap (or the par rate) is be computed as:

ST (t) =

M
∑

i=1

τ(Ti−1, Ti)E
Q[D(t, Ti)(L(Ti−1, Ti))]

M
∑

i=1

τ(Ti−1, Ti)EQ[D(t, Ti)]

. (2.19)
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Definition 2.14 ( Overnight Indexed Swap (OIS)). An overnight indexed swap is a con-

tract which exchanges the fixed coupon against the daily-compounded overnight (ON) lend-

ing rate once every year until maturityTN . The overnight rates are currency dependent,

i.e. Euro has the EONIA rate, US dollar has the Fed funds effective rate and GBP has the

SONIA rate. The (fair) OIS rate is determined as

SN =
Pc(t, T0)− Pc(t, TN )

N
∑

i=1

δiPc(t, Ti)

, (2.20)

whereδi is the year fraction between timesTi−1 andTi.

This swap rate is quoted in the market for different maturitiesTN . One can use the

OIS swaps to determine the collateralized zero-coupon-bond pricesPc (2.5). This is why

the discount curves based on the collateral (instead of risk-free) rate are often called “OIS

discount curves”.

Definition 2.15(Basis Swap or Tenor Swap). A basis swap is a contract where two parties

exchange floating payments, but indexed to different reference interest rates. One of the

parties also pays a ‘basis spread’ to compensate for the expected differences in the interest

rate levels. A basis swap is priced by finding suchbN that the following holds:

N
∑

n=1

τn(E
Q[L(Tn−1, Tn) + bN )D(t, Tn)] =

M
∑

m=1

τm(E
Q[L(Tm−1, Tm))D(t, Tm)], (2.21)

whereτn andτm indicate different year fractions.

Common basis swap example is the exchange floating 3-month and 6-month LIBOR

payments within same currency, e.g. EUR.

2.1.4 Non-Linear Interest Rate Derivatives

Another class of interest rate derivatives are the non-linear contracts. The payoff and value

of these contracts do depend non-linearly on the underlyinginterest rates. While there

is a large variety of non-linear derivatives in general, we will only consider the vanilla

derivatives: caps and floors in this thesis.

Most of the standard models for valuing the non-linear derivatives include the use of

geometric Brownian motion:
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Definition 2.16(Geometric Brownian Motion (GBM) ). A geometric Brownian motion is

a continuous-time stochastic process satisfying the following stochastic differential equa-

tion (SDE):

dS(t) = µS(t)dt+ σS(t)dW (t). (2.22)

Given initial valueS0, the GBM SDE has an analytic solution:

S(t) = S0 exp

((

µ− σ2

2

)

t+ σW (t)

)

. (2.23)

The latter solution is a log-normally distributed random variable with:

E[S(t)] = S0e
µt (2.24)

V[S(t)] = S2
0e

2µt
(

eσ
2t − 1

)

. (2.25)

The GBM is used in quantitative finance to price derivatives using the Black-Scholes model.

Definition 2.17 (Black-Scholes Equation). Let S be the current level of an interest rate.

Then, we can determine the price of a European call option under the Black-Scholes model

CBS with strikeK, annualized drift rateµ, σ - the volatility of the rate andT - the time to

expiry of the option with the following formula:

CBS(S,K, σ, µ, T ) = N (d1)S −N (d2)Ke
−µT , (2.26)

d1 =
1

σ
√
T

[

ln

(

S

K
+ (µ+

σ2

2
)T

)]

, (2.27)

d2 = d1 − σ
√
T , (2.28)

with N being the cumulative normal distribution function.

Definition 2.18 (Bachelier Normal-Volatility Option Price ). The Bachelier model as-

sumes standard (non-geometric) Brownian motion as the driver of the underlying rates.

dS = µdt+ σdWt, (2.29)

which implies that the rateS(t) is normally distributed with meanµ(t) and volatilityσ2.

Like in Black-Scholes framework with GBM driver for the rates we can price an European
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call option with maturityT , discounting rater and strikeK (Dawson et al., 2007) as:

C = e−rTN (d)

(

S + σ
√
T
N (d)

N ′(d)
−K

)

, (2.30)

d =
S −K

σ
√

(T )
, (2.31)

whereN is the cumulative distribution function andN ′ is the density function of the normal

distribution.

Definition 2.19(Caps and Floors). A cap is a contract similar to a payer IRS, but here the

payment is made only if its value is positive. The discountedpayoff of a cap can be written

as:

N

M
∑

i=1

EQ
[

D(t, Ti)(Ti − Ti−1)(L(Ti−1, Ti)−K)+
]

, (2.32)

whereL(Ti−1, Ti) is the LIBOR fixing andK is pre-arranged fixed rate (strike). A floor is

an inversely constructed contract on a receiver IRS:

N

M
∑

i=1

EQ
[

D(t, Ti)(Ti − Ti−1)(K − L(Ti−1, Ti))
+
]

. (2.33)

In this thesis, we will be also pricing caplets and floorlets.The latter names refer to

single-piece caps and floors withM = 1.

Definition 2.20(Swaption). A swaption is an option to engage in an interest rate swap. An

European payer swaption gives the holder the right (not an obligation) to enter into payer

IRS at the time of expiry of the swaption. The European swaption value can be computed

as follows:

EQ
[

D(t, T1)(R(t, T , N,K))+
]

= EQ

[

D(t, T1)

(

M
∑

i=1

(L(Ti−1, Ti)−K)

)]

, (2.34)

whereK is the swaption strike andT1 is the expiry. The receiver swaption, equivalently,

gives holder the right to enter a receiver IRS at the time of expiry.

2.1.5 Risk Management Measures

In the last chapter of this thesis, we will assess the model impact on risk-management

measures. The primary measure of interest we want to test is the credit value adjustment
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which estimates the expected loss of the underlying contract due to a potential default of

the counterparty.

Definition 2.21 (Credit Value Adjustment (CVA) ). Credit value adjustment is the differ-

ence between a risk-free portfolio valueP and a portfolio including the risk of a counter-

party default. Unilateral CVA is given by risk-neutral expectation of the discounted losses

on the portfolio exposed to counterparty default risk.

CVA= (1−R)

∫ T

t

EQ
[

D(t, s)(P (s))+dλ(s)
]

, (2.35)

whereR is the portfolio fraction available for recovery andλ(s) is the instantaneous prob-

ability of counterparty default.

The recovery fractionR is commonly assumed as constant, even though there is some

research done on stochastic recovery, as shown byKitwiwattanachai(2012). The default

processλ(s) can be either treated as a deterministic, time-dependent function or a separate

stochastic process. In this thesis, we shall look into both setups of the hazard rate: when

it is deterministic and when stochastic, driven by a uniformly distributed random variable

with some given mean.

In post-crisis banking, CVA is used as an additional charge for over-the-counter trans-

actions, which do not get cleared via an exchange and do not have collateral posted to

counteract the effects of counterparty default.

2.2 Literature Overview

In this section, we review the recent literature on the stochastic interest rate spreads. We

introduce the two basis spreads that we have analysed in thisthesis. Then, we discuss the

empirical studies of the stochastic basis spreads and theirimplications and review the ex-

isting stochastic models for interest rates that incorporate the stochastic basis spreads. The

third part of the literature review is split into two parts: the first one discusses the post-crisis

changes in the interest rate modelling environment and how the pre-crisis standard inter-

est rate models were adapted, and in the second part we present new non-standard models

which have particularly interesting properties for derivatives pricing and risk measurement.
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2.2.1 Basis Spreads

In this thesis, we are focusing on two connected aspects of the stochastic basis problem.

The first one is the already-mentioned LIBOR-OIS spread, yielding the difference between

collateral (secured lending) and unsecured LIBOR lending rates. This spread is funda-

mentally linked to credit and liquidity risks in the inter-bank lending system. The second

interest rate spread that we will discuss and later analyse in depth is the LIBOR-FRA gap.

In the following, we briefly introduce the background behindboth of them.

LIBOR-OIS Basis

LIBOR refers to “London interbank offer rate”. It represents the rate at which large,

LIBOR-panel, banks give unsecured loans. Before the 2007-2008 crisis, LIBOR loans

were treated as risk-free. Since there was plenty of lendingand borrowing in the system,

there was hardly any concern regarding the liquidity of the banks (Bianchetti, 2012).

Since the credit crisis, the market participants have realised that banks can default and

that liquid, unsecured lending can dry out. The impact of credit and liquidity risks can be

observed in the LIBOR-OIS spread. OIS swaps are indexed to the overnight lending rates

and are a good proxy of the interest rate one can earn by lending day-by-day overnight.

Such style of lending minimises both default and liquidity risk and, currently, is the closest

proxy to the real risk-free rate (Bianchetti, 2012). Figure2.2 shows the historical LIBOR

and OIS rates from 2007 to 2014 as well as the LIBOR-OIS spread. This demonstrates that

the gap between 3-months LIBOR rates and OIS rates has widened significantly since the

2008 crisis started.

Our interest in LIBOR-OIS basis sparks not only because thisspread is a good indi-

cator of credit and liquidity risk in the financial markets, but also because the OIS rates are

now used nearly in all derivatives trades as the discountingrates. Because of this, it is cru-

cial to understand the relationship between LIBOR and OIS, and how to price derivatives

when using LIBOR as the reference rate and the OIS as the discounting rate.

LIBOR-FRA Basis

A related basis spread is the LIBOR-FRA basis. In short, a FRAcontract on 3-month

LIBOR lets you exchange the future time-T 3-month LIBOR rate with a rateK fixed at the

inception of the contract.
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Before the credit crisis, one could replicate, or perfectlystructure a mimicking payoff

of the FRA rates using the spot-LIBOR ratesL(t, T ) as:

FM(t, T, S) =
1

(S − T )

(

1 + S · L(t, S)
1 + T · L(t, T ) − 1

)

. (2.36)

In practice replication of aFM(t, T, S) could be done by:

1. Borrowing money at LIBOR rateL(t, S) until timeS.

2. Lend the same amount atL(t, T ) until timeT < S.

This replication was fundamentally important for the hedging strategies of market FRA,

IRS contracts and even more complicated derivative products like caps, floors and swap-

tions.

The FRA rate and its standard replication rate used to be identical, as they both re-

ferred to the same unsecured loans, but since September 2007this is no longer true. Due to

increased credit risk, the banks stopped lending under unsecured terms, and all borrowing is

done on collateral basis making FRA replication in practiceis a difficult task, as unsecured

borrowing at LIBOR rates is no longer a common practice. Additionally, the FRA con-

tracts are collateralized which makes them nearly credit-risk free, yielding a fundamental

difference between FRA and its spot-LIBOR replica. Nevertheless, the FRA payouts are

still indexed to the daily-published, unsecured LIBOR rates. Therefore FRA and LIBOR

values are fundamentally connected.

Figure2.3 shows the market-traded FRA’s and synthetic forwards from spot LIBOR

and OIS curves. We can observe that the OIS-forward rates arethe lowest as the rates are

nearly riskless. Then we have the market FRAs, which are collateralized, but still LIBOR-

linked. Finally, spot-LIBOR forward rate carries the largest risk premium as this type of

loan does not offer any default protection.

Discussion

As a result of the aforementioned basis spreads nearly all market participants have moved

to the so-called multi-curve pricing framework (Mercurio, 2009). All future cash flows are

discounted with OIS rates, if the derivative is collateralized, or using the Bank’s internal

unsecured funding curve. Then, the LIBOR-linked cash flows (FRAs and IRS) are indexed

to tenor-dependent LIBOR curves. These are bootstrapped from corresponding (6-month
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Figure 2.2: Comparison of historical 3-month LIBOR, 3-month OIS rates and the size
of LIBOR-OIS spread. The LIBOR-OIS spread was negligible, few basis points, before
September 2007, but increased dramatically up to 200 bp and remained stochastic and
volatile throughout the full period of our analysis. Data from Reuters Eikon.

and 3-month LIBOR) IRS, FRA and even Futures contract rates.Constructing a consistent

set of interest rates for every tenor as well as assessing thevolatility of each rate has many

issues. Not all-tenor swaps are liquidly traded, and the prices of non-liquid swaps are

‘synthetically’ obtained using basis swaps with payments of a different tenor. Cap and floor

pricing is also complicated as volatility data is only available for one or two tenors (e.g.

3 and 6-months) and strikes. We have included flow-charts of before/after-crisis pricing

frameworks in AppendixB.

In the end, this affects risk-management measures, like CVA, as to compute the risk

profile of every swap, one needs to know the volatility of underlying rates, which are of-

ten not available. Therefore we seek to investigate severalinterest-rate models that jointly

reprice the market FRA’s, IRS’s and caps. Additionally, we look for models that explicitly

model the stochastic basis in a historically-sound way. Last, we are looking for models

that can relate the stochastic basis to the liquidity and credit risk. Empirical evidence sug-

gests that the latter are closely connected (Filipovic and Trolle, 2013) which has adamant
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Figure 2.3: Comparison of 3-month LIBOR, 3-month OIS and market-traded 3-month for-
wards with forward-starting times from 1-month till 9-months. Forward rates were obtained
using standard replication of LIBOR Rates, OIS Rates and FRArates were taken directly
from the market. Data from Reuters Eikon, 2009-01-26.

implications for credit risk assessments and CVA charges.

2.2.2 Empirical Review of Stochastic Basis Spreads

Before looking for a suitable model for the basis spreads, itis important to understand their

structure and potential drivers. Several studies were donein this area, most with overlapping

results and running into the same problems.

For example, Filipovic analysed the historical term-structures of the USD and EUR

LIBOR-OIS spreads (Filipović et al., 2012). Their in-depth study reveals that there is a

distinct term-structure in the LIBOR-OIS spreads with the spread or ‘interbank risk’ in-

creasing with maturity. In this study, they have constructed a credit proxy from LIBOR

panel CDS spreads and a liquidity proxy from the average daily trading volume as reported

by the DTCC . Using the latter proxies they decomposed the LIBOR-OIS spread into credit

and non-credit components. This decomposition showed thatthe short-end of the spread

term structure is driven by liquidity (non-credit) risk andthe long end is driven by the credit

risk. The constructed CDS proxy was also used as the explanatory variable for the credit
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component of the LIBOR-OIS spread, and the remaining factorwas called non-credit, as

only 53% and 65% of (USD and EUR markets respectively) could be explained by their

liquidity proxy.

A similar empirical study on the 3-Month USD LIBOR-OIS spread was published by

Poskitt and Waller(2011). The LIBOR-OIS spread was decomposed into credit and non-

credit parts using JP Morgan CDS index as the credit proxy. The authors emphasised on

the problem of finding a good proxy for liquidity and constructed several proxies from

off-shore USD money markets, which only partially explained the non-credit part of the

LIBOR-OIS spread. Nevertheless, this study showed that thecredit impact is smaller than

the non-credit (liquidity) on the LIBOR-OIS spread. It alsoconfirmed that finding a reliable

proxy for liquidity is a difficult task as there is no traded asset class related to the liquidity

of the lending markets.

Michaud and Upper(2008), Heider et al.(2009), Eisenschmidt and Tapking(2009)

identify several causes of the LIBOR-OIS spread, in particular, the roles of credit and liq-

uidity factors. When finding explanatory data sets becomes very difficult, the next step is

attempting to construct a logically and mathematically sound non-linear model to explain

the LIBOR-OIS disparity. An innovative idea was demonstrated byCrépey and Douady

(2012). The authors showed an economically-sound model, where the size of the LIBOR-

OIS spread is be influenced by the trading dynamics of overnight and long-term unsecured

funding. The proposed model assumes that the rise of collateralization and the use of OIS-

type lending since the start of the credit crisis impacted the LIBOR-OIS spread. The pro-

posed equilibrium model for OIS and LIBOR lending, which yields a tractable solution for

the LIBOR-OIS spread:

L(T )− OIS(T ) = α + β
√
T (2.37)

whereα is the interbank credit skew andβ stands for liquidity cost of capital. The au-

thors have performed an empirical analysis of this model, bylooking into the differences

in LIBOR-OIS spreads in different tenors (3-month, 6-month, 9-month LIBOR curves and

OIS). It shows that after fitting the model to market data for every tenor the resulting credit

component is shared between all tenors, but liquidity parameters are different. Nevertheless,

the size of liquidity components forms a clear structure, where liquidity components for

longer tenors (6,9 months) are larger than for short tenors (3 months). Therefore this con-
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firms that the mathematically and empirically sound model for LIBOR-OIS spread should

be based on credit and liquidity effects and also demonstrates that every tenor loan carries

an individual level of liquidity risk, forming a term-structure.

A recent study byCui et al.(2016) looked into the drivers of LIBOR-OIS spreads in

five major currencies (USD,EUR,GBP,CHF and JPY). This studyprovided evidence that

systemic risk, market volatility, liquidity and counterparty risk were the primary drivers

of the LIBOR-OIS spreads during the crisis. What is more, it showed that the relevance

of these determinants was not constant and changed in different periods of the crisis, and

few other factors, such as secondary market liquidity and banks risk tolerance levels were

significant drivers of the USD spreads.

While various works discuss the existence and empirical facts of the LIBOR-OIS

spread, very few look into the follow-up problem of forward LIBOR and FRA basis spread.

A very important study was done byMorini (2009). The author examined the discrepancies

between the standard LIBOR replication of a forward and the market-quoted forward rates.

In particular, this paper analysed the spreads between different tenor forward LIBOR curves

(obtained from market FRA contracts). One of the main contributions in the paper is proof

that the spreads between FRA contract rates can be perfectlyreplicated using traded basis

swap contracts. Additionally, he introduced a stochastic model based on LIBOR panel dy-

namics. Using this model he showed that the gap between standard FRA replication (2.16)

and market FRA quotes could be bridged using iTraxx CDS indexat-the-money options

volatility, covering above≈ 85% of the gap. The author concluded that this replication

model can still be improved by adding liquidity next to credit as an influencing factor.

2.2.3 Derivatives Pricing with Stochastic Basis

To mitigate the rising credit risk, CSA agreements became widely adopted between large

market participants. CSA, as expected, did reduce the counterparty-related credit and liq-

uidity risk involved in financial contracts. Unfortunately, this did not affect the default and

liquidity risk component implicitly carried by the LIBOR rate. Inherently, the interest rate

swaps under CSA agreements are still not counterparty risk-free. This can be observed in

the market-quoted basis swap (2.21) spreads, which are both collateralized and far from

zero at the same time (Bianchetti, 2012).
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As a result of widespread CSA agreements, modern-derivatives pricing works in a so-

called “multi-curve framework” (Kenyon, 2010). The discount curves must be computed

using the OIS curve or the bank’s internal funding curve, depending if there is a CSA

agreement between the two counterparties. Then, the FRA rates with different tenors must

be computed from multiple tenor-dependent yield curves. Moreover, if the derivative in

question is non-linear, e.g. caplet or swaption - tenor and maturity dependent volatilities

are needed for their pricing. For more information on the move from single-curve to the

multi-curve framework, we have included flow-carts in the AppendixB.

The latter move from single-curve to multi-curve pricing framework and added com-

plexity comes at a high cost as it requires highly heterogeneous market data, which might

be illiquid or even absent. Additionally, the involvement of multiple curves in the valuation

exposes simple swap portfolios to multiple delta sensitivities (multiple basis risks), making

the hedging of plain, vanilla derivatives a complex task.

Modelling the Basis with Pre-Crisis Models

Since the LIBOR rates and the discounting (OIS) rates becameseparated, the classical

interest rate derivatives pricing framework with a single curve was no longer valid, as the

risk-free discounting curve no longer matched the LIBOR-payout curve. Several studies

were published on the topic of the two-curve and multi-curvepricing framework. The vast

majority of the proposed models were standard interest ratemodels adapted to the multi-

curve environment, often under the assumptions of LIBOR-OIS independence.

The early works concentrated on pricing derivatives in a two-curve framework, one

curve for discounting and one curve for the forward rates, treating the two curves as en-

tirely independent of each other. One of the first studies introducing a two-curve pricing

framework was done byChibane and Sheldon(2009). The paper outlined pricing formulas

and a full calibration procedure for consistent construction of the discounting and forward

curves in a multi-currency setting using linear interest rate derivatives, like interest rate

swaps, basis swaps and cross-currency swaps. Several more elaborate works on the pric-

ing of more non-linear derivatives in the two-curve framework were done byMercurio

(2009). He obtained arbitrage-free pricing of the forward rate agreements and interest rate

swaps in a two-curve environment matching previous works. Moreover, he showed that the
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classic Black’s formula for option pricing can be extended to price caplets and swaptions

in the two-curve environment under log-normal models for FRA and swap rate evolutions

(Brigo and Mercurio, 2006). Another contribution of this work was the derivation of Black-

like caplet and swaption pricing formulas under extended LIBOR market model (LMM),

where he modelled the spot LIBOR and FRA rates separately foreach tenor. The drawback

of this model is that we have to solve a system of 15 or more SDEs, which is a significant

computational burden.

In 2010 few more elaborate models were proposed for derivatives pricing, including

models with term-structure and volatility smile.Pallavicini and Tarenghi(2010) discussed

the market evidence that led to the market-wide switch to themulti-curve pricing of interest

rate derivatives. They also define a Heath, Jarrow, Merton (HJM) model framework based

on multi-curve approach presenting a bootstrap algorithm to strip curves off the IRS and

FRA data. Following that, they showed how to price more complicated derivatives like the

Constant-Maturity-Swaps (CMS) and CMS spread options using their model.

A follow-up work by Moreni and Pallavicini(2014) discusses extending the HJM frame-

work and analytical swaption pricing in multi-curve framework using an approximated for-

mula. Work also includes calibration examples to real market data and comparison with

few other benchmark models for swaptions pricing. An extensive analysis and impact as-

sessment of using this HJM framework for pricing derivatives, CVA with wrong-way risk

as well as gap risk was recently accomplished byBormetti et al.(2015).

A more recent work byMercurio (2010) on the two-curve pricing problem looked into

explicitly modelling the spread between the OIS discounting curve and the FRA rates for

each tenor. The LIBOR rate was decomposed into OIS rate and basis so that the stochas-

tic basis spread could be viewed as a factor driving the evolution of the forward LIBOR

rates. In this framework, the FRA and IRS pricing formulas remained unchanged, but the

Caplet formula became more involved. The author also investigated in detail the Stochastic-

Alpha-Beta-Rho (SABR) stochastic volatility extension for the basis spread and derived and

a semi-analytic solution for pricing of caplets.

The most recent works on the topic of modelling LIBOR-OIS spreads includes an

introduction of a multiple curve framework with affine LIBORmodels (Grbac et al., 2015),

which allows for semi-analytic pricing of caps, swaptions and basis swaptions, when the
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rates are positive and hints towards a model extension for negative rates as well. Another

recent article byHull and White(2016) shows how to jointly model LIBOR and OIS rates

using a three-dimensional tree. The latter work shows how well-established techniques can

be extended to the new multi-curve framework and shows how tovalue spread options and

Bermudan swaptions.

Advanced Models for Stochastic Basis

Several later mathematical works explicitly address the post-crisis interest rate modelling

problems other than the existence of the LIBOR-OIS spread and multi-curve framework.

We find these works exceptionally interesting and useful in modern derivatives pricing and

CVA calculation.

We have already discussed the work ofMorini (2009) in the section2.2.2together with

empirical analysis papers. The LIBOR panel model is one of the models we shall pursue

to extend as it allows for joint pricing of spot-LIBOR, OIS and FRA rates and yields an

explicit link with credit risk in the market. The original the panel model and its extension

are explored in detail in Chapter3.

A Levy-process based model for default-free OIS rates and ‘defaultable’ LIBOR rates

was demonstrated byCrepey et al.(2013). The authors showed calibration and fit results for

the model when pricing FRA, IRS and even non-linear derivatives as caps and swaptions. In

their framework, the authors demonstrated the ability of the model to reproduce the market

FRA rate levels during the peak of the credit crisis. Moreover, as this was a follow up of

their earlier works, they extended their framework for credit valuation adjustment pricing

as their original model already included default componentin the LIBOR rates.

A more recent work byLi and Mercurio(2016) looks into modelling the LIBOR-OIS basis

as a simple Poisson jump process with applications to gap risk and CVA pricing.

Another post-crisis problem, which was not well explored isthe pricing of non-

standard tenor options, like caps and swaptions. The most liquid USD and EUR caps are

based on, respectively, 3-month and 6-month LIBOR rates. Because of the switch to the

multi-curve framework, to price an illiquid cap on a 9-monthLIBOR rate one needs a 9-

month LIBOR volatility rate, which can no longer be directlyimplied from 3 or 6-month

Caps. This problem of extrapolating caplet and swaption volatilities to non-standard tenors,
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given quotes for standard tenors, was revisited byKienitz (2013). The author proposed an

arbitrage-free model with displaced diffusion for the forward rates and standard lognormal

diffusion for the OIS rates. With this setup, the author showed how to calibrate the model

to given ATM caplets and extrapolate the obtained volatilities to a different tenor. What

is more, he showed that it is possible to fit a stochastic alpha-beta-rho (SABR) model to a

single-tenor volatility curve and shift the volatilities to another tenor while preserving the

same SABR volatility smile.

A more recent work byMorino and Ruggaldier(2014) discussed a low-parameter short

rate setup for two-curve modelling with an affine three-factor model. The authors presented

a clean-valuation framework for FRAs and caps (linear and non-linear derivatives) with the

main goal of their model exhibiting an adjustment factor when passing from the single-

curve to two-curve setting. We believe that their additive short-rate factor construction

framework can be extended to solve multi-curve derivative pricing problems, like pricing

of illiquid-tenor caps as well as price CVA on illiquid-tenor FRA and IRS contracts. We

shall discuss our proposed mixed short-rate model in Chapter 4.

Few novel articles discuss issues with multi-curve modelling and stochastic basis that

go beyond this thesis. The topics include pricing of cross-currency trades with multiple cur-

rency collateral available (Moreni and Pallavicini, 2015), which adds additional complex-

ity levels for consistently bootstrapping the interest rate curves from OIS (and equivalent)

rates, single currency swaps, basis swaps, and cross-currency basis swaps. Furthermore,

Brigo and Pallavicini(2013) look into other details affecting multi-curve pricing of trades,

including collateral, clearing, funding, netting, re-hypothecation and closeout issues.

2.3 Basis Spread Models

In this section, we introduce the core models used for derivatives pricing with stochastic

basis, as discussed in recent literature. Our goal is to familiarise the reader with the different

model constructions and features as well as with the immediate results of these models,

such as pricing simple derivatives like the IRS, caps and swaptions analytically. Moreover,

we discuss the ease of obtaining risk-measurements like VaRand CVA when using these

models.
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2.3.1 Short Rate Models

The original theory of interest-rate modelling was based onthe assumption that a specific

one-dimensional instantaneous spot-rate processr was driving all the observable interest

rate quantities.

Modelling the short-rate process is convenient as all the observable interest rates, bond

prices and other derivatives are readily defined, using no-arbitrage arguments, as the risk-

neutral expectation of payoffH(T ) discounted with the short rate (Brigo and Mercurio,

2006):

H(t) = Et [D(t, T )H(T )|Ft] = E

[

e−
∫ T
t

r(s)dsH(T )
]

(2.38)

It should be clear that whenever we can clearly define the dynamics ofr(s), we can find the

above expectation and price simple zero-coupon bonds.

There are many choices forr(s) dynamics. A very popular class of models is the affine

short-rate models. They are called ‘affine’ as the solution for zero-coupon bond price is of

the form:

P (t, T ) = A(t, T )eB(t,T )r(t), (2.39)

whereA(t, T ) andB(t, T ) are deterministic functions of time. For example, we can model

the OIS rates as one factor Hull-White process:

r(t) = θ(t) + y(t), (2.40)

dy(t) = −ky(t)dt+ σ(t)dW (t), y(0) = 0, (2.41)

wherek > 0 andσ(t), θ(t) are deterministic functions of time anddW (t) is a standard

Brownian motion increment (2.16).

There are different variants of the short-rate dynamics specifications: it can include

two correlated Brownian motionsdW1, dW2, it can have a square-root diffusion term

σ(t)
√

r(t)dW (t), etc. Nevertheless, as we shall show in later chapters that it is conve-

nient to use short-rate models as many of their variants do have analytic solutions for ZCB,

cap and swaptions prices. This feature allows for easy calibration to available market data.

Additionally, short-rate models normally have up to 3 driving stochastic factors (Brownian

motions). Therefore risk-assessments like VaR or CVA include only a simulation of a 3+1

(credit risk factor) SDE system.
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To model stochastic basis, we would need a multi-dimensional system to model the

OIS rates and each of the forward-LIBOR curves. This can be done in several ways:

• Short rate model for OIS and another forx-LIBOR curve

• Short rate model for OIS and another forx LIBOR-OIS spread

• Short rate model forx-LIBOR curve and another forx LIBOR-OIS spread.

In each of the setups, we would obtain short-rate systems that (ideally) can analytically

price ZCB and analytically or semi-analytically price non-linear derivatives such as caps

and swaptions.

2.3.2 LIBOR-Market Model Approach

Another very popular class of interest rate models is the market models. The main reason

for their popularity is in the agreement between the well-established market formulas for

basic derivative products, like caps. The lognormal forward-LIBOR model (LFM) prices

caps with Black’s formula (Brigo and Mercurio, 2006), which is a classic standard for op-

tions valuation. Then, the lognormal forward-swap model (LSM) prices swaptions with

again the simple Black’s formula. Under the LFM, we model every forward-LIBOR pay-

mentF x
k = F (Tk, Tk+1), x = Tk+1 − Tk as a stochastic asset:

dF x
k (t) = σx

kFk(t)dZ
x
k (t), (2.42)

(2.43)

whereF x
k is thex-tenor forward rate, maturing at timeTk, σx

k is thek- LIBOR forward rate

volatility anddZx
k is the standard Brownian motion.

The main drawback of the LFM model is its large number of degrees of freedom, as

each forward on every single curve is modelled separately. This produces a large computa-

tional burden for VaR and CVA assessments. Additionally, the large set of parameters must

be calibrated to a large number of market-traded FRAs, caps,and other derivatives, which

in some markets are not available. We shall address the problem of forward-rate volatility

estimation when relevant caps are not traded in later chapters.

2.3.3 Generalized Approach

Mercurio showed that there is an easy way to use the additive stochastic basis with existing

LIBOR market models for interest rates (Mercurio, 2010). We say that our forward-LIBOR
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rate is the sum of OIS-forward and the basis

Lx
k(t) = F x

k (t) + Sx
k (t)

whereLx
k(t) = EQ [L(Tk, Tk+1)|Ft] , F

x
k (t) = EQ [F (Tk, Tk+1)|Ft]. In a very general way,

we define the basis as:

dχx
k(t) = χx

k(t)[σ
x
k,1(t)dZ1(t) + σx

k,2dZ2(t)], (2.44)

Sx
k (t) = Sx

k (0) + αx
k [F

x
k (t)− F x

k (0)] + βx
k [χ

x
k(t)− χx

k(0)], χ
x
k(0) = 1, (2.45)

whereσx
k,i, α

x
k, β

x
k are constant parameters chosen to fit our basis dynamics,dZi, i ∈ 1, 2 are

independent Brownian motions,αx
k controls the correlation between the spreads and OIS

rates,βx
k defines the volatility of the spreads, and the stochastic basis factorsχx

k may be

different for tenorsx and maturitiesk.

As a result of this formulation, the LIBOR rates can be explicitly written as:

Lx
k(t) = Lx

k(0) + (1 + αx
k)[F

x
k (t)− F x

k (0)] + βx
k [χ

x
k − χx

k(0)]. (2.46)

Note: It may be practical to assume independence of OIS ratesand basis spreadsS, which

can be simply done by settingαx
k = 0. The OIS forward rates are explicitly given by:

F x
k (t) = [A(t, T x

k−1, T
x
k )e

−B(t,Tx
k−1,T

x
k
)y(t) − 1]/τxk , (2.47)

whereA,B are deterministic.

The basis factorsχ we model with GBM:

χx
k(t) = χx(t), ∀k, (2.48)

dχx = ηx(t)χx(t)dZx(t), χx(0) = 1, (2.49)

whereηx is deterministic, andZx is independent of OIS rates. This choice of a joint model

for OIS rates and the spreads gives:

1. Caplets and swaptions can be valued as 2-dimensional integrals.

2. Conditioned on OIS rates model, LIBOR and swap rates are affine functions ofχ

3. The integration can be made semi-analytic, by evaluatingthe inner integral as a mod-

ified Black formula.
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2.3.4 LIBOR Panel Model

We took the liberty of naming the “LIBOR as an Option” (Morini, 2009) approach to mod-

elling of ‘risky’ LIBOR rates and future FRA payoffs, as the LIBOR panel model. The

underlying idea behind this model is that LIBOR is a trimmed average rate from submis-

sions made by an approved panel of banks. This average works as a lending rate of a ‘prime’

bank in the panel. We can assume that a bank matching the rate of the prime bank is indeed

in the panel. Therefore, every day at the LIBOR rate fixing time, one of the panel banks

stands as the ‘prime’ bank in the panel. If the credit rating of the current prime bank does

not change much with respect to the rest of the panel it remains the prime bank, but if it

significantly worsens it loses the prime bank status and another bank steps in.

In the following, we introduce the mathematical formulation of the model in question.

We start by separating the (future) LIBOR rate into the risk-free interest rate component

and a credit-liquidity spread

L(T, S) = Lrf (T, S) + S(T, S). (2.50)

We denote the rate of the bank, denoted as ‘prime’ at time zeroby LX0 and its credit-

liquidity spread asSX0 as in the following equation

LX0(T, S) = Lrf (T, S) + SX0(T, S). (2.51)

The forward credit-liquidity spread for this counterpartycan be rewritten in terms of zero-

coupon bonds as:

EQ[SX0(T, S)|Ft] ≈ SX0(t, T, S) =
1

T

(

P rf(t, T )

P rf(t, S)
− PX0(t, T )

PX0(t, S)

)

. (2.52)

This spread, despite a small convexity adjustment (< 2 basis points) (Morini, 2009), is

the expectation of the future spread of our ‘prime’ counterparty. As we have mentioned,

the prime counterparty may change, therefore our real credit-liquidity spread must include

conditions for a potential refreshment of the counterparty. Hence, the realised prime coun-

terparty at future timeT remains the same as the starting one ifSX0 does not exceed pre-
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defined panel exit levelSExit, otherwise gets replaced by substitute counterparty as:

S(T, S) =











SX0(T, S) if SX0(T, S) ≤ SExit,

SSubst if SX0(T, S) > SExit.

(2.53)

To simplify the counterparty refreshment scheme above, as in the original formulation

(Morini, 2009), we assume a ‘mirrored’ evolution of future spreads for LIBOR counter-

parties: for every positive deviation of the expectation, there exists a counterparty with

equivalent negative deviation e.g. if the spread ofX0 bank increased by1%, another bank

X1 steps in with its spread improved by the same1%.

This leads to the future spread over risk free rate as the sum of forward spread of the

initial counterparty and the realised change in this spread, which is now the spread of the

substitute prime bank

SSubst= SX0(0;T, S) + (SX0(0;T, S)− SX0(T, S)). (2.54)

We can now rewrite the equation (2.50) in terms of the forward spread of initial prime bank:

L(T, S) = LX0(T, S)− 2max
(

SX0(T ;T, S)− SX0(0;T, S), 0
)

, (2.55)

the above future LIBOR fixing is unknown at current time zero,but we can take its expec-

tation under the risk-free measure. The expectation of a forward-LIBOR for prime bankX0

is equal to the standard replication of the forwardFStd(0;T, S) = Erf [LX0(T, S)]. Overall,

the expectation of future LIBOR fixing, including the counterparty substitution property

can be simplified as

EQ[L(T, S)] = FStd(0;T, S)− 2EQ
[

(

SX0(T ;T, S)− SX0(0;T, S)
)+
]

. (2.56)

If we assume that the credit-liquidity spread for any bank evolves as driftless GBM (2.16):

dSX0(t, T, S) = SX0(t, T, S)σdW (t), (2.57)

we obtain a simple formula for the future LIBOR as an ATM option:

EQ[L(T, S)] = FStd(0;T, S)− 2CBS

(

SX0(0;T, S), SX0(0;T, S), σ, µ = 0, T
)

, (2.58)
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CBS(·) denotes a driftless ATM Black call (2.26) with volatility σ, current spread level and

ATM strike SX0(0;T, S) and expirationT .

The latter time-zero risk-neutral expectation is a traded market product - the forward

rate agreementFM(t, T, S) = EQ[L(T, S)]. Therefore, the gap between the market-traded

FRAs and the standard forward replica is equal to the option value on the credit-liquidity

spread of the prime bank. To compute the value of this option we need to know theσ

parameter - the average volatility of credit-liquidity spreads of the LIBOR panel banks.

2.4 Research Gaps and Conclusion

The divergence of LIBOR and risk-free lending rates has caused turmoil in lending markets,

as well as rendered the current interest rate models no longer useful. Several adaptations

of classic stochastic models and few new ones were proposed for pricing derivatives in

the setting of multiple LIBOR and risk-free rates, most of these fall into the categories of

short-rate and LIBOR-market models.

The short-rate models are attractive for their simplicity but do not always have enough

degrees of freedom to fit the curve and volatility data withinthe bid-ask spreads. The

current multi-curve short rate proposals in the literaturehave adapted a ‘curve-per-tenor’

approach, where each LIBOR tenor (1M,3M,6M,12M) has a separate model, with imposed

correlation between the drivers. These approaches have thebenefit of fitting each curve

perfectly to market data, but the principle itself has little to do with the common empirical

drivers of all the curves (credit and liquidity). What is more, calibrating four completely

separate models is challenging if volatility-dependent derivatives, like caps or swaptions,

are not liquid for every single tenor.

The generalised LIBOR-Market models have a few more degreesof freedom, but are

hard to calibrate due to lack of liquid data for volatilitiesand correlations as well as the

proposed short-rate models. Their main benefit is the freedom of choice of the volatility

structure.

Very few of the published variants of these models explicitly refer to the link between

LIBOR-OIS spreads and credit-liquidity risk in the interbank lending market. In the fol-

lowing sections, we shall introduce possible model constructions that have either implicit

or explicit link with the risks mentioned above. The model that is explicitly approaching
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the linking problem is the Panel Model (Morini, 2009), but as we shall show, more analysis

needs to be done on its applicability in practice.
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Chapter 3

LIBOR Panel Model for Forward Rate

Replication

3.1 Introduction

The existence of the stochastic basis spread causes multiple problems. The forward rates

replication (as we have introduced it in section2.2.1) is a widely-discussed issue impact-

ing many derivatives pricing models. Nevertheless, the majority of articles (2.2.3) show

how to price derivatives in the new setting, by taking the LIBOR-FRA disparity as already

given in the initial setup. There is a gap in the literature and a need for a model which

would explain the relation between the current spot-LIBOR rates curve and the market-

traded FRA rates. There is vast econometric evidence (Section 2.2.2) on the relation be-

tween the basis spreads and credit and liquidity risks. For instance, the LIBOR-panel me-

chanics based model (Morini, 2009) assumes an explicit relation between credit risk and

LIBOR-OIS basis spreads. Using this relationship, we can price market-traded FRA con-

tracts using information from the spot-LIBOR curve and LIBOR panel bank credit risk

indices. Explicit relation of LIBOR-OIS spread and credit risk in this model can have

tremendous implications for risk management practices such as VaR and CVA (2.35) com-

putation (Kenyon and Stamm, 2012).

The goal of this chapter is to verify and follow-up the LIBOR panel model (Morini,

2009). We start this chapter by introducing the forward rate replication problem. Following

that, we introduce the concept and mechanics behind the LIBOR panel model and validate

the results obtained byMorini (2009) (using iTraxx volatility proxy, as in the original pa-



per). We complement the analysis by moving from a single FRA contract to replication of

full series of market-traded FRAs and introduce a FRA-implied volatility framework capa-

ble of additionally reducing FRA replication errors. Usingthe latter results, we discuss the

remaining data replication errors and limitations of the default panel model formulation.

In the second part of this chapter, we extend the model using our observations from

the error analysis of the original model. We propose the use of uncertain volatility model

(Alexander, 2004) and demonstrate that it reduces the replication error by nearly an order

of magnitude and the decreased error remains within the bid-ask spread over95% of the

time. We conclude this chapter with a discussion on historical implied parameter dynamics

in the extended model and its overall usefulness in derivatives pricing area.

3.2 Standard Model Forward Rate Replication

Construction of the forward LIBOR rate is a vital principle in modern interest rate deriva-

tives pricing. Before the credit crisis, a forward startingLIBOR-linked loan was constructed

using two spot-LIBOR loans as shown in (2.17).

Since mid-2008, the interest rate market has moved from single-curve to multi-curve

pricing framework, which means that now we have a discounting curve for every tenor of

the loan e.g. if we construct a future loan for a 3-month period, we have to use the 3-month

curve, for a 9-month loan and the corresponding 9-month curve. An example market yield

curve snapshot is shown in Figure3.1.

Despite the added complexity of discounting loans on different curves, we also learned

that the standard replication formula (2.11) is no longer valid, as the market-traded FRA

rates no longer match their standard-replication counterparts. This introduces the separation

between the spot-LIBOR curve and the forwarding curves, which is counter-intuitive, as all

the LIBOR-linked derivative payouts are indexed on the spot-LIBOR curve and not the

forward curves.
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Figure 3.1: Plot of multi-tenor discounting curves. The curves were bootstrapped from
OIS swaps as well as 1,3,6,12-month FRA and IRS linear derivatives. In the multi-curve
discounting environment, cashflows with different paymentfrequencies are discounted with
corresponding yield curves.

Figure 3.2 compares the 3-month LIBOR, OIS and market-traded FRA rateswith

forward-starting times from 1-month till 9-months. It shows that the market-traded FRA

rates are substantially different from the replicated forward rates using the unsecured LI-

BOR or even the OIS rates. Therefore, to correctly price a FRAone has to take into account

the credit and liquidity premiums embedded in the LIBOR, as well as the fact that the FRA

contracts are collateralized and nearly risk-free by themselves. Moreover, from the figures

3.2aand3.2bwe can see that the forward LIBOR-OIS term structure gap is dynamic and

changes over time. Therefore a static, constant spread model for LIBOR-FRA spread would

incorrectly represent its dynamics.
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(a) Data from 2008-06-26.
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(b) Data from 2012-06-26.

Figure 3.2: Comparison 3-month LIBOR, OIS and market-traded forwards with forward-
starting times from 1-month till 9-months. Data was taken from Reuters Eikon from dif-
ferent dates. The figures show that term-structure of market-traded FRAs changes in time:
it was closer to the LIBOR-implied ones in mid-2008, but already by mid-2012 the market
FRAs were more aligned to OIS-implied forward rate levels.
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3.3 LIBOR Panel Model for FRA Pricing

The main problem that is in question when using the LIBOR panel model is how to bridge

the gap between the market-traded FRA rates and the rates obtained via standard LIBOR

replication (2.16). We start this section by demonstrating the main replication results of

the LIBOR panel model for a 6 to 12-month FRA contract. We are using EUR interest

rate data, and as a proxy for the credit-liquidity spread volatility we use i-Traxx CDS index

6-month options volatility and obtain equivalent results to (Morini, 2009). Then we extend

the analysis to multiple FRA contracts, as well as multiple tenors, investigating both 3-

month and 6-month tenor FRAs. Ideally, we would like to see a similar performance of

their replication quality over time as both contracts are close to each other by construction.

We also apply the model beyond EUR market to USD and GBP forward-rate markets and

compare the model fits for all three currencies as well as lookinto the overlapping periods

of large fitting errors.

Moreover, we demonstrate an alternative approach to obtaining the volatility parameter

for the credit-liquidity spreads of LIBOR-panel banks. Ourapproach removes the need for

external volatility proxy, which is hard to get and can stillbe unreliable. We propose the

use of FRA-implied volatility, which can be obtained by solving the equation (2.58) for σ,

as we have the spot-LIBOR curve available for current prime bank and a set of data for

market-traded FRAs. The latter concept is widely used in derivatives pricing, e.g. when the

‘implied’ volatility for a stock price is obtained from the traded European option price. This

implied volatility shows the market expectations of the volatility of the underlying until the

maturity of the option.

The obtained implied-volatility gives almost perfect datafits when fitting the model to

a single-contract and low-error fits when fitting full seriesof FRA contracts (e.g. 3-month

FRAs starting in{1, 2, 3, ..., 9}-months. We analyse resulting model errors and show that,

while this basic model has the potential to explain the standard replication gap, it is not

flexible enough to minimise all the replication errors, especially during the peak of the

credit crisis. In section3.3.5we conclude with discussion of the results and the motivation

for our model extension in the following section3.5.
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3.3.1 Basic Replication and Analysis

In this section, we compare the historical FRA rates for multiple traded FRA contracts with

classical standard replication formula (3.3.1) as well as panel model (2.58) to replicate the

historical FRA rates.

In figure3.3we show the performance of historical FRA (6x12-month contract) repli-

cation with the two models. Simple visual analysis of the figure indicates that the use of

standard replication leads to large, up to 200 bp pricing errors throughout the historical pe-

riod. The resulting FRA values from the panel model are much closer to the market6× 12

FRA rates, with maximal errors not exceeding 50 bp.
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Figure 3.3: Historical replication of6 × 12 FRA rate. The figure shows comparison of
market-traded FRA rates and forward rates implied by the standard replication model and
the panel model. The result is trimmed to June-2011 due to limitations of our iTraxx implied
volatility dataset.

To obtain an aggregated look at the replication errors over all the contracts at our

disposal we fitted the model to series of FRA prices, with different volatilityσi parameters

and computed model-introduced replication errors:

Eσi
(ti, Sj, τ) = FM(ti, Sj , τ)− Fσi

(ti, Si, τ, σi), (3.1)
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for every dayti, for all maturitiesSj ∈ {1, 2, 3, ...9M} and both tenors of interestτ ∈
{3M, 6M}. Then, we took the mean, minimum and maximum errors for all maturitiesSj

on each dayti. This way we visualise the ’worst-replicated’ contracts from all the FRAs

we had data for.

In figure 3.4awe show the average, minimum and maximum of the errors of classic

standard replication model for series of 6-month FRA contracts. The error, when using the

standard model nearly reaches 200 basis points (2%), as it happened during the peak of the

2007-2009 financial crisis. In the periods before the peak ofthe credit crisis and after it

the replication error stays within 50 bp error margin. Additionally, in figure3.4bwe show

the errors of standard replication for series of 3-month FRAcontracts, here the error spikes

slightly above 200 bp and stays higher during the leftover periods 50 to 100 bp.

The panel model, using the iTraxx volatility, is performingbetter than the standard

replications as shown in Figures3.5a and 3.5b. The average error of the panel model

stays within 20-30 basis points when replicating all the FRAcontracts, and reaches 60

basis points during the peak of the crisis. This holds for both, 3-month and 6-month FRA

contracts.
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(a) Min, mean, max replication errors for 6-month EUR FRAs.
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(b) Min, mean, max replication errors for 3-month EUR FRAs.

Figure 3.4: Historical min, mean, max replication errors for EUR FRAs. The figures show
the replication error ranges for groups of, respectively, nine 3-month and six 6-month FRAs
when using the standard replication model.
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(a) 6-month FRA replication error with panel model using iTraxx implied volatility.
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(b) 3-month FRA replication error with panel model using iTraxx implied volatility.

Figure 3.5: Historical min, mean, max replication errors for EUR FRAs. The figures show
the replication error ranges for groups of, respectively, nine 3-month and six 6-month FRAs
when using the panel model.
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3.3.2 Extension to Multiple Currencies

An important part of our experiment is to extend the use of this model from EUR to other

currencies, such as the US Dollar and the Great Britain Pound. In the following, we provide

the results and a short discussion of using the panel model with the Euro iTraxx implied

volatility.

At the time of writing, there were no liquid CDS options traded in USD and GBP markets,

like the Euro iTraxx ATM Options. We argue, that because the LIBOR-panel banks in

EUR, USD and GBP panels are overlapping (Intercontinental Exchange, 2014) and all three

markets are highly inter-connected (Bhar and Nikolova, 2013) the credit-liquidity volatility

behaviour should be similar across all three markets. Therefore, to investigate the potential

of the panel model in USD and GBP FRA rates - we fitted the model to their respective spot

LIBOR curves and used the Euro iTraxx volatility index for the σ parameter. In Figures

(3.6a, 3.6b) we show the replication errors for 3-month FRAs in USD and GBP currencies.

Our results show that:

1. Replication errors for USD FRAs stay mostly within±40 bp range but reach60 bp

during the peak of the crisis at the end of 2008 and the first half of 2009.

2. Replication errors for GBP stay most of the time within±50 bp range but spike to

over120 bp at the end of 2008. Additionally, we can observe a trend of increasing

error in the second half of our data sample, which shows that out EUR iTraxx proxy

for volatility is insufficient to jointly replicate the series of GBP FRAs.

Overall, the FRA replication using the panel mode and iTraxxoptions-implied volatility is

a major improvement when compared with the standard replication approach. The panel

model, as expected, works best for EUR market.
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(a) 3-month USD FRAs replication with LIBOR panel model errors.
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(b) 3-month GBP FRAs replication with LIBOR panel model errors.

Figure 3.6: Historical min, mean, max replication errors for USD and GBP FRAs. The
figures show the replication error ranges for group of nine 3-month USD and GBP FRAs
when using the panel model.
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3.3.3 FRA-Implied Volatility

The LIBOR panel model for FRA replication requires an input for the volatilityσ as given

in equation (2.58). This parameter should reflect the volatility of the CDS spread of the

‘prime’ bank in the LIBOR panel. No derivative instrument isavailable that could provide

such information directly, but we can use a close proxy, suchas the iTraxx index ATM 6-

month implied option volatility values, which were also used by Morini and Brigo(2008).

This underlying iTraxx index shows the CDS levels of the biggest and most liquid European

stocks. While the option volatility on this index is not whatis truly needed for this model

- this is the most liquid and reliable proxy. In general, finding CDS-index option implied

volatilities is a hard task, as these are not very liquid. Additionally, the CDS indices that

we are traded do not completely reflect the LIBOR-panel composition (Morini and Brigo,

2008).

Hence, we took an alternative view by reversing the problem:instead of replicating the

FRA levels with given volatility, we calculated the “FRA-implied” volatility which gives

the match between historical FRA levels and the LIBOR panel model. The implied volatil-

ity over multiple contracts should reflect the true volatility of the credit-liquidity premiums

in the LIBOR-panel. In the following Figure3.7) show the FRA-implied volatility from

Euro 3-month FRA data. The time-series values were obtainedby solving

σIV
i,j = min

σ
(E(ti, Sj , τ, σ))

2 (3.2)

E(ti, Sj, τ, σ
j
i ) = FM (ti, Sj, τ)− FP (ti, Sj, τ, σ

j
i ) (3.3)

using a numerical solver (Brent, 1971), wherei is the date (in the time series),ti is the

valuation date andSj are the maturities. Theσj
i is the panel model volatility forti date and

Sj maturity and the LIBOR panel model for FRA priceFP (·) is given in (2.58).

We have plotted the resulting historical implied-volatilities, per-contract, in Figure3.7.

The implied volatilities were not relevant before September 2007, as the basis spreads were

close to zero and the resulting volatilities as shown in Figure 3.7 are full of fitting noise.

Nevertheless, since September 2007, the implied volatilities do move in a synchronised

fashion, which shows a strong relation to the different contracts. This observation confirms

our intuition as these contracts, even if they have different maturities, they do rely on the
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same tenor LIBOR rates, and, inherently, carry the same embedded credit-liquidity risk.

What is more, the implied volatilities from the set of contracts follow a clear struc-

ture: the FRA contracts with longer maturities, such as6 × 9M, 7 × 10M, 8 × 11M have

lower volatilities than the short-end ones. This effect is often observed in the market traded

caps and floors - their forward volatility often decreases with maturity (Brigo and Mercurio,

2006). Finally, the distance between individual volatilities is not constant, which can be a

sign of a badly-specified model (e.g. insufficient degrees offreedom).

The Figure3.7 also shows some of the volatility extremes fitted by the model. The

implied-volatility gets negative when the resolved optionvalue in the model is negative, or

FRA rate is less than the standard replication. This may happen due to illiquid FRA quotes

or simply because in our dataset we use mid-prices for the FRAs, but the difference between

the FRA rate and standard replication price was within the Bid-Ask spread. Moreover, when

the implied-volatility of the LIBOR-OIS spread is above 100%, it means that the value of

embedded option in the FRA contract is much larger than the LIBOR-OIS spread itself.
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Figure 3.7: Historical FRA implied-volatility (IV) for EUR3-month FRA contracts. We
compare the historical implied Panel-model volatility forevery 3-month FRA contract we
analysed. The per-contract IV follow each other with distinct periods of high and low
dispersion. The volatilities follow a term-structure, where with increasing starting time, the
FRA-IV decreases. This result is often found in other interest rate derivatives, like caps.
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3.3.4 Global Implied Volatility

As we have shown in the previous section, different FRA contracts, even if they are indexed

to the same LIBOR tenor, yield different implied volatilities in the panel model. To clarify

the results of the previous section we set up the following experiment. We want to test

the limits of the LIBOR panel model, as is, and to see if we can produce a single implied-

volatility, fitted across full series of FRAs, which allows us to price any FRA within the

bid-ask spread.

We note that the historical bid-ask spreads for 6-month FRAswere usually 4-5 bp in

some cases 8-10 bp with some recorded jumps to 20, while the market FRA levels were

between 100 and 600bp. The 3-month FRAs were usually traded within 3-5 bp spread, in

some cases 8 bp.

In the following analyse the replication quality of FRAs when applying global calibra-

tion. In both cases (3-month and 6-month) we calibrated a thedaily optimal volatility level

for full series of respective contracts

E(ti, Sj, τ, σ) = FM(ti, Sj , τ)− FP (ti, Sj, τ, σ), (3.4)

σGL
i = min

σi

M
∑

j=0

(E(ti, Sj , τ, σi))
2, (3.5)

and measured the maximum, mean and minimal errors in replication quality across all con-

tracts

In figure3.8awe show that using globally-fitted implied volatility, we can replicate the

3-month FRAs with errors bounded by 20 bp in most cases, with some spikes up to 40 bp.

The 6-month FRAs, as shown in figure3.8bare better replicated when using the global-IV,

here the replication error is as low as 10 bp in most cases, butpeaks are still at± 40 bp.
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(a) Historical replication errors of 3-month FRA with globally fitted 3-month IV
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(b) Historical replication errors of 6-month FRA with globally fitted 6-month IV

Figure 3.8: Max, min, mean errors in historical replicationof the 3-month and 6-month
FRA groups, when the panel model volatilities were globallyfitted to, respectively, 3-month
FRA and 6-month FRAs. The result is a strong improvement overerrors of standard repli-
cation model in both cases, but we still have two distinct periods where the error in panel
model is above 20 basis points.
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We performed the global volatility calibration on both, series of 3-month FRAs and

6-month FRAs. This allows us to compare the implied volatility data tenor-by-tenor. As

shown in Figure3.9, before mid-2007 the implied volatilities are full of noiseas the basis

spreads are close to zero. Later, from 2007 till 2009 the 3-month and 6-month volatility

levels closely follow each other and at the end of the period bifurcate into two distinct, but

correlated levels. The Figure3.9shows several significant events: when the market realised

about the hidden risks of LIBOR trading the standard replication broke down and the panel

model implied volatilities spiked up to200% in September 2007, but the forwards of the

3-month and 6-month tenors were traded nearly identically,carrying similar quantities of

volatility. Later, around the end of 2008, the market bifurcated and started trading the two

tenor FRAs as different products, most likely differentiating by the liquidity differences in

3-month and 6-month loans. A similar observation was also made byCrépey and Douady

(2013), where they concluded that in this model for the LIBOR-OIS spreads, each tenor

carries different liquidity components to account for the difference between the LIBOR

forward and OIS curves.
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Figure 3.9: Historical EUR FRA-implied volatility for 3-months and 6-month fixings. The
global implied volatilities for both 3-month and 6-month FRA groups closely followed each
other until Q2 2009 and then bifurcated into two distinct buthighly correlated levels.
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3.3.5 Discussion

The panel model offers a large improvement for FRA replication over the standard repli-

cation model, but it is not perfect. First of all, the lack of LIBOR-panel credit-liquidity

volatility proxy is an issue, but not impossible to overcome. It is a wide market practice to

imply option volatilities from traded contract prices, which is performed in equities, interest

rates, foreign-exchange and the credit market. Therefore,we can use market traded FRA

quotes to imply the missing volatilities. The resulting implied volatilities yield a volatility

term structure, similar to cases in interest rate caplets (Brigo and Mercurio, 2006), where

the volatility decreases with increasing maturity of the option.

Afterwards, we have tested the replication limits of this model, by jointly fitting full

series of single-tenor FRAs. In theory, if the model is well specified, a single volatility

estimate should yield a good market fit of all involved FRA contracts. We found that this

is not always the case and errors often reach 20 and 40 basis points in the historical period

that we analysed.

Therefore, in the following section, we shall look into potential ways of modifying the

panel model, to allow for a few extra degrees of freedom and decrease the joint-replication

error. Ideally, we want to the error to stay below the bid-askspread level over95% of the

time in the historical series.

Method Average Error Maximum Error
Standard Replication 50 bp up to 200 bp

Panel Model with iTraxx IV 25 bp up to 60-80 bp
Panel Model with globally-fitted IV 10-20 bp up to 40 bp

Table 3.1: Table summarizing FRA replication errors from different models. The standard
replication model does not perform well since mid-2007 and introduces and average error
of 50 bp (up to 200bp) in replication. The panel model greatlyimproves upon the standard
model and with iTraxx implied-volatility input reduces thereplication error and performs
even better when using globally-fitted FRA-IV. Nevertheless, the errors are still above 5
basis points, which is a common bid-ask spread level for FRAsin the market.

3.4 Empirical Assessment of Model Assumptions

So far we have shown that the LIBOR panel model is a major improvement over the stan-

dard replication and has the potential for joint modelling of all FRAs in our FRA-implied

volatility framework. Nevertheless, the residual error instandard panel model specification
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is non-negligible. In this section, we demonstrate our attempts to find the source of the

error coming from the LIBOR panel model. We have looked into three possible issues:

1. First, we looked if the market FRA bid-ask spreads correspond to same periods of

large model errors, indicating that FRA liquidity issue causes the bad fits in the

model.

2. Second, we looked if the periods with large replication errors correspond to large dis-

persion of individual FRA implied volatilities as in Figure(3.7). This would indicate

a missing maturity-dependent skew in the volatilities.

3. Last, as the panel model assumes the normal distribution for the credit spread (2.58),

we checked if the underlying assumption is valid. To do this we compared the histor-

ical forward LIBOR - OIS spread dynamics with GBM2.16model dynamics.

3.4.1 Liquidity

To investigate if our errors in the model were affected by thelack of liquidity in the market

during the credit crisis we have compared the errors from:

1. Standard replication model for FRA

2. Panel model with iTraxx implied volatility

3. Panel model with globally calibrated implied volatility.

We measured and plotted the error resulting from the replication of EUR 6x12M FRA in all

three cases as together with the 6x12M FRA bid-ask spreads, one of a few available proxies

of trading liquidity, to see if low trading liquidity correlated with large model errors.

Figure3.10shows that the errors in the three cases have strongly overlapping periods

of large replication errors, but the actual bid-ask spread of the FRA remains small, mostly

within 5-10 bp. Additionally, the correlation between bid-ask spreads and errors is small,

as the spreads stay mostly constant and both, increase and decrease in spread levels happen

whenever the replication errors are large. Therefore, using bid-ask spread as a liquidity

proxy does not help explain any of the errors as after 2007.
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Figure 3.10: Historical error of 3 FRA replication models for 6x12 EUR FRA. We investi-
gated if there are periods of large model error overlapping with periods with high bid-ask
spread. A correlation of the two would indicate impact of FRAliquidity on the replication
quality. This effect is not visible as the FRA trading spreads were contained below 5 bp
during most of the period with few jumps up to 20 bp.
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3.4.2 Degrees of Freedom

Our globally calibrated volatility erroneously reproduces the market FRAs, because the

individual implied volatility of each of the FRA differs, aswe have shown in Figure3.7.

To see if periods of large dispersion of the implied volatilities affects the overall error of

replication, we compare the standard deviation of the IV

Σi =

√

√

√

√

1

M

M
∑

j=0

(σj
i − µ)2 (3.6)

µ =
1

M

M
∑

j=0

σj
i (3.7)

and the absolute FRA replication errors. We performed the latter test for multiple FRAs

and chose to demonstrate 6x12M FRA as an example. As we can seefrom the figure3.11,

the larger dispersion is followed by a large FRA replicationerror, but this relationship is

far from perfect. For example, high-dispersion in beginning of 2008 overlaps with small

replication errors, also large dispersion in end of 2012 corresponds to a period of low-

replication error. This test remains inconclusive but doesgive us a hint that solving the

IV-dispersion problem could lead to a better overall fit.
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Figure 3.11: Historical error of 6x12M FRA replication using global-IV, compared to the
dispersion of the 6-month globally calibrated FRA implied volatilities. The relation be-
tween large model error and dispersion of implied volatilities is not perfect, but the long
period from mid-2008 up to mid-2012 of large model error and IV-dispersion hint at the
main problem in our replication exercise.

3.4.3 Specification of Diffusion Dynamics

One of the major assumptions in the LIBOR panel model is that the LIBOR-OIS spread

of the prime bank is log-normally distributed. This assumption is implicitly given, as we

model the spread as geometric Brownian motion. To test this assumption we compared the

daily log-returns of the forward LIBOR with the forward EONIA spread obtained using the

historical spot rates. By the GBM model the spreadS should satisfy:

ln
S(ti)

S(ti−1)
= σ · dW (ti), dW (ti)N (0, ti) (3.8)

therefore by taking the log returns of the spread series, we obtain the empirical distribution

of dW . Our goal is to check if it is a normal distribution.

In the figure3.12 we have plotted the histogram of historical spread return and

fitted (normal, log-normal, Student-T) distributions to the data. Then, we performed

Kolmogorov-Smirnoff test (Massey, 1951) with null-hypothesis that our sample belongs
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to one of these distributions. The test strongly rejected (p <<< 1%) the hypothesis that

sample comes from normal or log-normal distributions. Student-T distribution was con-

firmed to give a more appropriate fit withp = 80%.

The Student-T distribution is rather inconvenient to use inoption pricing (Cassidy et al.,

2010), due to the infinite variance properties of the Student-T distribution. An alternative

route, taken in quantitative finance (Brigo and Mercurio, 2002), is to use a pair of normally-

distributed random variables as the drivers for the LIBOR-OIS log-returns.

In the figure3.12we show that we can obtain a good fit of the historical histogram by

using a mixture of two normals. When compared to the normal distribution, the mixture

captures the peak and heavy tails better.

The appropriate AIC (Bozdogan, 1987) criteria results are:−3849 for normal distri-

bution,−4569 for a mixture of two Gaussians,−4565 for a mixture of three Gaussians and

−4922 for Student-T distribution. Therefore, using a mixture of two Gaussians instead of a

single normal distribution yields a vast improvement in thehistorical log-returns fit. On the

other hand, using three Gaussians would not yield a significantly better fit of the historical

log-returns. In the end, Student-T gives the best fit, but we exclude this model from our

analysis due to analytical tractability difficulties as mentioned before.

Moreover, as shown in Figure3.13the two fitted components are clearly distinct: the

first component is low-volatility fitting the central peak and middle sections of the historical

distribution. The second component has large volatility and therefore gives a good fit to the

far tails of the empirical distribution. We acknowledge that even better fit could be obtained

with three or even four components, but their function wouldbe less easy to distinguish.

We shall elaborate on the latter in the later chapters.
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Figure 3.12: Histogram of 3-month EUR LIBOR-OIS spread log-returns and selected prob-
ability density fits. The obtained log-returns series does not follow a normal distribution,
the best fit is obtained using heavy-tailed Student-T probability density function. A mixture
of two Gaussians provides and intermediate fit.
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Figure 3.13: Probability density fits for the mixture components of the 3-month EUR
LIBOR-OIS spread log-returns. The two components are clearly distinct - one correspond-
ing to the high peak and the second one with the heavy tails of the dataset.

3.4.4 Summary

Our brief empirical model assumption analysis shows that asthere was no visible corre-

spondence between the bid-ask spreads and replication errors, the liquidity of data used is

not the main cause of replication errors. We have observed that the dispersion of implied

volatilities does correspond to dates with increased errorof replication. Hence, the panel

model is too constrained and needs a few more degrees of freedom to be able to fit multiple

FRA contracts simultaneously. On the other hand, we have also shown that the log-normal

Brownian motion assumption in the panel model is not correct, as the actual historical dy-

namics of the LIBOR-OIS spread are much closer to Student-T distribution or a mixture

of two Gaussians. We note that pricing options using a Student-T distribution not practical

and a similar effect can be achieved with the mixture model.

3.5 Extended LIBOR Panel Model

Using our observations in previous section, we introduce anextension of the panel model

using a mixture model. In this model we assume that our credit-liquidity spread is driven by
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a single Brownian motion (2.22), but with uncertain volatility. This way we obtain so-called

uncertain parameter model (Alexander, 2004):

dS(t) = S(t)σZdW (t) (3.9)

whereZ is a discrete random variable, independent ofW , taking values in set{1, ..., m}
with probabilitiesλi > 0. In this formulation, the log-return distribution of the spread

becomes a mixture ofm Gaussian components. Additionally, this under this model,the

European call option price can be written as a weighted sum ofBlack-Scholes call options:

CMix(S,K, t, T ) =

N
∑

i=1

λiCBS(S,K, t, T, σi), (3.10)

where
∑N

i=1 λi = 1 andCBS is driftless Black call option defined in (2.17). Computing the

FRA value under the extended LIBOR panel model is as simple as:

FP (ti, T, S) = Erf [L(T, S)] = FStd(ti;T, S)− 2

N
∑

i=1

λiCBS(S,K, ti, T, σi). (3.11)

The uncertain parameter extension is the simplest model choice which preserves an-

alytic tractability and also adds additional degrees of freedom in the model. We propose

to use a two-volatility mixture model, where we have volatilities σ1, σ2’s and weight pa-

rameterλ1, the remainingλ2 = 1 − λ1. This choice adds two additional degrees of free-

dom that can be used to fit FRA data instead of a singleσ as in the original model. We

have looked at other alternatives, e.g. using two correlated Brownian motions or a local-

volatility model like the Stochastic-Alpha-Beta-Rho (SABR (West, 2005)), but these op-

tions are over-parametrised and may unnecessarily complicate calibration procedures and

our ability to interpret the results as we shall show in the following sections.

3.5.1 Model Fit in EUR Market

In this section, we show the performance of the mixture modelfor the problem of FRA

replication. We will show the remaining errors for replicating series of FRAs as well

as compare the model with its predecessor, namely the normalLIBOR panel model. To

demonstrate the results we fit the mixture model to series of 3-month and 6-month EUR

FRA contracts for every trading day in our dataset. Then, we show the mean,min and
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max errors of the replication exercise and also compare the performance of normal (single-

driver) and mixture (two-component) models by assessing theirs total replication errors:

ENormal(τ, ti) =

M
∑

j=0

|FM(ti, Sj, τ)− FNormal(ti, Sj , τ, σi)|, (3.12)

EMix (τ, ti) =

M
∑

j=0

|FM(ti, Sj, τ)− FMix (ti, Sj, τ, σ
1
i , σ

2
i , λi)|. (3.13)

which helps to simplify the picture when comparing the performance of the two models.

Below, Figure3.14shows that in the mixture model the absolute maximal errors,per

contract, shrank to less than 10 basis points in most cases and even go under the 5 bp limit.

In turn, this makes the mixture model useful in FRA trading orrisk-management, as we can

jointly price series of FRAs with error close to the bid-ask spreads.

Moreover, Figure3.15ashows that the mixture model outperforms the normal model

by up to an order of magnitude. This effect is sustained throughout 3 and 6-month tenors

as shown in Figure3.15b. The mixture model outperforms the normal model in periods of

excessive stress when the normal model fails to correctly replicate FRA rates, e.g. between

September-2008 and June 2010, and January 2012 to Jan 2013. During other periods, when

the normal model performs well, the mixture model offers modest improvement.
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(a) Historical replication errors of 3-month FRAs with the Extended Panel Model
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(b) Historical replication errors of 6-month FRAs with the extended panel model

Figure 3.14: Max, min, mean errors in historical replication of the 3-month and 6-month
FRA groups using the globally-fitted extended panel model. The figures show that by using
the extended model we can replicate series of FRAs within 5 basis points error margin in
95% of cases in the historical dataset.
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(a) 3-month EUR FRAs. Mixture model vs normal model error comparison.
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(b) 6-month EUR FRAs. Mixture model vs normal model error comparison.

Figure 3.15: Comparison of total absolute errors for replicating groups of 3-month and
6-month FRAs between the panel model and the extended panel model. The extended
model improves the replication error by and order of magnitude and works especially well
in periods of high market volatility.
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3.5.2 Mixture Model in USD and GBP Markets

We have extended our analysis and model comparison to USD andGBP markets. The

order-of-magnitude out-performance of the mixture model is sustained in these markets as

well. As shown in Figures3.16, 3.18, the mixture model performs well in peak times of

crisis, when the normal model encounters large replicationerrors. The remaining FRA

errors are contained in a tighter region than EUR FRAs as before, mostly within 5-10 bp

range. We do have singular spikes in error, resulting from separate FRA quotes, which

may have been mispriced in an increasingly low-liquidity market, but as the official bid-ask

spreads were still within 5 bp it is hard to prove that there was a clear issue of liquidity for

the FRA quotes.
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Figure 3.16: 6-month USD FRAs. Mixture vs normal model errorcomparison. The ex-
tended model improves the replication error of USD FRAs nearly by an order of magnitude,
just like in the EUR market.
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Figure 3.17: 6-month USD FRAs. Mean, min, max errors of the extended LIBOR panel
model. The replication error stays within the 5bp margin in95% of cases.

2008 2009 2010 2011 2012 2013
Date

0

1

2

3

4

5

6

R
M

SE

Mixture Model 
Standard Panel Model

Figure 3.18: 6-month GBP FRAs. Extended vs standard LIBOR panel model error compar-
ison. The extended model improves the replication error of GBP FRAs nearly by an order
of magnitude, just like in the EUR market.
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Figure 3.19: 6-month GBP FRAs. Mean, min, max errors of the extended LIBOR panel
model.The replication error stays within the 5bp margin in95% of cases.

3.6 Analysis of Parameter Dynamics

In our last section on the extended LIBOR panel model, we analyse the historical dynamics

of the fitted model parameters. Our set of parametersσ1, σ2, λ1 was calibrated to a set of

FRA rates available every trading day in our historical dataset. We plotted the resulting

parameters to investigate the significance of changes in their levels. The Figure3.20shows

the obtained parameter results for EUR and GBP 6-month FRAs.

We would like to emphasise on several points. First, it is clear that the levels of implied

volatilities is not constant and undergo volatile changes throughout the historical dataset.

A small part of the volatile and sharp-edged behaviour of theparameters may be caused by

overfitting in the calibration exercise. Nevertheless, thetwo mixture model components are

defined by very different volatility levels:

• The low-volatility first component, hasσ ∈ {0%− 120%}
• The high-volatility second component, hasσ ∈ {150%− 1500%}

In our dataset, the first component in the model was the main driver of the mixture (had

the largest weightλ1) most of the days. On the other hand, the second, high-volatility
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component, takes part (λ2 >> 0) during several extended historical periods. This holds

for all EUR, GBP and USD markets. We investigated if this matches any of the important

historical events during the credit crisis. In the Figure3.20we have marked several periods

of interest, where the second component had a large weight. We placed ‘green’ markers

where a period of excessive credit volatility started and ‘red’ where it ended.

The first period starts in August 2007 with increased market volatility and inter-bank

lending liquidity shortages (Mauro F. Guillén, 2012). The approximate end of the first pe-

riod is in March 2008, when ECB started offering refinancing operations with six-month

maturities to support the normalisation of the functioningof the euro money market. This

first period of the initial liquidity crisis is visible across all EUR, GBP and USD markets.

The second crisis period starts around September 28, 2008. This day the Washington

Mutual and Wachovia banks collapsed. Also, the European banking and insurance giant

Fortis was partly nationalised to ensure its survival, which marks one of the starting days of

the credit crisis (Mauro F. Guillén, 2012). We find it strange that the FRA market did not

react already on the 15th of September during the default of Lehman Brothers.

This period ended on May 2, 2010, when Greece received a 110 billion EUR (93

billion) bail-out from other countries using the Euro, and the IMF .

In the third period starting mid-June 2010 and ending in August 2011, there is visible

turmoil in the GBP and USD FRA markets, but not the EUR zone. During this period both

Ireland and Portugal receive bailout packages from the European Central Bank and second

round of quantitative easing takes place in the US.

The last analysed crisis period started around January 13, 2012. This time, the Stan-

dard & Poor’s credit rating agency has lowered long-term credit ratings on the eurozone

countries of Cyprus, Italy, Portugal and Spain by two marks and Austria, France, Malta,

Slovakia and Slovenia by one mark (Kraemer and Gill, 2012). Many financial analysts and

newspapers were anticipating the collapse of China’s economic bubble, which will bring

the economic crisis to climax in 2012 (Elliott, 2012).

Moreover, as we have marked in Figure3.20, the three out of four high-volatility

component periods nearly completely overlap in both EUR andGBP markets. The levels

of the second volatility component are similar as well. Thisis a good indicator showing

how closely connected are the two markets. The same parameter graph for USD does not

81



show great similarity to EUR or GBP markets.

Therefore, the two-factor mixed panel model not only improves the FRA calibration

results by order of magnitude but also allows us to identify major events in the LIBOR

lending markets by showing structural change events acrossdifferent FRA markets.
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(a) Historical parameters for the mixture model. EUR 6-month FRAs
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(b) Historical parameters for the mixture model. GBP 6-month FRAs
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(c) Historical mixture model parameter dynamics for USD 6-month FRAs.

Figure 3.20: Historical mixture model parameter dynamics for EUR, GBP and USD 6-
month FRAs. The figure shows the two-component volatility levels σ and the weight
parameter for the first component. Throughout the dataset, the driving factor is the first
component, but the high-volatility component gains weightin several, distinct periods. The
green and red markers show the start and end points of these periods. The blue marker
refers to an important event of 2011 only observed in EUR series.

3.7 Conclusion

The LIBOR panel model is not a common choice for an interest rate model in the financial

literature and industrial practice. However, we chose to analyse and extend the model for its

nearly-unique capability of relating OIS and LIBOR fundingrates with credit-liquidity risks

present in the lending markets. As we have shown, the model inits original formulation is a

large improvement over the standard replication model since the start of the credit crisis but

suffers from the lack of a good LIBOR-panel CDS option volatility index. To overcome the

latter problem we reformulated the problem and constructedFRA-implied volatility. Using

globally-calibrated implied volatility, we have shown that the panel model is a promising

model for joint replication of series of market-traded FRAs. After careful analysis, we

proposed an extension using an uncertain parameter model. This extension, with additional

two degrees of freedom, yields excellent results in replication the market-traded FRAs -

our maximal replication errors were within5 bp error margin throughout our historical
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dataset. Additionally, the analysis of historical parameter dynamics gave a unique outlook

on the main structural changes in the FRA markets during the credit crisis. We found that

there are concrete, extended periods when the single-volatility is under-performing, and

the high-volatility component of the mixture model contributes a significant part in FRA

replication. We have also shown that these high-volatilityperiods for EUR and GBP FRA

markets are largely overlapping, which indicates strong interconnectedness of the latter two

markets. Lastly, we have also identified the most likely historical events which triggered

these structural changes in the FRA trading. These findings were presented in (Savickas,

2013).

3.7.1 Limitations of the Panel Model

Unfortunately, there are a few limitations of this model that do not allow us to use it for

pricing of more complicated interest rate derivatives. We would like to discuss one of them,

which is our main reason for looking into other low-parameter models for stochastic basis

modelling as we do in the following chapter of this thesis.

The panel model relies on the availability of spot-LIBOR andOIS curves for FRA

pricing under standard replication as in (2.58). Here, while OIS curve can be bootstrapped

from traded OIS Swaps following guidelines made byAmetrano and Bianchetti(2013), the

spot-LIBOR curve is publicly quoted up to 1-year maturity. The LIBOR curve for larger

maturities was, in a classic setting without multiple curves, bootstrapped from market IRS

(2.18). The problem here is that IRS is a series of FRAs, therefore using IRS to imply a

spot-LIBOR curve for maturities larger than 1-year would result in LIBOR forward rates

nearly matching the market FRA rates. If we do this, we can no longer imply volatilities

from the same IRS and FRAs. Therefore, as long as we do not havea reliable proxy for the

LIBOR-panel CDS spread volatility, the panel model can currently be used for FRAs with

maturities until 1-year as the spot-LIBOR is not quoted after that.
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Chapter 4

Hybrid Model for Multi-Curve Pricing

4.1 Introduction

Before the 2008 credit crisis, inter-bank lending rates with different financing frequencies,

e.g. overnight or 1,3,6,9,12 - months were practically equivalent to each other, because

of lack of perceived risk in the inter-bank lending market (Bianchetti, 2012). Pricing non-

linear derivatives in the pre-crisis market was a relatively easy task, as the forward LIBOR

curve was unique and knowing the volatility of caps based on one LIBOR-tenor would lead

to implied volatility of the other rate via simple extrapolation (Kienitz, 2013). Since the

crisis, significant basis appeared in between the differenttenor lending rates, especially the

overnight (OIS) rates (Morini, 2009). This split up of interest rates led to complications

in non-linear derivatives pricing. For example, while liquid interest rate swaps in the EUR

market rely on the LIBOR four tenors: 1,3,6,12-months, the non-linear derivatives like caps

and floors are only traded on the 3-month and 6-month tenors. More precisely, for EUR

market there are quotes for 1 to 2-year maturity caps with 3-month tenor and 2 to 30-year

maturity caps with 6-month tenor for several strikesK. All the other caps are currently

very illiquid and therefore hard to price as the 1 and 12-month rate volatility data is not

available or at least cannot be directly implied from liquidproducts (Kenyon, 2010).

One of the aims of this project is to develop a multi-curve model with a stochastic

basis which would allow pricing of multi-tenor derivative contracts (e.g. cap), without

the need for artificial proxies and estimates for illiquid volatilities. In this chapter, we

recap the definitions of Cox-Ingersoll-Ross and Hull-Whiteshort-rate models and introduce

the hybrid Cox, Ingersoll and Ross (HCIR) model which approaches the multi-curve cap



pricing problem.

4.2 Theoretical Background

In this section, we introduce the Cox-Ingersoll-Ross (CIR)and the hybrid Hull-White CIR

(HCIR) models that we shall use for caplet, cap and CVA pricing. We will also show the

derivations for caplet prices in the HCIR model cases with 2 and 3-factors.

4.2.1 The CIR Model

The Cox-Ingersoll-Ross model (Brigo and Mercurio, 2006) is the first model to use the

square-root diffusion term in the short rate diffusion SDE:

dc(t) = κ[θ − c(t)]dt+ σc
√

c(t)dW (t), c(0) = c0, (4.1)

wherec0, κ, θ, σc are constants.

The CIR model yields non-Gaussian dynamics for the short-rate, in particular thec(t)

has the density of a non-central Chi-squared distribution (Brigo and Mercurio, 2006). The

price at timet of a zero-coupon bond with maturityT can be obtained in an analytic, affine

form, full details are given in AppendixC.1.

The CIR model is a popular stochastic spread model, especially in credit derivatives.

A few more features of this model make it very attractive for the purpose of LIBOR-OIS

spread modelling, namely guaranteed positivity of the spread, mean-reversion which is

visible in the empirical analysis of LIBOR-OIS spreads (Filipovic and Trolle, 2013), ana-

lytic pricing of bonds and, inherently, fast calibration ofmodel parameters to given spread

curves. Due to its popularity in credit models, it is intuitive to introduce correlation between

the LIBOR-OIS spread and credit-default dynamics of a LIBOR-panel bank.

4.2.2 Hybrid Hull-White and CIR Framework

We have included the definitions and derivations of bond-pricing under the 1-factor and 2-

factor Hull-White models in the appendixC.2. Since the CIR model is non-Gaussian, com-

bining the two models requires a non-standard setting. In contrast to the usual techniques

in the short-rate modelling, such as assuming a correlationbetween the driving Brownian

motions between the Hull-White and CIR processes, we shall assume the correlation to be

zero, but we construct the basis spread process as an explicit sum of the Hull-White and
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CIR processes.

The following setup results in a fully analytical Hull-White framework for OIS

swap pricing and calibration as well as analytical pricing of the LIBOR-bonds and semi-

analytical pricing of caps and floors in the hybrid model. We introduce the two poten-

tial models for the problem, the first being a mix of 1-factor Hull-White and CIR pro-

cess (HW1F-CIR) and the second one including a 2-factor Hull-White and CIR processes

(HW2F-CIR).

We define the short-rate processr(t) to be the driver of the instantaneous OIS rates,

and the processst the driver of the LIBOR-OIS spread as:

r(t) = Ψ1(t), (4.2)

s(t) = kΨ1(t) + Ψ2(t), (4.3)

where Ψ1 is a short rate from standard Hull-White one factor (HW1F) model

(Brigo and Mercurio, 2006) andΨ2 is the CIR short rate model as in equation4.1 and

k is the correlation-dependence level between the risk-freeOIS rate and the LIBOR-OIS

spread.

In this setup, the OIS rates are normally distributed and canbe negative. Then, while

Ψ2(t), the CIR process, is positive, due to the explicit involvement ofHW1F process, the

spreads(t) can be negative. The “explicit” LIBOR-OIS spread and OIS correlation param-

eterk introduces a dependence of LOIS spread on OIS rates instead of more traditional

correlation of stochastic drivers. This choice was made to preserve analytic tractability of

bond pricing when the correlation is non-zero. Because of this, the LOIS spread can be-

come negative, but it is highly unlikely. From a practical point of view this may not be very

realistic, but again, there is no guarantee that LIBOR rateswill always be higher than the

OIS rates.

Next, this additive model yields a couple of convenient results. First, the OIS zero-

coupon-bond prices are determined as in standard textbook extended Hull-White model

(Brigo and Mercurio, 2006)

POIS(t, T ) = PHW(t, T ). (4.4)
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Then, the LIBOR zero bond is expressed as a product of k-scaled OIS bond and CIR-bond:

PL(t, T ) = P k
HW(t, T )PCIR(t, T ), (4.5)

where the analytic expression forPCIR is given in AppendixC.1 and forP k
HW is given in

AppendixC.2.

The HCIR model is a 2/3-factor model, where one of the factorsis CIR with non-

central Chi-squared distributed rates. However, the separable model formulation as given

in (4.2) allows us to price caplets using semi-analytic formula of the form:

CpltHCIR(t, T, S,K) = POIS(t, S)E
QS

[

1

PCIR(T, S)

(

e−µ+ 1
2
V̂ 2

Φ(d)− X̂Φ(d− V̂ )
)

∣

∣

∣

∣

Ft

]

,

(4.6)

details for theµ, V̂ , X̂ are given in AppendixC.4. Using a semi-analytical formula instead

of a two-dimensional integral improves the computation time by an order of magnitude.

To price an interest rate cap with strikeK and fixing datesTi, under HCIR model, we

only need to sum the caplet values:

Cap(t, {T0, ...TN}, K) =

N
∑

i=1

CpltHCIR(t, Ti−1, Ti, K). (4.7)

4.2.3 Benchmark Model: Displaced Diffusion

Kienitz (2013) has suggested a simple, yet innovative model to implyy-tenor volatilities

from x-tenor caplet quotes. His work is based on fixed basis spread assumption and the

LIBOR market model. We shall briefly introduce the concept, but if the reader would like

to know full details please refer to (Kienitz, 2013). We shall use this model as a benchmark

for extrapolation volatilities to different LIBOR tenors against the HCIR model.

This procedure models the forward LIBOR rates, withx as the tenors of the rate and

k as the index (linked to start/end-period(Tk−1, Tk)):

dLx
k(t) = ...dt+ σx

kL
x
kdW (t). (4.8)

The forward LIBOR rate in question is split into the OIS forward rate and a (constant) basis

spread:

dLx
k(t) = ...dt+ σx

k(F
x
k (t) + bxk)dW (t). (4.9)
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In the above transformation we have a displaced diffusion (DD) model. We rename its

volatility to σDD
x,k, and using it, we can find the log-normal model OISF x

k (t) at-the-money

(ATM) caplet volatility using a formula fromJoshi and Rebonato(2003):

σDD
x,k =

2√
T
Φ−1

[

1

β
Φ

(

σDD
x,kβ

√
T

2

)

− 1− β

2β

]

, (4.10)

where theβ parameter is set by the diffusion shiftbxk and the forward rate

β = 1/(F x
k b

x
k + 1). (4.11)

The ATM OIS volatility (for tenorx) can be transformed to another tenory using

single curve forward rate relations as shown in the example below. Then, usingy-tenor

basis spreadsbyk and forward ratesF y
k we obtain theσDD

y,k and convert the black volatility

back to displaced diffusion volatility:

σDD
y,k =

2

β
√
T
Φ−1

[

βΦ

(

σDD
y,k

√
T

2

)

+

(

1 + β

2

)

]

. (4.12)

Briefly, the full conversion scheme works as follows:

σx
LIBOR = σx

DD,OIS =⇒ σx
DD,OIS =⇒ σy

DD,OIS =⇒ σy
DD,OIS = σy

LIBOR. (4.13)

The latter approximation can be made for time-dependent volatilities as well (Kienitz,

2013). Also, backwards procedure, where we imply shorter (1-month, 3-month) tenor

volatilities from 6M volatilities can be done by assuming some term-structure of the short-

term volatilities, e.g. flat, linearly increasing or some parametric form.

Moreover, the latter volatility shift procedure can be expanded to a SABR

(Mercurio and Morini, 2007) stochastic volatility model by:

• Calibrating the smile with quoted caplets

• Shifting the ATM volatility as above

• Reconstructing the SABR smile by assuming same fixed parameters as before.

Example. Construction of the 6-month OIS volatilities is done using the simple single-

curve framework relations of forward rates. The commonly used construction of a long, 6-

month forward rateF1,3 from two shorter, but consecutive 3-month forward ratesF1,2, F2,3
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is done by compounding the following interest rates:

τ6MF1,3(t) = τ3MF1,2(t)(1 + τ3MF2,3(t)) + τ3MF2,3(t). (4.14)

We can relate the 6-month forward rate volatility in the LIBOR market model

(Brigo and Mercurio, 2006) to the two corresponding 3-month volatilities as:

σ2
1,3 = V1(t)

2σ2
1,2 + V2(t)

2σ2
2,3 + 2ρV1(t)σ1,2V2(t)σ2,3, (4.15)

where

Vj :=
τj,j+1Fj,j+1 + τj,j+1Fj,j+1τj+1,j+2Fj+1,j+2

τ6MF1,3(t)
. (4.16)
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4.3 Application: Pricing of Illiquid Caps

The most liquid interest rate swaps in the EUR market rely on the four tenors: 1,3,6,12-

months. At the same time, the caps/floors are mostly traded onthe 3-month and 6-month

tenors, for EUR caps. More precisely, there are market quotes for 1,2-year caps with 3-

month tenor and 2,3,...,30-year caps with 6-month tenor with multiple strikes. All the other

caps are illiquid and therefore hard to price.

The HCIR model is beneficial for these situations where market liquidly trades caps on

only one of the tenors. By construction, the HCIR model can becalibrated to market OIS

and LIBOR forward curves and a set of single-tenor cap volatilities. Then, we can directly

price any caps on the other, less liquid tenors.

In this section, we shall demonstrate the HCIR model calibration results in several

market data cases and show the potential of the model for pricing illiquid caps by bench-

marking the model against J. Kienitz displaced-diffusion approach and given trader quotes

for the less liquid cap surfaces.

In particular, we shall fit HCIR model variants (with HW1F andHW2F drivers) to:

1. only ATM caps,

2. single3% strike,

3. single4% strike and chosen illiquid caps,

4. again ATM caps, but in negative interest rates dataset.

4.3.1 ATM Cap Fitting

Our initial investigation relies on ATM-cap pricing using the hybrid HCIR model. We will

analyse two branches of the model where the spread CIR-modelis combined with HW1F

and HW2F models for the OIS base rate. We shall refer to the combination of HW1F

and HW2F model with CIR, respectively, as HW1F-CIR and HW2F-CIR. We will refer to

HCIR model in general when discussing both of branches at thesame time.

HW1F-CIR

We have calibrated the HW1F-CIR model to available market data:

1. OIS yield curve and four (1, 3, 6, 12)-month forward rate curves

2. 6-month ATM caps with maturities from two to 30-years.
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Then, we re-priced the 4-curve forward rates and 6-month ATMcaps and estimated new

ATM levels for 1-month, 3-month and 12-month caps from market forward rates by pricing

them with the HCIR model. For comparison reasons we converted the present value of

the latter caps to normal volatilities by inversely solvingthe Bachelier cap pricing formula

(2.18) with corresponding ATM strikes for each of the caps.

We note that the CIR model parameters are dependent on the calibrated HW param-

eters. Both HW2F parametersσi, ai, ρHW ( or just σ and a for 1-factor HW.) and full

CIR parameter setρ, σc, θ, κ, c0 influence the resulting cap prices, hence the calibration to

market data is “joint”: we minimize the least-squares errorof the market forwards and

market caps at the same time. Therefore, the full calibration involves up to 10-parameters,

when we calibrate to 6-month forwards and 6-month caps. There are multiple local min-

ima in the solution, and the user must use a global calibration routine, e.g. basin-hopping

(Wales and Doye, 1997) or differential evolution (Das and Suganthan, 2011) to avoid find-

ing only a local minima.

Figure4.1shows the calibrated model results for forward rates. Additionally, we made

a tenor-by-tenor comparison of the forward rates errors in Figure 4.2 between the market

and model-implied ones as well as normal cap volatilities inFigure4.3.

Several things can be noted from the obtained results:

1. The HW1F-CIR model can replicate the yield curves and market forwards with av-

erage 5bp error (relative 2% error), similar to bid-ask spreads in the ICAP broker

dataset.

2. The biggest discrepancy on the forward rates is in the firstfew points (15bp)

3. The replication of cap volatilities with HW1F driver for OIS rates is problematic as

the model cannot capture the low-volatility setting of the short end curve. Here the

normal volatilities are as low as 20bp and then rise to 100 bp in the middle resulting

in very low short-term cap prices. Because of this, we decided to extend the model to

HW2F as shown in the next section.
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Figure 4.1: Resulting forward rates from multi-tenor LIBOR-curves under HW1F-CIR
model. Market data of 22-Nov-2013.
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Figure 4.2: Forward replication errors, HW1F-CIR model vs market data of 22-Nov-2013.
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Figure 4.3: Comparison of 6-month ATM cap (normal) volatilities. HW1F-CIR Model vs
market data from 22-Nov-2013.

HW2F-CIR

First, we would like to demonstrate the potential of the 2-factor Hull-White model for caps

pricing. The biggest problem we have with the 1-factor Hull-White model is the steep cap

price increase in the short term, which is not visible in the market data.

In the 2-factor model, the correlationρ parameter can help control this ascent. By

setting the correlation between the two Brownian motions toa negative number, we can

decrease the ascent as shown in the Figure4.4:
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Figure 4.4: Example ATM caplet prices (notional of 1 EUR) across maturities, using the
2-factor HW model with correlationρ values from−99% to 0%.

We calibrated the HW2F-CIR model in the same setting as in theprevious section. In

the following Figures4.5and4.7we show the HW2F-CIR and market multi-curve forward

rate errors as well as normal cap volatilities and absolute errors. We observe that:

• The 2-factor HW model combined with CIR provides a similar fitto the market for-

ward curve as the HW1F-CIR model.

• On the other hand, the 2-factor Hull-White model improves onthe low-volatility issue

in the short-end of the 6-month cap pricing curve.

• Additionally, using the HW2F/HW1F-CIR model we can immediately price illiquid

caps based on 1,2,3-month tenors without any external data,as shown in Figure4.8.

This is the major innovation for a short-rate model to be ableto extrapolate liquidly

traded cap volatilities to illiquid ones without the need for external data proxies and

adjustments.
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Figure 4.5: Tenor-by-tenor comparison of forward rates. HW2F-CIR model vs market
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Figure 4.6: Calibration errors for market forwards - HW2F-CIR model forward rates, data
from 22-Nov-2013.
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Figure 4.7: Comparison of 6-month ATM cap (normal) volatilities. HW2F-CIR model vs
market data from 22-Nov-2013.
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Figure 4.8: Cap volatilities for every tenor priced under HW2F-CIR model. The pric-
ing procedure only requires liquid market data and does not need to be adjusted with any
proxies. This is a novel and most important feature of the HW2F-CIR model. Data of
22-Nov-2013.

For completeness of the model comparison, we provide the calibrated model param-

eters in Table4.1. The HW2F has two random drivers with two distinct mean-reversions

and volatilities. The spread (CIR)-components for every curve have an explicit negative

correlation to OIS movements. This correlationρCIR is decreasing, in the absolute sense,

as the tenor of the curve increases. The other parameters areentirely dependent on the

term-structure of the LIBOR-OIS forward spreads.
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Model ax σx ay σy ρHW

HW2F-CIR 45.07% 2.07% 12.3% 2.49% -99.6%

Model ρCIR σc θ k c0
HCIR-CIR: 1M -4% 0.06% 1e-4 4.9% 0.13%
HCIR-CIR: 3M -3.4% 0.3% 1e-4 6.1% 0.28%
HCIR-CIR: 6M -2.0% 0.4% 1e-4 9.4% 0.42%
HCIR-CIR: 12M -1.8% 0.35% 1e-4 8.0% 0.54%

Table 4.1: HW2F and CIR model parameters for LOIS spread in the 2-factor HW2F-CIR
model.

Comparison with J. Kienitz Benchmark

J. Kienitz volatility extrapolation approach is rather different from HCIR model, namely:

1. It assumes LIBOR market model dynamics for LIBOR and OIS forward rates

2. But assumes that each LIBOR forward is a shifted (as in Displaced-Diffusion) OIS

forward by constant spreadbij.

3. The extrapolation from tenorx to y relies on:

• differences in tenor lengths,

• differences in basis spread sizesbix andbiy,

• and the correlationρ between neighbouring OIS forwardsF (Ti−1, Ti) and

F (Ti, Ti+1).

To produce a simple benchmark with J. Kienitz vol extrapolation method, we used 6-month

caplet volatility data, and then transformed them to 1,3,12-month cap volatilities with the

procedure outlined in section4.2.3. We chose theρ = 95% parameter as this choice pro-

vided a close match to the HCIR model and in literature, the historically estimated values

vary between0.7 to 0.95.

In figure4.10we demonstrate the HCIR model and Kienitz-method extrapolated cap

volatilities. The figures show that the tenor-structure of the volatilities is the same on both

models, namely the volatilities of caps with larger basis spread, like the 12-month, are over-

all larger. The long-end volatilities in both models are within several basis points distance

of each other, which shows that the HCIR model and DD model arecompatible with each

other, even if the DD model fit is strongly influenced by the forward-rate correlation pa-

rameterρ, which is not present in HCIR model. On the other hand, the fitsdiverge for

short-maturity (≤ 2-years) caps, as our initial 6-month cap fit in HCIR model doesnot
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capture very-low short-end volatilities.

5 10 15 20 25 30

Maturity T, years

0

20

40

60

80

100

B
a
si

s 
P
o
in

ts

DD-Normal Cap Volatilities

1M

3M

6M

12M

Figure 4.9: Normal ATM cap volatilities for all tenors in displaced-diffusion model.
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Figure 4.10: Normal ATM cap volatilities for all tenors. Comparison between the HW2F-
CIR model and displaced-diffusion extrapolated normal volatilities.

4.3.2 Single Strike Non-ATM Cap Fitting

The second experiment we set up, is HCIR model fitting to non-ATM caps, where we

chose a single 3% fixed strike for 6-month caps with maturities up to 30-years for model

calibration. Here we evaluate the ability of the 2-factor HWcombined with CIR model

(HW2F-CIR) to replicate market caps on 6-month tenor as wellas extrapolate and price

caps on 1,3,12-month tenors.

Fitting of forward rate curves was achieved with similar accuracy as in the ATM case,

hence we skip the figure showing that. The following Figure4.11demonstrates that for 6M

caps with maturities> 7 years we can achieve fits with difference less than one bp in volatil-

ity. Caps with shorter maturities were not fitted as well, first, because we fitted the present

value of the caps and they did not carry much weight, and because the HW2F-CIR model

just like HW2F cannot jointly produce volatilities very lowand very high in respectively,

short and long-ends of the curve. This issue could be solved by using a piecewise-constant
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volatility functions for the Hull-White process, but we leave this topic for further research

6.3.

For assessment of these volatility levels, we compare the obtained result with extrap-

olated volatilities from market data using the constant-spread approach as shown in Figure

4.13. Using displaced diffusion extrapolation withρ = 0.9 we can achieve a similar picture

as in HCIR case, but not a precise match, with differences of 5bp for Caps maturing after

5-years.

Figure4.13shows some anomalous behaviour of 6-month cap volatility across matu-

rities in the DD-method, it is the highest from the set for maturities< 12-years and then

decreases below 1-month and 3-month cap volatility levels.This effect comes from Black-

to-normal volatility conversion in the caplets as shown in Figure 4.14. While in Black

(log-normal) volatilities the tenor-structure of volatilities is strict, e.g. 12-month volatility

is smaller than 6-month, 6-month smaller than 3-month, etc., after conversion to normal

caplet volatilities, the 12-month caplets obtain very highvolatility around 5-year maturity,

simply from the differences in forward rate levels between the curves.

The table of calibrated model parameters for the 3% cap calibration case is given in

AppendixD.
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Figure 4.11: 6-month cap volatility comparison between HW2F-CIR model and market
data. The model accurately calibrates to 5-year and longer maturity cap volatilties, but has
difficulty fitting the short-end volatilities as they are very low.
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Figure 4.12: Multi-tenor cap volatilities for HW2F-CIR model. The model took market
6-month volatilities and extrapolated to other tenors.
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Figure 4.13: Tenor-by-tenor comparison of cap (normal) volatilities. Plots compare market
6-month3% and DD-extrapolated cap volatilities for other tenors withρ = 0.9.
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Figure 4.14: Tenor-by-tenor comparison of cap normal and log-normal volatilities. Results
plotted for Kienitz-extrapolated volatilities usingρ = 0.9.

4.4 Multi-Strike and Cap Surface Fitting

In this section, we include the additional simulation results for the multi-tenor cap pricing

problem. We show the calibration and pricing results for multi-strike caps when the calibra-
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tion was performed using3, 4, 5% 6-month EUR caps and analyse the results, demonstrat-

ing that the HCIR model is not flexible enough to calibrate to the market volatility smile.

Then, we also show our test cases with data from different historical dates, which demon-

strate that the HCIR model cannot well fit the market forwardsif the LIBOR-OIS spread

term structure does not satisfy the smoothness criteria of CIR model.

To test the HCIR model ability to deal with multiple cap strikes and volatility smile,

we have calibrated the HW2F-CIR model to caps on three chosenstrikes: 3, 4, 5%. The

calibration result demonstrated in Figure4.15, shows that the HW2F-CIR model cannot

replicate the market smile. The latter fact is already knownfor the standard HW2F model,

and our hybrid version does not correct for this. The resulting calibration to three strikes

ended up in an intermediate fit without any smile features, preserving3% cap volatilities in

the short end and4% volatilities in the long-end of the curve.
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Figure 4.15: HCIR calibration result to 3,4,5% EUR 6-month caps. We re-price3, 4, 5%
caps and 6-month forward rates to show the overall resultingfits. Data from 22-Nov-2013
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4.4.1 The ‘Tail’ Problem

Our results in the previous sections show that while we can fitthe HW2F-CIR model to

series of multi-maturity caps on a single strike or all the ATM levels, we are not able to

reproduce the full volatility surface. This problem mainlystems from the HW2F model,

which does not handle smile well.

In our particular case, we are overvaluing the low-strike caps and undervaluing the

high-strike caps. We show an example Figure4.16below.
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Figure 4.16: Comparison of present value for model and market caps. 6-month1.5% caps
over maturities from 1-year till 30 years (left), 5-year caps case over strikes from0.25% to
10% (right)

Once we look at the Black volatilities - we see that while the fit over maturities is good,

the volatility smile is not well preserved in the model.
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Figure 4.17: Comparison of HCIR model and market Black volatilities for 6-month1.5%
caps case over maturities from 1-year till 30 years (left). 6-month tenor, 5-years maturity
caps with strikes from0.25% to 10% (right)
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The reason this happens is that the Black volatilities in themarket are practically flat,

from 3% strike onwards. This paves the way for either a (shifted) log-normal model, or

some other heavy-tailed model. The HW2F model is normal, i.e. assumes normally dis-

tributed interest rates. As the rates are low in the current market, a large part of the simulated

future rates are negative. Therefore, to replicate the flat Black volatilities, one would need

something like an ‘increasing normal volatility structure’ as in the following figure:
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Figure 4.18: Market and HCIR model normal volatilities for 6-month caps with 5-year
maturities, ranging from0.25% to 10% in terms of strike.

In table4.2 we give example cap values for HW2F-CIR model, HW2F model, Black

model and Bachelier (normal) model. We set the volatilitiesfor Black and Bachelier models

as constant but aligned to match the market cap values aroundthe1.5% strike. From the

table results we can see the following differences in the model results:

• The difference between full HW2F-CIR model and HW2F (no CIR)is minor, which

means that the fitted CIR model has a small impact on the 6-month Cap values and

the major PV part is carried by the HW2F component. The CIR model yields a small

heavy-tail addition on the right side of the histogram.

• The HW2F model implies a normal distribution of rates, therefore the result is similar

to the Bachelier result with constant volatility.
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• On the other hand, the log-normal (Black) model has a heavy tail in the distribution,

which gives much larger cap values for higher strikes, such as4, 5, 10%.

Model Vol 0% 0.25% 0.5% 1% 1.5% 2% 2.25% 2.5% 3% 3.5% 4% 5% 10%
HW2F-CIR - 465 385 318 211 135 82 63 48 26 14 7 1 0

HW2F - 462 381 314 208 132 80 62 46 25 13 6 1 0
Black 55% 444 338 263 181 135 106 95 86 71 60 51 39 14

Bachelier 0.73% 495 411 336 217 135 80 61 45 24 12 5 0 0

Table 4.2: Table of sample 6-month Caps prices for differentstrikes.

We confirm the above observations in forward-rate histograms for all four models

shown in Figures4.19and4.20. To sum up, while the HW2F model gives enough flexibility

to fit the term-structure of the volatility, we do not have many degrees of freedom to fit the

smile. While this can be done to some extent to minimise the cap replication errors over

some chosen strike (or all ATM levels), the other strikes would remain under/over-priced.

The market volatilities, as shown in Figure4.17, when plotted against the strikes in

log-normal form, are much flatter than the normal volatilities. This is the main reason why

fitting HW or HCIR models, who assume normally distributed rates as in Figure4.18 is

difficult.
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Figure 4.19: Forward rate distribution comparison from HW2F-CIR, HW2F models. We
show the distribution ofF (T, S) values, whereT = 4.5, S = 5-years
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Figure 4.20: Forward rate distribution comparison from Black and Bachelier models. We
show the distribution ofF (T, S) values, whereT = 4.5, S = 5-years

4.5 Calibration of HCIR in historical high-basis scenarios

In this section, we seek to investigate how well the HWCIR model calibrates and performs

under different market conditions. To do this we picked three historical dates, namely:

• November 30, 2011 (large basis)

• November 30, 2012 (small basis)

• November 30, 2013 (small basis)

and calibrated the model to 3-month forwards and caps, and also 6-month forwards. We

implied the 6-month caps from the model.

4.5.1 High-Basis Spread Case, USD Market

In the following sets of figures4.21,4.22,4.23we show the market vs model cap and forward

fits. The figures are organised in reverse chronological order, first one for data from 2013,

then from 2012 and the last one from 2011. The following figures show that:

• The3% HCIR caps can be repriced well when compared to market (Black) caps.

• The fit of market forwards is best in the 2013 dataset and worstin 2011.

The cause of a bad fit is the substantially different OIS forward and LIBOR-forward

curve structure, or ‘hump’. The HCIR model introduces a gap between LIBOR and

OIS forward curves of a smooth functional form and cannot properly represent the

‘dip’ at 10− 12-year OIS forward points, which we have in the dataset.

• The implied 6-month caps behave differently on different dates:

– The 6-month cap value is close to 3-month on 22-Nov-2013, as CIR σ = 15%
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– The 6-month caps have increasingly greater value than 3M on 30-Nov-2012, as

CIR σ = 51%

– The 6-month caps have greater with constant distance on 30-Nov-2011, as CIR

σ = 12%
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Figure 4.21: HCIR model calibrated to 3 and 6-month USD forwards and 3-month USD
caps. The 6-month caps are the resulting extrapolation. Data taken from Reuters Eikon,
30-Nov-2013

Maturity (years) 1 2 3 4 5 6 7 8 9 10 12 15 20
Market (bp) < 1 2 20 81 192 334 494 660 822 968 1209 1532 1916
Model (bp) 1 9 38 103 211 346 499 656 809 949 1184 1497 1880

Vega Chg. (%) 0 0 47 23 12 6 3 2 1 0 0 0 0

Table 4.3: 30-Nov-13 USD 3-month market and HCIR model cap price (USD) comparison
table.
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Figure 4.22: HCIR model calibrated to 3 and 6-month USD forwards and 3-month USD
Caps. The 6-month caps are the result of extrapolation usingthe model. Data taken from
Reuters Eikon, 30-Nov-2012

Maturity 1 2 3 4 5 6 7 8 9 10 12 15 20
Market (bp) < 1 2 7 26 63 120 194 283 382 485 691 979 1358
Model (bp) < 1 3 13 37 78 138 215 304 401 502 703 985 1366

Vega Chg. (%) 0 0 0 27 16 10 6 4 2 1 0 0 1

Table 4.4: 30-Nov-12 USD 3-month market and model cap present value comparison table.
The Black-vega change (%) is the change in volatility neededto adjust for the difference
between the market and model.
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Figure 4.23: HWCIR model calibrated to 3 and 6-month USD forwards and 3-month USD
caps. The 6-months Caps are the result of extrapolation using the model. Data taken from
Reuters Eikon, 30-Nov-2011

Maturity 1 2 3 4 5 6 7 8 9 10 12 15 20
Market (bp) < 1 5 22 73 152 248 356 472 591 709 911 1180 1534
Model (bp) 2 17 48 104 183 277 381 491 603 714 913 1182 1549

Vega Chg. (%) 0 0 31 15 6 3 1 0 0 -1 0 0 1

Table 4.5: 30-Nov-11 USD 3-month market and model PV Cap comparison table. The
black-vega change (%) is the change in volatility needed to adjust for the difference between
the market and model.
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4.5.2 High-Basis Spread Case, EUR Market
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Figure 4.24: HCIR model calibrated to 3 and 6-month EUR forwards and 6-month EUR
caps. The 3-month caps are the result of extrapolation usingthe model. Data taken from
Reuters Eikon, 30-Nov-2013

Maturity 1 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30
Market (bp) 0 0 1 11 52 127 231 349 476 611 752 793 1085 1450 1713 1909
Model (bp) 1 6 16 47 98 167 250 343 443 547 650 852 1123 1460 1713 1920

Vega Chg. (%) 0 165 131 102 52 22 6 -1 -5 -7 -9 3 1 0 0 0

Table 4.6: 30-Nov-13 EUR 6-month market and model cap present value comparison table.
The Black-vega change (%) is the change in volatility neededto adjust for the difference
between the market and model.
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Figure 4.25: HCIR model calibrated to 3 and 6-month EUR forwards and 6-month EUR
caps. The 3-month caps are the result of extrapolation usingthe model. Data taken from
Reuters Eikon, 30-Nov-2012

Maturity 1 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30
Market (bp) 0 0 1 4 21 58 116 191 275 366 461 623 894 1228 1521 1795
Model (bp) 0 1 3 14 36 74 128 196 272 357 446 632 899 1249 1536 1788

Vega Chg. (%) 0 10 23 36 20 9 4 1 0 -1 -1 0 0 0 0 0

Table 4.7: 30-Nov-12 EUR 6-month market and model cap present value comparison table.
The Black-vega change (%) is the change in volatility neededto adjust for the difference
between the market and model.

118



0 5 10 15 20 25 30
0

500

1000

1500

2000
Caps,  30-Nov-11

Model-3M
Market-6M
Model-6M

0 5 10 15 20 25 30
0.000

0.005

0.010

0.015

0.020

0.025

0.030
Forwards

Model-3m
Market-3m
OIS-3M

0 5 10 15 20 25 30
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
Forwards

Model-6m
Market-6m
OIS-6M

Figure 4.26: HCIR model calibrated to 3 and 6-month EUR forwards and 6-month EUR
caps. The 3-month caps are the resulting extrapolation. Data taken from Reuters Eikon,
30-Nov-2011

Maturity 1 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30
Market (bp) 2 10 23 49 109 193 293 399 504 609 712 854 1119 1398 1614 1832
Model (bp) 23 38 48 74 127 203 292 388 486 583 681 875 1130 1426 1641 1819

Vega Chg. (%) 0 135 49 19 7 2 0 -1 -1 -2 -2 1 0 0 0 0

Table 4.8: 30-Nov-11 EUR 6-month market and model cap present value comparison table.
The Black-vega change (%) is the change in volatility neededto adjust for the difference
between the market and model.
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Figure 4.27: HCIR model calibrated to 3 and 6-month EUR forwards and 6-month EUR
caps. The 3-month caps are the result of extrapolation usingthe model. Data taken from
Reuters Eikon, 30-Sep-2008

Maturity 1 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30
Market (bp) 64 124 187 318 441 550 645 728 805 877 948 1069 1228 1438 1607 1742
Model (bp) 69 141 213 353 478 587 680 762 836 903 964 1076 1220 1417 1583 1728

Vega Chg. (%) 0 47 27 14 9 6 4 3 2 1 0 0 0 0 0 0

Table 4.9: 30-Sep-2008 EUR 6-month market and model cap present value comparison
table. The Black-vega change (%) is the change in volatilityneeded to adjust for the differ-
ence between the market and model.
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4.5.3 Cap Pricing with Negative Rates

For the last, and one of the most important tests, we look intoHCIR model ability to cali-

brate and price caps in negative interest rate environment.In the following figures4.28and

4.29 we show the forward-curves fit for 30-April-2015 dataset andthe cap-volatility fits

for all fixings, when the calibration was performed with 6-month ATM caps. Here we also

provide the multi-curve cap volatilities in Figure4.30, but do not test against displaced-

diffusion volatilities as standard LMM model does not work for negative rates. The HCIR

model is especially useful in the post-credit crisis interest rate markets, where rates are

often negative.

The forward rate fit has errors up to5bp - starting forward point does not match,

and there are possible interpolation artefacts in multipleother places. The 6-month cap

volatilities, on the other hand, do have a good (< 3bp) fit, except for first three points:

6-month,1 and1.5-year which differ a lot but are mainly influenced by the mismatch in

very-short end forward rates. We provide detail volatilitysurfaces in AppendixD.2.4.
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Figure 4.28: HCIR Forwards for 30-Apr-2015
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Figure 4.29: HCIR and market 6-month ATM cap volatilities. Data from 30-Apr-2015.
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Figure 4.30: Multi-curve 1,3,6,12-month HCIR ATM cap volatilities. Data from 30-Apr-
2015.

4.5.4 Conclusion

The Hybrid Hull-White-CIR model (Savickas, 2015) is a novel stochastic basis model

within the short-rate framework. We have shown that a 5-curve (including OIS and 1,

3, 6, 12-month LIBOR curves) model can be semi-analyticallycalibrated to liquid, existing

market yield curves and cap volatilities and afterwards, using the fully-parametrized model

we have re-priced the market caps.

Our analysis shows that the HCIR model works best when the market forward LIBOR-

OIS spread has a smooth structure. Some irregularities are present in the model-to-market

forward fit. In our test cases, we had errors of 5bp in many forwards and larger errors with

the few starting points of the LIBOR-OIS spreads, where theyreached 20bp. In our tests,

we were able to match the market caps with few bp error in volatility, when the maturity

of the cap is>= 3-years. The HCIR model, as well as HW2F model, could not replicate

the very low (20bp) market volatilities in the very short-term end of the volatility curve and
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potentially needs a piece-wise constant volatility construct. The model-to-market volatility

mismatch is even larger if HW1F model is used for OIS modelling, which was the main

reason for performing most of calibrations and research on the HW2F-CIR Hybrid model.

We can conclude from our tests that the HCIR model can be calibrated to single-strike

caps and used for extrapolation and pricing of caps on illiquid tenors. We have benchmarked

the HCIR model against a displaced-diffusion volatility extrapolation technique and shown

that the resulting HCIR volatilities are in line with current market-standard techniques.

What is more, the HCIR model does not require parameter calibration with exotic deriva-

tives or historical data like the DD approach and therefore is a more robust technique for

illiquid cap pricing.

Overall, the HCIR model is a “clean” short-rate mathematical model with some lim-

itations on the market data it can fit. There are, however, workarounds for some of them

in practice. For instance, short-maturity caps should be fitted much better using piecewise

constant volatilityσ(t), but this would complicate the valuation formulas. Then, the leftover

error in LIBOR-OIS fitting with CIR model can be ‘adjusted’ byadding a time-dependent

term-structure factorψc(t), like in the CIR++ model (Brigo and Mercurio, 2006). How-

ever, this adjustment would make the model less mathematically consistent and harder to

calibrate.
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Chapter 5

Hybrid Model for CVA Valuation

5.1 Introduction

Another important application of the HCIR model with a stochastic basis is the counterparty

valuation adjustments (CVA) valuation. CVA charge is included in every over-the-counter

trade and if two parties do not agree on the outstanding CVA value, this would lead to

trade disputes and missed opportunities as discussed in Chapter 1. Additionally, as CVA

is a default-risk measure, using a more elaborate model which includes stochastic basis

and potential correlation between the basis would improve the performance of the risk-

management strategies.

In this chapter, we outline the setup and experimental results, where we price CVA

for a portfolio of a single interest rate swap using the hybrid HW2F-CIR model. First,

we introduce the basics of CVA valuation given some stochastic model for the drivers of

portfolio value and probability of default. Then, we evaluate CVA under the hybrid model

and compare the result to a benchmark, pure HW2F model.

In the first experiment, we assess the situation when the default probability is not

correlated with the size of LIBOR-OIS spread, and in the second one, we impose correlation

between the CIR state variable, driving the size of LIBOR-OIS spread and the counterparty

default probability.



5.2 CVA with short rate models.

To estimate the credit value adjustment for a single derivative or a portfolio position, we

have to compute the expected lossesL at time-zero:

CVA = EQ[L∗] = (1−R)

∫ T

0

EQ
[

D(0, t)(L(t))+λ(t)
]

dt, (5.1)

whereR is the recovery fraction,D(0, t) is the stochastic discount factor,(L(t))+ is the

positive net present value of underlying portfolio at timet andλ(t) is the instantaneous

default probability.

To obtain a fair CVA comparison of all models we calibrate them to market forwards

and caps, obtaining risk-neutral estimations of their term-structure and volatility parame-

ters as done in section4.3therefore our CVA pricing scheme works fully under risk-neutral

pricing measure. We see our approach as a better option, as the alternative of using his-

torical parameters for each of the model would yield incomparable CVA results. For every

model, we estimate CVA as:

CVA = EQ[L∗] = (1−R)

∫ T

0

EQ
[

D(0, t)(L(t))+λ(t)
]

dt, (5.2)

= (1− R)

∫ T

0

POIS(0, t)E
Qt
[

(L(t))+
]

λ(t)dt, (5.3)

CVA ≈ (1−R)

N
∑

i=1

POIS(0, Ti)E
QTi

[

(L(Ti))
+
]

(SP(Ti)− SP(Ti−1)) dt. (5.4)

Here we price CVA under forwardQT -measure, and the hazard rate functionλ(t) has a

deterministic hazard rate. The approximation in (5.4) uses survival probability

SP(T ) = P [τ ≥ T ] = exp



−
∞
∫

T

λ(t)dt



 . (5.5)

whereτ is the time of default.

Here we also introduce the debt value adjustment (DVA), which is the price of default

to the counterparty, if the first party defaults. In the following we will assume that the

default risks for both counterparties are equivalent, but the portfolio value only contributes
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to DVA, when it is negative(L(Ti))− = −L(Ti) if L(Ti) < 0 else0.

DVA ≈ (1− R)
N
∑

i=1

POIS(0, Ti)E
QTi

[

(L(Ti))
−
]

(SP(Ti)− SP(Ti−1)) dt. (5.6)

5.2.1 Portfolio Drivers

We want to estimate CVA in HCIR and the benchmark model for thefollowing products:

1. Fixed-floating LIBOR swaps,

2. OIS-LIBOR swaps,

3. Interest rate caps.

As given in (5.1), to assess CVA value of any portfolioL(t) we need to know the

stochastic discounting factorD(0, t), which is driven by OIS rate (HW2F or HW1F) model

and the recovery fractionR, which we assume to be constant at0%. This assumes that upon

default there is no leftover value from companies assets to cover even part of its liabilities on

this portfolio. This is a simplified assumption as modellingthe recovery value is a research

field by itself.

Then, we value the stochastic time-dependent expected positive exposureE(t) =

(L(t))+ under HCIR model using scenario generation

E(t) = (L(t))+ = (L(t, x(t), y(t), z(t)))+, (5.7)

whereL is the portfolio value function, dependent on HW2F model state variablesx(t), y(t)

and the CIR model state variablez(t)

In CVA valuation we shall directly use the survival functionSP(t) and distinguish two

cases for our use:

1. First, we define a simple, deterministic survival function, for our example CVA com-

putation, where SP(T = T0 = 0) = 1 and SP(T > TN = 30) = 0.

• We choose it to be linear: SP(Ti)− SP(Ti−1) =
Ti−Ti−1

TN−T0
.

• Thus, if we space our time-snapshotsTi every-year, every measured interval

carries a deterministic1
30

weight for default in (5.4).

2. For the second case, we want to add some randomness in the default rate and ability

to correlate it with the CIR state variablez(t).

• We set the default weightD(i−1,i) = SP(Ti) − SP(Ti−1) for each periodi as a
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uniformly-distributed random number:

D(i−1,i) ∼ 2

[

Ti − Ti−1

TN − T0

]

U . (5.8)

whereU is the standard uniform random variable over period[0, 1].

• The average of the default weight above is the same as in deterministic case, but

with added randomness. The portfolio still expires atT = 30 (years).

The deterministicD will be used in most of the following tests. The second case

is interesting when the default weightD is related/correlated with the size of the basis

spread via a Gaussian copula and we can investigate the impact of such wrong-way risk, as

discussed in section5.4.

The simulation (in both cases) is carried out by function (5.2) by simulating random

paths for HCIR state variablesx(t), y(t), c(t). Pricing of the defined portfolio containing

a single interest rate swap was done following the guidelines in (Savickas et al., 2014).

We valued the portfolio at discrete time-pointsTi and applied the default weightD. This

approach gives an approximate CVA value for our portfolio, but if we do use enough time-

points in the simulation, the overall result should be closeto the true value.

5.2.2 CVA Setup under HCIR and Benchmark

To fairly compare CVA values with our hybrid HW2F-CIR model,we need a similar, short-

rate based standard model or at least a normal-distributionbased model to use in these tests.

To our knowledge, the following options are available:

• HW2F model for OIS with added constant basis spread for the basis.

• HW2F model forτ -forward LIBOR curve. We could calibrate this model to cap data,

using OIS discounting and treating the LIBOR forward curve as independent of the

OIS curve.

While the second option offers more flexibility, it does not fit out purpose as we cannot

evaluate CVA on IRS if not all tenors have traded caps. On the other hand, the first option

with fixed basis spread is a viable option.
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As shown in AppendixC.2, the simple HW1F model the discount bond price is ex-

pressed as:

P (t, T ) =
PM(0, T )

PM(0, t)
e−B(t,T )x(t)·

exp

{

−B(t, T )
σ2

2a2
(

1− e−at
)2 − B(t, T )2

σ2

4a

(

1− e−2at
)

}

, (5.9)

and the HW2F price is also expressed similarly:

P (t, T ) =
PM(0, T )

PM(0, t)
· exp [−Bx(t, T )x(t)− By(t, T )y(t)]

exp

{

−1

2
(V (0, T )− V (0, t) + V (t, T ))

}

. (5.10)

Using either of these models, we can calibrate them to the term-structure of6-month for-

wards and6-month ATM caps using analytical formulas as in AppendixC.4. Then, by

leavingσi andai parameters the same, but switching the term-structure element P
M (0,T )

PM (0,t)
to

a different LIBOR curve, e.g. 3, 1 or 12-month - we can simulate the state variablex(t)

and price forwards on any of 1, 3, 6, 12-month LIBOR or OIS curves or price caps using

the standard HW formulae.

5.3 CVA for Multi-Curve IRS

In this section, we calibrate the single-curve HW1F, HW2F and hybrid, 2-curve HW2F-CIR

models to 6-month LIBOR forward curves and4% 6-month caps with maturities ranging

from 1-year to 30-years. The parameters obtained for each model is shown in TableE.1.

First we have made the CVA/DVA valuations for a single ATM (K = 2.6839%) 30-

year 6-month swap, resulting in very close estimates, within 10 EUR for a10′000 EUR

ATM swap, with guaranteed default within 30-years. An alternative way of assessing the

value of CVA is by computing the CVA impact as a change in the fixed rate of the underlying

swap. For this particular swap, every1bp change in the swap fixed leg leads to the CVA

value change of5EUR. As shown in Table5.1 the CVA adjustment when moving from

HW2F to HCIR model decreases by18 EUR, which is approximately3.5bp move on the

fixed leg of the swap. This leads to a conclusion that in a smallbasis-spread environment,

without wrong-way risk, there may be little need for explicit spread model.

The figures5.1 and5.2show the means and the variances of the simulated IRS value
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across time for all the chosen models. They demonstrate thatthe swap mark-to-market

(MtM) simulation means for HW1F and HW2F match perfectly, the HCIR is slightly

higher, as a result of CIR model smoothing over LIBOR-OIS forward spreads. Neverthe-

less, the swap mark-to-market variance over time is smallest under HCIR model, followed

by HW2F model with fixed basis. Under HW1F model, the swap variance is of different

shape as we are missing the second stochastic driver for OIS,hence the different shape in

volatility.

While the difference between HCIR and HW2F model CVA/DVA values is small,

valuing CVA as well as DVA with HCIR model leads to a smaller, cheaper CVA charge as

the spread in HCIR model has small volatility. Then, one should keep in mind that HW1F

and HW2F models yield rather different variance profiles, therefore it is expected that they

would be different and in this case, the CVA and DVA values in HW2F model are smaller.

Model CVA DVA Swap MtM (t=0)
HCIR 608 359 -6
HW2F 618 374 0
HW1F 626 384 0

Table 5.1: CVA, DVA and swap MtM values in Euros for and ATM swap with fixed rate of
2.6839%
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Figure 5.1: Means and variances of the simulated IRS swap with fixed maturity under HCIR
and HW-models as a function of the exposure dateT . All models calibrated to 22-Nov-2013
dataset.
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Figure 5.2: CVA and DVA exposure profiles of an 6M ATM IRS with HCIR and Hull-White
models as a function of the exposure dateT . All models calibrated to 22-Nov-2013 dataset.

5.3.1 Multi-Curve CVA Estimates

As HCIR model allows pricing of swaps on any tenor with stochastic basis, we have cali-

brated an HCIR model with aCIRx component for every LOIS spread: 1, 3, 6, 12-month

to the forward curves and 6-month4% caps. Then, we have produced a CVA/DVA table for

each of the models, with different tenor 30-year ATM swaps inthe portfolios. The results

in Table5.3show that:

• The HCIR model yields lower CVA/DVA values than the pure HW ones. The differ-

ences in CVA values are as high as30 EUR, or and adjustment of6bp on the fixed

leg (estimated numerically).

• With increasing tenor length, CVA/DVA values decrease indicating decreasing un-

derlying portfolio volatility.

Tenor ρ σ θ k c0
1M -3.14% 0.115% 1.17e-5 5.67% 0.11%
3M -3.64% 0.10% 1.14e-5 4.93% 0.27%
6M -1.8% 0.12% 0.82e-4 9.22% 0.41%
12M -2.05% 0.35% 0.017% 7.9% 0.54%

Table 5.2: CIR-parameter table for every tenor. HCIR model was calibrated to 4% caps
from 22-Nov-2013.
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CVA DVA
Tenor ATM(%) HCIR HW2F HW1F HCIR HW2F HW1F
1M 2.49% 660 690 707 334 352 370
3M 2.59% 636 658 671 342 363 378
6M 2.68% 608 618 626 359 374 384
12M 2.83% 554 562 559 363 381 380

Table 5.3: CVA/DVA table for multi-curve IRS. The HCIR modelwas calibrated to 4%
caps from 22-Nov-2013. The given values show CVA/DVA in EUR values for a respective
tenor IRS’s with 30-year maturities.

5.3.2 Large-Basis Scenarios

To test the model performance under different market scenarios, e.g. large, increasing and

decreasing basis spread cases, we generated a number synthetic datasets with flat, linearly-

increasing and curved-decreasing LOIS spreads, the latterresulting in a large CIR volatility

σ = 10%.

Flat Gap

We introduce a flat 200bp LIBOR-OIS spread into the dataset instead of the market for-

wards, leaving cap volatility curve unchanged. The Figure5.3shows the forward curve and

volatility data. We have calibrated the HW1F, HW2F and HCIR models to the scenario

dataset obtaining the parameter set given in Table5.4 and calculated the CVA/DVA on a

6-month ATM swap.

The resulting simulated swaps have identical means in all models, as well as volatilities

as shown in Figure5.4. Hence, the CVA/DVA figures, in this case, are also identical, we

have obtained CVA values within simulation error margin, namely of 678 and 679 EUR

for CVA and 362 and 363 EUR for DVA, for HW2F and HCIR models respectively. The

HW1F model displayed somewhat smaller volatility of exposure and CVA, DVA values of

654 and 335 EUR.

ρ σ θ k c0
-0.23% 1.2% 1.96% 59.5% 23%

Table 5.4: CIR parameters in flat high-basis case for 6-monthLIBOR forward curve.
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Figure 5.3: Forward rates and (normal) cap volatilities fora high, flat-basis scenario.
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Figure 5.4: Means and variances of the simulated IRS swap under HCIR and HW-models
using synthetic forward curve with flat LIBOR-OIS spread andmarket 4% cap volatilities
from 22-Nov-2013. On the X-axis we have the exposure dateT .

Increasing Gap

In the second synthetic setup, we introduce a linearly increasing LIBOR-OIS gap from 0

up to 200 basis points (at 30-year forward point) as shown in Figure 5.5. The fitted CIR

model has a very low starting short-ratec0 and large long-term meanθ. As shown in table

5.5, the CIR volatility is small and the mean-reversion speedk is small as well.

The market cap volatility fits for HCIR and HW2F models are practically identical.

As a consequence, HCIR model has CVA/DVA of862/215 EUR, and HW2F has865/217

EUR. Figure5.6demonstrates that the HCIR model yields slightly lower portfolio volatility,

as the CIR model is close to constant.
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ρ σ θ k c0
-1.35% 0.12% 48.6% 0.14% 005%

Table 5.5: CIR parameters in increasing high-basis case for6-month LIBOR curve
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Figure 5.5: Forward rates and (normal) cap volatilities fora high, increasing-basis scenario.
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Figure 5.6: Means and variances of the simulated IRS swap under HCIR and HW-models
using synthetic forward curve with linearly increasing LIBOR-OIS spread and market 4%
cap volatilities from 22-Nov-2013. On the X-axis we have theexposure dateT .

Curved-Decreasing Case

In the last case, we produced a decreasing basis-spread scenario with a highly curved short-

term forward curve as shown in Figure5.7, which could be a result of a liquidity squeeze:

short term unsecured loans sold at a very high premium above OIS rates, while long-term

LIBOR loans have a constant credit-risk premium above OIS. The resulting CIR model pa-

rameters are given in Table5.6. In the case of liquidity squeeze scenario, the CIR volatility
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becomes high, even10%, but the mean reversion speedk = 100% is also high, due to the

positive rate restrictions on the CIR model.

The resulting CVA figures in Table5.7show some differences in the models, the HCIR

model yields overall larger CVA and DVA figures for the same swap, as our basis spread is

now quite volatileσ = 10%. The EUR impact of changing from HW2F to HCIR model is

34 EUR, this (approximately) translates to≈ 7bp adjustment on the fixed swap leg.

ρ σ θ k c0
0% 10% 0.51% 100% 4.12%

Table 5.6: CIR parameters in curved basis spread case for 6-month LIBOR curve.
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Figure 5.7: Forward rates and (normal) cap volatilities fora high, increasing-basis scenario.

Model CVA DVA Swap MtM
HCIR 658 420 0
HW2F 624 386 0
HW1F 620 384 0

Table 5.7: CVA, DVA and swap MtM EUR values at timet = 0 for an ATM swap with
fixed rate of2.6839%
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Figure 5.8: Means and variances of the simulated IRS swap under HCIR and HW-models
using synthetic forward curve with curved-decreasing LIBOR-OIS spread and market 4%
cap volatilities from 22-Nov-2013. On the X-axis we have theexposure datet.
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Figure 5.9: CVA and DVA profiles for IRS under HCIR and HW2F models using synthetic
forward curve with curved-decreasing LIBOR-OIS spread andmarket 4% cap volatilities
from 22-Nov-2013.

The results from LIBOR-OIS swap and interest rate cap CVA estimation resulted in

similar conclusions and are discussed in AppendicesE.2andE.3.
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5.4 Wrong-Way Risk in LOIS

The last example considered is the wrong-way risk (WWR) model for CVA on an IRS

portfolio. In general, we can manipulate three types of wrong-way risks, namely correlation

between counterparty default and:

1. Exposure size (standard WWR)

2. OIS rates (w.r.t risk-free rates)

3. LIBOR-OIS spread (w.r.t. credit-liquidity premium)

Standard 2-Factor Hull-White model only allows to model WWRwith respect to the

first two factors. Having an explicit LOIS model allows us to include the 3rd risk. To set

up wrong-way risk in CVA in a simple way, we impose correlation between the default

probability and LIBOR-OIS spread. For this case the CVA pricing formula becomes:

CVA ≈
N
∑

i=1

EQ
[

P (0, Ti)(L(Ti))
+(D(Ti−1, Ti))

]

, (5.11)

whereD is the stochastic default weight.

5.4.1 WWR Methodology

To impose wrong-way risk, or correlation, between the LOIS spread and the default we will

impose correlation between CIR spread-state variablec(t) and the default weightD(t) via

a Gaussian copula. We will also assume that the default weight is not correlated with the

Hull-White state variablesx(t), y(t). The latter correlation is a viable option to explore, but

it is out of scope from this report.

As mentioned previously, the CIR (spread model) state variable c(t) is distributed

with non-central chi-squared distribution and the defaultweightD for every time period

(Ti−1, Ti) is uniformly distributed over[0, 6.66%] interval, with a mean of3.33%.

We constructed a Gaussian copula (Charpentier et al., 2007) correlatingc(t) state vari-

able with the default weightD, as follows.

The conditional density function (CDF) of the spread process c(t) shall be calledF .

For a given sampleX ∈ F , we convert this to uniformly distributedU [0, 1] random sample

X̂ by evaluating the CDF

X̂ = F(X)

and, consequently convert to normally distributed sample by using inverse normal CDF
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Φ−1

X̃ = Φ−1(X̂).

Then, we draw another independent normally distributed sample Z̃ ∈ N , and derive the

sample

Ẑ = ρ · X̃ +
√

1− ρ2 · Z̃

which has normal marginal distribution, but is correlated with X̃ by correlation rateρ.

Finally, we convert the latter sample to uniformly distributedZ = Φ(Ẑ). We end up

with samplesX ∈ F andZ ∈ U with their respective marginal distributions, but correlated

with Gaussian copula with correlationρ. The latter two samples together with samples for

HW2F state variablesx(t), y(t) are enough to evaluate CVA for a given IRS portfolioL(t).

5.4.2 WWR for IRS

We shall demonstrate the impact of the correlationρ parameter on CVA/DVA values for an

interest rate swap in three cases of potential WWR correlationρ = 0%, 100% and−100%

and two forward curve cases:

1. Market data from 22-Nov-2013,

2. Synthetic high-basis scenario: curved basis (high vol ofc(t)).

The table5.8shows, the LIBOR-OIS WWR correlation impact on overall CVA is negligi-

ble if we use the market dataset with small LOIS basis spreads. On the other hand, in the

synthetic high-volatility dataset, the WWR effect is visible, but not very large. As the sen-

sitivity of CVA to changes in the fixed leg are5EUR/bp, the WWR impact, in this case,

is less than2bp, the CVA value increases with increasing positive correlation between the

CIR state variablec(t) and the uniformly-distributed default probability CDP(t). Equiva-

lent, but opposite, effect is observed in the DVA impact, table 5.9: DVA values decrease

with increasing positive correlationρ, and increase with high-negative correlation.

We have chosen the test correlation values to be very large, as a change in LIBOR-OIS

spread is tightly linked to changes in liquidity and credit situation in the interbank lending

markets, hence a change in LOIS spread should be well reflected in the default probability

(weight) of a banking counterparty.

For this chapter, we skip the WWR assessment for LOIS swaps aswell as caps, be-

cause the impact on them would be even smaller for the same reasons outlined in the previ-
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ous section. To conclude, The WWR impact is visible on interest rate swaps but is not very

large even in high-volatility spread (liquidity squeeze) situations. This is highly affected

by the chosen CIR model for the spread, as this square-root process is stable and even with

high initial volatility quickly converges to a long-term mean spread.

CVA Values: ρ = −100% ρ = 0% ρ = 100%
Market Data 609 609 609
High-Vol sc. 649 660 668

Table 5.8: CVA values under wrong-way risk with different correlation levels between CIR-
statec(t) and the CDP(t)

DVA Values: ρ = −100% ρ = 0% ρ = 100%
Market Data 358 359 360
High-Vol sc. 426 420 414

Table 5.9: DVA values under wrong-way risk with different correlation levels between
CIR-statec(t) and the CDP(t)

To obtain a benchmark, for the WWR case when LOIS spread is correlated with the

default probability, we can compare the latter with CVA withWWR case, when the corre-

lation is between the overall exposure (NPV(t)) and the default weight. This way we can

have a comparative view how much impact can LOIS-default correlation have in compari-

son with more common way of assessing WWR in CVA.

The WWR, correlation between exposure and default, impact on CVA/DVA values is

quite large, an increase/decrease by 350 and 400 EUR, alternatively this would mean up

to 80bp adjustment on the fixed leg of the ATM swap. This means that when CIR model

is used for the LOIS spread - the imposed WWR between the default rate and the LOIS

spread has a much smaller impact on CVA than full WWR model, where correlation is set

up between exposure and default.

CVA Values: ρ = −100% ρ = 0% ρ = 100%
Market Data 249 609 968
High-Vol sc. 265 659 1052

Table 5.10: CVA values under wrong-way risk with different correlation levels between
exposure size NPV(t) and the CDP(t)
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DVA Values: ρ = −100% ρ = 0% ρ = 100%
Market Data 643 359 78
High-Vol sc. 753 420 87

Table 5.11: DVA values under wrong-way risk with different correlation levels between
exposure size NPV(t) and the CDP(t)

5.5 Conclusions

In this experiment, we have constructed a simple CVA valuation engine, where the portfolio

contains only a single interest rate swap, the credit risk isdetermined by simplified model

with a (random) default rate. We have compared the CVA and DVAcharges for the IRS

when the underlying LIBOR and OIS rates are driven by either HCIR or simple HW2F

model with constant basis spread.

We have performed comparative analysis between the two models using market data

as well as synthetic data to investigate the realistic and limiting cases. Overall, our results

show that the impact on CVA of choosing a hybrid model with stochastic basis over constant

spread HW2F is small, as the LIBOR-OIS spreads are rather small in general and CIR

model used for its dynamics does not carry a lot of volatility.

This result has some broader implications. Even if the CIR-spread model is one of the

simplest analytic stochastic basis models, the fact that WWR with stochastic basis is very

close to the CVA value with deterministic basis shows that many simplified models without

the stochastic component can be close to the “advanced” model in the current small-basis

environment and can be safe to use, without adding unnecessary complexity into CVA

computation.
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Chapter 6

Conclusions and Future Work

This chapter presents an overview of the work described in this thesis on modelling stochas-

tic basis with two different branches and discusses possible future directions of this re-

search. In Chapter3 we have analysed and extended a conceptually unique LIBOR panel

model, which uses the mechanics of daily LIBOR quotations and changes in the set of

banks in the LIBOR panel as the driver for LIBOR-FRA spreads.In Chapter4 we intro-

duced a novel hybrid short-rate model for joint modelling ofmulti-tenor LIBOR rates and

volatilities, able to re-price a much larger set of traded and illiquid derivatives than the latter

model while keeping explicit links to credit and liquidity risks.

6.1 The Extended Panel Model

The LIBOR panel model does not belong to any of the popular classes of financial stochastic

interest rate models, like the LIBOR market models or short-rate models. Nevertheless, it

offers a unique insight into the problem of joint modelling of FRA rates together with OIS

and spot-LIBOR rates. In our work, we have replicated the original results ofMorini (2009)

and showed that the use of the credit-liquidity volatility proxy, as in the original article, is

very limited. What is more, to correct for the lack of external volatility parameters we

changed the formulation of the problem and constructed FRA-implied volatility, as often

done in the options markets. In the implied-volatility framework, using global calibration

methods we were able to jointly re-price all available FRA rates at once using a single set

of parameters, leaving less than a 20bp error in repricing.

In our dataset, the bid-ask spreads of most of FRA contracts were well within the 5bp

margin, therefore the panel model, in its standard formulation, was not flexible enough to



re-price all instruments within required tolerance. We performed an empirical investigation

into the assumptions of the panel model and noted that the assumed log-normal Brown-

ian motion does not hold for the historical LIBOR-OIS spreads. The closest distribution to

match the empirical data was the Student-T distribution, but the latter is known to yield non-

analytic option prices and other difficulties in pricing. Therefore we chose to use a mixture

of Gaussians as the approximating distribution for the stochastic LIBOR-OIS spreads with

one Gaussian controlling small micro-movements of the spread and the other one respon-

sible for the occasional large swings in the LIBOR-OIS spread. Using this assumption we

obtained a known, analytic uncertain parameter model for options pricing. By calibrating

the extended panel model to series of traded FRA contracts wewere able to minimise the

replication error to less than 5bp in95% of historical dates. The latter result shows that the

extended panel model can be used to price FRAs and detect mispricings in the market.

Moreover, we performed empirical parameter analysis of theextended panel model.

The full model is described by 3 parameters: volatilitiesσ1, σ2 and weight parameterλ.

We calibrated the model to a set of FRAs for every trading day in our dataset, obtaining

three time-series of parameters. We found the levels of volatilities as the weight of the

large volatilityσ2, indicating large swings in credit risk, coinciding with the major credit

crisis and post-crisis events, reflecting the interest ratemarket turbulences. As a result, this

model can be used by risk managers to observe and anticipate large changes in the interbank

lending markets using liquidly traded contracts like the FRAs.

6.2 HCIR model

The hybrid HW2F-CIR model is a very promising, straightforward short-rate model for

risk-management purposes. It has a number of original and very important features:

1. Is a short-rate model suitable for low-dimensional simulation of portfolio exposure.

2. Allows for analytic calibration to market OIS, IRS and semi-analytic to ATM (or any

fixed strike) caps.

3. Allows calibration to multiple tenors of LIBOR-OIS spreads and pricing of caps on

illiquid tenors.

4. And allows simulating IRS, cap exposures on different tenors for CVA valuation.
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6.2.1 Calibration

The model can be calibrated to a single-day of market data, yield curves and a series of

market caps. In the calibration, the information about OIS term-structure goes into the

(base) HW2F model, the LOIS spread term-structure is fitted to CIR fixed parameters and

the cap volatility information is fed into both: Hull-Whitevolatility and mean reversion, as

well as CIR parameters. Hence, the fitting is done jointly to forward rates and market cap

volatilities.

We have successfully calibrated the model to market data on 22-Nov-2013. However,

we note that in this global-calibration exercise, multiplelocal minima exist in the error

function and the optimizer can fall into one, ignoring the absolute global solution (see

example in AppendixE.4). To avoid this, we propose to calibrate a simple Hull-White

model with constant-basis spread assumption to market curves and caps and then use these

Hull-White volatility and mean-reversion parameters as a starting point for full HCIR model

calibration.

We further note that the model requires a smooth, convergentterm-structure of the

forward rates and cap volatilities. Any irregularities could disrupt the calibration (see Ap-

pendix4.5). In the current formulation of the model, there may be caseswhere the calibra-

tion is not successful.

6.2.2 Cap Pricing

We have performed a number of tests with the HCIR model, including illiquid cap pricing

and comparison to market data, exposure and CVA valuation with HCIR model and bench-

marking against pure HW1F and HW2F models. Our analysis has shown that calibration

to market forward curves works within 5bp error for HCIR models 1, with exception of the

first few IRS points - the difference is up to20bp, does not fit well as the market LOIS

spread increases too fast for the HCIR model. Then, the calibration of HW2F-CIR model

to market caps for a single-strike works well, within a 1bp volatility error for maturities

> 3 years. The shorter maturity volatilities are hard to match:the 2-year vol is 5bp higher

in the model, the 1-year market volatility is too low to be represented by HW2F or HCIR

models. The HW1F model is not flexible enough to price a singlemulti-maturity series of

1The ICAP bid-ask spreads are around 5bp for market FRAs and IRS.
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market caps and falls behind both previous models. What is more, as the HCIR model is

based on HW and CIR models, however, the hybrid model has a very small volatility smile

and cannot be used reliably for smile extrapolation.

6.2.3 CVA Impact Evaluation

In our tests for CVA and exposure assessment, we have benchmarked the HCIR model ver-

sus the fixed-basis HW1F and HW2F models in market and synthetic-data situations. We

have found that the HW2F and HCIR models show comparable IRS exposure profiles and

CVA values in market-data tests, with differences around2bp on an IRS fixed rate adjust-

ment. The HW1F model results in overall higher volatility and higher CVA/DVA values

for ATM swaps than the other two models. Whenever the LOIS spread is small or the

calibrated CIR model has low-volatility and the HCIR and HW2F models give very close

results. The main difference between the models arises in synthetic situation of rapidly de-

creasing LOIS spread term-structure. This happens in a liquidity squeeze when short-term

unsecured borrowing is very expensive when compared to collateralized lending (using OIS

rates). In this case the HCIR model yields higher CVA/DVA values than HW2F model by

even7bp change on fixed leg.

Comparison of exposures for LOIS swap as well as caps did now show any changes

in CVA/DVA figures, as these derivatives stay in or out-of themoney throughout the life-

time of the derivative, depending on the form of the forward curve, and therefore yield

matching CVA/DVA mean exposures. The95%-quantiles of HW2F and HCIR models are

slightly different, as the HCIR model in high-volatility spread case has much larger short-

term volatility. A full analysis is included in AppendixE. We have also tested the WWR

situation, when LOIS spread (or CIR state variablec(t)) is correlated with the conditional

default probabilityCDP (t). In high-vol spread environment the CVA/DVA values are in-

flated/deflated whenρ = 100% andρ = −100% by up to3bp on fixed IRS leg, which is

very small when compared to the adjustment from exposure-default correlation.

6.3 Future Research Directions

Overall, in this work we have outlined a few drawbacks of the hybrid HCIR model. One of

the biggest issues is the lack of flexibility when fitting the volatility smile. As we observed

from our results, the major part of the volatility is driven by the base Hull-White model,
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therefore changing it to a model which incorporates the volatility skew/smile, such as the

Cheyette displaced diffusion stochastic volatility (DDSV) model (Hoorens, 2011) could

resolve this issue. On the other hand, as the pricing and calibration of DDSV model to

bonds and caps is non-analytic, a hybrid DDSV-CIR model could be very computationally

expensive, especially for CVA purpose.

Also, we found that the very short term caps cannot be reliably priced by the HCIR

model, as the market volatility is too low for the HW2F and CIRmodels to replicate at the

same time as high 5-year cap volatility. This issue could be solved by using a piecewise-

constant volatility functionsσx(t), σy(t) for the Hull-White process. However, this leads to

changes in the semi-analytic pricing formulas.

Finally, we have shown the potential impact of HCIR model on CVA and demonstrated

an example of wrong-way risk scenario. This was done in a rather simple credit-default

model, where we only imposed correlation between the hazardrate and LOIS spread size.

It may be interesting to extend this to a full model with default events as well as more

sophisticated default risk model.
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Appendix A

Basis Consistent Replication of the FRA

rate

A very important observation was made byMorini (2009) that the 6-month and 12-month

FRA gap can be ‘bridged’ using a different set of market derivatives - the basis swaps

(2.21). This observation yields a model-free way to express the value of a market-traded

FRA in terms of OIS and LIBOR rates. In the following we give a generalized version of

the proof for basis consistent replication for FRA contracts of any tenor.

We can compute the price of a basis swap (2.21) as the expectation of the LIBOR-

linked payments, discounted with the risk-free rate:

B(0;T, S;Z) = EQ[D(0, T )LM(0, T )τ(T )

+D(0, S)τ(S − T )LM(T, S)−D(0, S)τ(S)(LM(0, S)− Z)] (A.1)

with Z being the fixed basis spread in the contract.

The appropriate risk-free discounting rate for basis swapsis the OIS rate, as these contracts

(just like FRAs) are collateralized. Therefore:

B(0;T, S;Z) = E0[D(0, S)τ(S − T )LM(T, S)]− POIS(0, S)K̃(Z) (A.2)



whereLM (T, S) is a market forward-LIBOR loan,POIS is the OIS discount bond and

K̃(Z) = (S(LM(0, S)− Z))− POIS(0, T )

POIS(0, S)
TLM(0, T ) (A.3)

= (
1

PL(0, S)
− 1)− SZ − POIS(0, T )

POIS(0, S)
(

1

PL(0, T )
− 1) (A.4)

=
1

PL(0, S)
(
PL(0, T )

PL(0, S)
− POIS(0, T )

POIS(0, S)
) + (

POIS(0, T )

POIS(0, S)
− 1− SZ) (A.5)

=
1

PL(0, S)
(FStd(0;T, S)τ(T, S)− EStd(0;T, S)τ(T, S)) + EStd(0;T, S)τ(T, S)− SZ

(A.6)

= τ(T, S)

[

1

PL(0, T )
(FStd(0;T, S)− EStd(0;T, S)) + EStd(0;T, S)−

S

τ(T, S)
Z

]

(A.7)

whereFStd andEStd are standard replications (2.11) of, respectively, LIBOR and OIS for-

wards.

Now, if we compare the basis swap price (A.2) and the FRA value:

FRA(0, T, S;K) = E0 [D(0, S)(S − T )(L(T, S)−K)] (A.8)

= E0 [D(0, S)(S − T )L(T, S)]− POIS(0, S)(S − T )K (A.9)

We see that by settingK = K̃(Z)/τ(T, S), then the basis swap and FRA values coincide.

Hence the FRA equilibrium rate, when the FRA market value is zero, can be written as:

FB(0;T, S) = EStd(0;T, S)+
1

PL(0, T )
(FStd(0;T, S)−EStd(0;T, S))−

S

τ(T, S)
BM(0;T, S)

(A.10)

whereBM(0;T, S) is the market par basis swap spread.
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Appendix B

Multi-Curve Pricing Schemes and Tables

The following two flowcharts explain the pre- and post- crisis methods of stripping market

interest rate curves and volatilities.

In FigureB.1 we show the classic OIS, LIBOR curves and LIBOR volatility boot-

strapping framework. In this setup one obtains the OIS and LIBOR interest rates from

their respective swaps, choosing the most liquid derivatives if multiple are available. For

example, to strip the LIBOR curve one would use spot LIBOR curve up to 1-year, then the

6-month FRA rates up to 5 years and then IRS rates. If one used another tenor, like 3-month

swap rates, the final result would be unchanged as there were no significant basis spreads

between 6 and 3-month forward rates.

The same, separate, bootstrapping procedure applied for credit default probability

curves obtained from CDS spreads. The forward LIBOR volatilities were obtained by using

already stripped unique LIBOR curve and current, most liquid market caps.

In FigureB.2 we show the modern, post-crisis curve bootstrapping setup.While CDS

and OIS stripping is left unchanged, now we have to strip a forward-LIBOR curve from

every tenor (1,3,6,12)-month FRA’s and IRS’s. Additionally, the OIS and spot-LIBOR

curve affects each of these bootstrap procedures and also affects the, now tenor-dependent,

LIBOR-volatility bootstrapping procedure.

The volatility bootstrapping is now exceptionally hard as only one tenor caps are liquid

per currency, e.g. 6-months in Euro, 3-months in US dollar. The latter means that the

volatilities for other-tenor LIBOR forwards are not known due to lack of market data and

have to be implied by a model. Such situations before the credit crash only happened when

dealing with exotic derivatives. Now the vanilla derivatives obtained the features of exotics.



Figure B.1: Old OIS discounting framework
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Figure B.2: New OIS discounting framework
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B.1 Table of Common Multi-Curve Modelling Approaches

As the basis spread modelling problem is new, there is no industry-wide standard way of

approaching it, but there have been multiple proposals for multi-curve interest rate models.

In this section, we briefly outline them and discuss pros and cons.
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Author Method Strengths Weaknesses
(Kienitz, 2013) Volatility transformation by treating

LIBOR as displaced diffusion over
OIS forward rate.

Extrapolate ATM-Option volatili-
ties across tenors; Allows to super-
impose SABR parameters to trans-
fer caplet volatility smile.

Not a stochastic-spread model, a way of
filling up LIBOR-vol surface

(Mercurio, 2010) Extended Multi-Curve LIBOR
Model

Exact calibration to available
curves and option products

Distinct volatility surfaces for every tenor
τ , lack of data for calibration of volatil-
ities, correlations, etc. Impossible to
calibrate OIS volatility to market instru-
ments.

(Morini, 2009) (Extended) LIBOR as and Option It can price FRA contracts using
spot-LIBOR, OIS curves and
credit-liquidity volatility data.
Good historical fit for tested FRAs

Difficult to use beyond 1-year maturity
due to lack of spot-LIBOR curve and lack
of credit proxies. caplet pricing may be
unrealistic in high FRA-OIS basis scenar-
ios (spread volatility is too high)

(Crépey et al., 2012) Levy-Hull-White model for
default-able LIBOR

Analytic valuation of FRAs and
Swaps can reproduce historical
LIBOR-OIS spreads. Semi-
Analytic valuation of caps and
Swaptions; The jump model for
LIBOR rates can be used well for
xVA calculations.

Non-analytic pricing with characteristic
functions; Unclear if Swaps, caps can be
repriced at market rate simultaneously.

(Bianchetti, 2010) Two short rates for OIS and forward
Curves, as in FX analogy

Consistent, known model, simple
pricing

Quanto Terms, negative LIBOR-OIS ba-
sis spreads are possible, published cali-
brations show unusable fits for swaptions.

(Kenyon, 2010) Two short-rate setup for OIS and
LIBOR-OIS basis

Consistently reprices market Swaps
and FRAs. There are multiple
choices for short-rate models in-
volved, the author demonstrates
setup with Vasicek models.

It loses pricing simplicity, volatility cali-
bration requires illiquid cap data.

Table B.1: Table of popular multi-curve pricing models.
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Appendix C

Appendix: More Theoretical Definitions

and Derivations

In this appendix we include the definitions for bond pricing under CIR and 1-or-2 factor

Hull-White models. Then, we give the derivations for bond option and caplet pricing in

two-curve framework and when the underlying is a k-scaled zero coupon bond.

C.1 The CIR Model

The Cox, Ingersoll and Ross (CIR) model (Brigo and Mercurio, 2006) is the first model to

use the square-root diffusion term in the short rate diffusion SDE:

dc(t) = κ[θ − c(t)]dt + σc
√

c(t)dW (t), c(0) = c0 (C.1)

wherec0, κ, θ, σc are constants. A condition

2kθ > σ2 (C.2)

has to be imposed to guarantee the positivity of the short-rate c(t).

The CIR model yields non-Gaussian dynamics for the short-rate, in particular thec(t)

has the density of a non-central Chi-squared distribution (Brigo and Mercurio, 2006), with:

E [c(t)|Fu] = c(u)e−κ(t−u) + θ
(

1− e−κ(t−u)
)

(C.3)

V [c(t)|Fu] = c(u)
σ2

κ

(

e−κ(t−u) − e−2κ(t−u)
)

+ θ
σ2

2κ

(

1− e−κ(t−u)
)2

(C.4)

Nevertheless, the price at timet of a zero-coupon bond with maturityT can be obtained in



an analytic, affine form:

Pc(t, T ) = Ac(t, T )e
−Bc(t,T )c(t), (C.5)

where

Ac(t, T ) =

[

2h exp{(κ+ h)(T − t)/2}
2h+ (κ+ h)(exp{(T − t)h} − 1)

] 2κθ
σ2

, (C.6)

Bc(t, T ) =
2(exp{(T − t)h} − 1)

2h+ (κ + h)(exp{(T − t)h} − 1)
, (C.7)

h =
√
κ2 + 2σ2. (C.8)

For pricing of European call options on zero-coupon bonds wefirst need to

change the CIR SDE (4.1) from risk-neutralQ to future time T-forward measureQT

(Brigo and Mercurio, 2006):

dc(t) =
[

κθ − (κ+B(t, T )σ2)c(t)
]

dt+ σ
√

c(t)dW T (t) (C.9)

UnderQT the distribution of the short ratec(t), conditional onc(u), u ≤ t ≤ T , is given

by:

pTc (t)(x) = q(t, u)pχ2(ν,δ(t,u))(q(t, u)x) (C.10)

q(t, u) = 2 [ρ(t− u) + ψ +Bc(t, T )] (C.11)

wherepχ2(ν,λ) is a non-central chi-squared density withν degrees of freedom and non-

centrality parameterλ.

δ(t, u) =
4ρ(t− u)2c(u)eh(t−u)

q(t, u)
(C.12)

ρ(t− u) =
2h

σ2(exp{h(t− u)} − 1)
(C.13)

ψ = (κ+ h)/σ2 (C.14)

C.2 Pricing under two-curve HW models

Pricing of zero coupon bond options in two-curve framework using the Hull-White short

rate model is slightly different than in the single-curve framework. We give the details for

zero bond option and interest rate caplet pricing under (scaled) HW1F and HW2F model

versions. The scaling parameterk is needed in the HCIR model and should be assumed to
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be zero in the simplified case.

C.2.1 Pricing under scaled HW1F-K Model

The solution to scaled Hull-White(1+ k) zero-coupon bond price in two-curve framework

is derived as

P k(t, T ) = EQ
[

e−(1+k)
∫ T
t

r(u)du|Ft

]

, (C.15)

wherer(t) is the short rate under HW1F model (Brigo and Mercurio, 2006) with constant

volatility σ(t) = σ. The interior argument of the latter expectation can be rewritten using

∫ T

t

r(u)du =

∫ T

t

φ(u) + x(u)du, (C.16)

∫ T

t

x(u)du =
1− e−a(T−t)

a
x(t) +

σ

a

∫ T

t

[

1− e−a(T−u)
]

dW (u), (C.17)

φ(u) = fM(0, u) +
σ2

2a2
(1− e−au)2, (C.18)

where the expected value of the integral

E

[
∫ T

t

x(u)du|Ft

]

=
1− e−a(T−t)

a
x(t), (C.19)

and the variance is

V (t, T ) = V

[
∫ T

t

x(u)du|Ft

]

=
σ2

a2

[

T − t +
2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]

. (C.20)

Using the above, the bond price can be split up as:

P (t, T ) =
[

e−(1+k)
∫ T
t

φ(u)du
]

EQ
[

e−(1+k)
∫ T
t

x(u)du|Ft

]

(C.21)

asφ(t) is a deterministic function. Now, withk = 0, we have the simple OIS zero-coupon

bond and it is calibrated to the OIS discount curve, hence at time t = 0

P k=0(0, T ) = PM(0, T ), ∀T ≥ 0, (C.22)

which holds if and only if

e−
∫ T
t

φ(u)du =
PM(0, T )

PM(0, t)
exp{−1/2 [V (0, T )− V (0, t)]}. (C.23)
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We summarize all the steps into a formula for bond price whenk = 0:

P k=0(t, T ) = EQ
[

e−
∫ T
t

r(u)du|Ft

]

=
PM(0, T )

PM(0, t)
exp{−1/2 [V (0, T )− V (0, t)]}EQ

[

e
∫ T
t

x(u)du|Ft

]

=
PM(0, T )

PM(0, t)
e−1/2[V (0,T )−V (0,t)]e

1−e−a(T−t)

a
x(t)+ 1

2
V 2(t,T ),

because
∫ T

t
x(u)du is normally distributed random variable with mean1−e−a(T−t)

a
x(t) and

varianceV 2(t, T ). Respectively, if we were to scale the bond by1 + k, we would obtain

P k(t, T ) = EQ
[

e−(1+k)
∫ T
t

r(u)du|Ft

]

=
[

e−
∫ T
t

φ(u)du
](1+k)

EQ
[

e−(1+k)
∫ T
t

x(u)du|Ft

]

=
PM(0, T )

PM(0, t)

(1+k)

exp

[

−1

2
(1 + k) [V (0, T )− V (0, t)]

]

exp

[

(1 + k)
1− e−a(T−t)

a
x(t) +

1

2
(1 + k)2V 2(t, T )

]

,

as the mean of
∫ T

t
x(u)du scales by(1 + k) and the variance scales by(1 + k)2. This leads

to the final result where the k-scaled zero coupon bond price,under 1-factor Hull-White

model

P k
HW (t, T ) =

[

PM(0, T )

PM(0, t)

](1+k)

exp[−(1 + k)B(t, T )x(t)]

· exp
[

(1 + k)

2
(V (0, t)− V (0, T ) + (1 + k)V (t, T ))

]

, x(0) = 0.

C.2.2 Option Price Derivation: HW1F-K

To price a zero-coupon bond (ZCB) option of thek−scaled bond, we can use an analytic

formula:

ZBPHWK(t, T, S,X) = Pois(t, T )(XΦ(−h+ Σ̂(t, T, S))− P̂ k
HW (T, S)Φ(−h)), (C.24)

where

h =
ln

P̂ k
HW (T,S)

X

Σ̄(t, T, S)
+

Σ̄(t, T, S)

2
, (C.25)

Σ̄(t, T, S)2 = (1 + k)2
(

σ2

2a3
[

1− e−a(S−T )
]2 [

1− e−2a(T−t)
]

)

, (C.26)

P̂ k
HW (T, S) = EQT

[

P k
HW (T, S)

]

. (C.27)
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To prove this, we start by defining the ZCB-call option. This is an European call option

with exercise dateT on a bond with maturityS

ZBC(t, T, S,X) = EQ
[

e−
∫ T

t
r(u)du(P k

HW (T, S)−X)+|Ft

]

. (C.28)

Via change-of-numeraire technique we change the measure toOIS T-forward measure, ob-

taining

ZBC(t, T, S,X) = POIS(t, T )E
QT
[

(P k
HW (T, S)−X)+|Ft

]

(C.29)

Now, since the value of the future k-Bond is

P k
HW (T, S) =

[

POIS(0, S)

POIS(0, T )

](1+k)

e−(1+k)Ba(T,S)x(T )e[
(1+k)

2
(V (0,T )−V (0,S)+(1+k)V (T,S))],

Ba(T, S) =
1

a

(

1− e−a(S−T )
)

,

wherex(T ) is a normally distributed random variable under theQT -measure. In turn, the

zero-coupon-bondP k
HW (T, S) is log-normal random variable with mean and variance

µ := EQT
[

logP k
HW (T, S)|Ft

]

= (1 + k) log

[

POIS(0, S)

POIS(0, T )

]

− (1 + k)Ba(T, S)E
QT [x(T )]

(C.30)

+
(1 + k)

2
(V (0, T )− V (0, S) + (1 + k)V (T, S)) ,

V 2 := VQT

[

logP k
HW (T, S)|Ft

]

=
σ2

2a

[

1− e−2a(T−t)
]

(−(1 + k)Ba(T, S))
2. (C.31)

The expected call payoff with strikeX is computed as

∫ +∞

−∞

1√
2πV

(ez −X)+e−
1
2

(z−µ)2

V 2 dz (C.32)

= XΦ(−d2)− eµ+
1
2
V 2

Φ(−d1), (C.33)

d1 = (µ− lnX + V 2)/V, (C.34)

d2 = d1− V. (C.35)

We discount the payoff at the time of option expirationT with OIS bonds obtaining the

final result:

ZBP (t, T, S,X) = POIS(t, T )
[

eµ+
1
2
V 2

Φ(d1)−XΦ(d2)
]

(C.36)
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C.2.3 Caplet Pricing with HW1F-K

Definition C.1. 1 To price a caplet which pays out the difference between LIBOR rate

L(T, S) and strikeK scaled by day-count fractionτ = (S − T ), we need to compute

Cplt(t, T, S,K) = EQ
[

e−
∫ S
t

r(u)duτ(L(T, S)−K)+|Ft

]

(C.37)

= POIS(t, S)E
QS
[

τ(L(T, S)−K)+|Ft

]

(C.38)

= POIS(t, S)E
QS

[

τ

(

1

τ

(

1

PL(T, S)
− 1

)

−K

)+

|Ft

]

(C.39)

= POIS(t, S)E
QS

[

(

1

PL(T, S)
− (1 + τK)

)+

|Ft

]

. (C.40)

While in classic, single-curve setting this could be changed to T-forward measure and made

into a zero-coupon bond put option onPL(T, S) with strikeX = 1/(1 + τK), in our case

the discount factor inside the expectation is the OIS discount,POIS(T, S)! = PL(T, S) and

we cannot use this relationship.

However, the zero-bond is a log-normally distributed random variable, and its inver-

sion is also a log-normally distributed r.v.

PL(T, S) ≈ exp(N (µ, V 2)) =⇒ 1

PL(T, S)
≈ exp(N (−µ, V 2)), (C.41)

therefore our caplet can be priced as a ZCB-call option on inverted 1
PL(T,S)

. Let X =

(1 + τK) andP̂ (T, S) = 1
PL(T,S)

, then

Cplt(t, T, S,K) = POIS(t, S)E
QS

[

(P̂ (T, S)− (1 + τK))+
]

(C.42)

= ZBC(t, T, S,X) = POIS(t, S)
[

e−µ+ 1
2
V 2

Φ(d1)−XΦ(d2)
]

, (C.43)

d1 = (−µ− lnX + V 2)/V, (C.44)

d2 = d1 − V, (C.45)
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where

µ = EQS [logP (T, S)] (C.46)

= (1 + k) log

[

POIS(0, S)

POIS(0, S)

]

− (1 + k)Ba(T, S)E
QS [x(T )], (C.47)

V 2 = VQS [logP (T, S)] (C.48)

=
σ2

2a

[

1− e−2a(T−t)
]

(−(1 + k)Ba(T, S))
2 (C.49)

are the mean and variance oflog P̂ (T, S) under theQS-measure.

C.3 Pricing under scaled HW2F-K Model

This section includes the derivations of bond and option prices under the K-scaled 2-factor

Hull-White model.

C.3.1 2-Curve Option Pricing with HW2F

Standard single-curve bond and option valuation formulas for the Hull-White model are

given in (Brigo and Mercurio, 2006). However, if we were to consider 2-curve framework

with OIS-discounting for a LIBOR bond option, the formulas for zero-bond calls and puts

become more involved. First, we assume that the LIBOR-forward rates areQS = QS
D-

martingales for OIS curveD asL(t;T, S) = EQS [L(T, S)|Ft]

Lemma. C.3.1. The zero-bond options, put and call, under two-curve Hull-White frame-

work can be priced with

ZBPHW2F (t, T, S,X) = Pois(t, T ) (XΦ (−h + Σ(t, T, S))− PHW2F (t;T, S)Φ(−h))
(C.50)

ZBCHW2F (t, T, S,X) = Pois(t, T ) (PHW2F (t;T, S)Φ(h)−XΦ(h− Σ(t, T, S)))

(C.51)

where

h =
ln PHW2F (t;T,S)

X

Σ(t, T, S)
+

Σ(t, T, S)

2
(C.52)

160



andΣ defined as

Σ(t, T, S)2 =
σ2
x

2a3x

[

1− e−ax(S−T )
]2 [

1− e−2ax(T−t)
]

+
σ2
y

2a3y

[

1− e−ay(S−T )
]2 [

1− e−2ay(T−t)
]

+ 2ρ
σxσy

axay(ax + ay)

[

1− e−ax(S−T )
] [

1− e−ay(S−T )
] [

1− e−(ax+ay)(T−t)
]

. (C.53)

Lemma. C.3.2.A single caplet on a LIBOR payment, with strikeK expiring at timeT and

maturing at timeS price, must be valued underQS-forward measure:

Cplt(t, T, S,K) = EQ

[

e−
∫ S

t
rOIS(u)duτ(L(T, S)−K)+

∣

∣

∣

∣

Ft

]

(C.54)

= POIS(t, S)E
QS
[

τ(L(T, S)−K)+|Ft

]

= POIS(t, S)E
QS

[

(

1

PL(T, S)
− (1 + τK)

)+ ∣
∣

∣

∣

Ft

]

whereτ = (S − T ) is a year fraction. The bondPL(T, S) underEQS is distributed log-

normallyLN (µ, Vp) for Vp = Σ(t, T, S) and

µ = EQS [lnPL(T, S)|Ft] = ln
PM(0, S)

PM(0, T )
+

1

2
[V (T, S)− V (0, S) + V (0, T )]

− Ba(T, S)E
QS[x(T )|Ft]− Bb(T, S)E

QS[y(T )|Ft], (C.55)

andEQS[x(T )|Ft],E
QS[y(T )|Ft] are given in (Brigo and Mercurio, 2006)

Lemma. C.3.3. The inverted bond̂P (T, S) = 1
PL(T,S)

follows log-normal distribution

LN (−µ, Vp), therefore we can analytically price caplet underEQS measure as:

Cplt(t, T, S,K) = POIS(t, S)E
QS

[

(

P̂L(T, S)−X
)+
∣

∣

∣

∣

Ft

]

= POIS(t, S)
[

e−µ+ 1
2
V 2
p Φ(d)−XΦ(d− Vp)

]

(C.56)

whereX = (1 + (S − T )K), d = (−µ− lnX + V 2
p )/Vp

C.3.2 Bond Price Derivation: HW2F-K

In the hybrid HCIR model we use a scaled HW2F bonds, their pricing can be done by light

modification of the standard formulas.

Lemma. C.3.4. The zero-coupon bond price under thek-scaled 2-factor HW model is
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derived similarly as above:

P k
HW2F (t, T ) = EQ

[

e−(1+k)
∫ T
t

r(u)du
]

(C.57)

wherer(t) is the short rate under HW2F model (Brigo and Mercurio, 2006). We continue,

by noting that

∫ T

t

r(u)du =

∫ T

t

φ(u) + x(u) + y(u)du, (C.58)

E

[
∫ T

t

x(u) + y(u)du

]

=
1− e−a(T−t)

a
x(t) +

1− e−b(T−t)

b
y(t)

:= Ba(t, T )x(t) +Bb(t, T )y(t), (C.59)

VHW2F (t, T ) = V

[∫ T

t

x(u) + y(u)du

]

=
σ2

a2

[

T − t +
2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]

+
η2

b2

[

T − t+
2

b
e−b(T−t) − 1

2b
e−2b(T−t) − 3

2b

]

+ 2ρ
ση

ab

[

T − t+
e−a(T−t) − 1

a
+
e−b(T−t) − 1

b
+
e−(a+b)(T−t) − 1

a+ b

]

,

(C.60)

we set:

φ(u) = fM(0, u) +
σ2

2a2
(1− e−au)2 +

σ2

2b2
(1− e−bu)2 + ρ

ση

ab
(1− e−au)(1− e−bu) (C.61)

as we calibrate the model to market OIS zero-coupon bond prices whenk = 0. Following

the narrative of the HW1F-K bond price derivation, we obtainthe HW2F-K bond price:

P k
HW2F (t, T ) = EQ

[

e−(1+k)
∫ T
t

r(u)du
]

=
[

e−
∫ T
t

φ(u)du
](1+k) [

e−(1+k)
∫ T
t

x(u)+y(u)du
]

=
PM(0, T )

PM(0, t)

(1+k)

exp

[

−1

2
(1 + k) [VHW2F (0, T )− VHW2F (0, t)]

]

exp

[

(1 + k)
1− e−a(T−t)

a
x(t) + (1 + k)

1− e−b(T−t)

b
y(t) +

1

2
(1 + k)2V 2

HW2F (t, T )

]

,

(C.62)
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which leads to the final result:

P k
HW2F (t, T ) =

[

POIS(0, T )

POIS(0, t)

](1+k)

exp[−(1 + k)Ba(t, T )x(t)] exp[−(1 + k)Bb(t, T )y(t)]

exp

[

(1 + k)

2
(VHW2F (0, t)− VHW2F (0, T ) + (1 + k)VHW2F (t, T ))

]

(C.63)

C.3.3 Option Pricing with HW2F-K

Similarly to the 1-factor case the k-scaled zero-bond option price can be computed analyti-

cally:

ZBPHW2FK(t, T, S,X) = Pois(t, T )
(

P̂ k
HW2F (t;T, S)Φ(h)−XΦ(h− Σ̂(t, T, S))

)

(C.64)

where

h =
ln

P̂ k
HW2F (t;T,S)

X

Σ̂(t, T, S)
+

Σ̂(t, T, S)

2
(C.65)

Σ̂(t, T, S)2 = (1 + k)2Σ(t, T, S)2 (C.66)

P̂ k
HW2F (t;T, S) = EQT [P k

HW2F (T, S)|Ft] (C.67)

andΣ(t, T, S) is given in (C.53)

Lemma. C.3.5. Pricing caplets under HW2F model requires the use ofQS-forward mea-

sure:

CpltHW2F (t, T, S,K) = POIS(t, S)E
QS

[

(S − T ) (L(T, S)−K)+
∣

∣

∣

∣

Ft

]

= POIS(t, S)E
QS

[

(

1

P k
HW2F (T, S)

−X

)+ ∣
∣

∣

∣

Ft

]

(C.68)

we can apply the same inverted-bond valuation methodology as in (C.56) obtaining

CpltHW2F (t, T, S,K) = POIS(t, S)
[(

e−µ+ 1
2
V̂ 2

Φ(d)− X̂Φ(d− V̂ )
)]

(C.69)
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where

d = (−µ− ln X̂ + V̂ 2)/V̂

X̂ = (1 + (S − T )K)

µ = EQS[lnP k
HW2F (T, S)|Ft]

V̂ = (1 + k)2Σ(t, T, S)2

andΣ(t, T, S) is defined in(C.53).

Lemma. C.3.6.To price an interest rate cap with strikeK and fixing datesTi, under HW2F

model, we only need to sum the caplet values:

Cap(t, {T0, ...TN}, K) =

N
∑

i=1

CpltHW2F (t, Ti−1, Ti, K) (C.70)

C.4 Building Hybrid Hull-White Model

The two-curve hybrid HCIR model can be built in two flavours: using HW1F or HW2F as

the base OIS stochastic driver. We derive pricing formulas for both of them.

C.4.1 HW1F + CIR

We define the short-rate processr(t) to be the driver of the instantaneous OIS rates, and the

processst the driver of the LIBOR-OIS spread as:

r(t) = Ψ1(t) (C.71)

s(t) = kΨ1(t) + Ψ2(t) (C.72)

whereΨ1 is a short rate from standard HW1F model (Brigo and Mercurio, 2006) andΨ2 is

the CIR model short rate4.1andk is the correlation-dependence level between the risk-free

OIS rate and the LIBOR-OIS spread. In this setup, the OIS rates are normally distributed

and can be negative. Then, whileΨ2(t), the CIR process, is positive, due to explicit in-

volvement ofHW1F process, the spreads(t) can get negative.

This additive model yields a couple of convenient results. First, the risk-free OIS zero-

coupon-bond prices are determined as in standard textbook extended Hull-White model

(Brigo and Mercurio, 2006)

POIS(t, T ) = PHW (t, T ) (C.73)
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Second, pricing of risky LIBOR-bond becomes:

PL(t, T ) = EQ

[

exp

(

−
∫ T

t

(r(u) + s(u))du

)]

= EQ

[

exp

(

−
∫ T

t

(Ψ1(u) + kΨ1(u) + Ψ2(u))du

)∣

∣

∣

∣

Ft

]

(C.74)

= EQ

[

exp

(

−
∫ T

t

(1 + k)Ψ1(u)du

)

exp

(

−
∫ T

t

Ψ2(u)du

)∣

∣

∣

∣

Ft

]

(C.75)

= EQ

[

exp

(

−
∫ T

t

(1 + k)Ψ1(u)du

)∣

∣

∣

∣

Ft

]

PCIR(t, T ) (C.76)

The left expectation becomes a modified version of the Hull-White bond price as given in

(C.30).

Lemma. C.4.1. To price a LIBOR-based zero-coupon bond option with expiryT and ma-

turity S in the hybrid-model (HCIR) setting under the forwardQT -measure, we let

ZBCHCIR(t, T, S,X) = EQ
[

e−
∫ T
t

r(u)du (PL(T, S)−X)+ |Ft

]

(C.77)

= POIS(t, T )E
QT
[

(PL(T, S)−X)+|Ft

]

= POIS(t, T )E
QT
[

(PCIR(T, S)P
k
HW1F (T, S)−X)+|Ft

]

= POIS(t, T )E
QT

[

PCIR(T, S)
(

P k
HW1F (T, S)−X/PCIR(T, S)

)+ |Ftt
]

= EQT

[

PCIR(T, S)E
QT

[

Pois(t, T )
(

P k
HW1F (T, S)−X/PCIR(T, S)

)+ |Ft

]

|F

= EQT
[

PCIR(T, S)ZBC
k
HW1F (t, T, S,X/PCIR(T, S)) |Ft

]

(C.78)

the latter expectation must be evaluated numerically, but is simple to do as we have analytic

terminal distribution for CIR-state variablec(t) under our chosen measure and, therefore,

the CIR-bond prices at timeT , PCIR(T, S).

Lemma. C.4.2.Pricing caplets under HW1F-CIR (H1FCIR) model also requires, as in the

standard hull-white two-curve caplet price the use ofQS-forward measure (see Appendix

165



C.2.3):

CpltH1FCIR(t, T, S,K) = POIS(t, S)E
QS

[

(S − T ) (L(T, S)−K)+
∣

∣

∣

∣

Ft

]

= POIS(t, S)E
QS

[

(

1

PCIR(T, S)P k
HW1F (T, S)

−X

)+ ∣
∣

∣

∣

Ft

]

= POIS(t, S)E
QS

[

1

PCIR(T, S)

(

1

P k
HW1F (T, S)

−XPc(T, S)

)+ ∣
∣

∣

∣

Ft

]

(C.79)

with X = 1 + (S − T )K, we can apply the inverted-bond valuation methodology as in

(C.41) obtaining

CpltH1FCIR(t, T, S,K) = POIS(t, S)E
QS

[

1

PCIR(T, S)

(

e−µ+ 1
2
V̂ 2

Φ(d)− X̂Φ(d− V̂ )
)

∣

∣

∣

∣

Ft

]

(C.80)

where

d = (−µ− ln X̂ + V̂ 2)/V̂

X̂ = Pc(T, S)(1 + (S − T )K)

µ = EQS[lnP k
HW1F (T, S)|Ft]

V̂ = Σ̃(t, T, S)2+

This expectation must be evaluated numerically, by integrating over analytically-

known distribution ofPCIR(T, S) under theQS-forward measure.

Lemma. C.4.3.To price an interest rate cap with strikeK and fixing datesTi, under HCIR

model, we only need to sum the caplet values:

Cap(t, {T0, ...TN}, K) =
N
∑

i=1

CpltHCIR(t, Ti−1, Ti, K) (C.81)

C.4.2 HW2F + CIR

In the three-factor setup, we have used the 2-factor Hull-White model and the CIR model.

This combination gives additional degrees of freedom to fit the caplets, especially some
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flexibility on the short end of the volatility curve. Our setup stays the same

r(t) = Ψ1(t), (C.82)

s(t) = kΨ1(t) + Ψ2(t), (C.83)

butΨ1 is a short rate from standard HW2F model andΨ2 is the CIR model short rate.

The zero-coupon bond price can be split into CIR-Bond and K-scaled 2-factor Hull-

White (1 + k) zero-coupon bond.

PL(t, T ) = Pc(t, T )P
k
HW2F (t, T ), (C.84)

and the price for the latter bond is given in (C.62)

Lemma. C.4.4. Pricing caplets under HCIR model also requires, as in the standard hull-

white two-curve caplet price(C.56), the use ofQS-forward measure:

CpltHCIR(t, T, S,K) = POIS(t, S)E
QS

[

(S − T ) (L(T, S)−K)+
∣

∣

∣

∣

Ft

]

= POIS(t, S)E
QS

[

(

1

Pc(T, S)P k
HW2F (T, S)

−X

)+ ∣
∣

∣

∣

Ft

]

= POIS(t, S)E
QS

[

1

Pc(T, S)

(

1

P k
HW2F (T, S)

−XPc(T, S)

)+ ∣
∣

∣

∣

Ft

]

(C.85)

we can apply the same inverted-bond valuation methodology as in (C.56) obtaining

CpltHCIR(t, T, S,K) = POIS(t, S)E
QS

[

1

Pc(T, S)

(

e−µ+ 1
2
V̂ 2

Φ(d)− X̂Φ(d− V̂ )
)

∣

∣

∣

∣

Ft

]

(C.86)

where

d = (−µ− ln X̂ + V̂ 2)/V̂

X̂ = Pc(T, S)(1 + (S − T )K)

µ = EQS[lnP k
HW2F (T, S)|Ft]

V̂ = (1 + k)2Σ(t, T, S)2

andΣ(t, T, S) is defined in(C.53) andΦ.

This expectation must be evaluated numerically, by integrating over analytically-
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known distribution ofPc(T, S) under theQS-forward measure.

Lemma. C.4.5.To price an interest rate cap with strikeK and fixing datesTi, under HCIR

model, we only need to sum the caplet values:

Cap(t, {T0, ...TN}, K) =
N
∑

i=1

CpltHCIR(t, Ti−1, Ti, K) (C.87)
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Appendix D

Appendix: More Cap Pricing and

Calibration Results with HCIR

D.1 Scheme for HCIR Model Calibration

The HCIR model in a joint HW-CIR model, which assumes that theLIBOR rates are a sum

of OIS rate and tenor-dependent LIBOR-OIS spread. Using thelatter assumption, we price

LIBOR-bonds and LIBOR-caplets, and both are affected by theHull-White and the CIR

model parameters.

If the LOIS-OIS correlation parameterk as in (4.2) is zero, then the LOIS spread is

fully independent of the OIS movements. In this case, the CIRmodel is calibrated sepa-

rately to LOIS term-structure, and the HW parameters are fitted to OIS term-structure and,

later, to LIBOR-cap volatilities.

On the other hand, ifk 6= 0, then the LOIS spread is dependent on OIS movements,

and therefore the optimal choice of CIR parametersσc, κ, θ, c0 is dependent on the HW

parametersσi, ai, ρHW , as these influence the LIBOR-bond pricing formula (C.84). This

leads to a joint forward and cap present value calibration problem, where we want to find

CIR and HW parameter set so that we minimise

min
ω∈Ω

[

N
∑

i=1

(FwdM(t, Ti−1, Ti)− FwdHCIR(t, Ti−1, Ti, ω))
2 ∗ vi

+
M
∑

i=1

(CapM(t, Si, Ki)− CapHCIR(t, Si, Ki, ω))
2 ∗ wi

]

(D.1)

whereSi’s are cap maturities,vi, wi are weighting parameters to proportionally weight



errors in forward rates and caps. Thus, if we calibrate the HCIR model to 6-month forwards

and 6-month caps, we have 10-parameter calibration, which needs a global solver. Note:

• The CIRx parameters for 1,3,12-month forward curves can be calibrated after we

obtain HW-volatility parameters, as 1,3,12-month LOIS spread parameters do not

affect the pricing of 6-month caps.

• In calibration, we minimise the present-value error of caps. We have alternative cal-

ibration available to cap volatilities, but this requires PV-to-volatility conversion at

every HCIR cap evaluation, which is another root-finding problem. This calibration

method is very computationally expensive.

We have attempted multiple calibration methods to get a goodfit for the 10-parameter

model. Some global methods work well but are very slow, for instance the differential evo-

lution and basin-hopping algorithm (truncated newton rootfinding with multiple random

restarts). In the end, we devised a good, fast calibration scheme for HCIR model:

1. Calibrate HW2F model with constant-basis to liquid 6-month forwards and caps,

2. Use the latter set of parameters as starting pointx0 for HW model in HCIR,

3. Calibrate CIR6M in HCIR to LOIS spreads, obtainxCIR,

4. Run a single global-solver (e.g. basin-hopping) run onx0 andxCIR, obtaining solu-

tion ω,

5. We note that this may not be the global optimum, but we foundit to be very success-

ful.

D.2 Auxiliary Tables and Figures

Some results were excluded from the main text to improve readability and flow of argu-

ments. We have included all the skipped results and tables inthis appendix.

D.2.1 ATM Cap Calibration Parameters, 22-Nov-2013

The obtained parameter set for HCIR calibration with 22-Nov-2013 data, using ATM 6-

month cap volatilities is given in the following table.
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Model ax σx ay σy ρHW

H1F-CIR 4.05% 0.96%
H2F-CIR 45.07% 2.07% 12.3% 2.49% -99.6%

Table D.1: Hull-White model parameters for OIS in the 1 and 2-factor Hybrid HW models.

Model ρCIR σc θ k c0
H1F-CIR: 1M -2.1% 0.17% 8e-6 18% 0.13%
H1F-CIR: 3M -3% 5e-5 1e-7 6.85% 0.27%
H1F-CIR: 6M -1.9% 0.14% 1e-5 9.1% 0.41%
H1F-CIR: 12M -1.2% 0.14% 1e-5 8.8% 0.5%

H2F-CIR: 1M -4% 0.06% 1e-4 4.9% 0.13%
H2F-CIR: 3M -3.4% 0.3% 1e-4 6.1% 0.28%
H2F-CIR: 6M -2.0% 0.4% 1e-4 9.4% 0.42%
H2F-CIR: 12M -1.8% 0.35% 1e-4 8.0% 0.54%

Table D.2: CIR model parameters for LOIS spread in the 1 and 2-factor Hybrid HW models
.

In the following, we include a table of extrapolated volatilities comparison between the

HCIR model and displaced-diffusion approach. We note that the DD results were obtained

using simple constant parameters, e.g. LMM forwardρ = 95% (historically relevant value),

and the overall fit can be improved using many degrees of freedom in the model as shown

by Andong(2013).

Tenor / MAT 3Y 5Y 7Y 12Y 20Y 30 Y
1M 61.1 67.4 73.4 78.6 78.6 73.0 66.3
3M 62.6 70.9 76.2 78.5 79.0 74.7 67.8
6M 63.6 71.5 77.3 80.2 81.1 77.0 69.9
12M 67.4 74.6 80.0 82.8 84.0 79.7 71.8

Table D.3: Multi-curve ATM cap volatilities: Calibrated HCIR model extrapolations.

Tenor / MAT 3Y 5Y 7Y 12Y 20Y 30 Y
1M 41.8 59.5 70.3 77.9 79.3 76.8 71.1
3M 45.9 65.6 74.4 78.7 79.6 77.2 71.0
6M 58.0 73.5 79.0 81.6 80.7 76.6 70.0
12M 70.2 80.5 84.2 85.6 83.5 77.9 70.8

Table D.4: Multi-curve ATM cap volatilities: displaced-diffusion extrapolations,ρ = 0.95,
DD with this value is closer to HCIR surface.
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D.2.2 3% Cap Calibration Parameters, 22-Nov-2013

We show the calibrated HCIR model parameters when calibration was performed by min-

imising the mean squared errors of cap present values and forward rates. As demonstrated

in TableD.5, the HW2F-CIR model has very different HW-parameters than in the ATM

case. The HW 2-factor correlation parameterρHW is very negative as in the previous case,

but because the mean reversion ratesax, ay are not as different anymore - we no longer

observe the volatility hump at 5-year cap volatility. The CIR-component parameters have

stayed similar: the HW-CIR correlation is negative and smaller for longer tenors,θ, k, c0

within 1% difference from ATM values.

Model ax σx ay σy ρHW

H2F-CIR 4.1 % 2.1 % 9.4 % 3.3 % -94.5 %

Table D.5: Hull-White model parameters for OIS in the HW2F-CIR model.

Model ρCIR σc θ k c0
H2F-CIR: 1M -3.8 % 0.3 % 1e-4 % 5.4 % 0.1 %
H2F-CIR: 3M -3.5 % 0.1 % 1e-4 % 6.0 % 0.3 %
H2F-CIR: 6M -2.5 % 0.4 % 1e-4 % 8.4 % 0.4 %
H2F-CIR: 12M -2.6 % 0.3 % 1e-4 % 7.0 % 0.5 %

Table D.6: CIR model parameters for LOIS spread in the HW2F-CIR model. The CIR-
correlation is negative to OIS rates and decreases with increasing tenor.
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D.2.3 4% caps including illiquid quotes, 22-Nov-2013

In the tables below, we give the resulting PV, normal and Black volatilities from HCIR

model calibration to 4% caps and given illiquid quotes in thetest case. We have marked

the cap values which should be close to the illiquid caps. Thedifferences between the

model values for illiquid caps and input data are rather large, few 100’s of bp in some

cases. Calibration of 6-month 4% caps was also affected by the extra data in the calibration

- resulting normal volatilities are 20-30bp larger than themarket data.

In this setup, the illiquid 3-month caps were repriced lowerthan the input data by up to

60bp. The illiquid 12-month caps were repriced higher than market data even by 100-200

bp in present value terms.

T/K 1% 1.5% 2% 2.25% 2.5% 3% 3.5%4% 5% 6% 8% 10%
1Y 12 6 2 1 1 0 0 0 0 0 0 0

1.5Y 32 19 10 7 5 2 1 0 0 0 0 0
2Y 60 38 23 18 13 8 4 2 0 0 0 0
3Y 140 97 66 54 44 28 18 11 4 1 0 0
4Y 256 188 136 115 97 67 46 31 13 5 0 0
5Y 404 309 232 200 172 125 90 63 30 13 2 0
6Y 579 454 350 306 266 200 147 107 54 26 5 0
7Y 774 617 485 428 376 288 217 161 85 42 8 1
8Y 983 794 633 562 498 386 295 223 121 61 13 2
9Y 1201 980 790 706 628 493 381 291 161 84 18 3
10Y 1424 1172 952 854 764 604 472 363 205 108 24 4
12Y 1864 1551 1274 1150 1034 828 654 509 294 159 38 6
15Y 2483 2084 1729 1567 1416 1145 913 718 423 234 58 10
20Y 3313 2795 2331 2118 1919 1559 1249 985 585 325 81 15
25Y 3965 3350 2797 2543 2305 1873 1501 1185 704 391 97 17
30Y 4495 3798 3170 2882 2611 2122 1699 1341 795 440 109 19

Table D.7: Present value surface for 6-month caps. The HCIR model values are given in
EUR for caps of notional=10000 and rounded to nearest integer.
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T/K 1% 1.5% 2% 2.25% 2.5% 3% 3.5% 4% 5% 6% 8% 10%
1Y 14 6 3 2 1 0 0 0 0 0 0 0

1.5Y 33 19 10 7 5 2 1 0 0 0 0 0
2Y 60 37 22 17 13 7 3 2 0 0 0 0
3Y 136 93 62 50 41 26 16 10 3 1 0 0
4Y 247 180 129 108 91 62 42 28 11 4 0 0
5Y 392 298 222 191 163 118 83 58 26 11 1 0
6Y 565 440 338 295 256 191 140 100 49 22 3 0
7Y 758 602 472 415 365 278 208 153 79 38 7 0
8Y 965 778 619 550 486 376 287 215 115 57 11 1
9Y 1184 965 777 693 617 484 374 284 157 81 17 2
10Y 1407 1157 940 843 754 596 465 358201 106 23 3
12Y 1851 1539 1266 1142 1028 824 652 508 295 160 38 6
15Y 2474 2078 1726 1567 1417 1148 918 724 430 239 60 11
20Y 3313 2800 2340 2129 1931 1574 1265 1003 602 339 87 16
25Y 3976 3366 2817 2565 2329 1900 1530 1214 730 412 106 20
30Y 4515 3823 3200 2915 2646 2159 1738 1379 829 467 120 23

Table D.8: Present value surface for 3-month caps. The HCIR model values are given in
EUR for caps of notional=10000 and rounded to nearest integer.

T/K 1% 1.5% 2% 2.25% 2.5% 3% 3.5% 4% 5% 6% 8% 10%
2Y 50 33 21 16 12 7 4 2 0 0 0 0
3Y 134 95 66 55 45 30 20 13 5 2 0 0
4Y 254 191 140 119 101 72 51 35 17 8 1 0
5Y 408 315 240 208 180 133 97 70 36 18 4 0
6Y 587 464 361 317 278 211 158 117 62 32 8 2
7Y 785 630 499 442 390 301 229 173 95 50 13 3
8Y 996 810 649 578 514 401 309 236 132 71 18 4
9Y 1216 997 807 723 645 509 396 304 173 94 24 5
10Y 1440 1189 970 871 781 620 486 377 217 119 31 7
12Y 1881 1568 1291 1166 1050 843 667 521 305 169 44 9
15Y 2496 2098 1741 1579 1427 1155 921 725 430 240 62 13
20Y 3317 2799 2333 2120 1920 1558 1247 983 584 326 84 17
25Y 3960 3345 2789 2534 2295 1863 1490 1174 696 387 98 19
30Y 4480 3783 3152 2864 2592 2102 1679 1321 781 432 108 21

Table D.9: Present value surface for 12-month caps. The HCIRmode values are given in
EUR for caps of notional=10000 and rounded to nearest integer.
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T/K 1% 1.5% 2% 2.25% 2.5% 3% 3.5% 4% 5% 6% 8% 10%
1Y 163 164 164 165 165 165 166 167 168 169 171 172

1.5Y 158 159 159 159 159 160 160 161 162 163 165 167
2Y 155 155 156 156 156 156 156 157 157 158 161 163
3Y 147 148 148 148 148 148 148 148 148 148 150 152
4Y 140 141 140 140 140 140 140 140 139 139 140 141
5Y 134 134 134 134 134 133 133 133 132 132 132 132
6Y 129 129 129 128 128 128 127 127 126 126 125 125
7Y 124 124 124 123 123 123 122 122 121 120 119 118
8Y 120 120 119 119 119 118 118 117 116 115 114 113
9Y 116 116 115 115 115 114 114 113 112 111 110 109
10Y 113 113 112 112 112 111 110 110 109 107 106 105
12Y 107 107 106 106 106 105 104 104 103 102 100 98
15Y 100 100 100 99 99 98 98 97 96 95 93 91
20Y 91 91 91 91 91 90 90 89 88 87 85 83
25Y 85 85 85 85 84 84 84 83 82 81 79 77
30Y 80 80 80 80 80 79 79 79 78 77 75 73

Table D.10: Normal volatilities surface for 3-month caps. The HCIR model values are
given in basis points and rounded to the nearest integer.

T/K 1% 1.5% 2% 2.25% 2.5% 3% 3.5% 4% 5% 6% 8% 10%
1Y 166 169 171 172 173 174 176 177 179 180 181 180

1.5Y 161 163 165 165 166 167 169 170 173 175 179 180
2Y 157 159 160 161 161 162 164 165 167 170 174 177
3Y 149 150 151 151 152 152 153 154 156 158 163 166
4Y 141 142 143 143 143 143 144 144 145 147 151 155
5Y 134 135 135 135 135 135 136 136 136 137 140 143
6Y 128 129 129 129 129 129 129 129 129 129 131 133
7Y 122 123 123 123 123 123 123 123 122 122 123 124
8Y 118 118 118 118 118 118 118 117 117 117 116 117
9Y 113 114 114 114 114 113 113 113 112 112 111 111
10Y 110 110 110 110 110 110 109 109 108 107 106 106
12Y 103 104 104 104 104 103 103 102 101 101 99 98
15Y 96 97 97 97 97 96 96 95 94 93 91 90
20Y 88 88 88 88 88 88 87 87 86 85 83 82
25Y 81 82 82 82 82 82 82 81 80 79 78 76
30Y 76 77 77 77 77 77 77 77 76 75 73 71

Table D.11: Normal volatilities surface for 6-month caps. The HCIR model values are
given in basis points and rounded to the nearest integer.
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T/K 1% 1.5% 2% 2.25% 2.5% 3% 3.5% 4% 5% 6% 8% 10%
2Y 161 164 167 169 171 174 177 180 185 189 192 192
3Y 151 154 156 157 159 161 163 165 170 175 183 188
4Y 141 144 146 147 148 150 151 153 156 161 169 176
5Y 133 136 138 138 139 140 141 142 145 148 156 163
6Y 126 129 130 131 131 132 133 133 135 138 144 151
7Y 120 122 124 124 124 125 125 126 127 129 134 140
8Y 115 117 118 118 119 119 119 120 120 122 125 130
9Y 110 112 113 113 114 114 114 114 115 115 118 121
10Y 106 108 109 109 109 110 110 110 110 110 111 114
12Y 99 101 102 102 102 102 102 102 102 102 102 103
15Y 91 93 94 94 94 95 94 94 94 93 93 93
20Y 83 84 85 85 86 86 86 86 85 85 84 83
25Y 76 78 79 79 79 79 80 79 79 79 78 77
30Y 71 73 74 74 74 75 75 75 75 74 73 72

Table D.12: Normal volatilities surface for 12-month caps.The HCIR model values are
given in basis points and rounded to the nearest integer.

T/K 1% 1.5% 2% 2.25% 2.5% 3% 3.5% 4% 5% 6% 8% 10%
1Y 360 250 199 182 168 147 131 119 101 89 72 61

1.5Y 399 248 192 174 160 138 122 111 94 82 67 57
2Y 466 242 182 164 150 129 114 102 86 75 61 52
3Y 400 195 146 131 119 102 89 80 67 58 47 40
4Y 252 150 114 103 94 80 71 63 53 46 37 32
5Y 184 121 94 85 78 67 59 53 45 39 32 27
6Y 148 102 81 73 67 58 52 47 40 34 28 24
7Y 125 89 71 65 60 52 47 42 36 31 25 22
8Y 110 80 65 59 55 48 43 39 33 29 23 20
9Y 99 73 59 55 51 44 40 36 31 27 22 18
10Y 91 68 55 51 47 42 37 34 29 25 20 17
12Y 79 60 50 46 43 38 34 31 26 23 19 16
15Y 69 53 44 41 38 34 31 28 24 21 17 15
20Y 61 48 40 37 35 31 28 25 22 19 16 14
25Y 58 45 37 35 33 29 26 24 21 18 15 13
30Y 55 43 36 33 31 28 25 23 20 18 15 12

Table D.13: Black volatilities surface for 3-month caps. The HCIR model values are given
in basis points and rounded to the nearest integer.
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T/K 1% 1.5% 2% 2.25% 2.5% 3% 3.5% 4% 5% 6% 8% 10%
1Y 288 215 177 164 153 136 123 113 97 86 70 59

1.5Y 295 210 170 157 145 128 115 105 91 81 67 57
2Y 302 204 162 149 137 120 108 98 85 75 62 53
3Y 259 170 134 122 112 98 87 79 67 59 49 43
4Y 199 136 108 98 90 78 70 63 54 47 39 34
5Y 158 112 90 82 76 66 59 53 45 40 33 29
6Y 131 96 77 71 65 57 51 46 40 35 29 25
7Y 113 84 68 63 58 51 46 42 35 31 26 22
8Y 100 76 62 57 53 47 42 38 32 29 23 20
9Y 90 69 57 52 49 43 39 35 30 26 22 19
10Y 83 64 53 49 46 40 36 33 28 25 20 17
12Y 73 57 47 44 41 36 33 30 26 23 18 16
15Y 64 50 42 39 37 33 30 27 23 20 17 14
20Y 57 45 38 35 33 30 27 25 21 19 15 13
25Y 53 42 36 33 31 28 25 23 20 18 15 13
30Y 51 40 34 32 30 27 24 22 19 17 14 12

Table D.14: Black volatilities surface for 6-month caps. The HCIR model values are given
in basis points and rounded to the nearest integer.

T/K 1% 1.5% 2% 2.25% 2.5% 3% 3.5% 4% 5% 6% 8% 10%
2Y 236 177 147 137 129 116 106 98 87 78 65 55
3Y 201 149 124 114 107 95 86 80 70 63 54 48
4Y 163 122 101 94 87 77 70 64 56 50 43 39
5Y 134 103 85 79 73 65 59 54 47 42 36 33
6Y 114 88 74 68 64 56 51 47 41 36 31 28
7Y 100 78 65 61 57 50 45 42 36 32 28 25
8Y 89 70 59 55 51 46 41 38 33 29 25 22
9Y 81 64 54 50 47 42 38 35 30 27 23 20
10Y 74 60 50 47 44 39 35 33 28 25 21 19
12Y 65 53 45 42 39 35 32 29 25 22 19 16
15Y 57 47 40 37 35 31 29 26 23 20 17 15
20Y 51 42 36 33 31 28 26 24 21 18 15 13
25Y 48 39 33 31 29 27 24 22 20 17 15 13
30Y 46 37 32 30 28 25 23 21 19 17 14 12

Table D.15: Black volatilities surface for 12-month caps. The HCIR model values are given
in basis points1bp = 1e− 4 and rounded to the nearest integer.

D.2.4 ATM Cap Calibration, 30-Apr-2015

In the negative rates calibration case for the 30-Apr-2015 dataset, after calibrating to ATM

6-month caps the H2F-CIR model parameters are as follows:
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ax σx ay σy ρHW

HW2F 3.4 % 1.1 % 67.8 % 2.0 % -99.9 %

ρCIR σc θ k c0
H2F-CIR: 1M 3.1 % 0.5 % 1e-4 25.1 % 0.1 %
H2F-CIR: 3M 1.2 % 0.1 % 1e-4 4.7 % 0.2 %
H2F-CIR: 6M 0.8 % 0.3 % 1e-4 5.4 % 0.3 %
H2F-CIR: 12M -1.5 % 0.3 % 1e-4 4.4 % 0.4 %

Table D.16: Calibrated multi-curve HCIR model parameters.Data from 30-Apr-2015.

In the following tables we show the 4-curve cap volatility surfaces from calibrated

HCIR model:

T(Y)/K(%) -0.25 0.5 1.5 1 2 3 4 5
1 57 42 41 40 52 80 107 134

1.5 45 34 30 31 41 62 84 105
2 39 31 29 29 34 52 69 87
3 37 35 38 39 41 42 54 68
4 40 41 44 47 49 51 52 57
5 44 46 49 52 54 56 58 59
6 47 50 53 56 58 61 62 63
7 51 53 57 59 61 64 65 66
8 54 56 59 61 63 66 67 68
9 56 58 61 63 65 67 69 70
10 58 60 62 64 66 68 70 70
12 61 62 65 66 68 70 71 72
15 64 65 67 68 69 71 71 72
20 66 67 68 69 70 71 71 71
25 67 67 68 68 69 70 70 70
30 66 66 67 67 68 68 68 68

Table D.17: HCIR normal 6-month cap volatilities surface, data from 30-Apr-2015.
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T(Y)/K(%) -0.25 0.5 1.5 1 2 3 4 5
1 59 55 52 50 51 74 98 122

1.5 43 44 42 40 40 58 77 97
2 40 41 38 37 37 50 67 84
3 43 43 43 44 45 46 54 68
4 46 47 48 50 52 53 55 58
5 47 50 52 55 56 58 60 60
6 51 54 56 58 60 62 64 64
7 54 57 59 61 63 65 66 67
8 57 60 62 64 65 67 68 69
9 61 63 65 66 68 69 70 71
10 63 64 66 68 69 70 71 72
12 66 67 68 69 70 72 72 73
15 68 69 70 71 72 72 73 73
20 69 69 70 71 71 72 72 72
25 69 69 70 70 71 71 71 71
30 68 68 69 69 69 69 69 69

Table D.18: HCIR normal 1-month cap volatilities surface, data from 30-Apr-2015.

T(Y)/K(%) -0.25 0.5 1.5 1 2 3 4 5
1 61 50 46 44 50 76 101 126

1.5 49 41 38 36 40 60 80 100
2 44 38 35 34 35 51 68 86
3 42 39 40 42 43 44 53 67
4 44 44 46 48 50 52 53 57
5 47 48 51 53 55 57 59 60
6 51 52 55 57 59 61 63 64
7 54 55 58 60 62 64 66 67
8 57 58 61 63 64 66 68 68
9 59 60 62 64 66 68 69 70
10 60 62 64 66 67 69 70 71
12 63 64 66 67 68 70 71 71
15 65 66 67 69 70 71 71 72
20 67 67 68 69 70 70 71 71
25 67 67 68 69 69 69 70 69
30 66 67 67 68 68 68 68 68

Table D.19: HCIR normal 3-month cap volatilities surface, data from 30-Apr-2015.
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T(Y)/K(%) -0.25 0.5 1.5 1 2 3 4 5
2 37 20 19 25 35 54 73 92
3 33 31 34 35 35 41 56 71
4 36 38 42 45 47 48 49 57
5 39 42 47 50 53 55 57 58
6 43 47 51 54 57 60 61 63
7 47 50 54 57 60 63 64 66
8 50 53 57 60 62 65 66 68
9 52 55 58 61 63 66 68 69
10 54 56 60 62 64 67 69 70
12 58 60 63 65 66 69 70 71
15 62 63 65 67 68 70 71 72
20 64 65 66 68 68 70 70 71
25 65 65 66 67 68 69 69 69
30 64 64 65 66 67 67 67 67

Table D.20: HCIR normal 12-month cap volatilities surface,data from 30-Apr-2015.
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Appendix E

Appendix: More CVA Results with

HCIR

In this appendix, we include additional results for CVA assessment with HCIR model. We

also compare the impact of HCIR and benchmark models on CVA for LIBOR-OIS swap

products as well as interest rate caps using multiple sets ofreal and synthetic market data.

We conclude that for these mostly one-sided payout productsthe CVA values are affected

very little after including the stochastic LOIS spread in the simulation.

E.1 CVA with HCIR Model Calibration to 4% Caps

Model ax σx ay σy ρHW

HW1F 7.92% 1.29% - - -
HW2F 5.6% 2.3% 12.9% 3.7% -94%
HCIR 5.6% 2.3% 12.9% 3.8% -94%

ρHCIR σ θ κ c0
CIR −1.8% 0.12% 00082% 9.2% 0.416%

Table E.1: HW1F,HW2F,HCIR model parameters, when calibrated to 4% cap data from
22-Nov-2013.
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Figure E.1: Market cap present-value (left) and volatility(right) fits using HCIR and HW2F
models.

E.2 CVA for LIBOR-OIS Swap

In another case, we wanted to visualise the model impact on the CVA for a pure spread-

product like a OIS-to-LIBOR swap. As in the HW2F model, the LOIS spread is constant

and in HCIR it is stochastic, this scenario should show a sizeable difference between the

two models. We shall consider a 30-year, 6-month LIBOR vs 6-month OIS swap:

LOISSwap(t, T , K) = N ·
N
∑

i=1

P (t, Ti)(LIBORFwd6M(Ti−1, Ti)−OISFwd6M(Ti−1, Ti)−K)

(E.1)

E.2.1 LOIS Swap with Market Curve Data

The second set of CVA experiments with high-basis scenarioswere accomplished with a

different product, the LIBOR-OIS swap, where both swap legsare floating, yet one is based

on stochastic OIS 6-month forward rates, the other on LIBOR forward rates. First, we

have performed the simulations with the HCIR and HW-models calibrated to real market

forwards and cap volatilities. In this setup, the LIBOR-OISspread is small with low-

volatility as shown in TableE.1. This results in very small LOIS swap volatility in time, but

the volatility of payouts is non-zero in all cases: HCIR, HW2F, HW1F, as with changing

state variablex(t) even in constant basis HW-models, the cashflows do vary, simply because
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the difference between 6-month LIBOR-bond price and OIS-bond price:

P6M(t, T ) = A(t, T ) · e−α6M (t)B(t,T )e−x(t)Bx(t,T )−y(t)By (t,T ) (E.2)

POIS(t, T ) = A(t, T ) · e−αOIS(t)B(t,T )e−x(t)Bx(t,T )−y(t)By (t,T ) (E.3)

varies depending on the shared state variablesx(t), y(t), whereαX(t) are the deterministic

term-structure components (different for 6-month and OIS bonds). The latter is visualized

in FigureE.2.

Then, the CVA/DVA values for this case are small and close to each other (around 1bp

adjustment on swap strike.):

Model CVA DVA Swap MtM (t=0)
HCIR 0 71 -12
HW2F 0 77 0
HW1F 0 77 0

Table E.2: CVA, DVA values in EUR for and ATM LOIS swap with fixed rate of0.12847%,
5EUR 1bp adjustment on fixed leg
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Figure E.2: Means and variances of the simulated LIBOR-OIS swap under HCIR and HW-
models. On the X-axis we have the valuation datet.
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Figure E.3: CVA, DVA profiles (left) of HCIR and HW2F models for LIBOR-OIS swap,
and CVA, DVA figures with exposure5− 95% quantiles (right). 22-Nov-2013 market data
for forwards and caps.
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E.2.2 LOIS Swap with Synthetic Flat-Basis Curve Data

In the second test, we have calibrated the models for synthetic, flat 2% basis spread (over

OIS) forward curve and same volatility data.

In this flat-basis scenario, the spread is high but practically constant as shown in Table

5.4, hence the LIBOR-OIS spread does not change much at all, evenin HCIR model, and

all the variation in simulated swap values comes from HW model for OIS.

Then, the CVA/DVA values for this case are small and with hardly any differences

between the models.

Model CVA DVA Swap MtM (t=0)
HCIR 6 6 0.5
HW2F 5 5 0
HW1F 5 5 0

Table E.3: CVA, DVA values for and ATM LOIS swap with fixed rateof 2%
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Figure E.4: Means and variances of the simulated LIBOR-OIS swap under HCIR and HW-
models. On the X-axis we have the valuation datet.
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Figure E.5: CVA and DVA profiles (left) of HCIR and HW2F modelsfor LIBOR-OIS swap,
and CVA/DVA figures with exposure5− 95% quantiles (right). Synthetic market data: flat
basis spread.

E.2.3 LOIS Swap with synthetic Increasing-Basis Curve Data

In the third case of increasing basis, we calibrated the models to OIS curve and synthetic

forward curve where the LOIS basis spread increases from0% to 2% over a 30-year period.

The calibrated CIR model is also a nearly deterministic, with low initial short rate and high

long-term rateθ. This led to a reasonably small variance of the simulated LOIS swap, and

as the mean MtM across time was positive, the CVA values are the same across all models,

as DVA are null.

Model CVA DVA Swap MtM (t=0)
HCIR 325.5 0 5
HW2F 326 0 0
HW1F 326 0 0

Table E.4: CVA, DVA values for and ATM LOIS swap with fixed rateof 0.8596%
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Figure E.6: Means and variances of the simulated LIBOR-OIS swap under HCIR and HW-
models. On the X-axis we have the valuation datet.
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Figure E.7: CVA and DVA profiles (left) of HCIR and HW2F modelsfor LIBOR-OIS
swap, and CVA/DVA figures with exposure5 − 95% quantiles (right). Synthetic market
data: increasing basis spread.
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E.2.4 LOIS Swap with synthetic High Volatility Basis Curve Data

In the case of high-volatility spread, the HCIR model gains significant swap volatility in

comparison to the HW-models, as shown in FigureE.8. Nevertheless, as we are assessing

CVA of an ATM-swap, throughout the simulation period, the swap MtM stays mostly neg-

ative, also as the spread is volatile, but not very large (50bp in long-term), the CVA/DVA

values are very close for HCIR and HW models as shown in the table E.5.

Model CVA DVA Swap MtM (t=0)
HCIR 0 84 0
HW2F 0 83 0
HW1F 0 83 0

Table E.5: CVA, DVA values for and ATM LOIS swap with fixed rateof 0.61745%
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Figure E.8: Means and variances of the simulated LIBOR-OIS swap under HCIR and HW-
models. On the X-axis we have the valuation datet.

The main differences in LOIS swap exposures between the HCIRand HW models

can only be observed in the5&95% quantile levels - the HCIR model has wider exposure
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quantiles as demonstrated in FigureE.9.
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Figure E.9: CVA and DVA profiles (left) of HCIR and HW2F modelsfor LIBOR-OIS
swap, and CVA/DVA figures with exposure5 − 95% quantiles (right). Synthetic market
data: curved, high-volatility basis spread.

E.3 CVA for Caps

In this section, we seek to compare the model effects on CVA ofcaps. The issue with CVA

of caps is that because caps are options, their value at any point in time will stay positive

and will only contribute to CVA or DVA figures. On top, becausethe simulation and cap

pricing is done via risk-neutral measures, the expected positive exposure (EPE) for a single

cap at timeTi, will be exactly:

EPE(Ti) = D(0, Ti)Cap(Ti; ·)SP (Ti−1, Ti) (E.4)

which also says that if we calibrate the two HCIR, HW2F modelsto the same caps, we will

obtain the same EPE figures for them. The main difference in CVA/DVA for caps can be

observed via the variance of caps over time, as well as95%-quantile of the exposure profile

in FigureE.10.

Model CVA DVA
HCIR 2585 0
HW2F 2595 0
HW1F 2582 0

Table E.6: CVA, DVA values in EUR for 30-year 0% 6-month cap. Case with market data
from 22 Nov 2013.
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Figure E.10: CVA, DVA and quantile profiles for EUR for 30-year 0% 6-month cap. Case
with market data from 22 Nov 2013.

Model CVA DVA
HCIR 2940 0
HW2F 2935 0
HW1F 2912 0

Table E.7: CVA, DVA values in EUR for 30-year 0% 6-month cap. Case with synthetic
high-vol basis data.
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Figure E.11: CVA, DVA and quantile profiles for EUR for 30-year 0% 6-month cap. Case
with synthetic high-vol basis data.
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E.4 Impact of Local Minima in HW2F and HCIR calibra-

tion

We have mentioned before that in the 10-parameter calibration problem, there is a risk of

calibrating the HCIR model and obtaining only a locally optimal solution. This section

serves as an extensive example of such a situation which we have encountered. The follow-

ing results can be compared to the main result in section5.3.

We have calibrated the three models to 6-month4% EUR caps for the 22-Nov-2013

dataset. The overall cap and forward curve fits are shown in FigureE.13. The HW2F and

HCIR models offer the best fit for caps, the HW1F model under-fits the short-term caps.

We note that the very-short-term cap volatilities are not very well matched, as we calibrated

to PV and these OTM caps carry very little present value in general.
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Figure E.12: Calibration to 6-month forward curves on 22-Nov-2013. Demonstration of
ATM swap rates for all three models: HW1F, HW2F and HCIR.
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Figure E.13: Calibration to 4% 6-month caps on 22-Nov-2013.Results for market caps for
HCIR, HW2F, HW1F models.

We show the calibrated parameters for all three models in thefollowing table. While

both HW2F and HCIR models have a very negative correlation between the 2-factors, their

mean-reversion and volatility levels remain distinct. TheHW1F model has similar levels

of volatility and mean reversion as the HW2F model. In all themodels we have used OIS-

discounting approach for payouts. The same OIS-discounting was used in the calibration

to caps phase.

Model ax σx ay σy ρ dCurve
HW2F-CIR 25.69% 4.48% 15.11% 3.74% -91.2% OIS

HW2F 5.62% 2.34% 12.9% 3.74% -943% OIS
HW1F 7.92% 1.29% OIS

CIR ρCIR−HW σ θ k c0
CIR - 6M -1.5% 0.1% 0005% 9.5% 0.4%

Using the latter sets of parameters, we have estimated the CVA / DVA values for a

30-year 6-month fixed-for-floating swap with ATM2.6839% strike. The respective CVA /

DVA values using uniform hazard rateλ(t) = 1
30

, for all models are:

Model CVA DVA Swap MtM (t=0)
HCIR 549 284 -6
HW2F 623 367 0
HW1F 642 377 0

Table E.8: CVA, DVA and swap MtM values for and ATM swap with fixed rate of2.6839%

We can compare these values with the Table5.1, which shows that the differences in
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CVA resulting from a local minima in cap calibration can be substantial (12bp adjustment

on a fixed leg here for HCIR model).

E.4.1 CVA Profiles

Our investigation goes deeper into comparing the full exposure profiles for this swap under

the different models. In FigureE.14, we plot for all 4-models:

• CVA Profile of IRS (otherwise the mean discounted positive exposure)

POIS(0, t)E
QT [(NPV (t))+]

• DVA Profile of IRS (otherwise the mean discounted negative exposure)

POIS(0, t)E
QT [(NPV (t))−] dt

In the CVA profiles:

• The HW1F model yields the largest CVA value, followed by HW2Fmodel. The

difference is not large - the short-term volatility of the HW1F model is larger, while

in HW2F this is dampened by the negative correlation effect.

• The HCIR model yields a lower CVA and DVA values than the pure HW models.

• THE HCIR-0 model, which has CIR component set to zero, results in lower CVA on

the short end and higher DVA, as our simulated forwards are now slightly smaller.

We foresee the following reasons for the apparent difference between HCIR model and

HW2F model:

• The added CIR component has very low0.1% volatility and a negative correlation to

OIS rates. This reduces overall simulated forward and swap volatility

• The HW parameters in HCIR model yield, overall, lower volatility of the forward

rates. This is a result of HCIR calibration to the same market6-month caps.

In FigureE.15we show the aged MtM of the swap under consideration in all three

(four) models. We can observe that while the MtM in main threemodels goes one-to-one

until 5-year gap, a gap in value exists between 10-20 year period, its size goes from5 to

20bp, and is caused by the imperfect alignment of the forward rates in the HCIR model.

The swap MtM of the HCIR-0 model shows the OIS-only swap MtM development over

time, and the difference up to the HCIR model MtM is our spread-model component.
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Figure E.14: CVA and DVA for 2.6839% (ATM) IRS with uniform default. Results for all
four tested models (HCIR, HCIR0, HW1F, HW2F)
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Figure E.15: Aging of the ATM swap within the four IR models.
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E.4.2 Non-ATM Swaps

To give more insight into the behaviour of the four models forswap CVA, we have per-

formed equivalent experiments with OTM (0%) and ITM (4%) swaps below. We note, that:

• In OTM swap case (4%) the CVA & DVA is smallest for HCIR model.

HCIR model reduces CVA by 60bp, DVA by 65pb, but the MtM is alsosmaller by

12bp. 1F and 2F HW model values are within 10bp.

We show the results in FiguresE.16, E.17

• In ITM swap case (0%) HCIR model reduces CVA by 15bp and DVA by 20bp when

compared to HW2F. The swap MtM differs between HCIR and HW2F models by

12bp. This result is rather intuitive, as in this case, we have small payouts depending

on the simulated forward rates, as our swap is in the money andwe get paid a large

fixed rate.

We show the results in FiguresE.18, E.19

Model CVA DVA MtM
HCIR 129.6 1010 -2801

HCIR-0 129.1 1049 -3061
HW2F 189 1074 -2789
HW1F 196 1085 -2789

Table E.9: CVA, DVA and swap MtM values for and OTM swap with fixed rate of4%
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Figure E.16: CVA and DVA for 4% IRS with uniform default. Results for all three tested
models (HCIR, HW1F, HW2F)
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Figure E.17: CVA and DVA for 4% IRS with uniform default. Results for all three tested
models (HCIR, HW1F, HW2F)

Model CVA DVA MtM
HCIR 2565 11 5676

HCIR-0 2526 12 5416
HW2F 2580 31 5688
HW1F 2572 25 5688

Table E.10: CVA, DVA and swap MtM values for and ITM swap with fixed rate of0%
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Figure E.18: CVA and DVA for 0% IRS with uniform default. Results for all three tested
models (HCIR, HW1F, HW2F)
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Figure E.19: CVA and DVA for 0% IRS with uniform default. Results for all three tested
models (HCIR, HW1F, HW2F)

E.4.3 CVA for Multi-Curve Swaps

In the following, we extend our experiments to multi-curve swaps. Our setup contains CVA

valuation in 3 different cases, which can be compared to the main text result in5.3.1:

• a 30-year 1-month EUR swap, strike = 2.49%

• a 30-year 3-month EUR swap, strike = 2.59%

• a 30-year 12-month EUR swap, strike = 2.83%

In each of the cases, we have calibrated the HCIR model to relevant yield curves to repro-

duce theτ−month forward rates. The HW2F parameters remain the same as before, as they

were calibrated to 6-month EUR caps.

Tenor ρ σ θ k c0
1M -3.14% 0.115% 1.17e-5 5.67% 0.11%
3M -3.64% 0.10% 1.14e-5 4.93% 0.27%
6M -1.65% 0.15% 1.37e-5 9.15% 0.41%
12M -25% 0.35% 017% 7.9% 0.54%

Then, we estimate CVA and compare the two models:
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1. HCIR model, whereσx, σy, ax, ay, ρ were calibrated to 6-month caps, and CIR pa-

rametersρk, σ, θ, k, c0 to relevantτ -month basis-spread curves.

2. HW2F/1F model, whereσx, σy, ax, ay, ρ were calibrated to 6-month caps and the

term-structureθ(t) is changed depending onτ−month forward curve.

Tenor ATM(%) HCIR:CVA HW2F:CVA HW1F:CVA HCIR:DVA HW2F:DVA HW1F:DVA
1M 2.49% 611 697 724 269 345 364
3M 2.59% 579 664 687 272 357 372
6M 2.68% 549 623 642 284 367 377
12M 2.83% 485 566 573 283 375 373

Note for the swaps below, a1bp change in the fixed rate, yields5 EUR change in CVA

value. Hence the CVA adjustment on the fixed leg is of the orderof 100bp. While the basis

spreads increase when going from 1-month swap to 12-month swap, the overall floating

leg volatility decreases and results in decreasing CVA (by 20bp on fixed leg) and slightly

increased DVA (by 3bp on fixed leg) for HCIR model.
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Figure E.20: CVA and DVA for 30-year ATM 1-month swap. Results for all three models
(HCIR, HW1F, HW2F)
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Figure E.21: CVA and DVA for 30-year ATM 3-month swap. Results for all three models
(HCIR, HW1F, HW2F)
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Figure E.22: CVA and DVA for 30-year ATM 6-month swap. Results for all three models
(HCIR, HW1F, HW2F)
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Figure E.23: CVA and DVA for 30-year ATM 12-month swap. Results for all three models
(HCIR, HW1F, HW2F)
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Filipović, D., Hughston, L. P., and Macrina, A. (2012). Conditional density models for

asset pricing.International Journal of Theoretical and Applied Finance, 15(01).

Filipovic, D. and Trolle, A. (2013). The term structure of interbank risk.Journal of Finan-

cial Economics, 109(3):707–733.

Grbac, Z., Papapantoleon, A., Schoenmakers, J., and Skovmand, D. (2015). Affine LI-

BOR models with multiple curves: theory, examples and calibration. SIAM Journal on

Financial Mathematics, 6(1):984–1025.

Gupta, S. (2005).Financial Derivatives: Theory, concepts and problems. Prentice-Hall of

India.

Heider, F., Hoerova, M., and Holthausen, C. (2009). Liquidity hoarding and interbanking

market spreads. The role of counterparty risk.ECB Working Paper Series, (1126).

Hoorens, B. (2011).On the Cheyette short rate model with stochastic volatility. Master

thesis, Delft University of Technology.

Hull, J. and White, A. (2016).Multi-curve modelling using trees, pages 171–189. Springer

International Publishing.

Intercontinental Exchange (2014). ICE Libor Panel.

Joshi, M. S. and Rebonato, R. (2003). A displaced-diffusionstochastic volatility LI-

BOR market model: motivation, definition and implementation. Quantitative Finance,

3(6):458–469.

207



Kenyon, C. (2010). Short-rate pricing after the liquidity and credit shocks: including the

basis.SSRN 1558429.

Kenyon, C. and Stamm, R. (2012).Discounting, Libor, CVA and funding: interest rate and

credit pricing. Palgrave Macmillan.

Kienitz, J. (2013). Transforming volatility - multi curve cap and swaption volatilities.SSRN

30617.

Kitwiwattanachai, C. (2012). The stochastic recovery ratein CDS: Empirical test and

model.SSRN 2136116.

Kraemer, M. and Gill, F. (2012). Credit FAQ: Factors Behind Our

Rating Actions On Eurozone Sovereign Governments. Available at:

http://www.nacionalre.es/pdf/variousratingsactions.pdf.

Li, M. and Mercurio, F. (2016). The basis goes stochastic : A jump-diffusion model for

financial risk applications.SSRN 2827769.

Massey, F. J. (1951). The Kolmogorov-Smirnov Test for goodness of fit. Journal of the

American Statistical Association, 46(253):68–78.

Mauro F. Guillén (2012). The global economic & financial crisis: A timeline. Technical

report, The Lauder Institute, Wharton, University of Pennsylvania.

Mercurio, F. (2009). Interest rates and the credit crunch: New formulas and market models.

SSRN 1332205.

Mercurio, F. (2010). A LIBOR market model with stochastic basis. SSRN 1583081.

Mercurio, F. and Morini, M. (2007). No-Arbitrage dynamics for a tractable SABR term

structure Libor model.Analysis, (March):1–21.

Michaud, F. and Upper, C. (2008). What drives interbank rates? Evidence from the Libor

panel.BIS Quarterly Review, (March):47–58.

Moreni, N. and Pallavicini, A. (2014). Parsimonious HJM modelling for multiple yield-

curve dynamics.Quantitative Finance, 14(2):199–210.

208



Moreni, N. and Pallavicini, A. (2015). FX Modelling in collateralized markets: foreign

measures, basis curves, and pricing formulae.SSRN 2646516.

Morini, M. (2009). Solving the puzzle in the interest rate market (Part 1 & 2). SSRN

1506046.

Morini, M. and Brigo, D. (2008). Arbitrage-free pricing of credit index options: The

no-armageddon pricing measure and the role of correlation after the subprime crisis.

arXiv:0812.4156.

Morino, L. and Ruggaldier, W. (2014). On multicurve models for the term structure.

arXiv:1401.5431.

Pallavicini, A. and Tarenghi, M. (2010). Interest-rate modeling with multiple yield curves.

SSRN 1629688.

Poskitt, R. and Waller, B. (2011). Do liquidity or credit effects explain the behavior of the

BKBM-LIBOR differential? Pacific Basin Finance Journal, 19(2):173–193.

Savickas, V. (2013). Deep dive into basis spreads and FRA replication problem. InQuan-

titative Methods in Finance.

Savickas, V. (2015). Hybrid short-rate model for Libor-OIS. In IMA Mathematics in Fi-

nance.

Savickas, V., Hari, N., Wood, T., and Kandhai, D. (2014). Super fast greeks : An application

to counterparty valuation adjustments.Wilmott Magazine, (69):76–81.

Wales, D. and Doye, J. P. K. (1997). Global optimization by basin-hopping and the low-

est energy structures of Lennard-Jones clusters containing up to 110 atoms.Journal of

Physical Chemistry A, 101:5111–5116.

West, G. (2005). Calibration of the SABR model in illiquid markets.Applied Mathematical

Finance, 12(4):371–385.

209


	Title
	Declaration
	Abstract
	Acknowledgements
	Contents
	Nomenclature
	Introduction: Basis Risk
	Introduction
	Problem Statement
	Research Questions
	 Contributions 
	Thesis Structure

	Background
	Definitions
	Literature Overview
	Basis Spread Models
	Research Gaps and Conclusion

	LIBOR Panel Model for Forward Rate Replication
	Introduction
	Standard Model Forward Rate Replication
	LIBOR Panel Model for FRA Pricing
	Empirical Assessment of Model Assumptions
	Extended LIBOR Panel Model
	Analysis of Parameter Dynamics
	Conclusion

	Hybrid Model for Multi-Curve Pricing
	Introduction
	Theoretical Background
	Application: Pricing of Illiquid Caps 
	Multi-Strike and Cap Surface Fitting
	Calibration of HCIR in historical high-basis scenarios

	Hybrid Model for CVA Valuation
	Introduction
	CVA with short rate models.
	CVA for Multi-Curve IRS
	Wrong-Way Risk in LOIS
	Conclusions

	Conclusions and Future Work
	The Extended Panel Model
	HCIR model
	Future Research Directions

	Appendices
	Basis Consistent Replication of the FRA rate
	Multi-Curve Pricing Schemes and Tables
	Table of Common Multi-Curve Modelling Approaches

	Appendix: More Theoretical Definitions and Derivations
	The CIR Model
	Pricing under two-curve HW models
	Pricing under scaled HW2F-K Model
	Building Hybrid Hull-White Model

	Appendix: More Cap Pricing and Calibration Results with HCIR
	Scheme for HCIR Model Calibration
	Auxiliary Tables and Figures

	Appendix: More CVA Results with HCIR
	CVA with HCIR Model Calibration to 4% Caps
	CVA for LIBOR-OIS Swap
	CVA for Caps
	Impact of Local Minima in HW2F and HCIR calibration

	Bibliography

