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Abstract

The financial markets have changed radically since the atdéine 2007 credit crisis. Fol-
lowing the bankruptcies of large financial institutions adlas bailouts of multiple banks
and asset management institutions like Bear Sterns, LeBmahers, and AlG, the market
participants recognised the serious credit and liquidgks present in the widely traded
interest rate derivatives. The effect of rising credit aigdility risks was observed by the
spike in the spreads between nearly risk-free OIS rates issembllateral and risky un-
secured LIBOR loan rates. Most of the classical interest mavdels used by mentioned
market participants relied on the assumption that theist®airisk-free and unique LIBOR
lending rate, which is no longer true. This has opened newrgtdor complex, hybrid
models for interest rate derivatives.

This PhD thesis presents my work on developing novel inteads models which are
mathematically and historically sound and can be used fomgy interest rate derivatives
including stochastic basis spreads between unsecuredRI&®@ OIS rates. This work is
splitinto two problems: first we analyse the discrepancets/ben forward-LIBOR lending
rates and their classic replication strategy with spot@Rrates. For this problem, we
propose an extension of a known LIBOR Panel Model, which ksatis to jointly model
OIS and spot- and forward-LIBOR rates with an error withie tjuoted bid-ask spreads.

The second part of this thesis looks into the problem of pgeion-linear derivatives
like caps linked to rates on multiple LIBOR tenors. We prapasnovel hybrid credit-
interest rate model, which allows to jointly model OIS andtmienor LIBOR rates and to
price multi-tenor caps. The proposed hybrid short-rateehisdntuitive, semi-analytically
tractable and can be calibrated using liquid, availableketatata. We compare the market
data fit with a benchmark model using fixed LIBOR-OIS spreasliagption. The last

chapter shows the impact of this model on credit value aafjests for interest rate trades.
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Nomenclature

Symbol

K
P(t,T)
Fu(t,T,S)

Description

Expectation operator.

Expectation operator with respect to probability measgpre
Expectation operator with respect to OIS-T Forward measure
Instantaneous short-term interest rate at time

Basis point, equal t0.01%, used for small interest rate measurement.
Money-savings account at time

Calendar time.

Maturity time (final trading date).

Tenor (difference between rate fixing and payout dates).
Strike price.

Zero-coupon bond payingat timeT’, priced at time.

A market forward rate between tinfféand.S, valued at time.

R(t,T,N, K) A market swap rate valued at timevith coupon schedulg, notional N

CDS

DTCC

LIBOR

EURIBOR

and strikek'.

Credit default swap. A contract exchanging fixed fee fotgrtion against
a default of some company or government entity.

Depository trust and clearing corporation. It is a glokepository that
records all the details of CDS trades in the global markets.

The London interbank offer rate. Rate at which largaksaare willing to

lend to other premium banks in unsecured fashion.

The Euro interbank offer rate. Similar to LIBOR, Isatt by a larger Euro-

pean panel of banks.



EONIA Euro over-night index average. An effective overnigtterest rate com-
puted as a weighted average of all over-night unsecuredlgt@nsactions
in the market.

oIS Overnight indexed swap. A swap that is indexed to dailyes of either
EONIA or FED funds rates. The swap exchanges a fixed inteatstersus
the dynamic daily index.

LOIS LIBOR-OIS spread.

CSA Collateral support annex. A document specifying how t@anterparties

will post collateral for the underlying contract.

CVA Counterparty valuation adjustment.

DVA Debt value adjustment.

FRA A forward rate agreement.

IRS Interest rate swap, a contract usually swapping fixestest rate for floating

LIBOR-linked payments.

Swaption An option allowing the bearer to enter into and IR$ha expiry of the
option.

Bootstrapping Refers to a method for constructing a yietdetrom the prices of coupon-

bearing products, e.g. bonds or swaps.

HW Hull-White model.

DD Displaced-diffusion model.

HW1F One factor Hull-White model.

HW2F Two factor Hull-White model.

CIR Cox-Ingersoll-Ross model.

HCIR Hybrid Hull-White and Cox-Ingersoll-Ross model inditeced in this thesis.
LMM LIBOR market model.

GBM Geometric Brownian motion.

PDF Probability density function.

CDF Cumulative density function.

VaR Value at risk. A commonly used measure of risk.
SDE Stochastic differential equation.

ZCB Zero coupon bond.
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Chapter 1

Introduction: Basis Risk

1.1 Introduction

At the core of modern financial markets there are four manhetiicasset classes:

e equity (stocks),

e debt (bonds, loans),

e commodities (oil, gas),

e and foreign exchange.
The debt markets are probably the most diverse regardinglesity and structure of the
products traded. These can be split into more fine-grainegjodes, such as:

1. retail lending,

2. commercial and governmental debt (usually in the formaofds),

3. structured products (asset-backed securities),

4. and interest rate derivatives ( swaps, caps, etc.).
The main interest of this thesis is looking into how the abm&ruments are priced. To
issue the most elementary loan for some fixed period, theligsuy. a bank) needs to set
the effective interest rate for this loan. In a classic tertbapproach, one would take the
so-called “risk-free” rate and add an estimated credit apddity premium to it, obtaining
the final interest rate of the loan.

In practice, the risk-free rate does not exist. Howeverretae liquid assets and

contracts which are nearly risk-free and are excellentipsogf the real riskless interest
rate. The classic examples of close-to-riskless rates igem dpy the US Treasury bonds

and notes, OIS (overnight indexed swap) rates and up uetititédit crisis of 2007-2008,



the LIBOR and EURIBOR rates.

The risk-less rate is the most important concept in modean@ia. It is used at the
very core of finance, discounting (potential) future castvél®o obtain their present value.
The modern financial pricing theory relies on having a unjgisi&-free rate as it is used in
the pricing of bonds, equity forwards, derivatives (opspriutures, etc.

The most commonly used risk-free rate proxies were LIBOREmtdbor rates. They
are publicly quoted indices. LIBOR, for example, is the “idom Inter-Bank Offer Rate”.
It is computed as a trimmed average of quotes submitted byiel pAbanks. Each of these
banks must quote the borrowing rate at which a prime Londoik lsan get an unsecured
short-term loan. The LIBOR rate is used as a benchmark ferbank borrowing and
pricing various derivatives.

Before the 2007-08 credit crisis, market participants asziithe LIBOR-based lend-
ing to be risk-free. This led to widespread use of few fundataleelations between risk-
free loans, which were not entirely true. One of them, whighshkall discuss extensively
in this thesis is the ability to replicate a future-datednloeith two other loans starting
immediately. The replication strategy is very simple:

1. A forward-loan is issued starting from tirfiéto time S at a forward-LIBOR rate.

2. To finance the loan, we borrow at the LIBOR rate $oyears,

3. The money is lent out for the firgt years as we don’t need it until then.
The above strategy works if we can borrow at the LIBOR rateaisd if there is no credit-
liquidity risk in either of related parties or embedded ia tHBOR rates themselves. If any
of our assumptions does not hold, we may get a gap in the atjolicstrategy, often named
“a basis”, which is one of the few problems that broke thedad financial models during

and after the credit crunch.

1.2 Problem Statement

Basis risk and stochastic basis modelling have become aorieng subject in mathemat-
ical finance since the beginning of the credit crisis in 20&fandard textbooks refer to
basis spreads when describing the spread between the pries®ls of two nearly identi-

cal assets, e.g. they refer to the same cash flows in the fututleey are highly correlated

(Gupta 2005. Basis risk comes into place when this spread is non-détestic and hedg-
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ing movements of one asset, using another, can result irsaTb&re are multiple classical
examples of basis risk, such as the difference between am st its future contract.

A modern and highly relevant example of a basis spread isdpebgtween OIS and
the LIBOR rates, otherwise known as the LIBOR-OIS spreack [ahger of the two rates
is the LIBOR. LIBOR refers to unsecured short-to-mid termdi@g rates between panels
of banks. These rates were conventionally thought to befreskand were nearly identi-
cal to the OIS rates, which refer to a stream of overnightdaduat can be interrupted if
there are any concerns about credit risk or liquidity. Thases started diverging since the
beginning of the credit crisis in September 2007, as mar&giqgipants realised that LI-
BOR contracts carry significant counterparty credit riskppposed to still nearly risk-free
OIS rates Bianchettj 2012. This was followed up by a sharp decrease in LIBOR lending,
which further increased the LIBOR-OIS spread.

Now, LIBOR-based lending is negligible, as the market maweecbllateralized, OIS-
based, lending, but LIBOR reference rates are still usediious long-term interest rate
swaps, caps and other derivatives. To avoid potentiallysivasosses, every interest rates
derivatives trading desk must have a consistent pricinghauting model for LIBOR-
based derivatives. Additionally, every risk-managemeaskdnust have a model to assess
the Value-At-Risk of their LIBOR-linked portfolios as wedls their credit risk and CVA
charges as these are required by the regulatory authaadtispassing the Basel 11l reg-
ulations @IS, 2010. An important additional requirement by BIS is to accoumt the
wrong-way risk in the CVA for the interest rate portfoliohi$ wrong-way risk is observed
as a correlation between interest rates and a higher pidpadfi counterparty default,

which would lead to increased losses in case of defaults.

1.3 Research Questions

At the moment, there is no market-wide consensus about whimttels to use in pricing
and risk management of interest rates with stochastic baatk of consensus yields many
problems in determining the present value of future cashsflole risk that the trades carry
and more. Disagreements on the latter can lead to a lackaihgravith certain counter-
parties, even lawsuits regarding existing contracts i imeolve clauses, like collateral

margins, as parties may not agree on how much collateral lneyststed.
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While multiple models have been proposed, we have identifiedsubject areas in
the literature that were not well explored. First, thererardtiple works with econometric
analysis on the LIBOR-OIS basis spreads, but very few trg¢oliporate these econometric
facts into derivatives pricing models. Additionally, maofythe new proposed models are
over-parametrised versions of classical models which ae to calibrate and interpret. We
reviewed multiple interest rate models and their extersstorthe multi-curve derivatives
pricing setting in detail in Chapte.2

In this thesis, we will propose solutions to two main objeesi of post-crisis interest
rate modelling:

1. First, we investigate whether we can jointly model riskef OIS rates together with
directly observable spot-LIBOR rates and forward-LIBOResa visible via traded
derivative contracts.

2. Then, we look into joint modeling of the forward-LIBOR eat which now depend
on the LIBOR-tenor. We investigate whether we can design dainahich would
allow pricing volatility-dependent derivatives like cagsd floors consistently in the
multi-curve setting?

Secondary objectives of this thesis are to find out if:

e Isitpossible toinclude historically observed stylisacts about the risk-free, LIBOR

rates as well as credit and liquidity impact on them?

e Can we design the models to be analytically or semi-analyitractable and easy

to calibrate to liquid, available market data?

e How do the proposed models compare to benchmarks, if any?

e Can they be used for CVA assessment and what is the impact?

1.4 Contributions
In this thesis we have made a number of contributions:
¢ In-depth analysis of the LIBOR panel model on different dagts and discussion of
its limitations.
¢ Introduction of the implied-volatility framework for theapel podel, which yields
a brand new look at the data. Using global optimisation tepkes for the implied

volatilities we were able to find the best possible fit of th@glanodel when re-

20



pricing liquidly traded market FRAs.

e Extension of the LIBOR panel model using uncertain volgtiparameters. The
resulting model allows for re-pricing of market data wittbid-ask spreads. The
follow-up parameter study of the extended model shows hasvoam identify major
events of the credit crisis simply from the dynamics of imraglvolatility parameters.
(Quantitative Methods in Finance, 20]3.

e Definition of a novel hybrid short rate model, mixing two wihown Hull-White and
CIR short-rate models. This model, by construction, alloalgrating to single-tenor
interest rate options and re-pricing illiquid multi-teragtions by using information
from basis spreads. We derive analytical and semi-analypigcing formulas for
bond and options pricing (presentedSavickag2015 ).

¢ Analysis of market data fit of our model and comparison withilable benchmark
models.

e Guide for pricing counterparty valuation adjustments wfite hybrid model and the
inclusion of wrong-way risk. The latter analysis includesnparison with a chosen

benchmark model.

1.5 Thesis Structure

We start this thesis by introducing the basic formulas facipg interest rate derivatives in
Chapter2. In Chapte2.2we discuss the related articles and approaches for mogléekisis
spreads in the literature and introduce the most known agiithbasis models in section
2.3 In Chaptei3 we will provide an in-depth study of a LIBOR panel model. Wewstihe
mechanics and the assumptions of the model, analyse its lamd propose an extension to
achieve a possible fit to market data with errors close to ith@abk spread. We conclude
this chapter with an intermediate summary of achievemamsaadiscussion of the panel
model limitations. Chaptet discusses a novel hybrid short-rate model, which can be cali
brated to liquid market data, like swaps and single tenos eaol then used to price illiquid
off-market caps and supply missing volatility informatifor risk management measures
like CVA. In this chapter, we demonstrate the semi-analgditbration techniques for the
model as well as pricing formulas for interest rate derxegiand benchmark the model

performance against a popular displaced diffusion-typdeharhe following Chaptes is
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a study of the application of the latter model to credit veilraadjustments. We analyse
the model performance in CVA assessment in multiple scesarnd compare it to a bench-
mark model. Finally, general conclusions of this work aredenan Chapteb along with a

description of ways to take this work forward in the future.
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Chapter 2

Background

In this chapter, we give the basic definitions of interestsaind interest rate derivatives

and introduce the notation and terminology which will bedudeoughout this thesis.

2.1 Definitions

2.1.1 Fundamental Theorem of Asset Pricing

The concept of no-arbitrage says, in principle, that it ipassible to make money out of
nothing. Therefore, to make a return larger than some risi-fate, one has to take on
some risk.

This concept will be used throughout this thesis, as we witlgpderivatives under the
so-called ‘risk-neutral’ measure. It stems from the fundatal theorem of asset pricing.
It states that a bounded proceSs= (S:)o>:>r admits no-arbitrage if and only if there
is a probability measur® equivalent taP (real measure) such thatis a martingale un-
der@Q . For more details about arbitrage-free pricing, we referrdmader to the book by
Brigo and Mercuriq2006. The definitions and models in this thesis were construweitd

the arbitrage-free assumption in mind.



2.1.2 Interest Rates and Discount Factors

The most important quantities that we will consider in thisdis are the discounting factors
and zero-coupon bonds. In the following we give the textb@rigo and Mercurio2006,

definitions of the most important concepts, such as difteygres of interest rates, like the
collateral rates, interbank rates and government ratesshvgall be used throughout this

work.

Definition 2.1 (Bank Account). We defineB(¢) to the value of a bank account at time
t > 0. We shall assume thd(0) = 1 and that it evolves according to the differential
equation

dB(t) = r(t)B(t)dt, B(0) =1, (2.1)

wherer(¢) is a function of time. The solution #(¢) is

t

B(t) = exp /r(s)ds : (2.2)

0

The rater(s) is also called the short rate. It is an instantaneous irteaés valid in

the period(s, s + ds), whereds in an infinitesimally small increment.

Definition 2.2 (Stochastic Discount Facto). The (stochastic) discount factdi(¢, T") be-
tween times and7T', t < T is the amount we need to invest at time obtain exactly one
unit of the currency at timé&. The discount factor is given by

T
D(t,T) = B _ exp —/T(s)ds : (2.3)

t

Here the timel" is in the future, hence if the short-ratés) is stochastic the discount

factor D(¢,T) is as well.

Definition 2.3 (Discount Bond or Zero-Coupon Bond (ZCB). A zero-coupon bond (or
pure discount bond) is a contract that pays one unit of curyeat maturity timel” with
no intermediate coupon payments. The value of a ZCB (retatdte short rate) at time

t < T is obtained under risk-neutral numerait@as
t
P(t,T) =E2[D(t,T)] = E? |exp | — /r(s)ds : (2.4)
0
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If the short rate processs) is deterministic, theP(¢,7') = D(t,T), otherwise the
P(t,T) is the expectation of the stochastic discount factor (wisk-neutral measure)
and theD(¢, T') is a random variable depending on the future evolution obtiaat rate.

The discount factors are usually derived from the LIBOR andilior rates, or the

collateral rates.

Definition 2.4 (Collateralized Zero-Coupon Bond. A collateralized zero-coupon bond
is nearly equivalent to a ZCB, but here the interest rate imaédhe collateral rate and this
bond is secured from default risk by collateral. The collaleed zero-coupon bond price

can be calculated as

P,(t,T) =EQ[D.(t,T)] = E? |exp —/c(s)ds . (2.5)

t
In this dissertation, we will mostly refer to this as the disnoting factor, or the OIS
discounting factor if we have in mind the collateral rate). It is market-wide practice do
pay EONIA or OIS rate for posted collateral. Hence, the tetdized discount rate and

OIS-discount rate coincide.

Definition 2.5 (OIS T-Forward Pricing Measure). We define a new measure, the
OIS T-Forward pricing measureQ=” by means of a Radon-Nikodym derivative

(Brigo and Mercurig 2006:

dQ°T | = E,[D.(0,T)]  D.(0,t)P.(t,T) (2.6)
dQ " R(O,T)  R(OT) '
which is aQ-martingale and we use it normalized, e.g.
d@c,T B
VT 0 lp = 1. (2.7)

Definition 2.6 (Year Fraction, Day-Count Convention). We denote by(¢, T") the chosen
time measure betwednand 7. Since most of the interest rates are publicly reported in
an annualised formz (¢, T') will be equal to the distance betweeandT in years. There
are many day-count conventions that can be used, but inltb&g, we choose Actual/365,
where the year is 365 days long and the year fraction betwleertvto dates is the actual

number of days between them divided by 365.
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Definition 2.7 (Simply-Compounded Spot Interest Rat¢. The simply-compounded spot
interest rate at time with maturity7” is denoted by L(t,T) and is the constant rate at which
P(t,T) units of currency have to be invested at titrt® produce one unit of currency at

maturity. Its relation with the discount bonds can be expeglsas

L(t,T) = %}%. (2.8)

The market quoted LIBOR, EURIBOR and collateral rates amgpi-compounded

rates. Using the latter definition we can express the zeupao bond price as

1
PO = e ety (2.9)

Definition 2.8 (Annually-Compounded Spot Interest Ratg. The annually-compounding
spot interest rate at timewith maturity7’ is denoted by’ (¢, T') and is the constant interest
rate at which one must inve$t(¢, T") units of currency at time, reinvest the obtained

amounts once a year and finally obtain unit at tiffie

Y(t,T) = [P(t,T;]l/T(th)_l’ (2.10)
1
PUT) = GyyaTyen (2.11)

Definition 2.9 (Continuously-Compounded Spot Interest Rate The continuously com-

pounding spot interest rate at timdor the maturity7 is denoted

In P(t,T)

"D =61y

(2.12)

R(t,T) is the constant rate at which continuously reinvestit(g, 7') units of some

currency Yyields a return of one unit at maturity tiffieln particular

P(t, T)eRtTrtT) — 1, (2.13)

P(t,T) = e REDTT) (2.14)
Definition 2.10(Yield Curve). The yield curve is the graph of the function

Lt T), t<T<t+1
T — (2.15)

YT), T>t+1
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The yield-curve is often referred to when talking about #ent-structure of interest
rates at time. Up to one year from valuation datethis is equal to the simply compounded
rate, but after one year this becomes an annually compouatkedA flat yield curve would
show that the interest rates for an investment of any mgtigithe same. This is usually
not the case and the yield curve shows this so-called temnctste, as illustrated in Figure

2.1

4.0

Yield, %

10 i i x
0 5 10 15 20 25 30

Maturity, Years

Figure 2.1: Yield curve representing the interest rateveerirom the EUR OIS (EONIA)
swaps. Data taken from Reuters, 2009-01-26.

Definition 2.11 (Forward Rates). The simply-compounded forward interest rate measured

attimet, expiring attimel” > ¢ and maturing a5 > 7' is denoted by'(¢; 7', S) and defined

. 1 (P@T)
F(tT,S) = T (P(t’ 5~ 1) . (2.16)

The forward rate gives the borrowing cost or the lending fatea loan starting at

by

future timeT and maturing ab, but measured at current time

2.1.3 Linear Interest Rate Derivatives

The first class of interest rate derivatives that we will usersively throughout the thesis

is the linear derivatives. The value of these contracts mgpdinearly on the reference
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interest rates.

Definition 2.12 ( Forward Rate Agreement). A forward rate agreement (FRA) is a con-
tract where one party agrees to pay floating (LIBOR, EURIB@R¢ in exchange for a
fixed rate X' payment for the same period in the futdi® S]. The market price of this

contractF),is the discounted expected payoff under the risk-neutrabkonme, in formulas:
Fy(t,T,S,N,K) = Nr(T, S)E¥[D(t, S)(K — L(T, 5))], (2.17)

where NV is the notional of the contract) (¢, S) is the discounting factor (can be based
on LIBOR or collateral rates) and (7, S) is the simply-compounded LIBOR rate, fixed at
future timeT and maturing at time5. Since we do not know the future LIBOR fixing, the

value of a FRA is an expectation under risk-neutral measure.

Definition 2.13( Interest Rate Swap (IRS). Interest rate swap valued at timestarting

at time7, and maturing at timd’; is a contract specifying a series of exchanges of fixed
and floating cashflows an a set of pre-determined d@tes{7}, ..., T),}. Just like a FRA
2.12 the floating side of the cashflows is usually indexed wittORRBr EURIBOR interest
rates, but the fixed ratf is fixed at time and remains the same until maturity of the swap.

In formulas:
M

R(t,T,N,K)=>_ Fy(t,T;-1,T;, N, K). (2.18)

=1
In the market the FRAs and IRS’s are quoted using fair ratedairArate is such a
fixed rate K, which renders the value of the contract zero. It is convere look at fair
swap rates, because these are independent on the notighaladntract. A FRA contract
becomes zero if we set the fixed rate to be the expected LIB@Rsta= E2[L(T, 9)].

The fair rate of an interest rate swap (or the par rate) is bepcaed as:

T(Tiey, T)EC[D(t, T;) (L(T;—1, T5))]

Sr(t) = = . (2.19)
> 7(Tia, TERD(, T5)]

i=1

o8

-
I
A
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Definition 2.14 ( Overnight Indexed Swap (OIS)). An overnight indexed swap is a con-
tract which exchanges the fixed coupon against the dailypcoimded overnight (ON) lend-
ing rate once every year until maturi§yy. The overnight rates are currency dependent,
i.e. Euro has the EONIA rate, US dollar has the Fed funds efecate and GBP has the

SONIA rate. The (fair) OIS rate is determined as
P.(t,Ty) — P.(t, T
Sy = el ’NO) ol ), (2.20)

=1

whered; is the year fraction between timés_ ; and7;.

This swap rate is quoted in the market for different matesifiy. One can use the
OIS swaps to determine the collateralized zero-coupormtpoitesF, (2.5). This is why
the discount curves based on the collateral (instead offires) rate are often called “OIS

discount curves”.

Definition 2.15(Basis Swap or Tenor Swap. A basis swap is a contract where two parties
exchange floating payments, but indexed to different neterenterest rates. One of the
parties also pays a ‘basis spread’ to compensate for theagdalifferences in the interest

rate levels. A basis swap is priced by finding stighthat the following holds:

> T(BL(Th1, T0) + bx)D(ET)] = > 7 (B[L(Tey, T))D(t, T)],  (2.21)

wherer,, andr,, indicate different year fractions.

Common basis swap example is the exchange floating 3-modtk-amonth LIBOR

payments within same currency, e.g. EUR.

2.1.4 Non-Linear Interest Rate Derivatives

Another class of interest rate derivatives are the noraeligentracts. The payoff and value
of these contracts do depend non-linearly on the underliyiteyest rates. While there
is a large variety of non-linear derivatives in general, wi#é anly consider the vanilla
derivatives: caps and floors in this thesis.

Most of the standard models for valuing the non-linear denres include the use of

geometric Brownian motion:
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Definition 2.16 (Geometric Brownian Motion (GBM) ). A geometric Brownian motion is
a continuous-time stochastic process satisfying theviaitlg stochastic differential equa-
tion (SDE):

dS(t) = uS(t)dt + o S(t)dW (t). (2.22)

Given initial valueS,, the GBM SDE has an analytic solution:
0.2
S(t) = Sy exp <<,u - ?) t+ aW(t)) : (2.23)
The latter solution is a log-normally distributed randonriadle with:

E[S(t)] = Spet (2.24)
V[S(H)] = SZet (eo2t—1). (2.25)

The GBM is used in quantitative finance to price derivativa@sgithe Black-Scholes model.

Definition 2.17 (Black-Scholes Equation. Let .S be the current level of an interest rate.
Then, we can determine the price of a European call optioreutite Black-Scholes model
Cs With strike K, annualized drift rate., o - the volatility of the rate and” - the time to

expiry of the option with the following formula:

Cps(S, K, 0,1, T) = N(dy)S — N(dy)Ke (2.26)
1 S o?
dy =dy — oV/T, (2.28)

with \V being the cumulative normal distribution function.

Definition 2.18 (Bachelier Normal-Volatility Option Price ). The Bachelier model as-

sumes standard (non-geometric) Brownian motion as theedofthe underlying rates.
dS = pdt + odWy, (2.29)

which implies that the raté(¢) is normally distributed with mean(¢) and volatility o2.

Like in Black-Scholes framework with GBM driver for the satee can price an European
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call option with maturityl’, discounting rate- and strikeK” (Dawson et al.2007) as:

C=e""N(d) (S - aﬁj\vﬂ((?) — K) : (2.30)
j=2-K , (2.31)
o/ (T)

where\ is the cumulative distribution function ard’ is the density function of the normal

distribution.

Definition 2.19(Caps and Floorg. A cap is a contract similar to a payer IRS, but here the
payment is made only if its value is positive. The discoupésaff of a cap can be written

as.

Niﬂz@ [D(t, T)(T, — T ) (LT, T) — K)*], (2.32)

whereL(T;_1,T;) is the LIBOR fixing ands is pre-arranged fixed rate (strike). A floor is
an inversely constructed contract on a receiver IRS:

NS TEQ [D(t T)(T; — Tio) (K — L(Tio1, T)))] (2.33)

i=1
In this thesis, we will be also pricing caplets and floorlethie latter names refer to

single-piece caps and floors wifi = 1.

Definition 2.20(Swaption). A swaption is an option to engage in an interest rate swap. An
European payer swaption gives the holder the right (not adiigalion) to enter into payer
IRS at the time of expiry of the swaption. The European seaptalue can be computed

as follows:

E° [D(t, Ty)(R(t, T, N, K))"] = E?

i=1

D(t,T}) (Z(Lm_l,m - K))]  (234)

where K is the swaption strike and; is the expiry. The receiver swaption, equivalently,

gives holder the right to enter a receiver IRS at the time pfrgx

2.1.5 Risk Management Measures

In the last chapter of this thesis, we will assess the modphonhon risk-management

measures. The primary measure of interest we want to telsé isredit value adjustment
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which estimates the expected loss of the underlying canthae to a potential default of

the counterparty.

Definition 2.21 (Credit Value Adjustment (CVA) ). Credit value adjustment is the differ-
ence between a risk-free portfolio valireand a portfolio including the risk of a counter-
party default. Unilateral CVA is given by risk-neutral expegion of the discounted losses
on the portfolio exposed to counterparty default risk.
T
CVA= (1 - R) /t E? [D(t, s)(P(s))TdA(s)] (2.35)
whereR is the portfolio fraction available for recovery ands) is the instantaneous prob-

ability of counterparty default.

The recovery fractiorR is commonly assumed as constant, even though there is some
research done on stochastic recovery, as showKitwiwattanachai(2012. The default
process\(s) can be either treated as a deterministic, time-dependeatifun or a separate
stochastic process. In this thesis, we shall look into betbss of the hazard rate: when
it is deterministic and when stochastic, driven by a unifigrdistributed random variable
with some given mean.

In post-crisis banking, CVA is used as an additional chaog@¥er-the-counter trans-
actions, which do not get cleared via an exchange and do et ¢@llateral posted to

counteract the effects of counterparty default.

2.2 Literature Overview

In this section, we review the recent literature on the sistih interest rate spreads. We
introduce the two basis spreads that we have analysed ith#sgs. Then, we discuss the
empirical studies of the stochastic basis spreads andithglications and review the ex-
isting stochastic models for interest rates that incorgaifae stochastic basis spreads. The
third part of the literature review is split into two parthetfirst one discusses the post-crisis
changes in the interest rate modelling environment and hewpte-crisis standard inter-
est rate models were adapted, and in the second part we prnesenon-standard models

which have particularly interesting properties for detiies pricing and risk measurement.
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2.2.1 Basis Spreads

In this thesis, we are focusing on two connected aspectseo$tibchastic basis problem.
The first one is the already-mentioned LIBOR-OIS spreadding the difference between
collateral (secured lending) and unsecured LIBOR lendaigs. This spread is funda-
mentally linked to credit and liquidity risks in the inteaik lending system. The second
interest rate spread that we will discuss and later analydepth is the LIBOR-FRA gap.
In the following, we briefly introduce the background behbath of them.

LIBOR-OIS Basis

LIBOR refers to “London interbank offer rate”. It represerthe rate at which large,
LIBOR-panel, banks give unsecured loans. Before the 2@WB Zrisis, LIBOR loans
were treated as risk-free. Since there was plenty of lendimtjborrowing in the system,
there was hardly any concern regarding the liquidity of taeks Bianchettj 2012.

Since the credit crisis, the market participants havesedlthat banks can default and
that liquid, unsecured lending can dry out. The impact oflitrand liquidity risks can be
observed in the LIBOR-OIS spread. OIS swaps are indexecetovhrnight lending rates
and are a good proxy of the interest rate one can earn by lgmdip-by-day overnight.
Such style of lending minimises both default and liquidiskrand, currently, is the closest
proxy to the real risk-free ratdB{anchettj 2012. Figure2.2 shows the historical LIBOR
and OIS rates from 2007 to 2014 as well as the LIBOR-OIS sprélad demonstrates that
the gap between 3-months LIBOR rates and OIS rates has vddggeificantly since the
2008 crisis started.

Our interest in LIBOR-OIS basis sparks not only becausegpisad is a good indi-
cator of credit and liquidity risk in the financial marketsitlalso because the OIS rates are
now used nearly in all derivatives trades as the discouméitess. Because of this, it is cru-
cial to understand the relationship between LIBOR and Oh8, leow to price derivatives

when using LIBOR as the reference rate and the OIS as theuting rate.

LIBOR-FRA Basis

A related basis spread is the LIBOR-FRA basis. In short, a FERRAtract on 3-month
LIBOR lets you exchange the future timié3-month LIBOR rate with a rat& fixed at the

inception of the contract.
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Before the credit crisis, one could replicate, or perfesthycture a mimicking payoff
of the FRA rates using the spot-LIBOR rate&, T') as:

1 1+ S L(t,S)
FM(t,T,S)_(S_T)<1+T‘L(t’T)—1). (2.36)

In practice replication of &, (¢, 7, S) could be done by:

1. Borrowing money at LIBOR raté(¢, S) until time S.

2. Lend the same amount &tt, T') until time 7" < S.
This replication was fundamentally important for the hedgstrategies of market FRA,
IRS contracts and even more complicated derivative prediat caps, floors and swap-
tions.

The FRA rate and its standard replication rate used to beigdnas they both re-
ferred to the same unsecured loans, but since Septembet#8@no longer true. Due to
increased credit risk, the banks stopped lending undercunse terms, and all borrowing is
done on collateral basis making FRA replication in pracisce difficult task, as unsecured
borrowing at LIBOR rates is no longer a common practice. Addally, the FRA con-
tracts are collateralized which makes them nearly creshtiree, yielding a fundamental
difference between FRA and its spot-LIBOR replica. Newelghs, the FRA payouts are
still indexed to the daily-published, unsecured LIBOR sat&€herefore FRA and LIBOR
values are fundamentally connected.

Figure 2.3 shows the market-traded FRAs and synthetic forwards frpot EIBOR
and OIS curves. We can observe that the OlIS-forward ratethadewest as the rates are
nearly riskless. Then we have the market FRASs, which araiasllized, but still LIBOR-
linked. Finally, spot-LIBOR forward rate carries the lasgesk premium as this type of

loan does not offer any default protection.

Discussion

As a result of the aforementioned basis spreads nearly akenparticipants have moved
to the so-called multi-curve pricing framewordércurio, 2009. All future cash flows are

discounted with OIS rates, if the derivative is collatezadl, or using the Bank’s internal
unsecured funding curve. Then, the LIBOR-linked cash flaw®As and IRS) are indexed

to tenor-dependent LIBOR curves. These are bootstrapped ¢orresponding (6-month
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Figure 2.2: Comparison of historical 3-month LIBOR, 3-moi@IS rates and the size
of LIBOR-OIS spread. The LIBOR-OIS spread was negligib&sy basis points, before
September 2007, but increased dramatically up to 200 bp emeined stochastic and
volatile throughout the full period of our analysis. Datarfr Reuters Eikon.

and 3-month LIBOR) IRS, FRA and even Futures contract r&lesstructing a consistent
set of interest rates for every tenor as well as assessingtaglity of each rate has many
issues. Not all-tenor swaps are liquidly traded, and theegriof non-liquid swaps are
‘synthetically’ obtained using basis swaps with paymentsdifferent tenor. Cap and floor
pricing is also complicated as volatility data is only asale for one or two tenors (e.g.
3 and 6-months) and strikes. We have included flow-chartse@rb/after-crisis pricing

frameworks in AppendiB.

In the end, this affects risk-management measures, like, @gAo compute the risk
profile of every swap, one needs to know the volatility of uhdeg rates, which are of-
ten not available. Therefore we seek to investigate seugrakest-rate models that jointly
reprice the market FRAs, IRS’s and caps. Additionally, weK for models that explicitly
model the stochastic basis in a historically-sound way.t,L&e are looking for models
that can relate the stochastic basis to the liquidity andicrisk. Empirical evidence sug-

gests that the latter are closely connectédigovic and Trolle 2013 which has adamant
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Figure 2.3: Comparison of 3-month LIBOR, 3-month OIS andkattraded 3-month for-
wards with forward-starting times from 1-month till 9-mbst Forward rates were obtained
using standard replication of LIBOR Rates, OIS Rates and FRés were taken directly
from the market. Data from Reuters Eikon, 2009-01-26.

implications for credit risk assessments and CVA charges.

2.2.2 Empirical Review of Stochastic Basis Spreads

Before looking for a suitable model for the basis spreads,mportant to understand their
structure and potential drivers. Several studies were ohoihés area, most with overlapping
results and running into the same problems.

For example, Filipovic analysed the historical term-snues of the USD and EUR
LIBOR-OIS spreadsHilipovic et al, 2012. Their in-depth study reveals that there is a
distinct term-structure in the LIBOR-OIS spreads with tipeesd or ‘interbank risk’ in-
creasing with maturity. In this study, they have constrdaecredit proxy from LIBOR
panel CDS spreads and a liquidity proxy from the average di@tling volume as reported
by the DTCC . Using the latter proxies they decomposed thé®IRBOIS spread into credit
and non-credit components. This decomposition showedthieashort-end of the spread
term structure is driven by liquidity (non-credit) risk atte long end is driven by the credit

risk. The constructed CDS proxy was also used as the explgnadriable for the credit
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component of the LIBOR-OIS spread, and the remaining fastts called non-credit, as
only 53% and 65% of (USD and EUR markets respectively) coeléxiplained by their
liquidity proxy.

A similar empirical study on the 3-Month USD LIBOR-OIS spideaas published by
Poskitt and Wallef2011). The LIBOR-OIS spread was decomposed into credit and non-
credit parts using JP Morgan CDS index as the credit proxye duthors emphasised on
the problem of finding a good proxy for liquidity and consteat several proxies from
off-shore USD money markets, which only partially explairtbe non-credit part of the
LIBOR-OIS spread. Nevertheless, this study showed thatribdit impact is smaller than
the non-credit (liquidity) on the LIBOR-OIS spread. It atsmnfirmed that finding a reliable
proxy for liquidity is a difficult task as there is no tradedesclass related to the liquidity
of the lending markets.

Michaud and Uppe(2008, Heider et al.(2009, Eisenschmidt and Tapkin(2009
identify several causes of the LIBOR-OIS spread, in paldicuhe roles of credit and lig-
uidity factors. When finding explanatory data sets beconeeg difficult, the next step is
attempting to construct a logically and mathematicallyr&boon-linear model to explain
the LIBOR-OIS disparity. An innovative idea was demonstdaby Crépey and Douady
(2012. The authors showed an economically-sound model, whersige of the LIBOR-
OIS spread is be influenced by the trading dynamics of ovktrigd long-term unsecured
funding. The proposed model assumes that the rise of c@leation and the use of OIS-
type lending since the start of the credit crisis impactedltiBOR-OIS spread. The pro-
posed equilibrium model for OIS and LIBOR lending, whichlgiea tractable solution for
the LIBOR-OIS spread:

L(T) = OIS(T) = a + VT (2.37)

where« is the interbank credit skew angl stands for liquidity cost of capital. The au-
thors have performed an empirical analysis of this modelpobking into the differences
in LIBOR-OIS spreads in different tenors (3-month, 6-mg®month LIBOR curves and
OIS). It shows that after fitting the model to market data fgarg tenor the resulting credit
componentis shared between all tenors, but liquidity patars are different. Nevertheless,
the size of liquidity components forms a clear structureerehliquidity components for

longer tenors (6,9 months) are larger than for short ter®mdnths). Therefore this con-
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firms that the mathematically and empirically sound model i@ OR-OIS spread should
be based on credit and liquidity effects and also demorsttagat every tenor loan carries
an individual level of liquidity risk, forming a term-struge.

A recent study byCui et al.(2016 looked into the drivers of LIBOR-OIS spreads in
five major currencies (USD,EUR,GBP,CHF and JPY). This stuabwvided evidence that
systemic risk, market volatility, liquidity and counterparisk were the primary drivers
of the LIBOR-OIS spreads during the crisis. What is morehtvged that the relevance
of these determinants was not constant and changed inatiffperiods of the crisis, and
few other factors, such as secondary market liquidity amksaisk tolerance levels were
significant drivers of the USD spreads.

While various works discuss the existence and empiricakfat the LIBOR-OIS
spread, very few look into the follow-up problem of forwartBIOR and FRA basis spread.
A very important study was done orini (2009. The author examined the discrepancies
between the standard LIBOR replication of a forward and taeket-quoted forward rates.
In particular, this paper analysed the spreads betweearelift tenor forward LIBOR curves
(obtained from market FRA contracts). One of the main cbations in the paper is proof
that the spreads between FRA contract rates can be perfeptigated using traded basis
swap contracts. Additionally, he introduced a stochasbdehbased on LIBOR panel dy-
namics. Using this model he showed that the gap betweenasthRRA replication?.16)
and market FRA quotes could be bridged using iTraxx CDS iratethe-money options
volatility, covering abovex 85% of the gap. The author concluded that this replication

model can still be improved by adding liquidity next to citeats an influencing factor.

2.2.3 Derivatives Pricing with Stochastic Basis

To mitigate the rising credit risk, CSA agreements becandelyiadopted between large
market participants. CSA, as expected, did reduce the equanty-related credit and lig-
uidity risk involved in financial contracts. Unfortunatetiiis did not affect the default and
liquidity risk component implicitly carried by the LIBOR t& Inherently, the interest rate
swaps under CSA agreements are still not counterpartyfreégk- This can be observed in
the market-quoted basis swap.41) spreads, which are both collateralized and far from

zero at the same tim@{anchettj 2012.
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As a result of widespread CSA agreements, modern-derdgfixicing works in a so-
called “multi-curve framework” Kenyon 2010. The discount curves must be computed
using the OIS curve or the bank’s internal funding curve,esejing if there is a CSA
agreement between the two counterparties. Then, the FRRA vath different tenors must
be computed from multiple tenor-dependent yield curves.rddeer, if the derivative in
guestion is non-linear, e.g. caplet or swaption - tenor aatunty dependent volatilities
are needed for their pricing. For more information on the enfrem single-curve to the
multi-curve framework, we have included flow-carts in thep&pdixB.

The latter move from single-curve to multi-curve pricingritework and added com-
plexity comes at a high cost as it requires highly heterogesenarket data, which might
be illiquid or even absent. Additionally, the involvememhtaultiple curves in the valuation
exposes simple swap portfolios to multiple delta sensigsi(multiple basis risks), making

the hedging of plain, vanilla derivatives a complex task.

Modelling the Basis with Pre-Crisis Models

Since the LIBOR rates and the discounting (OIS) rates becseparated, the classical
interest rate derivatives pricing framework with a singleve was no longer valid, as the
risk-free discounting curve no longer matched the LIBORepa curve. Several studies
were published on the topic of the two-curve and multi-cipueing framework. The vast
majority of the proposed models were standard interestmatgels adapted to the multi-
curve environment, often under the assumptions of LIBORB-@tlependence.

The early works concentrated on pricing derivatives in a-twove framework, one
curve for discounting and one curve for the forward ratesating the two curves as en-
tirely independent of each other. One of the first studie®éhicing a two-curve pricing
framework was done bghibane and Sheldg2009. The paper outlined pricing formulas
and a full calibration procedure for consistent constarctf the discounting and forward
curves in a multi-currency setting using linear interesé rderivatives, like interest rate
swaps, basis swaps and cross-currency swaps. Several lalbogage works on the pric-
ing of more non-linear derivatives in the two-curve framekvavere done byMercurio
(2009. He obtained arbitrage-free pricing of the forward rateeagnents and interest rate

swaps in a two-curve environment matching previous worksredver, he showed that the
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classic Black’s formula for option pricing can be extendegbtice caplets and swaptions
in the two-curve environment under log-normal models foAREd swap rate evolutions
(Brigo and Mercurio2006. Another contribution of this work was the derivation obBk-
like caplet and swaption pricing formulas under extenddgQR market model (LMM),
where he modelled the spot LIBOR and FRA rates separatebeafcin tenor. The drawback
of this model is that we have to solve a system of 15 or more SIdEEh is a significant
computational burden.

In 2010 few more elaborate models were proposed for devaspricing, including
models with term-structure and volatility smilBallavicini and Tarengh2010 discussed
the market evidence that led to the market-wide switch tarthki-curve pricing of interest
rate derivatives. They also define a Heath, Jarrow, MertaM)Hnodel framework based
on multi-curve approach presenting a bootstrap algorithstrip curves off the IRS and
FRA data. Following that, they showed how to price more cacapdd derivatives like the
Constant-Maturity-Swaps (CMS) and CMS spread optionsgusiair model.

A follow-up work by Moreni and Pallavicin{2014) discusses extending the HIM frame-
work and analytical swaption pricing in multi-curve framak using an approximated for-
mula. Work also includes calibration examples to real madeta and comparison with
few other benchmark models for swaptions pricing. An extenanalysis and impact as-
sessment of using this HIM framework for pricing derivativ€VA with wrong-way risk
as well as gap risk was recently accomplishedbymetti et al.(2015.

A more recent work byMercurio (2010 on the two-curve pricing problem looked into
explicitly modelling the spread between the OIS discountiarve and the FRA rates for
each tenor. The LIBOR rate was decomposed into OIS rate agid ba that the stochas-
tic basis spread could be viewed as a factor driving the &eolwf the forward LIBOR
rates. In this framework, the FRA and IRS pricing formulanamed unchanged, but the
Caplet formula became more involved. The author also inyatstd in detail the Stochastic-
Alpha-Beta-Rho (SABR) stochastic volatility extensiontioe basis spread and derived and
a semi-analytic solution for pricing of caplets.

The most recent works on the topic of modelling LIBOR-OISeggls includes an
introduction of a multiple curve framework with affine LIBORodels Grbac et al.2015,

which allows for semi-analytic pricing of caps, swaptiomsl d&asis swaptions, when the
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rates are positive and hints towards a model extension fyaitive rates as well. Another
recent article byHull and White(2016 shows how to jointly model LIBOR and OIS rates
using a three-dimensional tree. The latter work shows hollvegtablished techniques can
be extended to the new multi-curve framework and shows hoxaltee spread options and

Bermudan swaptions.

Advanced Models for Stochastic Basis

Several later mathematical works explicitly address th&tpdsis interest rate modelling
problems other than the existence of the LIBOR-OIS spreadnamlti-curve framework.
We find these works exceptionally interesting and useful aaenn derivatives pricing and
CVA calculation.

We have already discussed the worlMidrini (2009 in the sectior2.2.2together with
empirical analysis papers. The LIBOR panel model is one eftiodels we shall pursue
to extend as it allows for joint pricing of spot-LIBOR, OIS&RRA rates and yields an
explicit link with credit risk in the market. The originalélpanel model and its extension
are explored in detail in Chapt8r

A Levy-process based model for default-free OIS rates aefatdtable’ LIBOR rates
was demonstrated yrepey et al(2013. The authors showed calibration and fit results for
the model when pricing FRA, IRS and even non-linear derregtas caps and swaptions. In
their framework, the authors demonstrated the ability efrtitodel to reproduce the market
FRA rate levels during the peak of the credit crisis. Morepas this was a follow up of
their earlier works, they extended their framework for d@redluation adjustment pricing
as their original model already included default compomethe LIBOR rates.

A more recent work by.i and Mercurio(2016 looks into modelling the LIBOR-OIS basis
as a simple Poisson jump process with applications to glaand CVA pricing.

Another post-crisis problem, which was not well explorecths pricing of non-
standard tenor options, like caps and swaptions. The ntpstlUSD and EUR caps are
based on, respectively, 3-month and 6-month LIBOR ratexaBse of the switch to the
multi-curve framework, to price an illiquid cap on a 9-mohilBOR rate one needs a 9-
month LIBOR volatility rate, which can no longer be directhgplied from 3 or 6-month

Caps. This problem of extrapolating caplet and swaptioatildies to non-standard tenors,
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given quotes for standard tenors, was revisitedanitz (2013. The author proposed an

arbitrage-free model with displaced diffusion for the fard rates and standard lognormal
diffusion for the OIS rates. With this setup, the author sedwow to calibrate the model

to given ATM caplets and extrapolate the obtained vol&sito a different tenor. What

is more, he showed that it is possible to fit a stochastic al@ta-rho (SABR) model to a

single-tenor volatility curve and shift the volatilities &nother tenor while preserving the
same SABR volatility smile.

A more recent work bvlorino and Ruggaldief2014) discussed a low-parameter short
rate setup for two-curve modelling with an affine three-dachodel. The authors presented
a clean-valuation framework for FRAs and caps (linear andlimear derivatives) with the
main goal of their model exhibiting an adjustment factor wipassing from the single-
curve to two-curve setting. We believe that their additiners-rate factor construction
framework can be extended to solve multi-curve derivatreipg problems, like pricing
of illiquid-tenor caps as well as price CVA on illiquid-tenBRA and IRS contracts. We
shall discuss our proposed mixed short-rate model in Chdpte

Few novel articles discuss issues with multi-curve modgland stochastic basis that
go beyond this thesis. The topics include pricing of crassency trades with multiple cur-
rency collateral availableMoreni and Pallavicini2015, which adds additional complex-
ity levels for consistently bootstrapping the intereseratrves from OIS (and equivalent)
rates, single currency swaps, basis swaps, and crossicyrpasis swaps. Furthermore,
Brigo and Pallavicin{2013 look into other details affecting multi-curve pricing oétes,

including collateral, clearing, funding, netting, re-fogpecation and closeout issues.

2.3 Basis Spread Models

In this section, we introduce the core models used for déves pricing with stochastic
basis, as discussed in recent literature. Our goal is tditamse the reader with the different
model constructions and features as well as with the imnedesults of these models,
such as pricing simple derivatives like the IRS, caps angtwas analytically. Moreover,
we discuss the ease of obtaining risk-measurements likeaW®RCVA when using these

models.
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2.3.1 Short Rate Models

The original theory of interest-rate modelling was basedhenassumption that a specific
one-dimensional instantaneous spot-rate progesas driving all the observable interest
rate quantities.

Modelling the short-rate process is convenient as all tlsentable interest rates, bond
prices and other derivatives are readily defined, usingrhitrage arguments, as the risk-
neutral expectation of payofff (7") discounted with the short rat®iigo and Mercurio
2006:

H(t) = B, [D(t, T)H(T)|F] = E |e~ " [ (T) (2.38)

It should be clear that whenever we can clearly define therdiosaofr(s), we can find the
above expectation and price simple zero-coupon bonds.

There are many choices fofs) dynamics. A very popular class of models is the affine
short-rate models. They are called ‘affine’ as the solut@rzéro-coupon bond price is of
the form:

P(t,T) = A(t, T)ePETr®), (2.39)

whereA(t,T) andB(t, T") are deterministic functions of time. For example, we can ehod

the OIS rates as one factor Hull-White process:

r(t) = 0t) +y(t), (2.40)
dy(t) = —ky(t)dt+ o(t)dW (), y(0) =0, (2.41)

wherek > 0 ando(t),0(t) are deterministic functions of time antlV/ (¢) is a standard
Brownian motion incremen®(16).

There are different variants of the short-rate dynamicgifipations: it can include
two correlated Brownian motiong\Vy, dWW5, it can have a square-root diffusion term
a(t)\/r(t)dW (t), etc. Nevertheless, as we shall show in later chapters tlgicbnve-
nient to use short-rate models as many of their variants de &maalytic solutions for ZCB,
cap and swaptions prices. This feature allows for easyreaidn to available market data.
Additionally, short-rate models normally have up to 3 dniyistochastic factors (Brownian
motions). Therefore risk-assessments like VaR or CVA idelanly a simulation of a 3+1

(credit risk factor) SDE system.
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To model stochastic basis, we would need a multi-dimens®ysiem to model the
OIS rates and each of the forward-LIBOR curves. This can e doseveral ways:
e Short rate model for OIS and another fet IBOR curve
e Short rate model for OIS and another foLIBOR-OIS spread
e Short rate model for-LIBOR curve and another for LIBOR-OIS spread.
In each of the setups, we would obtain short-rate systeniqitteally) can analytically
price ZCB and analytically or semi-analytically price nibmear derivatives such as caps

and swaptions.

2.3.2 LIBOR-Market Model Approach

Another very popular class of interest rate models is thekatanodels. The main reason
for their popularity is in the agreement between the weidlgisshed market formulas for
basic derivative products, like caps. The lognormal foomalBOR model (LFM) prices
caps with Black’s formulaBrigo and Mercuri9 2006, which is a classic standard for op-
tions valuation. Then, the lognormal forward-swap modebNy) prices swaptions with
again the simple Black’s formula. Under the LFM, we modelrgverward-LIBOR pay-

mentF? = F(Ty, Ty+1), v = Tr41 — T as a stochastic asset:

AFE(t) = o F(t)dZE(t), (2.42)
(2.43)

whereF}’ is thez-tenor forward rate, maturing at tintg, o7 is thek- LIBOR forward rate
volatility anddZ}; is the standard Brownian motion.

The main drawback of the LFM model is its large number of degief freedom, as
each forward on every single curve is modelled separatdlig groduces a large computa-
tional burden for VaR and CVA assessments. Additionally,ldige set of parameters must
be calibrated to a large number of market-traded FRAs, @amspther derivatives, which
in some markets are not available. We shall address thegumobt forward-rate volatility

estimation when relevant caps are not traded in later clapte

2.3.3 Generalized Approach

Mercurio showed that there is an easy way to use the addttiedastic basis with existing

LIBOR market models for interest ratddércurio 2010. We say that our forward-LIBOR
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rate is the sum of OIS-forward and the basis
Li(t) = Fiy(t) + Sg(?)

whereL¢(t) = EQ [L(Ty, Ty 1) |Fi) , FE(t) = EQ [F(Ty, Try1)|Fi). In @ very general way,

we define the basis as:

dxi(t) = X5 (t)[og 1 (£)dZ1(t) + oF 2dZa(1)], (2.44)

Sk (t) = S5(0) + o [F7 () — F (0)] + BrIxi () — xi(0)], x5 (0) = 1, (2.45)

whereo} ;, af, B are constant parameters chosen to fit our basis dynaiics, € 1,2 are

independent Brownian motions;, controls the correlation between the spreads and OIS

rates, 5 defines the volatility of the spreads, and the stochastits fastorsy; may be
different for tenorse and maturities:.

As a result of this formulation, the LIBOR rates can be exiliovritten as:
Li(t) = Li(0) + (1 + o) [F (1) — F(0)] + B — Xk (0)]. (2.46)

Note: It may be practical to assume independence of OIS aatgbasis spreads which

can be simply done by setting = 0. The OIS forward rates are explicitly given by:
FiE(t) = [A(t, Ty, T )e POl B0 — 1) /7, (2.47)

whereA, B are deterministic.

The basis factorg we model with GBM:

Xip(t) = X"(t), Vk, (2.48)

dx® = " (t)x*(1)dz*(t), x*(0) = 1, (2.49)

wheren® is deterministic, and’” is independent of OIS rates. This choice of a joint model
for OIS rates and the spreads gives:

1. Caplets and swaptions can be valued as 2-dimensiongtatge

2. Conditioned on OIS rates model, LIBOR and swap rates éireedtinctions ofy

3. The integration can be made semi-analytic, by evaluatiaghner integral as a mod-

ified Black formula.
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2.3.4 LIBOR Panel Model

We took the liberty of naming the “LIBOR as an Optiom¢rini, 2009 approach to mod-
elling of ‘risky’ LIBOR rates and future FRA payoffs, as théHOR panel model. The
underlying idea behind this model is that LIBOR is a trimmedrage rate from submis-
sions made by an approved panel of banks. This average woadeading rate of a ‘prime’
bank in the panel. We can assume that a bank matching thef thierime bank is indeed
in the panel. Therefore, every day at the LIBOR rate fixingetimne of the panel banks
stands as the ‘prime’ bank in the panel. If the credit ratihthe current prime bank does
not change much with respect to the rest of the panel it resrthim prime bank, but if it
significantly worsens it loses the prime bank status andnemditank steps in.

In the following, we introduce the mathematical formulatimf the model in question.
We start by separating the (future) LIBOR rate into the fige interest rate component
and a credit-liquidity spread

L(T,S) = L'(T,S) + S(T, S). (2.50)

We denote the rate of the bank, denoted as ‘prime’ at time kgréX° and its credit-

liquidity spread ass*¢ as in the following equation
LX(T,S) = L'(T,S) + S*(T, 9). (2.51)

The forward credit-liquidity spread for this counterpacgn be rewritten in terms of zero-

coupon bonds as:

REQ[SXo(T, 8)|F,] =~ S¥o(t,T,S) = % (i;g g — iig g;) . (2.52)

This spread, despite a small convexity adjustment2(basis points) Norini, 2009, is
the expectation of the future spread of our ‘prime’ courdetyp As we have mentioned,
the prime counterparty may change, therefore our real teligdidity spread must include
conditions for a potential refreshment of the counterpatiignce, the realised prime coun-

terparty at future tim@ remains the same as the starting ongf does not exceed pre-
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defined panel exit leved®", otherwise gets replaced by substitute counterparty as:

S¥o(T, ) if S¥o(T, S) < SEt,
S(T,S) = (2.53)

SSubst if SXO (T, S) > SExit.

To simplify the counterparty refreshment scheme abovenase original formulation
(Morini, 2009, we assume a ‘mirrored’ evolution of future spreads for QB counter-
parties: for every positive deviation of the expectatidrere exists a counterparty with
equivalent negative deviation e.g. if the spreadfgfbank increased by%, another bank
X steps in with its spread improved by the satfie

This leads to the future spread over risk free rate as the $domvweard spread of the
initial counterparty and the realised change in this spreduich is now the spread of the

substitute prime bank
Ssubst— gXo(0, T, S) + (S%(0; T, S) — S*(T, S)). (2.54)
We can now rewrite the equatio®.b0 in terms of the forward spread of initial prime bank:
L(T,S) = L*(T,S)—2max (S*(T;T,S)— S*(0;T,5),0), (2.55)

the above future LIBOR fixing is unknown at current time zdxyat, we can take its expec-
tation under the risk-free measure. The expectation ofveciat-LIBOR for prime bankX,
is equal to the standard replication of the forwaig,(0; T, S) = E™/[L*°(T, S)]. Overall,
the expectation of future LIBOR fixing, including the coumtarty substitution property

can be simplified as
EQ[L(T, S)] = Fsa(0; T, S) — 2E° [(SXO(T; T.8) — SX°(0; T, S))*] . (2.56)
If we assume that the credit-liquidity spread for any bankwss as driftless GBM2A.16):
dsX(t, T, S) = SX(t, T, S)adW (), (2.57)
we obtain a simple formula for the future LIBOR as an ATM optio

E°[L(T, S)] = Fsu(0; T, S) — 2Cps (S*°(0; T, 5), S*°(0; T, S), 0,0 = 0,T), (2.58)
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Cps(+) denotes a driftless ATM Black calR(26) with volatility o, current spread level and
ATM strike SX°(0; T, S) and expiratiori’.

The latter time-zero risk-neutral expectation is a tradedket product - the forward
rate agreementy, (¢, T, S) = EX[L(T, S)]. Therefore, the gap between the market-traded
FRAs and the standard forward replica is equal to the optadnevon the credit-liquidity
spread of the prime bank. To compute the value of this optiemeed to know the

parameter - the average volatility of credit-liquidity spds of the LIBOR panel banks.

2.4 Research Gaps and Conclusion

The divergence of LIBOR and risk-free lending rates has@auasmoil in lending markets,
as well as rendered the current interest rate models no larsgdul. Several adaptations
of classic stochastic models and few new ones were propasegriting derivatives in
the setting of multiple LIBOR and risk-free rates, most adédh fall into the categories of
short-rate and LIBOR-market models.

The short-rate models are attractive for their simpliciiy éo not always have enough
degrees of freedom to fit the curve and volatility data witthe bid-ask spreads. The
current multi-curve short rate proposals in the literatuage adapted a ‘curve-per-tenor’
approach, where each LIBOR tenor (1M,3M,6M,12M) has a s#panodel, with imposed
correlation between the drivers. These approaches haveetefit of fitting each curve
perfectly to market data, but the principle itself hasditib do with the common empirical
drivers of all the curves (credit and liquidity). What is repcalibrating four completely
separate models is challenging if volatility-dependentvadéives, like caps or swaptions,
are not liquid for every single tenor.

The generalised LIBOR-Market models have a few more degregeedom, but are
hard to calibrate due to lack of liquid data for volatilitiaad correlations as well as the
proposed short-rate models. Their main benefit is the frmedibchoice of the volatility
structure.

Very few of the published variants of these models explicifer to the link between
LIBOR-OIS spreads and credit-liquidity risk in the intenialending market. In the fol-
lowing sections, we shall introduce possible model corsipas that have either implicit

or explicit link with the risks mentioned above. The modaedttis explicitly approaching
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the linking problem is the Panel ModdWprini, 2009, but as we shall show, more analysis

needs to be done on its applicability in practice.
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Chapter 3

LIBOR Panel Model for Forward Rate

Replication

3.1 Introduction

The existence of the stochastic basis spread causes raydtiblems. The forward rates
replication (as we have introduced it in sect®2.]) is a widely-discussed issue impact-
ing many derivatives pricing models. Nevertheless, theonitgjof articles .2.3 show
how to price derivatives in the new setting, by taking the OB-FRA disparity as already
given in the initial setup. There is a gap in the literature anneed for a model which
would explain the relation between the current spot-LIB@Es curve and the market-
traded FRA rates. There is vast econometric evidence (Be2i2.2 on the relation be-
tween the basis spreads and credit and liquidity risks. mgiance, the LIBOR-panel me-
chanics based modeMprini, 2009 assumes an explicit relation between credit risk and
LIBOR-OIS basis spreads. Using this relationship, we cacepnarket-traded FRA con-
tracts using information from the spot-LIBOR curve and LIB@anel bank credit risk
indices. Explicit relation of LIBOR-OIS spread and credgkrin this model can have
tremendous implications for risk management practicel as¢/aR and CVAZ.35 com-
putation Kenyon and Stamn2012).

The goal of this chapter is to verify and follow-up the LIBORn@l model iorini,
2009. We start this chapter by introducing the forward rateicgpion problem. Following
that, we introduce the concept and mechanics behind the RIB&nhel model and validate

the results obtained biylorini (2009 (using iTraxx volatility proxy, as in the original pa-



per). We complement the analysis by moving from a single FB#tract to replication of
full series of market-traded FRAs and introduce a FRA-iegbNolatility framework capa-
ble of additionally reducing FRA replication errors. Usitng latter results, we discuss the
remaining data replication errors and limitations of théad#& panel model formulation.

In the second part of this chapter, we extend the model usingloservations from
the error analysis of the original model. We propose the @isacertain volatility model
(Alexander 2004 and demonstrate that it reduces the replication error laylypan order
of magnitude and the decreased error remains within thegkdspread oved5% of the
time. We conclude this chapter with a discussion on hisabmaplied parameter dynamics

in the extended model and its overall usefulness in dewesaipricing area.

3.2 Standard Model Forward Rate Replication

Construction of the forward LIBOR rate is a vital principfemodern interest rate deriva-
tives pricing. Before the credit crisis, a forward startinBOR-linked loan was constructed
using two spot-LIBOR loans as shown . 17).

Since mid-2008, the interest rate market has moved fronlesitigve to multi-curve
pricing framework, which means that now we have a discognturve for every tenor of
the loan e.qg. if we construct a future loan for a 3-month genee have to use the 3-month
curve, for a 9-month loan and the corresponding 9-montheculw example market yield
curve snapshot is shown in FiguselL

Despite the added complexity of discounting loans on dffiécurves, we also learned
that the standard replication formula.11) is no longer valid, as the market-traded FRA
rates no longer match their standard-replication couatéspThis introduces the separation
between the spot-LIBOR curve and the forwarding curvesclvig counter-intuitive, as all
the LIBOR-linked derivative payouts are indexed on the 4pBOR curve and not the

forward curves.
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Figure 3.1: Plot of multi-tenor discounting curves. Thevas were bootstrapped from
OIS swaps as well as 1,3,6,12-month FRA and IRS linear derés& In the multi-curve
discounting environment, cashflows with different paynfesquencies are discounted with
corresponding yield curves.

Figure 3.2 compares the 3-month LIBOR, OIS and market-traded FRA raids
forward-starting times from 1-month till 9-months. It sh®that the market-traded FRA
rates are substantially different from the replicated fmdvrates using the unsecured LI-
BOR or even the OIS rates. Therefore, to correctly price a BR&has to take into account
the credit and liquidity premiums embedded in the LIBOR, a# as the fact that the FRA
contracts are collateralized and nearly risk-free by thedwes. Moreover, from the figures
3.2aand3.2bwe can see that the forward LIBOR-OIS term structure gap madyc and
changes over time. Therefore a static, constant spread food$8OR-FRA spread would

incorrectly represent its dynamics.
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(b) Data from 2012-06-26.

Figure 3.2: Comparison 3-month LIBOR, OIS and market-tdafdewards with forward-
starting times from 1-month till 9-months. Data was takemfrReuters Eikon from dif-

ferent dates. The figures show that term-structure of mdraded FRAs changes in time:

it was closer to the LIBOR-implied ones in mid-2008, but atig by mid-2012 the market
FRAs were more aligned to OIS-implied forward rate levels.
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3.3 LIBOR Panel Model for FRA Pricing

The main problem that is in question when using the LIBOR paraalel is how to bridge
the gap between the market-traded FRA rates and the ratesettvia standard LIBOR
replication @.16. We start this section by demonstrating the main repbecatesults of
the LIBOR panel model for a 6 to 12-month FRA contract. We as@mg EUR interest
rate data, and as a proxy for the credit-liquidity spreadialy we use i-Traxx CDS index
6-month options volatility and obtain equivalent resudtgNlorini, 2009. Then we extend
the analysis to multiple FRA contracts, as well as multigleors, investigating both 3-
month and 6-month tenor FRAs. Ideally, we would like to seénalar performance of
their replication quality over time as both contracts aoselto each other by construction.
We also apply the model beyond EUR market to USD and GBP falnate markets and
compare the model fits for all three currencies as well as lotkthe overlapping periods
of large fitting errors.

Moreover, we demonstrate an alternative approach to abtgine volatility parameter
for the credit-liquidity spreads of LIBOR-panel banks. @gpproach removes the need for
external volatility proxy, which is hard to get and can dtédl unreliable. We propose the
use of FRA-implied volatility, which can be obtained by salythe equationZ.58) for o,
as we have the spot-LIBOR curve available for current priraekband a set of data for
market-traded FRAs. The latter concept is widely used iivdgves pricing, e.g. when the
‘implied’ volatility for a stock price is obtained from thesided European option price. This
implied volatility shows the market expectations of theatiity of the underlying until the
maturity of the option.

The obtained implied-volatility gives almost perfect datswhen fitting the model to
a single-contract and low-error fits when fitting full ser@#$RA contracts (e.g. 3-month
FRAs starting in{1, 2, 3, ..., 9}-months. We analyse resulting model errors and show that,
while this basic model has the potential to explain the steshdeplication gap, it is not
flexible enough to minimise all the replication errors, esay during the peak of the
credit crisis. In sectio.3.5we conclude with discussion of the results and the motiwatio

for our model extension in the following sectiBtb.
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3.3.1 Basic Replication and Analysis

In this section, we compare the historical FRA rates for ipldttraded FRA contracts with
classical standard replication formu®3.1) as well as panel mode2(58) to replicate the
historical FRA rates.

In figure 3.3we show the performance of historical FRA (6x12-month cactrrepli-
cation with the two models. Simple visual analysis of the riggundicates that the use of
standard replication leads to large, up to 200 bp pricingrerthroughout the historical pe-
riod. The resulting FRA values from the panel model are mlaber to the market x 12

FRA rates, with maximal errors not exceeding 50 bp.

6

—— Market Data
—— Panel Model Replication
—— Std. Model Replication |]
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Figure 3.3: Historical replication af x 12 FRA rate. The figure shows comparison of
market-traded FRA rates and forward rates implied by thedstal replication model and

the panel model. The resultis trimmed to June-2011 due itdions of our iTraxx implied
volatility dataset.

To obtain an aggregated look at the replication errors olleha contracts at our
disposal we fitted the model to series of FRA prices, withedéht volatilityo; parameters

and computed model-introduced replication errors:

Eai(tia Sj,T) = FM(tl, Sj,T) — Fa (tu SZ‘,T, O'i), (31)

i
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for every dayt;, for all maturitiesS; € {1,2,3,...9M} and both tenors of interest ¢
{3M,6M}. Then, we took the mean, minimum and maximum errors for atunitées S;
on each day,. This way we visualise the 'worst-replicated’ contractsnfrall the FRAs
we had data for.

In figure 3.4awe show the average, minimum and maximum of the errors oficlas
standard replication model for series of 6-month FRA cangal he error, when using the
standard model nearly reaches 200 basis points (2%), agpehad during the peak of the
2007-2009 financial crisis. In the periods before the peathefcredit crisis and after it
the replication error stays within 50 bp error margin. Adfilly, in figure3.4bwe show
the errors of standard replication for series of 3-month FERAtracts, here the error spikes
slightly above 200 bp and stays higher during the leftoveiopls 50 to 100 bp.

The panel model, using the iTraxx volatility, is performibgtter than the standard
replications as shown in Figurés5aand 3.5h The average error of the panel model
stays within 20-30 basis points when replicating all the Fébhtracts, and reaches 60
basis points during the peak of the crisis. This holds fohp8tmonth and 6-month FRA

contracts.
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(b) Min, mean, max replication errors for 3-month EUR FRAs.

Figure 3.4: Historical min, mean, max replication erronsE®JR FRASs. The figures show
the replication error ranges for groups of, respectivethg 3-month and six 6-month FRAs
when using the standard replication model.
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(a) 6-month FRA replication error with panel model usingaxtx implied volatility.
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(b) 3-month FRA replication error with panel model usingaXx implied volatility.

Figure 3.5: Historical min, mean, max replication erronsE®JR FRASs. The figures show
the replication error ranges for groups of, respectivethg 3-month and six 6-month FRAs

when using the panel model.
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3.3.2 Extension to Multiple Currencies

An important part of our experiment is to extend the use «f thodel from EUR to other
currencies, such as the US Dollar and the Great Britain Pdartte following, we provide
the results and a short discussion of using the panel modklthhe Euro iTraxx implied
volatility.

At the time of writing, there were no liquid CDS options trdda USD and GBP markets,
like the Euro iTraxx ATM Options. We argue, that because tH8QR-panel banks in
EUR, USD and GBP panels are overlappihrgércontinental Exchang2014 and all three
markets are highly inter-connectd8ihar and Nikolova2013 the credit-liquidity volatility
behaviour should be similar across all three markets. Toexeto investigate the potential
of the panel model in USD and GBP FRA rates - we fitted the madisldir respective spot
LIBOR curves and used the Euro iTraxx volatility index foeth parameter. In Figures
(3.63 3.6b we show the replication errors for 3-month FRAs in USD andPGiarrencies.
Our results show that:

1. Replication errors for USD FRAs stay mostly withirl0 bp range but reacto bp
during the peak of the crisis at the end of 2008 and the fir§tf&009.

2. Replication errors for GBP stay most of the time withii0 bp range but spike to
over 120 bp at the end of 2008. Additionally, we can observe a trenchafeasing
error in the second half of our data sample, which shows thaEQR iTraxx proxy
for volatility is insufficient to jointly replicate the sex$ of GBP FRAs.

Overall, the FRA replication using the panel mode and iTraptions-implied volatility is
a major improvement when compared with the standard regitapproach. The panel

model, as expected, works best for EUR market.
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Figure 3.6: Historical min, mean, max replication errors 5D and GBP FRAs. The
figures show the replication error ranges for group of nimad@ith USD and GBP FRAs

when using the panel model.
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3.3.3 FRA-Implied Volatility

The LIBOR panel model for FRA replication requires an inpartthe volatilityo as given
in equation 2.58. This parameter should reflect the volatility of the CDSesjr of the
‘prime’ bank in the LIBOR panel. No derivative instrumentgigilable that could provide
such information directly, but we can use a close proxy, agthe iTraxx index ATM 6-
month implied option volatility values, which were also dd®/ Morini and Brigo(2008.
This underlying iTraxx index shows the CDS levels of the lesstgand most liquid European
stocks. While the option volatility on this index is not whatruly needed for this model
- this is the most liquid and reliable proxy. In general, figliCDS-index option implied
volatilities is a hard task, as these are not very liquid. iiddally, the CDS indices that
we are traded do not completely reflect the LIBOR-panel casitijpm (Morini and Brigq
2008.

Hence, we took an alternative view by reversing the probiestead of replicating the
FRA levels with given volatility, we calculated the “FRA-phied” volatility which gives
the match between historical FRA levels and the LIBOR par@eh The implied volatil-
ity over multiple contracts should reflect the true vol&tibf the credit-liquidity premiums
in the LIBOR-panel. In the following Figur8.7) show the FRA-implied volatility from

Euro 3-month FRA data. The time-series values were obtdgeblving

ol =min(E(t;, S, 7,0)) (3.2)

7/7] o

E(ti, Sj,T, O'i) = FM(ti, Sj,T) — Fp(ti, Sj,T, O'i) (33)

using a numerical solveBfent 1971, wherei is the date (in the time serieg), is the
valuation date and; are the maturities. Th@ﬁ is the panel model volatility fot; date and
S; maturity and the LIBOR panel model for FRA pri¢&(-) is given in .58).

We have plotted the resulting historical implied-volaigs, per-contract, in Figui&7.
The implied volatilities were not relevant before Septen#fi7, as the basis spreads were
close to zero and the resulting volatilities as shown in Fag@i7 are full of fitting noise.
Nevertheless, since September 2007, the implied voiesiliddlo move in a synchronised
fashion, which shows a strong relation to the different cats. This observation confirms

our intuition as these contracts, even if they have differeaturities, they do rely on the
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same tenor LIBOR rates, and, inherently, carry the same eédaaecredit-liquidity risk.

What is more, the implied volatilities from the set of cowtsafollow a clear struc-
ture: the FRA contracts with longer maturities, suctbas9M, 7 x 10M,8 x 11 M have
lower volatilities than the short-end ones. This effectfteimobserved in the market traded
caps and floors - their forward volatility often decreasewiaturity rigo and Mercurio
2006. Finally, the distance between individual volatilitiesriot constant, which can be a
sign of a badly-specified model (e.g. insufficient degredseadom).

The Figure3.7 also shows some of the volatility extremes fitted by the modéle
implied-volatility gets negative when the resolved optiatue in the model is negative, or
FRA rate is less than the standard replication. This may éaplpe to illiquid FRA quotes
or simply because in our dataset we use mid-prices for thesi-But the difference between
the FRA rate and standard replication price was within tlte/&sk spread. Moreover, when
the implied-volatility of the LIBOR-OIS spread is above 200it means that the value of
embedded option in the FRA contract is much larger than tBOIR-OIS spread itself.
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Figure 3.7: Historical FRA implied-volatility (IV) for EURB-month FRA contracts. We
compare the historical implied Panel-model volatility &wery 3-month FRA contract we
analysed. The per-contract IV follow each other with distiperiods of high and low
dispersion. The volatilities follow a term-structure, wdevith increasing starting time, the
FRA-IV decreases. This result is often found in other irgerate derivatives, like caps.
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3.3.4 Global Implied Volatility

As we have shown in the previous section, different FRA @ity even if they are indexed
to the same LIBOR tenor, yield different implied volatiis in the panel model. To clarify
the results of the previous section we set up the followingeexnent. We want to test
the limits of the LIBOR panel model, as is, and to see if we cardpce a single implied-

volatility, fitted across full series of FRAs, which allows to price any FRA within the

bid-ask spread.

We note that the historical bid-ask spreads for 6-month FiRé&e usually 4-5 bp in
some cases 8-10 bp with some recorded jumps to 20, while thieet@RA levels were
between 100 and 600bp. The 3-month FRAs were usually trad@dv@-5 bp spread, in
some cases 8 bp.

In the following analyse the replication quality of FRAs wihegpplying global calibra-
tion. In both cases (3-month and 6-month) we calibrated adiig optimal volatility level

for full series of respective contracts

E(tza Sj7 T, U) - F]\/I(tia Sj7 T) - FP(tia Sj7 T, 0-)7 (34)
M

i minZ(E(ti,Sj,T, i), (3.5)
i o

and measured the maximum, mean and minimal errors in réiplcquality across all con-
tracts

In figure 3.8awe show that using globally-fitted implied volatility, werceeplicate the
3-month FRAs with errors bounded by 20 bp in most cases, withesspikes up to 40 bp.
The 6-month FRASs, as shown in figuBe8bare better replicated when using the global-1V,

here the replication error is as low as 10 bp in most caseqdaks are still at- 40 bp.
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Figure 3.8: Max, min, mean errors in historical replicatminthe 3-month and 6-month
FRA groups, when the panel model volatilities were globfiitgd to, respectively, 3-month
FRA and 6-month FRAs. The result is a strong improvement exers of standard repli-
cation model in both cases, but we still have two distinctquer where the error in panel
model is above 20 basis points.
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We performed the global volatility calibration on both, issrof 3-month FRAs and
6-month FRAs. This allows us to compare the implied volgtitlata tenor-by-tenor. As
shown in Figure3.9, before mid-2007 the implied volatilities are full of noias the basis
spreads are close to zero. Later, from 2007 till 2009 the 8tmand 6-month volatility
levels closely follow each other and at the end of the peribiddate into two distinct, but
correlated levels. The FiguB9shows several significant events: when the market realised
about the hidden risks of LIBOR trading the standard repbecebroke down and the panel
model implied volatilities spiked up t200% in September 2007, but the forwards of the
3-month and 6-month tenors were traded nearly identicedlyrying similar quantities of
volatility. Later, around the end of 2008, the market biisd and started trading the two
tenor FRAs as different products, most likely differentigtby the liquidity differences in
3-month and 6-month loans. A similar observation was alsdentey Crépey and Douady
(2013, where they concluded that in this model for the LIBOR-Offsesds, each tenor
carries different liquidity components to account for théfedence between the LIBOR

forward and OIS curves.
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Figure 3.9: Historical EUR FRA-implied volatility for 3-nmths and 6-month fixings. The

global implied volatilities for both 3-month and 6-month &Broups closely followed each
other until Q2 2009 and then bifurcated into two distinct lighly correlated levels.
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3.3.5 Discussion

The panel model offers a large improvement for FRA replaratver the standard repli-
cation model, but it is not perfect. First of all, the lack dBIOR-panel credit-liquidity
volatility proxy is an issue, but not impossible to overcortieés a wide market practice to
imply option volatilities from traded contract prices, whiis performed in equities, interest
rates, foreign-exchange and the credit market. Therefoeesan use market traded FRA
guotes to imply the missing volatilities. The resulting ired volatilities yield a volatility
term structure, similar to cases in interest rate capRitig¢ and Mercurip 2006, where
the volatility decreases with increasing maturity of thé@m.

Afterwards, we have tested the replication limits of thisdalp by jointly fitting full
series of single-tenor FRAs. In theory, if the model is w@lésified, a single volatility
estimate should yield a good market fit of all involved FRA waots. We found that this
is not always the case and errors often reach 20 and 40 basts pothe historical period
that we analysed.

Therefore, in the following section, we shall look into patial ways of modifying the
panel model, to allow for a few extra degrees of freedom adedese the joint-replication
error. ldeally, we want to the error to stay below the bid-sgtead level oved5% of the

time in the historical series.

Method Average Error] Maximum Error
Standard Replication 50 bp up to 200 bp

Panel Model with iTraxx IV 25 bp up to 60-80 bp
Panel Model with globally-fitted IV~ 10-20 bp up to 40 bp

Table 3.1: Table summarizing FRA replication errors frorifiedlent models. The standard
replication model does not perform well since mid-2007 artcbduces and average error
of 50 bp (up to 200bp) in replication. The panel model greetigroves upon the standard
model and with iTraxx implied-volatility input reduces theplication error and performs

even better when using globally-fitted FRA-IV. Neverthslethe errors are still above 5
basis points, which is a common bid-ask spread level for FiRAlse market.

3.4 Empirical Assessment of Model Assumptions

So far we have shown that the LIBOR panel model is a major ingore@nt over the stan-
dard replication and has the potential for joint modellifigub FRAS in our FRA-implied

volatility framework. Nevertheless, the residual errosiandard panel model specification
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is non-negligible. In this section, we demonstrate ournaptis to find the source of the
error coming from the LIBOR panel model. We have looked ihteé possible issues:

1. First, we looked if the market FRA bid-ask spreads cowedpo same periods of
large model errors, indicating that FRA liquidity issue sesl the bad fits in the
model.

2. Second, we looked if the periods with large replicationiercorrespond to large dis-
persion of individual FRA implied volatilities as in Figu(8.7). This would indicate
a missing maturity-dependent skew in the volatilities.

3. Last, as the panel model assumes the normal distribudgrahé credit spread(58),
we checked if the underlying assumption is valid. To do thesceompared the histor-

ical forward LIBOR - OIS spread dynamics with GBRIL6model dynamics.

3.4.1 Liquidity
To investigate if our errors in the model were affected byl#ok of liquidity in the market
during the credit crisis we have compared the errors from:

1. Standard replication model for FRA

2. Panel model with iTraxx implied volatility

3. Panel model with globally calibrated implied volatility
We measured and plotted the error resulting from the regpicaf EUR 6x12M FRA in all
three cases as together with the 6x12M FRA bid-ask spreadsyfa few available proxies
of trading liquidity, to see if low trading liquidity corrated with large model errors.

Figure3.10shows that the errors in the three cases have strongly ppémizperiods

of large replication errors, but the actual bid-ask sprdati@ FRA remains small, mostly
within 5-10 bp. Additionally, the correlation between kadk spreads and errors is small,
as the spreads stay mostly constant and both, increase am@dsle in spread levels happen
whenever the replication errors are large. Therefore,gubid-ask spread as a liquidity

proxy does not help explain any of the errors as after 2007.
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Figure 3.10: Historical error of 3 FRA replication models 6x12 EUR FRA. We investi-
gated if there are periods of large model error overlappin periods with high bid-ask
spread. A correlation of the two would indicate impact of FRuidity on the replication
guality. This effect is not visible as the FRA trading spreacere contained below 5 bp

during most of the period with few jumps up to 20 bp.
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3.4.2 Degrees of Freedom

Our globally calibrated volatility erroneously reprodadie market FRAs, because the
individual implied volatility of each of the FRA differs, age have shown in Figurd.7.
To see if periods of large dispersion of the implied vola#h affects the overall error of

replication, we compare the standard deviation of the IV

Sio= a7 ool - (3.6)
7=0
1 M ‘
= o (3.7)
7=0

and the absolute FRA replication errors. We performed thierléest for multiple FRAS
and chose to demonstrate 6x12M FRA as an example. As we cdrosethe figure3.11,

the larger dispersion is followed by a large FRA replicatesror, but this relationship is
far from perfect. For example, high-dispersion in begignoi 2008 overlaps with small
replication errors, also large dispersion in end of 2012esponds to a period of low-
replication error. This test remains inconclusive but dgiee us a hint that solving the

IV-dispersion problem could lead to a better overall fit.
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Figure 3.11: Historical error of 6x12M FRA replication ugiglobal-1V, compared to the
dispersion of the 6-month globally calibrated FRA implienlatilities. The relation be-
tween large model error and dispersion of implied volatditis not perfect, but the long
period from mid-2008 up to mid-2012 of large model error avdlispersion hint at the
main problem in our replication exercise.

3.4.3 Specification of Diffusion Dynamics

One of the major assumptions in the LIBOR panel model is thatliBOR-OIS spread
of the prime bank is log-normally distributed. This assumpis implicitly given, as we
model the spread as geometric Brownian motion. To test #sgraption we compared the
daily log-returns of the forward LIBOR with the forward EOAN§pread obtained using the
historical spot rates. By the GBM model the spre&ashould satisfy:

therefore by taking the log returns of the spread series,htamthe empirical distribution
of dIW. Our goal is to check if it is a normal distribution.

In the figure3.12 we have plotted the histogram of historical spread returd an
fitted (normal, log-normal, Student-T) distributions teetdata. Then, we performed

Kolmogorov-Smirnoff test flassey 1951 with null-hypothesis that our sample belongs
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to one of these distributions. The test strongly rejecieec &< 1%) the hypothesis that
sample comes from normal or log-normal distributions. 8tu€l distribution was con-
firmed to give a more appropriate fit with= 80%.

The Student-T distribution is rather inconvenient to usgation pricing Cassidy et aj.
2010, due to the infinite variance properties of the Studentskritiution. An alternative
route, taken in quantitative finanddrigo and Mercurigp20032), is to use a pair of normally-
distributed random variables as the drivers for the LIBOFS-@g-returns.

In the figure3.12we show that we can obtain a good fit of the historical histogios
using a mixture of two normals. When compared to the nornetlidution, the mixture
captures the peak and heavy tails better.

The appropriate AICBozdogan 1987 criteria results are=3849 for normal distri-
bution,—4569 for a mixture of two Gaussians;4565 for a mixture of three Gaussians and
—4922 for Student-T distribution. Therefore, using a mixturewbdtGaussians instead of a
single normal distribution yields a vast improvement intirstorical log-returns fit. On the
other hand, using three Gaussians would not yield a significhetter fit of the historical
log-returns. In the end, Student-T gives the best fit, but wauele this model from our
analysis due to analytical tractability difficulties as rtiened before.

Moreover, as shown in Figui&13the two fitted components are clearly distinct: the
first component is low-volatility fitting the central peakdamiddle sections of the historical
distribution. The second component has large volatility gnerefore gives a good fit to the
far tails of the empirical distribution. We acknowledgettbeen better fit could be obtained
with three or even four components, but their function wdakdless easy to distinguish.

We shall elaborate on the latter in the later chapters.
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Figure 3.12: Histogram of 3-month EUR LIBOR-OIS spread tegsrns and selected prob-
ability density fits. The obtained log-returns series daogsfollow a normal distribution,
the best fit is obtained using heavy-tailed Student-T priibatiensity function. A mixture
of two Gaussians provides and intermediate fit.
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Figure 3.13: Probability density fits for the mixture compats of the 3-month EUR
LIBOR-OIS spread log-returns. The two components are lgielistinct - one correspond-
ing to the high peak and the second one with the heavy tailseoflataset.

3.4.4 Summary

Our brief empirical model assumption analysis shows thahase was no visible corre-
spondence between the bid-ask spreads and replicatians,etfve liquidity of data used is
not the main cause of replication errors. We have obsenetdlie dispersion of implied
volatilities does correspond to dates with increased @foeplication. Hence, the panel
model is too constrained and needs a few more degrees obfrexbe able to fit multiple

FRA contracts simultaneously. On the other hand, we haweshiswn that the log-normal
Brownian motion assumption in the panel model is not coy@sthe actual historical dy-
namics of the LIBOR-OIS spread are much closer to StudenisfFilsution or a mixture

of two Gaussians. We note that pricing options using a Stud@lehstribution not practical
and a similar effect can be achieved with the mixture model.

3.5 Extended LIBOR Panel Model

Using our observations in previous section, we introducexansion of the panel model

using a mixture model. In this model we assume that our ctieglitdity spread is driven by
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a single Brownian motior;22), but with uncertain volatility. This way we obtain so-call

uncertain parameter modéléxander 2004:
dS(t) = S(t)ozdW(t) (3.9)

whereZ is a discrete random variable, independentiof taking values in sefl, ..., m}
with probabilities); > 0. In this formulation, the log-return distribution of therspd
becomes a mixture o, Gaussian components. Additionally, this under this mothed,

European call option price can be written as a weighted suBtawk-Scholes call options:

N
CMZ:E(S7 K7t7T) - Z)\iCBS(Su K7t7T7 Ji)u (310)

=1
wherezij\i1 A; = 1 andC'pg is driftless Black call option defined i2(17). Computing the

FRA value under the extended LIBOR panel model is as simple as

N
Fp(t;,T,S) = E"[L(T,S)] = Fsualt; T, S) =2 NiCps(S, K, 1;,T,07).  (3.11)

=1

The uncertain parameter extension is the simplest modételhehich preserves an-
alytic tractability and also adds additional degrees oédiean in the model. We propose
to use a two-volatility mixture model, where we have volaék 0,, 0»’s and weight pa-
rameter)\;, the remaining\y = 1 — \;. This choice adds two additional degrees of free-
dom that can be used to fit FRA data instead of a siag#s in the original model. We
have looked at other alternatives, e.g. using two correlBt®wnian motions or a local-
volatility model like the Stochastic-Alpha-Beta-Rho (SREWest 2009), but these op-
tions are over-parametrised and may unnecessarily coatlaalibration procedures and

our ability to interpret the results as we shall show in tHeWing sections.

3.5.1 Model Fitin EUR Market

In this section, we show the performance of the mixture méolethe problem of FRA
replication. We will show the remaining errors for repliogt series of FRAs as well
as compare the model with its predecessor, namely the ndrB@R panel model. To
demonstrate the results we fit the mixture model to seriesmabBth and 6-month EUR

FRA contracts for every trading day in our dataset. Then, @vsthe mean,min and
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max errors of the replication exercise and also comparedthenmance of normal (single-

driver) and mixture (two-component) models by assessiaggtiotal replication errors:

ENormal 7' t Z ‘FM t S 7' FNOFma|(ti7Sj77-7 ‘7@'>|7 (3-12)
M

Ewix (7, 1:) = > |Farti, S5 7) = Faix(ti, S, 70t 02, M) (3.13)
j=0

which helps to simplify the picture when comparing the perfance of the two models.

Below, Figure3.14shows that in the mixture model the absolute maximal erpes,
contract, shrank to less than 10 basis points in most casiesvam go under the 5 bp limit.
In turn, this makes the mixture model useful in FRA tradingisk-management, as we can
jointly price series of FRAs with error close to the bid-apkeads.

Moreover, Figure3.15ashows that the mixture model outperforms the normal model
by up to an order of magnitude. This effect is sustained thinout 3 and 6-month tenors
as shown in Figur8.15h The mixture model outperforms the normal model in peridds o
excessive stress when the normal model fails to correqgblycage FRA rates, e.g. between
September-2008 and June 2010, and January 2012 to Jan 20ir3y Bther periods, when

the normal model performs well, the mixture model offers egidmprovement.
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(a) Historical replication errors of 3-month FRAs with thetéhded Panel Model
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(b) Historical replication errors of 6-month FRAs with theended panel model

Figure 3.14: Max, min, mean errors in historical replicataf the 3-month and 6-month
FRA groups using the globally-fitted extended panel modeé flgures show that by using
the extended model we can replicate series of FRAs withinstsh@oints error margin in
95% of cases in the historical dataset.
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(b) 6-month EUR FRAs. Mixture model vs normal model error pamison.

Figure 3.15: Comparison of total absolute errors for repiigg groups of 3-month and
6-month FRAs between the panel model and the extended pasag#ImThe extended
model improves the replication error by and order of magtatand works especially well
in periods of high market volatility.
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3.5.2 Mixture Model in USD and GBP Markets

We have extended our analysis and model comparison to USBG&®I markets. The
order-of-magnitude out-performance of the mixture modealustained in these markets as
well. As shown in Figure8.16 3.18 the mixture model performs well in peak times of
crisis, when the normal model encounters large replicagimars. The remaining FRA
errors are contained in a tighter region than EUR FRAs asréefoostly within 5-10 bp
range. We do have singular spikes in error, resulting fropasge FRA quotes, which
may have been mispriced in an increasingly low-liquidityrkes, but as the official bid-ask
spreads were still within 5 bp it is hard to prove that thers wa&lear issue of liquidity for

the FRA quotes.

5

— Mixture Model
—— Standard Panel Model

RMSE

Figure 3.16: 6-month USD FRAs. Mixture vs normal model ecwomparison. The ex-
tended model improves the replication error of USD FRAs Igdaran order of magnitude,
just like in the EUR market.
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Figure 3.17: 6-month USD FRAs. Mean, min, max errors of themoed LIBOR panel
model. The replication error stays within the 5bp margif‘ifi of cases.
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Figure 3.18: 6-month GBP FRAs. Extended vs standard LIBQ#epaodel error compar-
ison. The extended model improves the replication errorBPGRAS nearly by an order
of magnitude, just like in the EUR market.
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Figure 3.19: 6-month GBP FRAs. Mean, min, max errors of thereked LIBOR panel
model.The replication error stays within the 5bp margififi of cases.

3.6 Analysis of Parameter Dynamics

In our last section on the extended LIBOR panel model, weyaeahe historical dynamics
of the fitted model parameters. Our set of parameters,, \; was calibrated to a set of
FRA rates available every trading day in our historical data We plotted the resulting
parameters to investigate the significance of changesini¢vels. The Figur8.20shows
the obtained parameter results for EUR and GBP 6-month FRAs.

We would like to emphasise on several points. First, it iaicthat the levels of implied
volatilities is not constant and undergo volatile chandesughout the historical dataset.
A small part of the volatile and sharp-edged behaviour oplirameters may be caused by
overfitting in the calibration exercise. Nevertheless tie mixture model components are
defined by very different volatility levels:

e The low-volatility first component, has € {0% — 120%}
e The high-volatility second component, has {150% — 1500%}
In our dataset, the first component in the model was the manerdof the mixture (had

the largest weighf\;) most of the days. On the other hand, the second, high-iiati
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component, takes pard{ >> 0) during several extended historical periods. This holds
for all EUR, GBP and USD markets. We investigated if this rhatcany of the important
historical events during the credit crisis. In the Fig@r20Owe have marked several periods
of interest, where the second component had a large weightpléé¢ed ‘green’ markers
where a period of excessive credit volatility started aed*where it ended.

The first period starts in August 2007 with increased markétility and inter-bank
lending liquidity shortagesMauro F. Guillen2012. The approximate end of the first pe-
riod is in March 2008, when ECB started offering refinancipgmations with six-month
maturities to support the normalisation of the functionoighe euro money market. This
first period of the initial liquidity crisis is visible acresll EUR, GBP and USD markets.

The second crisis period starts around September 28, 2008 d&y the Washington
Mutual and Wachovia banks collapsed. Also, the Europeakibgrand insurance giant
Fortis was partly nationalised to ensure its survival, Wwhitarks one of the starting days of
the credit crisis Mauro F. Guillen 2012. We find it strange that the FRA market did not
react already on the 15th of September during the defaulebfan Brothers.

This period ended on May 2, 2010, when Greece received a 11dnbEUR (93
billion) bail-out from other countries using the Euro, ahd tMF .

In the third period starting mid-June 2010 and ending in A1@011, there is visible
turmoil in the GBP and USD FRA markets, but not the EUR zoneim@uthis period both
Ireland and Portugal receive bailout packages from thegaan Central Bank and second
round of quantitative easing takes place in the US.

The last analysed crisis period started around JanuaryQil2. ZThis time, the Stan-
dard & Poor’s credit rating agency has lowered long-ternditmatings on the eurozone
countries of Cyprus, Italy, Portugal and Spain by two mankd Austria, France, Malta,
Slovakia and Slovenia by one maikraemer and Gill2012. Many financial analysts and
newspapers were anticipating the collapse of China’s eoanbubble, which will bring
the economic crisis to climax in 201El{iott, 2012.

Moreover, as we have marked in Figu3e2Q the three out of four high-volatility
component periods nearly completely overlap in both EUR@B®& markets. The levels
of the second volatility component are similar as well. Tikis good indicator showing

how closely connected are the two markets. The same panagragh for USD does not
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show great similarity to EUR or GBP markets.
Therefore, the two-factor mixed panel model not only img®the FRA calibration
results by order of magnitude but also allows us to identijonevents in the LIBOR

lending markets by showing structural change events aditiesent FRA markets.
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(a) Historical parameters for the mixture model. EUR 6-rhdfiRAs
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(b) Historical parameters for the mixture model. GBP 6-rhdfiRAs
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(c) Historical mixture model parameter dynamics for USD 6ntin FRAS.

Figure 3.20: Historical mixture model parameter dynammsBEUR, GBP and USD 6-

month FRAs. The figure shows the two-component volatilityele o and the weight

parameter for the first component. Throughout the datdsetdtiving factor is the first

component, but the high-volatility component gains weigltgeveral, distinct periods. The
green and red markers show the start and end points of theselgpe The blue marker
refers to an important event of 2011 only observed in EUReseri

3.7 Conclusion

The LIBOR panel model is not a common choice for an interastmeadel in the financial
literature and industrial practice. However, we chose tya@e and extend the model for its
nearly-unique capability of relating OIS and LIBOR fundirages with credit-liquidity risks
presentin the lending markets. As we have shown, the modslamniginal formulation is a
large improvement over the standard replication modeksihe start of the credit crisis but
suffers from the lack of a good LIBOR-panel CDS option vaitgtindex. To overcome the
latter problem we reformulated the problem and construeta-implied volatility. Using
globally-calibrated implied volatility, we have shown ttiae panel model is a promising
model for joint replication of series of market-traded FRA&fter careful analysis, we
proposed an extension using an uncertain parameter mduasleXtension, with additional
two degrees of freedom, yields excellent results in repboathe market-traded FRAS -

our maximal replication errors were withibp error margin throughout our historical
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dataset. Additionally, the analysis of historical paraanelynamics gave a unique outlook
on the main structural changes in the FRA markets during ribitccrisis. We found that
there are concrete, extended periods when the singlefitgleg under-performing, and
the high-volatility component of the mixture model contries a significant part in FRA
replication. We have also shown that these high-volati#yiods for EUR and GBP FRA
markets are largely overlapping, which indicates strotgrogonnectedness of the latter two
markets. Lastly, we have also identified the most likelydristl events which triggered
these structural changes in the FRA trading. These findirege wresented infS@vickas
2013.

3.7.1 Limitations of the Panel Model

Unfortunately, there are a few limitations of this modelttda not allow us to use it for
pricing of more complicated interest rate derivatives. Véeild like to discuss one of them,
which is our main reason for looking into other low-paramet@dels for stochastic basis
modelling as we do in the following chapter of this thesis.

The panel model relies on the availability of spot-LIBOR ddt& curves for FRA
pricing under standard replication as th%8. Here, while OIS curve can be bootstrapped
from traded OIS Swaps following guidelines madefAmetrano and Bianchett?013, the
spot-LIBOR curve is publicly quoted up to 1-year maturityhelLIBOR curve for larger
maturities was, in a classic setting without multiple cerMaeootstrapped from market IRS
(2.18. The problem here is that IRS is a series of FRAs, therefenegulRS to imply a
spot-LIBOR curve for maturities larger than 1-year wouldui¢ in LIBOR forward rates
nearly matching the market FRA rates. If we do this, we canomgér imply volatilities
from the same IRS and FRAs. Therefore, as long as we do notehalable proxy for the
LIBOR-panel CDS spread volatility, the panel model can ently be used for FRAs with

maturities until 1-year as the spot-LIBOR is not quotedrafiat.
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Chapter 4

Hybrid Model for Multi-Curve Pricing

4.1 Introduction

Before the 2008 credit crisis, inter-bank lending rate$wlifferent financing frequencies,
e.g. overnight or 1,3,6,9,12 - months were practically egjent to each other, because
of lack of perceived risk in the inter-bank lending markgiafichettj 2012. Pricing non-
linear derivatives in the pre-crisis market was a relayiezsy task, as the forward LIBOR
curve was unique and knowing the volatility of caps basedranldBOR-tenor would lead
to implied volatility of the other rate via simple extraptta (Kienitz, 2013. Since the
crisis, significant basis appeared in between the diffammar lending rates, especially the
overnight (OIS) ratesMorini, 2009. This split up of interest rates led to complications
in non-linear derivatives pricing. For example, while lidjinterest rate swaps in the EUR
market rely on the LIBOR four tenors: 1,3,6,12-months, the-tinear derivatives like caps
and floors are only traded on the 3-month and 6-month tenoise idrecisely, for EUR
market there are quotes for 1 to 2-year maturity caps withogtimtenor and 2 to 30-year
maturity caps with 6-month tenor for several strik€s All the other caps are currently
very illiquid and therefore hard to price as the 1 and 12-haate volatility data is not
available or at least cannot be directly implied from ligprdducts Kenyon 2010.

One of the aims of this project is to develop a multi-curve eloalith a stochastic
basis which would allow pricing of multi-tenor derivativertracts (e.g. cap), without
the need for artificial proxies and estimates for illiquidatdities. In this chapter, we
recap the definitions of Cox-Ingersoll-Ross and Hull-Wkhert-rate models and introduce

the hybrid Cox, Ingersoll and Ross (HCIR) model which apphes the multi-curve cap



pricing problem.

4.2 Theoretical Background

In this section, we introduce the Cox-Ingersoll-Ross (GARJl the hybrid Hull-White CIR
(HCIR) models that we shall use for caplet, cap and CVA pgciWe will also show the

derivations for caplet prices in the HCIR model cases with@ 3factors.

4.2.1 The CIR Model

The Cox-Ingersoll-Ross modeBfigo and Mercurig 2009 is the first model to use the

square-root diffusion term in the short rate diffusion SDE:

de(t) = k[0 — c(t)]dt + oo/ c(t)dW (t), c(0) = co, (4.1)

wherecy, k, 0, 0. are constants.

The CIR model yields non-Gaussian dynamics for the shoet-na particular the:(t)
has the density of a non-central Chi-squared distributBrigb and Mercurio2006. The
price at timet of a zero-coupon bond with maturiy can be obtained in an analytic, affine
form, full details are given in Appendi€.1

The CIR model is a popular stochastic spread model, espetiatredit derivatives.
A few more features of this model make it very attractive fog purpose of LIBOR-OIS
spread modelling, namely guaranteed positivity of the aghyrenean-reversion which is
visible in the empirical analysis of LIBOR-OIS spreadHlipovic and Trolle 2013, ana-
Iytic pricing of bonds and, inherently, fast calibrationrobdel parameters to given spread
curves. Due to its popularity in credit models, it is intudito introduce correlation between
the LIBOR-OIS spread and credit-default dynamics of a LIB@dRel bank.

4.2.2 Hybrid Hull-White and CIR Framework

We have included the definitions and derivations of bondupgi under the 1-factor and 2-
factor Hull-White models in the appendx 2 Since the CIR model is non-Gaussian, com-
bining the two models requires a non-standard setting. irtrast to the usual techniques
in the short-rate modelling, such as assuming a correldttween the driving Brownian
motions between the Hull-White and CIR processes, we shsllrae the correlation to be

zero, but we construct the basis spread process as an espliciof the Hull-White and
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CIR processes.

The following setup results in a fully analytical Hull-Whitframework for OIS
swap pricing and calibration as well as analytical pricifighe LIBOR-bonds and semi-
analytical pricing of caps and floors in the hybrid model. We&aduce the two poten-
tial models for the problem, the first being a mix of 1-factanlHNhite and CIR pro-
cess (HW1F-CIR) and the second one including a 2-factor-Wiilite and CIR processes
(HW2F-CIR).

We define the short-rate process) to be the driver of the instantaneous OIS rates,

and the process the driver of the LIBOR-OIS spread as:

r(t) = (1), (4.2)

s(t) = kW, (t) + Ws(1), (4.3)

where ¥, is a short rate from standard Hull-White one factor (HW1F) delo
(Brigo and Mercurig 2006 and ¥, is the CIR short rate model as in equatiéri and
k is the correlation-dependence level between the risk@kerate and the LIBOR-OIS
spread.

In this setup, the OIS rates are normally distributed andb&anegative. Then, while
U, (t), the CIR process, is positive, due to the explicit involvetw H W 1F process, the
spreads(¢) can be negative. The “explicit” LIBOR-OIS spread and OlSelation param-
eter k introduces a dependence of LOIS spread on OIS rates insteadre traditional
correlation of stochastic drivers. This choice was made¢sgrve analytic tractability of
bond pricing when the correlation is non-zero. Becauseisf the LOIS spread can be-
come negative, but it is highly unlikely. From a practicalrp@f view this may not be very
realistic, but again, there is no guarantee that LIBOR rai#salways be higher than the
OIS rates.

Next, this additive model yields a couple of convenient lssuFirst, the OIS zero-
coupon-bond prices are determined as in standard textbxekaded Hull-White model
(Brigo and Mercurio2006

Pois(t, T') = Paw(t, T). (4.4)
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Then, the LIBOR zero bond is expressed as a product of k&€Ale bond and CIR-bond:
Pr(t,T) = Phy(t, T)Per(t, T), (4.5)

where the analytic expression fékr is given in AppendixC.1 and for P%,, is given in
AppendixC.2

The HCIR model is a 2/3-factor model, where one of the fact®rSIR with non-
central Chi-squared distributed rates. However, the sépamodel formulation as given

in (4.2) allows us to price caplets using semi-analytic formulaheffiorm:

Cpltycr(t, T, S, K) = Pors(t, S)E®s [ (ew%w@(d) — X®(d - V))

ft:| )
(4.6)

details for theu, V, X are given in Appendi.4. Using a semi-analytical formula instead

1
PCIR(Ta S)

of a two-dimensional integral improves the computatioretioy an order of magnitude.
To price an interest rate cap with strikeand fixing dateq’;, under HCIR model, we

only need to sum the caplet values:

N
Capt, {Ty, .. Tn}, K) = > Cpltyep(t, Ti-1, T}, K). (4.7)

i=1

4.2.3 Benchmark Model: Displaced Diffusion
Kienitz (2013 has suggested a simple, yet innovative model to implgnor volatilities
from z-tenor caplet quotes. His work is based on fixed basis spresuhgtion and the
LIBOR market model. We shall briefly introduce the concept,ibthe reader would like
to know full details please refer t&ienitz, 2013. We shall use this model as a benchmark
for extrapolation volatilities to different LIBOR tenorgainst the HCIR model.

This procedure models the forward LIBOR rates, withs the tenors of the rate and

k as the index (linked to start/end-peri@t,_;, 7%)):
dLy(t) = ...dt + o LydW (t). (4.8)

The forward LIBOR rate in question is split into the OIS fordiaate and a (constant) basis
spread:
dLi(t) = ...dt + o (FZ(t) 4+ by)dW (). (4.9)
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In the above transformation we have a displaced diffusioD)(biodel. We rename its
volatility to ¢2%, and using it, we can find the log-normal model Qi3(¢) at-the-money
(ATM) caplet volatility using a formula frordoshi and Rebonat{@003:

DD
o (U"”’“gﬁ> . 12_66] , (4.10)

DD __ i@*l

o =
x,k \/T

where the3 parameter is set by the diffusion shiftand the forward rate

1
B

B =1/(Fb; +1). (4.11)

The ATM OIS volatility (for tenorz) can be transformed to another tenousing
single curve forward rate relations as shown in the examelewn Then, usings-tenor
basis spreads) and forward rateg! we obtain thes,? and convert the black volatility

back to displaced diffusion volatility:

2 oPP/T 1+ 5
DD -1 Y,k
=—7 ) _ 4.12
Ok T I6; < 5 ) + ( 5 ) ( )
Briefly, the full conversion scheme works as follows:

oliIBorR = Opp,0Is = ODD,OIS = UI%D,OIS - U%D,OIS:UEIBOR' (4.13)

The latter approximation can be made for time-dependeatiites as well Kienitz,
2013. Also, backwards procedure, where we imply shorter (14moB-month) tenor
volatilities from 6M volatilities can be done by assumingrsoterm-structure of the short-
term volatilities, e.qg. flat, linearly increasing or somegraetric form.

Moreover, the latter volatility shift procedure can be exg@d to a SABR
(Mercurio and Morinj 2007) stochastic volatility model by:

e Calibrating the smile with quoted caplets
e Shifting the ATM volatility as above

e Reconstructing the SABR smile by assuming same fixed paeamas before.

Example. Construction of the 6-month OIS volatilities is done usihg simple single-
curve framework relations of forward rates. The commonkdusonstruction of a long, 6-

month forward ratg ; from two shorter, but consecutive 3-month forward rates, F5 3
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is done by compounding the following interest rates:
T F13(t) = Taar Fr2(t) (1 + Taar Fo3(t)) + maarFos(2). (4.14)

We can relate the 6-month forward rate volatility in the LIBOmarket model

(Brigo and Mercurio2006 to the two corresponding 3-month volatilities as:

075 = Vi(t)?07 5 + Va(t)?03 5 + 20Vi (1) 012 Va(t) o2 3, (4.15)
where
V. Tjj+1F5 541 + Tj,jJrlFj,j+17'j+1,j+2Fj+1,j+2. (4.16)
’ Ton Fh3(t)
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4.3 Application: Pricing of Illiquid Caps

The most liquid interest rate swaps in the EUR market relyrenfour tenors: 1,3,6,12-
months. At the same time, the caps/floors are mostly tradegtleoB-month and 6-month
tenors, for EUR caps. More precisely, there are market guoiel,2-year caps with 3-
month tenor and 2,3,...,30-year caps with 6-month tendr mitltiple strikes. All the other
caps are illiquid and therefore hard to price.

The HCIR model is beneficial for these situations where ndidgeidly trades caps on
only one of the tenors. By construction, the HCIR model cacdidbrated to market OIS
and LIBOR forward curves and a set of single-tenor cap Mdlat. Then, we can directly
price any caps on the other, less liquid tenors.

In this section, we shall demonstrate the HCIR model cdiibmaresults in several
market data cases and show the potential of the model fangritiquid caps by bench-
marking the model against J. Kienitz displaced-diffusippr@ach and given trader quotes
for the less liquid cap surfaces.

In particular, we shall fit HCIR model variants (with HW1F aHdtV2F drivers) to:

1. only ATM caps,

2. single3% strike,

3. single4% strike and chosen illiquid caps,
4.,

again ATM caps, but in negative interest rates dataset.

4.3.1 ATM Cap Fitting
Our initial investigation relies on ATM-cap pricing usinget hybrid HCIR model. We will

analyse two branches of the model where the spread CIR-n®dembined with HW1F
and HW2F models for the OIS base rate. We shall refer to thebomtion of HW1F
and HW2F model with CIR, respectively, as HW1F-CIR and HWZR-. We will refer to

HCIR model in general when discussing both of branches atadhee time.

HW1F-CIR
We have calibrated the HW1F-CIR model to available mark&t:da

1. OIS yield curve and four (1, 3, 6, 12)-month forward rateves

2. 6-month ATM caps with maturities from two to 30-years.
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Then, we re-priced the 4-curve forward rates and 6-month ABjds and estimated new
ATM levels for 1-month, 3-month and 12-month caps from maf@evard rates by pricing
them with the HCIR model. For comparison reasons we corwvelte present value of
the latter caps to normal volatilities by inversely solvihg Bachelier cap pricing formula
(2.18 with corresponding ATM strikes for each of the caps.

We note that the CIR model parameters are dependent on ibeatadl HW param-
eters. Both HW2F parametets, a;, pgw ( Or justo and a for 1-factor HW.) and full
CIR parameter set, 0., 0, , cg influence the resulting cap prices, hence the calibration to
market data is “joint”: we minimize the least-squares ewbthe market forwards and
market caps at the same time. Therefore, the full calibmatigolves up to 10-parameters,
when we calibrate to 6-month forwards and 6-month caps. €rasg multiple local min-
ima in the solution, and the user must use a global calibratatine, e.g. basin-hopping
(Wales and Doygl997) or differential evolution Das and Sugantha@011) to avoid find-
ing only a local minima.

Figure4.1shows the calibrated model results for forward rates. Aaiaigly, we made
a tenor-by-tenor comparison of the forward rates errorsigniie 4.2 between the market
and model-implied ones as well as normal cap volatilitieBigure4.3.

Several things can be noted from the obtained results:

1. The HW1F-CIR model can replicate the yield curves and etaidewards with av-
erage 5bp error (relative 2% error), similar to bid-ask spreadshia ICAP broker
dataset.

2. The biggest discrepancy on the forward rates is in theféivgpoints (15bp)

3. The replication of cap volatilities with HW1F driver fori®rates is problematic as
the model cannot capture the low-volatility setting of thert end curve. Here the
normal volatilities are as low as 20bp and then rise to 10(hkipe middle resulting
in very low short-term cap prices. Because of this, we detideextend the model to

HW2F as shown in the next section.
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Forward Rates: HW1F-CIR Model
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Figure 4.1: Resulting forward rates from multi-tenor LIB@Rrves under HW1F-CIR
model. Market data of 22-Nov-2013.
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HW1F-CIR: Forward Fitting Errors

Basis Points

15
Maturity T, years

Maturity 1, years

Figure 4.2: Forward replication errors, HW1F-CIR model \arket data of 22-Nov-2013.
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6M ATM Volatility
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Figure 4.3: Comparison of 6-month ATM cap (normal) volégs. HW1F-CIR Model vs
market data from 22-Nov-2013.

HW2F-CIR
First, we would like to demonstrate the potential of the @&daHull-White model for caps
pricing. The biggest problem we have with the 1-factor Hilite model is the steep cap
price increase in the short term, which is not visible in therket data.

In the 2-factor model, the correlatignparameter can help control this ascent. By
setting the correlation between the two Brownian motiona teegative number, we can

decrease the ascent as shown in the Figute
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HW?2F Caplet Prices
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Figure 4.4: Example ATM caplet prices (notional of 1 EUR)a®s maturities, using the
2-factor HW model with correlatiop values from—99% to 0%.

We calibrated the HW2F-CIR model in the same setting as iptaeious section. In
the following Figurest.5and4.7we show the HW2F-CIR and market multi-curve forward
rate errors as well as normal cap volatilities and absolute® We observe that:

e The 2-factor HW model combined with CIR provides a similatdithe market for-
ward curve as the HW1F-CIR model.

e Onthe other hand, the 2-factor Hull-White model improvesimiow-volatility issue
in the short-end of the 6-month cap pricing curve.

e Additionally, using the HW2F/HW1F-CIR model we can immedig price illiquid
caps based on 1,2,3-month tenors without any external @sshown in Figurd.8.
This is the major innovation for a short-rate model to be ablextrapolate liquidly
traded cap volatilities to illiquid ones without the need éxternal data proxies and

adjustments.
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Forwards: HW2FCIR Model
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Figure 4.5: Tenor-by-tenor comparison of forward rates. HRACIR model vs market
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Figure 4.6: Calibration errors for market forwards - HW2mRG@nodel forward rates, data
from 22-Nov-2013.
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6M ATM Volatility
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Figure 4.7: Comparison of 6-month ATM cap (normal) voléek. HW2F-CIR model vs
market data from 22-Nov-2013.
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HW?2FCIR Cap Volatilities
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Figure 4.8: Cap volatilities for every tenor priced under PI®CIR model. The pric-
ing procedure only requires liquid market data and does eetiro be adjusted with any
proxies. This is a novel and most important feature of the IHFWZ2ZR model. Data of

22-Nov-2013.

For completeness of the model comparison, we provide thieratdd model param-
eters in Tabled.1 The HW2F has two random drivers with two distinct mean-relems
and volatilities. The spread (CIR)-components for evemyelthave an explicit negative
correlation to OIS movements. This correlatiawy  is decreasing, in the absolute sense,
as the tenor of the curve increases. The other parameteentrely dependent on the

term-structure of the LIBOR-OIS forward spreads.
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Model ay o ay oy PHW
HW2F-CIR 45.07% 2.07% 12.3% 2.49% -99.620

Model PCIR (o 0 k o
HCIR-CIR: 1M -4% 0.06% 1le-4 49% 0.139
HCIR-CIR: 3M | -3.4% 0.3% le-4 6.1% 0.289
HCIR-CIR: 6M | -2.0% 0.4% le-4 9.4% 0.429
HCIR-CIR: 12M| -1.8% 0.35% 1le-4 8.0% 0.549

oy O O ©

Table 4.1: HW2F and CIR model parameters for LOIS spreader2tfactor HW2F-CIR
model.

Comparison with J. Kienitz Benchmark

J. Kienitz volatility extrapolation approach is ratherfdient from HCIR model, namely:
1. It assumes LIBOR market model dynamics for LIBOR and Of&vérd rates
2. But assumes that each LIBOR forward is a shifted (as in|Biggl-Diffusion) OIS
forward by constant spredg;.
3. The extrapolation from tenarto y relies on:
¢ differences in tenor lengths,
e differences in basis spread sizes andb;y,
e and the correlatiorp between neighbouring OIS forwards(7;_,,7;) and
F(T;, Tip).
To produce a simple benchmark with J. Kienitz vol extrapotaimethod, we used 6-month
caplet volatility data, and then transformed them to 1,3yighth cap volatilities with the
procedure outlined in sectich2.3 We chose the = 95% parameter as this choice pro-
vided a close match to the HCIR model and in literature, tiséohically estimated values
vary betweeri).7 to 0.95.

In figure4.10we demonstrate the HCIR model and Kienitz-method extrapdleap
volatilities. The figures show that the tenor-structurehaf volatilities is the same on both
models, namely the volatilities of caps with larger basieag, like the 12-month, are over-
all larger. The long-end volatilities in both models arehitseveral basis points distance
of each other, which shows that the HCIR model and DD modetanegpatible with each
other, even if the DD model fit is strongly influenced by theafard-rate correlation pa-
rameterp, which is not present in HCIR model. On the other hand, thediiterge for

short-maturity € 2-years) caps, as our initial 6-month cap fit in HCIR model does
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capture very-low short-end volatilities.

DD-Normal Cap Volatilities
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Figure 4.9: Normal ATM cap volatilities for all tenors in gisced-diffusion model.
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HCIR vs DD-Normal Cap Volatilities
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Figure 4.10: Normal ATM cap volatilities for all tenors. Cparison between the HW2F-
CIR model and displaced-diffusion extrapolated normahtibifies.

4.3.2 Single Strike Non-ATM Cap Fitting

The second experiment we set up, is HCIR model fitting to ndMAaps, where we
chose a single 3% fixed strike for 6-month caps with matwitip to 30-years for model
calibration. Here we evaluate the ability of the 2-factor H@Mmbined with CIR model
(HW2F-CIR) to replicate market caps on 6-month tenor as aglextrapolate and price
caps on 1,3,12-month tenors.

Fitting of forward rate curves was achieved with similar@ecy as in the ATM case,
hence we skip the figure showing that. The following FigliELdemonstrates that for 6M
caps with maturities- 7 years we can achieve fits with difference less than one bpatilvo
ity. Caps with shorter maturities were not fitted as well tfiblecause we fitted the present
value of the caps and they did not carry much weight, and [secthe HW2F-CIR model
just like HW2F cannot jointly produce volatilities very losmnd very high in respectively,

short and long-ends of the curve. This issue could be solyasimg a piecewise-constant
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volatility functions for the Hull-White process, but we \esthis topic for further research
6.3

For assessment of these volatility levels, we compare thearodd result with extrap-
olated volatilities from market data using the constameag approach as shown in Figure
4.13 Using displaced diffusion extrapolation with= 0.9 we can achieve a similar picture
as in HCIR case, but not a precise match, with differencespffbr Caps maturing after
5-years.

Figure4.13shows some anomalous behaviour of 6-month cap volatilitysscmatu-
rities in the DD-method, it is the highest from the set for undies < 12-years and then
decreases below 1-month and 3-month cap volatility levidiss effect comes from Black-
to-normal volatility conversion in the caplets as shown igufe 4.14 While in Black
(log-normal) volatilities the tenor-structure of vol#igs is strict, e.g. 12-month volatility
is smaller than 6-month, 6-month smaller than 3-month, efiter conversion to normal
caplet volatilities, the 12-month caplets obtain very highatility around 5-year maturity,
simply from the differences in forward rate levels betwdendurves.

The table of calibrated model parameters for the 3% capredidn case is given in

AppendixD.
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3% Cap Normal Volatilities: HCIR vs. Market
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Figure 4.11: 6-month cap volatility comparison between HAAZAR model and market
data. The model accurately calibrates to 5-year and longéunity cap volatilties, but has
difficulty fitting the short-end volatilities as they are ydow.
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Figure 4.12: Multi-tenor cap volatilities for HW2F-CIR meld The model took market
6-month volatilities and extrapolated to other tenors.
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DD Cap Volatilities, with p=0.9
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Figure 4.13: Tenor-by-tenor comparison of cap (normalaiitiies. Plots compare market
6-month3% and DD-extrapolated cap volatilities for other tenors wits 0.9.
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DD Caplet Log-Normal Volatilities
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Figure 4.14: Tenor-by-tenor comparison of cap normal agehlormal volatilities. Results
plotted for Kienitz-extrapolated volatilities usipg= 0.9.

4.4 Multi-Strike and Cap Surface Fitting

In this section, we include the additional simulation résir the multi-tenor cap pricing

problem. We show the calibration and pricing results fortivattike caps when the calibra-
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tion was performed using, 4, 5% 6-month EUR caps and analyse the results, demonstrat-
ing that the HCIR model is not flexible enough to calibratehe market volatility smile.
Then, we also show our test cases with data from differenoticgl dates, which demon-
strate that the HCIR model cannot well fit the market forwafdee LIBOR-OIS spread
term structure does not satisfy the smoothness criterid®in@del.

To test the HCIR model ability to deal with multiple cap séskand volatility smile,
we have calibrated the HW2F-CIR model to caps on three chsisies: 3, 4,5%. The
calibration result demonstrated in Figutel5 shows that the HW2F-CIR model cannot
replicate the market smile. The latter fact is already knéovrihe standard HW2F model,
and our hybrid version does not correct for this. The resgltalibration to three strikes
ended up in an intermediate fit without any smile featuressgmving3% cap volatilities in

the short end and’% volatilities in the long-end of the curve.
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Figure 4.15: HCIR calibration result to 3,4,5% EUR 6-mondips. We re-prica, 4, 5%
caps and 6-month forward rates to show the overall resuiiiigData from 22-Nov-2013
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4.4.1 The ‘Tail Problem

Our results in the previous sections show that while we caimditHW2F-CIR model to
series of multi-maturity caps on a single strike or all theVRlevels, we are not able to
reproduce the full volatility surface. This problem mairstems from the HW2F model,
which does not handle smile well.

In our particular case, we are overvaluing the low-strikpscand undervaluing the

high-strike caps. We show an example Figdrg6below.
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Figure 4.16: Comparison of present value for model and niadges. 6-month.5% caps
over maturities from 1-year till 30 years (left), 5-year sajase over strikes frotm25% to
10% (right)

Once we look at the Black volatilities - we see that while theyer maturities is good,

the volatility smile is not well preserved in the model.
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Figure 4.17: Comparison of HCIR model and market Black viities for 6-month1.5%
caps case over maturities from 1-year till 30 years (leftfndnth tenor, 5-years maturity
caps with strikes frond.25% to 10% (right)
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The reason this happens is that the Black volatilities imtlagket are practically flat,
from 3% strike onwards. This paves the way for either a (shifted}ydogmal model, or
some other heavy-tailed model. The HW2F model is normal,assumes normally dis-
tributed interest rates. As the rates are low in the curramket, a large part of the simulated
future rates are negative. Therefore, to replicate the ftiBvolatilities, one would need

something like an ‘increasing normal volatility structuas in the following figure:
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Figure 4.18: Market and HCIR model normal volatilities fontbnth caps with 5-year
maturities, ranging from.25% to 10% in terms of strike.

In table4.2we give example cap values for HW2F-CIR model, HW2F modeicBl
model and Bachelier (normal) model. We set the volatilitte8lack and Bachelier models
as constant but aligned to match the market cap values atberids% strike. From the
table results we can see the following differences in theehasults:

e The difference between full HW2F-CIR model and HW2F (no CHninor, which
means that the fitted CIR model has a small impact on the 64m©ap values and
the major PV part is carried by the HW2F component. The CIRehpiglds a small
heavy-tail addition on the right side of the histogram.

e The HW2F model implies a normal distribution of rates, thermethe result is similar

to the Bachelier result with constant volatility.
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e On the other hand, the log-normal (Black) model has a healvinttdne distribution,

which gives much larger cap values for higher strikes, sseh @ 10%.

Model Vol | 0% 0.25% 0.5% 1% 1.5% 2% 225% 2.5% 3% 35% 4% 5% 10%
HW2F-CIR - 465 385 318 211 135 82 63 48 26 14 7 1 0
HW2F - 462 381 314 208 132 80 62 46 25 13 6 1
Black 55% | 444 338 263 181 135 106 95 86 71 60 51 39 14
Bachelier | 0.73%| 495 411 336 217 135 80 61 45 24 12 5 0 0

Table 4.2: Table of sample 6-month Caps prices for diffestniies.

We confirm the above observations in forward-rate histogréon all four models
shown in Figured.19and4.2Q To sum up, while the HW2F model gives enough flexibility
to fit the term-structure of the volatility, we do not have malegrees of freedom to fit the
smile. While this can be done to some extent to minimise tipereplication errors over
some chosen strike (or all ATM levels), the other strikes Ml@amain under/over-priced.

The market volatilities, as shown in Figudel7, when plotted against the strikes in
log-normal form, are much flatter than the normal volagkti This is the main reason why
fitting HW or HCIR models, who assume normally distributetesaas in Figurel.18is

difficult.
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Figure 4.19: Forward rate distribution comparison from HAQIR, HW2F models. We
show the distribution of’ (7', S) values, wherd" = 4.5, S = 5-years
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Figure 4.20: Forward rate distribution comparison fromdBland Bachelier models. We
show the distribution of’(T', S) values, wherd" = 4.5, S = 5-years

4.5 Calibration of HCIR in historical high-basis scenarios

In this section, we seek to investigate how well the HWCIR eladlibrates and performs
under different market conditions. To do this we picked ¢fnestorical dates, namely:

e November 30, 2011 (large basis)

e November 30, 2012 (small basis)

e November 30, 2013 (small basis)
and calibrated the model to 3-month forwards and caps, aw&Gmonth forwards. We

implied the 6-month caps from the model.

4.5.1 High-Basis Spread Case, USD Market

In the following sets of figure4.21,4.224.23we show the market vs model cap and forward
fits. The figures are organised in reverse chronologicalrpfist one for data from 2013,
then from 2012 and the last one from 2011. The following figigieow that:
e The3% HCIR caps can be repriced well when compared to market (BBleegbs.
e The fit of market forwards is best in the 2013 dataset and viloZ011.
The cause of a bad fit is the substantially different OIS fodaxand LIBOR-forward
curve structure, or ‘hump’. The HCIR model introduces a gapveen LIBOR and
OIS forward curves of a smooth functional form and cannopprly represent the
‘dip” at 10 — 12-year OIS forward points, which we have in the dataset.
e The implied 6-month caps behave differently on differerteda
— The 6-month cap value is close to 3-month on 22-Nov-2013|BRsoC= 15%
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— The 6-month caps have increasingly greater value than 3Mad@®/-2012, as
CIRo =51%
— The 6-month caps have greater with constant distance ono®2R11, as CIR

oc=12%
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Figure 4.21: HCIR model calibrated to 3 and 6-month USD fedsaand 3-month USD
caps. The 6-month caps are the resulting extrapolationa &en from Reuters Eikon,
30-Nov-2013

Maturity (years)] 1 2 3 4 5 6 7 8 9 10 12 15 20
Market (bp) | <1 2 20 81 192 334 494 660 822 968 1209 1532 1916
Model (bp) 1 9 38 103 211 346 499 656 809 949 1184 1497 1880

VegaChg. ()| O 0 47 23 12 6 3 2 1 0 0 0 0

Table 4.3: 30-Nov-13 USD 3-month market and HCIR model cageptySD) comparison
table.
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Figure 4.22: HCIR model calibrated to 3 and 6-month USD fadsaand 3-month USD
Caps. The 6-month caps are the result of extrapolation uemgnodel. Data taken from
Reuters Eikon, 30-Nov-2012

Maturity 1 2 3 4 5 6 7 8 9 10 12 15 20
Market(bp) | <1 2 7 26 63 120 194 283 382 485 691 979 1d
Model (bp) | <1 3 13 37 78 138 215 304 401 502 703 985 13
VegaChg. (%) 0 0 O 27 16 10 6 4 2 1 0 0 1

Table 4.4: 30-Nov-12 USD 3-month market and model cap ptasgune comparison table.
The Black-vega change (%) is the change in volatility neeideadjust for the difference
between the market and model.
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Figure 4.23: HWCIR model calibrated to 3 and 6-month USD #mdg and 3-month USD
caps. The 6-months Caps are the result of extrapolatiomguisexmodel. Data taken from
Reuters Eikon, 30-Nov-2011

Maturity 1 2 3 4 5 6 7 8 9 10 12 15 20
Market(bp) | <1 5 22 73 152 248 356 472 591 709 911 1180 1534
Model (bp) | 2 17 48 104 183 277 381 491 603 714 913 1182 1549
VegaChg. (%)) 0 0 31 15 6 3 1 0 0 -1 0 0 1

Table 4.5: 30-Nov-11 USD 3-month market and model PV Cap @ispn table. The
black-vega change (%) is the change in volatility neededjiosafor the difference between
the market and model.
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4.5.2 High-Basis Spread Case, EUR Market
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Figure 4.24: HCIR model calibrated to 3 and 6-month EUR fedsaand 6-month EUR
caps. The 3-month caps are the result of extrapolation uemgnodel. Data taken from
Reuters Eikon, 30-Nov-2013

Matuity |1 1 2 3 4 5 6 7 8 9 10 12 15 20 25  3(
Market(bp) |0 0 1 11 52 127 231 349 476 611 752 793 1085 1450 1713 1909
Model(bp) |1 6 16 47 98 167 250 343 443 547 650 852 1123 1460 1713 1920
VegaChg. (%) O 165 131 102 52 22 6 -1 -5 -7 -9 3 1 0 0 0

Table 4.6: 30-Nov-13 EUR 6-month market and model cap ptasgne comparison table.
The Black-vega change (%) is the change in volatility needeadjust for the difference
between the market and model.
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Figure 4.25: HCIR model calibrated to 3 and 6-month EUR feodsaand 6-month EUR
caps. The 3-month caps are the result of extrapolation ubmgnodel. Data taken from
Reuters Eikon, 30-Nov-2012

Maturity 11 2 3 4 5 6 7 8 9 10 12 15 20 25 3(
Market(bp) |O O 1 4 21 58 116 191 275 366 461 623 894 1228 1521 1795
Model(bp) |O 1 3 14 36 74 128 196 272 357 446 632 899 1249 1536 1788

0

VegaChg. (%) 0 10 23 36 20 9 4 1 o0 -1 -1 0 0 0 0 0

Table 4.7: 30-Nov-12 EUR 6-month market and model cap ptasgune comparison table.
The Black-vega change (%) is the change in volatility negdeadjust for the difference
between the market and model.
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Figure 4.26: HCIR model calibrated to 3 and 6-month EUR fedsaand 6-month EUR
caps. The 3-month caps are the resulting extrapolationa @2&en from Reuters Eikon,
30-Nov-2011

Maturity |1 1 2 3 4 5 6 7 8 9 10 12 15 20 25 3(
Market (bp) | 2 10 23 49 109 193 203 399 504 609 712 854 1119 1398 1614 1832
Model (bp) |23 38 48 74 127 203 292 388 486 583 681 875 1130 1426 1641 1819
VegaChg. (%) 0 135 49 19 7 2 o0 -1 -1 -2 -2 1 0 0 0 O

Table 4.8: 30-Nov-11 EUR 6-month market and model cap ptasgune comparison table.
The Black-vega change (%) is the change in volatility negdeadjust for the difference
between the market and model.
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Figure 4.27: HCIR model calibrated to 3 and 6-month EUR fedsaand 6-month EUR
caps. The 3-month caps are the result of extrapolation ubmgnodel. Data taken from

Reuters Eikon, 30-Sep-2008

Maturity 1 1 2 3 4 5

6 7

10

12 15 20 25 3(

Market (bp)
Model (bp)
VegaChg. (%) O 47 27 14 9 6

4 3

64 124 187 318 441 550 645 728 805 877 948 1069 1228 1438 16072 |174
69 141 213 353 478 587 680 762 836 903 964 1076 1220 1417 15838 |172
0

0 0 0 0 0

Table 4.9: 30-Sep-2008 EUR 6-month market and model cappreslue comparison
table. The Black-vega change (%) is the change in volahlktgded to adjust for the differ-

ence between the market and model.
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4.5.3 Cap Pricing with Negative Rates

For the last, and one of the most important tests, we lookH@tR model ability to cali-
brate and price caps in negative interest rate environmetie following figurest.28and
4.29 we show the forward-curves fit for 30-April-2015 dataset #mel cap-volatility fits
for all fixings, when the calibration was performed with 64mioATM caps. Here we also
provide the multi-curve cap volatilities in Figue3Q but do not test against displaced-
diffusion volatilities as standard LMM model does not wodk hegative rates. The HCIR
model is especially useful in the post-credit crisis insémate markets, where rates are
often negative.

The forward rate fit has errors up @p - starting forward point does not match,
and there are possible interpolation artefacts in multgtheer places. The 6-month cap
volatilities, on the other hand, do have a goed §bp) fit, except for first three points:
6-month] and 1.5-year which differ a lot but are mainly influenced by the mischain

very-short end forward rates. We provide detail volatiityfaces in Appendi®.2.4.

Forwards: HW2FCIR Model
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Figure 4.28: HCIR Forwards for 30-Apr-2015
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Figure 4.29: HCIR and market 6-month ATM cap volatilitiesat® from 30-Apr-2015.
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Figure 4.30: Multi-curve 1,3,6,12-month HCIR ATM cap vadlities. Data from 30-Apr-
2015.

4.5.4 Conclusion
The Hybrid Hull-White-CIR model $avickas 2015 is a novel stochastic basis model
within the short-rate framework. We have shown that a 5-€ymcluding OIS and 1,
3, 6, 12-month LIBOR curves) model can be semi-analyticzhjbrated to liquid, existing
market yield curves and cap volatilities and afterwardsgithe fully-parametrized model
we have re-priced the market caps.

Our analysis shows that the HCIR model works best when thkeh&orward LIBOR-
OIS spread has a smooth structure. Some irregularitiesrasemt in the model-to-market
forward fit. In our test cases, we had errors of 5bp in many &ds and larger errors with
the few starting points of the LIBOR-OIS spreads, where tle@gched 20bp. In our tests,
we were able to match the market caps with few bp error in Nityatvhen the maturity
of the cap is>= 3-years. The HCIR model, as well as HW2F model, could not capdi

the very low (20bp) market volatilities in the very shortreend of the volatility curve and
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potentially needs a piece-wise constant volatility carsdtrThe model-to-market volatility
mismatch is even larger if HW1F model is used for OIS modgllnwhich was the main
reason for performing most of calibrations and researcthen#W2F-CIR Hybrid model.

We can conclude from our tests that the HCIR model can beretdith to single-strike
caps and used for extrapolation and pricing of caps on itlitenors. We have benchmarked
the HCIR model against a displaced-diffusion volatilityrepolation technique and shown
that the resulting HCIR volatilities are in line with curtemarket-standard techniques.
What is more, the HCIR model does not require parameterraaiiim with exotic deriva-
tives or historical data like the DD approach and therefera more robust technique for
illiquid cap pricing.

Overall, the HCIR model is a “clean” short-rate mathematicadel with some lim-
itations on the market data it can fit. There are, howeverkamounds for some of them
in practice. For instance, short-maturity caps should bedfinuch better using piecewise
constant volatilitys (), but this would complicate the valuation formulas. Them,|&itover
error in LIBOR-OIS fitting with CIR model can be ‘adjusted’ lagding a time-dependent
term-structure factor).(t), like in the CIR++ model Brigo and Mercurigo 2006§. How-
ever, this adjustment would make the model less mathenfigtamansistent and harder to

calibrate.
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Chapter 5

Hybrid Model for CVA Valuation

5.1 Introduction

Another important application of the HCIR model with a stastic basis is the counterparty
valuation adjustments (CVA) valuation. CVA charge is ir=d in every over-the-counter
trade and if two parties do not agree on the outstanding C\fAeyahis would lead to
trade disputes and missed opportunities as discussed pt€a Additionally, as CVA
is a default-risk measure, using a more elaborate modelhanihdudes stochastic basis
and potential correlation between the basis would imprtreeperformance of the risk-
management strategies.

In this chapter, we outline the setup and experimental tgswhere we price CVA
for a portfolio of a single interest rate swap using the hybiW2F-CIR model. First,
we introduce the basics of CVA valuation given some stoahasbdel for the drivers of
portfolio value and probability of default. Then, we evdaki&VA under the hybrid model
and compare the result to a benchmark, pure HW2F model.

In the first experiment, we assess the situation when thauligfeobability is not
correlated with the size of LIBOR-OIS spread, and in the sd@me, we impose correlation
between the CIR state variable, driving the size of LIBORSGpread and the counterparty
default probability.



5.2 CVA with short rate models.

To estimate the credit value adjustment for a single devieair a portfolio position, we

have to compute the expected loséeat time-zero:
T
CVA = EC[L+] = (1 — R) / E® [D(0,t)(L(t))*A(t)] dt, (5.1)
0

where R is the recovery fractionD(0,¢) is the stochastic discount factdi,(¢))" is the
positive net present value of underlying portfolio at timand \(¢) is the instantaneous
default probability.

To obtain a fair CVA comparison of all models we calibratenthi®s market forwards
and caps, obtaining risk-neutral estimations of their tstracture and volatility parame-
ters as done in sectigh3therefore our CVA pricing scheme works fully under risk-tral
pricing measure. We see our approach as a better optione adtémnative of using his-
torical parameters for each of the model would yield incorapke CVA results. For every

model, we estimate CVA as:

CVA = E9[Lx] = (1 — R) /T E® [D(0,)(L())*A(1)] dt, (5.2)
=(1—-R) /0 Pois(0, )E? [(L(1))*] A(t)dt, (5.3)
CVA ~ (1—R) ) Pois(0, T)E®" [(L(T:))*] (SRT;) — SAT; 4)) dt. (5.4)

i=1
Here we price CVA under forward-measure, and the hazard rate functidn) has a

deterministic hazard rate. The approximation5m) uses survival probability

SRT)=P[r >T]=exp (/)\(t)dt) . (5.5)

T
wherer is the time of default.
Here we also introduce the debt value adjustment (DVA), Wisdhe price of default
to the counterparty, if the first party defaults. In the fallog we will assume that the

default risks for both counterparties are equivalent, batgortfolio value only contributes

126



to DVA, when it is negativg L(7;))~ = —L(T;) if L(7T;) < 0 else0.

DVA =~ (1 — R) i Pois(0, T,)E®" [(L(T;))"] (SRT;) — SA(T;_1)) dt. (5.6)

=1
5.2.1 Portfolio Drivers

We want to estimate CVA in HCIR and the benchmark model forfdllewing products:
1. Fixed-floating LIBOR swaps,
2. OIS-LIBOR swaps,
3. Interest rate caps.

As given in 6.1), to assess CVA value of any portfolio(f) we need to know the
stochastic discounting factdé? (0, t), which is driven by OIS rate (HW2F or HW1F) model
and the recovery fractioR, which we assume to be constan0@t. This assumes that upon
default there is no leftover value from companies assetsuwereven part of its liabilities on
this portfolio. This is a simplified assumption as modellihg recovery value is a research
field by itself.

Then, we value the stochastic time-dependent expectediyeoskposurel(t) =

(L(t))" under HCIR model using scenario generation

E(t) = (L))" = (L(t,z(t),y(t), z())) ", (5.7)

whereL is the portfolio value function, dependent on HW2F modekstariables:(¢), y(t)
and the CIR model state variabié)
In CVA valuation we shall directly use the survival functi8®¢) and distinguish two
cases for our use:
1. First, we define a simple, deterministic survival funitifor our example CVA com-
putation, where SB" = 7, = 0) = 1 and SRT > Ty = 30) = 0.
e We choose it to be linear: $P) — SA(T;_;) = =7,
e Thus, if we space our time-snapshdtsevery-year, every measured interval
carries a deterministig: weight for default in §.4).
2. For the second case, we want to add some randomness irfalét date and ability
to correlate it with the CIR state variabi¢t).

o We set the default weighD;_, , = SRT;) — SR(T;_,) for each period as a
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uniformly-distributed random number:

i — T
D(i*l,i) ~ 2 |:71:| Z/{

F— (5.8)

wherel{ is the standard uniform random variable over pefibd .
e The average of the default weight above is the same as imadieistic case, but
with added randomness. The portfolio still expire§’at 30 (years).

The deterministicD will be used in most of the following tests. The second case
is interesting when the default weight is related/correlated with the size of the basis
spread via a Gaussian copula and we can investigate thetimfawh wrong-way risk, as
discussed in sectidbh.4.

The simulation (in both cases) is carried out by functibr2) by simulating random
paths for HCIR state variablest), y(¢), c¢(t). Pricing of the defined portfolio containing
a single interest rate swap was done following the guidslineSavickas et al.2014).
We valued the portfolio at discrete time-poirfisand applied the default weigli2. This
approach gives an approximate CVA value for our portfoliat,ibwe do use enough time-

points in the simulation, the overall result should be clostne true value.

5.2.2 CVA Setup under HCIR and Benchmark
To fairly compare CVA values with our hybrid HW2F-CIR modek need a similar, short-

rate based standard model or at least a normal-distribbiead model to use in these tests.
To our knowledge, the following options are available:
e HW2F model for OIS with added constant basis spread for teesba
¢ HW2F model forr-forward LIBOR curve. We could calibrate this model to capagla
using OIS discounting and treating the LIBOR forward curseralependent of the
OIS curve.
While the second option offers more flexibility, it does naétdut purpose as we cannot
evaluate CVA on IRS if not all tenors have traded caps. On therdhand, the first option

with fixed basis spread is a viable option.
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As shown in AppendixXC.2, the simple HW1F model the discount bond price is ex-
pressed as:

PY(0,T) _prya
— ) - 4)T ),
P(t,T) = PH(01) ¢ &)l

exp {—B(t,T)

2 2

e - BT (1- ew)} . (5.9)

and the HW2F price is also expressed similarly:

PM(0,T

POT =P,

wexp (=B, (¢, T)x(t) — B,(t, T)y(t)]
exp {—%(V(O, T) = V(0,6) + V(1 T))} . (5.10)

Using either of these models, we can calibrate them to time-structure o66-month for-

wards ands-month ATM caps using analytical formulas as in Appen@x. Then, by

]M(O’T)

leavingo; anda; parameters the same, but switching the term-structureesl
a different LIBOR curve, e.g. 3, 1 or 12-month - we can simeildie state variable(t)
and price forwards on any of 1, 3, 6, 12-month LIBOR or OIS egrer price caps using

the standard HW formulae.

5.3 CVA for Multi-Curve IRS

In this section, we calibrate the single-curve HW1F, HW28& laybrid, 2-curve HW2F-CIR
models to 6-month LIBOR forward curves anth 6-month caps with maturities ranging
from 1-year to 30-years. The parameters obtained for eadehmshown in Tabl&.1

First we have made the CVA/DVA valuations for a single ATH & 2.6839%) 30-
year 6-month swap, resulting in very close estimates, withi EUR for a10’000 EUR
ATM swap, with guaranteed default within 30-years. An altgive way of assessing the
value of CVA is by computing the CVA impact as a change in thedisate of the underlying
swap. For this particular swap, evergp change in the swap fixed leg leads to the CVA
value change of5EUR. As shown in Tabl&.1 the CVA adjustment when moving from
HW2F to HCIR model decreases g EUR, which is approximatelg.5bp move on the
fixed leg of the swap. This leads to a conclusion that in a shealis-spread environment,
without wrong-way risk, there may be little need for exglgpread model.

The figuress.1 and5.2 show the means and the variances of the simulated IRS value
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across time for all the chosen models. They demonstratethbaswap mark-to-market
(MtM) simulation means for HW1F and HW2F match perfectlye tHCIR is slightly
higher, as a result of CIR model smoothing over LIBOR-OlSMand spreads. Neverthe-
less, the swap mark-to-market variance over time is sntalleder HCIR model, followed
by HW2F model with fixed basis. Under HW1F model, the swaparare is of different
shape as we are missing the second stochastic driver forh@ise the different shape in
volatility.

While the difference between HCIR and HW2F model CVA/DVA ued is small,
valuing CVA as well as DVA with HCIR model leads to a smalldreaper CVA charge as
the spread in HCIR model has small volatility. Then, one &h&aep in mind that HW1F
and HW2F models yield rather different variance profilesréfore it is expected that they

would be different and in this case, the CVA and DVA values W2F model are smaller.

Model | CVA DVA Swap MtM (t=0)
HCIR | 608 359 6
HW2F | 618 374 0
HW1F | 626 384 0

Table 5.1: CVA, DVA and swap MtM values in Euros for and ATM swaith fixed rate of
2.6839%

Aging MtM of IRS Mean Variance of Aged IRS

— HW2FCIR v — HW2FCIR
700 HW2F 5000000 , \ HW2F
— HWI1F — HWI1F

4000000
o«
> 3000000
o
2

2000000

1000000

Exposure Date T, years Exposure Date T, years

Figure 5.1: Means and variances of the simulated IRS swapfiwéd maturity under HCIR
and HW-models as a function of the exposure datéll models calibrated to 22-Nov-2013
dataset.
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Figure 5.2: CVA and DVA exposure profiles of an 6M ATM IRS witiCHR and Hull-White
models as a function of the exposure dateAll models calibrated to 22-Nov-2013 dataset.

5.3.1 Multi-Curve CVA Estimates

As HCIR model allows pricing of swaps on any tenor with statltabasis, we have cali-
brated an HCIR model with &7 R, component for every LOIS spread: 1, 3, 6, 12-month
to the forward curves and 6-month; caps. Then, we have produced a CVA/DVA table for
each of the models, with different tenor 30-year ATM swaptmportfolios. The results
in Table5.3show that:

e The HCIR model yields lower CVA/DVA values than the pure HWeenThe differ-
ences in CVA values are as high 38EUR, or and adjustment @fop on the fixed
leg (estimated numerically).

¢ With increasing tenor length, CVA/DVA values decrease ¢ating decreasing un-

derlying portfolio volatility.

Tenor p o 0 k Co
IM | -3.14% 0.115% 1.17e-5 5.67% 0.11%
3M | -3.64% 0.10% 1.14e-5 4.93% 0.27%
6M | -1.8% 0.12% 0.82e-4 9.22% 0.41%
12M | -2.05% 0.35% 0.017% 7.9% 0.54%

Table 5.2: CIR-parameter table for every tenor. HCIR moda$ walibrated to 4% caps
from 22-Nov-2013.
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CVA DVA

Tenor| ATM(%) | HCIR HW2F HW1F|| HCIR HW2F HW1F
1M 2.49% | 660 690 707 || 334 352 370
3M 2.59% | 636 658 671 || 342 363 378
6M 2.68% | 608 618 626 | 359 374 384
12M | 2.83% | 554 562 559 | 363 381 380

Table 5.3: CVA/DVA table for multi-curve IRS. The HCIR modehs calibrated to 4%
caps from 22-Nov-2013. The given values show CVA/DVA in EURtues for a respective

tenor IRS’s with 30-year maturities.

5.3.2 Large-Basis Scenarios

To test the model performance under different market sgesae.g. large, increasing and
decreasing basis spread cases, we generated a numbetisyddtasets with flat, linearly-
increasing and curved-decreasing LOIS spreads, the tattelting in a large CIR volatility

o=10%.

Flat Gap

We introduce a flat 200bp LIBOR-OIS spread into the datastead of the market for-
wards, leaving cap volatility curve unchanged. The FiguBshows the forward curve and
volatility data. We have calibrated the HW1F, HW2F and HCIBd®ls to the scenario
dataset obtaining the parameter set given in Tableand calculated the CVA/DVA on a
6-month ATM swap.

The resulting simulated swaps have identical means in alletspas well as volatilities
as shown in Figur®.4. Hence, the CVA/DVA figures, in this case, are also identioed
have obtained CVA values within simulation error marginmedy of 678 and 679 EUR
for CVA and 362 and 363 EUR for DVA, for HW2F and HCIR modelspestively. The
HW1F model displayed somewhat smaller volatility of expesand CVA, DVA values of
654 and 335 EUR.

P o 0 k Co
-0.23% 1.2% 1.96% 59.5% 23%

Table 5.4: CIR parameters in flat high-basis case for 6-mbHR forward curve.
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6M Forward Comparison 4% Cap Volatility (Normal) Comparison

16
— Market
— HW2F
5001 — x
140l H | HW2F-CIR ||
HW1F
400
1201
& 300 ;
_/’—/\
100} N
200[
—  HW2F-CIR \
100k — Hw2F | 80 : : :
— Market
— 0OlIs-6M
0 ; ; ; n 60 H ; ; ; ;
0 10 20 30 40 50 0 5 10 15 20 25 30

Figure 5.3: Forward rates and (normal) cap volatilitiesddvigh, flat-basis scenario.
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Figure 5.4: Means and variances of the simulated IRS swaprdd@IR and HW-models
using synthetic forward curve with flat LIBOR-OIS spread amarket 4% cap volatilities
from 22-Nov-2013. On the X-axis we have the exposure @ate

Increasing Gap
In the second synthetic setup, we introduce a linearly amirgy LIBOR-OIS gap from O
up to 200 basis points (at 30-year forward point) as showngaré 5.5 The fitted CIR
model has a very low starting short-rateand large long-term meah As shown in table
5.5, the CIR volatility is small and the mean-reversion spkésismall as well.

The market cap volatility fits for HCIR and HW2F models aregpically identical.
As a consequence, HCIR model has CVA/DVAS62/215 EUR, and HW2F hag65/217
EUR. Figures.6demonstrates that the HCIR model yields slightly lowerfodid volatility,

as the CIR model is close to constant.
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P o 0 k o
-1.35% 0.12% 48.6% 0.14% 005%

Table 5.5: CIR parameters in increasing high-basis casg-foonth LIBOR curve
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Figure 5.5: Forward rates and (normal) cap volatilitiesftigh, increasing-basis scenario.
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Figure 5.6: Means and variances of the simulated IRS swaprdi@IR and HW-models
using synthetic forward curve with linearly increasing OR-OIS spread and market 4%
cap volatilities from 22-Nov-2013. On the X-axis we have ¢éxposure daté'.

Curved-Decreasing Case

In the last case, we produced a decreasing basis-spreaisosith a highly curved short-
term forward curve as shown in Figuse/, which could be a result of a liquidity squeeze:
short term unsecured loans sold at a very high premium abtSedades, while long-term
LIBOR loans have a constant credit-risk premium above Olt& rEsulting CIR model pa-

rameters are given in Tabfe6. In the case of liquidity squeeze scenario, the CIR votstili

134



becomes high, everd%, but the mean reversion spekd= 100% is also high, due to the
positive rate restrictions on the CIR model.

The resulting CVA figures in Tabk.7show some differences in the models, the HCIR
model yields overall larger CVA and DVA figures for the sameapwas our basis spread is
now quite volatiles = 10%. The EUR impact of changing from HW2F to HCIR model is
34 EUR, this (approximately) translates#o7bp adjustment on the fixed swap leg.

P o 0 k Co
0% 10% 0.51% 100% 4.12%

Table 5.6: CIR parameters in curved basis spread case farhnLIBOR curve.

0.045 6M Forward Comparison 200 4% Cap Volatility (Normal) Comparison

CIR

ol1s
HW2F-CIR
HW2F

Market
HW2F ||
HW2F-CIR

HW1F

0.040
180}

0035

160}

0.030

—

140

0025

0.020

120+

L L 60 L L L L H
30 40 50 0 5 10 15 20 25 30

0.015F

0.010F

0.005F

0.000
0

Figure 5.7: Forward rates and (normal) cap volatilitiesfbigh, increasing-basis scenario.

Model | CVA DVA Swap MtM
HCIR | 658 420 0
HW2F | 624 386 0
HW1F | 620 384 0

Table 5.7: CVA, DVA and swap MtM EUR values at time= 0 for an ATM swap with
fixed rate 0f2.6839%
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Figure 5.8: Means and variances of the simulated IRS swaprdd@IR and HW-models
using synthetic forward curve with curved-decreasing LEBBOIS spread and market 4%

cap volatilities from 22-Nov-2013. On the X-axis we have ¢éixposure date
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Figure 5.9: CVA and DVA profiles for IRS under HCIR and HW2F netglusing synthetic
forward curve with curved-decreasing LIBOR-OIS spread araulket 4% cap volatilities
from 22-Nov-2013.

The results from LIBOR-OIS swap and interest rate cap CVAuegtion resulted in

similar conclusions and are discussed in Appendi:2andE.3.
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5.4 Wrong-Way Risk in LOIS

The last example considered is the wrong-way risk (WWR) rméaleCVA on an IRS
portfolio. In general, we can manipulate three types of \graray risks, namely correlation
between counterparty default and:

1. Exposure size (standard WWR)

2. OIS rates (w.r.t risk-free rates)

3. LIBOR-OIS spread (w.r.t. credit-liquidity premium)

Standard 2-Factor Hull-White model only allows to model W\Wikh respect to the

first two factors. Having an explicit LOIS model allows us telude the 3rd risk. To set
up wrong-way risk in CVA in a simple way, we impose correlatioetween the default

probability and LIBOR-OIS spread. For this case the CVAipgdormula becomes:

CVA ~ 3 B9 [P(0.T)(L(T) (D(Tr, )] (5.11)

i=1

whereD is the stochastic default weight.

5.4.1 WWR Methodology

To impose wrong-way risk, or correlation, between the LQifead and the default we will
impose correlation between CIR spread-state variefleand the default weighb(t) via
a Gaussian copula. We will also assume that the default wesgiot correlated with the
Hull-White state variables(t), y(¢). The latter correlation is a viable option to explore, but
it is out of scope from this report.

As mentioned previously, the CIR (spread model) state bbria(t) is distributed
with non-central chi-squared distribution and the defawdight D for every time period
(T;—1,T;) is uniformly distributed ovef0, 6.66%] interval, with a mean 08.33%.

We constructed a Gaussian copuldérpentier et al2007) correlatinge(t) state vari-
able with the default weighb, as follows.

The conditional density function (CDF) of the spread preeés) shall be calledF.
For a given sampl& € F, we convert this to uniformly distributdd|0, 1] random sample
X by evaluating the CDF

X = F(X)

and, consequently convert to normally distributed sampleiding inverse normal CDF
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X =97 Y(X).
Then, we draw another independent normally distributedpdad € A, and derive the
sample
ZA:p-)E'+ 1—p2-Z

which has normal marginal distribution, but is correlatdthwX by correlation rate.

Finally, we convert the latter sample to uniformly distiédZ = @(Z). We end up
with samplesX € F andZ € U with their respective marginal distributions, but corteth
with Gaussian copula with correlatign The latter two samples together with samples for

HW2F state variables(t), y(t¢) are enough to evaluate CVA for a given IRS portfdlit).

542 WWR for IRS

We shall demonstrate the impact of the correlapiggarameter on CVA/DVA values for an
interest rate swap in three cases of potential WWR coroglati= 0%, 100% and—100%
and two forward curve cases:

1. Market data from 22-Nov-2013,

2. Synthetic high-basis scenario: curved basis (high vol©}).
The table5.8 shows, the LIBOR-OIS WWR correlation impact on overall C\$Aniegligi-
ble if we use the market dataset with small LOIS basis spre@dsthe other hand, in the
synthetic high-volatility dataset, the WWR effect is vigipbut not very large. As the sen-
sitivity of CVA to changes in the fixed leg are EU R /bp, the WWR impact, in this case,
is less tharebp, the CVA value increases with increasing positive catieh between the
CIR state variable(¢) and the uniformly-distributed default probability CDP Equiva-
lent, but opposite, effect is observed in the DVA impact)dd&h9. DVA values decrease
with increasing positive correlatign and increase with high-negative correlation.

We have chosen the test correlation values to be very lasgechange in LIBOR-OIS
spread is tightly linked to changes in liquidity and creditiation in the interbank lending
markets, hence a change in LOIS spread should be well reflectee default probability
(weight) of a banking counterparty.

For this chapter, we skip the WWR assessment for LOIS swapshss caps, be-

cause the impact on them would be even smaller for the sarsengsautlined in the previ-
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ous section. To conclude, The WWR impact is visible on irderate swaps but is not very
large even in high-volatility spread (liquidity squeezayations. This is highly affected
by the chosen CIR model for the spread, as this square-rooégs is stable and even with

high initial volatility quickly converges to a long-term raue spread.

CVA Values:| p=—100% p=0% p=100%
Market Data 609 609 609
High-Vol sc. 649 660 668

Table 5.8: CVA values under wrong-way risk with differentiedation levels between CIR-

statec(t) and the CD)

DVA Values: | p=—100% p=0% p=100%
Market Data 358 359 360
High-Vol sc. 426 420 414

Table 5.9: DVA values under wrong-way risk with differentrication levels between
CIR-stater(t) and the CDF)

To obtain a benchmark, for the WWR case when LOIS spread releved with the
default probability, we can compare the latter with CVA WAANVR case, when the corre-
lation is between the overall exposure (NN and the default weight. This way we can
have a comparative view how much impact can LOIS-defaultetation have in compari-
son with more common way of assessing WWR in CVA.

The WWR, correlation between exposure and default, impac@\dA/DVA values is
quite large, an increase/decrease by 350 and 400 EUR, atitesly this would mean up
to 80bp adjustment on the fixed leg of the ATM swap. This mehaswhen CIR model
is used for the LOIS spread - the imposed WWR between the ldeéta and the LOIS
spread has a much smaller impact on CVA than full WWR modekrettorrelation is set

up between exposure and default.

CVA Values: | p = —100% p=0% p=100%
Market Data 249 609 968
High-\Vol sc. 265 659 1052

Table 5.10: CVA values under wrong-way risk with differemr@lation levels between

exposure size NPW) and the CDF)
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DVA Values: | p = —100% p=0% p=100%
Market Data 643 359 78
High-\Vol sc. 753 420 87

Table 5.11: DVA values under wrong-way risk with differemrielation levels between
exposure size NP{) and the CDFY)

5.5 Conclusions

In this experiment, we have constructed a simple CVA vatunetingine, where the portfolio
contains only a single interest rate swap, the credit risletermined by simplified model
with a (random) default rate. We have compared the CVA and DNArges for the IRS
when the underlying LIBOR and OIS rates are driven by eith€R{or simple HW2F
model with constant basis spread.

We have performed comparative analysis between the two Isnadeng market data
as well as synthetic data to investigate the realistic andilig cases. Overall, our results
show that the impact on CVA of choosing a hybrid model witlthtstic basis over constant
spread HW2F is small, as the LIBOR-OIS spreads are rathell smgeneral and CIR
model used for its dynamics does not carry a lot of volatility

This result has some broader implications. Even if the GiRRad model is one of the
simplest analytic stochastic basis models, the fact thatRMMith stochastic basis is very
close to the CVA value with deterministic basis shows thatyramplified models without
the stochastic component can be close to the “advanced”Inmottee current small-basis
environment and can be safe to use, without adding unnegessaplexity into CVA

computation.
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Chapter 6

Conclusions and Future Work

This chapter presents an overview of the work describedsriflesis on modelling stochas-
tic basis with two different branches and discusses passitilre directions of this re-
search. In Chapte we have analysed and extended a conceptually unique LIB@RBI pa
model, which uses the mechanics of daily LIBOR quotatiorns eimanges in the set of
banks in the LIBOR panel as the driver for LIBOR-FRA spreallsChapter4 we intro-
duced a novel hybrid short-rate model for joint modellingradlti-tenor LIBOR rates and
volatilities, able to re-price a much larger set of traded idliquid derivatives than the latter

model while keeping explicit links to credit and liquiditigks.

6.1 The Extended Panel Model

The LIBOR panel model does not belong to any of the populasela of financial stochastic
interest rate models, like the LIBOR market models or shate¢-models. Nevertheless, it
offers a unique insight into the problem of joint modelling-&RA rates together with OIS
and spot-LIBOR rates. In our work, we have replicated thginal results oMorini (2009
and showed that the use of the credit-liquidity volatilitpyy, as in the original article, is
very limited. What is more, to correct for the lack of extdraalatility parameters we
changed the formulation of the problem and constructed FR@lied volatility, as often
done in the options markets. In the implied-volatility frework, using global calibration
methods we were able to jointly re-price all available FREesaat once using a single set
of parameters, leaving less than a 20bp error in repricing.

In our dataset, the bid-ask spreads of most of FRA contraete well within the S5bp

margin, therefore the panel model, in its standard formdatvas not flexible enough to



re-price all instruments within required tolerance. We@ened an empirical investigation
into the assumptions of the panel model and noted that therestlog-normal Brown-
ian motion does not hold for the historical LIBOR-OIS spreatihe closest distribution to
match the empirical data was the Student-T distributionhthmilatter is known to yield non-
analytic option prices and other difficulties in pricing.érbafore we chose to use a mixture
of Gaussians as the approximating distribution for thetsistic LIBOR-OIS spreads with
one Gaussian controlling small micro-movements of theapend the other one respon-
sible for the occasional large swings in the LIBOR-OIS sgrdasing this assumption we
obtained a known, analytic uncertain parameter model ftioog pricing. By calibrating
the extended panel model to series of traded FRA contractsexe able to minimise the
replication error to less than 5bp 9% of historical dates. The latter result shows that the
extended panel model can be used to price FRAs and detedaticmgp in the market.
Moreover, we performed empirical parameter analysis ofetitended panel model.
The full model is described by 3 parameters: volatilitteso, and weight parametex.
We calibrated the model to a set of FRAs for every trading dagur dataset, obtaining
three time-series of parameters. We found the levels oftiitks as the weight of the
large volatility o, indicating large swings in credit risk, coinciding withetimajor credit
crisis and post-crisis events, reflecting the interestmeieket turbulences. As a result, this
model can be used by risk managers to observe and anticgpgésdhanges in the interbank

lending markets using liquidly traded contracts like theABR

6.2 HCIR model

The hybrid HW2F-CIR model is a very promising, straightfard/ short-rate model for
risk-management purposes. It has a number of original andivgortant features:
1. Is a short-rate model suitable for low-dimensional satioh of portfolio exposure.
2. Allows for analytic calibration to market OIS, IRS and seanalytic to ATM (or any
fixed strike) caps.
3. Allows calibration to multiple tenors of LIBOR-OIS spdsaand pricing of caps on
illiquid tenors.

4. And allows simulating IRS, cap exposures on differenttsrior CVA valuation.
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6.2.1 Calibration

The model can be calibrated to a single-day of market daédd wiurves and a series of
market caps. In the calibration, the information about Gd@ntstructure goes into the
(base) HW2F model, the LOIS spread term-structure is fitte@IR fixed parameters and
the cap volatility information is fed into both: Hull-Whitelatility and mean reversion, as
well as CIR parameters. Hence, the fitting is done jointlyoiaveird rates and market cap
volatilities.

We have successfully calibrated the model to market dat2edd/-2013. However,
we note that in this global-calibration exercise, multieal minima exist in the error
function and the optimizer can fall into one, ignoring thes@lote global solution (see
example in AppendiXE.4). To avoid this, we propose to calibrate a simple Hull-White
model with constant-basis spread assumption to markeeswand caps and then use these
Hull-White volatility and mean-reversion parameters aséisg point for full HCIR model
calibration.

We further note that the model requires a smooth, convergemt-structure of the
forward rates and cap volatilities. Any irregularities wbdisrupt the calibration (see Ap-
pendix4.5). In the current formulation of the model, there may be cagdesre the calibra-

tion is not successful.

6.2.2 Cap Pricing

We have performed a number of tests with the HCIR model, diolyilliquid cap pricing
and comparison to market data, exposure and CVA valuatitntMCIR model and bench-
marking against pure HW1F and HW2F models. Our analysis hasrs that calibration
to market forward curves works within 5bp error for HCIR misde with exception of the
first few IRS points - the difference is up fbp, does not fit well as the market LOIS
spread increases too fast for the HCIR model. Then, thera#ilim of HW2F-CIR model
to market caps for a single-strike works well, within a 1bpaidity error for maturities
> 3 years. The shorter maturity volatilities are hard to matble: 2-year vol is Sbp higher
in the model, the 1-year market volatility is too low to benegented by HW2F or HCIR

models. The HW1F model is not flexible enough to price a singléti-maturity series of

1The ICAP bid-ask spreads are around 5bp for market FRAs agd IR
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market caps and falls behind both previous models. What i®nas the HCIR model is
based on HW and CIR models, however, the hybrid model hasyssweall volatility smile

and cannot be used reliably for smile extrapolation.

6.2.3 CVA Impact Evaluation

In our tests for CVA and exposure assessment, we have benktathe HCIR model ver-
sus the fixed-basis HW1F and HW2F models in market and syoitiata situations. We
have found that the HW2F and HCIR models show comparable ¥R8seire profiles and
CVA values in market-data tests, with differences arotippl on an IRS fixed rate adjust-
ment. The HW1F model results in overall higher volatilitydamgher CVA/DVA values
for ATM swaps than the other two models. Whenever the LOI®agris small or the
calibrated CIR model has low-volatility and the HCIR and HW#2odels give very close
results. The main difference between the models arisesithaiic situation of rapidly de-
creasing LOIS spread term-structure. This happens in &liigusqueeze when short-term
unsecured borrowing is very expensive when compared tateodllized lending (using OIS
rates). In this case the HCIR model yields higher CVA/DVAued than HW2F model by
even7bp change on fixed leg.

Comparison of exposures for LOIS swap as well as caps did how any changes
in CVA/DVA figures, as these derivatives stay in or out-of theney throughout the life-
time of the derivative, depending on the form of the forwawive, and therefore yield
matching CVA/DVA mean exposures. Thg%-quantiles of HW2F and HCIR models are
slightly different, as the HCIR model in high-volatility sgad case has much larger short-
term volatility. A full analysis is included in Appendik. We have also tested the WWR
situation, when LOIS spread (or CIR state variafilg) is correlated with the conditional
default probabilityC’ D P(t). In high-vol spread environment the CVA/DVA values are in-
flated/deflated whep = 100% andp = —100% by up to3bp on fixed IRS leg, which is

very small when compared to the adjustment from exposuiaitteorrelation.

6.3 Future Research Directions

Overall, in this work we have outlined a few drawbacks of tigbrid HCIR model. One of
the biggest issues is the lack of flexibility when fitting thaatility smile. As we observed

from our results, the major part of the volatility is drivey the base Hull-White model,
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therefore changing it to a model which incorporates thetiltjaskew/smile, such as the
Cheyette displaced diffusion stochastic volatility (DDSWModel Hoorens 2011) could
resolve this issue. On the other hand, as the pricing antiratibn of DDSV model to
bonds and caps is non-analytic, a hybrid DDSV-CIR modeldbel very computationally
expensive, especially for CVA purpose.

Also, we found that the very short term caps cannot be rglipbited by the HCIR
model, as the market volatility is too low for the HW2F and Giiedels to replicate at the
same time as high 5-year cap volatility. This issue couldddeesl by using a piecewise-
constant volatility functions,(¢), o, (¢) for the Hull-White process. However, this leads to
changes in the semi-analytic pricing formulas.

Finally, we have shown the potential impact of HCIR model MA\@nd demonstrated
an example of wrong-way risk scenario. This was done in aerahmple credit-default
model, where we only imposed correlation between the hazdedand LOIS spread size.
It may be interesting to extend this to a full model with ddfaavents as well as more

sophisticated default risk model.
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Appendix A

Basis Consistent Replication of the FRA

rate

A very important observation was made Brini (2009 that the 6-month and 12-month
FRA gap can be ‘bridged’ using a different set of market dives - the basis swaps
(2.21). This observation yields a model-free way to express tteevaf a market-traded
FRA in terms of OIS and LIBOR rates. In the following we give engralized version of
the proof for basis consistent replication for FRA contsaxtany tenor.

We can compute the price of a basis swa@2{) as the expectation of the LIBOR-

linked payments, discounted with the risk-free rate:

with Z being the fixed basis spread in the contract.
The appropriate risk-free discounting rate for basis sviatige OIS rate, as these contracts

(just like FRAS) are collateralized. Therefore:

B(0; T, S; Z) = Eo[D(0, 8)7(S — T) Luy(T. S)] = Pors(0, S)K(Z) (A.2)



whereL,, (T, S) is a market forward-LIBOR loarnfy;s is the OIS discount bond and

K(Z) = (S(Ly(0,8) — Z)) — %TLM(O,T) (A.3)

1 Pors(0,T), 1

~Fos YV RS o Y (A4)

1 P0,T)  Pors(0,T),  Pors(0,T)

= P.0.8) Pu(0.5)  Pors(0,5) T Pors(0,5) 1Y) (A-3)

= %(Fsm(o; T,S)7(T,S) — Esta(0; T, S)7(T,S)) + Esw(0; T, S)7(T,S) - SZ
(A.6)

1 S

=7(T,S) P0.7) (Fsta(0;T,S) — Esa(0; T, 5)) + Es:q(0;T,S) — mz

(A.7)

whereFs;; and Fs;4 are standard replication2.(1) of, respectively, LIBOR and OIS for-
wards.

Now, if we compare the basis swap pri¢eZ) and the FRA value:

FRA(0,T,S; K) = Eo [D(0, S)(S — T)(L(T, S) — K)] (A.8)
=Eo [D(0,8)(S = T)L(T, S)] — Pors(0,5)(S —=T)K  (A.9)

We see that by setting = K(Z)/7(T, S), then the basis swap and FRA values coincide.

Hence the FRA equilibrium rate, when the FRA market valuei® zcan be written as:

S
(FStd(O; T, S) - EStd(O; T, S))_iBM(OQ T, S)

Fp(0;T,S) = Ega(0; T, S)+ (T, S)
(A.10)

Pr(0,7)

whereB,,(0; T, .S) is the market par basis swap spread.
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Appendix B

Multi-Curve Pricing Schemes and Tables

The following two flowcharts explain the pre- and post- arisiethods of stripping market
interest rate curves and volatilities.

In Figure B.1 we show the classic OIS, LIBOR curves and LIBOR volatilityobo
strapping framework. In this setup one obtains the OIS amOR interest rates from
their respective swaps, choosing the most liquid derieati¥ multiple are available. For
example, to strip the LIBOR curve one would use spot LIBORvewp to 1-year, then the
6-month FRA rates up to 5 years and then IRS rates. If one us®ber tenor, like 3-month
swap rates, the final result would be unchanged as there wesggnificant basis spreads
between 6 and 3-month forward rates.

The same, separate, bootstrapping procedure applied édit aefault probability
curves obtained from CDS spreads. The forward LIBOR vaigs were obtained by using
already stripped unique LIBOR curve and current, most tiquarket caps.

In FigureB.2 we show the modern, post-crisis curve bootstrapping séiliple CDS
and OIS stripping is left unchanged, now we have to strip wédod-LIBOR curve from
every tenor (1,3,6,12)-month FRAs and IRS’s. Additiogathe OIS and spot-LIBOR
curve affects each of these bootstrap procedures and &stsahe, now tenor-dependent,
LIBOR-volatility bootstrapping procedure.

The volatility bootstrapping is now exceptionally hard ag/mne tenor caps are liquid
per currency, e.g. 6-months in Euro, 3-months in US dolldne Tatter means that the
volatilities for other-tenor LIBOR forwards are not knowanedto lack of market data and
have to be implied by a model. Such situations before thatareakh only happened when

dealing with exotic derivatives. Now the vanilla derivaswobtained the features of exotics.
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B.1 Table of Common Multi-Curve Modelling Approaches

As the basis spread modelling problem is new, there is nosinghwide standard way of
approaching it, but there have been multiple proposals fdtirourve interest rate models.

In this section, we briefly outline them and discuss pros amd.c
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€aT

Author

Method

Strengths

Weaknesses

(Kienitz, 2013

Volatility transformation by treating
LIBOR as displaced diffusion ove
OIS forward rate.

) Extrapolate ATM-Option volatili-
rties across tenors; Allows to supe
impose SABR parameters to trar
fer caplet volatility smile.

Not a stochastic-spread model, a way
2rfilling up LIBOR-vol surface
S_

(Mercurio, 2010

Extended Multi-Curve LIBOR

Model

Exact calibration to availabl
curves and option products

e Distinct volatility surfaces for every teng

ities, correlations, etc. Impossible
calibrate OIS volatility to market instru
ments.

7, lack of data for calibration of volatilt

of

=

(Morini, 2009

(Extended) LIBOR as and Option

It can price FRA contracts usin
spot-LIBOR, OIS curves an
credit-liquidity  volatility data.
Good historical fit for tested FRAS

gDifficult to use beyond 1-year maturit
ddue to lack of spot-LIBOR curve and lag
of credit proxies. caplet pricing may kb
unrealistic in high FRA-OIS basis scena
ios (spread volatility is too high)

(Crépey et al.2012

Levy-Hull-White  model  for

default-able LIBOR

Analytic valuation of FRAs ang
Swaps can reproduce historig
LIBOR-OIS spreads. Sem
Analytic valuation of caps an
Swaptions; The jump model fg
LIBOR rates can be used well fg
xVA calculations.

I Non-analytic pricing with characteristi
alunctions; Unclear if Swaps, caps can
-repriced at market rate simultaneously.
3
;
DI

(Bianchettj 2010

Two short rates for OIS and forwar
Curves, as in FX analogy

dConsistent, known model, simp
pricing

eQuanto Terms, negative LIBOR-OIS b
sis spreads are possible, published ¢
brations show unusable fits for swaptiot

a_
ali-

(Kenyon 2010

Two short-rate setup for OIS an
LIBOR-OIS basis

dConsistently reprices market Swa|

and FRAs. There are multipl
choices for short-rate models i
volved, the author demonstrat
setup with Vasicek models.

pH loses pricing simplicity, volatility cali-
ebration requires illiquid cap data.

‘]_

S

Table B.1: Table of popular multi-curve pricing models.



Appendix C

Appendix: More Theoretical Definitions

and Derivations

In this appendix we include the definitions for bond pricingdar CIR and 1-or-2 factor
Hull-White models. Then, we give the derivations for bondi@p and caplet pricing in

two-curve framework and when the underlying is a k-scaled zeupon bond.

C.1 The CIR Model

The Cox, Ingersoll and Ross (CIR) modBrrigo and Mercurig2006 is the first model to

use the square-root diffusion term in the short rate difm$SDE:
de(t) = k[0 — c(t)]dt + aor/c(t)dW (1), ¢(0) = ¢ (C.1)
wherecy, k, 0, 0. are constants. A condition
2k0 > o (C.2)

has to be imposed to guarantee the positivity of the shoete(a).
The CIR model yields non-Gaussian dynamics for the shoet-na particular the:(t)

has the density of a non-central Chi-squared distribuByigp and Mercurig2006), with:

E [c(t)|F.] = c(u)e ™™™ + 6 (1 - e’“(t’“)) (C.3)

[\

Ve(t)|Fu = c(u)a (e_“(t_“) — 6_2“('5_“)) + 90—2 (1- e_ﬁ(t_“))z (C.4)
“ 2K

R

Nevertheless, the price at tim®f a zero-coupon bond with maturify can be obtained in



an analytic, affine form:

P.(t,T) = A(t, T)e BetDe®) (C.5)
where
[ 2hexp{(k+h)(T—1)/2} 17
A6 T) = 2h + (k + h)(exp{(T — t)h} — 1) ’ (C6)
B 2(exp{(T = t)h} — 1)
Bt ) = e T e (T DR = 1) (C.7)
h = VK2 + 202 (C.8)

For pricing of European call options on zero-coupon bonds fild need to
change the CIR SDE4(1) from risk-neutralQ to future time T-forward measur@”

(Brigo and Mercuri92006:
de(t) = [k0 — (k + B(t,T)o”)c(t)] dt + o+/c(t)dW ™ (t) (C.9)

Under@Q? the distribution of the short raigt), conditional onc(u),u < t < T, is given

by:

Pe (@) = alt, WDy, (a(t, w)) (C.10)

q(t,u) = 2[p(t —u) + ¢ + B(t,T)] (C.11)

wherep,,,,) is a non-central chi-squared density withdegrees of freedom and non-

centrality parametex.

4p(t — u)?c(u)el =

5(t,u) = i (C.12)
oh

=) = e Th(t — )} = 1) (C.13)

¢ =(k+h)/o® (C.14)

C.2 Pricing under two-curve HW models

Pricing of zero coupon bond options in two-curve framewoskg the Hull-White short
rate model is slightly different than in the single-curvanrework. We give the details for
zero bond option and interest rate caplet pricing undedddadW1F and HW2F model

versions. The scaling parameters needed in the HCIR model and should be assumed to
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be zero in the simplified case.

C.2.1 Pricing under scaled HW1F-K Model

The solution to scaled Hull-Whit@ + k) zero-coupon bond price in two-curve framework
is derived as
PH(t,T) = BQ [e 40 S r “’d“|]-“] (C.15)

wherer(t) is the short rate under HW1F mod@r{go and Mercurio2006 with constant

volatility o(t) = o. The interior argument of the latter expectation can beitemrusing

/ du—/ o(u) + z(u (C.16)

_ pmalT—1) o [T
/t z(u)du = IT:C@) + g/t [1- e’“(T’“)} dW (u), (C.17)
8() = F(0u) + 51— e, c.18)

where the expected value of the integral

a

E [/tT:c(u)du\}"t} L=, (C.19)

and the variance is

2

! g 2 a1 sary 3
V(t,T)=V x(u)du|F;| = = T—t+ P —5€ ——|. (C.20)
t

2a
Using the above, the bond price can be split up as:

P(t,T) = [e- 0 o] 5Q [+ i st 7] (C.21)

as¢(t) is a deterministic function. Now, with = 0, we have the simple OIS zero-coupon

bond and it is calibrated to the OIS discount curve, hencenatit= 0
P*=%0,T) = PM(0,T), VT > 0, (C.22)

which holds if and only if

T PM(0, T
efft o(u)du __ ( ) )

= Do P12V O.1) - VOOl (C.23)
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We summarize all the steps into a formula for bond price wheno:

Pk:O(t, T) = EQ |:ei ftT r(“)du‘Ft
_ PO Q [ ST w(u)du
- W exp{—1/2[V(0,T) — V(0,)]}E [e |]-"t]

PYO.T) avom-vion =T

_ z(t)+5V2(,T)
PM(0, 1)

)

because;[tT x(u)du is normally distributed random variable with meh?fﬁx(t) and

varianceV?(t, T'). Respectively, if we were to scale the bondiby %, we would obtain

PH(t,T) = B9 [e—<1+k>ffr<u>du‘ }"t} _ [efft%(u)du} 0+ 2a [e—<1+k>ffm<u>du| ;t]
PM(0, )" 1
—a(T—t)

exp [(1 + k;)l_eTx(t) + %(1 + k) V3(t, T)} ,

as the mean oftT z(u)du scales by(1 + k) and the variance scales by+ k)2. This leads

to the final result where the k-scaled zero coupon bond pukder 1-factor Hull-White
model

[P, 1)1
Pt 1) = [ |
exp [@ (V(0,) = V(0,T) + (1 + VLT, 2(0) = 0.

exp|—(1 + k)B(t, T)x(t)]

C.2.2 Option Price Derivation: HW1F-K

To price a zero-coupon bond (ZCB) option of thescaled bond, we can use an analytic
formula:

ZBPuwi(t,T,S, X) = Pos(t, T)(X®(—h + %(t, T, S)) — Pl (T, S)®(—h)), (C.24)

where
_ II} PHW;T,S) N S(t, T’ S) (C 25)
S(t, T, S) 2 '
_ o? —a(S—T)12 —2a(T—
S(t,T,S)? = (1+k)? <ﬁ [1— e D7 [1 — e t>]) , (C.26)
Pl (T, 8) = B9 [Phyy (T, 5)] . (C.27)
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To prove this, we start by defining the ZCB-call option. Thisan European call option

with exercise dat&’ on a bond with maturityy
ZBC(t,T, S, X) = EQ [e* S rwdu(pk (7 §) — X)+|}“t] . (C.28)

Via change-of-numeraire technique we change the meas@tstd-forward measure, ob-
taining
ZBC(t,T, S, X) = Pors(t, T)E®T [(Phy (T, S) — X)*|F] (C.29)
Now, since the value of the future k-Bond is
Pors(0,5) o k)Ba(T,S)2(T) [ 9ER (V(0,1)—=V (0,9)+(1+k)V (T,S
PE(T, S) = { } e~ (1HR)Ba(T,9)a(T) o[ S5 (VOT) =V O.8)+(14+R)V(T. )]
Pors(0,T)

BAT,8) = = (1— D)

wherez(T") is a normally distributed random variable under the-measure. In turn, the

zero-coupon-bondP .. (T, S) is log-normal random variable with mean and variance

p =K [log Py (T, S)|F] = (1 +k)log Pors(0.5)] _ (1 + k)B,(T, S)E¥ [2(T)]
Pors(0,T)
(C.30)
1+k
0 0.m) - vies)+ e mvns).
2
V? =V [log Py (T, 5)|F] = g—a [1— e 2 T=D] (—(1 + k) B,(T, 5))*. (C.31)
The expected call payoff with strik& is computed as
L e xS (C.32)
oo V27V '
= X®(—dy) — "2V 0(—dy), (C.33)
dy=(p—InX+V?)/V, (C.34)
dy=dl —V. (C.35)

We discount the payoff at the time of option expiratibrwith OIS bonds obtaining the

final result:

ZBP(.T,5,X) = Pors(t.T) [ 2V ®(dy) — X2(dy) (C.36)
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C.2.3 Caplet Pricing with HW1F-K

Definition C.1. 1 To price a caplet which pays out the difference between RB&te

L(T, S) and strikeK scaled by day-count fraction= (S — T), we need to compute

Oplt(t, T, S, K) = EQ [e— IE v (LT, §) — K)+|ft] (C.37)
— Pors(t, S)E? [#(L(T, ) — K)*|F] (C.38)
I +
— Pors(t, S)ES - G (ﬁ _ 1) _ K) m] (C.39)
I +
= Pojs(t, S)EQS (ﬁ — (1 + TK)) |ft] . (C40)

While in classic, single-curve setting this could be chahger-forward measure and made
into a zero-coupon bond put option @t (7, S) with strike X = 1/(1 + 7K), in our case
the discount factor inside the expectation is the OIS distdty (7, S)! = P.(7,S) and

we cannot use this relationship.

However, the zero-bond is a log-normally distributed randa@riable, and its inver-

sion is also a log-normally distributed r.v.

1

~ 2 S — 2 .
PUT,S) = edW (1, V?) = s ~ exp(W (=0 V2)) (C.41)
therefore our caplet can be priced as a ZCB-call option oartavl%. Let X =
(14 7K)andP(T, ) = 555, then
Cplt(t, T, S, K) = Pors(t, S)E?s [(P(T,8) — (1 + ﬂ())ﬂ (C.42)

— ZBC(1,T,8,X) = Pors(t, 8) [e 3 0(d)) - X(da)| , (C.43)
dy = (—p—In X +V?))V, (C.44)
dy=d, -V, (C.45)
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where

1= E9 [log P(T, S)] (C.46)
= (1+k)log [%} — (1 + k) By (T, S)E@s [2(T)], (C.47)

V? = V9 [log P(T, S)] (C.48)
— ;’_2 [1— e 29D (—(1+ k) B, (T, 5))* (C.49)

are the mean and variancelof P(T’, S) under theQ s-measure.

C.3 Pricing under scaled HW2F-K Model

This section includes the derivations of bond and optioogsrunder the K-scaled 2-factor
Hull-White model.

C.3.1 2-Curve Option Pricing with HW2F

Standard single-curve bond and option valuation formutagte Hull-White model are
given in Brigo and Mercurio2006. However, if we were to consider 2-curve framework
with OIS-discounting for a LIBOR bond option, the formulas £ero-bond calls and puts
become more involved. First, we assume that the LIBOR-faiwates areQ® = Q-

martingales for OIS curv® asL(t; T, S) = E%s [L(T, S)|F]

Lemma. C.3.1. The zero-bond options, put and call, under two-curve Hullié/frame-

work can be priced with

ZBPywor(t,T,S,X) = Pyus(t, T)(XP(=h +X(t,T,S)) — Pgwor(t;T,S)P(—h))

(C.50)
ZBCuwor(t,T,S,X) = P,s(t,T) (Puwar(t; T, S)®(h) — XP(h — X(t,T,S)))
(C.51)
where - s
1 HW2pr(t;1,
h — n X Z(t7T7 S) (C52)

SGLT.5) 2
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andY. defined as

E(t T S)2 o 0'923 |:1 o e—aw(S_T)}Q |:1 . G—an(T—t)}+o-_§ |:1 o e—ay(S—T)j|2 |:1 - G_QGy(T_t)}
T 243 2a}
070y

+2p ) [1—e =] [1 — e [1 — emlet®)T=D] = (C.53)

azay(a; + ay,
Lemma. C.3.2. A single caplet on a LIBOR payment, with strikeexpiring at timel” and

maturing at timeS price, must be valued undé)®-forward measure:

Cplt(t,T, S, K) = E® {e— JErorsdu (1T, §) — K)*

;t} (C.54)
= Pors(t, S)E® [7(L(T, S) — K)*|F]

(% e +7K))+ ]—}]

wherer = (S — T) is a year fraction. The bond;, (T, S) underE®s is distributed log-
normally LN (u, V,) for V, = 3(¢, T, S) and

= Ppys(t, S)EUs

% + % [V(T,S) = V(0,8) + V(0,T)]

— By(T, S)E%[x(T)| Fi] — By(T, S)E®[y(T)|F], (C.55)

p=E¥[InP,(T,S)|F] =In

andE%s[z(T)|F], EY[y(T)|F;] are given in Brigo and Mercurig 2006

Lemma. C.3.3.The inverted bond®(T,S) = %S) follows log-normal distribution

Pr
LN (—pu,V,), therefore we can analytically price caplet undéfs measure as:

~ +
Cplt(t, T, S, K) = Pors(t, S)ESs [(PL(T, S) — X)

]—“t}
— Pors(t, ) [e’”%vﬁ@(d) _XO(d— Vp)] (C.56)

whereX = (1+ (S —T)K),d=(—p—In X +V?)/V,

C.3.2 Bond Price Derivation: HW2F-K
In the hybrid HCIR model we use a scaled HW2F bonds, theiimgican be done by light

modification of the standard formulas.

Lemma. C.3.4. The zero-coupon bond price under thescaled 2-factor HW model is
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derived similarly as above:

Piyop(t,T) = EX [67(1%) a T(u)du] (C.57)

wherer(t) is the short rate under HW2F moddrigo and Mercurig 2006. We continue,

by noting that

T T
/ r(u)du :/ ¢(u) + x(u) + y(u)du, (C.58)
t ¢
T 1 — e—a(T—1) 1 — o—b(T—1)
B | [ o)+l >du} - eiwwefy(t)
t
Bay(t, T)x(t) + By(t, T)y(t), (C.59)
Viawar(t,T) [/ du}
2 1 3
= |T —¢ —a(T ty  — _—2a(T—t) _
a? [ T a 2" 2a
2
n 2 —b(T—t) 1 —2b(T—t) 3
— T —t+ - S _ =
T { D 2° 2%
L9 on Tt e—a(T—t) _ 1 N e—0(T—t) _ 1 . e—(a+b)(T—t) _q
r— - ; pyy ,

(C.60)

2 2
(1 ,—au)2 O'_ _—buy2 O'_T] _ —au —bu
o(u) = M(0,u) + 55 (1= e ™) 4 T (L—e ™) 4 p2 (1= e ™) (1 —e™™) (C.61)
as we calibrate the model to market OIS zero-coupon boneégmher: = 0. Following
the narrative of the HW1F-K bond price derivation, we obtdia HW2F-K bond price:

Pliwar(t,T) = E9 [e*(”’f’ ftT““)d“} = [e* . ¢<“>d“} e [e%lﬂf) ffx(u>+y<u>du}

pM(0, 1) 1
= W exp [—5(1 + k) [Virw2r (0, T) — Viwar (0, t)]}
—b(T—t)

—a(T—t) l—e 1 .
y(t) + 5(1 + k) VHWQF(ta T) )

exp {(1 + k)l_efx(w + (L + ) ———
(C.62)
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which leads to the final result;

(1+k)
w} eXp[_<1 + k>Ba<t7 T)'T(tﬂ eXp[_<1 + k>Bb<t7 T>y<t)]

P§W2F(t7 T) = [POIS(O t)

(1+ k)

exXp |: (VHWQF(O, t) — VHWQF(O, T) -+ (1 —+ k)VHW2F(t7 T))

(C.63)

C.3.3 Option Pricing with HW2F-K

Similarly to the 1-factor case the k-scaled zero-bond oppiace can be computed analyti-

cally:

ZBPuwori(t, T, S, X) = Pyis(t,T) (ﬁgWQF(t; T,9)®(h) — X®(h — S(t, T, S)))

(C.64)
where
l p}-CIWZF(t;Tvs) XA: T
h — n _ X 4 (t7 ) S) (C65)
X(t,T,S) 2
S(t,T,8)? = (1+k)*2(t, T, S)? (C.66)
pI]fIWQF(t; T, S) = E@7 [PEWQF(Ta S)|~7:t] (C.67)

andX(¢,7,.5) is givenin C.53

Lemma. C.3.5.Pricing caplets under HW2F model requires the us@dtforward mea-

sure:

CpltHWQF(t, T, S, K) = Pojs(t, S)EQS |:(S — T) (L(T, S) — K)Jr

1 +
(P )
PHWQF(T7 S)

we can apply the same inverted-bond valuation methodolsgy @& .56) obtaining

g

= Pojs(t, S)EQS

]-"t] (C.68)

Cpltgwar(t, T, S, K) = Pors(t, S) [(e*M%V?@(d) ~ Xb(d— f/)ﬂ (C.69)
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where

d=(—p—X +V?)/V
X =(1+(S-T)K)
n= EQS[ID PIEWQF(Ta S)|Fi]

V=(1+k)?2>%(T,S)?

andX(¢,T,S) is defined i(C.53).

Lemma. C.3.6.To price an interest rate cap with strik€ and fixing date§’;, under HW2F
model, we only need to sum the caplet values:

N

C(Ip(t, {TQ, ...TN}, K) = Z CpltHWQF(t, 7}_1, T‘i, K) (C?O)

i=1

C.4 Building Hybrid Hull-White Model

The two-curve hybrid HCIR model can be built in two flavoursing HW1F or HW2F as
the base OIS stochastic driver. We derive pricing formutadbth of them.

C.4.1 HWI1F+CIR

We define the short-rate process) to be the driver of the instantaneous OIS rates, and the

processs; the driver of the LIBOR-OIS spread as:

r(t) = U, (t) (C.71)
s(t) = kW, (8) + Ws(t) (C.72)

whereV, is a short rate from standard HW1F modBfijo and Mercurio2009 andV, is

the CIR model short rat.1andk is the correlation-dependence level between the risk-free
OIS rate and the LIBOR-OIS spread. In this setup, the Ol rate normally distributed
and can be negative. Then, whilg(t), the CIR process, is positive, due to explicit in-
volvement of HW 1 F process, the spreadt) can get negative.

This additive model yields a couple of convenient resulisstRhe risk-free OIS zero-
coupon-bond prices are determined as in standard textbxekded Hull-White model
(Brigo and Mercurio2006

Pors(t,T) = Pyw(t,T) (C.73)
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Second, pricing of risky LIBOR-bond becomes:

Pu(t,T) = B2 |eap (— /t ) +8(u))du)]

= B9 |exp (— /tT(fol(u) + kWU (u) + \Ifg(u))du>

— (¢ _exp (- /tT(l + k)\Ifl(u)du) exp (- /tT \Ifg(u)du>

]—“t} (C.74)

]—}] (C.75)

= B9 |exp (— /tT(l + k)\lfl(u)du)

f} Poan(t,T) (C.76)

The left expectation becomes a modified version of the HUlit&/bond price as given in

(C.30.

Lemma. C.4.1.To price a LIBOR-based zero-coupon bond option with expignd ma-
turity .S in the hybrid-model (HCIR) setting under the forwapd -measure, we let

ZBCyorm(t, T, S, X) = EX [ wde (p (T, S) — X)* m} (C.77)
= Pors(t, T)E®" [(PL(T,S) — X)*|F]
= Pors(t, T)E®T [(Porr(T, S) Py p(T, S) — X)T|F]

t, TYEOT [PC,R(T ) (PEyrp(T, S) — X/ Porp(T, S)) \]-“tt]

|
&
~
»n
— —~ —~

Porn(T, SEY [Py (t, T) (Phy1r(T, S) = X/ Fern(T, 9)) || 1

= B9 [Poyn(T, 8)ZBChyp (t,T, S, X/ Perp(T, S)) | F]
(C.78)

the latter expectation must be evaluated numerically, simple to do as we have analytic
terminal distribution for CIR-state variabl&(t) under our chosen measure and, therefore,
the CIR-bond prices at timé&, Porr(T, S).

Lemma. C.4.2.Pricing caplets under HW1F-CIR (H1FCIR) model also regsijras in the

standard hull-white two-curve caplet price the useQof-forward measure (see Appendix
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C.2.3:

Cpltgipcir(t, T, S, K) = Pos(t, S)E%s {(s —T)(L(T,S) — K)*

7|
(FrsPrmEs ) + f]

1 1 *
— XP.(T,S
FPeorr(T, S) (Pﬁrww(Ta S) ( ))

= Ppys(t, S)EUs

= Pojs(t, S)EQS ft (C79)

with X = 1+ (S — T)K, we can apply the inverted-bond valuation methodology as in
(C.41)) obtaining

Cpltyirerr(t, T, S, K) = Pors(t, S)IEQS { (e—u+%\72q>(d) — X@(d — V)) J—}}

(C.80)

PCIR(Ta S)
where

d=(—p—X+V?)/V
X = P(T,S)(1+(S—T)K)
n= EQS[ID PngF(Ta S)|Fi]

V =X(t,T,5)+

This expectation must be evaluated numerically, by intaggaover analytically-

known distribution ofP; (T, S) under theQ*-forward measure.

Lemma. C.4.3.To price an interest rate cap with striké and fixing dateq’;, under HCIR

model, we only need to sum the caplet values:

N
Cap(t, {Ty, . T}, K) = > Cpltycin(t, Tiey, T, K) (C.81)

i=1

C.4.2 HW2F +CIR

In the three-factor setup, we have used the 2-factor Hulit¥\hodel and the CIR model.

This combination gives additional degrees of freedom tohft ¢aplets, especially some
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flexibility on the short end of the volatility curve. Our sptstays the same

r(t) = Uy (), (C.82)
s(t) = kT, (t) + Ua(t), (C.83)

but ¥, is a short rate from standard HW2F model aindis the CIR model short rate.
The zero-coupon bond price can be split into CIR-Bond andt#les 2-factor Hull-
White (1 + k) zero-coupon bond.

Pu(t,T) = Po(t,T) Pryyop(t, T), (C.84)
and the price for the latter bond is given .62

Lemma. C.4.4.Pricing caplets under HCIR model also requires, as in thexdtad hull-

white two-curve caplet pricéC.56), the use of)°-forward measure:

CpltHC[R(t, T, S, K) = Pojg(t, S)EQS [(S — T) (L(T, S) — K)+

d
<PC(T, S)P}.;WQF(T, s) X) + E]

1 1 *
PC(Tv S) <PI]-CIW2F(T7 S) - XPC(T’ S))

= Ppis(t, S)EDs

= Ppys(t, S)EDs

7| (c.85)

we can apply the same inverted-bond valuation methodolsgy (&.56) obtaining

1
P.(T.8)

Cpltycrr(t, T, S, K) = Pors(t, S)E®s { (€—M+%V2q)(d) — X®(d— f/))

7|
(C.86)
where
d=(—p—InX+V?)/V
X = PT,S)(1+ (S — T)K)
M= EQS[IH P§W2F<T7 S)|F]
V= (1+k)?*2(T,8)
andX(¢,T,S) is defined iC.53 and ®.

This expectation must be evaluated numerically, by intaggaover analytically-
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known distribution ofP.(T', S) under theQ*-forward measure.

Lemma. C.4.5.To price an interest rate cap with striké and fixing dateq’;, under HCIR

model, we only need to sum the caplet values:

N
Cap(t, {Ty, . T}, K) =Y Cpltycin(t, Tiey, T, K) (C.87)

=1
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Appendix D

Appendix: More Cap Pricing and
Calibration Results with HCIR

D.1 Scheme for HCIR Model Calibration

The HCIR model in a joint HW-CIR model, which assumes thattfl#OR rates are a sum
of OIS rate and tenor-dependent LIBOR-OIS spread. Usintather assumption, we price
LIBOR-bonds and LIBOR-caplets, and both are affected byHtb#-White and the CIR
model parameters.

If the LOIS-OIS correlation parametéras in @.2) is zero, then the LOIS spread is
fully independent of the OIS movements. In this case, the @tRlel is calibrated sepa-
rately to LOIS term-structure, and the HW parameters aefiid OIS term-structure and,
later, to LIBOR-cap volatilities.

On the other hand, it # 0, then the LOIS spread is dependent on OIS movements,
and therefore the optimal choice of CIR parameters:, ¢, ¢, is dependent on the HW
parameters;, a;, prw, as these influence the LIBOR-bond pricing formulag84). This
leads to a joint forward and cap present value calibratiablem, where we want to find

CIR and HW parameter set so that we minimise

N
min Z;(Fwd% T,o1,T;) — Fwd B, T,y T;,w)? v,
M
+ ) (Cap(t, S5, K;) — Cap™ (1, 8, Kiyw))? x wy (D.1)

=1

where S;’s are cap maturitiesy;, w; are weighting parameters to proportionally weight



errors in forward rates and caps. Thus, if we calibrate thtRH@odel to 6-month forwards
and 6-month caps, we have 10-parameter calibration, whgeldsia global solver. Note:

e The CIR, parameters for 1,3,12-month forward curves can be catiirafter we
obtain HW-volatility parameters, as 1,3,12-month LOISesygl parameters do not
affect the pricing of 6-month caps.

¢ In calibration, we minimise the present-value error of caffe have alternative cal-
ibration available to cap volatilities, but this requireg-t®-volatility conversion at
every HCIR cap evaluation, which is another root-findinglgpean. This calibration
method is very computationally expensive.

We have attempted multiple calibration methods to get a daddr the 10-parameter
model. Some global methods work well but are very slow, fetance the differential evo-
lution and basin-hopping algorithm (truncated newton foating with multiple random

restarts). In the end, we devised a good, fast calibratibaree for HCIR model:

1. Calibrate HW2F model with constant-basis to liquid 6-tidiorwards and caps,

2. Use the latter set of parameters as starting pgifior HW model in HCIR,

3. Calibrate CIR,; in HCIR to LOIS spreads, obtairy; g,

4. Run a single global-solver (e.g. basin-hopping) runceandz;r, obtaining solu-
tion w,

5. We note that this may not be the global optimum, but we fautalbe very success-

ful.

D.2 Auxiliary Tables and Figures

Some results were excluded from the main text to improveaigdity and flow of argu-

ments. We have included all the skipped results and tablgssmppendix.

D.2.1 ATM Cap Calibration Parameters, 22-Nov-2013
The obtained parameter set for HCIR calibration with 22-/26\13 data, using ATM 6-

month cap volatilities is given in the following table.
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Model Qg Oy ay oy PHW
H1F-CIR| 4.05% 0.96%
H2F-CIR | 45.07% 2.07% 12.3% 2.49% -99.6%%

Table D.1: Hull-White model parameters for OIS in the 1 arfd@eor Hybrid HW models.

Model PCIR Oc 0 k o
H1F-CIR: 1M | -2.1% 0.17% 8e-6 18% 0.13¢
H1F-CIR:3M | -3% 5e-5 le-7 6.85% 0.279
H1F-CIR: 6M | -1.9% 0.14% 1le-5 9.1% 0.41%
H1F-CIR: 12M| -1.2% 0.14% 1le-5 8.8% 0.5%
H2F-CIR: 1M | -4% 0.06% 1le-4 4.9% 0.13%
H2F-CIR:3M | -3.4% 0.3% 1le-4 6.1% 0.28%
H2F-CIR: 6M | -2.0% 0.4% 1e-4 9.4% 0.42%
H2F-CIR: 12M| -1.8% 0.35% 1le-4 8.0% 0.54%

oY O

Table D.2: CIR model parameters for LOIS spread in the 1 afat®r Hybrid HW models

In the following, we include a table of extrapolated voléitls comparison between the
HCIR model and displaced-diffusion approach. We note thafiD results were obtained
using simple constant parameters, e.g. LMM forward 95% (historically relevant value),
and the overall fit can be improved using many degrees of ér@ad the model as shown
by Andong(2013.

Tenor/ MAT | 3Y 5Y 7Y 12Y 20Y 30Y
M 61.1 674 734 786 786 73.0 66.3
3M 62.6 709 76.2 785 79.0 74.7 6178
6M 63.6 715 773 80.2 811 77.0 699
12M 674 746 80.0 828 84.0 79.7 718

Table D.3: Multi-curve ATM cap volatilities: Calibrated HR model extrapolations.

Tenor/ MAT | 3Y 5Y 7Y 12Y 20Y 30Y
M 41.8 595 703 779 793 768 711
3M 459 656 744 787 796 77.2 710
6M 58.0 735 79.0 816 80.7 76.6 70.0
12M 70.2 805 84.2 856 835 779 708

Table D.4: Multi-curve ATM cap volatilities: displacedfflision extrapolationsy = 0.95,
DD with this value is closer to HCIR surface.
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D.2.2 3% Cap Calibration Parameters, 22-Nov-2013

We show the calibrated HCIR model parameters when caldratias performed by min-
imising the mean squared errors of cap present values awdrdrates. As demonstrated
in TableD.5, the HW2F-CIR model has very different HW-parameters thmathe ATM
case. The HW 2-factor correlation parameigyy is very negative as in the previous case,
but because the mean reversion ratgs:, are not as different anymore - we no longer
observe the volatility hump at 5-year cap volatility. TheR&domponent parameters have
stayed similar: the HW-CIR correlation is negative and sendbr longer tenorsé, &, ¢,

within 1% difference from ATM values.

Model ay Oy ay oy PHW
H2F-CIR|[4.1% 21% 94% 3.3% -945%

Table D.5: Hull-White model parameters for OIS in the HW2R@odel.

Model PCIR Oc 0 k o
H2F-CIR: 1M | -3.8% 0.3% 1le-4% 54% 0.1¢
H2F-CIR:3M | -35% 0.1% 1e-4% 6.0% 0.3¢
H2F-CIR:6M | -25% 04% 1e-4% 84% 0.44¢

H2F-CIR: 12M| -26% 03% 1e-4% 7.0% 0.5¢

0
0
0
0

Table D.6: CIR model parameters for LOIS spread in the HW2R-@odel. The CIR-
correlation is negative to OIS rates and decreases witkasang tenor.
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D.2.3

4% caps including illiquid quotes, 22-Nov-2013

In the tables below, we give the resulting PV, normal and Bhealatilities from HCIR

model calibration to 4% caps and given illiquid quotes in th&t case. We have marked

the cap values which should be close to the illiquid caps. differences between the

model values for illiquid caps and input data are ratherdafgw 100’s of bp in some

cases. Calibration of 6-month 4% caps was also affectedeogttia data in the calibration

- resulting normal volatilities are 20-30bp larger than tharket data.

In this setup, the illiquid 3-month caps were repriced lothan the input data by up to

60bp. The illiquid 12-month caps were repriced higher thamket data even by 100-200

bp in present value terms.

T/IK

1% 15% 2% 2.25% 25% 3% 3.5%4% 5% 6% 8% 10%

1y 12 6 2 1 1 0 0 0 0 0 0 0
1.5Y| 32 19 10 7 5 2 1 0 0 0 0 0

2Y 60 38 23 18 13 8 4 2 0 0 0 0

3y | 140 97 66 54 44 28 18 11 4 1 0 0

4Y | 256 188 136 115 97 67 46 31 13 5 0 (

5Y | 404 309 232 200 172 125 90 63 30 13 2 D

6Y | 579 454 350 306 266 200 147 107 54 26 5 0

7Y | 774 617 485 428 376 288 217 161 85 42 8 1

8Y | 983 794 633 562 498 386 295 223 121 61 13 2

9y | 1201 980 790 706 628 493 381 291 161 84 18 3
10Y | 1424 1172 952 854 764 604 472 363 205 108 24 4
12Y | 1864 1551 1274 1150 1034 828 654 509 294 159 38 6
15Y | 2483 2084 1729 1567 1416 1145 913 718 423 234 58 |10
20Y | 3313 2795 2331 2118 1919 1559 1249 985 585 325 81 |15
25Y | 3965 3350 2797 2543 2305 1873 1501 1185 704 391 97 |17
30Y | 4495 3798 3170 2882 2611 2122 1699 1341 795 440 109 |19

Table D.7: Present value surface for 6-month caps
EUR for caps of notional#)000 and rounded to nearest integer.
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TK | 1% 15% 2% 225% 25% 3% 35% 4% 5% 6% 8% 1D0%
1y | 14 6 3 2 1 0 0 0 0 0 0 0
1.5Y| 33 19 10 7 5 2 1 0 0 0 0 0
2Y 60 37 22 17 13 7 3 2 0 0 0 0
3y | 136 93 62 50 41 26 16 10 3 1 0 0
4Y | 247 180 129 108 91 62 42 28 11 4 0 0
5 | 392 298 222 191 163 118 83 58 26 11 1 D
6Y | 565 440 338 295 256 191 140 100 49 22 3 0
7Y | 758 602 472 415 365 278 208 153 79 38 7 0
8y | 965 778 619 550 486 376 287 215 115 57 11 1
9y | 1184 965 777 693 617 484 374 284 157 81 17 2
10Y | 1407 1157 940 843 754 596 465 35801 106 23 3
12y | 1851 1539 1266 1142 1028 824 652 508 295 160 38 6
15Y | 2474 2078 1726 1567 1417 1148 918 724 430 239 60 11
20Y | 3313 2800 2340 2129 1931 1574 1265 1003 602 339 87 |16
25Y | 3976 3366 2817 2565 2329 1900 1530 1214 730 412 106 |20
30Y | 4515 3823 3200 2915 2646 2159 1738 1379 829 467 120 |23
Table D.8: Present value surface for 3-month caps. The HGRelnvalues are given in
EUR for caps of notional)000 and rounded to nearest integer.
TK| 1% 15% 2% 225% 25% 3% 35% 4% 5% 6% 8% 10%
2Y 50 33 21 16 12 7 4 2 0 0 0 0
3Y | 134 95 66 55 45 30 20 13 5 2 0 0
4Y | 254 191 140 119 101 72 51 35 17 8 1 0
5y | 408 315 240 208 180 133 97 70 36 18 4 D
6Y | 587 464 361 317 278 211 158 117 62 32 8 2
7Y | 785 630 499 442 390 301 229 173 95 50 13 3
8y | 996 810 649 578 514 401 309 236 132 71 18 |4
9y | 1216 997 807 723 645 509 396 304 173 94 24 |5
10Y | 1440 1189 970 871 781 620 486 377 217 119 31 7
12y | 1881 1568 1291 1166 1050 843 667 521 305 169 44 |9
15Y | 2496 2098 1741 1579 1427 1155 921 725 430 240 62 13
20Y | 3317 2799 2333 2120 1920 1558 1247 983 584 326 84 |17
25Y | 3960 3345 2789 2534 2295 1863 1490 1174 696 387 98 |19
30Y | 4480 3783 3152 2864 2592 2102 1679 1321 781 432 108 |21

Table D.9: Present value surface for 12-month caps. The H@Re values are given in
EUR for caps of notional#)000 and rounded to nearest integer.
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TK | 1% 15% 2% 225% 25% 3% 35% 4% 5% 6% 8% 10%
1y | 163 164 164 165 165 165 166 167 168 169 171 172
1.5Y| 158 159 159 159 159 160 160 161 162 163 165 167
2Y | 155 155 156 156 156 156 156 157 157 158 161 163
3Y | 147 148 148 148 148 148 148 148 148 148 150 152
4Y | 140 141 140 140 140 140 140 140 139 139 140 141
5Y | 134 134 134 134 134 133 133 133 132 132 132 132
6Y | 129 129 129 128 128 128 127 127 126 126 125 125
7Y | 124 124 124 123 123 123 122 122 121 120 119 118
8y | 120 120 119 119 119 118 118 117 116 115 114 113
9y | 116 116 115 115 115 114 114 113 112 111 110 109
10y | 113 113 112 112 112 111 110 110 109 107 106 105
12y | 107 107 106 106 106 105 104 104 103 102 100 P8
15Y | 100 100 100 99 99 98 98 97 96 95 93 91

20y | 91 91 91 91 91 90 90 89 88 87 85 8B

25Y | 8 85 85 85 84 84 84 83 82 81 79 7Y

30y | 80 80 80 80 80 79 79 79 78 77 75 738

Table D.10: Normal volatilities surface for 3-month capsheTHCIR model values are

given in basis points and rounded to the nearest integer.

TK | 1% 15% 2% 225% 25% 3% 35% 4% 5% 6% 8% 10%
1y | 166 169 171 172 173 174 176 177 179 180 181 180
15Y 161 163 165 165 166 167 169 170 173 175 179 180
2Y | 157 159 160 161 161 162 164 165 167 170 174 177
3Y | 149 150 151 151 152 152 153 154 156 158 163 166
4Y | 141 142 143 143 143 143 144 144 145 147 151 155
5Y | 134 135 135 135 135 135 136 136 136 137 140 143
6Y | 128 129 129 129 129 129 129 129 129 129 131 133
7Y | 122 123 123 123 123 123 123 123 122 122 123 124
8y |118 118 118 118 118 118 118 117 117 117 116 117
o9y | 113 114 114 114 114 113 113 113 112 112 111 111
10y | 110 110 110 110 110 110 109 109 108 107 106 106
12y | 103 104 104 104 104 103 103 102 101 101 99 98
15y | 96 97 97 97 97 9% 96 95 94 93 91 90
20y | 88 88 88 88 88 88 87 87 8 8 83 8
25y | 81 82 82 82 82 82 82 81 8 79 78 7b
30y | 76 77 77 77 7 77 77 77 76 75 73 71
Table D.11: Normal volatilities surface for 6-month capsheTHCIR model values are

given in basis points and rounded to the nearest integer.
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TK | 1% 15% 2% 225% 25% 3% 35% 4% 5% 6% 8% 10%
2Y | 161 164 167 169 171 174 177 180 185 189 192 192
3Y | 151 154 156 157 159 161 163 165 170 175 183 188
4Y | 141 144 146 147 148 150 151 153 156 161 169 176
5Y | 133 136 138 138 139 140 141 142 145 148 156 163
6Y | 126 129 130 131 131 132 133 133 135 138 144 151
7Y | 120 122 124 124 124 125 125 126 127 129 134 140
8y | 115 117 118 118 119 119 119 120 120 122 125 130
9y | 110 112 113 113 114 114 114 114 115 115 118 121
10Y | 106 108 109 109 109 110 110 110 110 110 111 114
12y | 99 101 102 102 102 102 102 102 102 102 102 103
15Y | 91 93 94 94 94 95 94 94 94 93 93 938

20Y | 83 84 85 85 86 86 86 86 85 85 84 8B

25Y | 76 78 79 79 79 79 80 79 79 79 18 T}

30Y | 71 73 74 74 74 75 75 75 75 74 73 TR

Table D.12: Normal volatilities surface for 12-month cag$he HCIR model values are
given in basis points and rounded to the nearest integer.

TK | 1% 15% 2% 225% 25% 3% 35% 4% 5% 6% 8% 10%
1y | 360 250 199 182 168 147 131 119 101 89 72 61
1.5Y| 399 248 192 174 160 138 122 111 94 82 67 57
2Y | 466 242 182 164 150 129 114 102 86 75 61 52
3Y 400 195 146 131 119 102 89 80 67 58 47 40
4y | 252 150 114 103 94 80 71 63 53 46 37 32
5Y | 184 121 94 85 78 67 59 53 45 39 32 2
6Y | 148 102 81 73 67 58 52 47 40 34 28 24
7Y | 125 89 71 65 60 52 47 42 36 31 25 2P
8y | 110 80 65 59 55 48 43 39 33 29 23 20
9y | 99 73 59 55 51 44 40 36 31 27 22 18
10Y | 91 68 55 51 a7 42 37 34 29 25 20 1y
12Y | 79 60 50 46 43 38 34 31 26 23 19 1b
15Y | 69 53 44 41 38 34 31 28 24 21 17 1b
20Y | 61 48 40 37 35 31 28 25 22 19 16 14
25Y | 58 45 37 35 33 29 26 24 21 18 15 1B
30Y | 55 43 36 33 31 28 25 23 20 18 15 1P

Table D.13: Black volatilities surface for 3-month capseTICIR model values are given
in basis points and rounded to the nearest integer.
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TK | 1% 15% 2% 2.25% 25% 3% 35% 4% 5% 6% 8%
1y | 288 215 177 164 153 136 123 113 97 86 70

1.5Y| 295 210 170 157 145 128 115 105 91 81 67
2Y | 302 204 162 149 137 120 108 98 85 75 62
3Y | 259 170 134 122 112 98 87 79 67 59 49
4Y 199 136 108 98 90 78 70 63 54 47 39
5Y | 158 112 90 82 76 66 59 53 45 40 33
6Y | 131 96 77 71 65 57 51 46 40 35 29
7Y | 113 84 68 63 58 51 46 42 35 31 26
8y |100 76 62 57 53 47 42 38 32 29 23
9y | 90 69 57 52 49 43 39 35 30 26 22
10Y | 83 64 53 49 46 40 36 33 28 25 20
12y | 73 57 47 44 41 36 33 30 26 23 18
15y | 64 50 42 39 37 33 30 27 23 20 17
20Y | 57 45 38 35 33 30 27 25 21 19 15
25Y | 53 42 36 33 31 28 25 23 20 18 15
30Y | 51 40 34 32 30 27 24 22 19 17 14

P RPRPERPERPEPEPNNNNNDNDOWN/ 00202
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Table D.14: Black volatilities surface for 6-month capseTICIR model values are given
in basis points and rounded to the nearest integer.

TK | 1% 15% 2% 2.25% 25% 3% 35% 4% 5% 6% 8% 10%
2Y | 236 177 147 137 129 116 106 98 87 78 65 55
3Y | 201 149 124 114 107 95 86 80 70 63 54 48
4Y | 163 122 101 94 87 77 70 64 56 50 43 39
5Y | 134 103 85 79 73 65 59 54 47 42 36 33
6Y | 114 88 74 68 64 56 51 47 41 36 31 2B
7Y 1100 78 65 61 57 50 45 42 36 32 28 2p
8Y | 89 70 59 55 51 46 41 38 33 29 25 2P
9y | 81 64 54 50 47 42 38 35 30 27 23 20
10y | 74 60 50 a7 4 39 35 33 28 25 21 19
12Y | 65 53 45 42 39 3 32 29 25 22 19 1b
15Y | 57 47 40 37 35 31 29 26 23 20 17 1b
20Y | 51 42 36 33 31 28 26 24 21 18 15 18
25Y | 48 39 33 31 29 27 24 22 20 17 15 18
30Y | 46 37 32 30 28 25 23 21 19 17 14 1P

Table D.15: Black volatilities surface for 12-month capee HCIR model values are given
in basis pointdbp = 1e — 4 and rounded to the nearest integer.

D.2.4 ATM Cap Calibration, 30-Apr-2015
In the negative rates calibration case for the 30-Apr-2Cdtaskt, after calibrating to ATM

6-month caps the H2F-CIR model parameters are as follows:
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Gy Oy Ay Oy PHW
HW2F 34% 11% 67.8% 20% -999%
PCIR Oc 0 k Co
H2F-CIR: 1M | 3.1% 05% le-4 251% 0.1%
H2F-CIR:3M | 1.2% 0.1% 1le-4 4.7 % 0.2 %
H2F-CIR:6M | 0.8% 0.3% 1le-4 5.4% 0.3 %
H2F-CIR: 12M | -1.5% 0.3% 1le-4 4.4% 0.4 %

Table D.16: Calibrated multi-curve HCIR model paramet®&ata from 30-Apr-2015.

In the following tables we show the 4-curve cap volatilityfases from calibrated

HCIR model:

T(Y)/K(%) | -025 05 15 1 2 3 4 5
1 57 42 41 40 52 80 107 134
1.5 45 34 30 31 41 62 84 10b

2 39 31 29 29 34 52 69 87

3 37 35 38 39 41 42 54 68§

4 40 41 44 47 49 51 52 57

5 44 46 49 52 54 56 58 59

6 47 50 53 56 58 61 62 63

7 51 53 57 59 61 64 65 66

8 54 56 59 61 63 66 67 6§

9 56 58 61 63 65 67 69 70

10 58 60 62 64 66 68 70 7(

12 61 62 65 66 68 70 71 72

15 64 65 67 68 69 71 71 72

20 66 67 68 69 70 71 71 71

25 67 67 68 68 69 70 70 70

30 66 66 67 67 68 68 68 6§

Table D.17: HCIR normal 6-month cap volatilities surfacatadfrom 30-Apr-2015.
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T(Y)K(%) [-025 05 15 1 2 3 4 5
1 50 55 52 50 51 74 98 12
1.5 43 44 42 40 40 58 77 97
2 40 41 38 37 37 50 67 84
3 43 43 43 44 45 46 54 6§
4 46 47 48 50 52 53 55 5§
5 47 50 52 55 56 58 60 6(
6 51 54 56 58 60 62 64 64
7 54 57 59 61 63 65 66 67
8 57 60 62 64 65 67 68 69
9 61 63 65 66 68 69 70 71
10 63 64 66 68 69 70 71 72
12 66 67 68 69 70 72 72 73
15 68 69 70 71 72 72 73 73
20 69 69 70 71 71 72 72 72
25 69 69 70 70 71 71 71 71
30 68 68 69 69 69 69 69 69

Table D.18: HCIR normal 1-month cap volatilities surfacatadfrom 30-Apr-2015.

T(Y)K(%) [-025 05 15 1 2 3 4 5
1 61 50 46 44 50 76 101 126
1.5 49 41 38 36 40 60 80 100
2 44 38 35 34 35 51 68 86
3 42 39 40 42 43 44 53 67
4 44 44 46 48 50 52 53 57
5 47 48 51 53 55 57 59 6C
6 51 52 55 57 59 61 63 64
7 54 55 58 60 62 64 66 67
8 57 58 61 63 64 66 68 66
9 50 60 62 64 66 68 69 70
10 60 62 64 66 67 69 70 71
12 63 64 66 67 68 70 71 71
15 65 66 67 69 70 71 71 72
20 67 67 68 69 70 70 71 71
25 67 67 68 69 69 69 70 6C
30 66 67 67 68 68 68 68 66

Table D.19: HCIR normal 3-month cap volatilities surfacatadfrom 30-Apr-2015.
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T(Y)K(%) [-025 05 15 1 2 3 4 5
2 37 20 19 25 35 54 73 OP
3 33 31 34 35 35 41 56 71
4 36 38 42 45 47 48 49 5¥
5 39 42 47 50 53 55 57 58
6 43 47 51 54 57 60 61 63
7 47 50 54 57 60 63 64 66
8 50 53 57 60 62 65 66 68
9 52 55 58 61 63 66 68 69
10 54 56 60 62 64 67 69 70
12 58 60 63 65 66 69 70 71
15 62 63 65 67 68 70 71 72
20 64 65 66 68 68 70 70 71
25 65 65 66 67 68 69 69 69
30 64 64 65 66 67 67 67 67

Table D.20: HCIR normal 12-month cap volatilities surfadata from 30-Apr-2015.
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Appendix E

Appendix: More CVA Results with
HCIR

In this appendix, we include additional results for CVA asseent with HCIR model. We
also compare the impact of HCIR and benchmark models on CYAHBOR-OIS swap
products as well as interest rate caps using multiple setsabfand synthetic market data.
We conclude that for these mostly one-sided payout prodbet€VA values are affected

very little after including the stochastic LOIS spread ie gimulation.

E.1 CVA with HCIR Model Calibration to 4% Caps

Model Qg Ox ay oy PHW
HWI1F | 7.92% 1.29% - - -
HW2F | 56% 23% 12.9% 3.7% -94%
HCIR | 5.6% 2.3% 12.9% 3.8% -94%

PHCIR o 0 K co
CIR | —1.8% 0.12% 00082% 9.2% 0.416%

Table E.1: HW1F,HW2F,HCIR model parameters, when caldatdad 4% cap data from
22-Nov-2013.
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Figure E.1. Market cap present-value (left) and volatilitght) fits using HCIR and HW2F
models.

E.2 CVA for LIBOR-OIS Swap

In another case, we wanted to visualise the model impact ®C¥A for a pure spread-
product like a OIS-to-LIBOR swap. As in the HW2F model, thelBQpread is constant
and in HCIR it is stochastic, this scenario should show aatiledifference between the
two models. We shall consider a 30-year, 6-month LIBOR vsdstim OIS swap:

N
LOISSwap(t, T, K) = N-Y_ P(t, T;)(LIBORFwdey (T, T;) OIS Fwdey (Ti 1, T;) — K)

i=1

(E.1)

E.2.1 LOIS Swap with Market Curve Data

The second set of CVA experiments with high-basis scenavere accomplished with a
different product, the LIBOR-OIS swap, where both swap Egsfloating, yet one is based
on stochastic OIS 6-month forward rates, the other on LIBORvérd rates. First, we
have performed the simulations with the HCIR and HW-modal#ated to real market
forwards and cap volatilities. In this setup, the LIBOR-Giffread is small with low-
volatility as shown in Tabl&.1 This results in very small LOIS swap volatility in time, but
the volatility of payouts is non-zero in all cases: HCIR, HWWBHW1F, as with changing

state variable:(t) even in constant basis HW-models, the cashflows do vary/ginegause
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the difference between 6-month LIBOR-bond price and OlS8ebarice:

Pont(t,T) = A(t, T) - e~ smOBET) =20 B (6T)—y(0)B, (1) (E.2)

Pors(t,T) = A(t,T) - e—@ors()BT) o—2(t) Ba (8,T)—y(t) By (t,T) (E.3)

varies depending on the shared state variabl€sy(t), whereax (t) are the deterministic
term-structure components (different for 6-month and Qi8ds). The latter is visualized
in FigureE.2

Then, the CVA/DVA values for this case are small and closathether (around 1bp

adjustment on swap strike.):

Model | CVA  DVA Swap MtM (t=0)
HCIR 0 71 -12
HW2F| O 77 0
HW1F| O 77 0

Table E.2: CVA, DVA values in EUR for and ATM LOIS swap with fideate 0f0.12847%,
5FEU R 1bp adjustment on fixed leg
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Figure E.2: Means and variances of the simulated LIBOR-@i&sunder HCIR and HW-
models. On the X-axis we have the valuation date
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Figure E.3: CVA, DVA profiles (left) of HCIR and HW2F modelsrfalBOR-OIS swap,
and CVA, DVA figures with exposurg — 95% quantiles (right). 22-Nov-2013 market data

for forwards and caps.
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E.2.2 LOIS Swap with Synthetic Flat-Basis Curve Data
In the second test, we have calibrated the models for syatlilet 2% basis spread (over
OIS) forward curve and same volatility data.

In this flat-basis scenario, the spread is high but prat¢yicahstant as shown in Table
5.4, hence the LIBOR-OIS spread does not change much at all,ieuv@@IR model, and
all the variation in simulated swap values comes from HW rhéateOIS.

Then, the CVA/DVA values for this case are small and with haehy differences

between the models.

Model | CVA  DVA Swap MtM (t=0)
HCIR 6 6 0.5
HW2F| 5 5 0

HWI1F| 5 5 0

Table E.3: CVA, DVA values for and ATM LOIS swap with fixed rai&2%

Means-LOIS

f | | 3 —  HW2F||
800 e T T —  HWIF|]

Figure E.4: Means and variances of the simulated LIBOR-@i&sunder HCIR and HW-
models. On the X-axis we have the valuation date
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Figure E.5: CVA and DVA profiles (left) of HCIR and HW2F modébs LIBOR-OIS swap,
and CVA/DVA figures with exposure — 95% quantiles (right). Synthetic market data: flat
basis spread.

E.2.3 LOIS Swap with synthetic Increasing-Basis Curve Data

In the third case of increasing basis, we calibrated the 8ddeOIS curve and synthetic
forward curve where the LOIS basis spread increases 6foro 2% over a 30-year period.
The calibrated CIR model is also a nearly deterministichwotv initial short rate and high
long-term rate). This led to a reasonably small variance of the simulated3_§Vap, and
as the mean MtM across time was positive, the CVA values aedme across all models,

as DVA are null.

Model | CVA DVA Swap MtM (t=0)
HCIR | 3255 O 5
HW2F | 326 0 0
HW1F | 326 0 0

Table E.4: CVA, DVA values for and ATM LOIS swap with fixed rai€0.8596%
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Figure E.6: Means and variances of the simulated LIBOR-@i&sunder HCIR and HW-
models. On the X-axis we have the valuation date
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Figure E.7: CVA and DVA profiles (left) of HCIR and HW2F moddts LIBOR-OIS
swap, and CVA/DVA figures with exposufe— 95% quantiles (right). Synthetic market
data: increasing basis spread.
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E.2.4 LOIS Swap with synthetic High Volatility Basis Curve Data

In the case of high-volatility spread, the HCIR model gaimgmiicant swap volatility in
comparison to the HW-models, as shown in FigHr8 Nevertheless, as we are assessing
CVA of an ATM-swap, throughout the simulation period, theapWMtM stays mostly neg-
ative, also as the spread is volatile, but not very large g58dong-term), the CVA/DVA

values are very close for HCIR and HW models as shown in tHe E&b.

Model | CVA DVA Swap MtM (t=0)
HCIR | 0 84 0
HW2F| 0 83 0
HW1F| 0 83 0

Table E.5: CVA, DVA values for and ATM LOIS swap with fixed raa€0.61745%
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Figure E.8: Means and variances of the simulated LIBOR-®i&sunder HCIR and HW-
models. On the X-axis we have the valuation date

The main differences in LOIS swap exposures between the HOIRHW models

can only be observed in tH&:95% quantile levels - the HCIR model has wider exposure
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guantiles as demonstrated in Fig®.
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Figure E.9: CVA and DVA profiles (left) of HCIR and HW2F moddts LIBOR-OIS
swap, and CVA/DVA figures with exposufe— 95% quantiles (right). Synthetic market
data: curved, high-volatility basis spread.

E.3 CVA for Caps

In this section, we seek to compare the model effects on C\ap$. The issue with CVA
of caps is that because caps are options, their value at anyipdime will stay positive

and will only contribute to CVA or DVA figures. On top, becaube simulation and cap
pricing is done via risk-neutral measures, the expectetip®sxposure (EPE) for a single

cap at timéer;, will be exactly:
EPE(T;) = D(0,T;)Cap(Ti; -)SP(Ti-1, Ti) (E.4)

which also says that if we calibrate the two HCIR, HW2F modelhe same caps, we will
obtain the same EPE figures for them. The main difference iA/DVA for caps can be
observed via the variance of caps over time, as welbésquantile of the exposure profile

in FigureE.10

Model | CVA DVA
HCIR | 2585 O
HW2F | 2595 O
HWI1F | 2582 O

Table E.6: CVA, DVA values in EUR for 30-year 0% 6-month ca@s€ with market data
from 22 Nov 2013.
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Figure E.10: CVA, DVA and quantile profiles for EUR for 30-y&®6 6-month cap. Case
with market data from 22 Nov 2013.

Model | CVA DVA
HCIR | 2940 O
HW2F | 2935 O
HW1F| 2912 O

Table E.7: CVA, DVA values in EUR for 30-year 0% 6-month capas€ with synthetic
high-vol basis data.
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Figure E.11: CVA, DVA and quantile profiles for EUR for 30-y&®6 6-month cap. Case
with synthetic high-vol basis data.
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E.4 Impact of Local Minima in HW2F and HCIR calibra-

tion

We have mentioned before that in the 10-parameter caltrgtioblem, there is a risk of
calibrating the HCIR model and obtaining only a locally omi solution. This section
serves as an extensive example of such a situation which vesdmountered. The follow-
ing results can be compared to the main result in se&iadn

We have calibrated the three models to 6-motithEUR caps for the 22-Nov-2013
dataset. The overall cap and forward curve fits are showngarEE.13 The HW2F and
HCIR models offer the best fit for caps, the HW1F model undsrtfie short-term caps.
We note that the very-short-term cap volatilities are noy veell matched, as we calibrated

to PV and these OTM caps carry very little present value iregan

6M Forward Comparison ATM Swap Rates

Market-Two Curve
HW2F-CIR

HW2F

HW1F
Market-HCIR

HW2F-CIR [
HW2F
Market
0OIS-6M

L L L T -50 L L L L L
0 10 20 30 40 50 0 5 10 15 20 25 30

Figure E.12: Calibration to 6-month forward curves on 2242013. Demonstration of
ATM swap rates for all three models: HW1F, HW2F and HCIR.
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Figure E.13: Calibration to 4% 6-month caps on 22-Nov-2®&sults for market caps for
HCIR, HW2F, HW1F models.

We show the calibrated parameters for all three models ifialf@ving table. While

both HW2F and HCIR models have a very negative correlatitwdsen the 2-factors, their

mean-reversion and volatility levels remain distinct. Hi&1F model has similar levels

of volatility and mean reversion as the HW2F model. In allth@dels we have used OIS-

discounting approach for payouts. The same OIS-discogintas used in the calibration

to caps phase.

Model Qg Oy ay oy p dCurve
HW2F-CIR| 25.69% 4.48% 15.11% 3.74% -91.2% OI%
HW2F 5.62% 2.34% 12.9% 3.74% -943% O] )
HW1F 7.92% 1.29% OIS
CIR PCIR—HW 2 0 k Co
CIR - 6M -1.5% 0.1% 0005% 9.5% 0.4%

Using the latter sets of parameters, we have estimated tihe/ WA values for a

30-year 6-month fixed-for-floating swap with ATRI6839% strike. The respective CVA /

DVA values using uniform hazard ra€t)

- 307

— L for all models are:

Model | CVA  DVA Swap MtM (t=0)
HCIR | 549 284 -6
HW2F | 623 367 0
HW1F | 642 377 0

Table E.8: CVA, DVA and swap MtM values for and ATM swap witheftkrate o22.6839%

We can compare these values with the Tdhble which shows that the differences in
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CVA resulting from a local minima in cap calibration can béstantial (12bp adjustment

on a fixed leg here for HCIR model).

E.4.1 CVA Profiles

Our investigation goes deeper into comparing the full eypogrofiles for this swap under
the different models. In Figurgé.14 we plot for all 4-models:

e CVA Profile of IRS (otherwise the mean discounted positivecsxire)

Pors(0,)E?T [(NPV(t))*]

e DVA Profile of IRS (otherwise the mean discounted negatiyeosxre)
Pors(0,)ECT [(NPV (t))~] dt

In the CVA profiles:

e The HW1F model yields the largest CVA value, followed by HW2edel. The
difference is not large - the short-term volatility of the H® model is larger, while
in HW2F this is dampened by the negative correlation effect.

e The HCIR model yields a lower CVA and DVA values than the pui® khodels.

e THE HCIR-0 model, which has CIR component set to zero, resallower CVA on
the short end and higher DVA, as our simulated forwards anestightly smaller.

We foresee the following reasons for the apparent differdmetween HCIR model and
HW2F model:

e The added CIR component has very 10\/% volatility and a negative correlation to
OIS rates. This reduces overall simulated forward and sweadility

e The HW parameters in HCIR model yield, overall, lower vdisgtiof the forward
rates. This is a result of HCIR calibration to the same masketonth caps.

In Figure E.15we show the aged MtM of the swap under consideration in adethr
(four) models. We can observe that while the MtM in main threslels goes one-to-one
until 5-year gap, a gap in value exists between 10-20 yeangheits size goes from to
20bp, and is caused by the imperfect alignment of the forwatesran the HCIR model.
The swap MtM of the HCIR-0 model shows the OIS-only swap MtMealepment over

time, and the difference up to the HCIR model MtM is our spresaatlel component.
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Figure E.14: CVA and DVA for 2.6839% (ATM) IRS with uniform Gult. Results for all
four tested models (HCIR, HCIRO, HW1F, HW2F)

800

IRS MtM Aging

— HCIR

600

400

200

-200

400 | | | | |
0 5 10 15 20 25 30

Figure E.15: Aging of the ATM swap within the four IR models.
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E.4.2 Non-ATM Swaps
To give more insight into the behaviour of the four modelsdatap CVA, we have per-
formed equivalent experiments with OTNI%) and ITM (4%) swaps below. We note, that:
e In OTM swap cased%) the CVA & DVA is smallest for HCIR model.
HCIR model reduces CVA by 60bp, DVA by 65pb, but the MtM is atsoaller by
12bp. 1F and 2F HW model values are within 10bp.
We show the results in Figuré&s16 E.17
e In ITM swap case(%) HCIR model reduces CVA by 15bp and DVA by 20bp when
compared to HW2F. The swap MtM differs between HCIR and HW2idets by
12bp. This result is rather intuitive, as in this case, westamall payouts depending
on the simulated forward rates, as our swap is in the moneyanget paid a large
fixed rate.
We show the results in Figuré&s18 E.19

Model | CVA DVA MtM
HCIR | 129.6 1010 -2801
HCIR-0| 129.1 1049 -3061
HW2F | 189 1074 -2789
HW1F | 196 1085 -2789

Table E.9: CVA, DVA and swap MtM values for and OTM swap withefikrate oft%
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IRS CVA

Figure E.16: CVA and DVA for 4% IRS with uniform default. Résufor all three tested
models (HCIR, HW1F, HW2F)
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Figure E.17: CVA and DVA for 4% IRS with uniform default. Réisufor all three tested
models (HCIR, HW1F, HW2F)

Model | CVA DVA MtM
HCIR | 2565 11 5676
HCIR-0 | 2526 12 5416
HW2F | 2580 31 5688
HWI1F | 2572 25 5688

Table E.10: CVA, DVA and swap MtM values for and ITM swap witkdi rate 000%
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Figure E.18: CVA and DVA for 0% IRS with uniform default. Réisufor all three tested
models (HCIR, HW1F, HW2F)
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Figure E.19: CVA and DVA for 0% IRS with uniform default. Réisufor all three tested
models (HCIR, HW1F, HW2F)

E.4.3 CVA for Multi-Curve Swaps

In the following, we extend our experiments to multi-curwags. Our setup contains CVA
valuation in 3 different cases, which can be compared to thie text result irb.3.1

e a 30-year 1-month EUR swap, strike = 2.49%

e a 30-year 3-month EUR swap, strike = 2.59%

e a 30-year 12-month EUR swap, strike = 2.83%
In each of the cases, we have calibrated the HCIR model tealigrield curves to repro-
duce ther—month forward rates. The HW2F parameters remain the sanmef@zbas they

were calibrated to 6-month EUR caps.

Tenor P o 0 k Co
IM | -3.14% 0.115% 1.17e-5 5.67% 0.11%
3M | -3.64% 0.10% 1.14e-5 4.93% 0.27%
6M | -1.65% 0.15% 1.37e-5 9.15% 0.41%
12M | -25% 0.35% 017% 7.9% 0.54%

Then, we estimate CVA and compare the two models:
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1. HCIR model, wherer,, 0y, a,, a,, p Were calibrated to 6-month caps, and CIR pa-
rameters,, o, 0, k, ¢y to relevant--month basis-spread curves.
2. HW2F/1F model, where, 0,, a,,a,, p were calibrated to 6-month caps and the

term-structuré(¢) is changed depending e-month forward curve.

Tenor| ATM(%) | HCIR:CVA HW2F:.CVA HW1F:CVA | HCIR:DVA HW2F:DVA HW1F:DVA
1M 2.49% 611 697 724 269 345 364
3M 2.59% 579 664 687 272 357 372
6M 2.68% 549 623 642 284 367 377
12M | 2.83% 485 566 573 283 375 373

Note for the swaps below,ldp change in the fixed rate, yield&€£UR change in CVA
value. Hence the CVA adjustment on the fixed leg is of the cofidi00bp. While the basis
spreads increase when going from 1-month swap to 12-mordbp,stive overall floating
leg volatility decreases and results in decreasing CVA (@iyp2on fixed leg) and slightly
increased DVA (by 3bp on fixed leg) for HCIR model.

1M IRS CVA

Figure E.20: CVA and DVA for 30-year ATM 1-month swap. Restutir all three models
(HCIR, HW1F, HW2F)
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3M IRS CVA

Figure E.21: CVA and DVA for 30-year ATM 3-month swap. Resttir all three models
(HCIR, HW1F, HW2F)
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Figure E.22: CVA and DVA for 30-year ATM 6-month swap. Restutir all three models
(HCIR, HW1F, HW2F)
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Figure E.23: CVA and DVA for 30-year ATM 12-month swap. Restibr all three models
(HCIR, HW1F, HW2F)
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