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ABSTRACT Faecalibacterium prausnitzii is a highly abundant human gut microbe in
healthy individuals, but it is present at reduced levels in individuals with gastrointes-
tinal inflammatory diseases. It has therefore been suggested to constitute a marker
of a healthy gut and is associated with anti-inflammatory properties. However, fac-
tors affecting the colonization of F. prausnitzii in the human gut during early life are
very poorly understood. By analysis of 16S rRNA amplicon sequencing data from
three separate infant study populations, we determined the colonization dynamics
of Faecalibacterium and factors affecting its establishment in the gut. We found that
in particular, the presence of older siblings was consistently associated with Faecali-
bacterium gut colonization during late infancy and conclude that acquisition of
Faecalibacterium is very likely to be accelerated through transfer between siblings.

IMPORTANCE Faecalibacterium prausnitzii has been suggested to constitute a key
marker of a healthy gut, yet the factors shaping the colonization of this highly oxygen-
sensitive, non-spore-forming species in the intestinal environment remain poorly under-
stood. Here, we provide evidence from three separate infant study populations that F.
prausnitzii colonization in the gut happens during late infancy and is affected by the
number of older siblings in the family. We conclude that Faecalibacterium acquisition is
highly likely to be accelerated by contact between siblings. Bearing in mind the immu-
noregulatory properties of F. prausnitzii and the well-established protective effects
against allergic disorders related to the presence of older siblings, early colonization of
this species may have profound consequences for child health.

KEYWORDS Faecalibacterium, infancy, siblings

Starting around birth, the infant gut is colonized by a bacterial community, which
gradually increases in richness and diversity (1, 2). A number of factors, including

mode of delivery, breastfeeding, and introduction of complementary feeding affect this
colonization. After approximately 3 years, the gut microbiota of the child is comparable
to that of an adult (3).

Faecalibacterium prausnitzii, which is the sole species within the genus Faecalibac-
terium, is one of the most prevalent and abundant human gut microbes (4), and it has
been suggested that it constitutes a marker of gut health due to its lower abundance
in patients suffering from inflammatory bowel diseases compared to healthy controls
and to its immunoregulatory properties (5, 6). Currently, very little is known about
factors that impact the colonization of F. prausnitzii during early life and the putative
contribution of this species to immune system development (7). Animal studies have
shown that prior colonization with other microbes is necessary to obtain robust
establishment of F. prausnitzii in germfree rodents (8, 9), and it has been suggested that
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depletion of oxygen in the gut or putatively another type of conditioning of the gut
environment by other microbes is required for F. prausnitzii to colonize the gut (7). The
sensitivity of F. prausnitzii to low pH and bile salts explains the observation that it
predominantly colonizes the distal gastrointestinal tract of humans (6), but it remains
to be established how this highly oxygen-sensitive, non-spore-forming bacterium is
transmitted between individuals and which factors affect its colonization process. We
therefore analyzed 16S rRNA amplicon sequencing data from fecal samples originating
from three previous studies of Danish infants entitled SKOT I (10), SKOT II (11), and
ProbiComp (12), respectively. Comparison of Faecalibacterium abundance to a number
of selected variables allowed identification of factors influencing colonization of Faeca-
libacterium.

F. prausnitzii is not detected or found at very low levels during the first 4 to 6 months
of life, but it increases rapidly during the first years (13–15). By investigation of three
independent study populations, SKOT I (n � 114), SKOT II (n � 113), and ProbiComp
(n � 255), we found that the relative abundance and prevalence of Faecalibacterium
increased significantly during the period from late infancy (8 to 12 months old) to
toddlerhood (14 to 19 months old) (Fig. 1A to F). In contrast to the SKOT infants, which
were sampled as close as possible to 9 and 18 months of age, the infants in the
ProbiComp study were sampled over a larger age span (Fig. 1G). This enabled corre-
lation analysis between age and Faecalibacterium abundance and revealed a significant
positive correlation at late infancy, but no such correlation at toddlerhood (Fig. 1H),
suggesting that Faecalibacterium colonization reaches a plateau (Fig. 1I). To investigate
how external factors and host variables may affect the relative abundance of Faecali-
bacterium during late infancy, we analyzed the association of its abundance with (i)
gender, (ii) gestational age at birth, (iii) Caesarean section, (iv) breastfeeding, (v) pets,
(vi) older siblings, and (vii) anthropometrics in all three infant study populations.
Among these factors, only the presence of older siblings in the home was consistently
correlated with the relative abundance of Faecalibacterium across the three study
populations (Fig. 2A). Both the relative abundance and the prevalence of Faecalibac-
terium were higher during late infancy in infants with older siblings than in infants with
no older siblings in the three populations (see Fig. S1 in the supplemental material).
These differences were no longer present in toddlerhood, and Faecalibacterium was
detected in almost all individuals (Fig. S1). Combination of the three data sets (n � 482)
and stratification of individuals with no (n � 270), one (n � 156), or two or more (n �

56) older siblings revealed a stepwise increase in relative abundance (P � 0.0001 by the
Kruskal-Wallis test) and prevalence (P for the trend [Pfortrend] of 0.0002 by the chi-square
test) of Faecalibacterium with increasing number of older siblings during late infancy
(Fig. 2B). Moreover, age-adjusted partial correlation analysis between relative abun-
dance of Faecalibacterium during infancy and the number of older siblings revealed
that this association was highly significant (rho � 0.23; P � 6.4 � 10�7; n � 482). The
association was no longer present when the children became toddlers, suggesting that
at this age, children will have acquired Faecalibacterium from other encounters. As
infants with older siblings are putatively introduced earlier to solid foods, we investi-
gated diet as a potential confounder, since we have previously found that diet
influences the microbiota (11). By analysis of detailed dietary records obtained for the
SKOT cohorts (11, 16), we found that transition to family foods (rho � 0.16; P � 0.018;
n � 217) and dietary intake of rye bread (rho � 0.20; P � 0.003; P value for the
corrected false-discovery rate [PFDRcorrected] of 0.07; n � 217), but not other dietary
parameters, were associated with Faecalibacterium (Fig. S2). However, the association
between relative abundance of Faecalibacterium and the number of older siblings
persisted after adjustment for both transition to family foods (rho � 0.26; P � 0.0001;
n � 217) and intake of rye bread (rho � 0.25; P � 0.0001; n � 217). Together, this shows
that rather than gender, mode of delivery, breastfeeding, complementary diet, expo-
sure to pets or anthropometric measures, it is the exposure to older siblings that
predominantly affects Faecalibacterium acquisition during late infancy.
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Study populations and samplings. Data from three infant study populations were
included in the present study. The study protocol for ProbiComp was approved by the
Committees on Biomedical Research Ethics for the Capital Region of Denmark (H-4-
2014-032), and the study was registered at clinicaltrials.org (NCT02180581). The study
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FIG 1 Colonization dynamics of Faecalibacterium prausnitzii. (A to C) Mean relative abundance of Faecalibacterium in SKOT
I, SKOT II, and ProbiComp during late infancy (8 to 12 months old) (green) and toddlerhood (14 to 19 months old) (blue).
Values are means plus standard deviations (SD) (error bars). Mean values that are significantly different (P � 0.0001) by
Mann-Whitney test are indicated by a bar and four asterisks. (D to F) Prevalence of Faecalibacterium in SKOT I, SKOT II, and
ProbiComp during late infancy (green) and toddlerhood (blue). Mean values that are significantly different (P � 0.0001)
by Fisher exact test are indicated by a bar and four asterisks. (G) Variation in age at the two sampling points (sampling
point 1 [S1], late infancy; S2, toddlerhood) for SKOT I, SKOT II, and ProbiComp. Boxes indicate 25th to 75th percentiles, with
median values marked as a line and whiskers indicating minimum and maximum values. The dotted line indicates the age
that distinguishes late infancy from toddlerhood. (H) Spearman’s rank correlations of age versus relative abundance of
Faecalibacterium during late infancy (green) and toddlerhood (blue) in ProbiComp. Red lines indicate robust nonlinear
regression fit to the data points. (I) Proposed colonization dynamics of Faecalibacterium as a function of age based on data
from this study and previous studies (13–15).
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protocols for the SKOT cohorts were approved by the Committees on Biomedical
Research Ethics for the Capital Region of Denmark (H-KF-2007-0003 and H-3-2010-122).
All parents signed a consent form. The ProbiComp study (n � 290) was a double-blind
randomized placebo-controlled study where infants, aged 8 to 13 months and starting
daycare within 12 weeks after the start of the study were randomly assigned to receive
a combination of the two probiotics, BB-12 (Bifidobacterium animalis subsp. lactis BB-12
strain) and LGG (Lactobacillus rhamnosus GG), or placebo during the 6-month study
period (17). Inclusion criteria were single birth and starting daycare at 8 to 14 months
of age. Exclusion criteria were low birth weight (�2,500 g), gestational age at birth of
�36 weeks, chronic illness, regular medication, antibiotics within 4 weeks prior to the
start of the study, and non-Danish speaking parents. Fecal samples were obtained
before (n � 265; age 8 to 13 months) and after (n � 210; age 14 to 19 months) the
study and were stored at �80°C until DNA extraction and microbiota profiling as
described previously (12). The fecal microbiotas were profiled in 255 and 201 samples
before and after the study, respectively, and the treatment had no impact on the fecal
microbiota (12). The SKOT cohort studies monitored children during the first 3 years of
life with the overall aim to investigate relationships between early diet, growth devel-
opment, and later disease risks. In SKOT I (18), infants from a random sample of mothers
were recruited (n � 311), whereas in SKOT II (19), infants of obese mothers (body mass
index [BMI] of �30 kg/m2) were recruited (n � 184). Inclusion criteria for both cohorts
were single birth, full-term delivery, age of 9 months � 2 weeks at the first visit, and
absence of chronic illness. Participants in both cohorts were examined at 9 (�2 weeks),
18 (�4 weeks), and 36 (�12 weeks) months of age, and fecal samples were collected
and stored at �80°C until DNA extraction. The fecal microbiota data from the first two
sampling points in subsets of 114 (SKOT I) and 113 (SKOT II) infants have been
published previously (11).

In all study populations, fecal samples were freshly delivered on the morning of the
visit or had been stored in the participant’s home, either in the freezer (�18°C) or in the
fridge (4°C) for maximally 24 h before storage at �80°C. Information on gender,
gestational age, Caesarean section, breastfeeding (months of breastfeeding only and
the frequency of breastfeeding at sampling times), presence of older siblings and furred
pets was collected from parental interviews at the sampling times in all three study
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populations. Anthropometrics were obtained at examinations and Z-scores were cal-
culated as described previously (11, 17). Food records were obtained and analyzed in
the SKOT studies as described previously (11, 19).

DNA extraction and microbiota profiling. The procedures for DNA extraction, PCR
amplification, and sequencing of the V3 region of the 16S rRNA gene have been
described previously (11, 12). Briefly, DNA was extracted (PowerLyzer PowerSoil DNA
isolation kit [catalog no. 12855-100; MoBio]), the V3 region of the 16S rRNA gene was
amplified (Phusion High-Fidelity PCR kit [catalog no. F-553L; Thermo Fisher Scientific])
with sample-specific barcoded forward primers (PBU [5=-A-adapter-TCAG-barcode-CCT
ACGGGAGGCAGCAG-3=]) and the universal reverse primer (PBR [5=-trP1-adapter-ATTA
CCGCGGCTGCTGG-3=]) according to the following PCR program: (i) 30 s at 98°C; (ii) 24
cycles, with 1 cycle consisting of 15 s at 98°C and 30 s at 72°C; (iii) 5 min at 72°C.
PCR products were purified (HighPrep PCR magnetic beads [catalog no. AC-60005;
MAGBIO]), DNA quantities were measured (Qubit dsDNA [double-stranded DNA] HS
[high-sensitivity] assay [catalog no. Q32851; Invitrogen]), and samples were pooled to
obtain equimolar libraries, which were sequenced using the Ion OneTouch and Ion
PGM (personal genome machine) platform with an Ion 318 Chip kit. Sequence data
were analyzed as described previously for SKOT data (11) and ProbiComp data (12), and
the levels of all sequences classified as Faecalibacterium by the RDP classifier, with a
confidence threshold of 0.5 (20) against the Greengenes database v. 13.8 (21) were
pooled within each sample and normalized to the total reads in that sample.

Statistics. Mann-Whitney, Kruskal-Wallis, Spearman’s rank correlations, Fisher exact
test, and chi-square tests were performed with the GraphPad Prims software (v. 7.0;
GraphPad Software, Inc., La Jolla, CA). When indicated, P values were corrected for
multiple testing using the false-discovery rate (FDR) (22). Partial Spearman’s rank
correlation analysis adjusted for age or dietary parameters was performed in R (version
3.1.0; R Core Team. 2014. R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria) using the ppcor package.

Accession number(s). Sequencing data are deposited at NCBI Sequence Read
Archive with the accession number SRP100762 under BioProject PRJNA360073 for
ProbiComp study and accession number SRP052851 under BioProject PRJNA273694 for
SKOT cohorts.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00448-17.
FIG S1, EPS file, 0.02 MB.
FIG S2, EPS file, 0.1 MB.
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