

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jul 12, 2018

Pin-count reduction for continuous flow microfluidic biochips

Schneider, Alexander Rüdiger; Pop, Paul; Madsen, Jan

Published in:
Microsystem Technologies

Link to article, DOI:
10.1007/s00542-017-3401-1

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Schneider, A., Pop, P., & Madsen, J. (2017). Pin-count reduction for continuous flow microfluidic biochips.
Microsystem Technologies, 1-12. DOI: 10.1007/s00542-017-3401-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/141514396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s00542-017-3401-1
http://orbit.dtu.dk/en/publications/pincount-reduction-for-continuous-flow-microfluidic-biochips(8f19d265-631c-4a41-8533-7b4b2a6d060d).html

Noname manuscript No.
(will be inserted by the editor)

Pin-Count Reduction for Continuous Flow Microfluidic
Biochips

Alexander Schneider · Paul Pop · Jan Madsen

Received: date / Accepted: date

Abstract Microfluidic biochips are replacing the conventional biochemical analyz-
ers integrating the necessary functions on-chip. We are interested in flow-based biochips,
where a continuous flow of liquid is manipulated using integrated microvalves, con-
trolled from external pressure sources via off-chip control pins. Recent research has
addressed the physical design of such biochips. However, such research has so far
ignored the pin-count, which rises with the increase in the number of microvalves.
Given a biochip architecture and a biochemical application, we propose an algorithm
for reducing the number of control pins required to run the application. The proposed
algorithm has been evaluated on several biochips, including the AquaFlux biochip
from Microfluidic Innovations LLC.

1 Introduction

Microfluidics refers to a technology that miniaturizes biological and chemical pro-
cesses to a sub millimeter scale. A biochip, also referred to as lab-on-a-chip, in-
tegrates different biochemical functionalities such as dispensers, mixers, separators,
filters and detectors on a single chip, leading to higher portability, throughput and sen-
sitivity, while reducing sample volume consumption. Microfluidic Very Large-Scale
Integration (mVLSI) enables the development of microfluidic chips using hundreds
of such functions, allowing multiple assays to be run in parallel, making them usable

A. Schneider
Anker Engelunds Vej 1, 2800 Kgs. Lyngby, Denmark
Tel.: +45 25 30 33
E-mail: alsch@dtu.dk

P. Pop
Tel.: +45 25 37 32
E-mail: paupo@dtu.dk

J. Madsen
Tel.: +45 25 37 51
E-mail: jama@dtu.dk

2 Alexander Schneider et al.

for tasks such as Protein Crystallography, Amino Acid Analysis or Chemical Synthe-
sis [9]. The key for complex functionality on biochips is the use of on-chip valves,
similar to transistors in semiconductor VLSI. Such valves are manufactured using
multilayer soft lithography and are controlled by outside pressure sources [14]. Us-
ing these valves the flow of fluid within the chip can be restricted, allowing to decide
if and in which order the functions on the chips are used.

Ongoing research enables the fabrication of increasingly complex biochips, with an
integration density advancing faster than Moore’s Law [6]. For example, a commer-
cial LoC featuring 25,000 integrated microvalves that can run 9,216 polymerase chain
reactions in parallel has been available since 2008 [16]. Many biochip enabled sys-
tems are available from companies such as Fluidigm, where even fully automated
components can be obtained [4]. Through these advancements, current methodolo-
gies for chip design, flow, and control synthesis become inadequate [13]. In this paper
we focus on part of the control synthesis problem, namely the control pin reduction
problem. A control pin is a physical hole in the chip, which provides access to the
control layer. By applying pressure (or vacuum, depending on the valve type) [19]
to the control pin, a valve on the chip can be activated. However, a large number of
control pins is infeasible, due to the resulting consumption of chip area and required
bulky off-chip control. The “AssayMark” controller from Microfluidic Innovations
LLC for example, is only capable of providing pressure to up to 36 individual control
pins, using solenoid valves [11]. By allowing valve sharing, i.e. the sharing of the
same control by multiple valves, it is thus possible to reduce the required amount of
control pins to meet these restrictions. Doing so reduces the flexibility of the chip,
since the shared valves will work in unison. Valves sharing a single control pin there-
fore have to be chosen carefully, in order to keep the chip operable [14].

Researchers have previously proposed approaches to the application mapping and
scheduling [12]. Based on this schedule of operations, the control information (which
valves to open and close at what time and for how long) can be extracted. Using
this information, optimization schemes can be applied to minimize the chip’s pin-
count in the control layer. Recent research has proposed approaches to control pin
minimization following this idea [14] [18]. However, the ordering in which schedul-
ing and pin-count reduction is executed is crucial, since the execution of either pro-
cess poses constraints onto the other. Combining valve controls and therefore having
valves work in unison imposes scheduling constraints. Conversely, if the schedule
has been fixed and operations are to be executed at the same time, valve control com-
binations are restricted to valves which are never in opposing states. Reducing the
pin-count beforehand would therefore allow to trade off flexibility during scheduling
for additional combinations.

Contribution: We propose a new pin-count reduction technique which is applied
before the application is scheduled. Without considering the scheduling constraints,
we can find additional combinations for controls. However, when later performing
scheduling, this will potentially increase the application completion time. Our ap-
proach offers the possibility for a direct trade-off between the pin-count and the ap-
plications completion time. To improve our pin-count reduction approach, we also

Pin-Count Reduction for Continuous Flow Microfluidic Biochips 3

use a new routing technique which prioritizes routes that maximize the potential for
control combinations.

2 Biochip Architecture Model

Fig. 1 shows a functional view of a flow-based biochip containing multiple Func-
tional Fluid Units (FFU) such as inputs and heaters, as well as switches connecting
the channels leading to these components. The basic building block of these compo-
nents is a microvalve, which can be used to manipulate the fluid flow.

Fig. 1: Architecture model example

Fig. 2: Micromechanical valve

Fig. 2 shows a micromechanical valve which can be manipulated by an external force
to either restrict or permit the fluid flow. To do so, the chip is logically divided into
two layers, the flow-layer (colored in blue in Fig. 2) which contains the fluid and the
control-layer (colored in red) which can manipulate the flow-layer. Such valves are
fabricated using a layer of PDMS for each of the two logical layers. The PDMS is
poured onto the control- and flow-mold respectively and then baked. Afterwards the
layers are peeled off, aligned and bonded together by further baking, see [2] [8] for
more details on the fabrication process. The pressure source (z1 in Fig. 2) is connected

4 Alexander Schneider et al.

to the control channel via a control pin. A control pin is a physical hole, typically sig-
nificantly larger in diameter than the control channel it is connected to, located at the
edges of a biochip. When pressure is applied, the elastic control layer will “pinch” the
flow layer (at point a in Fig. 2), blocking the flow of fluid (closed valve). If no pres-
sure is applied, the fluid can flow freely through the flow layer (open valve). Hence,
this is called a “normally-open valve”. Normally-closed valves can be fabricated as
well and information about their functionality and fabrication is available in [5]; our
work can be used with any microvalve technology. To create functional components,
multiple valves are needed. Fig. 3a shows two variations of switches, requiring three
and four valves respectively to control the path of the fluid entering from any side.
Mixers as shown in Fig. 3b require nine valves to be operational. v2 and v7 as well as
v3 and v9 are used to close of one half of the mixer to allow the other half to be filled.
Valves v1 and v8 close off the mixer during the mixing process, which is indicated by
valves v4, v5 and v6, acting as a pneumatic pump. Other components such as filters,
heaters or detectors only require two valves to close off the component during its ex-
ecution, similar to valve 1 and 8 in the mixer [1].

As mentioned, each valve is in one of two physical states. The open state (denoted
with “0”) allows for fluid to be transport through a channel or component and the
closed state (denoted with “1”) prevents fluid from leaking into other channels or
components. Additionally, we also distinguish a third, logical state we call don’t care
(denoted with “X”). While valves in the open or closed state affect the fluid transport
by allowing or restricting the flow respectively, valves in the don’t care state have
no effect on the fluid transport at all, making the physical state they are in irrelevant.
Consider the mixer in Fig. 3b, to fill the bottom half, valves 1, 3, 8 and 9 have to
be open to allow fluid transport, while valves 2 and 7 have to be closed to prevent
leakage into the top half. The state of valves 4, 5, and 6 however is irrelevant, since
the channel they are located in cannot be reached by any fluid when valves 2 and 7
are closed, placing them in the don’t care state.

(a) Switches (b) Mixer

Fig. 3: Microfluidic components

Pin-Count Reduction for Continuous Flow Microfluidic Biochips 5

2.1 Architecture Model

In this paper we use the system-level architecture model based on a topology graph,
as proposed in [12]. Fig. 1 shows an example of a biochip model, containing three in-
puts and outputs, one filter, one heater and one detector. We distinguish between two
kinds of vertices in this model: Switches, which create intersections between multi-
ple channels (e.g. S1) and FFUs which can perform a certain action (e.g. In1, Heater1,
Filter1). Edges represent channels through which fluid can be transported and are con-
sidered bi-directional throughout this paper. Fluid can be transported through these
components by applying pressure to an input from an outside source. A functional
route must therefore always start at an input where pressure is applied and end in
an output where the pressure is released from the chip. For all following examples,
we assume that an input is capable of providing pressure, as well as being used as a
source of reagents.

To express routes on an architecture, we use the following definitions. A Flow
Path Segment (FPS) is a set of vertices, forming a directed route from one FFU to
another. To connect the two FFUs, a FPS can contain any number of switches, but no
additional FFUs, e.g. (In1, S1, S2, Filter1). FPSs are mutually exclusive, meaning they
cannot be used to transport fluids at the same time, if they share at least one vertex. A
Flow Path (FP) is a set of FPSs which form a route usable for fluid transport within
the given architecture. The first FPS of such a set has to start with an input, since

FPS1 = (In1, S1, Heater1)
FPS2 = (In1, S1, S2, Filter1)
FPS3 = (In1, S1, S2, S3, Detector1)
FPS4 = (In2, S2, S1, Heater1)
FPS5 = (In2, S2, Filter1)
FPS6 = (In2, S2, S3, Detector1)
FPS7 = (In3, S5, S4, Heater1)
FPS8 = (In3, S5, Filter1)
FPS9 = (In3, S5, S6, Detector1)
FPS10 = (Heater1, S1, S2, S3, Out1)
FPS11 = (Heater1, S1, S2, Filter1)
FPS12 = (Heater1, S1, S2, S3, Detector1)
FPS13 = (Heater1, S4, Out2)
FPS14 = (Heater1, S4, S5, Filter1)
FPS15 = (Heater1, S4, S5, S6, Out3)
FPS16 = (Heater1, S4, S5, S6, Detector1)
FPS17 = (Detector1, S3, Out1)
FPS18 = (Detector1, S3, S2, Filter1)
FPS19 = (Detector1, S3, S2, S1, Heater1)
FPS20 = (Detector1, S6, Out3)
FPS21 = (Detector1, S6, S5, S4, Out2)
FPS22 = (Filter1, S2, S3, Out1)
FPS23 = (Filter1, S2, S3, Detector1)
FPS24 = (Filter1, S2, S1, Heater1)
FPS25 = (Filter1, S5, S4, Out2)
FPS26 = (Filter1, S5, S6, Out3)
FPS27 = (Filter1, S5, S6, Detector1)

Table 1: All available FPSs for the architecture in Fig. 1

6 Alexander Schneider et al.

they act as a pressure source. All following FPSs have to start where the previous
FPS ended. A FPS ending in an output finishes the FP which then forms a continuous
route from an input to an output.

Table 1 shows the resulting FPSs determined by paring all available FFUs shown
in Fig. 1 that are directly connected to each other. Note that this list is already stripped
of such FPSs, that cannot be used to create FPs in the architecture,
e.g. (Detector1, S6, S5, Filter1) since it is impossible to connect an input to Detector1
and an output to Filter1, without overlapping paths.

Previous research [12] has considered a simplified routing model, which assumes
that fluids can be moved along all given FPSs, regardless of the presence of inputs
or outputs. This only works under the assumption of implicit inputs and outputs,
which would be located in front of and behind FFUs, allowing FPSs to be functional
routes on their own, e.g. FPS12 would be a valid FP to transport fluid from Heater1 to
Detector1, even though no input or output is connected. We refer to these additional
interfaces as implicit, since they are not modelled in the architecture as opposed to
explicit ports, which are part of the model. This results in invalid schedules, unless all
additionally assumed inputs and outputs are added to the architecture, which may be
infeasible due to the increase in valve- and control counts as well as the chip size. In
this paper we consider a realistic routing model, where every route starts at an input
and ends at an output explicitly stated by the architecture model.

2.2 Application Model

To model a biochemical application, we use a directed, acyclic and polar sequenc-
ing graph model [12]. A node in this graph is an operation that runs on a FFU. The
edges denote dependencies between operations that require fluid transport. Each op-
eration Oi has an execution time Ci when running on a FFU j. We also model the fluid
transport times depending on the length of the channel. An example of such an appli-
cation graph can be seen in Fig. 4. For the examples in this paper, we will assume, for
simplicity, that an operation takes 4 time units and the transport through any given
channel takes 1 time unit. Application models are not architecture specific. There-
fore, before an application can be run on a biochip, the application has to be mapped

Fig. 4: Application model example

Pin-Count Reduction for Continuous Flow Microfluidic Biochips 7

to the chip. This includes binding operations to the functional units (where the oper-
ation should be executed), the routing of fluids (which channels should be used for
transport) and scheduling (at which times the fluids are transported and the operations
are executed). Typically that also includes the assignment of dispensing operations to
input reservoirs, however in Fig. 4 we have already done this assignment to simplify
the examples in which this application is used.

3 Problem Formulation

Let us illustrate our problem using the In-Vitro Diagnostics application (IVD) from
Fig. 6 that has to be mapped to the architecture from Fig. 5. We indicate with Oi
the i-th operation in the IVD. Let us assume that the binding of operations is as
follows: O1, O2 and O5 are bound to Mixer1; O6, O9 and O10 are bound to Mixer2;
O3, O4 and O7 are bound to Detector1 and O8, O11 and O12 are bound to Detector2.
Furthermore, let us assume that we schedule this application such that the restulting
schedule is the one shown in Fig. 7a leading to the valve actuation sequence shown
in Table 2. The schedule shows the start times and the duration of operations as
references on a timeline, and the four rows correspond to the FFUs in the architecture
from Fig. 1. We denote with Mi the fluid transport operations. The time units are
listed at the bottom, indicating the elapsed time since the start of the application. Note
that for space reasons we only show partial schedules in Fig. 7 and a partical valve
actuation table in Table 2. The rows of the table represent the valves and each column
represents a time step in which certain valves need to be actuated. As mentioned,
related work [14] performs control pin minimization after scheduling, thus using the
data from Table 2 as a starting point. There, Valve1 and Valve3 for example, can be
in the same state throughout the depicted time steps (at time step 18, Valve3 is in a
don’t care state and can be opened to suit Valve1) and their controls can therefore
be combined. The don’t care state is present whenever the part of the chip where the
valve is located is unused, e.g. when transporting fluid from In3 to Mixer1 in Fig. 5,
the part of the chip containing Detector2 is unused. This means the detector’s valves
are in the don’t care state, since they neither have to restrict nor permit fluid flow and
their physical states are therefore irrelevant.

Fig. 5: IVD Architecture

Note that in the IVD schedule in Fig. 7a, the detection operations O3 and O4 are
waiting for the mixing operations O1 and O2 to finish respectively. The fluid transport

8 Alexander Schneider et al.

Fig. 6: Typical IVD application that mixes various samples, reagents and buffers and
analyses the results.

M2 and the following detector operation O4 are started as soon as possible, in order to
minimize the application completion time. This however means, that the equivalent
operations for Detector1 (M1, O1) are not executed at the same time as for Detector2.
This leads to the valves used by these four operations to be in opposing states in time
step 18 as highlighted with the corresponding color coding in Table 2 and Fig. 7a,
meaning their controls can’t be combined.

(a) Partial IVD schedule before the pin-count re-
duction, all operations are executed as early as
possible.

(b) Partial IVD schedule after pin-count reduction
with scheduling constraints in place, leading to a
deferred execution of O4

Fig. 7: Impact of pin-count reduction on IVD schedule

Valve No. / TS 8 10 12 14 16 18 20 22
1 0 0 0 0 0 0 X X
2 1 1 0 0 1 1 X X
3 0 0 0 0 0 X X X
4 1 0 0 1 1 X X X
5 0 0 1 1 0 0 X X
6 0 1 1 0 0 X X X
7 0 0 X X 0 0 1 1
8 0 X X 0 0 1 1 X
...

8A 0 X X 0 0 X 1 1

Table 2: Partial actuation Table for IVD. 0: Open. 1: Closed. X: Don’t Care

Pin-Count Reduction for Continuous Flow Microfluidic Biochips 9

As we can see from this example, the scheduling step has introduced constraints
that restrict the valve sharing options. Let us assume that we have decided to combine
the valves used by Detector1 and Detector2 before scheduling the operations. This
means that the two detectors can only operate simultaneously, which is a scheduling
constraint. We can enforce this constraint during scheduling, for example by post-
poning the execution of operation O4 until operation O3 can be executed as well,
the resulting schedule is shown in Fig. 7b. The resulting change in the control logic
for Valve8 is stated as Valve8A in Table 2, which is now compatible with Valve7.
However, the introduced change in the schedule can affect the application execution
time, as Detector2 is now occupied by O4 until time step 24 instead of time step 22,
potentially postponing other operations by 2 time steps as well.

By determining the valve sharing before the scheduling step, we can reduce the
number of control pins required. For the complete IVD application, we can reduce the
pin-count from 20, as determined by the technique from [14] to 14. The so introduced
scheduling constraints do however delay the operations, increase the application com-
pletion time and possibly exceed the application deadline, which has to be satisfied
for certain biochemical protocols. For this example the reduction of required control
pins to 14 increases the application execution time from 81 (as determined before the
reduction) to 107 time steps. In addition, we have to make sure that the application
can still be executed successfully as control pin combinations can force valves to be
in states which are incompatible with certain routes, which is explained in detail in
Sect. 4.2.
The problem we address in this paper is defined as follows:
Input: Topology-graph architecture model, application model including application
deadline and available number of control pins.
Determine: The sharing of control pins by valves in the architecture, the binding,
routing and scheduling of operations in the application, such that the number of con-
trol pins required does not exceed the given limit and the application deadline is
satisfied.

4 Proposed Method

Researchers have proposed a design flow for mVLSI biochips [17], which is shown in
Fig. 8. To solve the problem outlined in the previous section we propose the following
steps, which are also shown in Fig. 8 as a detailed view of the “Application Mapping”
and “Control Synthesis”.

In step 1, we bind and route the operations given by the application onto to the
given architecture model, using a novel routing technique presented in Sect. 4.1.
Step 2 performs a preliminary control synthesis which determines the valve states
for every created route. Contrary to the complete control synthesis [14], this version
does not yet contain any information about timing. The determined valve states are
then used as input along with the application deadline for our proposed pin-count
reduction algorithm from Sect. 4.2. The algorithm produces a grouping of valves
that can share the same control pin, which introduces scheduling constraints for the
next step. Since scheduling the whole application is time consuming, step 4 uses a

10 Alexander Schneider et al.

prediction function presented in Sect. 4.2 to determine the impact of the constraints
introduced on the schedule. The application is scheduled in step 5. Step 6 concludes
this process with control synthesis, which in contrast to the one performed in step 2,
does also incorporate the schedule. To schedule the application we have implemented
a List-Scheduling algorithm [10] and extended it to take scheduling constraints into
account. After the control synthesis is performed, we know how many control pins
are required and how they have to be connected to valves. The “Physical Design” task
for the control layer is responsible to determine the routing of the control channels in
the architecture [7]. Note that our approach is iterative (the back arrow from step 4 to
step 3) and allows the designer to perform a trade-off between the number of control
pins and the application completion time. If the end-user already has a control box
with a given number of outputs, then this number can be given as an input, and our
algorithm in step 3 will stop when this is satisfied. Our algorithm also stops before
the application deadline (if given) would be exceeded.

4.1 Routing

Given the architecture and application models (see Sects. 2.1 and 2.2 respectively),
the routing algorithm (step 1 in Fig. 8) determines a route for every operation. A
route is constructed from a FP. We use the term “route” to refer to those FPs which
have been chosen to be used by an operation, distinguishing from other available, FPs
not used as routes. Binding, meaning which FFU in the target architecture is used to
execute an operation (e.g. heating) is also determined during routing.

Fig. 8: mVSLI design cycles and our proposed method

Pin-Count Reduction for Continuous Flow Microfluidic Biochips 11

(a) Available FPSs from In1 (b) Available FPSs from Heater1 to outputs

Fig. 9: Microfluidic components

We construct a route by linking together multiple FPSs which are determined first,
as explained in Sect. 2.1. From this list of FPSs (which are stated in Table 1 for our
example) we can determine FPs to suit the operations of the application. We divide
this process into three steps. (1) A connection between the FFU where the fluid is
currently located and the target FFU has to be found. For example, operation O1
from Fig. 4 requires fluid from In1 to be transported to a heater. O1 can execute on
any heater, and our routing will search for a heater FFU to bin operation O1 to. We
determine a path between these FFUs using one, or a set of connected FPSs. This
is done using a Breadth-First Search algorithm, with all FPSs beginning at In1 as
starting points. Additional FPSs are linked to the established FPSs until a connection
between the FFUs has been found. Fig. 9a shows all FPSs starting at In1. Since FPS1
directly connects In1 to Heater1, it is chosen as the route for operation O1 while the
other options are discarded. Two additional steps are necessary to form a valid FP.
(2) The path determined in (1) has to be connected to an output to be considered
a valid FP. To the heating operation O1 we bound Heater1 and therefore need to
connect to an output from there. This is done using the same Breadth-First Search
algorithm as in (1), only with Heater1 as the starting point and any output as target.
However, during this search conflicts with the previously determined path from In1
to Heater1 have to be omitted. Considering all available FPSs that lead to outputs as
shown in Fig. 9b FPS10 cannot be used to connect Heater1 with Out1, since this FPS
overlaps with FPS1 which is already in use. For operation O1, we therefore use FPS13
to connect Heater1 to Out2 without causing any overlap. (3) The path determined in
(1) has to be connected to an input to be considered a valid FP. For operation O1
this is already the case and no further action is required to complete the route. For
operations that do not start at an input, an input has to be found in the same fashion
as an output in (2). Depending on the architecture, it is possible that multiple paths
connecting the source and target FFU exist or multiple components of the same type
to which an operation can be bound (e.g. Heater, Detector) are available, meaning
we will end up with multiple options for all three routing steps, e.g. in Fig. 9b we
could have also used FPS15 to connect Heater1 with Out3. However, our strategy is to
choose the route which blocks the smallest number of FFUs and switches on the chip,
which is not necessarily the shortest route. A component is considered blocked if it is
actively used (i.e. routed through), or if it cannot be used by another route, since an
adjacent component is used. Take FPS4 in Table 1 for example. Even though it does

12 Alexander Schneider et al.

not use Filter1, the valve leading towards it has to be closed and the filter is considered
blocked, since it is not possible to form a route that uses Filter1, while FPS4 is active.
Choosing routes with the lowest number of blocked components therefore allows a
higher flexibility while scheduling, since more components are still available to be
used by another route.

4.2 Reducing the Pin-Count

Using the previously defined routes as input we can determine controls that can be
combined to lower the chip’s pin-count. As mentioned previously, combining controls
without having a schedule in place provides additional possibilities for combinations,
but also has the potential to increase the application execution time. This is due to
scheduling constraints that are introduced when combining controls. The reason for
the increase in execution time is the same for all constraints: FPs that were previously
able to be executed in parallel, now have to be executed in sequence to avoid uninten-
tional mixing. The amount of additionally required execution time however can vary,
depending on the length of the FPs and the number of FPs that have to be executed
in sequence because of the introduced constraint. Cases of such constraints will be
shown using examples from Table 4.
Consider Fig. 1 as an example architecture. To operate the chip, 32 valves are re-
quired. A partial example of where those valves are located in our architecture is
shown in Fig. 10.

Fig. 10: Valves

The first set of combinations performed differs from other combinations, as they will
never introduce any constraints onto the schedule. Those combinations can be made,
regardless of the architecture, for all valves which are located in a channel between
two switches, an input and a switch, or an output and a switch. Consider In1 and S1
in Fig. 10. They are connected by a channel which contains Valve1 and Valve2. Only
two possibilities exist in which this channel can be used: Either the channel is routed
through, in which case both valves have to be opened, or it is not routed through,
in which case both valves can be closed. Therefore, the valves have no need to be
actuated individually. The same principle applies to the valves which close off any
given FFU, along with other valves that are located in this channel (e.g. valves 4 to 7
in Fig. 10). Therefore, these valves’ controls can be combined and share a control pin,
meaning that these valves will always work in unison, in what we call a Valve Group
(VG). Fig. 11 shows the result of applying this to the presented architecture, where
the previously mentioned Valve1 and Valve2 now form VG1, valves 4 to 7 form VG2

Pin-Count Reduction for Continuous Flow Microfluidic Biochips 13

Table 3: Valve Group Configuration

Route Open VGs Closed VGs Don’t Care VGs
1 1, 2, 3 4, 5 6, 7, 8, 9, 10, 11, 12, 13
2 6, 9, 12, 13 4, 7, 10, 11 1, 2, 3, 5, 8
3 7, 8, 9, 11 4, 5, 6, 10, 12 1, 2, 3, 13

and so on. Further combination of VGs means that all valves of both groups share a
single control pin and are therefore activated in unison.

Fig. 11: Valve Groups

Fig. 12: Routes

Additional combinations will introduce scheduling constraints, which may affect the
application execution time negatively. To ensure that the application deadline will not
be exceeded, it is therefore necessary to determine combinations that introduce con-
straints with minimal effect on the schedule. To clarify the effects of such constraints
we map the application from Fig. 4 to our example architecture in Fig. 1. The three
resulting routes can be seen in Fig. 12.From these routes we can extract the valve
states for each route, which is illustrated in Table 3. Each route has sets of VGs in the
previously explained states open, closed and don’t care.
Given this data, the application graph, the desired number of control pins and (if
relevant) the maximum application execution time, Algorithm 1 can determine the

14 Alexander Schneider et al.

Example Combined VGs Result Reason
1 VG1 and VG4 Combination

not valid
Route 1 is invalidated, since VG1 has to be open to
allow fluid transport while VG4 has to be closed to
prevent leakage

2 VG1 and VG2 Combination
valid and no
increase in
schedule length

VG1 and VG2 are open for Route 1 and in a don’t
care state for Routes 2 and 3. Therefore no mat-
ter which routes are executed in parallel, VG1 and
VG2 can always be open

3 VG6 and VG13 Combination
valid and no
increase in
schedule length

Even though this combination does prohibit routes
2 and 3 from being executed in parallel, no increase
in schedule length will occur since these routes
were not able to run in parallel in the first place,
due to their partially overlapping FPs

4 VG1 and VG12 Combination
valid and possi-
ble increase in
schedule length

VG1 has to be open for Route 1, while VG12 has
to be closed for Route 3, prohibiting parallel exe-
cution of these routes

5 VG1 and VG10 Combination
valid and possi-
ble increase in
schedule length

VG1 has to be open for Route 1, while VG10 has
to be closed for routes 2 and 3, prohibiting parallel
execution of these routes

Example Constraint Result Exec. time
6 Routes 1 and 2 restricted from being

executed at the same time
Routes 1 and 3 are executed in
parallel Route 2 is executed as
soon as Route 1 finishes

18

7 Routes 1 and 3 restricted from being
executed at the same time

Routes 1 and 2 are executed in
parallel Route 3 is executed as
soon as Route 1 finishes

16

Table 4: Valve Group combination examples: Examples 1-5 show the outcome of
combining certain VGs regarding the architecture and routes from Fig. 12. Examples
6 and 7 show how different constraints can have varying effects on the schedule
length. For these examples, 10, 8 and 6 time units are assumed for routes 1, 2 and 3
respectively.

potential effect on the schedule for each combination of VGs and hence choose the
appropriate combinations that have the minimum impact on the application execution
time.
Algorithm 1 starts with the assumption that all VGs can be combined, hence all per-
mutations of combinations are iterated through in line 1. However, several combina-
tions can be discarded right away as they would invalidate at least one of the given
routes, meaning the application could no longer be correctly executed. This is the case
whenever some of the valves in questions are in the open state, while another part is
in the closed state for a single route, as shown in Example 1 in Table 4 and checked in
line 2 in the algorithm. If this is not the case, the algorithm continues in line 4, deter-
mining whether this combination introduces a scheduling constraint. This is similar
to how valve groups are determined in the related work in [14]. However, the related
work only determines whether the combination is valid for an already given sched-
ule. We determine if the combination is valid for any possible schedule, meaning no
scheduling constraint is introduced. This is the case if all potentially combined valves
can be in the same state for all routes, i.e. all valves are either in the open or don’t care

Pin-Count Reduction for Continuous Flow Microfluidic Biochips 15

Algorithm 1 Pin-count reduction
1: for each possible combination of VGs comb do
2: if valves in comb have to be in opposite states for at least one route then
3: Combination not possible without invalidating such routes
4: else if all valves in comb are in the same state at any given time then
5: Combination valid and no increase in schedule length
6: else
7: for all possible pairings of given routes do
8: if combining the valves in comb can increase the schedule length then
9: Use prediction function to determine by how much

10: end if
11: Store the prediction for this pair of routes, or 0 if no prediction was necessary
12: end for
13: end if
14: end for
15: Sort all combs according to the predicted increase in execution time
16: Combine VGs according to the sorted list until the application deadline is exceeded

state, or in the closed or don’t care state, for all routes, as it is the case in Example
2. If a combination of valves does introduce a scheduling constraint, the algorithm
continues on to determine the impact on the application execution time for this con-
straint in lines 7-12. As mentioned previously, a scheduling constraint prohibits two
or more routes to be executed in parallel, because parallel execution would cause un-
intentional mixing of fluids, leading to a potential increase in application execution
time as these routes have to be executed in sequence. Hence we iterate through all
pairs of routes in line 7 in order to determine the effect on them. First, some routes
were never able to be executed in parallel anyway, since they partially overlap, as
demonstrated in Example 3. In this case, which is checked in line 8, the scheduling
constraint does not have any effect on this pair of routes. In other cases such as in
Example 4, the scheduling constraint does impact the parallelism of the application
as routes 1 and 3 can no longer be executed at the same time. When such a case arises,
the algorithm determines how much this scheduling constraint affects the application
execution time in line 9. Exact results can however only be determined by scheduling
the application and comparing the execution times. Since this is too time consum-
ing, we propose a cost function to predict the effect on the schedule. This prediction
is based on how many parallel executions of routes are prohibited by a scheduling
constraint. E.g., Example 5 prohibits route 1 from being executed at the same time
as either route 2 or 3. Example 4 on the other hand only prohibits parallel execution
of routes 1 and 3, leaving the possibility to execute routes 1 and 2 at the same time,
leading to a prediction of a smaller increase in execution time than for Example 5.
Additionally the execution time of each route (how long it takes to transport the fluid
along the FP) is taken into account. The cost function predicts that constraints affect-
ing routes with long execution times have a larger impact on the schedule. This can
be seen in Examples 6 and 7 where we assume that routes 1-3 have an execution time
of 10, 8 and 6 time steps respectively. Both examples prohibit one pair of routes from
parallel execution, yet Example 7 results in a shorter execution time, since the longest
routes are not affected by constraints.

16 Alexander Schneider et al.

Once the impact on the application execution time has been predicted for all com-
binations of valves, these combinations are sorted from smallest to largest impact in
line 15 and then applied to the architecture until a stopping criteria is reached. The
end user can specify the stopping criteria: Stop the pin-count reduction when a given
application deadline is reached, or stop when a given target number of control pins
is reached. By varying the stopping criteria, an end-user can trade-off the number of
control pins and the application completion times, as discussed in the experimental
results.

5 Experimental Results

We were interested to evaluate the proposed Pin-Count Minimization (PCM) strategy.
The evaluation has been performed for 4 biochips with the corresponding biochem-
ical application. We have compared our PCM approach with the Control Synthesis
Optimization (CSO) from [14], which performs pin-count reduction after the schedul-
ing step, using a Graph-Coloring algorithm. We have used the following test cases for
the evaluation:
Test Case 1 (TC1): We use an architecture capable of IVD (In-Vitro Diagnostics),
which has various real life applications [3].
TC2: We have used the processing part of the MOA (Mars Organic Analyser) [15],
and for TC3 we have modified it to an alternate design for the same application.
TC4: We have created a Multi-Purpose (MP) architecture to test the effects of our pin-
count reduction technique. The corresponding architecture- and application model for
our MP-Architecture can be seen in Figs. 13 and 14. The number of FFUs and valves
in the architectures as well as the number of operations in the applications are given
in columns 2-4 in Table 5. The architecture and application models are available as
supplemental materials.

Fig. 13: Multi-purpose architecture

For all experiments we assume that it takes 1 time step for fluid to pass through
any given channel (e.g. from one switch to another) and 4 time steps for an operation
(e.g. mixing) to finish. Table 5 shows a direct comparison between the CSO presented

Pin-Count Reduction for Continuous Flow Microfluidic Biochips 17

Fig. 14: Multi-purpose architecture application

in [14] and our PCM. The table contains the number of valves and FFUs in the archi-
tectures, the number of controls required and the corresponding execution times for
both methods, for each of the tested architectures. As expected, the pin-count reduc-
tion comes at the expense of an increase in application completion time. However, for
most cases, the minimum number of pins is obtained without a significant increase in
completion time. The advantage of our approach is that it allows for a direct, stepwise
trade-off between the number of control pins and the application completion time.

Hence, in our second experiment, we were interested to evaluate the ability of
our proposed PCM approach to support such a trade-off. Thus using TC4 (TC1-3 are
available in the supplemental material) we show in Fig. 15 how PCM enables the
trade-off between the number of required control pins and the application completion
time. The figure shows the number of control pins, starting at 31, which is the initial
number of VGs created, on the Y-axis and the completion time on the X-axis. As we
can see from the figure, the end-user can choose which trade-off is most appropriate,
considering the constraints of their control solution in terms of number of control
pins available versus the application completion time, which may be constrained by a
deadline for certain applications. Such a trade-off is non-trivial, since the impact of a
certain valve-sharing solution on the schedule is not easy to determine. For example,
there are combinations which do not affect the schedule length, for reasons as shown
in Examples 2 and 3 in Table 4. This is however only true for this particular order
in which the combinations have been made. E.g., the combinations that reduced the
control count from 24 to 16 do not generally have no effect on the schedule length.
Instead, the scheduling constraints introduced by the combinations before, create a
scenario similar to Example 3 for the following combinations. Especially for appli-
cations with few operations, such large jumps can occur frequently after multiple
constraints have already been introduced. This is due to the fact that most of these
few operations are already executed in sequence after a small number of constraints
is applied, providing more options for combinations such as Example 3 in Table 4,
which constrain the schedule no further. Additional combinations bring the control
pin count to 14, which is the minimum number of control pins required to run the ap-
plication as determined by the pin-count reduction algorithm. We have also validated

18 Alexander Schneider et al.

Test Case PCM CSO [14]
Name FFUs Valves Pin count Completion time Pin count Completion time
TC1 8 46 14 (30%) 107 (32%) 20 81
TC2 13 84 17 (14%) 119 (0%) 21 119
TC3 15 74 14 (30%) 96 (13%) 20 85
TC4 13 66 14 (44%) 70 (56%) 25 45

Table 5: Comparison between PCM and CSO. The percentage values in PCM indicate
the reduction of the pin count and the increase in completion time compared to CSO
respectively.

our method on the AquaFlux biochip controlled by a 36-controls box from Microflu-
idic Innovations, LLC. Our method was able to determine the same pin-count as the
one currently used by the manually designed AquaFlux biochip.

45 49 52 58 70

31

27
26
25
24

16
15
14

Application completion time

N
um

be
ro

fc
on

tr
ol

pi
ns

Fig. 15: Trade-off for TC4 using PCM (blue, squares and line). CSO result reference
for TC4 (red dot)

6 Conclusions

With new advances in biochip fabrication, the number of valves integrated on a single
chip is rising fast. The external hardware required to operate a biochip is however not
as scalable, resulting in further increase in size and cost of this hardware, which is
already magnitudes larger and more expensive than a biochip. In this paper we have
proposed a new technique to reduce the required pin-count for flow-based biochips,
effectively reducing the complexity of external hardware required. Contrary to previ-
ous work, this method is able to trade off execution time to reduce the pin-count even

Pin-Count Reduction for Continuous Flow Microfluidic Biochips 19

further. Experimental results have shown that our algorithm is capable of reducing the
pin-count significantly, while keeping the increase in schedule length acceptable. To
produce realistic results, the current state-of-the-art routing model has been extended.

References

1. H.-P. Chou, M. A. Unger, and S. R. Quake. A microfabricated rotary pump. Biomedical Microdevices,
3(4):323–330, 2001.

2. O. J. S. David C. Duffy, J. Cooper McDonald and G. Whitesides. Rapid prototyping of microfluidic
systems in poly(dimethylsiloxane). Analytical Chemistry, 70(23):4974–4984, 1998.

3. C. K. Dixit. Biochips based in vitro diagnostics: Market trends and research. Journal of Biochips &
Tissue Chips, 3(2), 2013.

4. Fluidigm c1 system. https://www.fluidigm.com/products/c1-system. Accessed: 2017-02-
27.

5. W. H. Grover, A. M. Skelley, C. N. Liu, E. T. Lagally, and R. A. Mathies. Monolithic membrane valves
and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensors and
Actuators B: Chemical, 89(3):315 – 323, 2003.

6. J. W. Hong and S. R. Quake. Integrated nanoliter systems. Nature Biotechnology, 21:1179–1183,
2003.

7. M. Hrslev-Petersen. Computer-aided design for the physical synthesis of biochip control logic. 2016.
Master’s Thesis, Technical University of Denmark.

8. T. T. A. S. Marc A. Unger, Hou-Pu Chou and S. Quake. Monolithic microfabricated valves and pumps
by multilayer soft lithography. Science, 288(7):113–116, 2000.

9. J. Melin and S. R. Quake. Microfluidic large-scale integration: The evolution of design rules for
biological automation. Annual Review of Biophysics and Biomolecular Structure, 36(1):213–231,
2007. PMID: 17269901.

10. G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education, 1st
edition, 1994.

11. Microfluidic innovations llc assaymark. http://www.microfluidicinnovations.com/

Datasheets/AssayMark_DS1301.pdf. Accessed: 2016-09-01.
12. W. Minhass, P. Pop, and J. Madsen. System-Level Modeling and Synthesis Techniques for Flow-Based

Microfluidic Very Large Scale Integration Biochips. PhD thesis, Technical University of Denmark,
2012.

13. W. H. Minhass, P. Pop, and J. Madsen. System-level modeling and synthesis of flow-based microflu-
idic biochips. In Proceedings of the 14th International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, CASES ’11, pages 225–234, New York, NY, USA, 2011. ACM.

14. W. H. Minhass, P. Pop, J. Madsen, and T.-Y. Ho. Control synthesis for the flow-based microfluidic
large-scale integration biochips. In Design Automation Conference (ASP-DAC), 2013 18th Asia and
South Pacific, pages 205–212, Jan 2013.

15. M. F. Mora, F. Greer, A. M. Stockton, S. Bryant, and P. A. Willis. Toward total automation of mi-
crofluidics for extraterrestial in situ analysis. Analytical Chemistry, 83(22):8636–8641, 2011. PMID:
21972965.

16. J. Perkel. Life science technologies: microfluidicsbringing new things to life science. Science,
5903(322):975–977, 2008.

17. P. Pop, W. H. Minhass, and J. Madsen. Microfluidic very large scale integration (VLSI): modeling,
simulation, testing, compilation and physical synthesis. Springer, Cham, 2016.

18. M. L. Raagaard and P. Pop. Pin count-aware biochemical application compilation for mvlsi biochips.
In Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2015 Symposium on, pages
1–6, April 2015.

19. T. Thorsen, S. J. Maerkl, and S. R. Quake. Microfluidic large-scale integration. Science,
298(5593):580–584, 2002.

