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Preface 

 

On behalf of Region Hovedstaden, DTU Environment performed an evaluation and contaminant 

mass discharge determination at Østergade in Skuldelev. The calculation is based on a 

coherent and systematic use of the chemical and hydrogeological data collected since 2008 by 

the consulting company, NIRAS, DTU Environment and Region Hovedstaden.  

 

The main objective of this study was to give a coherent estimation of the evolution of the 

contaminant mass discharge in the upper aquifer for the period 2008-2016. The effect of the 

different remediation activities in the source area on the plume and the resulting mass 

discharge is of particular interest. 

 

The following people have participated in the elaboration of this report: 

Grégory Lemaire 

Poul L. Bjerg 

 

The following people from The Capital Region of Denmark have participated in 

the steering committee for the project or assisted in the correction of this report: 

Henriette Kerrn-Jespersen 

Katerina Hantzi 

Anne Sivertsen 

 

Finally the following persons have contributed and assisted in collecting the measurement data 

and information available, for which we are grateful: 

Maria H. Hansen, from NIRAS. 
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Summary 

The site of Skuldelev in Denmark is a highly contaminated site, with groundwater pollution by 

chlorinated solvent originating from multiple hotspots. This site has been investigated for more 

than ten years now and undergone substantial remedial activities. The study presented here 

aimed at giving a status of the available data, and a coherent estimation of the evolution of the 

contaminant mass discharge (CMD) for the period 2008-2016 at the Østergade transect in 

Skuldelev monitoring the contaminant in the upper aquifer. The calculation is based on a 

coherent and systematic use of the chemical and hydrogeological data collected since 2008 by 

different companies and institutions.  

 

For consistency, a standard calculation based on the estimated of Darcy’s velocity combined to 

concentration and discretization of the Østergade transect was proposed for all datasets 

available for the denominated “F-wells” and “F+MLS” combined. A second method using a data 

interpolation by kriging method was also performed to ensure that the spatial variations of the 

concentration data in the transect were accounted for. 

 

The methods are in good agreement and the following conclusions are made: 

 

 A reduction of the contaminant mass discharge is observed at the Østergade transect, 

especially important during the period 2008-2011 (PCE equivalent). The methods used for 

this study estimate a 45% to 55% reduction of chlorinated solvents mass discharge 

between 2009 and 2012.  

 This general reduction is observed as a result of the mass reduction achieved in the source 

area originating from different remediation activities starting in 2006. 

 The spatial distribution of the compounds in the transect certainly evolved after 2008 and 

especially for PCE and TCE. These variations are very likely caused by the remediation in 

the source area.  

 The mass discharge and ratio of chlorinated compounds in the plume also evolved between 

2008 and 2016. While PCE and TCE were significantly reduced (and their spatial 

distribution altered), DCE exhibit a more subtle reduction in mass, while vinyl chloride 

actually increased steadily. The most recent estimated values are presented in the following 

table: 

 

Compound Mass discharge range * 

February 2016 

PCE  [0.02-0.26] kg/year 

TCE [0.05-0.17] kg/year 

cisDCE [0.54-0.79] kg/year 

VC [0.09-0.15] kg/year 

* : dependent on the method and dataset used 

 

Despite extensive datasets, some of the observations and statements made cannot be fully 

explained as most of the data collected focused on the source area. Particularly, the evaluation 

and evolution of redox conditions in the plume and a more thorough water table monitoring 



 

6  

would facilitate the interpretation and the assessment of the variation of contaminant discharge 

at Østergade.   
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1. Introduction 

1.1 Background 

 

The site of Skuldelev in Denmark is a highly contaminated site, with groundwater pollution by 

chlorinated solvent originating from multiple hotspots. This site has been investigated for more 

than 10 years now and undergone substantial remedial activities. In the source area, different 

remediation technologies have been tested for the different hotspots, mostly by the company 

NIRAS from 2006. DTU was also involved in the remediation of one hotspot by use of ZVI clay 

mixing methodology (Fjordboege et al., 2012). Beyond the source area, a contaminant plume 

formed in the upper aquifer. This plume has also been monitored to evaluate the evolution of 

the Contaminant Mass Discharge (CMD) and to test different methodologies and devices to 

estimate this quantity (NIRAS, 2016a). The first contaminant mass discharge evaluation was 

carried out by DTU on behalf of Region Hovedstaden in 2008 and 2009 (Lange et al., 2011; 

Troldborg et al., 2012) and was more recently assessed by NIRAS in 2015 and 2016 (Dyreborg 

and Christensen, 2016). 

   

1.2 Objective of the study 

The main objective of the study is to give a status of the data available, and a  coherent 

estimation of the evolution of the contaminant mass discharge for the period 2008-2016 at the 

Østergade transect in Skuldelev. The effect of the different remediation activities in the source 

area on the plume and the resulting mass discharge is of particular interest. 

 

1.3 Presentation of the site 

Skuldelev is located approximately 5 km west of Roskilde fjord in Denmark. During the period 

1968 to 1983, the activities of a metal industry on site resulted in a severe PCE contamination, 

mostly by disposal through the sewer system. The numerous investigations on site revealed 

that this contamination is distributed over a total of 6 identified hotpots on site ( 

Figure 1), and caused severe groundwater contamination as well as indoor air issues in the 

surrounding dwellings (Figure 1).  

 

The pollution with chlorinated compound reached both the upper and lower aquifer. The general 

flow direction for the groundwater is east towards Roskilde fjord in both aquifers. The pollution 

in the upper aquifer resulted in the formation of a contaminant plume extending at least 250 m 

downgradient from the source. The evolution of the contaminant mass discharge through this 

upper aquifer is monitored via two transects of monitoring wells, approximately 70 and 200 m 

downstream. More details and site description can be found in the different consulting reports 

(NIRAS, 2010; 2016a). 
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The transect of interest for the evaluation of the contaminant mass discharge is the Østergade 

transect, visible on  

Figure 1 below. 

 

1.4 Presentation of the investigated transect 

The investigated transect is located approximately 70 m east of the hotspot areas. It extends in 

a north-south direction along Østergade over a distance of approximately 80 m. Several types 

of monitoring wells have been installed over the period 2008-2016 with the associated screens 

located at elevations ranging from -2 to 4 m (DVR90): F-wells with 1 m long screens, multilevel 

samplers (0.25 m span between wells), and  S-wells with 0.2 m long screens. For this project, 

only the F-wells and MLS as shown on Figure 2 will be used as the S wells were installed 

relatively recently and therefore could not provide useful data in the early years.   

 

 

 

Figure 1. Skuldelev site. Sum of chlorinated compounds contaminant in the upper aquifer 

and location of Østergade transect 

Reproduced from Troldborg et  al. (2016) 
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Figure 2: Østergade transect, showing the different screen locations 

Reproduced from Dyreborg and Christensen (2016) 

(Note: location of well F80 is erroneous) 
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2. Measurement data overview 

This section aims at presenting all the data available and measured since 2008, and is useful 

for the current objective of estimation of the contaminant mass discharge through the Østergade 

transect. 

  

2.1 Hydraulic conductivity 

 

A first estimation of the hydraulic conductivity in the Østergade transect was provided by 

empirical analytical formulations both for the aquifer and underlying clay till based on the soil 

material properties and grain sizes  collected during the drilling of boreholes in 2008 (Lange et 

al., 2011). These data are used in the later calculations in this report in order to obtain results 

consistent with the 2008 results for the contaminant mass discharge. 

 

Several measurements were performed later on by slug test and Hydraulic Profiling Tool (HPT) 

with focus in the transect area where the highest concentrations were observed (i.e. 

approximately between well F30 and F50). The slug tests were performed twice for different 

wells, once for a selection of F-wells and another round for the newly installed S-wells. 

Corresponding data are presented in Appendix A (for the analytical data, only the estimations in 

the upper aquifer are plotted). In 2016, the measured hydraulic conductivity values ranged from 

3.5e-5 m/s to a maximum of 62e-5 m/s, i.e. approximately 3 to 54 m/day (Dyreborg and 

Christensen, 2016). This data was used for comparison and relevance of the estimated 

hydraulic conductivity by analytical formulation (the spatial and temporal coverage of this 

measured dataset being insufficient) 

 

Table 1. Available data on hydraulic conductivity in transect and basic statistical quantities 

Available dataset Summary values 

Reference 
Year Month Remark 

Average 

[m/s] 

Standard 

dev. 

[m/s] 

2008 / Analytical formulation(1) 5.2e-5 5.6e-5 (Lange et al. 2011) 

2016 February Slug test / F-wells 7.9e-5 10e-5 (NIRAS, 2016a) 

2016 February Slug test / S-wells 1.9e-4 2.3e-4 (NIRAS, 2016a) 

(1) Calculated from grain size distribution based empirical formulas 
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Figure 3. Count histogram of available hydraulic conductivity data  

bin width=1e-5 m/s, average marked in dashed red line 

Analytical data: upper aquifer data only 

 

2.2 Hydraulic gradient 

 

An evaluation of the hydraulic gradient and a general flow direction in the upper aquifer was 

conducted by discrete measurements of the water table height at relevant monitoring wells. The 

data available suggest four campaigns between 2008 to 2009, and one in 2016 (Table 2). Some 

water table monitoring activities were performed at different time periods, but only cover periods 

of a few months and not the overall [2008-2016] interval. It was not possible to establish 

consistent water level measurements in enough boreholes for a calculation of the hydraulic 

gradient for the entire period.  

 

As mentioned in section 1.3, the groundwater flow direction in the upper aquifer is east, and 

values for the hydraulic gradient ranged from a minimum of 1.5 ‰ to a maximum value of 3.0 ‰ 

for the different measurement periods (NIRAS, 2016a).  
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Table 2. Available data on hydraulic gradient in transect and basic statistical quantities 

Available dataset Summary values 

Reference 
Year Month Remark 

Values 

[‰] 

Average 

[‰] 

Standard dev. 

[‰] 

2008 October  1.6 1.6 / (NIRAS, 2010) 

2009 

January  2.1 

2.2 0.7 

(NIRAS, 2010) 

May  1.5 (NIRAS, 2010) 

July  3.0 (NIRAS, 2010) 

2016 February  2.0 2.0 / (NIRAS, 2016) 

 

 

 

Figure 4. Scatterplot of hydraulic gradient data  

bar marker: average data - round marker: dataset value 

 

2.3 Contaminant mass in the source area 

 

The evolution of remaining contaminant mass with time is here inferred by use of the provided 

estimate of mass removed from the different remediation activities (NIRAS, 2016a; Hansen, 

2016). The corresponding data can be found in the risk assessment report by NIRAS (2016a) 

and Hansen (2016). It is important to keep in mind the mass estimate presented here 

corresponds to the mass potentially transported within the investigated plume in the upper 

aquifer towards east. Most of the remediation targeted the mother compound PCE and no 

precise mass estimate is available for the degradation products already present, nor for the 

products that may have formed by enhanced degradation due to these activities. Figure 5 

presents the evolution of the contaminant mass with time on a yearly basis, in parallel of the 

different remediation activities.  
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Figure 5. Evolution of the PCE contaminant mass in the source area 

Graphic based on the estimation of mass removal by different remediation activities provided by 

Hansen (2016), reported in Appendix B 

(*) : removal reported as PCE and degradation products. 

 

 

2.4 Contaminant concentration in the transect 

 

Chemical analysis of the groundwater was performed in the transect at different periods from 

2008 to 2016. Water was sampled via the F-wells from the very beginning, with additional 

measurements using the MLS lines from 2009, and S wells from 2015. The chemical analyses 

were performed by different laboratories and entities during the overall period 2008-2016 (DTU 

laboratory, ALS, Eurofins). The most recent analyses were carried out by Eurofins. A 

comparison between the results from the two laboratory ALS and Eurofins was performed in 

October 2015 (from discussion with NIRAS), and the DTU data was also compared with 

Eurofins back in 2008. 

 

An overview by boxplot of the concentration data per year is given in Figure 6 below for  

F-wells and MLS sampling only. The concentration is expressed in PCE eq, i.e. all moles of 

chlorinated compounds are converted in an equivalent mass of PCE. Summary values are 

given in Table 3 and Table 4.  

 

ISTD  

hotspot I 

Pump/treat 

hotspot I ZVI-clay  

hotspot V 

EK / BIO  

hotspot IV* 

S-ISCO 

hotspot III  

ZVI/BIO 

hotspot III  

 

  

Pump/treat 

hotspot III * 
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Table 3. Available concentration data in transect and associated statistical quantities: F wells  

Expressed in PCE eq. 

Available dataset Summary values 

Reference 
Year Month Remark 

Average 

[µg/L] 

Standard dev. 

[µg/L] 

2008 July  

6070 11689 (Lange et al., 2011) August  

December  

2009 

March  

5181 10899 (Lange et al., 2011) July  

November  

2012 

November  2585 5288 

NIRAS 

data summary  

xls document 

2015 January  

2358 5192 

NIRAS 

data summary  

xls document 
September  

2016 February  2671 5797 (NIRAS, 2016a) 

 

 

Table 4. Available concentration data in transect and associated statistical quantities: MLS wells 

Expressed in PCE eq. 

Available dataset Summary values 

Reference 
Year Month Remark 

Average 

[µg/L] 

Standard dev. 

[µg/L] 

2009 

March  

10088 10067 (Lange et al., 2011) July  

November  

2015 

September  4963 5069 

NIRAS 

data summary  

xls document 

2016 February  4596 5912 (NIRAS, 2016a) 
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Figure 6. Boxplot of contaminant concentration data 

Red: F-wells monitoring / Green: MLS monitoring 

Concentration in PCEeq 

 

The spread of data is important with extremely high concentration values estimated around  

50 mg/L PCE eq in 2008 and 2009. From 2012, the measured concentrations seem generally 

lower as it can be seen from the outliers on the boxplot and the significantly different geometric 

average.  

 

The high concentrations are mostly measured in the area between well F30 and well F45, 

relatively independently of the considered period, as illustrated below with plots of measurement 

data from 2008 and 2016 (a similar visualization of all measurement data and compounds is 

provided in Appendix C). 
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Figure 7. Contaminant concentration comparison for two measurement periods: 2008 and 2016  

Highest concentrations found between well F30 and F45 

Upper figure : July 2008 / Lower figure : February 2016  

  

[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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2.5 Redox conditions 

The redox conditions in the contaminant plume are directly influencing the contaminant mass 

and products present and detected in the transect.  

 

During the period of interest, most of the activities on site focused on the source area 

remediation and characterisation of the mass discharge in the Østergade transect. At the 

present time, the redox conditions in the contaminant plume have only been evaluated in the 

transect by measurement of redox-sensitive species in 2008 (Lange et al. 2011). At that time, 

The Østergade transect was characterized by iron to nitrate reduced conditions (Figure 8). 

Closer to the source (upstream Østergade transect), the conditions were evaluated as more 

reduced, i.e. nitrate-reducing to methanogenic (not shown, see Lange et al.(2011) for more 

details).  

 

Some measurements of redox sensitive species also exist for the more recent measurement 

periods but only in precise locations of the source area in connection with the remediation 

activities (internal communication with NIRAS). In the recent years, only redox potential were 

measured in the Østergade transect.  

 

 

Figure 8. Evaluation of redox condition in the plume – Ny Østerbrogade transect 

Reproduced from (Lange et al., 2011) 
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3. Evaluation of contaminant mass discharge 

3.1 Methodology 

In order to follow the temporal evolution of the contaminant mass discharge (CMD) through the 

investigated transect, a consistent treatment for each dataset is required. A standard method is 

chosen after consideration of the available data, i.e. combination of Darcy’s velocity measured 

concentration over a defined surface partitioning as formulated below: 

 

𝐽 = ∑ 𝐴𝑖 ∗ 𝐶𝑖 ∗ 𝑞

𝑛

𝑖=1

 
Eq. (1) 

 

With J : contaminant mass discharge [M/T], Ai area of subsurface I [L2], Ci contaminant 

concentration [M/L3], q Darcy’s velocity [L/T].  

 

All the work is performed using R software (v 3.1.1) and dedicated packages for statistical and 

geostatistical analyses. 

 

Two approaches were implemented: 

 

 Method 1 (standard): The contaminant mass discharge calculation is performed using the 

same calculation parameters used in the initial estimate performed in 2008, i.e. constant 

hydraulic conductivity throughout the section, constant hydraulic gradient and identical sub 

surfaces partitioning (Lange et al., 2011). The main parameter values are presented in 

Table 5. Sub-surface partitioning can be visualized in Appendix D.  

 

Table 5. Main calculation parameters for CMD estimation 

 Method 1: discrete measurements of concentration and constant hydraulic conductivity 

Parameters Value Remark 

K [m/day] 2.4 Estimate 2008 (Lange et al., 2011) 

Hydraulic gradient 0.002 Last estimate, February 16 (NIRAS, 2016) 

Overall section [m2] 380  

Number of subsurfaces [F-wells] 26 See partitioning in Appendix D 

Number of subsurfaces [F+MLS combined] 124 See partitioning in Appendix D 

 

 Method 2 (data interpolation): The spatial dependence of the hydraulic gradient and 

concentration data is accounted for by use of a kriging method and consequent interpolation 

of the data over a refined grid. Details about the data interpolation and kriging method can 

be found in Appendix F. 
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Table 6. Main calculation parameters for CMD estimation 

Method 2: concentration and hydraulic conductivity interpolation 

Parameters Value Remark 

K [m/day] Variable Kriging method for interpolation 

Hydraulic gradient 0.002 Assumed constant 

Overall section [m2] -  

Number of subsurfaces [Fwells]  Mesh resolution : 10 cm 

Number of subsurfaces [F+MLS combined]  Mesh resolution : 10 cm 

 

3.2 Assumptions for contaminant mass discharge calculation 
 

Only the concentration data retrieved from F-wells and MLS wells will be employed, as they 

were the ones measured during the period from 2008 to 2016. 

 

The concentration for particular points at certain measurement periods were actually not 

available, e.g. no contamination was detected or no water to sample. For the sake of 

comparison, the same assumption to handle these cases is required. The guidelines for the 

assumptions about the calculation are presented below, while a detailed description can be 

found in Appendix E.  

 

 When the measured concentration for a given compound is under the detection limit, the 

resulting flux is assumed negligible and forced to zero, especially considering the 

magnitude of the flux in the sub-surfaces with high concentrations (several orders of 

magnitude higher). 

 When the concentration was not measured, two approaches were used depending on the 

well type:. For the F-wells, the stable spatial distribution highlighted previously is used. The 

ratio between the concentration measurement at the closest wells and at the closest 

measurement period is used to estimate the missing data (Table 13, in Appendix E). For the 

MLS wells and as the spacing between points is small, the missing data is estimated by 

averaging the data with the well right above and below or using the same methodology as 

the F-wells for the deepest wells (Table 14, in Appendix E). 

 Depending on the measurement period, some of the upper wells of the MLS could not be 

sampled due to water table lower than the well locations. Consequently these wells were 

excluded from all calculation periods for consistency, after making sure the concentrations 

were not significant if excluded (Table 16, in Appendix E). 

 

The data interpolation by kriging method employed in method 2 assumed a general geological 

anisotropy of the soil and upper aquifer, based on the deposited nature of the soil. 

Concentration and hydraulic conductivity data are interpolated over a 10 cm grid. Detail 

assumptions and validation case of the data interpolation can be found in Appendix F. 

 

3.3 Result quantities and units 

 

Most of the result in the next section will be assessed by use of a PCE equivalent units, which 

corresponds to a conversion of all moles of chlorinated compounds present into PCE:  
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𝑚𝑃𝐶𝐸 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡= 𝑚𝑃𝐶𝐸 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 + 𝑀𝑃𝐶𝐸 ∗ (𝑛𝑇𝐶𝐸 + 𝑛𝐷𝐶𝐸+𝑛𝑣𝑐) Eq (2) 

 

𝑚, 𝑛, 𝑀 representing mass, moles and molar mass respectively. The strong advantage of this 

unit compared to a simple arithmetic sum of all chlorinated compound is to ensure all 

contamination mass and degradation products are properly accounted for. Indeed a full 

degradation of PCE to vinyl chloride with time will be constant in terms of PCE equivalent, 

whereas it will be less in a simple sum, due to the smaller molar weight of the degradation 

products. This decrease in the arithmetic sum can be misleading, as it can be interpreted as a 

reduction of contamination while in reality it is a transformation into a degradation product. 

 

Finally the molar ratio is given by the ratio of a specific compound over the sum of all moles of 

chlorinated compounds. For example when looking at the molar ratio of PCE: 

 

𝜒 =
𝑛𝑃𝐶𝐸

𝑛𝑃𝐶𝐸 + 𝑛𝑇𝐶𝐸 + 𝑛𝐷𝐶𝐸 + 𝑛𝑉𝐶
 Eq. (3) 

 

With n being the moles of the given chlorinated compound.  
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4. Results 

 

4.1 Evolution of the contaminant mass discharge (PCE eq) 

 

In Table 7 and 8 are presented the estimated contaminant mass discharges (CMD), expressed 

in PCE equivalent for each of the measurement campaigns for method 1 and method 2 

respectively. Contaminant mass discharge for each of the individual chlorinated compounds can 

be found in Appendix G. 

 

Despite the limited number of datasets, the use of the concentration dataset for the F-wells and 

(MLS+F-well) indicates a general decrease of the contaminant mass discharge between 2008 

and 2016. Both methods are in good agreement and exhibit the same trend. The contaminant 

mass discharge estimated by method 1 decreases from roughly 4 kg to 1.8 kg/yr, i.e. 

approximately 55% reduction (expressed in PCE eq, F-well dataset). By method 2 using a data 

interpolation is estimated a decrease from 3.6 kg to 2 kg/yr, i.e. 45%  of the contaminant mass 

discharge in PCEeq (F welldataset). This decrease is in good agreement with the contaminant 

mass reduction in the source area caused by the remediation activities during the same period. 

 

The two different datasets F and (F+MLS) combined  give relatively similar results. It is 

expected that the results obtained with the F and MLS wells in combination should produce a 

better estimate due to to a finer discretization of the transect. 

 

 

4.2 Evolution of the contaminant mass discharge per compound 

 

Considering each chlorinated compound separately, the same trend of mass discharge 

reduction with time is observed for each compound, exceptVC which slowly increases (Figure 

9). These observations are valid for both calculation methods. 

 

A significant drop in mass discharge is observed for the PCE and TCE between 2009 and 2012, 

and can likely be related to the remediation activities in the source area targetting specifically 

the PCE mother compound. The PCE mass discharge decreases by 78% while TCE is reduced 

by 96% between december 2008 and november 2012 (F-well dataset with method 1, Appendix 

G). Since 2012 the contaminant mass discharge for these two compounds stayed relatively 

constant. 

 

Generally cisDCE mass discharge also decreased between 2008 and 2015, but the reduction is 

less significant than for both PCE and TCE with 50% and 45% estimated reduction, using 

dataset F-well and (F+MLS) combined respectively (method 1, Appendix G). The computation 

by method 2/data interpolation shows also a reduction but of 33 and 27% only, once again for 

dataset F and (F+MLS) respectively.  

 

Despite the source remediation activities in the different source areas, a steady and significant 

increase of VC with time is observed (t-test, α=0.05). All together and with the variation of mass 
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discharge of the compounds, the composition of the contaminant plume evolves with time, as 

highlighted by looking at the change in molar ratio (Figure 10 and Figure 12). 

 

Recently between 2015 and 2016 some mass discharge quantities seem to increase again, e.g. 

cisDCE (F-well calculation, method 2). Nevertheless, the dataset is curently too restrained to 

conclude if this is a significant increase due to some rebound effect, degradation in the plume 

and/or increased degradation with the current operation of remediation, or just the temporal 

variation due to the sampling period combined to calculation assumptions. This point will be 

addressed further in the next section.  
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Table 7. Estimation and temporal evolution of CMD throughout Østergade transect 

Expressed in PCEeq 

F wells dataset – method 1 

Period 2008 2009 2012 2015 2016 

Jul Aug Dec Mar Jul Nov Nov Jan Sep Feb 

𝐽  [kg/y] 3.87 4.85 3.40 4.37 4.11 3.33 1.96 1.65 1.68 1.84 

Average   𝐽 ̅ [kg/y] 4.37 3.93 1.96 1.67 1.84 

Standard deviation σ  

[kg/y] 

0.49 0.54 / 0.02 / 

 

 

Table 8. Estimation and temporal evolution of CMD throughout Østergade transect 

Expressed in PCEeq 

(F+MLS) wells dataset – method 1 

Period 2008 2009 2012 2015 2016 

Jul Aug Dec Mar Jul Nov Nov Jan Sep Feb 

𝐽  [kg/y] / / / 3.72 3.72 / / / 1.59 1.59 

Average   𝐽 ̅ [kg/y]  3.72 / / 1.59 1.59 

Standard deviation σ  

[kg/y] 

 0.005 / /  / 

 

 

Table 9. Estimation and temporal evolution of CMD throughout Østergade transect 

Expressed in PCEeq 

F wells dataset – method 2 using data interpolation 

Period 2008 2009 2012 2015 2016 

Jul Aug Dec Mar Jul Nov Nov Jan Sep Feb 

𝐽  [kg/y] 3.52 3.83 3.64 3.44 3.60 3.11 1.88 1.60 1.66 2.06 

Average   𝐽 ̅ [kg/y] 3.66 3.38 1.88 1.63 2.06 

Standard deviation σ  

[kg/y] 

0.15 0.25 / 0.02 / 

 

Table 10. Estimation and temporal evolution of CMD throughout Østergade transect 

Expressed in PCEeq 

(F+MLS) wells dataset – method 2 using data interpolation 

Period 2008 2009 2012 2015 2016 

Jul Aug Dec Mar Jul Nov Nov Jan Sep Feb 

𝐽  [kg/y] / / / 3.31 3.43 / / / 1.60 1.40 

Average   𝐽 ̅ [kg/y]  3.37 / / 1.60 1.40 

Standard deviation σ  

[kg/y] 

 0.08 / / / / 
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Figure 9. Yearly contaminant mass discharge for the different chlorinated compounds (line) 

Method 1 results 

Line: average yearly value / round marker: individual dataset  

(Values reported in Appendix G.1) 

 

 

 

 

Figure 10. Evolution of the molar ratio for the yearly contaminant mass discharge 

Method 1 results 

(F wells only) 
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Figure 11. Yearly contaminant mass discharge for the different chlorinated compounds (line) 

Method 2 results 

Line: average yearly value / round marker: individual dataset  

(Values reported in Appendix G.2) 

 

 

 

Figure 12. Method 2 calculation by data interpolation. 

Evolution of the molar ratio for the yearly contaminant mass discharge 

(F-wells only) 
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5. Spatial and time variation consideration 

The computation of the evolution of the contaminant mass discharge requires knowledge about 

groundwater flow and contamination extent. All these quantities are time dependent and subject 

to uncertainty in measurements and due to discrete spatial sampling. These aspects and 

related consequences on the results are discussed in this section. 

 

5.1 Spatial variation of concentration data (transect) 

The spatial variation of the contamination in the transect with respect to time can be evaluated 

by correlation of the data measured at fixed positions, i.e. fixed monitoring wells in this case. 

Correlation matrices (Pearson’s correlation) for the concentration at each of the sampling wells 

(F-well) is presented in Figure 13 below for the different available measurement campaigns. 

 

Extremely high correlation between the measurement for the period [2008 – 2009] and [2012-

2016] are observed for the PCE and TCE compounds. Such a degree of correlation suggests 

that the spatial distribution of the contamination in the transect is relatively stable over each of 

these two periods. The low correlation in between the two periods on the other hand suggests 

that the spatial distribution of PCE and TCE in the transect evolved in between 2009 and 2012, 

very likely due to the source remediation activities in the source areas and the resulting strong 

concentration reductions (see Appendix C for visualization). 

 

On the other hand, a generally high and significant correlation is observed for the different 

measurement periods for cisDCE indicating a relatively stable spatial distribution over the period 

[2008-2016]. The spatial distribution stayed therefore relatively constant over the period of 

interest and was weakly affected by the remediation. Finally, a significant degree of correlation 

is observed between all periods for VC (p-test, α=5%), but it appears clearly that the spatial 

distribution was modified between the two periods [2008-2009] and [2012-2016]. Visualization 

of the measurement data in Appendix C reveals this change is mostly caused by higher 

concentration of VC in the lower part of the aquifer around well F45-1. 
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for the different chlorinated compounds 

 

Figure 13. Correlation matrix for the concentration dataset measured at the different Fwells 

from 2008 to 2016 

 

5.2 Spatial variation in hydraulic conductivity  

The hydraulic conductivity in the transect is connected to the permeability of the soil and subject 

to limited variation with time if the soil is undisturbed and saturated. Consequently, the 

uncertainty in the determination of K will affect the quantitative value of the contaminant mass 

discharge, but to a minor degree when the relative evolution of the contaminant mass discharge 

with respect to time is considered.  

 

This statement is challenged if the spatial distribution of the contamination in the transect evolves 

in space as described previously in section 5.1 and migrates towards areas of high or low 

conductivity at a given time. The calculation by the method 2 with data interpolation is specifically 

chosen for assessing this effect.  

 

 

 

Figure 14 shows the interpolated hydraulic conductivity and it appears clearly that an area with 

high hydraulic conductivity is found in the lower part of the upper aquifer, in agreement with the 

previous observations and issued reports (Lange et al., 2011; NIRAS, 2016a). High conductivity 

combined with high concentrations in the area can result in a significant increase of contaminant 

mass discharge, not captured by the calculation method 1. The results obtained show that these 

variations have indeed an effect on the evolution of the estimated CMD with smaller reduction of 
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cisDCE discharge and more important discharge of VC compared to method 1. However, these 

variations are still limited and the results are within the same order of magnitude. Consequently 

the trends of reduction/augmentation observed by method 1 are still valid even considering 

these spatial variations.   

 

 

 

 

 

 

Figure 14. Visualization of the hydraulic conductivity distribution in Østergade transect 

Estimation by data interpolation from kriging method (see Appendix F for details) 

Input dataset from Lange et al. (2011) 

 

 

 

5.3 Temporal hydraulic head variation 

The calculations in Section 4 are performed with the assumption of a steady hydraulic gradient 

through the investigated transect. However the scatterplot of hydraulic gradient data in Figure 4 

shows hydraulic gradient variations by a factor 2, ranging from approximately 0.0015 to 0.003 in 

2009. It is reasonable as a first approximation that such a variation occurs yearly and will affect 

the yearly contaminant mass discharge. 

 

The general water balance and consequently the hydraulic head in the aquifers are partly 

influenced by the amount of precipitation infiltrating. The precipitation distribution at the closest 

measuring station over the considered period exhibits high coefficient of variation of almost 80% 

for the year 2008 to 2010, compared to the most recent years where the coefficient of variation 

ranges from 39 to 56% for the last 3 years (Figure 15 and Table 11). Consequently the overall 

variation of hydraulic head may be reduced during the last measurement periods compared to 

K > 10 m/day 

]0.1-1] m/day 
<0.1 m/d 

] 1-10 ] m/day 

> 10 m/day 
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2008-2010, but is still dependent on the time of performing the measurements, and on the 

history of precipitation and water table variations.  

 

 

Figure 15. Boxplot of monthly precipitation for the year 2008 to 2015 

representing 25, 50 and 75 quartile, extreme or 1.5xIQR value for whiskers, outlier as dots. 

DMI Measuring station 5825 at Jyllinge renseanlæg 

 

 

 

Table 11. Mean, standard deviation and Coefficient of Variation 

monthly precipitation – station 5825 at Jyllinge renseanlæg 

Year 
Mean 

[mm] 

Standard dev. σ 

[mm] 

CV = σ/ Mean. 

[%] 

2008 45.1 35.5 78.7 

2009 45.6 34.7 76.0 

2010 57.9 57.9 79.0 

2011 52.0 45.7  63.3 

2012 48.6 32.9 52.4 

2013 39.3 25.5 42.4 

2014 53.1 17.8 56.7 

2015 60.8 32.0 52.7 

2016 48.8 19.4 39.7 

 

 

Figure 17 illustrates the variation of water head at four monitored wells, depicted in Figure 16, in 

the upper aquifer for the period [2008 to 2011], in parallel of the precipitation received 

(measuring station 5825 , moving average – 30 days periods). Fast responses of the upper 

aquifer are clearly visible when rain episodes are experienced.  Some variations observed 

before 2010 and at well KB10-1 look suspicious with sudden and abrupt changes of water table 

and cannot easily be interpreted. The restrained number of monitoring points in the plume does 
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not allow further post-treatment of the data and the estimation of a variation of hydraulic 

gradient, especially for the most recent years. 

 

 

 

 

 

 

Figure 16. Water table monitoring location for 

the selected wells in the upper aquifer 

 

 

KB126 

 

KB10 

DB8 

 

transect 

(North) 
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Figure 17. Hydraulic head monitoring in the upper aquifer for selected wells 

comparison to daily precipitation and moving average (year 2009, part of 2010, 2011) 
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5.4 Temporal variation in source area and vicinity 

In the following figures are presented the temporal evolutions of concentration at a few selected 

wells (Figure 18), in parallel with the estimation of contaminant mass remaining in the source 

area (Figure 19). The investigated wells are at the edge of the source area and upstream 

transect (Figure 19 a, b respectively) 

 

 

 

Figure 18. Temporal variation of concentration for 

selected wells in the upper aquifer close to the source area 

 

At the edge of the source area (well KB4 to 10), the concentration drops with the mass of PCE. 

Due to the lack of concentration data between 2005 and 2008, it is challenging to evaluate if the 

concentration reduction observed in the period 2008 to 2010 is connected to the simultaneous 

ISTD remediation and ISCO (occurring from September to December 2008 in hotspot I and in 

December 2009 and 2010 in hotspot III respectively), or even to the strong pump/treat action in 

2006 combined with a relatively long residence time. The data in KB78 (upstream transect) also 

show a simultaneous decrease, but the sampling period of 7 years is too long to lead to any 

relevant conclusion. 

 

An assessment of the residence time was carried out by use of a Monte Carlo simulation using 

available data (see Appendix H for estimation). The outcome of the simulation suggests that the 

change in concentration in the hotspot I will be detected at the edge of the source area from 0.7 

up to at least 2.2 years, depending on the location of the contaminant in the hotspot, retardation 

factor and groundwater seepage velocity. In other terms, the concentration drops observed at 

the edge of the source area from 2008 (and later on) are likely responses to concentration 

drops in the hotspot I occurring from 2008 and a maximum of 2 years previously. Consequently 

KB78 

KB4-2 

 

 

 
KB10-2 

(North) 
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the concentration drop observed at the edge of the source area from 2008 to 2010 is likely 

connected to the remediation starting in 2008, and not the pumping operation in 2006. 

 

It is important to keep in mind that these calculations are based on data available and no 

dedicated measurements for this purpose. Results are therefore subject to high uncertainty and 

should therefore be considered accordingly. 

 

 

(a) 

 

(b) 

Figure 19. Evolution of average PCE concentration at selected wells compared to mass PCE 

 in source area 

(a): at the edge of source area (b) upstream transect,  

 

5.5 Temporal variation downstream of source area 

 

Figure 20 presents a time evolution of the contaminant mass in the source area, in parallel with 

the mean concentration in the transect and the corresponding contaminant discharge. The 

general decrease of all quantities almost simultaneously suggests that the remediation activities 

and contaminant mass reduction in the source area may have led to a simultaneous reduction 

of contaminant loading into the plume and consequently a decrease in contaminant mass 

discharge through the plume seen from the transect.  
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However, the relatively long distance and possible retardation between the source and the 

transect location requires to take a closer look at the residence time to ensure these quantities 

are all linked.  

 

The residence time between hotspot I where the first remediation takes place and the transect 

is carried out using a similar methodology as the one presented in section 5.4. For the PCE, the 

residence time is estimated to lie between from 2 to up to 17 years, while for the most mobile 

VC, this estimated residence time ranges from 1.3 to 10 years (Appendix I). Consequently, the 

concentration/CMD decrease observed from 2008 to 2012 in the transect could be related to 

both remediation activities in 2008 and 2010, but also the initial pump and treat activity carried 

out in 2006. 

 

 

(a) 

 

(b) 
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(c) 

Figure 20. Evolution of average PCE concentration and CMD in the transect 

Compared to mass PCE in the source area 

(a): Mass PCE in source area (b) Average PCE eq. concentration – see Table 3 (c) PCE mass 

discharge (Appendix G) 

 

 

 

5.6 Source strength consideration 

 

The relationship between the remaining DNAPL mass in the source area, the resulting 

concentration and related discharge to the downstream plume are complex phenomena. 

Research suggests that the DNAPL contaminant mass and averaged dissolved concentration 

(and consequently mass discharge) are dependent on DNAPL distribution and hydrogeologic 

properties and can be related by a power function of the form (Falta et al. 2005a, 2005b; Basu 

et al. 2008): 

 

(
𝐶(𝑡)

𝐶𝑜

) = (
𝑀(𝑡)

𝑀𝑜

)

Γ

 
Eq. (4) 

 

With C(t) average concentration of dissolved contaminant leaving the source zone, M(t) 

contaminant mass, and Γ an empirical parameter. This approach provides a good insight into 

the long term behavior of the source (illustration in Figure 21):  the source will be depleted at a 

finite time by dissolution for values of Γ <1, while for Γ <1 the source has a theoretical infinite life 

time and long tailing with low dissolved concentrations. 

 

Although appealing, this approach encompasses several constraints that limit its range of 

application when applied in-situ. Equation (4) implies that both concentration and mass are 

evaluated simultaneously and from a given reference time. In the current project, data regarding 

mass are given as estimate once a year while the concentration data are measured at different 

time steps further downstream the hotspot areas and therefore shifted in time due to the 

groundwater transport. Furthermore, the creation of sequential degradation to by-products with 

different transportation time due to different sorption properties challenges even more the 

approach. Some of these limitations were highlighted through extensive field work or 

simulations, e.g. Fjordboege et al. (2012b) with the remediation in the hotspot V, or the work by 
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Chambon et al. (2010). It is ultimately believed that such an approach cannot reasonably be 

applied to a complex site such as Skuldelev with multi hotspot areas and without proper 

dedicated measurements.   

 

 

 

Figure 21. Theoretical power law representation: 

Relationship between dissolved concentration and remaining mass of contaminant in the source 

area 

 

6.   Discussion 

The previous examinations of the temporal and spatial variations support the results presented 

in section 5, i.e. a general decrease of the contaminant mass discharge in the Østergade 

transect. This result is independent of the method and considered dataset. This decrease 

occurs in parallel with the mass reduction of the PCE mother compound in the source area, 

leading to a decrease of dissolved concentration and reduced contaminant loading to the 

plume. This decrease does not occur simultaneously to the decrease in mass and concentration 

at the edge of the source area (and further downstream for that matter) due to the residence 

time and sorption phenomena between the source area and the control transect.   

 

This overall decrease was characterized in PCE equivalent, i.e. all chlorinated compounds 

combined and accounted together. The results differ slightly when all compounds were 

considered separately: While PCE and TCE discharges were reduced substantially; the 

reduction of the cisDCE compound was more moderate and it was shown that VC has steadily 

increased since 2008. The increase of degradation products quantities raises the question of 

the origin of these compounds.  

 

Γ=2>1 

Γ=0.5<1 Γ=1 



  

 37 

From a global study perspective, the numerous data on site mostly focus at a local source scale 

and were targeting the different hotspots individually. Data focusing on the plume are relatively 

limited and hinder a proper estimation of the contaminant mass discharge and its variation. 

Particularly, the absence of monitoring data prevents the evaluation of the hydraulic gradient 

variation, especially in the recent years which has certainly an effect on the estimated mass 

reduction. Furthermore no characterization of the redox conditions in the plume was recently 

performed. It is therefore nearly impossible to conclude if the degradation products detected in 

the transect are forming within the plume due to reduced conditions or are simply transported 

from the source area, e.g. due to the evolution of redox conditions with the remediation. Finally, 

the absence of concentration data between 2004 and 2008 when the first remediation activity 

occurs makes difficult the characterization of plume and source interaction 

 

7. Conclusion 

On behalf of Region Hovedstaden, DTU performed an evaluation and CMD calculation at 

Østergade in Skuldelev. The calculation is based on a coherent and systematic use of the 

chemical and hydrogeological data collected since 2008 by different companies and institutions.  

 

For consistency, a standard calculation based on the estimation of Darcy’s velocity in 

combination with contaminant concentrations and area discretization of the transect was 

proposed for all dataset available for the designated F-wells and F+MLS combined. A second 

method using a data interpolation by kriging method was also performed to ensure that the 

spatial variations of the concentration data in the transect were accounted for. 

 

Both methods are in good agreement and the following conclusions are made: 

 

 A reduction of the contaminant mass discharge is observed at the Østergade transect, 

especially during the period 2008-2011 for the PCE equivalent. The methods used for this 

study estimate a 45% to 55% reduction of chlorinated solvents mass discharge between 

2009 and 2012.  

 This general reduction is observed in parallel with the mass reduction in the source area 

originating from different remediation activities starting in 2006. 

 The spatial distribution of the compounds in the transect certainly evolved after 2008 and 

especially for PCE and TCE. These variations are very likely caused by the remediation in 

the source area.  

 The mass discharge and ratio of chlorinated compounds in the plume evolved between 

2008 and 2016. While PCE and TCE were significantly reduced (and their spatial 

distribution altered), DCE exhibits a more subtle reduction in mass, while vinyl chloride 

actually increased steadily. 
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Compound Mass discharge range * 

February 2016 

PCE  [0.02-0.26] kg/year 

TCE [0.05-0.17] kg/year 

cisDCE [0.54-0.79] kg/year 

VC [0.09-0.15] kg/year 

* : dependent on the method and dataset used 

 

Despite extensive datasets, some of the observations and statements made cannot be fully 

explained as most of the data collected focused on the source area. Particularly, the evaluation 

and evolution of redox conditions in the plume and a more thorough water table monitoring 

would facilitate the interpretation and the assessment of the variation of contaminant discharge 

at Østergade.   
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A Hydraulic conductivity data 

 

Figure 22. Hydraulic conductivity data 

 data reported by Lange et al. (2011) 

 

 

 

Figure 23. Hydraulic conductivity data, reported by NIRAS (2016) 

F-well (not shown on transect) 

]0.1-1] m/day 
<0.1 m/d 

] 1-10 ] m/day 

> 10 m/day 
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Figure 24. Hydraulic conductivity data, reported by NIRAS (2016) 

Swell (not shown on transect) 

 ] 0.1-1] m/day 
<0.1 m/d 

] 1-10 ] m/day 

> 10 m/day 
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B Contaminant mass in source area 

 

Table 12. Evolution of contaminant mass in the different hotspots 

Table reproduced from Hansen (2016) 

 

(1): Erroneous value. Total value is approximately 780 kg, with only 25 kg flowing towards east 

(NIRAS, 2016). 

 

 

 

(1
) 
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C Contaminant concentration data 

C.1. Fwells data – PCE eq 

 

Data collected from (Lange et al. 2011) and summary sheet of measurement data provided by 

NIRAS. 

 

[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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C.2. Fwells data – PCE 

 

 

[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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C.3. Fwells data – TCE 

[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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C.4. Fwells data – cisDCE 

[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 



  

 63 

[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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C.5. Fwells data – VC 

[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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[10 – 100] µg/L 

< 10 µg/L 

[100 – 1000] µg/L 

[1000 – 10000] µg/L 

> 10000 µg/L 
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D Visualization of transect and sub surface 
partitioning: Method 1 

D.1. F wells 

 

 

 

D.2. F+MLS wells 
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E Calculation assumptions details 

The detailed assumptions for the handling of non available data are presented in the Table 13 

for the F wells and Table 14 for the MLS lines. 

 

 

 

Table 13. Assumption for missing data: F dataset 

 

Table 14. Assumption for missing data: MLS dataset 

 

 

  

Date Well Assumption 

July 2008 F35-2 Based on ratio F35-2/F40-1 in August 2008 

F80-1 Based on ratio F80-2/F80-1 in August 2008 

Dec 2008 F55-2 Based on ratio F55-1/F55-2 in March 2009 

Date Well Assumption 

Mar 2009 MLS3-4 Average MLS3-2/ MLS3-5 

MLS4-1 Based on ratio F4-2-1/F4-1 in nov 2009 

MLS5-13 Average MLS5-12/MLS5-14 

MLS5-2 Average MLS5-12/MLS5-14 

*Jul 09 MLS1-17 Average MLS1-16/MLS1-18 

 MLS2-11 Average MLS2-10/MLS2-12 

 MLS2-2 Average MLS2-1/MLS2-3 

 MLS3-20 Average MLS3-19/MLS3-21 

 MLS4-1 Based on ratio F4-2-1/F4-1 in nov 2009 

 MLS5-1 Based on ratio F5-2-1/F5-1 in feb 2016 

Sep 2015 MLS2-11 Average MLS2-10/MLS2-12 

All periods MLS1-18 and above Excluded, mostly above water table 

MLS2-18 and above Excluded, mostly above water table 

MLS3-22 and above Excluded, mostly above water table 

MLS4-22 and above Excluded, mostly above water table 

MLS5-22 and above Excluded, mostly above water table 
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F Data interpolation by kriging method: 
Method 2 

 

The effect of spatial variation of contaminant with respect to the resulting contaminant discharge 

requires an interpolation of the data measured at discrete locations. Furthermore, it is important 

that all datasets are treated in a systematic and coherent manner. This task is carried out by 

use of a kriging method for the dataset of interest. Kriging methods are commonly used in the 

field geostatistics and environment pollution. The method typically accounts for the spatial 

correlation between degree and distance weighted average of the discrete data. Review of such 

methods are not part of the scope here and more details can be found in Oliver and Webster 

(2015) for example. 

 

The work was carried out by use of R software and the dedicated package gstats. For all 

treated dataset, an ordinary Kriging method is applied. A log transform was carried out prior to 

variogram estimation to deal with outliers and skewness. A certain degree of anisotropy is 

expected in the different datasets due to the deposit nature of the different material layers in the 

soil. Correlation length are expected to be longer in the horizontal direction. 

 

Interpolation of hydraulic conductivity data 

 

Only the dataset found in Lange et al. (2011) was used for the hydraulic conductivity as this 

latter was providing more data spread over the overall transect. The variogram is presented in 

Figure 25 with the chosen fitting model: a spherical model was used to fit the dataset, an 

anisotropy ratio of 0.35 was chosen (principal direction being horizontal), range of 20 m. and silk 

of 20. 

 

The relevance of the model was assessed by comparison to the measurement and judged as 

satisfying for the application (Figure 26). 
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Figure 25. Experimental variogram (dots) and fitting model (line) 

Direction 90°: Horizontal direction / 0°:vertical 

 

 

 

Figure 26. Comparison between interpolated hydraulic conductivity and measurement 

Dataset available in Lange. et  al. (2011) 

 

 

 

 

  

]0.1-1] m/day 
<0.1 m/d 

] 1-10 ] m/day 

> 10 m/day 
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Interpolation of concentration data 

 

Each compound and time step was interpolated separately, as variations were expected to 

happen due to the modification of spatial distribution (section 5). The variograms for each of the 

dataset were automatically assessed by use of the geostatistical package under R software and 

with constraint of constant anisotropic ratio (r=0.35, selected from manual trial). As a boundary 

condition, the concentration was assumed equal to zero at an elevation of XX m. corresponding 

roughly to points above water table. Some validation cases are present in the following figures, 

e.g. PCE eq. with some selected dates and all compounds at one particular measurement 

period. 
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G Contaminant mass discharge estimation 

G.1. Result per compound, method 1 

 

Table 15. F wells dataset only 

Period 2008 2009 2012 2015 2016 

Jul Aug Dec Mar Jul Nov Nov Jan Sep Feb 

PCE  [kg/y] 0.80 0.80 0.99 0.94 0.78 0.43 0.21 0.29 0.29 0.26 

TCE [kg/y] 0.99 1.29 1.04 1.03 1.07 0.69 0.08 0.15 0.13 0.17 

cisDCE [kg/y] 0.99 1.32 1.20 1.18 1.10 1.15 0.82 0.59 0.56 0.61 

VC [kg/y] 0.03 0.03 0.02 0.03 0.02 0.02 0.08 0.06 0.1 0.11 

 

 

Table 16. MLS+F wells dataset 

Period 2008 2009 2012 2015 2016 

Jul Aug Dec Mar Jul Nov Nov Jan Sep Feb 

PCE  [kg/y] / / / 0.80 0.71 / / / 0.22 0.20 

TCE [kg/y] / / / 0.76 0.90 / / / 0.10 0.14 

cisDCE [kg/y] / / / 1.01 1.04 / / / 0.57 0.55 

VC [kg/y] / / / 0.02 0.02 / / / 0.09 0.09 

 

G.2. Result per compound, method 2 – data interpolation 

 

Table 17. F wells dataset only 

Period 2008 2009 2012 2015 2016 

Jul Aug Dec Mar Jul Nov Nov Jan Sep Feb 

PCE  [kg/y] 0.56 0.36 0.48 0.44 0.34 0.15 0.01 0.03 0.01 0.02 

TCE [kg/y] 0.72 0.86 0.60 0.58 0.57 0.41 0.02 0.06 0.02 0.05 

cisDCE [kg/y] 0.83 1.07 1.02 0.97 1.04 1.16 0.82 0.68 0.56 0.79 

VC [kg/y] 0.03 0.02 0.007 0.02 0.02 0.01 0.07 0.06 0.12 0.15 

 

Table 18. MLS+F wells dataset 

Period 2008 2009 2012 2015 2016 

Jul Aug Dec Mar Jul Nov Nov Jan Sep Feb 

PCE  [kg/y] / / / 0.99 0.75 / / / 0.04 0.05 

TCE [kg/y] / / / 0.83 1.02 / / / 0.03 0.05 

cisDCE [kg/y] / / / 0.83 0.94 / / / 0.60 0.54 

VC [kg/y] / / / 0.02 0.01 / / / 0.12 0.1 
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H Residence time estimation from hotspot I to 
edge of source area 

The evaluation of the transport time between the hotspot I and the observation wells was 

carried out using the following methodology: 

 

 The groundwater seepage velocity was estimated between 10 and 20 m/year in the 

source area (NIRAS, 2016B). A seepage groundwater velocity distribution is 

constructed using these values. It is assumed the velocities values are normally 

distributed, with a 95% interval confidence over the given velocity range: 

. 

𝑣𝑠 = 𝑁(𝜇 = 15, 𝜎 = 5/1.96)  

 

 In order to estimate the retardation factor, values of sorption coefficient are required. 

The sorption coefficient is estimated based on following formulae: 

 

𝐾𝑑 = 𝑓𝑜𝑐 ∗ 𝐾𝑜𝑐  

With 𝑙𝑜𝑔𝐾𝑜𝑐 = 1.04 ∗ 𝑙𝑜𝑔𝐾𝑜𝑤 − 0.84  

 

The carbon content foc is evaluated from the measurement performed by Lange. et  al. (2011) in 

the transect. Only the values in the aquifers are considered and assumed to be representative 

of the carbon content properties of the upper aquifer in the source area as well. A log normal 

distribution is used to fit the variation of carbon content and estimate a distribution of retardation 

factor. 

 

𝑓𝑜𝑐~ 𝑙𝑛𝑁(𝜇 = −2, 𝜎 =  0.65) , distribution fit to data foc  

and 𝑅 = 1 + 𝑓𝑜𝑐 ∗ 𝐾𝑜𝑐 ∗ 𝜌𝑏/𝜖  

 

 

 

 

 

 The distance between hotspot I and the observation wells varies between 

approximately 10 and 30 m depending on which extremity of the hotspot is considered.  

 

 

 

KB6 

KB4 

KB10 

         Monitoring wells 
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 A Monte Carlo simulation (n=10000 events) is run using the velocity distribution, a 

uniform range of distance to estimate the transportation time, and the distribution of 

retardation factor as expressed below: 

𝑡 =
𝑑𝑖𝑠𝑡

(𝑣𝑠/𝑅)
 with 𝑑𝑖𝑠𝑡 = 𝑈(10,20)  

 

  Histogram of time distribution is presented below in F for PCE and the degradation 

compounds, as well as the corresponding cumulative density function 
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Figure 27. Evaluation of Transport time between observation wells and hotspot I 

Result from Monte Carlo simulation (n=10000) and cumulative distribution function 

From top to bottom: PCE/TCE/cisCE/VC 

 

The average transportation time is approximately 1.4 years. 95% of all estimated transportation 

time lies in the interval [0.65-2.4] years (2.5 and 97.5% quantile values) for PCE. 
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I Transport time estimation from hotspot I to 
transect 

A procedure similar to the one performed in Appendix H is carried out to get an estimate of the 

residence time between hotspot I and the Østergade transect. 

 

 The groundwater seepage velocity was estimated from the PVP measurement 

performed in the transect (NIRAS, 2016a). A seepage groundwater velocity distribution 

is constructed using these values and a distribution fitting based on maximum likelihood 

estimation. 

. 

 

 Retardation factor is estimated as previously done in Appendix I, i.e. from a distribution 

estimate of organic carbon content and sorption coefficient assessment. 

 

 Distance from the hotspot I to the transect ranges from 70 to 100 m, depending on the point 

considered in the hotspot.  

 𝑑𝑖𝑠𝑡 = 𝑈(70,100)  
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Figure 28. Evaluation of Transport time between Østergade transect and hotspot I 

Result from Monte Carlo simulation (n=10000) and cumulative distribution function 

From top to bottom: PCE/TCE/cisCE/VC 

 

 

Table 19. Basic statistical quantities for the MC simulation and the evaluation of transport time 

between Østergade transect and hotspot I (expressed in years). 

 Average 5% quantile 50% quantile 95% quantile 

PCE 7.3 1.9 5.8 17.5 

TCE 6.8 1.8 5.4 16.2 

cisDCE 4.7 1.4 3.9 10.8 

VC 4.4 1.3 3.6 9.9 
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