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ABSTRACT: Chemical redox reaction can lead to a two-dimensional electron gas (2DEG) at the 

interface between a TiO2-terminated SrTiO3 (STO) substrate and an amorphous LaAlO3 (a-LAO) 

capping layer. When replacing the STO substrate with rutile and anatase TiO2 substrates, considerable 

differences in interfacial conduction are observed. Based on X-ray photoelectron spectroscopy (XPS) 

and transport measurements, we conclude that the interfacial conduction comes from redox reactions, 
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and that the differences among the materials systems result mainly from variations in the activation 

energies for the diffusion of oxygen vacancies at substrate surfaces. 

1. INTRODUCTION 

As silicon is the foundation material for semiconductor technology, strontium titanate, SrTiO3 

(STO), is the base material for the emerging field of oxide electronics. Two-dimensional electron gases 

(2DEGs) at STO-based heterointerfaces,1-4 LaAlO3/SrTiO3 (LAO/STO) in particular,1 exhibit a large 

number of remarkable physical properties, such as superconductivity,5 magnetism,6 sensitivity to 

electric field,7 light illumination,8 and high electron mobility,9-10  which show potential applications in 

the next generation of electronic devices.11 Despite intensive research, the origin of the conductivity at 

the LAO/STO interface remains hotly debated.12-17 Different scenarios have been proposed, including 

the charge transfer from LAO surface to interface due to polar discontinuity,1, 12 extrinsic doping by 

generation of oxygen vacancies in STO substrate,4, 13-15 and extrinsic doping by cation intermixing 

across the interface to induce n-type conduction of La-doped STO.16 Among these, formation of 

oxygen vacancies into STO substrate frequently occurs while depositing oxide capping layers18-24 that 

contain specific active elements, such as Al, Hf, Zr and Ti on the top of STO. During the deposition 

process, oxygen ions in the STO substrate will diffuse outward to oxidize the reactive plasma species 

absorbed on the substrate surface, leaving behind oxygen vacancies in the STO substrate.18 This in turn 

gives rise to a 2DEG confined to the interface as what occurred for the amorphous-LaAlO3 (a-

LAO)/STO interface grown at room temperature.18 Using O18-exchanged STO substrates, the 

significant oxygen transfer from substrate to the film has been experimentally observed for both high 

temperature and room temperature film deposition using pulsed laser deposition (PLD).25-26 Agham et 
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al21 also reported that when metals were deposited on the STO substrate, an oxygen-deficient layer in 

STO is very likely to be created if the formation energy of the metal oxide is larger than that of an 

oxygen vacancy. So far, generating oxide 2DEGs by redox reactions has been largely limited to the 

STO substrate, for which various capping layers have been adopted, such as a-LAO,22 amorphous 

CaHfO3,
20 yttria-stabilized zirconia (YSZ),18 and Al2O3.

4, 19 Besides (001)-oriented STO substrates, 

STO with orientations of (110) and (111)27 has also been used for the deposition of a-LAO. Recently, 

Sarkar et al28 replaced the STO substrate of a-LAO/STO heterostructures with anatase TiO2 [TiO2(A)] 

and rutile TiO2 [TiO2(R)] and obtained interfacial 2DEGs with different transport properties from a-

LAO/STO. However, the origin underlying the transport differences remains open. Herein, we 

employed both transport and X-ray photoelectron spectroscopy (XPS) measurements to study the 

formation of 2DEGs between a-LAO and STO, TiO2(A) or TiO2(R) with different Ti-O-Ti bond 

configurations. Similar to previous reports, we found that the a-LAO/STO interface is metallic from 

295 K to 2 K with a typical carrier density of 1.0×1014 cm-2 at 295 K. The a-LAO/TiO2(A) interface 

shows a similar metallic behavior to a-LAO/STO except for a resistance upturn below 125 K, which is 

likely to be due to the Kondo effect. Moreover, the a-LAO/TiO2(R) interface exhibits a carrier density 

lower by a factor of 18 than the former two systems and displays a metal-to-insulator transition at 45 K 

upon cooling. Our XPS measurements indicate that the differences in transport properties of these three 

heterostructures is ascribed mainly to the different activation energies for the diffusion of oxygen 

vacancies from the substrate to the a-LAO capping layer during the interfacial redox reactions. 

2. EXPERIMENTAL DETAILS 

Three types of substrates were employed, STO (001), TiO2(A) (001) and TiO2(R) (001) with a 

size of 5×5×0.5 mm3. The TiO2(R) and STO are commercial substrates. To get a TiO2-terminated layer, 



4 
 

the STO substrate was chemically etched by a HCl-HNO3 acidic solution, and then annealed at 1000 ºC 

for 1 h in 1 bar oxygen. The crystalline TiO2(A) substrate was grown by PLD (KrF excimer laser, 

λ=248 nm) on the LAO substrate at 750°C under an oxygen pressure of 5×10-3 mbar. The films 

obtained (about 100 nm) are confirmed to be of high crystalline quality by X-ray diffraction (XRD), 

with a smooth surface (root mean square roughness is 1.1 nm, Supporting Information S1). The 

heterostructures were formed by capping the three substrates with a-LAO films grown by PLD with a 

commercial LAO single crystal target. This amorphous capping layer is nonpolar therefore rules out the 

polar discontinuity induced electronic reconstruction in the all-crystalline heterointerface.1,29 During 

the deposition, the substrate was kept at room temperature and the oxygen pressure was maintained to 

10-6 mbar. The laser fluence is 3 Jcm-2 and the repetition rate is 1 Hz. The target-substrate distance was 

fixed at 5 cm. The thickness of the a-LAO capping layer was kept at 3 nm in this work. However, 

samples with the a-LAO films up to the thickness of 16 nm showed similar results (Supporting 

Information S4). 

Transport measurements were done in both van der Pauw and Hall-bar geometry with the latter 

prepared by depositing a-LAO through a mechanical mask. Ultrasonic Al wire bonding was used to get 

electric connection. The electric measurements were performed in a CRYOGENIC cryogen-free 

measurement system in the temperature range from 300 K to 2 K and magnetic field ranges from 0 T to 

16 T.  

The valence state of relevant elements after the deposition of a-LAO was investigated by a 

Thermo Scientific ESCALAB Xi+ XPS, using a monochromatic Al Kα X-ray source with a photon 

energy of 1,486.6 eV. This leads to a kinetic energy of Ti 2p electrons of roughly 1,028 eV. The pass 

energy used for the high resolution scan was 50 eV. For analyzing the Ti 2p3/2 peaks, a Smart 
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background was subtracted and the spectra were normalized to the total area below the Ti peaks 

([Ti]=[Ti4+]+[Ti3+]+[Ti2+]=100%). The binding energies obtained from this work (458.6 ±0.1 eV for 

Ti4+, 457.0 ±0.1 eV for Ti3+, and 455.3 ±0.1 eV for Ti2+) are in excellent agreement with the 

corresponding values (458.7 ±0.2 eV, 457.1 ±0.4 eV, and 455.3 ±0.4 eV) from the NIST Standard 

Reference Database 20, Version 4.1 (web version). 

3. RESULTS 

Fig. 1(a) is a schematic illustration of the heterostructure investigated here which consists of an a-

LAO capping layer deposited on one of the three TiO2-based substrates: STO, TiO2(A) and TiO2(R). 

To illustrate the intrinsic difference in the Ti-O configuration among the three substrates, the atomic 

structures of the three (001)-orientated substrates are also shown in Fig. 1(b)-(d). The STO substrate is 

a perovskite oxide with a lattice parameter of 3.905 Å, which consists of alternating uncharged SrO and 

TiO2 sublayers. Its TiO2-terminated surface has a Ti-O-Ti angle as large as 180º. The TiO2(A) and 

TiO2(R) belong to the ditetragonal dipyramidal class with different lattice parameters: a = b = 3.784 Å, 

c = 9.515 Å for the TiO2(A)  and a = b = 4.594 Å, c = 2.959 Å for the TiO2(R). The Ti-O-Ti angle is 

155.4º for the TiO2(A) and 130.4º and 99.1º for the TiO2(R). Shortly, by changing the substrate from 

STO to TiO2(A) and then to TiO2(R), we can continuously decrease the Ti-O-Ti angle, thus tune the 

hybridization between O2p and Ti3d eg orbitals.30 

The temperature-dependent sheet resistance (Rs), sheet carrier density (ns) and mobility (µ) of the 

three heterostructures are shown in Fig. 2. The a-LAO/STO heterointerface is metallic as reported 

before.18, 22 The Hall resistance, Rxy, is nonlinear (Fig. 3(a)) below 50 K which is probably due to the 

presence of two-band transport carriers (details on the two-band model are shown in the Supporting 
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Information S2).31 The ns in Fig. 2(b) is deduced from the linear part of Rxy in the low magnetic field in 

Fig. 3(a) and it is nearly constant in the temperature (T) range of 100-295 K with a value of 1.0×1014 

cm-2. As T decreases below 100 K, the ns decreases and reaches a value around 2.2×1013 cm-2 at 2 K 

due to the carrier freeze-out. The µ increases upon cooling and is about 370 cm2V-1s-1 at 2 K. 

  

The a-LAO/TiO2(A) heterointerface shows a metallic behavior similar to the a-LAO/STO in the 

temperature range125 K < T < 295 K. As the temperature decreases below 125K, the Rs for the a-

LAO/TiO2(A) displays a smooth upturn. Two possibilities account for this upturn: (1) a Kondo effect32-

33 caused by the enhanced spin scattering of charge carriers by localized magnetic moments,34-35 or (2) 

a 2D weak localization effect, caused by self-interference of wave packets when they are coherently 

back scattered by impurities.36 In order to distinguish between these two effects, we implement the 

Kondo effect model37 as well as 2D weak localization model38 to study what is the origin of the 

resistance upturn. Compared to the weak localization, the Kondo effect can better explain our Rs - T 

behavior, which is in contrast to the mechanism described by Sarkar et al.28  The Kondo model was 

fitted using the following expression37: 

𝑅(𝑇) = 𝑅0 + q𝑇2 + p𝑇5 + 𝑅𝐾,0(
1

1+(2
1
s⁄ −1)(𝑇/𝑇K)2

)s                                (1) 

where R0 is the residual resistance due to the disorder, the T2 and T5 terms represent the 

temperature dependences of electron-electron and electron-phonon interactions, respectively. The 

last term in Eqs. (1) is the Kondo contribution, where RK,0 is the Kondo resistance at zero 

temperature and TK is the Kondo temperature defined as the temperature at which the Kondo 

resistance is half relative to its zero-temperature value. The parameter s is fixed at 0.225 according 

to the theoretical result obtained from the numerical renormalization group.39-40 As shown in Fig. 
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3(b), the Rs was well fitted and the relative coefficients are: R0 = 942.6 Ω, q = 7.3×10-4 Ω/K2, p = 

1.3×10-9 Ω/K5, RK,0 = 1202.9 Ω and TK = 86.2 K. When T << TK, the Kondo singlet state41 emerges 

and the magnetic scattering centers are screened by charge carriers and turn nonmagnetic. This 

effect is manifested itself by the Rs upturn which slows down and saturates at low temperatures.37 

In contrast, for the 2D weak localization effect, the Rs upturn will never saturate (Supporting 

Information S3). As for the ns of the a-LAO/TiO2(A), it is nearly constant, (1.3-2.1)×1014 cm-2, 

from 295 K to 2 K, which is comparable to that of the a-LAO/STO for T > 125 K. Meanwhile, the 

µ of a-LAO/TiO2(A) locates at the range from 13.0 to 24.5 cm-2V-1s-1 from 295 K to 2 K, much 

lower than that of a-LAO/STO for T < 125 K. The low electron mobility of the a-LAO/TiO2(A) 

could be due to the Kondo scattering. 

As the temperature decreases, the a-LAO/TiO2(R) first exhibits a metallic-like behavior from 295 

K to 45 K and then a metal-to-insulator transition around 45 K, due to the freeze-out of charge carriers. 

For T < 20 K, Rs becomes so large that it is well beyond the limits of our measurement system (Fig. 

2(a)). Hall effect measurements are therefore only reliable in the temperature range of 30 K < T < 125 

K, which display a ns of 5.6×1012 cm-2 at 125 K and 2.5×1011 cm-2 at 30 K (Fig. 2(b)). The value of ns 

for the a-LAO/TiO2(R) is more than 2 orders of magnitude lower than the former two systems at low 

temperature (T ≤ 30 K). In contrast, µ increases as temperature decreases from 125 K to 30 K and 

reaches a value of 77 cm-2V-1s-1 at 30 K (Fig. 2(c)). It is comparable with that of a-LAO/STO, and 

higher than that of a-LAO/TiO2(A). Notably, below 38 K, the Rs can be well fitted by a small polaron 

model42 (Fig. 3(c)): 

ln (
𝑅s

𝑇
) = ln(A) +

𝐸p

𝑘B𝑇
                                                                       (2) 
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where A is a temperature independent constant, Ep is the activation energy for hopping condution and 

kB is the Boltzmann constant. Through fitting, the deduced activation energy is 14 meV that is 

comparable with Co doped TiO2,
43 indicating that the transport proceeds through thermal activation.44  

To reveal the physical origin of the interfacial conductivity and mechanisms that lead to the 

different transport properties of these three heterostructures, we further performed an analysis of the 

oxidization state of relevant elements by XPS. In the stoichiometric single crystalline STO and TiO2 

substrates, the valence states of the Ti cations and O anions are Ti4+ and O2-, respectively. During the 

deposition of a-LAO, the O anions will diffuse out of the substrate to oxidize the reactive plasma 

species absorbed on the substrate surface.18, 21 This results in the formation of oxygen vacancies. 

Obviously, once an oxygen vacancy forms, two electrons will be transferred to nearby Ti4+ cations, 

reducing the valence state of Ti4+ cations to either Ti3+ or Ti2+. Fig. 4(a) shows the Ti 2p spectra in the 

three heterostructures. The main peaks at the binding energy of 458.6 eV correspond to Ti4+ cations, 

and the right side shoulders at the binding energy of 457 eV and 455.3 eV stem from Ti3+ and Ti2+ 

cations. A quantitative analysis shown in Fig. 4(b)-(d) gives the relative concentrations of Ti3+ and Ti2+ 

cations (Table I). It turns out, among these three heterostructures, the a-LAO/TiO2(A) has the largest 

percentages of Ti3+ and Ti2+ cations, which are 17.5% and 6.5%, respectively. The a-LAO/STO has 

comparable percentages of Ti3+ and Ti2+ cations (15.9% and 4.7%), whereas a-LAO/TiO2(R) shows the 

lowest Ti3+ and Ti2+ concentrations (5.7% and 1.8%) more than three times lower than the former two 

systems. Shortly, the Ti3+ and Ti2+ concentrations and thus the concentration of oxygen vacancies in the 

TiO2-based substrates show a similar trend with ns upon changing the substrates from STO to TiO2(A), 

and then to TiO2(R). Note that the carrier concentration deduced from XPS is always higher than that 

of ns determined by Hall measurements. This could be due to the presence of localized carriers which 



9 
 

can be detected by XPS but not sensitive to Hall measurements. Based on the XPS result and the 

nonpolar of capping layers, we can conclude that the mobile charge carriers in the heterointerfaces 

mainly come from the oxygen vacancies in the substrates. It should be noted that although there are 

reports on that Ti interstitials contribute to the band gap states45 or the Ti3+ and Ti2+ concentrations of 

TiO2(R) surface. However, recent electron bombardment results confirm that oxygen vacancies rather 

than Ti interstitials make the dominant contribution to the electron reconstruction.46 

4. DISCUSSION 

The difference in transport properties of these three types of conductive heterointerfaces is related 

to the different concentrations of oxygen vacancies in the substrates. Since we used the same capping 

layer of a-LAO, therefore, the driving force underlying the redox reaction remains the same. The 

different content of oxygen vacancies should result from a different surface formation energy of 

oxygen vacancy (the enthalpy required to form one surface oxygen vacancy) and/or the different 

activation energy for the diffusion of oxygen vacancy (the energy barrier for an oxygen vacancy 

migration from one position to another at the substrate surface). According to the previous 

calculations as summarized in Table II, TiO2-terminated STO substrate has the highest surface 

formation energy of oxygen vacancy among the three substrates, which is 5.94 eV,47 TiO2(A) has a 

medium value in the range of 4.00-4.96 eV,48 and TiO2(R) possesses the lowest formation energy of 

oxygen vacancy on its surface (3.21 eV49). These oxygen vacancy formation energies seem to be 

monotonically increasing with the increase of Ti-O-Ti angles, such as that STO has the largest Ti-O-Ti 

angle (180º) and also exhibits the highest oxygen vacancy formation energy. Therefore, under the same 

deposition condition, oxygen vacancies are easiest to be formed in TiO2(R), then in TiO2(A), and 

finally in STO. However, the a-LAO/TiO2(R) shows the lowest carrier concentration as well as oxygen 
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vacancies. This indicates that the difference in the surface formation energy of oxygen vacancy plays a 

negligible role in the measured difference. In other words, the driving force of  the a-LAO deposition 

can overcome all the barriers for the interface redox reaction. Instead, the less carrier/oxygen vacancy 

concentration of a-LAO/TiO2(R) is more likely due to the rather large activation energy for the 

diffusion of oxygen vacancies at the TiO2(R) surface, which is around 1.5 eV due to the small Ti-O-Ti 

bond angle. In contrast, the activation energy for the diffusion of oxygen vacancy at the surface of STO 

and TiO2(A) is much smaller, which could be only 0.1-0.2 eV.47, 50 Therefore, it is the activation 

dynamics of oxygen vacancies that determine the differences in the formation of 2DEGs among these 

three heterostructures. Since the activation energy for the diffusion of oxyen vacancies is high at the 

TiO2(R) surface, the formation of oxygen vacancy is probably thermodynamically limited to the 

substrate surface. Compared to the other two interfaces, the oxygen ions at the TiO2(R) surface are 

more difficult to diffuse outward to oxidize the reactive plasma species absorbed on the substrate 

surface, therefore, results in the less concentration of oxygen vacancies. 

5. CONCLUSION 

To conclude, we have successfully demonstrated the formation of 2DEG at the interface between 

a-LAO and the TiO2(A) as well as TiO2(R) substrates. The TiO2(A)-based heterostructure presents a 

comparable carrier density to the intensively-investigated system of a-LAO/STO, but with a much 

lower mobility even at low temperatures due to the occurrence of Kondo effect. In contrast, the a-

LAO/TiO2(R) gives rise to a low carrier density which is more than two orders of magnitude lower 

than that of a-LAO/STO and a-LAO/TiO2(A) at low temperatures. The origin of the interfacial 2DEGs 

is further investigated by XPS. The lower carrier density of a-LAO/TiO2(R) is probably due to its 

larger activation energy for the diffusion of oxygen vacancy at the TiO2(R) surface than the other two 
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heterostructures. This work demonstrates the possibility to tune the conductive oxide heterointerface by 

changing the chemical environment. 
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Figures and Figure captions: 

FIG. 1 (a) A schematic illustration of the oxide heterostructure, consisting of an amorphous LaAlO3 (a-

LAO) capping layer and a TiO2-based substrate. The unit cell lattice and the Ti-O configuration (Ti-O-

Ti bond angle) of the three types of substrates: (b) SrTiO3 (STO), (c) anatase TiO2 [TiO2(A)] and (d) 

rutile TiO2 [TiO2(R)].  

FIG. 2 Temperature dependence of (a) sheet resistance, Rs, (b) carrier density, ns, and (c) electron Hall 

mobility, µ, of 2DEGs created at the interface between the capping layer of a-LAO and the substrate of 

TiO2-terminated STO (blue circles), TiO2(A) (green squares) and TiO2(R) (purple triangles), 

respectively. 

FIG. 3 (a) Magnetic field dependence of the Hall resistance (Rxy) for the a-LAO/STO interface, 

measured in the temperature from 295 K to 2 K. (b) Temperature-dependent Rs of the a-LAO/TiO2(A) 

(green dots) is fitted by Kondo effect (black line). (c) Temperature-dependent ln (Rs/T) of the a-

LAO/TiO2(R) (purple dots) is fitted by small polaron model (black line). 

FIG. 4 (a) The Ti 2p X-ray photoelectron spectroscopy (XPS) of a-LAO/STO, a-LAO/TiO2(A) and a-

LAO/TiO2(R). (b)-(d) Fitting of the XPS intensity signals of these three heterostructures. The 

measurements are performed at room temperature. 
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FIG. 4 
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Table I. The amounts of cations determined by XPS measurements and the Hall carrier densities at 295 

K in the three heterointerfaces:  

 Ti4+ (%) Ti3+ (%) Ti2+ (%) 𝑛s (cm-2) 

a-LAO/STO 79.4 

 

15.9 

 

4.7 

 

1.0×1014 

a-LAO/TiO2(A) 76.0 

 

17.5 

 

6.5 

 

1.3×1014 

a-LAO/TiO2(R) 92.5 

 

5.7 

 

1.8 

 

5.6×1012 

 

Table II. The formation energy of an oxygen vacancy and the activation energy for the diffusion of 

oxygen vacancy on the surface of STO, TiO2(A) and TiO2(R): 

  

STO 

 

TiO2(A) 

 

TiO2(R) 

Formation energy (eV) 5.9447 4.00-4.9648 3.2149 

Activation energy (eV) 0.1-0.247 0.250 1.550 
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