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Abstract 
 
 
The ability to efficiently produce new viral progeny is an essential process in the viral life cycle. 

Virus replication is a complex process involving viral proteins, interactions within the viral 

genome and assistance from host proteins. Identification of replication determinants of 

important human and animal pathogens should facilitate finding new approaches for efficient 

disease control. The principal aim of this thesis is to characterise determinants involved in the 

replication of classical swine fever virus (CSFV). Classical swine fever is a highly contagious 

virus disease of domestic pigs and wild boar with great socio-economic importance for countries, 

like Denmark, that have a significant trade in agricultural production. CSFV has, like other 

RNA viruses, a high mutation rate allowing the virus to adapt to changes in selection pressure. 

Hence obtaining a more thorough knowledge of sequence variation during virus replication is 

crucial for the design of effective vaccines and for diagnostic purposes.  

 

This thesis is comprised of four parts: An overview consisting of a general introduction (part 1) 

and a discussion (part 4) which provides a review of CSFV biology with an emphasis on the 

viral life cycle and structural RNA elements important for virus replication. This establishes a 

theoretical background and provides perspectives for the work performed during this Ph.D., 

which is outlined in part 2 that summarises the project aims and findings. These findings are 

described in-depth in part 3 comprising the three manuscripts included in the thesis.  

 

Manuscript 1 has focused on adaptations that occurred in the CSFV genome following 

introduction of mutations into the internal ribosome entry site (IRES) and after serial passaging 

in cell culture and when tested in vivo. Sequence adaptations occurred in the coding regions for 

NS2 and NS5B that restored the coding sequence to that of the parental field strain. When 

rescued viruses, containing mutant IRES elements, were introduced into pigs no induction of 

clinical disease could be observed and only limited levels of viral RNA were detected. In 

contrast, inoculation with the parental virus caused similar clinical symptoms as that observed 

with the parental field strain. Analysing the adaptation of the viruses throughout the entire viral 

genome during virus replication allowed a more comprehensive understanding of the virus 

properties beyond what can be explained by knowing just the consensus sequence.  
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Manuscript 2 examines replication determinants by analysing a sequence motif in the coding 

region of NS5B which has the possibility to form long-range RNA-RNA interactions. When 

synonymous mutations were introduced into this motif in a CSFV replicon (a self-replicating 

but non-infectious genome) reduced RNA replication was observed compared to a wild type 

replicon. However, this effect was not observed in the context of the infectious virus. 

Interestingly, an adaptive silent mutation in a conserved part of the structural CSFV protein E1 

occurred upon virus passaging in cell culture. Knowledge of these sequence variations and 

putative long-range interactions will provide valuable insights into mechanisms underlying virus 

translation and replication. 

 

In manuscript 3, a selection marker has been inserted into a CSFV-based replicon making it 

suitable for screening of antiviral drugs that block virus translation or RNA replication. The 

neomycin phosphotransferase coding sequence was chosen as a selection marker which confers 

resistance to neomycin. The neomycin-selectable replicon was demonstrated to be functional 

and designed with the aim of facilitating the maintenance of replicons by selection within 

mammalian cells. This might prove to be useful for the maintenance and expression of specific 

viral antigens in an efficient manner in order to produce more effective and safer prototype 

vaccine candidates. 
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Resumé (Danish summary) 
 
En vigtig proces i den virale livscyklus er evnen til effektivt at producere nye virale afkom. Virus-

replikation er en kompleks proces, der involverer virale proteiner, interaktioner i det virale 

genom og samspil med værtsproteiner. Identifikation af afgørende faktorer for genom-

replikationen af vigtige humane og animalske patogener vil lette bestræbelserne på, at finde nye 

metoder til effektiv sygdomsbekæmpelse. Hovedformålet med denne afhandling er at 

karakterisere vigtige faktorer involveret i replikationen af klassisk svinepestvirus (CSFV). 

Klassisk svinepest er en særdeles smitsom virussygdom, der rammer tamsvin og vildsvin, og den 

har en stor samfundsøkonomisk betydning for lande, som Danmark, der har en væsentlig handel 

indenfor landbrugsproduktionen. CSFV har, ligesom andre RNA-virus, en høj mutationsrate, 

hvilket tillader virusset at tilpasse sig ændringer i selektionstryk. Derfor vil et mere indgående 

kendskab til sekvensvariationen, samt mekanismerne under virus-replikationen være afgørende 

for udformningen af effektive vacciner og til diagnostiske formål. 

 

Denne afhandling består af fire dele: En oversigt bestående af en generel introduktion (del 1) og 

en diskussion (del 4), der beskriver biologien af CSFV med fokus på den virale livscyklus samt 

strukturelle RNA elementer, som er vigtige for virus-replikationen. Dette giver et teoretisk 

grundlag og en perspektivering til arbejdet udført i løbet af denne ph.d., som er skitseret i del 2, 

der opsummerer ph.d.-projektets mål og resultater. Disse resultater er beskrevet til bunds i del 

3 indeholdende de tre manuskripter, der indgår i afhandlingen. 

 

Manuskript 1 fokuserer på tilpasninger, der observeres i CSFV-genomet efter at mutationer er 

introduceret i det interne ribosom indgangssted (IRES), samt efter gentagne passager i 

cellekultur og ved in vivo forsøg. Tilpasninger i sekvensen ses i de kodende regioner for NS2 og 

NS5B, som gendanner den kodende sekvens til den som findes i den oprindelige virusstamme. 

Ved podning af grise, med virus indeholdende muterede IRES-elementer, blev der ikke 

observeret kliniske symptomer og der blev kun påvist begrænsede mængder af viralt RNA. I 

modsætning hertil forårsagede podning med vildtypevirus kliniske symptomer, som også 

observeres i den oprindelige virusstamme. Ved at undersøge tilpasningen af virus i hele dets 
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genom under virus-replikationen kan det give en mere omfattende forståelse af de 

virusegenskaber, der kan forklares ved mere end blot at kende konsensussekvensen. 

 

I manuskript 2 undersøges faktorer afgørende for virus-replikationen ved at analysere et 

sekvensmotiv i den kodende region af NS5B, som har mulighed for at danne langtrækkende 

RNA-RNA interaktioner. Et CSFV replikon (et autonomt replikerende, men ikke-infektiøst 

genom) blev muteret med ikke-kodende mutationer i det ovennævnte motiv, hvilket førte til 

nedsat RNA-replikation sammenlignet med et vildtype-replikon. Denne effekt blev dog ikke 

observeret i infektiøse virus. Interessant nok opstod en ikke-kodende mutation i en bevaret del 

af det strukturelle CSFV-protein E1 efter passage af virus i cellekultur. Kendskab til disse 

sekvensvariationer og formodede langtrækkende interaktioner vil give indsigtsfuld viden i 

mekanismerne bag virus-translation og -replikation. 

 

I manuskript 3 blev en selektionsmarkør sat ind i et CSFV-baseret replikon, hvilket gør det 

velegnet til screening af antivirale lægemidler, som blokerer virus-translation eller RNA-

replikation. Den kodende sekvens for neomycin phosphotransferase blev valgt som en 

selektionsmarkør, hvilket giver resistens over for neomycin. Neomycin-selekterbare replikoner 

blev designet med henblik på at gøre det nemmere at opretholde replikoner ved selektion i 

cellekultur og resultaterne viser, at de er fuldt funktionelle og udtrykker virusprotein. Dette kan 

vise sig at være nyttigt til effektivt at opretholde og udtrykke specifikke virale antigener med 

henblik på at producere mere effektive og sikre prototype vaccinekandidater. 
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Chapter 1 
Classical swine fever virus 

 

History and classification 

Classical swine fever (CSF), formerly known as hog cholera, is a highly contagious and 

economically significant viral disease affecting domestic pigs and wild boar. Classical swine fever 

virus (CSFV) is a member of the Pestivirus genus, which belongs to the Flaviviridae family (Figure 

1). Other members of the Pestivirus genus are bovine viral diarrhoea virus (BVDV) type 1 and 2 

and border disease virus (BDV) (Becher et al., 1999). While infection by CSFV is restricted to 

pigs, the other Pestivirus species have been found to infect a wide range of animals, i.e. bison, 

reindeer, giraffe and pronghorn antelope (Avalos-Ramirez et al., 2001; Becher et al., 1999; Vilcek 

et al., 2005). Recently, several other porcine pestiviruses have been described, i.e. Bungawannah 

virus and atypical porcine pestivirus (Beer et al., 2016; Hause et al., 2015; Kirkland et al., 2007; 

Postel et al., 2016). 

     CSFVs can be classified into three genotypes with three or four sub-genotypes (Lowings et 

al., 1996; Paton et al., 2000). Genotype 1 mostly comprises the historical isolates, while the 

majority of CSF outbreaks during the past decade in Europe are caused by genotype 2 viruses  

 

Figure 1. Phylogenetic tree of selected 
members of the Flaviviridae family.  
The tree is depicted based on analysis of 
conserved motifs within the RNA-dependent 
RNA polymerase (RdRp). The branch 
lengths are proportional to the genetic 
difference where the distance scale 
corresponds to amino acid substitutions per 
position. Classical swine fever virus (CSFV) is 
denoted its former name hog cholera virus 
(Hogr DV) (Romero-Brey & Bartenschlager, 
2014).  
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(Postel et al., 2012). Most of the isolates from genotype 3 are from Asia (Sakoda et al., 1999). 

Despite the genetic diversity, no separate serotypes have been identified and there is no evidence 

for an impact of the sequence diversity on vaccine efficacy (Graham et al., 2012).  

 

An outbreak of CSF in areas with intensive pig farming can cause a great socio-economic 

challenge as seen during the latest outbreak in the Netherlands in 1997 – 1998 (Pluimers et al., 

1999). The total financial costs of the outbreak were calculated to be US $2.3 billion and during 

the 15 months that the outbreak lasted, more than 11 million pigs were destroyed (Meuwissen 

et al., 1999). Understanding CSFV diversity and distribution is important for designing 

optimised control strategies. Even though the current vaccines strategies have proven to be 

effective against all known strains, CSFV exhibit a high mutation rate making the possibility for 

new strains to emerge likely and these might not be covered by the prevalent control policies. 

For countries free of CSF, reintroduction of the disease poses a constant threat, particular due 

to a strict non-vaccination policy. The non-vaccination policy was implemented in 1990 to allow 

free trade of pigs within Europe. However, the huge economic losses, due to stamping out and 

ethical considerations following large-scale culling of healthy animals, underline the 

requirement of alternative control strategies. Until now, control strategies are mainly based on 

vaccination or stamping out. Live attenuated vaccines, such as the Chinese C-strain vaccine, 

are highly efficacious and widely used for the control of CSF in endemic areas. The 

development of marker vaccines which allows to distinguish infected from vaccinated animals 

has been pivotal. Two subunit marker vaccines based on the CSFV E2 glycoprotein have been 

commercialised and have been shown to be highly effective and safe (Blome et al., 2006). 

However, these have to be accompanied by use of discriminatory enzyme-linked 

immunosorbent assay (ELISA) tests, designed to detect antibodies against Erns, for differentiation 

of infected from vaccinated animals (DIVA). A chimeric pestivirus based on the DIVA principle 

has recently been licenced within EU for use in outbreak situations in herds within restricted 

control zones (Dräger et al., 2016; Goller et al., 2015).  

     Understanding CSFV diversity and distribution is also imperative as the vast majority of 

CSF outbreaks in Europe occur through transmission from endemically infected wild boar to 

domestic pigs (Moennig, 2015). Hence, knowledge on the geographical pattern and genetic 

range of the disease is of key importance. CSFV is a listed disease of the World Organisation 

for Animal Health (OIE) requiring that all occurrences are reported. The disease is endemic in 
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much of Asia, Central and South America and in some parts of Africa. However, many of the 

European countries are declared free of CSF (OIE website1). The latest reported cases in Europe 

were found in the wild boar population in Latvia with 30 and 6 cases in 2014 and 2015, 

respectively. In Denmark, CSF has not been present since 1933 and it has, like the other Nordic 

countries, the status as “historically free” from CSF. 

 

 

CSFV genome and proteins 

CSFV is a positive-stranded RNA virus with a genome of approximately 12.3 kb containing a 

single large open reading frame (ORF) flanked by untranslated regions (UTRs). This ORF is 

translated into a polyprotein of about 3,900 amino acids, which is processed into at least twelve 

mature proteins by viral and host proteases (Rümenapf et al., 1993). The CSFV RNA is 

uncapped unlike all eukaryotic messenger RNAs (mRNAs) but instead harbours an internal 

ribosome entry site (IRES) in the 5'-UTR that directs cap-independent translation of the viral 

RNA. Moreover, several structural elements involved in negative-stranded RNA synthesis are 

found in the 3'-UTR, which is non-polyadenylated (Deng & Brock, 1993). The high 

conservation of the nucleotide sequence in the UTRs implies that important signals for viral 

RNA replication are located in these regions (Fletcher & Jackson, 2002; Xiao et al., 2004). 

 

Following processing of the encoded polyprotein, four structural proteins and eight non-

structural proteins are generated (Figure 2). The structural proteins consist of the three envelope 

glycoproteins termed Erns, E1 and E2 located on the surface of the virion as well as the core 

protein lining the nucleocapsid (Stark et al., 1993; Thiel et al., 1991). The main functions of the 

structural glycoproteins involve; (i) protection of the RNA genome before infection, (ii) host cell 

interactions, in order to achieve virus entry, and (iii) interactions with the other viral proteins to 

form new virus particles. More specifically, E1 and E2 form an E1 – E2 heterodimer that 

mediates viral attachment and entry determining cell tropism (Fernández-Sainz et al., 2011; 

Wang et al., 2004). E2 also exists as a homodimer and is, along with Erns, a neutralising antigen 

during CSFV infection (Konig et al., 1995; Weiland et al., 1992). Monoclonal antibodies against 

E2 and Erns are used as diagnostic tools to distinguish between the different pestivirus species 

(Edwards et al., 1991).  

                                                
1 http://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseasetimelines 
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Figure 2. Schematic presentation of the genome organisation and topology of CSFV.  
(a) Structure of the CSFV genome and depiction of the virion. Modified from (Beer et al., 2007).  
(b) Proposed organisation of the pestivirus viral proteins. Structural proteins are depicted in yellow and 
non-structural proteins are shown in green (required for infectious virus production) or blue (other 
functions). Modified from (Murray et al., 2008). 
 

The non-structural proteins include Npro, p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B. Five 

of these proteins (NS3, NS4A, NS4B, NS5A and NS5B) associate to form the replication 

complex (Moulin et al., 2007). Of these, the RNA-dependent RNA polymerase (RdRp) NS5B is 

the enzyme responsible for synthesising the new RNA strands making it a central protein in the 

replication complex (Steffens et al., 1999; Xiao et al., 2002a). Except for the leader protein Npro, 

all of the encoded proteins are essential for the virus life cycle in cultured cells (Tratschin et al., 

1998). Npro interacts directly with interferon regulatory factor 3 (IRF3) mediating its 

degradation; thus it has an antagonistic effect on the interferon-a/b pathway and a role in early 

innate immune evasion by CSFV (Gottipati et al., 2014, 2016; Ruggli et al., 2003). Moreover, 

Npro, along with NS2, is an autoprotease cleaving itself off the viral polyprotein. The timing of 

the self-cleavage of NS2 is essential for the viral life cycle as the uncleaved NS2-3 is important 

in CSFV particle formation and replication (Moulin et al., 2007). NS3 contains an N-terminal 

serine protease domain that requires NS4A as a protein cofactor. The protease cleaves between 

leucine and small uncharged amino acids and its function is essential for viral RNA replication 

as substitutions eliminating the protease activity abolish the formation of new viral progeny, as 

shown for BVDV (Grassmann et al., 1999). In addition, NS3 harbours nucleoside triphosphatase 

(NTPase) and helicase activity. The helicase domain of NS3 has been shown to interact with 

the IRES which promotes IRES-mediated translation (Gorbalenya et al., 1989; Zhu et al., 2010). 

Promotion of IRES-mediated viral translation may occur in a similar manner as has been 

a 

b 
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demonstrated for a well-characterised RNA helicase, the eukaryotic translation initiation factor 

eIF4A. eIF4A is believed to be involved in scanning of the 40S ribosome along the mRNA by 

disrupting secondary structures upstream of the initiation codon (Pause & Sonenberg, 1992; 

Rozen et al., 1990). NS5A is the only protein of the replication complex that can be 

complemented in trans and viral RNA replication is inhibited when the concentration of NS5A 

exceeds that of NS5B (Chen et al., 2012; Grassmann et al., 2001). The CSFV p7 protein functions 

as a viroporin creating hydrophobic pores at the membrane of virus-infected cells (Gladue et al., 

2012; Guo et al., 2013; Largo et al., 2016). Furthermore, p7 induces the secretion of the pro-

inflammatory cytokine interleukin-1b (IL-1b) that is important in the innate immune response 

to viral infection (Lin et al., 2014).  

 

 

Viral population dynamics 

RNA viruses like CSFV have a high mutation rate due to the lack of proof-reading capabilities 

of the RdRp resulting in low fidelity replication (Drake, 1993). The estimated error rates among 

RNA viruses range from 10-3 to 10-5 substitutions per nucleotide, which are several magnitudes 

higher than that for cellular DNA replication (Domingo & Holland, 1997; Drake & Holland, 

1999). As a consequence, RNA viruses replicate as a swarm of closely related viruses but with 

slightly different genomes, called a viral quasispecies. The high mutation rate can be beneficial 

for the virus making it capable of evading the immune response of the host due to changed 

antigenic determinants. If the mutation frequency becomes too high, it can be detrimental for 

the virus. This property has been utilised by researchers to develop a new antiviral strategy, 

termed lethal mutagenesis (Agudo et al., 2016; Arias et al., 2013; Perales et al., 2009). The aim is 

to increase the replication error rates above the threshold level for virus viability and this 

approach has been shown to yield decreased virus infectivity and pathogenicity in vivo (Gnädig 

et al., 2012; Sanz-Ramos et al., 2012). In contrast, increasing the replication fidelity results in 

attenuation of the virus highlighting the finely-tuned relationship between the mutation rate 

and viral replication (Vignuzzi et al., 2008; Zeng et al., 2014).  
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Molecular cloning of CSFV cDNA 

The ability to genetically modify virus genomes has provided a powerful tool for the study of 

the structure and function of the viral genome including viral replication, virus – host 

interactions and as a way to engineer genetically-defined vaccines. Reverse genetics has proven 

an efficient approach to do just that by making precise genetic alterations with the purpose of 

studying certain phenotypic traits. 

     For CSFV, the first cDNA clone derived from the genomic RNA was reported in 1989 

(Meyers et al., 1989). By using four overlapping clones, a large fraction of the genome was 

obtained constituting a continuous sequence of 12,284 nucleotides. Later on, construction of a 

full-length cDNA clone (ca. 12.3 kb) of the highly virulent Alfort/187 strain was performed and, 

in the same year, an infectious cDNA corresponding to the avirulent CSFV C-strain was 

generated (Ruggli et al., 1996). This formed the basis for the development of a C-strain marker 

vaccine (Moormann et al., 1996). However, the early cDNA cloning procedure was tedious and 

problems occurred with maintaining the large cDNA in standard plasmid vectors in E. coli. 

Introduction of cDNA into bacterial artificial chromosomes (BACs) proved a way to circumvent 

this problem (Rasmussen et al., 2010). The BAC cloning system was developed for the cloning 

of large eukaryotic DNA fragments (80 – 300 kb) and has now been applied to a large number 

of DNA viruses and some RNA viruses (Tischer & Kaufer, 2012). A major advantage of using 

BAC vectors to maintain virus genomes is the well-established mutagenesis techniques in E. coli 

and they have enabled the construction of novel RNA genomes by using targeted 

recombination-mediated mutagenesis and virus rescue (Rasmussen et al., 2013).  
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Chapter 2 

CSFV viral life cycle 
 

The infectious cycle of CSFV can be considered in several steps including  

(i) attachment and entry  

(ii) release of the genome into the cytosol 

(iii) translation of the genomic viral RNA into structural proteins and non-structural 

proteins 

(iv) assembly of a replication complex on the surface of the endoplasmatic reticulum 

(ER)  

(v) amplification of the viral genome via a double-stranded RNA intermediate 

(vi) virion assembly, maturation and release 

 

An overview of the CSFV life cycle can be seen in Figure 3. 

 

 

Attachment and entry 

The earliest stage of infection in the virus life cycle happens when the virus particle comes in 

contact with the host cell. Virus entry is specific for susceptible host cells depending on viral 

surface proteins and host cell receptors. Binding of the virus to a receptor on the surface of the 

cell is the first step in a cascade of interactions between the host cell and the virus required to 

initiate viral infection. Numerous viruses use the ubiquitously expressed cell surface 

polysaccharide heparan sulfate as a receptor in assisting viral binding and entry (Liu & Thorp, 

2002). Enhanced binding to heparan sulfate during propagation in cell culture has been 

observed for CSFV (Eymann-Häni et al., 2011). Adaptation of CSFV to heparan sulfate has 

been related to amino acid changes in the envelope protein Erns, which caused altered 

replication characteristics both in vitro and in vivo but only minor effects on the virulence (Mayer 

et al., 2003).  

     The binding of the CSFV particle to the host cell is facilitated by interactions between the 

surface-exposed viral envelope proteins Erns, E1 and E2 and cellular receptors (Hulst & 
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Moormann, 1997; Wang et al., 2004). Porcine complement regulatory protein CD46 has been 

demonstrated to be the major cellular receptor for CSFV mediating viral entry along with 

heparan sulfate (Dräger et al., 2015). CD46 has been known as a cellular receptor for BVDV for 

some years (Maurer et al., 2004). It is believed that BVDV and CSFV have a similar route of 

infection as both display decreased infectivity in inhibition experiments with the CSFV E2 

protein (Hulst & Moormann, 1997). Recently, the mechanism by which CSFV gains entry into 

the cell is demonstrated to be similar to that of BVDV (Shi et al., 2016). BVDV enters the cell 

by clathrin-dependent endocytosis and fusion takes place with an acidic endosomal 

compartment where the low pH triggers conformational changes exposing fusion peptides 

(Lecot et al., 2005). Such a fusion motif is localised within the E1 structural protein whereas the 

E2 acts as a structural scaffold (El Omari et al., 2013). In CSFV, putative fusion peptides are 

found in the E2 protein (Fernández-Sainz et al., 2014; Holinka et al., 2016). This triggers fusion 

of viral and endosomal membranes and the virus particle becomes internalised. However, 

BVDV and CSFV have one characteristic that does not fit well with this mechanism as they are 

both highly stable in acidic environments (Krey et al., 2005). As pestiviruses are acquired via 

direct or indirect contact, the acid-resistant phenotype might have appeared to reflect a need 

for enhanced stability in harsh environments. This is unlike other members of the Flaviviridae 

family, such as some of the flaviviruses, where transmission occurs by arthropods making the 

requirement for protection against environmental hazards redundant. Besides the acidification, 

a maturation event is thought to occur in pestiviruses, where complex intermolecular disulphide 

bridges between the glycoproteins are destabilised allowing fusion between the virion and the 

endosome. After the nucleocapsid has been uncoated, which requires a non-degradative 

ubiquitination step, the viral genome is delivered to the cytosol for translation and replication 

(Byk et al., 2016; Rajsbaum & García-Sastre, 2014).  

 

 

Viral RNA translation and replication 

Following release of the viral RNA into the cytosol, the genome serves as an mRNA for 

translation of the encoded proteins and as a template during viral RNA replication to produce 

new viral RNA genomes. These processes occur at intracellular membranes that become 

rearranged giving rise to viral replication complexes (VRCs) (Shulla & Randall, 2016). 

Formation of VRCs is a distinctive feature of positive-stranded RNA viruses. The RNA is 
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protected from innate immune sensors and the RNA degradation machinery, located in the 

cytosol, as the replication complexes serve as a barrier between viral RNA replication and the 

cytosol shielding the viral genome from host defences (den Boon et al., 2010).  

     Positive-stranded RNA viruses can be classified into three superfamilies; picorna-like, flavi-

like and alpha-like viruses based on the amino acid homology of their RdRps (Koonin et al., 

1993; Koonin, 1991). Among these viruses, two different modes to remodel the cellular 

membrane, during formation of VRCs, exist. The picorna-like viruses establish membranes 

with positive curvature forming double-membrane structures while the latter two superfamilies 

induce negatively curved membranes initiated by invaginations of the pre-existing membrane 

bilayer (Belov & Van Kuppeveld, 2012; Romero-Brey & Bartenschlager, 2014). These 

membrane-associated replication complexes are composed of viral proteins, replicating RNA 

and altered cellular membranes (Ahlquist et al., 2003). Although CSFV has a limited number of 

proteins encoded by its genome, it can replicate very efficiently in infected host cells by using 

host proteins, membranes, lipids and metabolites.  

 

Following cytosolic entry of the viral RNA, ribosomes are recruited to achieve translation. As 

CSFV is positive-stranded, the RNA can directly serve as a mRNA. Ribosomes bind to a highly 

Figure 3. Overview of the CSFV 
viral life cycle. 
The virus enters the cell by endocytosis 
and once inside the cell, the positive-
stranded RNA ((+)RNA) genome is 
released into the cytosol. Here the RNA 
is translated by host ribosomes and the 
polyprotein is processed into structural 
and non-structural proteins. The non-
structural proteins form a viral 
replication complex (VRC) and recruits 
the (+)RNA to the endoplasmatic 
reticulum (ER). Viral replication is 
initiated and (+)RNA is released that 
can either start a new cycle of 
translation and replication or become 
encapsidated and released by 
exocytosis. Modified from (Nagy & 
Pogany, 2011). 
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structured part of the genome termed the IRES to direct cap-independent translation initiation 

of protein synthesis (Fletcher & Jackson, 2002). As the viral genome is translated in the 5' – 3' 

direction, viral replication by the polymerase, that proceeds in the 3' – 5' direction, is blocked. 

Hence translation and RNA replication are mutually exclusive processes, because they proceed 

in opposite directions on the RNA template. Switching between these two mechanisms is an 

intricate process where both viral and cellular proteins play a critical role (Gamarnik & Andino, 

1998). Moreover, regulatory RNA elements contribute in facilitating and regulating these 

genomic mechanisms.  

     The viral non-structural protein NS5A plays a pivotal role in the switch from translation to 

replication. A region in the C-terminal part of NS5A represses IRES-directed translation in a 

dose-dependent manner, which may lead to switching to viral replication when the level of 

NS5A exceeds a certain threshold (Xiao et al., 2009). NS5A has also been shown to interact with 

the host protein FKBP8 to promote viral replication (Li et al., 2016). Furthermore, interaction 

between NS5B and NS5A suppresses the inhibitory effect that NS5A has on viral RNA 

translation (Sheng et al., 2012a). Three discontinuous fragments of NS5A (including amino acids 

137 – 172, 224 – 268 and 390 – 414) are essential for the binding of NS5A to NS5B (Chen et 

al., 2012). Small amounts of NS5A stimulate viral replication but when the concentration of 

NS5A exceeds that of NS5B, viral replication is inhibited stressing the role of NS5A in 

modulating viral replication through concentration changes. This suggests that NS5A can 

regulate viral RNA synthesis by binding to NS5B. Moreover, both NS5A and NS5B interact 

with the 3'-UTR but NS5A exhibits a stronger binding capacity to its cognate 3'-UTR (Sheng 

et al., 2012b). When the concentration of NS5A exceeds that of NS5B, it outcompetes the 

binding of NS5B to the 3'-UTR resulting in an inhibition of viral RNA synthesis. In hepatitis C 

virus (HCV), another member of the Flaviviridae family, the small non-coding miRNA miR-122 

has been shown to interact with the 5'-UTR which stimulates HCV replication (Jopling et al., 

2005). The dependence on host miRNAs for pestivirus replication has also been demonstrated 

(Scheel et al., 2016). 

 

CSFV genome replication consists of several consecutive processes. First, the replicase NS5B 

recognises and binds to the 3’-UTR starting RNA synthesis in which a minus-strand RNA is 

produced using the plus-strand genomic RNA as a template. Using the newly generated minus-

strand RNA, a progeny plus-strand RNA is generated. For CSFV, the RdRp NS5B functions 
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as the replicase. NS5B has been found to form a complex with both the plus- and minus-strand 

of the genomic 3'-UTR, but binds with highest efficiency to the minus-strand RNA. Following 

deletion of the five 3'-terminal bases (CCCGG) initiation of minus-strand synthesis is blocked 

(Xiao et al., 2004). In particular, the three continuous Cs at the 3'-terminus are essential for the 

initiation of RNA synthesis, which was tested by making mutants with consecutive deletions in 

the CCCGG motif. A fragment spanning the last 21 nucleotides of the 3'-terminus has been 

identified as a recognition site for the NS5B replicase responsible for viral replication (Xiao et 

al., 2002b). Deletion of these 21 nucleotides abolishes the binding of NS5B and initiation of 

minus-stranded synthesis is lost (Xiao et al., 2004). This suggests that RNA genome replication 

is initiated by binding of NS5B to the 21 nucleotide fragment located at the 3'-end of the plus-

strand.   

  

 

Assembly and release 

Assembly of pestivirus virions is initiated at ER-derived membranes by budding of viral capsids 

(Grummer et al., 2001). Once the virions are in the ER lumen, they are probably taken up into 

vesicles and budded from exit sites in the ER. This takes place in the ER-Golgi intermediate 

compartment, which mediates trafficking between the ER and Golgi apparatus. Pestivirus 

virions pass through the Golgi apparatus where sugar monomers are attached to the 

glycoproteins by glycosylation enzymes (Jordan et al., 2002). The virions are then transported to 

the cell surface, where single-particle exocytosis occurs (Schmeiser et al., 2014). However, 

pestivirus morphogenesis is still poorly understood. 

     Pestivirus infection is sensitive to brefeldin A, a drug that blocks protein export from the ER 

and causes disruption of the Golgi apparatus (Macovei et al., 2006). Upon treatment with 

brefeldin A, infectious pestivirus particles accumulate within cells thus the release of virions is 

inhibited. This suggests that pestivirus assembly is completed within the ER and the Golgi 

apparatus without the requirement of further processing before maturation and egress.  

 

Besides the involvement of NS5A in the translation/replication switch, it is also linked to virus 

assembly. The effect of NS5A on CSFV assembly and production is thought to be related to its 

interaction with the core protein (Sheng et al., 2014). The same mechanism has been described 

for HCV (Appel et al., 2008). NS5A has been shown to associate with the cellular protein 
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annexin A2 which is a lipid raft-associated scaffold protein that is involved in a number of 

cellular processes including membrane trafficking, endosome formation, aggregation of vesicles 

and exocytosis (Donnelly & Moss, 1997). Annexin A2 interacts with several viruses and mediates 

virus entry, replication, assembly, budding and release. A direct interaction has been found 

between NS5A and annexin A2 and this is necessary for CSFV assembly (Sheng et al., 2015). 

The same relationship has previously been demonstrated for HCV (Masaki et al., 2008). A 

proteomic analysis shows that annexin A2 is upregulated about 5-fold in CSFV-infected cells 

(Sun et al., 2008). Furthermore, knockdown of annexin A2 significantly reduces infectious CSFV 

production but has no effect on viral RNA replication.  

 

 

Studying viral replication using reporter proteins 

Advances in molecular biology have allowed manipulation of RNA genomes and led to 

development of replicons, which are self-replicating but non-infectious RNAs. In these RNA 

replicons at least one essential structural protein has been deleted (Khromykh, 2000). Deletion 

of one or more of the structural proteins renders virion assembly impossible making it unable 

to escape the infected cell. Hence, replicons can be regarded as disabled viruses unable to 

produce infectious progeny. The presence of a reporter protein within the replicon allows 

quantitative assessment of the replication competence of a given RNA virus. The reporter 

protein is cloned in frame with the upstream protein and to ensure that the proteins downstream 

from the reporter are properly freed, a 2A peptide from e.g. foot-and-mouth disease virus 

(FMDV) or encephalomyocarditis virus (EMCV) can be inserted. The 2A peptide induces 

translational skipping (at a …NPG/P motif) resulting in a co-translational break in of the 

polypeptide chain after the NPG sequence by prevention of peptide bond formation (Donnelly 

et al., 2001; Ryan & Drew, 1994). Translation resumes from the next codon (encoding the P 

residue) in the downstream protein sequence without the requirement for a normal translation 

initiation process.  

 

Reporter proteins can be applicable in two ways; either for qualitative or quantitative assays. 

The qualitative reporters allow in vivo studies of protein localisation during different parts of the 

virus life cycle. This can be obtained using fluorescent proteins like the green fluorescent protein 

(GFP), DsRed or mCherry (David et al., 2015; Isken et al., 2014; Osborn et al., 2005). By using 
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enhanced GFP (EGFP) a dark-to-bright fluorescent reporter has been generated for CSFV 

(Chen et al., 2015). EGFP is non-fluorescent until the protein is properly folded due to fusion to 

a quenching peptide. Hence cleavage of the quenching peptide is required for light emission, 

which can be carried out by the NS3 protease during CSFV infection. A strong correlation 

between CSFV replication and fluorescence intensity is seen allowing an easy and rapid 

detection of CSFV growth. 

     The quantitative reporters are able to catalyse enzymatic reactions making it possible to 

determine translational or transcriptional activities. Examples of such reporters are luciferase 

and b-galactosidase (Greer & Szalay, 2002; Pai et al., 2005). A reporter capable of stably 

expressing the Gaussia luciferase protein has been generated in a full-length West Nile virus 

cDNA clone (Zhang et al., 2016). A linear correlation is observed between the luciferase signal 

and viral titers determined by a plaque assay, which allows a fast and sensitive quantification of 

viral replication. By coupling flow cytometry and GFP fluorescence measurements, GFP can 

also be used as a quantitative reporter (Soboleski et al., 2005). There are several advantages in 

using GFP as a reporter; intracellular accumulation can be directly observed in vivo over time 

and GFP expression can be measured for individual cells.   

 

The use of replicons has made it easier to study some aspects of virus replication. Deletion of 

most of the viral structural proteins has been applied in several replicon designs, including in 

BVDV and CSFV (Behrens et al., 1998; Moser et al., 1999). These replicon constructs 

demonstrate that NS3, NS4A, NS4B, NS5A and NS5B are essential for pestivirus replication. 

Replication determinants of CSFV have been studied by inserting the RdRp NS5B of the highly 

virulent Koslov strain into the backbone of the moderately virulent Paderborn strain (Risager 

et al., 2013). The presence of the Koslov virus NS5B coding sequence significantly enhanced 

viral RNA replication while replacing the Paderborn NS5B with that of the avirulent C-strain 

decreased the replication. This demonstrates that replication efficiency is dependent on the viral 

replicase NS5B. A similar approach has been conducted for NS4B, where the N-terminal 

domain of NS4B from a low virulence strain was exchanged with the corresponding sequence 

from a highly virulent strain (Tamura et al., 2015). The N-terminal domain of NS4B harbours 

five amino acid differences between the two strains and when the replication efficiency was 

tested, these five amino acids from the highly virulent strain markedly contributed to enhanced 

viral replication. Moreover, when this chimeric virus was inoculated into pigs, it resulted in clear 
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clinical symptoms thus showing that the N-terminal domain of NS4B contributes to 

pathogenicity in pigs. 

 

Replicons have been used in vaccine development, thereby eliminating the risk of reversion 

when using conventional live attenuated vaccines. Viral structural proteins can be replaced with 

vaccine antigens allowing the viral vectors to replicate their genome without being infectious as 

they cannot make new virus particles (Lundstrom, 2005). Another strategy has been utilised for 

CSFV in which deletion mutants are trans-complemented after transfection. Trans-

complementation can be achieved by expressing the viral proteins missing from the replicon in 

trans. The packaged replicons will only infect cells once and thereby deliver the viral RNA into 

the cytosol. Transmission of the virus particles is only made possible by introducing the replicons 

into a cell line that expresses the missing structural proteins. This has been done for CSFV; in 

some systems the structural proteins Erns or E2 have been deleted and the replicons are later 

transfected into cells expressing Erns or E2 (Van Gennip et al., 2002; Widjojoatmodjo et al., 2000). 

These replicons are denoted virus replicon particles (VRPs) and have the advantage of being 

non-transmissible, which make them safe as vaccines as they cannot revert to a virulent serotype. 

When pigs were infected with a highly virulent CSFV strain four weeks after immunisation with 

the VRPs, the pigs displayed protection against the virus challenge (Widjojoatmodjo et al., 2000).  
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Chapter 3 

Functional structural RNA elements 
 

RNA structure and function 

In 1956, Francis Crick formulates the central dogma where genetic information in the form of 

DNA becomes transcribed into RNA, which is then translated into proteins (Thieffry & Sarkar, 

1998). As such RNA is merely considered as a messenger for translation (Jacob & Monod, 1961). 

Today, understanding of the biological functions of RNA have broadened to include various 

structural, regulatory and enzymatic functions to this ribonucleic acid (Garst et al., 2011; Li et 

al., 2012). This has led to the term ‘the RNA world’ hypothesising that RNA has a decisive role 

in the evolution of life by sustaining genetic continuity through RNA replication and catalytic 

properties (Gilbert, 1986).  

     Functional structural RNA elements are in general created by three-dimensional 

organisation of small structural motifs, formed by base pairing between self-complementary 

sequences from different parts of the RNA chain. This enables the RNA to adopt unique shapes 

allowing cis- and trans-actions, i.e. interactions within the RNA or with proteins. Changes in 

base pairing function is a simple yet powerful way to regulate viral processes by exposing or 

sequestering nucleotides that can interact with other parts of the RNA chain or with proteins. 

 

 

Conserved RNA secondary structures in Flaviviridae 

The nature of RNA facilitates the generation of complex three-dimensional structures despite 

being composed of only four chemically similar nucleotides. Although RNA can exist as a single-

stranded molecule, it was in 1956 discovered to also form double-stranded structures (Rich & 

Davies, 1956). RNA can fold into several secondary structures including duplexes, hairpins, 

internal bulges, internal loops and junctions (Figure 4). Loops have shown to be critical for the 

formation of long-range RNA-RNA interactions and important in the recognition of small 

molecules, whereas the single-stranded regions often have a function as binding sites for proteins 

(Auweter et al., 2006; Lunde et al., 2007; Nicholson & White, 2014).  
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Figure 4. RNA secondary structure. Due to the single-stranded nature of RNA and its ability to 
base pair, it can fold into numerous structures. Adapted from (Ding & Lawrence, 2003). 
  

Viral RNA genomes do not solely encode proteins but can also harbour RNA motifs that play 

a crucial role in the viral life cycle. An example of such a motif is the IRES located in the 5'-

UTR. The IRES was discovered nearly 30 years ago in two picornaviruses describing an 

alternative translation initiation mechanism independent of the 5'-cap structure (Jang et al., 

1988; Pelletier & Sonenberg, 1988). Based on the secondary structure, the picornavirus IRES 

elements are divided into at least five types in addition to atypical IRES elements, e.g. present 

within dicistroviruses (Lozano & Martínez-Salas, 2015; Roberts & Groppelli, 2009). IRES-

mediated translation is dependent on both canonical initiation factors and IRES trans-

activating factors (ITAFs). ITAFs are cellular proteins which can serve as RNA chaperones 

which help stabilising the IRES configuration (Pacheco & Martinez-Salas, 2010). In addition, 

they may regulate IRES activity thereby mediating cell type specificity and consequently 

influence viral spread.  

     The presence of an IRES allows the virus to begin efficient translation without the need of 

5'-capping. Moreover, the virus can block the cap-dependent translation initiation of the host 

without compromising the viral protein synthesis, thus hijacking the cellular translation 

machinery (Bushell & Sarnow, 2002). Within the Flaviviridae family, two types of translation 

initiation are reported. Hepacivirus and Pestivirus contain an IRES with a long 5'-UTR that might 

be derived from certain members of the picornavirus family (Belsham, 2009). On the contrary, 

viruses within the Flavivirus genus, which have an insect host, harbour a capped RNA and no 

IRES but instead requires an interaction between the two untranslated regions for translation.  

 

The untranslated regions in Pestivirus have been shown to form extensive secondary structures 

(Brown et al., 1992; Deng & Brock, 1993). About 70 % of the nucleotides in the 5'-UTR are 

involved in base pairing, where a large part (ca. 350 nucleotides) is constituted of the IRES. In 



 17 

particular domains II and III of the 5'-UTR have been identified to be key elements for 

translation of the CSFV genome (Fletcher & Jackson, 2002; Friis et al., 2012). 

 

Secondary and tertiary structural motifs in the 3'-UTR are considered to be important 

functional elements for minus-strand RNA synthesis and might function as sites of promoter 

elements that controls this synthesis. The Pestivirus 3'-UTR consists of four stem loops with a 

variable AU-rich region and a conserved region (Vilcěk et al., 1999). The AU-rich regions can 

bind the host protein HuR, which is known to regulate RNA stability (Brennan & Steitz, 2001). 

The binding of HuR to the AU-rich regions in the 3'-UTR promotes HCV RNA replication 

(Shwetha et al., 2015). Upon knockout of HuR, viral RNA replication is almost abolished in 

HCV, while it has no effect on the replication of the alphavirus Sindbis virus (SINV) (Marceau 

et al., 2016). However, SINV is shown to have a high binding affinity of HuR resulting in 

increased viral yield but this effect may be due to other factors than viral replication (Sokoloski 

et al., 2010).  

 

 

Cis-acting RNA elements in plus-stranded RNA viruses 

RNA elements contributing to interactions within the genome are denoted cis-acting RNA 

elements (CREs). They do not only contribute to RNA-RNA interactions but can recruit viral 

and host factors, which are known as trans-acting factors. CREs impact several aspects of the 

viral life cycle including genome replication, translation and encapsidation (Liu et al., 2009). 

Some CREs are involved in long-range interactions that are found within a wide range of 

positive-stranded RNA viruses. A long-range interaction spans distances ranging from a few 

hundred nucleotides up to several thousands. These interactions are often located in internal 

bulges or loop regions bringing distant parts of the RNA chain closer together. An overview of 

known long-range interactions within Flaviviridae can be seen in Table 1. 

 

Most of the interactions involve sequences located in 5'-UTR and 3'-UTR. However, some 

RNA structural elements can be found in the protein coding region too, as seen in HCV. A 

stem loop, in the coding region for the non-structural protein NS5B, denoted 5BSL3.2, can 

interact with either the 3'-UTR, the IRES or with the stem loop structure SL9110 located 

approximately 200 nucleotides upstream of 5BSL3.2 (Diviney et al., 2008; Romero-López et al., 
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2012; Romero-López & Berzal-Herranz, 2012). This network of interactions suggests how the 

transitions between the different steps of the viral life cycle of HCV are regulated. Early in the 

infection, the IRES will interact with the ribosome favouring the interactions with SL9110 and 

the 3'-UTR. Upon accumulation of viral proteins, a transition will occur towards viral 

replication making the 3'-UTR accessible to the polymerase due to contact between 5BSL3.2 

and the IRES and SL9110.  

 

 
Table 1. Long-range RNA-RNA interactions within the Flaviviridae family.  
Cis-acting RNA interactions influencing translation or replication found within the members of the 
Flaviviridae family. Adapted from (Nicholson & White, 2014). 
Abbreviations: 5BSL3.2, NS5B stem loop 3.2; CS, cyclisation sequence; CSFV, classical swine fever virus; DAR, 
downstream of AUG region; DENV, dengue virus; DLS, dimer linkage sequence; HCV, hepatitis C virus; IRES, 
internal ribosome entry site; SL, stem loop; UAR, upstream of AUG region; UTR, untranslated region; WNV, 
West Nile virus. 
 

A proper balance in these interaction networks is pivotal for accurate regulation of viral 

translation and replication. Identifying protein-protein interactions between viral and cellular 

proteins allows a more comprehensive understanding of the dynamics of viral translation, RNA 

replication and host specificity. Several host factors are recruited to viral genomes and have 

been shown to influence and stabilise interactions within the RNA. Recently, 55 cellular 

proteins were found to interact with an RNA motif located within the 3'-end of the ORF of 

HCV consisting of the stem loops 5BSL3.1-3.3 (Ríos-Marco et al., 2016). Moreover, a number 

of host proteins have been found to bind the non-structural protein NS5A. For example, NS5A 

interacts with the host cell protein heat shock protein 70 (HSP70) in CSFV and HCV 

(Khachatoorian et al., 2014; Zhang et al., 2015). The cellular heat shock proteins have shown to 

play an important role in the replication of RNA viruses (Vasconcelos et al., 1998; Weeks & 

Miller, 2008; Zheng et al., 2010). Also an interaction between NS5A and the eukaryotic 

Genus Virus RNA-RNA interaction Step in the viral life cycle 

Pestivirus CSFV IRES – 3'-UTR Translation 

Hepacivirus HCV 

IRES – 5BSL3.2 
Translation 

SL9110 – 5BSL3.2 

5BSL3.2 – 3'-UTR 
Genome replication 

DLS – DLS 

Flavivirus 
DENV + 

WNV 

5'-UAR – 3'-UAR 

Genome replication 5'-DAR – 3'-DAR 

5'-CS – 3'-CS 
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elongation factor 1A (eEF1A) has been established in BVDV and CSFV (Johnson et al., 2001; 

Li et al., 2015).    

 

Both cellular and viral proteins are involved in facilitating cis-acting interactions between the 5'-

UTR and 3'-UTR. A cellular protein associated with bringing the two untranslated regions 

together is the human La protein. The La protein functions in the unwinding of double-stranded 

RNA and in the maturation of the RNA polymerase III (Wolin & Cedervall, 2002). Its function 

as a CRE has been seen in HCV, coxsackie B virus and Japanese encephalitis virus (Kumar et 

al., 2013; Souii et al., 2015; Vashist et al., 2011). Furthermore, the La protein has been found to 

interact with the 5'-UTR of poliovirus and encephalomyocarditis virus stimulating viral 

translation (Kim & Jang, 1999; Meerovitch et al., 1993). Also viral proteins within the Flaviviridae 

family play a role in end-to-end interactions. An example is the viral core protein in West Nile 

virus (WNV) and NS3 in Dengue virus (DENV) which chaperone 5'-UTR to 3'-UTR annealing 

(Gebhard et al., 2012; Ivanyi-Nagy & Darlix, 2012). A cis-acting RNA element present within 

the CSFV 3'-UTR consisting of a hexamer of the terminal bases (CCCGGC) negatively 

regulates translation (Huang et al., 2012). This is in concordance with a block in viral replication 

upon deletion of the pentamer CCCGG (Xiao et al., 2004) Indications have been seen for a 

requirement of the 5'-UTR and 3'-UTR of CSFV to participate in a cis-interaction. This was 

observed when studying apoptosis; the severity of this process was increased when both UTRs 

were transfected together compared to either the 5'-UTR or 3'-UTR alone (Hsu et al., 2014). In 

the DENV genome circularisation is proposed to be important during minus-strand synthesis 

(Filomatori et al., 2006). Direct long-range RNA-RNA interactions are present at the 5'-end and 

3'-end of the RNA genome (Alvarez et al., 2005; de Borba et al., 2015). Genome circularisation 

is also a part of the RNA replication in poliovirus, where the mechanism is mediated through a 

protein-protein bridge consisting of ribonucleoproteins (Herold & Andino, 2001). Many RNA 

binding proteins have multiple RNA binding domains allowing them to bring separate RNA 

elements together. 

 

 

RNA secondary structure probing 

Insight into the mechanisms of actions of RNA requires a thorough knowledge of its structure. 

Accurate probing using selective 2'-hydroxyl acylation analysed by primer extension (SHAPE) 
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provides quantitative reactivity information of the RNA nucleotides (Merino et al., 2005; 

Wilkinson et al., 2006). This is achieved as flexible RNA nucleotides show enhanced reactivity 

towards the SHAPE reagents. Hence, single-stranded nucleotides are more prone to react with 

SHAPE reagents, while base paired and structurally constrained nucleotides are less reactive. 

As the SHAPE technology is backbone specific, it is independent of base identity thus providing 

information on local structure. Typically, SHAPE reactions are performed together with a 

control reaction without a probing reagent. The data from the control experiment is used to 

normalise the data from the probed reaction to provide specific SHAPE reactivity for a given 

nucleotide position. 

 

Before SHAPE reagents were widely used for structural probing, either chemical or enzymatic 

probing were applied. The chemical and enzymatic reagents rely on several different 

approaches depending on the RNA molecule. These can be (i) RNase digestion, (ii) RNA 

crosslinking, (iii) binding of complementary nucleotides to single-stranded RNA regions and (iv) 

nuclease treatment to determine scissions specific for single-stranded or double-stranded regions 

(Ehresmann et al., 1987). These methods can be quite laborious and many are not generalizable 

giving biases in their reactivity towards some bases and showing a hierarchy of reactivity that is 

incompletely understood. Many of these shortcomings can be overcome by the SHAPE 

technology and this has now emerged as the gold standard in RNA secondary structure probing 

(Deigan et al., 2008; McGinnis et al., 2012; Weeks & Mauger, 2011).  

     Especially two SHAPE reagents are utilised with slightly different reaction profiles, which is 

useful in examining the presence of different structures. The two reagents are N-methylisatoic 

anhydride (NMIA) and 1-methyl-7-nitroisatoic anhydride (1M7) which are hydroxyl-selective 

electrophiles that react with the 2'-hydroxyl group of flexible nucleotides in the RNA (Weeks & 

Mauger, 2011). 1M7 has a reaction time of 14 seconds for one hydrolysis half-life whereas 

NMIA reacts about 18 times slower (Mortimer & Weeks, 2007; Weeks & Mauger, 2011). This 

means that NMIA can detect nucleotides in unusual conformations that have slow reaction 

dynamics. An alternative SHAPE reagent, denoted N-propanone isatoic anhydride (NPIA), 

allows removal of a large amount of the background signal and enriches for probed RNA by 

covalent coupling to a biotin molecule (Poulsen et al., 2015a). The issue with high background 

signal is especially seen with whole virus genome structure probing. However, the ability to 

perform whole genome probing has allowed the study of the tertiary structure giving 
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information on long-range interactions that bring individual structural elements together to 

create higher-ordered structures. SHAPE has been used to map long-range interactions in a 

number of viruses i.e. HCV, human immunodeficiency virus (HIV) and Moloney murine 

sarcoma virus, which have provided a broader picture of the interaction networks during viral 

translation and RNA replication (Badorrek & Weeks, 2005; Legiewicz et al., 2010; Tuplin et al., 

2012).  

 

 

NGS and whole genome RNA structure probing 

Over the past ten years, a shift has occurred from Sanger sequencing, considered as a first-

generation technology, towards newer methods called next generation sequencing (Metzker, 

2010). Compared to Sanger sequencing, NGS includes a cell-free system for DNA library 

preparation, its sequencing reactions produce thousands to millions of reads compared to 

hundreds and lastly is the sequencing output detected directly (van Dijk et al., 2014). SHAPE 

chemistry can be combined with next generation sequencing (NGS) allowing multiplexed 

paired-end deep sequencing of primer extension products. This enables determination of 

location and frequency of modifications by the SHAPE reagents giving information regarding 

structural constraints such as base pairing or interaction patterns.  

     Combining RNA structure probing and NGS has revolutionised the knowledge about RNA 

by enabling transcriptome-wide structure probing giving information on the biological and 

chemical properties of RNA structure and function (Kwok et al., 2015; Smola et al., 2015). Two 

techniques to examine high-ordered structures have emerged using either SHAPE or chemical 

probing reagents. These are called SHAPE-mutational profiling (SHAPE-MaP) and RNA 

interaction groups by mutational profiling (RING-MaP) (Homan et al., 2014; Siegfried et al., 

2014). At sites of SHAPE or dimethyl sulfate modifications, these methods incorporate non-

complementary nucleotides and the modification sites are revealed by subsequent NGS analysis 

and mutational profiling. An addition to chemical probing and SHAPE is a high-throughput 

crosslinking-based structure analysis able to detect RNA duplexes (Weidmann et al., 2016). This 

method crosslinks paired RNA strands and ligates the two strands together, which are then 

sequenced identifying interacting RNA sequences.    
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An improved RNA secondary structure model has been achieved by incorporating SHAPE 

reactivity data with algorithms based on pseudo-free energy and thermodynamic principles 

(Low & Weeks, 2010). Using this approach, the global organisation of two RNA viruses, the 

1,058 nucleotide-long satellite tobacco mosaic virus and the 4,778 nucleotide-long tomato 

bushy stunt virus have been predicted (Archer et al., 2013; Athavale et al., 2013). The results 

have provided insights into long-range interactions in the context of the whole genome. 

Algorithms designed to study long-range interactions in full viral genomes have been developed, 

which have confirmed a number of already known interactions within various positive-strand 

RNA viruses as well as predicting additional interactions (Fricke & Marz, 2016). Having 

statistically strong and user friendly computational tools are essential for systematic analysis of 

large-scale NGS-based structure data.    
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Chapter 4  

Thesis outline 
 

This PhD study has focused on characterisation of replication determinants of classical swine 

fever virus (CSFV) resulting in the following project aims:  

 

i. Analysis of sequence adaptations after serial passaging in cell culture (manuscript 1) 

ii. Identification of replication determinants using targeted modifications of genetically 

defined viruses and replicons (manuscript 2) 

iii. Generation of a stable, selectable replicon within mammalian cells able to express viral 

proteins in a cytoplasmic setting (manuscript 3) 

 

In manuscript 1 with the title “Sequence adaptations during growth of rescued classical swine 

fever viruses in cell culture and within infected pigs” were viruses with mutations in the IRES 

serially passaged in cell culture and introduced into their natural host, the pig. Using full genome 

sequencing, adaptations both in the IRES domain and in the rest of the genome were analysed.  

RNA viruses including CSFV evolve rapidly due to the high error rate and lack of proofreading 

mechanism of the RNA-dependent RNA polymerase. Hence, the high mutation rates make the 

virus highly adaptable. Upon introduction of mutations, the virus can undergo compensatory 

adaptations, which can provide new insights into the biology of the virus.  

 

Manuscript 2 entitled “Analysis of potential RNA interactions with a motif in the NS5B coding 

region of classical swine fever virus that influence viral RNA replication” has focused on the 

examination of replication determinants. Genetically defined viruses and replicons (self-

replicating but non-infectious genomes) encoding reporter proteins have been used for the 

analysis of virus replication. Targeted modifications of the viral RNA genome have shown to 

reduce the replication efficiency. Use of replicons permits a quantitative assessment of the 

replication efficiency of the mutant RNAs. RNA has been generated by in vitro transcription 

from cDNAs containing different modifications and tested for their capacity to replicate in 

porcine kidney cells as measured by luciferase activity. Based on these results, previous studies 
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and theoretical modelling, a potential motif within the viral genome important for replication 

was identified. RNAs from these replicons was tested for their capacity to replicate in 

comparison to wild type virus. When replication determinants were identified, similar 

modifications were introduced into an established full-length CSFV BAC clone, which can 

generate infectious RNA. RNA transcripts from these new constructs were characterised in 

porcine kidney cells to determine infectivity and growth rate. 

 

Manuscript 3 denoted “Establishment of a cytoplasmic expression system using a classical swine 

fever virus-based replicon” focused on the generation of a replicon containing neomycin 

phosphotransferase (NPT) conferring resistance to neomycin. This will facilitate the 

maintenance of replicons by selection within mammalian cells. The NPT selectable marker was 

inserted downstream from Gaussia luciferase functioning as a reporter protein. This will allow 

for establishment of a cytoplasmic expression system. Such a system makes it possible to stably 

express proteins, encoded by other positive-sense RNA viruses, without problems with nuclear 

RNA processing. Engineering of reporter sequences into the viral genome will enable the study 

of the virus life cycle in more detail and the production of more efficient and safer prototype 

vaccine candidates. Furthermore, insertion of a selection marker into a replicon should make it 

suitable for screening antiviral drugs that block virus translation and/or RNA replication. 
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A B S T R A C T

Classical swine fever virus (CSFV) causes an economically important disease of swine. Four different
viruses were rescued from full-length cloned cDNAs derived from the Paderborn strain of CSFV. Three of
these viruses had been modified by mutagenesis (with 7 or 8 nt changes) within stem 2 of the subdomain
IIIf of the internal ribosome entry site (IRES) that directs the initiation of protein synthesis. Rescued
viruses were inoculated into pigs. The rescued vPader10 virus, without modifications in the IRES, induced
clinical disease in pigs that was very similar to that observed previously with the parental field strain and
transmission to in-contact pigs occurred. Two sequence reversions, in the NS2 and NS5B coding regions,
became dominant within the virus populations in these infected pigs. Rescued viruses, with mutant IRES
elements, did not induce disease and only very limited circulation of viral RNA could be detected.
However, the animals inoculated with these mutant viruses seroconverted against CSFV. Thus, these
mutant viruses were highly attenuated in vivo. All 4 rescued viruses were also passaged up to 20 times in
cell culture. Using full genome sequencing, the same two adaptations within each of four independent
virus populations were observed that restored the coding sequence to that of the parental field strain.
These adaptations occurred with different kinetics. The combination of reverse genetics and in depth, full
genome sequencing provides a powerful approach to analyse virus adaptation and to identify key
determinants of viral replication efficiency in cells and within host animals.

ã 2016 Elsevier B.V. All rights reserved.

1. Introduction

Classical swine fever virus (CSFV) is the causative agent of the
highly contagious, and economically important, disease termed
classical swine fever (CSF). CSFV is a member of the pestivirus
genus of the Flaviviridae. The CSFV genome is a single stranded,
positive sense, RNA of approximately 12.3 kb (see Fig. 1a). The
genome includes a single large open reading frame flanked by a 50-
untranslated region (UTR) of ca. 373 nt and a 30-UTR of ca. 228 nt

(Deng and Brock, 1993). The 50-UTR of CSFV, like certain other
members of the family Flaviviridae such as hepatitis C virus (HCV)
and bovine viral diarrhea virus (BVDV), does not have the 50-
terminal cap structure found on all eukaryotic cellular mRNAs and
on the genomes of the members of the flavivirus genus within this
virus family. However, the pestivirus and HCV 50-UTRs contain an
internal ribosomal entry site (IRES) that directs the cap-indepen-
dent initiation of protein synthesis (Wang et al., 1993; Rijnbrand
et al., 1997; Chon et al.,1998). Structural analysis of the similar HCV
and CSFV IRES elements has identified two major structural
elements; these are a single large stem-loop (domain II) and a
complex domain III (see Fig. 1b) (reviewed in Kieft et al., 2001;
Fraser and Doudna, 2007; Lukavsky, 2009). The latter, in the CSFV
IRES, contains several stem-loop structures (subdomains IIIa, IIIb,
IIIc, IIId1, IIId2 and IIIe) together with a pseudoknot (subdomain IIIf)
that comprises stem 1a, stem 1b and stem 2 (Deng and Brock,1993;
Fletcher and Jackson, 2002). The HCV IRES structure has an extra
element (termed domain IV) compared to the CSFV IRES while the
former lacks subdomain IIId2.
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Extensive work has been performed to define the structures and
functions of the different domains within the HCV and related IRES
elements (reviewed in Lukavsky, 2009). Domain II is known to
adopt a bent configuration; this structure induces a conformation-
al change in the 40S ribosomal subunit needed for proper RNA
docking and allows for the eIF5-mediated hydrolysis of the eIF2-
bound GTP that precedes the formation of the 80S ribosomal
complex (Spahn et al., 2001; Locker et al., 2007; Pestova et al.,
2008). Domain III binds directly to the ribosomal 40S subunit
through interactions with the subdomains IIId1 and IIIf (Kieft et al.,
2001; Lytle et al., 2002; Berry et al., 2010). The apical region of this
domain, including a four-way junction formed by subdomains IIIa-
c, binds to the translation initiation factor eIF3 (Kieft et al., 2001;
Hashem et al., 2013).

Several studies have shown that mutations within domains II
and III of the CSFV IRES lead to a reduction in translation initiation
when measured using reporter gene assays (Rijnbrand et al., 1997;
Fletcher and Jackson, 2002; Friis et al., 2012). In contrast, rather
little is known about the effect of such mutations within the 50-UTR
on virus viability and growth in cell culture or susceptible host

animals. For BVDV, it has been shown that mutations within
domains Ia and Ib (upstream of the IRES) lead to a reduction in
virus replication within cells in culture and within infected calves
(Becher et al., 2000; Makoschey et al., 2004). Studies on the CSFV
strain Alfort have shown that insertion of a 44 nt non-viral
sequence into the loop of subdomain IIId2 (at nt 294) had no major
impact on virus growth in cells, however subsequent passage of the
virus lead to generation of a deletion mutant in which 29 of these
inserted nt were lost (Moser et al., 2001).

In a previous study (Friis et al., 2012), we introduced a range of
mutant IRES elements into a full-length cDNA of the Paderborn
strain of CSFV (Rasmussen et al., 2010). This genotype 2.1 strain has
been established to be of moderate virulence (Uttenthal et al.,
2003; Durand et al., 2009; Weesendorp et al., 2011). Viable viruses
were rescued from three different mutants containing modifica-
tions within subdomain IIIf of the IRES. These mutant viruses each
showed reduced growth characteristics in PK15 cells (Friis et al.,
2012). We have now analysed the effect of such modifications
within subdomain IIIf on the replication and pathogenicity of this
strain of CSFV in swine, the native host. To complement these

Fig. 1. Structure of the CSFV genome. (a) Genome organisation of CSFV indicating the location of the IRES and the individual protein coding regions. (b) Secondary structure
and sequence of the CSFV IRES. The location of stem 2 within the pseudoknot (subdomain IIIf) is marked by an oval.
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studies, we assessed the genetic stability of these mutant viruses
during serial passages in cells.

2. Materials and methods

2.1. Cells

Porcine kidney cells (PK15) cells were maintained in Dulbecco’s
Modified Eagles medium (DMEM) supplemented with 5% fetal calf
serum.

2.2. Bacterial artificial chromosomes (BACs)

The construction of a BAC (termed pBeloPader10) containing
the full-length CSFV Paderborn strain cDNA (Rasmussen et al.,
2010) and mutant BACs with modifications within the IRES region
of the CSFV genome have been described previously (Friis et al.,
2012). The coding sequence of pBeloPader10 (GenBank Accession
number GQ902941) differs from the parental CSFV strain Pader-
born sequence (GenBank Accession number AY072924) at 6 nt
positions. These nt substitutions result in the following changes (aa
substitution, protein): C4136U (H1255Y, NS2); U7238C (Y2289H,
NS4A); U7853A (Y2494N, NS4B); C10582U (silent, NS5B);
G10989A (G3539E, NS5B) and G11864A (G3831R, NS5B). Three
mutant BACs derived from pBeloPader10 containing additional
modifications within subdomain IIIf (the pseudoknot) of the IRES
element (termed PaderS2m6, PaderS2m7 and PaderS2m8) were
also used in this study. Viruses rescued from two of these mutants,
vPaderS2m6 and vPaderS2m7, were described previously by Friis
et al. (2012). The PaderS2m8 clone was prepared as for the other
mutants (as described by Friis et al., 2012). No analysis of the IRES
activity of this mutant has been performed.

2.3. Preparation and passaging of viruses in cell culture

Recovery of infectious virus from the wt and mutant BACs and
the determination of virus titers were performed as previously
described (Friis et al., 2012). Virus rescued from the pBeloPader10
was termed vPader10 and the viruses with mutations in the stem 2
of the pseudoknot that were rescued from the modified BACs were
termed vPaderS2m6, vPaderS2m7 and vPaderS2m8 respectively.
Viruses at passage 4 (P4) were used for the animal inoculation (see
below).

The vPader10 and mutant viruses were passaged a total of 20
times in PK15 cells using the same procedure in each case, i.e. cells
in a 24-well plate were infected with 150 ml of the previous virus
supernatant and harvested after 3 days and stored at !80 "C. RNA
was extracted from 1 ml of cell supernatant generated after 4, 5, 10
and 20 passages (P4, P5, P10 and P20) using TRIzol LS reagent
(Invitrogen) and RNeasy Mini Kit (Qiagen) as previously described
(Rasmussen et al., 2010). Total RNA was eluted from the column
three times with 30 ml nuclease free water.

2.4. cDNA synthesis and sequencing

Genome length cDNA was generated from the RNA by RT-PCR
essentially as described previously (Rasmussen et al., 2010) using
an adapted forward primer (50-TAATACGACTCACTATAGTATAC-
GAGGTTAGCTCGTCCTCGTGTACAACATTGGACAAACTAAAATTCC-
GATTTGG-30). The sequences of the 50-UTRs were determined by
Sanger sequencing, using PCR products of 381 bp, that were
generated using the primers Pader47F and Pader427R (Friis et al.,
2012). In addition, the genome length amplicons, corresponding to
the complete genome of CSFV, were consensus sequenced by Next
Generation Sequencing (NGS) as described previously (Fahnøe
et al., 2014). The consensus sequence of the pBeloPader10

(GenBank Accession number GQ902941) or a subdomain IIIf
mutant BAC was used as the reference for mapping of reads.
Samtools, VarScan 2 (Koboldt et al., 2012) and VCFtools (Danecek
et al., 2011) were used, in succession, in order to generate
consensus sequences from the mapped reads. Subsequently,
consensus sequences were aligned using MAFFT in Geneious
(Biomatters, Auckland, New Zealand). Finally, a combination of
Samtools (Li et al., 2009), Lo-Freq (Wilm et al., 2012) and SnpEff
(Cingolani et al., 2012) was used for downstream SNP analysis.

2.5. Animal inoculation and sampling

A total of 15 cross-bred weaner pigs (nine to ten weeks old)
were divided into three equal groups and housed in separate
sections of BSL3 animal isolation facilities. Experimental proce-
dures and animal management protocols were carried out in
accordance with the requirements of the Danish Animal Experi-
mentation Inspectorate. Three pigs from each group were exposed
to approximately 7 # 106 TCID50 of the virus preparation (P4) in
2 ml of DMEM via the intranasal route. Groups 1 (pigs 1–3) and 2
(pigs 6–8) were inoculated with the mutant viruses vPaderS2m6
and vPaderS2m8 respectively, whereas pigs in group 3 (pigs 11–13)
were inoculated with vPader10. In addition to the three inoculated
pigs, each group also included two non-inoculated pigs (group 1:
pigs 4–5; group 2: pigs 9–10 and group 3: pigs 14–15) that were
susceptible to virus transmission from the inoculated animals.
Blood, serum samples and nasal swabs were collected on post-
infection day (PID) 0, 3, 4, 5, 6, 7, 10, 14, 18, 21, 25, 28 and 33. Serum
samples were used to detect the presence of CSFV-specific
antibodies whereas EDTA-stabilised blood samples were used to
determine changes in the B-cell population size (see below) and
viral RNA accumulation. Nasal swabs were dissolved in 0.85% NaCl
and used to determine virus shedding by measuring the level of
viral RNA (as described below).

2.6. Clinical scoring and temperature measurements

Individual pigs were subjected to daily examination; body
temperature and clinical signs were scored throughout the entire
experimental period (PID !3 to 34). Pigs with a body temperature
$40 "C were considered to have a fever. In order to obtain a semi-
quantitative measure of clinical signs between the 3 groups, all
pigs were scored using a modified version of the clinical scoring
(CS) system developed by Mittelholzer et al. (2000). Clinical
parameters were evaluated and scored on a graded 0–3 point scale,
where 0 reflects the absence of clinical symptoms and 3 represents
a severe level of CSF symptoms. A maximum score of 30 could be
obtained. Moribund animals were euthanised according to
predetermined humane endpoints.

2.7. Counting of B-cells

Counting of B-cells in EDTA-stabilised blood samples was
carried out by single colour flow cytometry, as described
previously (Nielsen et al., 2003). All samples were counted twice
and data are presented as mean values.

2.8. Quantitative analysis of viral RNA load from EDTA-stabilised blood
and nasal swabs

RNA was extracted from 100 ml of EDTA-stabilised blood
samples or the dissolved nasal swab samples using a MagNA Pure
LC robot with a MagNA Pure LC Total Nucleic Acid kit (Roche) and
eluted in nuclease free water (50 ml). Two distinct quantitative RT-
PCR (RT-qPCR) assays, to determine the level of CSFV RNA, were
performed as described previously (Rasmussen et al., 2007;
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Hoffmann et al., 2005). Samples with a Ct value lower than a
threshold value of 40 were considered positive. Data are presented
as 40 – sample Ct values.

2.9. Serological analysis of serum samples

The presence of CSFV-specific antibodies in serum samples was
detected using a blocking enzyme-linked immunosorbent assay
(ELISA) as described (Have, 1984). Absorbance was measured at
450 nm on a Multiscan RC instrument (Thermo Scientific) and data
presented as percentage optical density (ODp) calculated in
accordance with the following formula: ODp = (sample OD ! 100)/
(mean ODmax). The ODp values, lower than a threshold value of 70,
were considered positive for antibodies against CSFV.

3. Results

3.1. Properties of the mutant CSF viruses within infected pigs

Our previous studies on the rescued CSFV mutants vPaderS2m6
and vPaderS2m7 showed that these mutant viruses, with
modifications in the pseudoknot (subdomain IIIf), displayed
reduced growth rates in PK15 cells compared to the parental
vPader10 (Friis et al., 2012) even though the apparent differences
in IRES activity were not significant (>90% of wt activity). To
characterise the effect of these modifications on the replication of
the viruses within the natural host of CSFV, we tested two of the
rescued mutant viruses (vPaderS2m6 and vPaderS2m8) in parallel
with the unmodified vPader10, all at P4, within pigs. Body
temperatures and clinical signs were monitored on a daily basis for
each pig in all three groups (see Fig. 2). None of the pigs exposed to
either of the mutant viruses had any increase in body temperature
during the experimental period and they showed no other clinical
signs of infection (data not shown). In contrast, pigs 12 and 13,
inoculated with the vPader10, had fever at PID 10 that declined
over the following three days (Fig. 2a). However, at PID 14 a second
increase in body temperature was detected in the same two pigs.

This increase in body temperature was followed by the appearance
of other typical clinical signs of CSF beginning from days 16 and 18
for pigs 13 and 12, respectively (Fig. 2b). These signs developed
over the next few days to include lack of appetite, depression,
petechiae on the ears, body and legs or larger haemorrhagic
patches in the skin, diarrhea and ataxia. The elevated body
temperature along with the other clinical signs persisted until pig
13 died on PID 21 while pig 12 died on PID 23. A similar biphasic
increase in temperature was observed in pig 14 (a contact pig) with
an initial onset of fever on PID 23 (Fig. 2a) and recurrence from PID
25 until euthanised (due to animal welfare reasons) on PID 32. As
with the inoculated pigs, pig 14 displayed characteristic clinical
signs of CSF but their occurrence was already apparent at the time
of the initial increase in body temperature and persisted until
death (Fig. 2b). From these results, it appears that the rescued
vPader10 has a clinical incubation period of ca. 10 days before an
initial increase in body temperature is observed (pigs 12 and 13).
Furthermore, a similar increase in body temperature in the contact
pig 14 occurred about 10 days later suggesting that the shedding
and transmission of vPader10 from the inoculated pigs (pigs 12 and
13) occurred from about the time of the onset of fever.

3.2. Determination of the replication and shedding of CSFV in pigs

To follow the replication of the CSF viruses in the pigs, RT-qPCR
assays were performed on RNA isolated from EDTA-stabilised
blood. Each of the animals (pigs 11–13) inoculated with vPader10
had significant levels of viral RNA in the blood for several days
(Fig. 2c). Indeed, viral RNA could be detected in the blood as early as
PID 3 in these pigs. Transmission of this virus to the contact pigs
occurred and RNA was also detected in the blood of these contact
animals. The viremia was maintained until death for pigs 12, 13
(inoculated) and 14 (contact) while clearance of the virus from the
blood occurred in pigs 11 (inoculated) and 15 (contact) after a
period of viremia which lasted for about 10 days (Fig. 2c). In
contrast, CSFV RNA was only detectable, at very low levels, in the
blood of individual animals (pigs 3 and 6) from each of the groups

Fig. 2. Characterisation of the rescued vPader10 infection in pigs. The rescued vPader10 was inoculated into three animals (pigs 11–13, filled symbols) that were in contact
with two others (14 and 15, open symbols). Rectal temperatures were monitored on a daily basis (a) and clinical scores determined (b). The clinical scores were assessed, using
a modified version of the scoring system described previously (Mittelholzer et al., 2000), on a daily basis until death or euthanasia (indicated by y) or the end of the experiment
(PID 35). Blood (c) and oral swab (d) samples were collected on the indicated days and assayed for the presence of CSFV RNA using RT-qPCR (presented as 40-Ct values). Similar
results were obtained using the assays described by Rasmussen et al. (2007) (as presented) and by Hoffmann et al. (2005) (data not shown). Note the animals inoculated with
vPaderS2m6 (pigs 1–3) and vPaderS2m8 (pigs 6–8) did not display any clinical signs of infection and only occasional, low level viremia (see text).
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inoculated with the vPaderS2m6 or vPaderS2m8 mutants respec-
tively (data not shown). In pig 6, vPaderS2m8 was detected on PIDs
14 and 18 and in pig 3 (inoculated with vPaderS2m6) viral RNA was
detected on PID 28 only. It should be noted that viral RNA may have
been present on days in between samplings. No viral RNA was
detected in the pigs kept in contact with those inoculated with
either of the mutant viruses (data not shown). In pigs 12, 13 and 14,
the presence of viral RNA in the blood was observed for five to
seven days prior to the increase in body temperature (compare
Fig. 2a and c). During the period of elevated body temperature,
these pigs had high levels of viral RNA in the blood, which persisted
until they died or were euthanised.

To determine the period of virus excretion from the pigs, total
RNA from nasal swabs was isolated and analysed for the presence
of CSFV RNA by RT-qPCR. Nasal excretion from animals inoculated
with either of the modified viruses was only detected, at a very low
level, from a single animal, pig 8 (inoculated with vPaderS2m8) on
PID 10 (not shown). In contrast, nasal excretion of the vPader10
was readily detected in pigs 12 and 13 from PID 10 through to PID
21 (Fig. 2d); as indicated above, these two animals died on PID 23
and 21, respectively. Furthermore, in the contact pigs, virus
excretion was observed at a low level from pig 11 on PID 21 and at a
higher level in pig 14 on PID 24 and 28 (prior to euthanasia on PID
32).

3.3. Serological responses in pigs infected with vPaderS2m6,
vPaderS2m8 and vPader10

The serological response to infection with the viruses vPa-
derS2m6, vPaderS2m8 and vPader10, was determined using a
blocking ELISA (Fig. 3). Among the pigs inoculated with
vPaderS2m8, the presence of CSFV-specific antibodies could be
detected on PID 14 in pig 6 (Fig. 3b). On PID 18, pig 7 had also
seroconverted as had pig 8 by PID 21. Interestingly, one contact pig
in this group (pig 9) also seroconverted against CSFV, this was
detected from PID 21 through to PID 33 indicating that transmis-
sion of the vPaderS2m8 between pigs had occurred even though
this virus failed to induce any clinical signs and there was no
detectable viremia in this pig. In all pigs inoculated with
vPaderS2m6 seroconversion against CSFV was detected by PID
24. However, no CSFV-specific antibodies could be detected in any
of the contact pigs in the vPaderS2m6 group during the
experimental period (Fig. 3a) indicating a lack of transmission
of this mutant virus. In contrast, in pigs inoculated with vPader10
only one inoculated animal (pig 11) showed significant levels of
CSFV-specific antibody in the serum (Fig. 3c), this pig also cleared
the infection as judged by the loss of viremia (Fig. 2c). The lack of
seroconversion in the other animals in this group corresponds well
with the fact that pigs 12, 13 and 15 all had severely depressed
levels of circulating B-cells (see below) and died relatively quickly.

3.4. Depletion of B-cells in CSFV-infected pigs

The level of circulating B-cells in the pigs was determined by
flow-cytometry (Fig. 4). The pigs inoculated with vPader10 showed
a rapid decline (by PID 3) in circulating B-cells (Fig. 4c). In pigs 12
and 13, the levels of B-cells in the blood remained low until the
animals died on PID 23 and PID 21, respectively. However, recovery
of the B-cell numbers occurred in pig 11 that survived the infection
(and seroconverted (Fig. 3c)). Similarly, the in-contact animals in
this group also had a low level of B-cells by PID 18 consistent with
the later appearance of viral RNA in the blood of these animals
(Fig. 2c). Recovery of B-cell numbers in one of these animals (pig
15) was also observed in accord with the clearance of the virus
from the blood (see Figs. Fig. 2c and Fig. 4c). There were transient
declines in circulating B-cells in pigs inoculated with vPaderS2m6

and vPaderS2m8 at about PID 6 (Fig. 4a, b) but the levels returned
to normal and remained relatively constant in the in-contact
animals.

3.5. Stability of the vPader10 genome sequence during replication in
pigs

The vPader10, at P4, was used for the infection of pigs as
described above. Viral RNA was extracted from the inoculum and
also from the blood of pigs 12 (at PID 21), 13 (at PID 21) and 14 (at
PID 28) when high viremia had been detected; full-length
amplicons were generated by RT-PCR and then sequenced using
NGS (Tables 1 and 2). Substitutions at nt 4136 and 11864 relative to
the pBeloPader10 cDNA, were present in nearly 100% of the
genome populations present in all three pigs at either PID 21 or PID
28 (Table 1). In the inoculum (P4), the G11864A was present in 97%
of the genomes. However, in contrast, the C4136U change was only
present in 8% of the genomes present in the P4 virus stock (Table 2).
The C4136U change, results in the amino acid substitution H1255Y
in the NS2 protein while the G11864A change results in the amino
acid substitution G3831R within the NS5B protein (the RNA-
dependent RNA polymerase). These two amino acid substitutions
are reversions to the parental CSFV strain Paderborn sequence
(GenBank Accession number AY072924) from the cloned sequence
present within the pBeloPader10 cDNA (GenBank Accession
number GQ902941). Insufficient viremia occurred in pigs inocu-
lated with the mutant viruses to permit sequencing of the virus
present within these animals.

3.6. Genetic stability of IRES mutations during serial passage in cell
culture

Having identified two sequence changes in the virus recovered
from the vPader10-infected pigs (12–14) compared to the parental
cDNA, we wanted to determine if these, and/or other, adaptations
occurred during growth of this virus and the mutant viruses in cell
culture. The ability of the mutant viruses to grow in cell culture, but
not in pigs, clearly extended the range of the analysis that could be
performed. To explore the genetic stability of the viral genomes
during virus replication, serial passages of mutant viruses were
performed, in parallel, in PK15 cells. The viruses used for these
experiments were vPader10, vPaderS2m6, vPaderS2m7 and
vPaderS2m8 respectively (see below). At passage P5, P10 and
P20, RNA was extracted from cell supernatants and the level of
CSFV RNA was determined by RT-qPCR (Fig. 5). At P10 and P20 very
similar levels of CSFV RNA were detected in each virus harvest but
at P5 the mutant viruses, vPaderS2m6 and vPaderS2m7, produced
less viral RNA than vPaderS2m8 and vPader10. Amplicons
corresponding to the complete 50-UTR were generated by RT-
PCR from the P4, P5, P10 and P20 virus stocks and sequenced. The
sequences of the region including the pseudoknot are shown in
Fig. 6a–d. Each of the mutant viruses were designed to have 7 or 8
nucleotide substitutions within the stem 2 of the pseudoknot
while retaining at least 4 of the 5 base pairs indicated in Fig. 6e. The
rescued mutant viruses, even by P4, had adapted from the
transcribed sequence at up to 3 positions within stem 2 of the
pseudoknot. The resultant sequences kept the predicted secondary
structure although the base pairing is different from the parental
structure (Fig. 6e). In addition, vPaderS2m6 has 2 additional nt
changes just upstream of the initiation codon but the significance
of these changes is not known. The sequences of vPader10,
vPaderS2m6 and vPaderS2m7 remained constant in this non-
coding region from P4 through to P20. In contrast, a single nt
substitution occurred within the pseudoknot of vPaderS2m8
between passage 10 and 20 (see Fig. 6d). This sequence change
is predicted to restore the single base pair that has been disrupted
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within the pseudoknot (see Fig. 6e). The activity of the IRES within
the PaderS2m8 has not been determined but it is also expected to
be close to wt since the rescued virus grew efficiently. However, it
should be noted that within the rescued vPaderS2m8, the
disrupted base pair (G A at P0) had adapted to a G-U base pair
at P4 and changed again to a G-C base pair between P10 and P20
(the wt sequence is an A-U base pair).

To determine if other adaptations occurred within these viruses
during these serial passages, full-length cDNA amplicons were

generated from the viruses grown in PK15 cells and sequenced
using NGS to determine both the consensus sequence and, in
addition, the population structure within the virus stocks. It should
be noted that the terminal sequences of the genome (both in the 50-
UTR (nt 1–59 and 30-UTR (nt 12262–12296)) are determined by the
primers used in the RT-PCR and may not correspond exactly to the
viral RNA sequence. This sequence analysis confirmed the
sequence changes identified within the 50-UTR within the mutant
viruses (see Table 2). In addition, it also revealed shared
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Fig. 3. Seroconversion in CSFV-infected pigs. Serum samples from inoculated pigs (filled symbols) or in-contact pigs (open symbols) collected on the indicated days were
assayed for antibodies against CSFV using a blocking ELISA. ODp (%) values lower than 70% (threshold indicated by dotted line) are considered positive. The viruses used for
inoculation were vPaderS2m6 (a), vPaderS2m8 (b) and vPader10 (c). The experiment was terminated on PID 35 but some animals died or were euthanised earlier (indicated
by y).
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Table 1
Sequence adaptations in vPader10 during replication of rescued CSFV in pigs.

vPader10 in infected pigs

Region nt position pBeloPader10 (GQ902941) Variant Pig 12 PID21 (%)a Pig 13 PID21 (%)a Pig 14 PID28 (%)a aa change Paderborn wt (AY072924)

NS2 4136 C U 99 99 99 H1255Y U
NS5B 11864 G A 100 100 100 G3831R A

a The percentage (%) of each variant at each nt is only given if the level of this variant was present at a level of 10% or higher at some stage. Values are given to the nearest
integer.
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Fig. 4. Depletion of B-cells in CSFV-infected pigs. B-cells were counted (by flow cytometry) in EDTA-stabilised blood samples collected on the indicated days from inoculated
pigs (filled symbols) or in-contact pigs (open symbols). The viruses used for inoculation were vPaderS2m6 (a), vPaderS2m8 (b) and vPader10 (c). The experiment was
terminated on PID 35 but some animals died or were euthanised earlier (indicated by y).
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adaptations at nt 4136 (C to U, resulting in the amino acid
substitution H1255Y within the NS2 protein) and at nt 11864 (G to
A, resulting in the substitution G3831R within the NS5B protein)
(see Fig. 7 and Table 2). These two amino acid substitutions
occurred in all four virus populations but with different kinetics

and, as indicated above, are reversions to the parental CSFV strain
Paderborn sequence.

The reversion in the NS5B coding region of the vPader10
sequence was present in >90% of the virus population at P4 and P5
and by P10 it was found in essentially 100% of the virus population

Table 2
Sequence adaptations during sequential passages of rescued CSFVs in PK15 cells.

vPader10 in PK15 cells

Region nt position pBeloPader10 (GQ902941) Variant P4 (%)a P5 (%)a P10 (%)a P20 (%)a aa change Paderborn wt (AY072924)

NS2 4136 C U 8 25 78 77 H1255Y U
NS5B 11864 G A 97 99 99 99 G3831R A

vPaderS2m6 in PK15 cells

Region nt position pBeloPader10 (GQ902941) Variant P4 (%) P5 (%) P10 (%) P20 (%) aa change Paderborn wt (AY072924)

50-UTR 326 A U 99 100 100 99 * A
327 G C 100 99 100 100 * G
328 A U 99 95 99 100 * A
329 G C 99 99 98 99 * G
356 C G 100 100 100 100 * C
357 U A 99 96 100 100 * U
358 C G 100 100 100 100 * C
359 U A 99 100 99 100 * U
371 C A 99 95 99 99 * C
372 A U 98 95 99 99 * A

NS2 4136 C U 3 3 – 70 H1255Y U
NS5A 9082 C U – – – 13 — C
NS5B 11864 G A – 16 100 99 G3831R A

vPaderS2m7 in PK15 cells

Region nt position pBeloPader10 (GQ902941) Variant P4 (%) P5 (%) P10 (%) P20 (%) aa change Paderborn wt (AY072924)

50-UTR 326 A U 100 100 100 100 * A
327 G C 100 100 100 100 * G
328 A U 94 100 100 100 * A
329 G C 94 100 100 100 * G
330 G A 99 99 99 98 * G
356 C G 100 100 100 100 * C
357 U A 99 99 99 99 * U
358 C G 100 100 100 100 * C
359 U A 100 99 100 100 * U
372 A U 99 99 99 99 * A

C 1027 G A 16 14 – – — G
Erns 1325 C U 14 16 – – — C
E1 2164 G U – – 18 3 — G

2194 A G – – 51 59 — A
NS2 4136 C U – – – 13 H1255Y U
NS5B 10913 G U 14 13 – – D3514Y G

11864 G A – – 99 99 G3831R A

vPaderS2m8 in PK15 cells

Region nt position pBeloPader10 (GQ902941) Variant P4 (%) P5 (%) P10 (%) P20 (%) aa change Paderborn wt (AY072924)

50-UTR 207 G A – – 13 65 * G
326 A U 97 91 97 98 * A
327 G C 96 90 94 97 * G
328 A G 96 90 94 97 * A
329 G C 96 90 94 97 * G
356 C G 100 93 100 99 * C
357 U C 9 5 27 79 * U
358 C G 99 93 100 99 * C
359 U A 99 92 99 99 * U

Npro 398 U C 86 87 71 18 — U
668 C U – – – 16 H99Y C

C 1115 G A 8 81 61 15 E248K G
E1 2164 G U – 19 3 9 — G
NS2 4136 C U – 6 3 77 H1255Y U
NS3 6488 G U – – 1 48 A2039S G
NS5B 11864 G A 92 98 100 99 G3831R A

*In the column ‘aa change’ indicates the change is in the non-coding region.
–In the column ‘aa change’ indicates the nt substitution is synonymous.

a The percentage (%) of each variant at each nt is only given if the level of this variant was present at a level of 10% or higher at some stage. Values are given to the nearest
integer.
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(Fig. 7b and Table 2). The adaptation occurred with similar kinetics
in vPaderS2m8, as for vPader10 (with !98% change at P5), but the
change took more passages to reach high levels within vPa-
derS2m6 and vPaderS2m7 (Fig. 7b). In both cases, less than 20% of
the virus populations had this adaptation at P5 but by P10 it had
become dominant.

The C to U substitution at nt 4136 occurred more slowly than the
nt 11864 change in all of the viruses and it also occurred more
slowly in each of the sub-domain IIIf (pseudoknot) mutant viruses
than in vPader10 (Fig. 7a, Table 2). In vPader10, the C4136U change
reached a level of about 80% by P10 and remained at that level at
P20 whereas the IRES mutant viruses retained the initial sequence
at P10 but about 80% of the vPaderS2m6 and vPaderS2m8
populations had acquired the nt change by P20. In contrast, less
than 20% of the vPaderS2m7 population had this substitution by
P20.

Several other nt changes occurred at a low level but did not
accumulate during passage in cell culture, e.g. nt 6682 was
changed from A to G in about 2–3% of the vPaderS2m8 genomes
both at P5 and P10 (not shown). In contrast, in the vPaderS2m8, a G
to A substitution was present at nt 1115 in about 80% of the reads at
P5 but this had declined to about 60% by P10 and 15% by P20. Thus,
it seems that this change (resulting in an E to K amino acid
substitution at residue 248 of the C protein) was unfavoured but
clearly the selection is not very strong. The significance of this
mutation is not known. It should be noted that the three other aa
residues that differ between the rescued vPader10 and the field
strain virus did not revert (see Methods section).

4. Discussion

The CSFV IRES has a key role in virus replication since it directs
the initiation of protein synthesis on the viral RNA. It is apparent
that certain mutations in the pseudoknot, which have little or no
effect on the translational efficiency of the IRES in cell culture, can
diminish the ability of the virus to replicate in cells (e.g. see Friis
et al., 2012). In this study, mutant CSFVs, which have multiple
mutations within subdomain IIIf of the IRES, have been tested for
their ability to replicate and cause disease within their natural host
animal, the pig. The viruses containing these mutations in the IRES
can be grown successfully in cell culture but they failed to replicate

significantly in pigs. Thus, it was not possible to determine the
selection pressure operating on the mutations in the IRES in
infected animals.

However, by analysing the virus populations, using NGS, during
growth of the virus in cell culture, it was possible to identify
adaptations that occurred during this process. Only one sequence
change was observed to occur within the IRES between the rescued
viruses at P4 and P20. This single change was at nt 357 within the
vPaderS2m8. This change occurred between P10 and P20, is
predicted to enhance the stability of the base-pairing within the
stem 2 of the pseudoknot (see Fig. 6e). However, certain nt changes
occurred between the steps of RNA transcription and the analysis
of the rescued virus at P4. It is apparent that the vPaderS2m6
contained, at P4, two substitutions at nt 371 and 372 plus 3 nt
changes within the stem 2 (at nt 328, 357 and 359) while
vPaderS2mut7 had a change at nt 330 compared to the parental
sequence. In addition, within the coding region, non-synonymous
mutations occurred at nt 4136 and nt 11864 in each of the mutant
viruses and also in the rescued vPader10 strain. These amino acid
changes correspond to reversions to the consensus sequence of the
parental Paderborn strain of CSFV from the variant sequence
present within the pBeloPader10 clone. These coding changes
(within the NS2 (H1255Y) and NS5B (G3831R) coding regions)
occurred independently in all 4 rescued viruses in cell culture, thus
there appears to be significant selection pressure for them,
especially for the change in NS5B (Table 2). In vPader10 and
vPaderS2m8 the reversion at nt 11864 was present in >92% of the
virus population at P4 (as used for the animal experiment) but was
essentially absent in vPaderS2m6 and vPaderS2m7 at P4 (Fig. 7b,
Table 2). However, by P10 when vPaderS2m6 and vPaderS2m7 had
gained the ability to replicate more efficiently (Fig. 5), the G11864A
change is present within !99% of the genomes (Fig. 7b, Table 2).
Interestingly, the change within the NS2 coding region accumu-
lated more slowly and reached a maximal level within the
populations of around 70–80% for each of the rescued viruses at
P20 except it only reached 13% of the population in vPaderS2m7
(Fig. 7a and Table 2). These coding changes in NS2 and NS5B
appeared at very high levels in the vPader10-infected pigs (Table 1)
(and only the G3831R change in NS5B was present at significant
levels in the inoculum) indicating that these reversions are
important for growth in the native host. A different coding change
within the NS5B (D3431G) of rescued viruses based on the Riems
vaccine strain of CSFV has previously been observed leading to a
reversion to the parental form in two independent rescued CSFV
populations (Rasmussen et al., 2013). However, the effect of these
specific reversions on the function of these proteins is not currently
known.

Since the vPader10 is rescued from a unique cDNA clone, it is
genetically defined and thus represents a good starting point for
determining specific changes to the virus sequence that affect virus
replication and pathogenicity. However, it is apparent that, by the
time the virus was rescued from the RNA transcripts, it already
represents a population of closely related viruses.

The multiple mutations within stem 2 of the pseudoknot
(subdomain IIIf) within the IRES were clearly sufficient to
attenuate the virus in animals, at least for vPaderS2m8 (since
the NS5B change had already occurred in this virus inoculum), but
did not produce a significant block on replication efficiency in cells
(Fig. 5). It is not clear what factors are suppressing the replication
in vivo. It may be that this region within the IRES has functions
unrelated to translation initiation.

A single nt adaptation occurred in the IRES during passage of
vPaderS2m8 in cell culture, between passage 10 and 20. This
change is predicted to enhance the stability of the stem 2 within
the subdomain IIIf; a G A mismatched pair in vPaderS2m8 adapted
to make a G-C base pair (this is stable but is different from the A-U
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Fig. 6. Sequences of IRES elements following multiple virus passages in cell culture. The IRES sequences of vPader10 (a), vPaderS2m6 (b), vPaderS2m7 (c) and vPaderS2m8 (d)
following passage in cell culture were identified by Sanger sequencing and confirmed by NGS (see below). The sequence differences from wt are shown whereas identical nt
are indicated by a (.). The predicted secondary structures of the stem 2 within subdomain IIIf of these different viruses are shown (e).
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base pair present in the wt IRES, see Fig. 6e). It can clearly be
difficult for a virus to adapt to multiple nt changes since
intermediates in the reversion process may be very defective
and hence will not survive long enough to adapt further. It is
interesting to note that when a 44nt insertion was introduced into
the subdomain IIId2 the resultant virus appeared to grow as well as
the wt virus (Moser et al., 2001). This subdomain is clearly not
essential for IRES activity; indeed the HCV IRES lacks this feature.
However, during passage in cells a deletion of 29nt occurred within
this added sequence indicating that this insertion mutant is
unstable. It appears that the repeated passage of mutant viruses
within cells is an efficient system for identifying sub-optimal
sequences within the viruses that can be selected against even
when the selection pressure appears rather modest.

From the information described above, it is apparent that at
least in the case of vPaderS2m8, the block on replication in pigs
was not due to the NS5B change since >90% of the virus had already
reverted to wt at this position in the P4 virus (see Fig. 7b). It should
be noted that there was not a complete block on virus replication
since the animals inoculated with these mutant viruses did
seroconvert against CSFV (Fig. 3a,b) and evidence was obtained
that transmission of vPaderS2m8 occurred to one animal (pig 9) as
judged by seroconversion in an in-contact animal (Fig. 3b). The
mutant viruses failed to induce any clinical signs of disease and
only transient, very low level, viremia was detected in single
animals and thus they are considered attenuated.

The incubation period (of ca. 10 days) before an initial increase
in body temperature and the observed clinical signs in pigs
inoculated with the vPader10, at P4, are comparable to previous
findings with wt Paderborn isolates (Uttenthal et al., 2003; Durand
et al., 2009; Weesendorp et al., 2011). This demonstrates that the
rescued virus, with the two reversions to wt in NS2 and NS5B (as
described above), has properties that closely resemble the
moderate virulence of the parental virus strain. The early loss of
circulating B-cells (Fig. 4) seen in the vPader10-infected pigs is
consistent with earlier studies using virulent strains of CSFV
(Summerfield et al., 2001). The mutant viruses (vPaderS2m6 and
vPaderS2m8) induced only a transient decline in circulating B-cells
as observed previously in pigs with mild clinical disease (Nielsen
et al., 2010).

The ability to make precise modifications within the virus
genome, to rescue the modified viruses and then follow the
adaptation of the viruses throughout the entire genome during the
course of virus replication, at a high level of sensitivity (sub-
consensus) using NGS, is a very strong combination of techniques.
This enables the identification and characterisation of key
determinants of virus replication in cells and pathogenicity in
host animals.
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Abstract 

The RNA genome of classical swine fever virus (CSFV) contains multiple conserved structural 

elements directing protein synthesis and viral replication. Characterisation of such structural 

elements provides valuable insight into the virus life cycle and mechanisms underlying viral 

RNA replication. Genetically defined viruses and self-replicating (non-infectious) replicons 

encoding a luciferase reporter protein were used for the analysis of virus replication. Use of 

replicons permits a quantitative assessment of the replication efficiency of wt and mutant RNAs. 

The mutant RNAs contained targeted modifications in a motif located within the coding region 

for the RNA-dependent RNA polymerase (NS5B). Introduction of specific silent mutations into 

this motif resulted in a reduced replication capability compared to the wt replicon. However, 

when these same mutations were tested using full-length CSFV constructs, there was little 

difference in virus replication but an adaptive silent mutation in the structural CSFV protein 

E1 appeared upon passaging. Taken together, this study shows that a specific motif within the 

coding region of NS5B is important for viral RNA replication most likely through interactions 

with RNA elements within the virus genome or with host factors.  

 

Introduction 

Classical swine fever virus (CSFV) is a small, enveloped positive-sense RNA virus belonging to 

the Pestivirus genus within the Flaviviridae family. The genome consists of a single long open 

reading frame (ORF) flanked by untranslated regions (UTRs). The ORF is translated into a 

large polyprotein encoding 12 proteins comprising four structural proteins (C, Erns, E1 and E2) 

and eight non-structural proteins (Npro, P7, NS2, NS3, NS4A, NS4B, NS5A and NS5B). An 

RNA element located in the 5'-UTR, denoted the internal ribosome entry site (IRES), directs 

cap-independent initiation of protein synthesis (Fletcher & Jackson, 2002; Rijnbrand et al., 

1997). Besides this IRES function, the 5'-UTR may also contain cis-acting RNA elements that 

are important, not only for viral translation and replication, but also in regulating the switch 

between these processes.  
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Genome replication of positive-sense RNA viruses is regulated by cis-acting RNA elements and 

trans-acting factors (Li & Nagy, 2011; Liu et al., 2009). Regulatory cis-acting RNA elements are 

sequences or structures influencing recruitment of viral and cellular proteins; the proteins 

recruited to these structures are defined as trans-acting factors. Besides the local functions 

displayed by most cis-acting RNA elements, long-range interactions between distant RNA 

elements are known to regulate virus replication. Long-range interactions have been found in 

several members of the Flaviviridae family, including hepatitis C virus (HCV) (Diviney et al., 2008; 

Romero-López & Berzal-Herranz, 2009) and dengue virus (DENV) (Alvarez et al., 2005). In 

HCV, a domain termed 5BSL3.2, in the coding sequence for NS5B (the RNA-dependent RNA 

polymerase), has been shown to interact with IRES subdomain IIId (Romero-López & Berzal-

Herranz, 2009). This interaction is believed to be pivotal for the translation/replication switch. 

A similar interaction within the RNA genome of CSFV, which contains an IRES element 

resembling that of HCV, is highly likely. 

 

Introduction of mutations within the CSFV IRES domains II and III have been shown to 

reduce viral translation (Friis et al., 2012; Kolupaeva et al., 2000). IRES subdomain IIId1 is 

known to interact with the 40S ribosomal subunit but might be important for functions besides 

translation such as RNA replication since some mutations introduced into subdomains II and 

IIId1 caused inhibition of virus propagation with little apparent effect on IRES activity (Friis et 

al., 2012). 

The RNA secondary structure is strongly influenced by the primary sequence, since almost 10 

% of sequence positions, when randomly mutated result in structure changes (Fontana et al., 

1993; Schuster et al., 1994). Hence, introduction of synonymous (silent) mutations into the RNA 

genome might influence the secondary structure of the RNA concomitant with a change in cis- 

or trans-acting interactions. 

 

In the present study, a sequence motif within the coding region for the NS5B protein of CSFV 

has been identified, from sequence analysis, to have the capability of interacting with the IRES. 

The effect of making synonymous mutations in this motif on replication efficiency has been 

examined in the context of the replicon compared to the wild type (wt) virus. Furthermore, the 

same mutations have also been examined within the context of the infectious virus. 
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Methods 

Viruses and cells. Porcine kidney cells (PK15) were cultured in Dulbecco’s Modified Eagles 

medium (DMEM, Gibco) with 5 % foetal calf serum (FCS). The CSFV strain Paderborn was 

propagated in PK15 cells and used for the construction of an infectious cDNA clone (IC). 

Titration of CSFV was performed in 96-well plates (Costar, Cambridge, MA). After 3 days in 

culture, viral infectivity was assessed using an immunoperoxidase cell staining assay using the 

CSFV monoclonal antibody WH303. Titers were calculated according to the method of Reed 

and Muench and expressed as 50 % tissue culture infective dose (TCID50)/ml. Serial passages 

were performed in PK15 cells as described previously (Hadsbjerg et al., 2016) and RNA was 

extracted from 1 ml of cell supernatant generated after 1 and 5 passages (P1 and P5). RNA was 

extracted using TRIzol LS reagent (Invitrogen) and the RNeasy Mini Kit (Qiagen) and eluted 

from the column three times with 30 µl nuclease free water as previously described (Rasmussen 

et al., 2010).  

 

Construction of CSFV mutants. The CSFV mutants were constructed in replicons and as full-length 

constructs. The replicons containing the Gaussia luciferase (Gluc) coding sequence were based 

on the previously described rPad2GL construct (Risager et al., 2013). For the full-length 

constructs, an IC of the virulent strain Paderborn termed pBeloPader10 was used as a template 

to obtain all cDNA IC constructs described. Silent modifications in a motif of NS5B were 

introduced into the cDNA clone (at nucleotide (nt) position 11917) and the Gluc replicon (at nt 

position 11173). Also for both replicons and full-length ICs, a single point mutation within the 

NS5B protein (G11864A resulting in the amino acid substitution G3831R) was introduced 

which corresponds to reversion to the parental CSFV Paderborn sequence (GenBank Accession 

number AY072924). To test for possible codon bias, similar mutations were introduced into a 

second motif upstream within NS5B at nt position 11050 for the ICs and nt position 10306 in 

the replicon constructs, respectively. 

The products were digested with DpnI (leaving only the newly amplified DNA) and then 

transformed into electro-competent DH10B E. coli cells. Colonies were grown on agar plates 

with chloramphenicol selection (15 µg/ml). Positive clones containing the introduced 

modifications were selected using sequence analysis around the NS5B motif using the BigDye 

Terminator v.3.1 Cycle Sequencing kit (Applied Biosystems) on an ABI3500 Genetic analyzer 

(Applied Biosystems). Each of the IC constructs and replicons were subsequently full-length 
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sequenced to verify that only the site-directed mutagenesis-induced changes were present. This 

was performed on an Ion Torrent PGM (Life Technologies) and the sequences were analysed 

using the CLC Genomics Workbench software (CLC bio). 

 

In vitro virus rescue and virus growth curves. Replicons and full-length genomic clones were in vitro 

transcribed using the MEGAscript T7 transcription kit (Ambion). RNA was transfected into 

PK15 cells by electroporation (180 V and 950 µF on a Gene Pulser XCell, Bio-Rad). Cells were 

seeded on 24-well plates and incubated at 37 °C with 5 % CO2. After 3 days, stocks of rescued 

virus were stored at -80 °C. Virus growth curves were generated by infecting PK15 cells 

(300,000 cell/ml) with 2 x 1010 viral genome copies. At 3h to 96h post-infection, cell samples 

were harvested and the genome copy numbers were measured by RT-qPCR (Hoffmann et al., 

2005). For visualisation of virus-infected cells, using immunofluorescence for the NS3 protein 

was carried as previously described (Friis et al., 2012). Briefly, at 72h post-infection cells were 

stained with the anti-CSFV NS3 monoclonal antibody WB103/105 (AHVLA Scientific) and 

Alexa Fluor 488-conjugated secondary antibody (Molecular Probes). Cell nuclei were visualised 

using DAPI (VectaShield) and images were taken with a BX63 fluorescence microscope 

(Olympus).    

 

Luciferase assay. At indicated time points after electroporation (3h, 24h, 48h and 72h), 50 µl of 

the medium was removed and frozen at -20 °C. After thawing, 20 µl was assayed by addition 

of 100 µl coelentarazine substrate diluted 1:100 in Renilla Luciferase Assay buffer (Promega). 

Luciferase activity was quantified in a Bio-orbit 1253 Luminometer (Aboatox) and 

measurements were normalised to the 3h post-electroporation signal.    

 

Results 

Identification of a motif in CSFV that influences viral replication  

To investigate whether a putative interaction in the CSFV RNA is important in viral 

replication, a triplet motif of three cytosines (CCC) within the NS5B coding sequence was 

modified to affect the possible interaction with the IRES domain IIId1 that contains a GGG 

motif. This NS5B motif was chosen as it shared a sequence similarity with the cis-acting RNA 

element 5BSL3.2 of HCV that has been shown to interact with the HCV IRES (Figure 1). 

Specifically, silent mutations in the CCC motif (CAC, CGC and CUC) were generated by site-
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directed mutagenesis of a CSFV replicon. Thus, any variation in replication efficiency should 

not be due to changes in RNA polymerase activity (as the amino acid sequence is unchanged) 

but rather due to interactions of the RNA with other parts of the viral genome or with trans-

acting factors. The effect on replication was measured using the luciferase reporter system. RNA 

transcripts generated in vitro were introduced into porcine PK15 cells by electroporation and 

the replication efficiency was assessed by measurement of luciferase activity. The Gluc replicon 

rPad2GL has previously been described by Risager et al., 2013 but it has a mutation in the NS5B 

coding region (A11864G resulting in the amino acid substitution R3831G) that negatively 

affects viral replication. To restore the replicative ability, this mutation was corrected in the 

replicon rPad to match that of the parental CSFV Paderborn strain. Luciferase activity of 

rPad2GL and the corrected rPad can be seen in Figure 2 and it is apparent that correction of 

the non-synonymous mutation in NS5B significantly increased the level of expressed luciferase. 

The rPad replicon was therefore used as a template to construct the CSFV mutants with 

modifications within the motif in NS5B. 

All three NS5B mutants (with synonymous mutations at nt position 11173) displayed 

significantly reduced viral replication compared to the wt replicon (Figure 3a). To exclude that 

this result was due to any codon bias, an analogous motif ca. 900 nt upstream (nt position 

10306), also containing three consecutive cytosines, was mutated in a similar manner. The 

luciferase measurements showed no difference in viral replication for these mutants indicating 

that it was not the motif in itself but rather the specific location in NS5B that was important for 

the replication change (Figure 3b). 

 

Growth of full-length CSFV mutants with modifications in a motif in NS5B 

To test whether the viral growth was also influenced by mutating the CCC triplet, the same 

silent mutations were introduced into full-length virus. After one passage in porcine cells, RNA 

accumulation was examined by RT-qPCR. The viral titers of all full-length constructs were 

comparable and can be seen together with the number of estimated virus genome copies in 

Figure 4c. Cells were infected with the same virus genome copies from each of the mutants and 

virus growth curves were performed. The virus rescued from the mutants located in the 

upstream motif (at nt position 11050) displayed the same growth characteristics as the wt virus 

vPad supporting the luciferase data (Figure 4b). No change in growth characteristics could be 

observed between vPad and the three NS5B mutants with a silent mutation (at nt position 
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11917) (Figure 4a). For the vPad.C11917U mutant, with a cytosine to uracil change (at nt 

position 11917) at the last base of the codon (resulting in no amino acid change within the 

protein), a higher level of viral RNA was present at 3h post-infection but as shown in Figure 4c, 

the level of viral RNA after one passage was comparable between the viruses giving no apparent 

reason for this difference.  

 

Viral infectivity was also determined by staining for the CSFV non-structural protein NS3. All 

of the mutants were found to be infectious and NS3 was observed in the cytoplasm of infected 

cells (Figure 5). Both the vPad.C11917U mutant and the vPad.C11050G mutant appeared to 

be less infectious than the vPad wt as they exhibited slightly less NS3 staining compared to the 

other NS5B mutants but this effect was not supported by the viral growth curves (Figure 4a). 

However, it should be noted that the immunostaining for the NS3 protein is a more qualitative 

than a quantitative assay. 

 

Genetic stability of full-length NS5B mutants during serial passage in cell culture  

The genetic stability of the NS5B mutants was examined after serial passages in cell culture. No 

changes were observed in the NS5B motif (including nt position 11917) or in the upstream motif 

(including nt position 11050) after 5 passages (data not shown). After one passage in PK15 cells, 

a synonymous secondary mutation at nt position 2164 within the E1 protein coding region 

occurred. The G2164U mutation was present in 41 – 74 % of the virus population at passage 

1 in mutants with changes at nt position 11050, whereas only the guanine mutant 

vPad.C11917G of the NS5B mutants had acquired this change by this time (Figure 6). After four 

additional passages, the majority of the virus population of both the wt virus vPad and all 

mutants exhibited the G2164U mutation. Hence, it seemed to be a cell culture adaptation. By 

performing single nucleotide polymorphism (SNP) analysis, no other nucleotide changes were 

present in the majority of the virus population.  

 

Discussion 

In recent years, significant advances have been made in identifying and characterising cis-acting 

RNA elements in positive-sense RNA viruses. These studies have revealed insights into the 

structure and function of these elements and their role in regulating the virus life cycle. 
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By introducing specific silent mutations into a motif within the NS5B coding region, three 

consecutive cytosines were shown to be required for efficient RNA replication (Figure 3). This 

effect is not associated with any change in the amino acid sequence of the RNA polymerase but 

is probably due to interactions within the RNA genome. A previous study has found that the 

extreme 3'-UTR of CSFV is involved in translation repression (Huang et al., 2012). Moreover, 

a possible long-range interaction between the last six nucleotides of the genome and the apical 

loop of domain IIId1 in the IRES was suggested. Using CSFV and bovine viral diarrhoea virus 

(BVDV), the IIId1 loop was blocked by antisense oligonucleotides or RNA aptamers and 

resulted in inhibition of the IRES-mediated translation (Kikuchi et al., 2005; Tallet-Lopez et al., 

2003). These results suggested that the IIId1 apical loop in CSFV and BVDV could be a control 

element for regulating viral gene expression. 

 

The mutants with modifications in the NS5B coding region were analysed for cell culture 

dependent adaptations. After 5 passages, the mutated positions in the NS5B motif (including nt 

11917) and the upstream motif (including nt 11050) remained unchanged. The NS5B motif 

(including nt 11917) is quite conserved for CSFV and comparison between 85 CSFV strains 

revealed only one strain with uracil instead of cytosine at that position. The same was true for 

the motif at nt position 11050, where only 1/85 CSFV strains had uracil and not cytosine. In 

contrast to the stability of these mutations, an adaptive silent mutation occurred in the E1 

protein coding region (G2164U) after only one passage in cell culture and this was present in a 

majority of the virus population for both wt and mutant CSFVs at passage 5 (Figure 6). The 

guanine at nt position 2164 is very highly conserved in CSFV. Notably, when 85 full-length 

CSFV strains were aligned 9 strains had an adenine at nt position 2164 instead of guanine. 

These 9 strains were all vaccine strains indicating that the guanine might be important for 

virulence. Furthermore, the position 2164 is close to the N-linked glycosylation site N3 in E1 

(Fernandez-Sainz et al., 2009). 

Interestingly, the G2164U adaptation was also found upon serial passaging of mutant CSFVs 

with multiple modifications in subdomain IIIf of the IRES but at a much lower level (Hadsbjerg 

et al., 2016). In vPader10 the G2164U adaptation was present in under 10 % of the virus 

population after 20 passages. The sequence of vPader10 differed from the parental CSFV 

Paderborn strain at nt position 11864 in NS5B (resulting in the amino acid substitution 

R3831G) causing a lower replication rate. However, nearly 100 % of the genomes had the 
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amino acid substitution G3831R present in the parental strain, when assayed after 4 passages. 

Hence, the lower presence of the G2164U adaptation in vPader10 compared to vPad and the 

mutant CSFVs with modifications in NS5B should not be caused by impaired replication. The 

G2164U adaptation was also present in the domain IIIf IRES mutants (Hadsbjerg et al., 2016). 

For two of the mutants, the G2164U mutation reached its highest level after passages 5 and 10, 

where approximately 20 % of the virus population exhibited the adaptation. However, after 20 

passages the adaptation was only present in 3 – 8 % of the virus genomes. Thus, the selection 

for G2164U was not as strong as seen in the present study. It is not known whether the G2164U 

adaptation is related to the mutations introduced into the coding region of NS5B. 

 

The significant effect on RNA replication seen for the replicons was not apparent in the full-

length constructs (Figure 3 and Figure 4). The lack of some of the structural proteins in the 

replicons might have an impact. It may be that the G2164U adaptation present in the full-

length constructs influenced the growth but had no effect on the replicons as they did not 

contain that part of E1. The structural proteins can influence virus replication as has been 

demonstrated in rhinovirus, a single stranded positive-sense RNA virus within the Picornaviridae 

family. A conserved cis-acting replication element was present in the coding sequence for the 

capsid protein VP2 that is essential for virus replication (Cordey et al., 2008).  

 

The RNA structure is important for proper function of the virus. Probing of the RNA secondary 

structure, using for example selective 2'-hydroxyl acylation analysed by primer extension 

(SHAPE) provides a quantitative way of determining RNA structure at a single nucleotide 

resolution (Merino et al., 2005; Wilkinson et al., 2006). SHAPE mapping of long-range 

interactions has been performed in a number of viruses including HCV (Tuplin et al., 2012), 

FMDV (Diaz-Toledano et al., 2016) and Mason-Pfizer monkey virus (MPMV) (Kalloush et al., 

2016). Whole-genome structure probing was attempted on two of the replicon constructs using 

SHAPE. However, in an initial experiment, it was not possible to obtain SHAPE probing which 

might be due to premature termination of the reverse transcriptase only yielding structure 

information from the 3'-end (data not shown). Thus, optimisation of the protocol for mapping 

of long-range interactions is needed. 

 



  52 

An extensive network of RNA-RNA interactions has been characterised for HCV but 

knowledge of RNA-RNA interactions within the CSFV genome is still scarce. Further 

understanding on these putative long-range interactions will provide valuable insight into 

mechanisms underlying viral RNA replication. The strategy employed here does not only apply 

to studies on CSFV but can be used to investigate the replication of a broad range of viruses.    
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Figures 

 
 

Figure 1. Proposed interactions between the IRES domain IIId1 and a motif in the coding 
region for NS5B. (a) A long-range RNA-RNA interaction is present between 5BSL3.2 and the IRES 
IIId domain of HCV. (b). Hypothesised interaction between a motif in NS5B and the IRES IIId1 domain 
of CSFV. In this study, mutations have been introduced into a CCC triplet in NS5B. Modified from 
(Huang et al., 2012). (c) Sequence similarity between the CSFV motif in the coding region of NS5B and 
the cis-acting RNA element 5BSL3.2 of HCV. Homology is observed within a motif consisting of 11 nt 
of which 8 nt are a direct match. 
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Figure 2. Reversion of a secondary mutation in NS5B to the parental sequence restores 
CSFV replication. A coding mutation in the NS5B protein of the Gaussia luciferase replicon rPad2GL 
(described by Risager et al., 2013) was corrected to match the parental CSFV Paderborn sequence 
(denoted rPad). Three independent experiments were carried out and measurements were normalised 
to the 2h post-electroporation signal. RLU, relative light units. 
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Figure 3. Viral replication of wt and mutant CSFV replicons within PK15 cells. PK15 cells 
were electroporated with RNA transcripts of wt and mutant CSFV replicons and at the indicated time 
points, samples of the medium were collected and assayed for Gluc activity. rPadD is a replication-
defective mutant that lacks a part of the coding region of NS5B and the entire 3'-UTR. The mock sample 
is uninfected without an RNA transcript. The results are based on three independent experiments and 
the measurements were normalised to the 3h post-electroporation signal. (a) Gluc activity of the wt 
replicon (rPad) and mutants with specific silent mutations (at nt position 11173) in a motif in NS5B. (b) 
Gluc activity of the wt replicon (rPad) and mutants with specific silent mutations (at nt position 10306) 
in a motif in NS5B. 
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Figure 4. Growth characteristics of wt and mutant CSFV ICs within PK15 cells. PK15 cells 
were electroporated with RNA transcripts of wt and mutant CSFVs from passage 1. (a) The growth of 
rescued wt virus and mutants with specific silent mutations (at nt position 11917) in a motif in NS5B as 
measured by RT-qPCR. (b) The growth of rescued wt virus and mutants with specific silent mutations 
(at nt position 11050) in a motif in NS5B using one-step growth curves as measured by RT-qPCR. (c) 
Viral titers and copy numbers were determined in virus harvests collected at 72h post-infection with wt 
and mutant CSFVs from passage 1. 
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Figure 5. Immunostaining of NS3. Infectivity was tested in vitro by transfecting RNA transcripts 
of wt and mutant CSFV ICs into PK15 cells. The production of the non-structural protein NS3 (green) 
and the cell nuclei stained with DAPI (blue) were visualised after 72h using immunostaining. CSFV 
Alfort was used as a positive control and the mock sample is uninfected. Pictures were taken at 10x 
magnification. 
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Figure 6. Sequence adaptation in wt and mutant CSFV ICs within PK15 cells. The complete 
genome sequence of vPad and the indicated mutants were determined by NGS at passage 1 and passage 
5. Full-length amplicons were generated by RT-PCR and the proportion of mapped reads containing 
the synonymous mutation G2164U in the E1 structural protein is presented. 
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Abstract 

The ability to efficiently express viral proteins or antigens is an invaluable tool for vaccine 

development and diagnostic purposes. Viral vectors can induce a high level of protein 

production by delivering and maintaining genetic material within mammalian cells. By using 

positive-sense RNA viruses, where the viral life cycle takes place in the cytoplasm of infected 

cells, an expression system can be established without a requirement for nuclear RNA 

processing. A genetically defined replicon, derived from classical swine fever virus (CSFV), has 

been used to construct a neomycin-selectable replicon. The neomycin phosphotransferase 

coding sequence (as cDNA) was introduced into a bacterial artificial chromosome (BAC) 

containing cDNA corresponding to a CSFV replicon. RNA transcripts were produced in vitro 

and transfected into porcine PK15 cells by electroporation. Viral translation and replication 

was assessed by the accumulation of the luciferase reporter protein and expression of the CSFV 

non-structural protein NS3. The neomycin-selectable replicon was demonstrated to be 

functional and retained similar levels of luciferase activity and NS3 protein production as a 

CSFV replicon without the neomycin phosphotransferase sequence. The selectable CSFV 

replicon might prove useful for maintenance and expression of viral antigens in an efficient 

manner. 

 

Introduction 

Classical swine fever (CSF) is caused by a highly contagious virus infection in pigs with high 

economic importance for countries with a significant trade of agricultural products. Classical 

swine fever virus (CSFV), classified as a member of the pestivirus genus, has a positive-sense 

RNA genome containing a single large open reading frame encoding a polyprotein that is 

processed into structural and non-structural proteins. The 5'-untranslated region (UTR) 

contains an internal ribosome entry site (IRES) that directs translation initiation on the viral 

genome (Fletcher & Jackson, 2002). The 3'-UTR is proposed to be involved in pestivirus 

genome replication, which takes place in the cytoplasm of infected cells (Isken et al., 2003; 
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Pankraz et al., 2005). The structural proteins of CSFV are not required for replication and 

maintenance of the viral RNA (Moser et al., 1999). Hence, replicons which are self-replicating 

and non-infectious genomes can be generated by deleting the coding region for one or more of 

the structural proteins. Production of replicons relies on the availability of infectious cDNA 

clones, which permit genetic manipulation of viral genomes. cDNA clones containing pestivirus 

genomes (as cDNA) that are known to be replication competent are available (Meyers et al., 

1996; Moormann et al., 1996; Rasmussen et al., 2010; Ruggli et al., 1996). Such cDNA clones 

have been used to construct replicons for CSFV and other pestiviruses (Reimann et al., 2003; 

Risager et al., 2013). For hepatitis C (HCV), full-length cDNA clones were shown to be capable 

of generating infectious HCV in chimpanzees, which was the only known animal model at that 

time, but these HCV cDNAs could not generate infectious virus in cell culture initially 

(Bartenschlager, 2006; Kolykhalov et al., 1997). 

 

By inserting a gene for a selectable marker into a cell, an artificial selection system can be 

achieved, hence allowing cells that express the inserted gene to be isolated. Commonly, genes 

conferring antibiotic resistance are used as selectable markers. A widely used selectable marker 

is neomycin phosphotransferase (NPT), which confers resistance (neor) to the cytotoxic drug 

neomycin sulfate (G418). Neomycin selection has been used for HCV as a way to study viral 

replication since the virus was found to grow poorly in cell culture until the establishment of a 

specific cell culture system in 2005 (Wakita et al., 2005; Zhong et al., 2005). Until then HCV 

replication could only be analysed using HCV-derived replicons, which expressed the NPT 

marker and hence conferred resistance to G418 on cells containing the replicon (Lohmann et 

al., 1999). Thus, cell colonies with replicating HCV genomes could be isolated. However, it was 

found that the replicons acquired adaptive mutations affecting viral replication in certain HCV 

strains (Blight et al., 2000). An alternative selection agent, puromycin N-acetyltransferase (PAC) 

has been used instead to study replication in a wider range of HCV genotypes (Liang et al., 

2005). This system has provided a powerful tool for studying mechanisms of HCV replication 

and selecting potential antiviral agents. 

 

Viral vectors, based on modified viral genomes, can be suitable for achieving specific protein 

production as they can deliver and maintain genetic material inducing a high level of protein 

expression (Bentley et al., 1994; Bleckwenn et al., 2003; Campeau et al., 2009; Cotten et al., 2003). 
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Using positive-sense RNA viruses, which have their viral life cycle in the cytoplasm, an 

expression system without nuclear involvement can be established. This system will avoid issues 

with nuclear RNA processing, thus preventing unwanted splicing or other RNA modifications. 

Moreover, viruses such as pestiviruses and HCV are non-cytopathogenic, thus cells can 

maintain the positive-sense RNA virus replication for a prolonged period of time (Greiser-Wilke 

et al., 1993). 

 

Viral vectors constitute a convenient way to deliver antigens to a target cell or tissue. The 

majority of viral vectors used as vaccines are designed to induce cellular immune responses by 

activating T cells and B cells. Still, inoculation with a booster containing protein antigens is 

usually necessary to elicit broad and potent antibodies. However, some viral vectors such as 

those based on alphaviruses can be genetically modified to induce a potent antibody response, 

which might prove to be a useful alternative (Forsell et al., 2007; Liljeström & Garoff, 1991; 

Lundstrom et al., 2001). The selectable replicons can also provide a cell-based system to assay 

antiviral drugs. 

 

The aim of this study was to develop a cell-based stable and selectable reporter system using a 

CSFV replicon. This system should allow maintenance and expression of antigens derived from 

other positive-sense RNA viruses that replicate exclusively in the cytoplasm of cells. These 

antigens can be difficult to express efficiently using conventional mammalian expression systems 

that generally express the mRNAs from within the nucleus. This cytoplasmic expression system, 

should be useful for the synthesis of antigens and protein products from important animal 

viruses could be used for vaccine development and diagnostic purposes.  

 

Methods 

Cells. The porcine kidney cell line PK15 was grown in Dulbecco’s Modified Eagles medium 

(DMEM) containing 5 % foetal calf serum (FCS).  

 

Replicon construction. A cDNA clone of the CSFV strain Paderborn termed pBeloPader10 

(Rasmussen et al., 2010) has previously been used to construct a replicon containing the Gaussia 

luciferase (Gluc) coding sequence (Risager et al., 2013). A neomycin-selectable replicon was 

generated by inserting the coding sequence for neomycin phosphotransferase (NPT), conferring 
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G418 resistance, downstream of the coding sequence for the Gluc – FMDV 2A peptide (18 aa 

in length). A counter-selection cassette (rpsL/neo cassette; Gene Bridges) conferring 

streptomycin sensitivity and neomycin resistance was used as a template to construct a PCR 

product containing the NPT sequence flanked by coding sequences encoding the FMDV 2A 

peptide and the EMCV 2A peptide (18 aa in length) using standard PCR. This fragment, which 

maintained the single long open reading frame (ORF), was subsequently utilised as a 

megaprimer using a modified version of the protocol for targeted-primed plasmid amplification 

(Friis et al., 2012; Wei et al., 2004). The PCR products were treated with DpnI, purified using the 

GeneJET PCR purification kit (Thermo Scientific) and electroporated into DH10B E. coli cells. 

Colonies were selected on agar plates containing chloramphenicol at 15 µg/ml and plasmids 

were purified using the ZR BAC DNA miniprep kit (Zymo Research). Genome length 

amplicons were generated using PCR (as described by Rasmussen et al., 2008, 2010) using 

AccuPrime Taq DNA polymerase, high fidelity (Invitrogen). A single point mutation, causing a 

lower replication rate, within the NS5B protein coding sequence (A11864G resulting in the 

amino acid substitution R3831G) was corrected causing reversion to the parental CSFV 

Paderborn sequence (GenBank Accession number AY072924). The Gluc replicon with this 

amino acid reversion is denoted rPad and the neomycin-selectable replicon is called rPad_neo. 

Insertion of the NPT coding region was verified by sequence analysis using the BigDye 

Terminator v.3.1 Cycle Sequencing kit (Applied Biosystems) on an ABI3500 Genetic analyzer 

(Applied Biosystems). Moreover, the replicons were full-length sequenced using next generation 

sequencing (NGS) and analysed with the CLC Genomics Workbench software (CLC bio). 

 

Generation and transfection of RNA transcripts. Using the MEGAscript T7 transcription kit (Ambion) 

the full-length amplicons were in vitro transcribed for 3h at 37 °C. The RNA was evaluated on 

a 1 % TBE agarose gel containing a 10,000x dilution of the SYBR Green II RNA gel stain 

(Invitrogen) and the yield was determined using a Qubit RNA BR assay kit (Invitrogen) on a 

Qubit 3.0 fluorimeter. Transfection was conducted essentially as described in Friis et al., 2012. 

Briefly, the RNA was introduced into PK15 by electroporation using a Gene Pulser XCell (Bio-

Rad) set at 180 V and 950 µF. After electroporation, the cells were allowed to settle on ice for 

10 min before seeding on a 24-well plate; this was considered the assay starting point, T0. Three 

hours after plating, the medium was replaced with fresh DMEM containing 5 % FCS and 50 

µl aliquots of the medium was frozen at -20 °C at 3h, 24h, 48h and 72h post-electroporation.  
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Luciferase assay. The level of expressed luciferase was assayed as previously described (Risager et 

al., 2013). In brief, 20 µl supernatant was added to 100 µl of Renilla luciferase assay reagent 

containing a 100-fold dilution of the coelentarazine substrate in Renilla luciferase assay buffer 

(Promega). Luciferase activity was quantified using a Bio-orbit 1253 Luminometer (Aboatox).  

 

Detection of the CSFV NS3 protein within cells by immunofluorescence. Staining of PK15 cells for the 

presence of the CSFV non-structural protein NS3 was carried out as previously described (Friis 

et al., 2012). Cells were incubated for 72h at 37 °C in 5 % CO2 before staining with the anti-

CSFV NS3 monoclonal antibody WB103/105 (AHVLA Scientific) and Alexa Fluor 488-

conjugated secondary antibody (Molecular Probes). Cell nuclei were visualised using DAPI 

(VectaShield) and images were taken with a BX63 fluorescence microscope (Olympus).    

 

Selection with G418. PK15 cells transfected with the neomycin-selectable replicons were seeded 

in a 24-well plate. The cells were allowed to settle for 3h after which the plate was washed to 

remove dead cells and the cells were replenished with fresh medium. After 24h, the cells were 

supplemented with DMEM containing 5 % FCS and neomycin sulfate G418 (0.8 mg/ml). The 

susceptibility of G418 in PK15 cells was established by seeding 5,000 cells/well in a 96-well 

while titrating with G418. Final concentrations of G418 used ranged from 0.2 – 1.4 mg/ml. 

The cells were incubated for up to 5 days at 37 °C with 5 % CO2. The lowest G418 

concentration showing complete cell death (0.8 mg/ml) was chosen for selection. The medium 

with G418 was replaced every third day. Luciferase activity in the cell medium was measured 

at 3h, 24h, 48h and 72h post-electroporation. 

 

Results 

Establishment of the selectable replicon 

To generate a CSFV selectable replicon, the NPT coding region was inserted into a CSFV 

replicon containing Gaussia luciferase (Gluc) as described by (Risager et al., 2013). The replicon 

designated rPad_neo is depicted in Figure 1. To ensure proper release of Gluc and NPT, the 

“self-cleaving” 2A peptide from foot-and-mouth disease virus (FMDV) and 

encephalomyocarditis virus (EMCV) was inserted downstream of the two coding sequences, 

respectively. Insertion of the 2A peptide in tandem with a protein ensures the yield of a 
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functional and unmodified reporter (Donnelly et al., 2001; Jones et al., 2007). This is a result of 

a co-translational break of the polypeptide chain within a conserved motif of the 2A peptide 

(DvExNPG/P) through ribosome skipping between the G and P residue. The Gluc-FMDV2A-

NPT-EMCV2A cassette was inserted in-frame and only cells that had taken up the replicon 

should be resistant to the cytotoxic drug G418, which effectively blocks protein synthesis 

(Southern & Berg, 1982). The complete sequence of the rPad_neo replicon was verified by 

NGS. 

 

In vitro characterisation of the selectable replicon 

To determine the replicative ability of rPad_neo, RNA transcribed from full-length PCR 

products was transfected into porcine PK15 cells. Samples of medium were collected at 3h, 24h, 

48h and 72h after electroporation and assayed for production of Gluc protein by measuring the 

luciferase activity (Figure 2). A truncated replication-defective replicon denoted rPadD, lacking 

a part of the coding region of NS5B and the 3'-UTR, was used as a non-replicating control (this 

should yield Gluc from translation of the input RNA but no replication will occur). Time- 

dependent expression of the Gluc was obtained with the intact replicons but little or no 

expression was achieved with the replication defective variant. The amount of secreted 

luciferase was equivalent for the Gluc replicon (rPad) and the neomycin-selectable replicon 

(rPad_neo) demonstrating that the replicative ability remains intact after insertion of the NPT 

coding sequence. To confirm this result, expression of the non-structural CSFV protein NS3 

was examined by immunostaining (Figure 3). Both replicons expressed the NS3 protein in the 

cytoplasm of transfected PK15 cells, indicating that they were functional. No viral spread to 

adjacent cells was observed as infectious virus progeny cannot be formed due to the lack of 

structural proteins. Selection of cells containing the replicon with G418 was then attempted. 

The amount of G418 to obtain proper selection was determined using final concentrations of 

G418 ranging from 0.2 to 1.4 mg/ml. Complete cell death was observed using 0.8 mg/ml G418 

(data not shown). Similar levels have been used for other studies with PK15 cells (Xu et al., 2008; 

Zhou et al., 2010). When cells were grown under G418-selection, extensive cell death was 

observed despite transfection with the rPad_neo replicon. G418 was added 24h after 

electroporation and it might be that the cells were more sensitive to selection and needed extra 

time to grow and express the NPT. As a consequence, no luciferase activity could be measured 

after selection with G418.  
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Discussion 

To date, it has been possible to demonstrate that the replicon expresses the Gluc reporter 

protein and that the CSFV NS3 protein can be detected within the cytoplasm of cells. However, 

it has not yet been possible to achieve selection of cells based on the presence of the NPT coding 

region. The difficulties with achieving G418-selection for the rPad_neo replicon may be due to 

problems with obtaining adequate amounts of full-length RNA for transfection, as the structure 

of the construct has been confirmed by NGS. It may also be necessary to optimise the time 

when the G418 selection is applied. When selection has been established, the expression of the 

replicon RNA will be measured using RT-qPCR on a weekly basis for up to one month. 

Moreover, the replication competence will be analysed by assaying the luciferase expression of 

the Gluc reporter protein. When the stable and selectable reporter system has been developed, 

antigens from other positive-sense RNA viruses will be introduced. This could be non-infectious 

FMDV empty capsids consisting of processed products of P1-2A or the envelope glycoproteins 

E1 and E2 of HCV (Beaumont et al., 2016; Gullberg et al., 2013; Rweyemamu et al., 1979). A 

number of replicon-based vectors derived from positive-sense RNA viruses have been 

established. Among these are the Australian flavivirus Kunjin virus that can stably express 

replicon RNA and heterologous proteins along with antibiotic resistance marker proteins 

(Pijlman et al., 2006). 

Further studies are needed to obtain a selection system that can be used for development of 

vaccines or antiviral drugs.  
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Figures 

 

 
Figure 1. Schematic representation of the selectable replicon rPad_neo. The replicon is 
based on the previously described construct rPad2GL (Risager et al., 2013) with partial deletion of the 
structural proteins C and E1 as well as a complete removal of Erns. A single point mutation within the 
NS5B protein coding sequence (A11864G resulting in the amino acid substitution R3831G), present in 
the rPad2GL replicon, was corrected causing reversion to the parental CSFV Paderborn sequence 
(GenBank Accession number AY072924). The neomycin phosphotransferase coding region (NPT) and 
18 aa from the EMCV 2A protein were inserted in conjunction thus maintaining the open reading 
frame. The predicted amino acids within the conserved motif for the 2A coding sequences, resulting in 
a co-translational break, are shown. 
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Figure 2. Luciferase activity of the neomycin-selectable replicon. The expression level of the 
secreted Gaussia luciferase reporter protein is comparable between the rPad replicon and the rPad_neo 
containing the NTP marker. rPadD is a truncated RNA transcript lacking a part of the NS5B coding 
region and the entire 3'-UTR. Three technical replicates were performed and measurements were 
normalised to the 3h post-electroporation signal. RLU, relative light units.  
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Figure 3. Expression of the non-structural CSFV protein NS3. RNA transcripts containing the 
Gluc replicon (rPad) and the neomycin-selectable replicon (rPad_neo) were transfected into PK15. The 
NS3 protein was detected with the pestivirus-specific monoclonal antibody WB103/105 and a secondary 
antibody labelled with Alexa Fluor 488 (green). The cell nuclei were stained with DAPI (blue). Staining 
for NS3 was found for both replicons but only few cells were found to be stained due to the lack of cell 
spread of the replicons.  
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Chapter 6  

Conclusions and perspectives 
 

Positive-stranded RNA viruses comprise over one-third of known virus genera and include 

important human, animal and plant pathogens (den Boon et al., 2010). RNA viruses have a very 

high mutation rate. This high error rate leads to genome differences ranging on average from 

0.1 – 10 nucleotides compared to the parental genome. For FMDV, the consensus sequence of 

field strains changes 0.5 – 1.0 % each year corresponding to 40 – 80 nucleotides/year (Haydon 

et al., 2001). Recently, the substitution rate for the complete CSFV genome was investigated 

using virus strains collected during a French outbreak in wild boar between 2003 and 2007 

(Goller et al., 2016). The overall substitution rate was 1.5 x 10-3 substitutions per site a year, 

which corresponds to 15 – 20 nucleotides/year. The error-prone replication results in the 

formation of a cloud of closely related viruses commonly referred to as a “quasispecies”. 

Thereby heterogeneous virus populations of genetically closely related but distinct variants are 

formed that contain a spectrum of mutations that can be beneficial, neutral or deleterious for 

replication. For example, it has been shown that replication of CSFV produce a high proportion 

of genomes that contain deleterious mutations and only a minority of the genomes are infectious 

(Fahnøe et al., 2015). Some defects could potentially be trans-complemented but this requires 

that the same cell is infected with multiple virus particles. 

 

Due to this property of RNA viruses, different sequence variations can emerge during 

replication. An interesting aspect is the constraints on this variation. Many of the changes are 

silent as has been shown in manuscript 1. This manuscript also demonstrates the importance of 

RNA structure, since a stable structure, the pseudoknot in the IRES, is crucial. Not only single-

point mutations have an influence on the ability of the virus to replicate but also more dramatic 

changes can happen as a result of RNA recombination. One of the factors behind the 

emergence of new viral strains and species is this recombination, where insertions, deletions or 

duplication occur. Most cytopathogenic pestivirus strains originate from non-cytopathogenic 

viruses by non-homologous RNA recombination (Gallei et al., 2005). RNA recombination is 

also a central aspect for removing debilitating or lethal mutations and can contribute to viral 

pathogenicity. Not only viral sequences can be incorporated in a new way through 
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recombination but also various cellular protein coding sequences can be inserted, as has been 

seen for BVDV (Becher & Tautz, 2011). It is hypothesised that RNA recombination depends 

on a copy choice, or “polymerase jumping”, mechanism where the polymerase switches 

template during negative-strand synthesis (Gallei et al., 2004). Recombination sites were mainly 

located in single-stranded regions within the BVDV genome in line with the involvement of 

endoribonuclease cleavage and subsequent ligation during recombination (Austermann-Busch 

& Becher, 2012). However, this is different for the mechanism proposed for RNA 

recombination in poliovirus that was shown not to be site-specific (Kirkegaard & Baltimore, 

1986).  

 

It has become increasingly evident that intra-genomic interactions between distant RNA 

elements can mediate important aspects of the viral life cycle. These RNA elements form 

extensive structures through base pairing between complementary sequences contributing to 

genome structure stability. Furthermore, such RNA structures provide binding sites for viral or 

cellular proteins that together with RNA-RNA interactions influence virus replication. 

Interactions between RNA elements are also important in switching from translation to virus 

replication as has been seen for HCV and DENV (Palau et al., 2013; Villordo et al., 2010). 

Interactions between distant RNA elements have been investigated in manuscript 2, where 

introduction of mutations in a motif within the NS5B coding region capable of a putative 

interaction with the 5'-UTR resulted in decreased virus replication within a replicon. This 

demonstrates that sequence variations with no effect on the protein function (as the amino acid 

sequence was unchanged) can affect virus replication. However, evidence for a direct interaction 

between this NS5B motif and the 5'-UTR has yet to be established. A number of techniques 

have been used to show the presence of long-range RNA-RNA interactions including surface 

plasmon resonance, electrophoretic mobility shift assay and SHAPE mapping (Palau et al., 2013; 

Souii et al., 2013; Tuplin et al., 2012). Many functional RNA structures in virus genomes have 

been described during the last 20 years. Many of those involved in intra-genomic interactions 

that are located within the untranslated parts of the genome. However, extensive RNA 

structures within the coding region are also found (Liu et al., 2009). The function of many of 

these still has to be elucidated. Some could be required for virus replication, like the cis-acting 

replication element, or for RNA packaging within new virus particles. Others could be 

important for protein binding to either separate RNA structures, for bringing the RNA 
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structures together or to maintain RNA structure stability. Secondary structures within the 

coding sequence have been found for FMDV RNA using whole genome structure probing 

(Poulsen et al., 2015b). 17 regions in the protein coding regions of the genomes containing 

previously experimentally un-probed structures were identified and several of these appeared 

to be functionally conserved.  

 

By the use of computational methods, long-range RNA-RNA interactions can be predicted. By 

comparing 23 pestivirus strains with the Gaussia luciferase replicon rPad, twelve different long-

range RNA-RNA interactions were identified based on a p-value below 0.05 (unpublished data). 

Of these, eight interactions are with the 5'-UTR; either within the UTR (two predicted 

interactions) or with sequences for the coding region for E2, NS2, NS3 and NS5B, respectively. 

Predicted interactions were also found solely within the protein coding regions with interactions 

spanning distances from 5,000 to 6,000 nucleotides between NS5B and NS2 or NS3. This data 

has been gathered as previously described by Fricke & Marz, 2016. No conserved interactions 

among the pestiviruses were predicted between the 5'-UTR and the motif in the NS5B coding 

region examined in manuscript 2. Moreover, it was not possible to examine for interactions 

within CSFV genomes alone as the sequences were too similar.  

 

Different steps of the virus life cycle including receptor-mediated entry and delivering of the 

intact RNA genome to the cytosolic site of translation and replication can have an impact on 

viral infectivity. Mutations in regions of the viral genome mediating virus entry, translation or 

RNA replication might influence the viability of the virus population (Lauring & Andino, 2010). 

In picornaviruses, the number of RNA molecules capable of initiating an infection resulting in 

one plaque forming unit (pfu) has been estimated. In cells infected with FMDV virion RNA 

about 100 – 1000 genomes were required to induce one pfu and a microinjection study 

indicated that a high proportion of the genomes was viable (Belsham & Bostock, 1988). 

Approximately 100 RNA genomes have been shown to correspond to around one TCID50 in 

the highly virulent CSFV Koslov strain (Fahnøe et al., 2014). The relatively ratio between the 

viral titer and the virus genome copies, presented in manuscript 2, is even lower. However, 

calculating the number of virus genome copies is only an estimation and cannot be directly 

compared to a virus titer. 
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The expression of recombinant proteins using a viral vector has been well established. A widely-

used system in the production of viral vaccines is the baculovirus expression system 

(Felberbaum, 2015). Among the viral vaccines produced are two CSFV subunit vaccines based 

on the E2 glycoprotein (Beer et al., 2007). An expression system in the unicellular green alga 

Chlamydomonas reinhardtii has been used to produce the HIV antigen P24, a likely indispensable 

component of a future AIDS vaccine (Barahimipour et al., 2016). Selection of transgenic algal 

clones using a selectable marker allowed high-level expression of the antigen. This alga is 

advantageous as it can be easily genetically modified concomitant with its ability to be cultured 

in large volumes giving favourable conditions for production of foreign antigens. To ensure 

continuous growth of replicon containing cells, antibiotic selection is applied. This allows the 

cells containing the selectable replicon, which might grow less efficiently than uninfected cells, 

to be maintained. Moreover, selection is sustained as mutations (e.g. in the polymerase) might 

occur affecting the replicative ability of the replicons. Usually, selection is applied for 

approximately one month in order to maintain the expression of the replicon. 

     The establishment of a selectable replicon, as has been performed in manuscript 3, can be 

adapted to other related viruses, e.g. the pestiviruses BVDV or BDV. Unlike CSFV that is 

restricted to domestic pigs and wild boar, BVDV and BDV can infect a wider range of hosts 

including cloven-hooved animals like cattle, sheep and goats. Hence, they are expected to grow 

better in a number of different cell types which is advantageous for large-scale production. 

However, as the RNA genome is introduced directly into cells through transfection there should 

be no need for appropriate cell receptors. A benefit in establishing the selectable replicon in 

another pestivirus than CSFV is the lower restrictions on biosafety contamination levels. CSFV 

is an OIE-listed virus and thus higher biosafety levels are needed than for other pestiviruses. 

Even though the CSFV replicon is non-infectious, it still contains the replicative parts of the 

CSFV genome. Thus, the precautions for working with replicons derived from CSFV are more 

restrictive than for BVDV replicons.  

 

Different constraints on sequence variation can also operate in cell culture and within an 

infected animal. Tropism for different cells or tissues can differ between the various members 

of the virus population and this might affect virulence. Replication determinants are not only 

influenced by the virus itself but also related to its interactions with the host. Virus replication 

intrinsically relies on the replication machinery of the cell and adaptation to the host is essential 
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for virus propagation. The host animal will upon infection try to block the virus, e.g. by 

interferon induction and generation of antibodies. In turn, the virus has ways to obstruct this as 

seen with the viral protein Npro that mediates proteasomal degradation of IRF3. The ability of 

the virus to overcome these host defense systems can also influence the nature of the virus 

population that circulates in an infected host animal. In addition, viruses that have to be 

transmitted between different animals have to achieve infection after a bottleneck, as not all of 

the virus genomes can survive such a selection event. Each of these systems might select for 

different characteristics. 

 

Several strategies have been used to investigate replication determinants. Most of these have 

relied on indirect evidence through studies of impaired viral fitness upon introduction of 

mutations into a specific region. However, replication determinants should rather be identified 

based on the ability to enhance virus replication or increase virulence. Replication determinants 

can be delineated by systematic swapping of coding sequences between high, moderate and low 

virulence strains. Such a gain of function study was performed on CSFV, where the RNA 

polymerase of a highly virulent strain was inserted into a vaccine strain causing increased growth 

rates and in vitro viral spread (Risager et al., 2013). In a separate study, three amino acid residues 

in the E2 and NS4B proteins, that are critical for CSFV virulence, were identified after serial 

passage of a CSFV vaccine strain in cell culture (Tamura et al., 2012). Introduction of mutations 

that modified these three residues enhanced virus spread and replication in cell culture and 

increased the pathogenicity in vivo. By use of reverse genetics, functional viruses from non-

functional cDNA clones have been created that were infectious in cell culture and virulent in 

pigs (Fahnøe et al., 2015). These studies demonstrate how comparative analysis of genetically 

related viruses with different replication competences or virulence can be useful in unravelling 

determinants pivotal for virus replication. 

 

Understanding the relationship between RNA genome structure and function is of great 

importance in gaining insights into virus replication determinants. Knowledge on the folding 

dynamics and transitions between different RNA structures is crucial. It will be interesting to 

investigate the presence of other cis-acting RNA elements and their role in virus replication. 

This could be expanded to more CSFV genotypes or other members of the pestivirus genus. 

These regions are highly conserved and might be considered excellent candidates for the design 
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of antiviral strategies. Moreover, investigating how viral and cellular proteins regulate long-

range RNA-RNA interactions will be of interest. Clearly, the virus is influenced by its cellular 

environment but the exact mechanisms are unknown.       
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Abbreviations  
 

 

BAC  Bacterial artificial chromosome 
BDV  Border disease virus 
bp  Base pair 
BVDV  Bovine viral diarrhoea virus 
cDNA  Complimentary DNA 
CRE  Cis-acting RNA element 
CSF  Classical swine fever 
CSFV  Classical swine fever virus 
DENV  Dengue virus 
DIVA Differentiating infected from vaccinated animals 
DNA  Deoxyribonucleic acid 
eEF1A Eukaryotic elongation factor 1A 
EGFP Enhanced green fluorescent protein 
ELISA Enzyme-linked immunosorbent assay 
EMCV  Encephalomyocarditis virus 
ER  Endoplasmatic reticulum 
FMDV  Foot-and-mouth disease virus 
GFP  Green fluorescent protein 
HCV  Hepatitis C virus 
HIV  Human immunodeficiency virus 
HSP70  Heat shock protein 70 
IL-1b  Interleukin-1b 
IRES  Internal ribosome entry site 
IRF3  Interferon regulatory factor 3 
ITAF  IRES trans-activating factor 
kb  Kilobase 
mRNA  Messenger RNA 
NGS  Next generation sequencing 
NPT  Neomycin phosphotransferase 
NTPase  Nucleoside triphosphatase 
OIE Office International des Epizooties 
ORF  Open reading frame 
pfu  Plaque forming units 
RING-MaP RNA interaction groups by mutational profiling 
RNA  Ribonucleic acid 
SHAPE Selective 2'-hydroxyl acylation analysed by primer extension 
SHAPE-MaP Selective 2'-hydroxyl acylation analysed by primer extension mutational profiling 
SINV  Sindbis virus 
UTR  Untranslated region 
VRC  Viral replication complex 
VRP  Virus replicon particle 
WNV  West Nile virus 
(+)RNA Positive-stranded RNA 
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