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Highlights: 
 

1) New insights into (Ni/Co)-MoS2/MgAl2O4 catalysts for hydrodeoxygenation (HDO) of 

ethylene glycol showed high water tolerance and importance of promotion and H2S level 

during HDO. 

2) Catalyst HDO/cracking selectivity was >1.5 at 50-100 % conversion. Density functional 

theory indicated stabilization of the active edge by promotion and by increased H2S partial 

pressure.  

3) In-situ X-ray absorption spectroscopy unraveled a highly dispersed active phase, indicating 

strong support interaction and stabilization of the active molybdenum sulfide particles.  

4) With these insights, catalyst formulations and operating conditions for catalytic 

hydropyrolysis of biomass or HDO of pyrolysis vapors can be optimized for production of 

green fuels. 

 

 
Abstract 

In this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption 

spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS2, 

Ni-MoS2, and Co-MoS2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon 

variation of the partial pressures of H2O and H2S. The results show high water tolerance of the 

catalysts and highlight the importance of promotion and H2S level during HDO. 

DFT calculations unraveled that the active edge of MoS2 could be stabilized against S-O exchanges 

by increasing the partial pressure of H2S or by promotion with either Ni or Co. The Mo, NiMo, and 

CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 

400 °C, 27 bar H2, and 550-2200 ppm H2S, and conversions of ≈ 50-100 %. The unpromoted 

Mo/MgAl2O4 catalyst had a lower stability and activity per gram catalyst than the promoted 

analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products 

with a C2/C1 ratio of 1.5-2.0 at 550 ppm H2S. This ratio of HDO to cracking could be increased to ≈ 
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2 at 2200 ppm H2S which also stabilized the activity. Removing H2S from the feed caused severe 

catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H2S 

concentration increased the concentration of SH groups on the catalyst, which correspondingly 

activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the 

catalysts were tolerant towards water when exposed to increasing water concentration with 

H2O/H2S ratios up to 300 at 400-450 °C. 

Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and 

highly dispersed particles, probably owing to a strong interaction with the support. Linear 

combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra 

obtained during in-situ sulfidation showed that Ni was sulfided faster than Mo and CoMo, and that 

Mo was sulfided faster when promoted with Ni. Extended X-ray absorption fine structure (EXAFS) 

results showed the presence of MoS2 in all sulfided catalysts. Sulfided CoMo was present as a 

mixture of CoMoS and Co9S8, whereas sulfided NiMo was present as NiMoS. 

 

Key words:  Hydrodeoxygenation; DFT; molybdenum sulfide; XAS; bio-oil 

 

1. Introduction 
There is a need to produce energy from renewable sources to become less dependent on the 

depleting fossil resources and in order to minimize greenhouse gas (GHG) emissions as their effects 

on global warming are becoming more apparent [1].  

Lignocellulosic biomass is a renewable carbon source that can be used for fuel production with 

minimum (potentially zero) carbon footprint [2–4]. It can be converted into bio-oil by fast pyrolysis, 
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which is a thermochemical degradation obtained by fast heating (700-10,000 °C/s) of biomass 

particles to ≈ 500 °C with short vapor residence times (<2s); typically in a fluid bed or cyclone 

reactor [5]. The elemental composition of bio-oil is similar to its parent biomass, but the volumetric 

energy density can be increased by a factor of >6 [6,7]. The lower heating value (LHV) of bio-oil 

(16.5-17.5 MJ/kg) is however less than half that of diesel and heavy fuel oil (40-43 MJ/kg) [8,9]. 

This is due to a high content of oxygen (32-50 wt%), which is present as sugar fragments, acids, 

aldehydes, ketones, furans, pyrans, phenols, guaiacols, and syringols [10–12]. Owing to the nature 

of these oxygenates, the oil is viscous, acidic, and unstable upon storage and heating. Additionally, 

the high polarity makes the oil immiscible with hydrocarbon fuels. Thus, the direct application of 

fast pyrolysis bio-oil as an engine fuel is highly challenged. 

Bio-oil can be upgraded by catalytic hydrodeoxygenation (HDO), similar to hydrotreating [13]. 

HDO of condensed bio-oil is challenged by rapid catalyst deactivation and reactor plugging, which 

occurs upon reheating of the condensed oil [11,14–19]. This is mainly due to coking and 

polymerization of the very reactive cellulose and hemicellulose fragments in the bio-oil [20–22]. A 

different approach is in-situ HDO of the pyrolysis vapor, whereby the reactive compounds can be 

upgraded and stabilized before condensation. This could be achieved either via catalytic 

hydropyrolysis in a fluid bed reactor or by fixed bed HDO on the fast pyrolysis vapors before 

condensation  [23,24]. For catalytic hydropyrolysis in a fluid bed (at ≈ 500 °C), the catalyst must be 

attrition resistant, and moderate activity is necessary in order to avoid severe cracking of the 

biomass into light gasses at elevated temperature.  

Sulfide based catalysts, Ni- and Co-MoS2/Al2O3, which are used as commercial 

hydrodesulfurization (HDS) catalysts, are active for HDO of bio-oil and model compounds showing 

promising activity and stability [17,25–35]. Compared to other catalyst systems such as reduced 

transition metal catalysts [11,36–38], sulfide catalysts are promising due to their moderate price and 
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tolerance against sulfur, which is inevitably present in bio-oil [8,39]. γ-Al2O3, which is a commonly 

applied support material [34,35], is however not tolerant against water, which is both present in bio-

oil and formed during HDO, as it converts into boehmite [36,40].  

Density functional theory (DFT) studies have indicated that exposure of MoS2 to water vapor can 

lead to exchange of S with O at the active edge of MoS2 and that promotion can stabilize the 

catalyst against these exchanges [26,41]. Co-feeding of H2S is necessary to keep the catalyst in its 

active sulfide form [35,41–43] and to enhance the activity [41,44]. H2S can however also inhibit the 

reaction [28,33,45], as it potentially saturates the coordinatively unsaturated sites (CUS), which are 

commonly accepted as active sites for oxygenate adsorption and deoxygenation [30,46–48]. Badawi 

et al. [41] reported that the state of the active edge can be controlled through the H2O/H2S ratio to 

avoid S-O exchanges, but the influence of water on the working catalyst has not been fully 

understood [44]. In order to optimize sulfide catalysts for HDO, a water tolerant support material 

should be chosen and the influence of H2S and H2O should be investigated experimentally; both in 

terms of HDO activity and catalyst structure. 

In this work, MoS2, Ni-MoS2, and Co-MoS2 clusters have been modeled with DFT to obtain 

insights into structural changes at the active edges under exposure to varying H2O/H2S ratios. 

MoS2, Ni-MoS2, and Co-MoS2 supported on a water tolerant and attrition resistant MgAl2O4 spinel 

support were prepared and tested for the hydroconversion of ethylene glycol. Ethylene glycol was 

chosen as a simple model sugar fragment; representing the more reactive fraction of pyrolysis 

vapors. The influence of varying the feed concentration of H2S was tested in catalyst activity tests 

with constant ethylene glycol feed. The evolution of the active sulfide phase in the catalysts was 

studied in-situ with X-ray absorption spectroscopy (XAS) in terms of X-ray absorption near edge 

structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy. At first, 
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sulfidation rates were compared for the three catalysts. The influence of varying H2O/H2S ratios on 

the catalyst structure was furthermore investigated experimentally using in-situ XAS. 

2. Experimental 

2.1. Computational Details 
Plane-wave DFT calculations were performed using the Quantum Espresso [49] code in 

combination with the BEEF-vdW [50] exchange correlation functional, as this functional has been 

shown to yield a reliable description of heats of formation of metal sulfide compounds [51]. The 

Brillouin zone was sampled using a 2x1x1 Monkhorst-Pack k-points set [52]. A kinetic energy 

cutoff of 500 Rydberg and a density cutoff of 5000 Rydberg were employed. Ultrasoft 

pseudopotentials were used to represent the ionic cores. The occupation of the Kohn-Sham states 

was smeared according to a Fermi-Dirac distribution with a Fermi temperature of kBT = 0.1 eV, and 

energies were extrapolated to zero electronic temperature. Spin-polarization was considered for all 

calculations. The MoS2, Ni-MoS2, and Co-MoS2 systems were studied using an infinite stripe 

model exposing both the M-edge and the S-edge [53]. The unit cell consisted of 4 metal atoms in 

both x and y direction. The slabs were separated by 8.6 and 14.8 Å in the y and z direction, 

respectively. Investigations of unpromoted MoS2 were focused on the M-edge whereas the S-edge 

was considered for Ni and Co promoted MoS2, with Ni and Co fully decorating the edge in each 

case. The phase diagram of the M-edge was constructed considering different coverages of S and H 

while keeping the S-edge unchanged. Likewise, phase diagrams of Ni and Co promoted S-edges 

where constructed while keeping the M-edge unchanged.  

2.2. Catalyst Preparation 
Mo, NiMo, and CoMo catalysts were prepared by sequential incipient wetness impregnation of a 

MgAl2O4 spinel support supplied by Sasol as Al2O3∙MgO precursor pellets (Puralox MG30 5x5, 

Z600134). This precursor was initially calcined for 3h at 1000 °C to obtain the MgAl2O4 structure 
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(verified by X-ray diffraction (XRD)). The calcined MgAl2O4 sample had a pore volume of 0.44 

gwater/g (90 % of this volume was used for impregnation), and a pore volume determined by N2-

physisorption of 0.28 cm3/g (see supplementary information Figure S.1 and Figure S.2 for 

physisorption isotherm and pore size distribution). The mean pore radius was 104.1 Å. The specific 

surface area, SSA, of the calcined MgAl2O4 was 60-62 m2/g with little variation between the 

different batches calcined.  

The support was crushed and sieved into a 300-600 µm fraction that was impregnated with an 

aqueous solution of (NH4)6Mo7O24∙4H2O (Fluka ≥99.0 %). It was then aged (by stirring) for 1 h and 

dried at 110 °C overnight. For promoted catalysts, a second impregnation was performed similarly 

with Co(NO3)2∙6H2O (Fluka ≥98 %) or Ni(NO3)2∙6H2O  (Sigma-Aldrich ≥97 %) followed by aging 

and drying at 110 °C overnight. Calcination was then performed in a flow of 2.5 NL/min technical 

air (20 % O2 in N2) by heating with a ramp of 5 °C/min to 500 °C and holding for 3 h. The catalysts 

were fractioned again (300-600 µm) before activity tests to remove any dust or agglomerates 

formed during the preparation. A catalyst with 14 wt% Ni was prepared as well to test the activity 

of supported NiSx. 

Catalyst activation was performed in-situ in the catalytic activity setup close to atmospheric 

pressure in a flow of 10-12 % H2S created from dimethyl disulfide (DMDS, Sigma-Aldrich ≥99.0 

%) in H2; resulting in a total flow rate of ≈ 830 NmL/min. The temperature was ramped at 5 °C/min 

from 200 °C to 360 °C and held at 360 °C until unconverted DMDS started to build up in the outlet. 

The temperature and pressure was then increased to achieve reaction conditions.  

Table 1 gives an overview of the prepared catalysts. The loading of Mo was targeted at a sub 

monolayer, which is <4 atoms/nm2 for MgAl2O4 and thus similar to that of γ-Al2O3 [54]. This was 

done to ensure a high dispersion of small moderately active sulfide particles and thereby prevent the 
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formation of a highly active type II sulfide phase [13,55]. An estimated loading of 3.0-3.7 Mo 

atoms/nm2 was achieved. The promoter loading was fixed at a M/Mo (M = Ni, Co) molar ratio of 

0.3 to optimize the activity [13,56].  

Table 1 Composition and properties of as-prepared calcined catalyst precursors (oxide phase). 

Catalyst 

 
Mo loada 

BET 

Mo Ni Co Ni/Mo Co/Mo Mg Al Al/Mg SSA 

[wt%] [wt%] [wt%] [molar] [molar] [wt%] [wt%] [molar] Atoms/nm2 [m2/g] 

Mo#1 3.36 - - - - - - - 3.7 64 

NiMo#1 2.83 0.58 - 0.34 - - - - 3.0 97 

NiMo#2 3.33 0.66 - 0.33 - - - - 3.7 77 

CoMo#1 3.28 - 0.59 - 0.29 - - - 3.5 73 

CoMo#2 3.37 - 0.58 - 0.28 - - - 3.7 70 

Ni#1 - 14.3 - - - - - - - 49 

MgAl2O4 

(support) 

- - - - - 17.4 36.1 1.87b - 60-62 

a) Estimated loading in atoms Mo per nm2 support surface area available (assuming presence of MoO3, NiO, and CoO). 

b) The slight excess of MgO was reported by Sasol and additionally verified by XRD.  

2.3. Catalyst Characterization 
Fresh and spent catalysts have been analyzed using various techniques. Inductively coupled plasma 

optical emission spectroscopy (ICP-OES) was used to determine the concentration of metals (Mo, 

Co, Ni, Fe, Si, Mg, and Al), and CS analysis by combustion and IR product detection (CO2 and 

SO2) was used to get the content of C and S (in spent catalysts). N2-physisorption (BET and BJH) 

was performed at liquid nitrogen temperature, -196 °C, using a QuantaChrome Autosorb iQ2 or 

Monosorb MS-21 gas sorption analyzer. The catalysts were outgassed for 2 h at 350 °C under 

vacuum, prior to N2 physisorption in the p/p0 range of 0.01-0.99. Transmission electron microscopy 

(TEM) was performed on an aberration corrected FEI Titan 80-300 operated at 300 kV.  

Raman spectroscopy was performed using a Renishaw inVia Reflex Spectrometer System equipped 

with a frequency doubled Nd:YAG laser (532 nm, 100 mW). Data collection was typically 

performed in the 60-1300 cm-1 spectral range with a grating of 2400 lines/mm resolution. For each 

sample, an area of ca. 384 x 576 μm was scanned in a raster with 5400 points, which were averaged 

giving a single spectrum. To avoid sample heating, the laser was set to line shape at 10 % intensity 
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and the acquisition time was varied between 10 and 60 s per point. No dehydration was performed 

on the calcined catalysts prior to Raman spectroscopy; the molybdenum oxide precursor species 

were thus expected to be in their hydrated state [57,58].  

2.4. Catalytic Activity Tests 
Catalytic HDO activity tests were performed using a continuous fixed bed reactor setup with the 

simplified process diagram is shown in Figure 1. A detailed description of the setup excluding 

minor modifications can be found elsewhere [42].  

 

Figure 1 Simplified process diagram for the POC setup. MFC1-5: mass flow controllers, E1-2: evaporators, P1-2: pumps, S1: 

separator tube, PIC: pressure indicator and controller, dP: differential pressure cell, C1: condenser, V1-V8 manifold magnetic 

valves. 

 

DMDS and ethylene glycol (EG, Sigma-Aldrich, ≥99.8 %) were pumped into the reactor top via 

two separate liquid feed lines (E1 heated to 80 °C). H2 (≥99.9 %), N2 (≥99.95 %), and 2 % H2S/H2 

(≥99.5 %) were fed to the reactor via MFC3-5. The gas was fed at the bottom of the reactor where it 

flowed upward inside a pressure shell along the outer surface of the reactor until it was mixed with 
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the liquid feed in the top and entered the reactor tube in downflow. The reactor effluent was cooled 

to 10-15 °C and separated into gas and liquid in a separator tube, S1. The gas was analyzed online 

on a Shimadzu GC-2014 gas chromatograph (GC) with a thermal conductivity detector (TCD) and a 

2 m 0.53 mm ID Shincarbon ST column (N2, H2, CO, CO2, CH4, C2H4, C2H6, C3H6, C3H8 were 

detected and analyzed). Liquid products were collected in a valve manifold (V1-V8) programmed 

for a 5 h collection frequency in separate sample bottles. The mass and density (using an Anton 

Paar DMA 4100 density meter) of liquid samples was measured to know the volumetric flow rate. 

The liquid composition was analyzed by GC-mass spectrometry (MS) using a Shimadzu 2010 

GCMS-QP2010 Ultra fitted with an Equity®-5 30 m x 0.32 mm column with dfilm 0.5 µm. 

In activity tests, 0.5-1.5 g catalyst was diluted with 0.5-1.5 g SiC (150-250 µm) and fixed in a 

stainless steel reactor using steel wool to fixate the bed. Initial experiments using a quarts reactor 

tube, quarts wool, and glass beads for bed dilution, showed that all three glass components degraded 

upon exposure to ethylene glycol, H2S, and H2 under reaction conditions. Si was deposited on the 

catalysts, most likely on acid sites, which caused accelerated deactivation. In-situ activation was 

performed as described above. During reaction, ethylene glycol was fed to the reactor at a flow rate 

of ≈ 0.14 mL/min corresponding to a weight hourly space velocity (WHSV) of 6.2-19 gEG/gcat/h. 

Experiments were performed at 400 °C, 27 bar H2, 550-2200 ppm H2S, 40 barg total (balance N2), 

total gas feed (H2, N2, H2S) 1550 NmL/min, and 3-3.5 mol% ethylene glycol in the feed.  

Experiments were terminated by stopping the ethylene glycol feed and changing from reaction gas 

to ≈ 500 NmL/min N2 while reducing the pressure. When ambient pressure was reached, flushing 

with N2 was continued at 400 °C to desorb condensed species from the catalyst pores. After 30 

minutes flushing, the furnace was turned off to allow the system to cool to room temperature 

overnight while continuing the flow of N2. Unloaded catalysts were separated from SiC and steel 

wool prior to analysis. No Soxhlet extraction was performed on spent catalysts prior to 
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characterization; thus, any condensed high-molecular weight products formed during reaction could 

be left in the catalyst pores. 

2.5. Calculations 
The conversion, X, of ethylene glycol was calculated based on the molar flow in, FEG,feed, and out, 

FEG,out, of the system: 

𝑋 =
𝐹𝐸𝐺,𝑓𝑒𝑒𝑑−𝐹𝐸𝐺,𝑜𝑢𝑡

𝐹𝐸𝐺,𝑓𝑒𝑒𝑑
∙ 100 %   [1] 

The carbon based yield of product i, Yi, was calculated as: 

𝑌𝑖 =
𝐹𝑖∙𝜈𝐶,𝑖

𝐹𝐸𝐺,𝑓𝑒𝑒𝑑∙2
∙ 100 %    [2] 

F is molar flow rate and νC,i is the carbon number of compound i. 

N2 was used as internal standard in GC-TCD measurements so that the molar flow of H2 and 

gaseous products could be determined as: 

𝐹𝑔 =
𝐹𝑁2,𝑓𝑒𝑒𝑑

𝑦𝑁2

     [3] 

𝐹𝑔,𝑖 = 𝑦𝑖 ∙ 𝐹𝑔     [4] 

Fg is the total effluent molar gas flow based on the known molar feed flow of N2, FN2,feed, and the 

fraction of N2, yN2, determined by GC-TCD. Fg,i is the resulting molar flow of compound i based on 

the composition (molar fraction, yi) determined by GC-TCD. 

The FID signal from the GC-MS/FID was calibrated for a range of compounds (methanol, ethanol, 

ethylene glycol, 1-propanol, ethyl acetate, and 1-butanol). A broader range of compounds were 

analyzed and quantified by using the effective carbon method [59]: 
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𝐶𝑖 =
𝐶𝑟𝑒𝑓∙𝜈𝐶𝑒𝑓𝑓,𝑟𝑒𝑓

𝐴𝑟𝑒𝑓
∙

𝐴𝑖

𝜈𝐶𝑒𝑓𝑓,𝑖
    [5] 

The concentration of compound i, Ci, was calculated based on the area of the corresponding peak, 

Ai, on the effective carbon number of this compound, νCeff,i, and on the data from a reference 

compound (in this case ethanol). Data on effective carbon numbers can be found in the 

supplementary information, Table S.1. The molar flow rate of liquid phase compound i, Fl,i, was 

then found from the total liquid volumetric flow rate for the specific sample bottle, Ql, which was 

determined based on the sample mass, ml, sample density, ρl, and sampling time, t, for the specific 

sample bottle analyzed: 

𝐹𝑙,𝑖 = 𝐶𝑖 ∙ 𝑄𝑙     [6] 

𝑄𝑙 =
𝑚𝑙

𝜌𝑙∙𝑡
     [7] 

The carbon mass balance was calculated based on the flow of carbon into and out of the system, 

where n denotes the total number of compounds analyzed in the outlet (gas and liquid) including 

unconverted ethylene glycol: 

𝐶𝐵𝑎𝑙𝑎𝑛𝑐𝑒 =
∑ 𝐹𝑖∙𝜈𝐶,𝑖

𝑛
𝑖

𝐹𝐸𝐺,𝑓𝑒𝑒𝑑∙2
∙ 100 %   [8] 

Space time yields, STY, were calculated for C1, C2, and C3 gas products to compare the catalyst 

productivity based on the mass of catalyst, mcat, and the molar carbon based product of the 

compound of interest: 

𝑆𝑇𝑌𝑖 =
𝐹𝑖∙𝜈𝐶,𝑖

𝑚𝑐𝑎𝑡
     [9] 

The ratio of fully deoxygenated products (ethane and ethylene) to C1 gas products (CO, CO2, and 

CH4) was used to assess the degree of HDO compared to cracking:  
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𝐶2

𝐶1
=

𝑌𝐶2𝐻6+𝑌𝐶2𝐻4

𝑌𝐶𝑂+𝑌𝐶𝑂2+𝑌𝐶𝐻4

    [10] 

2.6. In-situ X-ray Absorption Spectroscopy (XAS): 
XANES and EXAFS spectra were collected at the SuperXAS beamline at SLS (2.4 GeV storage 

ring, 400 mA ring current) [60]. Measurements were conducted at the Ni K- (8.333 keV), Co K- 

(7.709 keV), and Mo K-edge (20 keV) of the prepared Mo, NiMo, and CoMo catalysts. The 

catalysts were loaded into a 1 or 1.5 mm microreactor, which was based on quartz capillaries and 

was heated by a gas blower [61,62]. The reactor was connected to a H2S gas feed line and could be 

switched between 1000 ppm or 10 % H2S/H2, and to a H2 feed line, which could be sent through a 

water saturator or directly to the reactor. The total flow through the capillary reactor was 40-43 

NmL/min. The exhaust was sent through a H2S absorber (3.5 mol/L NaOH solution) into the 

exhaust system of the beamline. A N2 line was installed for flushing. Quick EXAFS (QEXAFS) 

spectra were recorded in transmission mode with frequency of 10 Hz using ionization chambers as 

detectors and using an excentre disk to continuously move the monochromators in an oscillating 

manner allowing for fast measurements [60]. Reference spectra were recorded for MoS2, MoO3, 

MoO2, (NH4)6Mo7O24∙4H2O, MoO3∙H2O, CoS, CoO, Co2O3, Co3O4, Ni3S2, and NiO (pressed as BN 

pellets as received).  

The catalysts were first dehydrated in a flow of N2 while heating at 10 °C/min from room 

temperature (RT) to 200 °C. Sulfidation was then performed by heating until 400 °C at 5 °C/min in 

a flow of 10 % H2S/H2 and holding at 400 °C for 1 h. Sulfidation was followed by exposure of the 

catalyst to increasing ratios of H2O/H2S in H2 with a constant total flow rate of 43 NmL/min at 400-

450 °C. The holding time at each H2O/H2S ratio was typically 30 minutes. A schematic illustration 

of the experimental procedure employed for in-situ XAS measurements is given in the 

supplementary information, Figure S.3. 
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EXAFS spectra were analyzed by using the software package IFEFFIT interfaces, i.e., Athena and 

Artemis [63]. Athena was first employed to process the raw data, which included removal of 

smooth background from the measured absorption coefficient, normalization of the X-ray 

absorption coefficient, and Fourier transform of the resulting spectra from k-space to R-space. 

Artemis was used for fitting a theoretical model to the experimental data in the R-space to obtain 

the structural parameters. The model included amplitude reduction factor (S0
2), coordination 

number (CN), Debye-Waller factor (σ2), energy shift for each path (ΔE0), and change in the path 

length (ΔR), where R is the bond length. Ab initio XANES calculations were performed using the 

FEFF9 code [64,65] as described in the S.I. 

3. Results and Discussion 

3.1. DFT Phase Diagrams 
Unpromoted MoS2 can exhibit a triangular crystal structure exposing only one type of edge, or a 

hexagonal (truncated triangle) structure depending on the H2S/H2 ratio [66]. Promoted MoS2 

exhibits a hexagonal structure with exposure of pure M- and metal doped S-edges [67–70]. For 

NiMoS, a less systematic distorted hexagonal structure has also been reported [68]. Figure 2 shows 

the calculated phase diagrams for unpromoted MoS2 (M-edge), Ni-MoS2 (S-edge), and Co-MoS2 (S-

edge) at varying H2O/H2S partial pressures and 400 °C. Due to the inherent uncertainty associated 

with generalized gradient approximation (GGA) DFT, it must be noted that the phase diagrams are 

representative of the trends between the different materials, but do not reflect precise numbers. 

Thus, the partial pressures of water and H2S mentioned in the remainder of this section serve the 

purpose of distinguishing the different edge structures obtained from DFT to clarify the general 

trends observed in Figure 2 at varying partial pressures of H2S and H2O. 
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Figure 2 Phase diagrams as funtion of the partial pressure of water and H2S for (a) the unpromoted MoS2 M-edge, and the promoted 

S-edges of (b) Co-MoS2, and (c) Ni-MoS2 as obtained from DFT calculations. Yellow = S, blue = Mo, pink = Co, green = Ni, red = 

O, white = H. Total pressure 40 bar, 27 bar H2, 400 °C, p0 = 1 bar. 

 

The MoS2 edge has a single S-vacancy and exhibits a Mo1.00S0.75 structure in the range of 

log(pH2O/p0) < -0.7 and log(pH2S/p0) < -3 corresponding to ≈ 0.3-5000 ppm H2O and ≈ 0.3-30 ppm 

H2S (see Figure 2a). An OH group adsorbs on the vacancy site if the H2O pressure is increased 

further, resulting in a Mo1.00S0.75(OH)0.25 edge structure. If instead the H2S concentration is 

increased above 30 ppm, an SH group adsorbs on the vacancy (H2O concentration <5000 ppm) and 

the edge structure becomes Mo1.00S1.00H0.25. In the concentration range of >5000ppm H2O and 30 

ppm to 1.5 % H2S, the H2O/H2S ratio should be kept below ≈ 150 to avoid an S-O exchange at the 

surface. At a H2S concentration >1.5 %, no S-O exchange is observed no-matter the H2O pressure. 

These results indicate that a certain concentration of H2S should be fed during HDO to avoid 

oxidation of unpromoted MoS2 in line with results from other theoretical work [41].  

The Co promoted MoS2 does not exhibit any vacancy formation or S-O exchange in the 

investigated H2O/H2S ranges, which indicates that Co stabilizes the active edge against oxidation 

(see Figure 2b). Below log(pH2S/p0) = -0.3, corresponding to ≈ 1 % H2S, the S-edge is fully 

decorated with S (edge structure Co1.00S1.00), and if the H2S pressure is increased, two additional S 

atoms and two H atoms are adsorbed on the surface giving the edge structure Co1.00S1.50H0.50. This 

indicates that the Co1.00S1.00 structure has CUS, which could act as active sites for oxygenate 

adsorption and deoxygenation [46]. 
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Ni promotion also stabilizes the edge; no S-O exchange is observed at the investigated conditions 

(see Figure 2c). Three stable phases were obtained with structures that are less ordered compared to 

the Co promoted analogue; Ni1.00S0.75H0.75, Ni1.00S1.00H1.00, and Ni1.00S1.50H0.50 at low, intermediate, 

and high H2S concentration, respectively. H atoms are adsorbed on the surface in the entire H2S 

partial pressure range. A single sulfur vacancy is present below ≈ 1000 ppm H2S (log(pH2S/p0) = -

1.35). At ≈ 1000 ppm to 1.5 % H2S (log(pH2S/p0) = [-1.35;-0.21]), the edge is fully decorated with S 

exhibiting a Ni1.00S1.00H1.00 structure. At higher concentrations, more S is adsorbed indicating 

presence of CUS at <1.5 % H2S.  

3.2. Conversion of Ethylene Glycol over Promoted and Unpromoted 

MoS2/MgAl2O4 
Based on the results from the catalytic activity tests, HDO of ethylene glycol is proposed to follow a 

reaction mechanism involving consecutive dehydration and hydrogenation steps (Figure 3): 

 

Figure 3 Proposed reaction mechanism for HDO of ethylene glycol via consecutive dehydration and hydrogenation reactions. 

 

3.2.1. Overall Activity 

The results from the activity tests of MoS2 based catalysts are shown in Figure 4 (conversion, STY, 

and C2/C1) and Figure 5 (yields of ethane, ethylene, and ethanol). All gas product yields can be 

found in the supplementary information, Figure S.9.The conversion of ethylene glycol was in the 

range ≈ 50-100 % for the prepared catalysts, and the selectivity towards HDO in terms of the C2/C1 

ratio followed the trend MoS2 > Ni-MoS2 ≈ Co-MoS2 > NiSx (see Figure 4). 

A blank experiment (steel reactor packed with steel wool and SiC) showed negligible HDO activity; 

ethylene was the main gaseous product formed with a yield <0.7 %. In all experiments performed 

using MoS2 based catalysts, the yield of ethane and ethylene, respectively, was in the range of ≈ 5-
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45 % depending on the catalyst and level of deactivation. The detected yield of ethanol was 4.5-18 

% and accounted for the majority, ≈ 35-55 %, of carbon in the liquid products formed. Cracking 

reactions also occurred, resulting in the formation of CH4, CO, and CO2; the latter possibly through 

the water gas shift reaction. C-C bond formation also occurred forming small amounts of C3+ gas 

and liquid species, e.g. propane, propylene, 1-propanol, butane, and 1-butanol. 

Coupling reactions forming e.g. 2-methyl-1,3-dioxolane and 4-polyethyleneglycol were also 

observed and ascribed to the support acidity, which is known to catalyze coupling reactions such as 

transalkylation, polymerization, and coking [27,71,72]. The conversion of ethylene glycol over the 

pure MgAl2O4 support (1.0 g) produced an insignificant total gas carbon yield of ≤ 2 % (C1, C2, and 

no C3) and a more significant yield of 2-methyl-1,3-dioxolane (≤5.6 %), diethylene glycol (≤4.5 %), 

and ethanol (≤4.4 %) over 52 h on stream at a conversion of 13-41 %. Partly deoxygenated and 

reactive intermediates, such as ethyl or ethoxy groups can readily undergo polymerization if they 

are not stabilized by hydrogenation into ethane. Ethylene and propylene are known to be strong 

coke precursors [73].  

Ni-sulfides have shown moderate activity in HDO [74]. The tested Ni catalyst, however, showed 

poor HDO selectivity at 55-65 % conversion with a C2/C1 ratio ≈ 1 at 550 ppm H2S and low STYs 

<0.3 mmol/gcat/min (see Figure 4a). The C2/C1 ratio could be increased to ≈ 1.5 at 2200 ppm H2S; 

mainly by increasing the yield of ethylene, while the yield of ethane remained <1.5 % and the C2 

STY remained low (see Figure 5a). 

The presence of promotor and the feed concentration of H2S influenced the activity and stability of 

the Mo, NiMo, and CoMo catalysts as discussed in section 3.2.3. During the first ≈ 50-70 h of time 

on stream (TOS), the feed contained 550 ppm H2S. Then, the H2S concentration was increased by a 

factor of four to 2200 ppm. For the NiMo catalyst (see Figure 4c and Figure 5c), a subsequent 
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decrease of H2S down to 1900 ppm was performed from ≈ 140-160 h on stream, followed by a 

stepwise shutoff of H2S. For the CoMo catalyst, (see Figure 4d and Figure 5d), an issue with the 

ethylene glycol feed arose at TOS) ≈ 80-90 h. In that period, the feed consisted of reaction gas (N2, 

H2, H2S) without ethylene glycol. 

               

              

Figure 4 STY [mmol/gcat/min], C2/C1 ratio [-], and conversion for ethylene glycol conversion at 400 °C, 27 bar H2, 550-2200 ppm 

H2S (noted in figures), 40 barg total (balance N2), and 3-3.5 mol% ethylene glycol in the feed for (a) Ni#1(1.5g), (b) Mo#1 (1.5g), (c) 

NiMo#1 (0.5g), and (d) CoMo#1 (0.5g) in Table 1. Cooling on separator tube S1 was not installed in experiments (c) and (d). 

3.2.2. Carbon Mass Balance 

The carbon mass balance could not be fully closed for the presented experiments; the balance 

closure at TOS >20h was 69-83 % for NiSx (Figure 4a), 63-76 % for Mo (Figure 4b), 72-84 % for 

NiMo (Figure 4c), and 73-91% for CoMo (Figure 4d), and. The lack of closure in the mass balance 

was ascribed to the presence of mainly non-condensed oxygenate compounds in the gas phase, 

which were not detected or quantified. Based on offline GC-FID and GC-TCD analysis of gas 
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samples from experiments similar to those presented in this work, it was found that the product gas 

contained non-condensed hydrocarbons (C4-6 isomers) and oxygenates (ethanol, acetaldehyde, 

methanol, 2-propanone, 1- and 2-propanol, 2-butanone, and 2-pentanone), which could not be 

detected by the online GC analysis. These compounds were present in concentrations, which could 

account for the majority of the missing carbon. As a consequence, the yield of ethanol (Figure 5) 

can be assumed to be higher than reported here. In order to improve the carbon balance, it can be 

considered to perform online analysis of the oxygenates and C4+ hydrocarbons present in the gas 

phase, and to improve cooling further in the liquid product collection and storage. 

In an experiment using 4g NiMo, 100 % conversion into gas and pure water was obtained, and the 

mass balance could be closed within 87-96 % (no cooling of S1). Also, a >20 h empty tube test 

conducted at 400 °C and 40 barg, feeding 500 NmL/min N2 and 0.14 mL/min ethylene glycol had 

an average carbon balance of 95 % (no cooling of S1). Elemental carbon analysis of four liquid 

samples from the Mo test (Figure 4b, 68-83 h) using a Eurovector EA3000 CHNS analyzer was 

used to confirm that the carbon content determined by GC-MS was precise within a deviation of 

<10 %. Thus, the gas product results (yields, STY, and C2/C1) and the conversion (based on 

unconverted ethylene glycol) are not affected by the discrepancy in the carbon mass balance.  

3.2.3. Role of Promotion and H2S in the C2/C1 Selectivity and Stability 

Unpromoted Mo showed a very favorable selectivity towards HDO products compared to the 

promoted catalysts. The ratio of C2/C1 was approximately ≥3 for the entire run (see Figure 4b), 

while it was <2.5 for the promoted catalysts (see Figure 4c-d). The mass based productivity was, 

however, lower for the unpromoted catalyst, which initially had a C2 STY was 1.7 mmol/gcat/min, 

while it was 1.9-2.0 mmol/gcat/min for the promoted catalysts. Furthermore, the unpromoted catalyst 

was subject to significant deactivation. After 40 h on stream, the C2 STY was 0.5 mmol/gcat/min and 

had thereby decreased by 70 %. In the same period of time, the C2/C1 ratio dropped by 30 % from 
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4.8 to 3.3, showing a decrease in HDO selectivity. In comparison, the promoted catalysts only 

deactivated with 35 % in terms of the C2 STY in the same period of time reaching 1.2 

mmol/gcat/min at 40 h. The initial decrease in the C2/C1 ratio was similar for NiMo and CoMo 

reaching 1.6 at 40 h. Promotion with Ni or Co was therefore seen to enhance the activity of the 

catalyst, which is in agreement with other studies on the role of promotion in HDO and HDS over 

MoS2 based catalysts [33,41,43,68,75,76]. The selectivity to HDO products was, however, higher 

for the unpromoted catalyst. 

As the H2S concentration was increased from 550 to 2200 ppm at TOS ≈ 50 h for the unpromoted 

catalyst, a slight stabilizing effect was obtained, but the activity remained low (see Figure 4b). For 

both NiMo and CoMo, the C2 STY increased when the H2S concentration was increased to 2200 

ppm and a stabilized activity was obtained. For NiMo (see Figure 4c), the C2 STY increased from 

0.98 to 1.3 mmol/gcat/min (at TOS ≈ 75-80 h) resulting in a C2/C1 improvement from 1.6 to 2.3. For 

CoMo (see Figure 4d), the C2 STY increased from 1.2 to 1.7 mmol/gcat/min (at TOS ≈  50 h) giving 

a C2/C1 increase from 1.6 to 2.0, since there was also a slight increase in the C1 STY.  The 

conversion of ethylene glycol did not increase, as the H2S concentration was changed during each 

experiment (see Figure 4), but a slight stabilization of the conversion occurred as the H2S 

concentration was increased from 550 to 2200 ppm. 

For the NiMo catalyst, it was seen that with a slightly lower H2S concentration of 1900 ppm (TOS ≈ 

140-160 h), deactivation occurred at a faster rate than at 2200 ppm H2S, and the selectivity towards 

cracking products increased (see Figure 4c). A further decrease to <400 ppm H2S caused severe 

deactivation. It can be concluded that a feed of H2S is necessary to keep the catalyst active and that 

this concentration should be in the order of 2200 ppm at the applied conditions to ensure a higher 

selectivity towards HDO and a stable activity. 
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As the ethylene glycol flow was reapplied after feed issues at TOS ≈ 80-90 h (see Figure 4d) during 

the CoMo test, the catalyst was more active with a slightly higher conversion (65-70 % at 92-97 h 

compared to 61-63 % at 72-77 h) and a higher yield of both cracking and HDO products. The 

activity in terms of yields of ethane (see Figure 5d) and some C1 gasses (see also supplementary 

information, Figure S.9) increased to a level above the initial activity after the period without 

ethylene glycol in the feed. Based on the DFT findings (see Figure 2b), it could be speculated that 

before ethylene glycol is shut off, several CUS were occupied by ethylene glycol and reaction 

intermediates, while the ethylene glycol free period at the high concentration of H2S might have 

either released CUS, increased the concentration of SH at the surface, or both, resulting in a higher 

HDO activity. 

  

ACCEPTED M
ANUSCRIP

T



22 
 

3.3. Role of H2S in Primary Alcohol HDO 
The yield of ethane and ethylene (see Figure 5) reflected the trends observed in the STYs and C2/C1 

ratio (see Figure 4). The Ni catalyst had a poor hydrogenation activity, resulting in a 3-5 times 

higher yield of ethylene compared to ethane at TOS > 5h (see Figure 5a).  

         

          

Figure 5 Carbon based yields for ethylene glycol conversion at 400 °C, 27 bar H2, 550-2200 ppm H2S (noted in figures), 40 barg 

total (balance N2), and 3-3.5 mol% ethylene glycol in the feed for (a) Ni#1(1.5g), (b) Mo#1 (1.5g), (c) NiMo#1 (0.5g), and (d) 

CoMo#1 (0.5g) in Table 1. Cooling on separator tube S1 was not installed in experiments (c) and (d). 

 

For the unpromoted Mo catalyst (see Figure 5b), there was an initial fast change in the relative 

proportions of the yields of ethane and ethylene, caused by deactivation of the hydrogenation 

activity. The initial ethane yield was 45 % compared to an ethylene yield of 9 %. At 15 h on stream, 
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the ethane yield had dropped and the ethylene yield had increased, both reaching ≈ 15 %. After this 

point in time, the ethane yield continued to decrease, and the ethylene yield also decreased, 

however, at a slower rate. The lower hydrogenation activity of the unpromoted catalyst compared to 

the promoted catalysts (see Figure 5b-d), was ascribed to the ability of Ni and Co promotion to 

facilitate adsorption of H at the surface as evidenced by DFT calculations (see Figure 2), thereby 

providing better hydrogenation activity [33,68,75,76]. 

For NiMo (see Figure 5c), the ethane yield was higher than the ethylene yield during the entire 

TOS, as long as H2S was added to the feed, which could be explained by the high concentration of 

H adsorbed at the S-edge (see Figure 2c). As the H2S concentration was increased from 500 to 2200 

ppm, the ethane yield increased from ≈ 6 to 9 %, while the ethylene yield overall remained 

unchanged. This increase in ethane yield could possibly be explained by the change of a 

Ni1.00S0.75H0.75 S-edge structure to Ni1.00S1.00H1.00 providing more hydrogen in terms of additional 

SH groups (see Figure 2c). 

For CoMo (see Figure 5d), the yield of ethylene was initially higher than that of ethane, until the 

H2S concentration was increased from 500 to 2200 ppm, causing the yield of ethane to increase 

above that of ethylene (from ≈ 6 to 10 %), which remained rather unchanged (at 7-8 %). These 

observations could be explained by the change in the S-edge structure from Co1.00S1.00 to 

Co1.00S1.50H0.50, which provides more hydrogen through SH groups (see Figure 2b). 

Since only ethane and not ethylene seemed to be affected by the change in H2S, this indicates that 

the hydrogenation of ethylene to ethane in reaction in Figure 3 is very fast, and that an increased 

H2S concentration of 2200 ppm increased both the deoxygenation and hydrogenation activity. 

Mortensen [42] saw that even though an increase from 283 to 8172 ppm H2S (at 280 °C and 100 

bar) inhibited the conversion of phenol over a Ni-MoS2/ZrO2 catalyst, the conversion of 1-octanol 
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(used as solvent), was increased from 50-75 % to 85-100 % during the 100 h TOS test. In line with 

this observation, Şenol et al. [29,45] reported that while H2S had an inhibiting effect on the HDO of 

aromatic oxygenates (due to competitive adsorption of H2S), HDO of aliphatic oxygenates was 

promoted by increasing H2S owing to their different reaction mechanisms that depend on acid-

catalyzed reactions; e.g. dehydration and hydrogenation. These reactions have been proposed to be 

governed by the presence of nucleophilic SH groups present at the catalyst surface, which have 

been suggested to supply hydrogen and provide Brønsted acidity for HDO and HDS reactions 

[45,47,48,77]. Şenol et al. [29] also reported that increasing the H2S concentration increased the 

activity and stability of NiMo/Al2O3 and CoMo/Al2O3 catalysts in the HDO of methyl heptanoate at 

250 °C and 15 bar.  

Based on the findings in this work, it is therefore proposed that the role of H2S in the conversion of 

ethylene glycol is to increase and maintain a high concentration of SH groups at the catalyst 

surface, which correspondingly aid catalysis of the consecutive dehydration/hydrogenation 

reactions of ethylene glycol to ethylene and ethane (see Figure 3). This is supported by the DFT 

calculations, which showed that the concentration of adsorbed S and H generally increased with 

increasing H2S pressure (see Figure 2).  

3.3.1. Reproducibility of Stabilizing Effect of H2S 

Generally, fast deactivation was seen in the beginning of the catalytic activity tests (see Figure 4 

and Figure 5). Thus, two additional short terms experiments were performed to investigate whether 

the observed stabilizing effect of H2S had also been affected by general stabilization of the catalyst 

activity over time. Two fresh loads of CoMo (CoMo#2 with comparable composition to CoMo#1, 

see Table 1) were tested for ethylene glycol conversion with a H2S feed concentration of 550 and 

2200 ppm, respectively (see Figure 6). The TOS of 8 h was too short to collect liquid products for 
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calculation of conversion. Instead, the total carbon yield of C1-3 gas products indicates the minimum 

conversion level. 

     

Figure 6 Carbon based yields for ethylene glycol conversion at 400 °C, 27bar H2, 550-2200 ppm H2S (noted in figures), 40 barg 

total (balance N2), and 3-3.5 mol% ethylene glycol in the feed with 0.5g catalyst for (a) CoMo#2 at 2200 ppm H2S, (b) CoMo#2 at 

550 ppm H2S, and (c) CoMo#1 at 550 ppm H2S (same experiment as presented in Figure 4d and Figure 5d). For catalyst 

composition, see Table 1. Ctotal denotes total carbon yield in detected gas products. 

 

An initial feed concentration of 2200 ppm H2S (see Figure 6a) resulted both in a higher activity 

(total carbon gas yield >70 %) and better HDO selectivity with C2/C1 ≈ 2.3 compared to the lower 

feed concentration of 550 ppm H2S, where the total carbon gas yield was ≈ 45-60 % and the C2/C1 

ratio was 1.7-2.0 (see Figure 6b). For 2200 ppm H2S, there was a stable (actually slightly 

increasing) activity over time, while for 550 ppm H2S deactivation occurred over time confirming 

the stabilizing effect of H2S.  

There was some deviation between the activity observed during the first 8 h on stream at 550 ppm 

H2S with CoMo#1 (see Figure 6c) and CoMo#2 (see Figure 6b), which is essentially an attempted 

reproduction. A higher activity was obtained for CoMo#2, namely in terms of the ethane yield, but 

as it can be seen from the long TOS activity tests (see Figure 5), the initial 10 h period on stream is 

subject to significant activity changes, and it is recommended to run experiments for long TOS to 

decouple the initial activity from the long term performance. Also, it should be noted that two 

different catalyst batches were used for the experiments in Figure 6a-b (CoMo#2) and c (CoMo#1). 
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As discussed later (see section 3.5.3), it is possible that the lower activity obtained in CoMo#1 was 

caused by formation of Co9S8. 

Reproducibility was obtained for the NiMo#1 catalyst (see supplementary information, Figure 

S.10), though it was seen that especially the ethane yield, temperature, and conversion were subject 

to smaller variations. These parameters are correlated, and it is believed that the specific 

morphology and dispersion of the active phase obtained through the sulfidation could vary slightly 

and consequently affect the ethane production and thereby also the conversion and temperature. 

This indicated different sulfidation behavior of the loaded catalysts (even from the same batch), 

indicating the complex nature of sulfide catalysts [13]. 

3.4. Spent Catalyst Composition 
The composition of spent catalysts is given in Table 2. The deposited carbon (3.4-12 wt%) is 

approximately linearly correlated with the TOS (see supplementary information, Figure S.11) 

indicating that carbon deposition is a major source of deactivation. This was further evidenced as 

resulfidation of both spent Mo and NiMo catalysts (tested for ethylene glycol conversion at slightly 

different conditions), could only reactivate the catalyst for a short period of time. The activity of the 

reactivated catalysts was lower than the initial activity and the catalysts were subject to rapid 

deactivation; within <4 h on stream after reactivation, the activity had dropped to the same level as 

was achieved prior to the resulfidation. 

The S/Mo ratio followed the trend NiMo#1 > CoMo#1 > Mo#1 > CoMo#2 (see Table 2). Ni 

promotion has been shown to facilitate faster sulfidation of MoOx into MoS2 (see Figure 11 in 

section 3.5.2), which might explain the high content of sulfur in the spent NiMo catalyst. The S/Mo 

ratio of ≈ 2 for CoMo#1 indicated that a stoichiometric MoS2 phase was present in the spent 

catalyst, but for CoMo#2, including a fresh sulfided sample, this ratio was 1.52-1.70 indicating the 

complex nature of sulfides and the difficulties in obtaining identical sulfide phases in different 
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experiments. The elemental composition should however be interpreted with caution and more 

advanced in-situ characterization tools are needed to determine the phases present (see section 3.5). 

In this case, the elemental composition does not reveal if there were any presence of segregated Ni 

or Co sulfides, or if any C or S was present as condensed species in the catalyst pores. 

The M/Mo (M = Ni, Co) ratio of the spent catalysts was slightly lower than in the fresh catalysts, 

but it remained approximately constant at 0.3 indicating that Mo, Ni, and Co are stable against 

volatilization; potentially induced by e.g. H2O and CO.  

 

Table 2 Composition and properties of spent catalysts (activity tests presented in Figure 4, Figure 5, and Figure 6) including TOS 

and H2S feed concentrations used.  

Catalyst TOS H2S Mo Ni Ni/Mo Co Co/Mo Si Fe S C S/Mo 

 [h] [ppm] [wt%] [wt%] [molar] [wt%] [molar] [wt%] [wt%] [wt%] [wt%] [molar] 

Mo#1 99 500, 

2200 

2.48 - - - - 0.05 0.05 1.47 10.4 1.78 

NiMo#1 169 500, 

2200, 

1900, 

<400 

2.52 0.44 0.28 - - - 0.06 1.90 12.0 2.25 

CoMo#1 90 500, 

2200 

2.54 - - 0.41 0.26 0.04 0.04 1.72 10.8 2.02 

CoMo#2a 8 2200 3.31 - - 0.52 0.26 0.05 <0.02 1.76 3.61 1.56 

CoMo#2b 8 500 3.15 - - 0.49 0.25 0.03 <0.02 1.60 3.44 1.52 

CoMo#2fresha 0 - 3.11 - - 0.49 0.25 0.02 0.02 1.76 2.83 1.70 

Ni#1 71 500, 

2200 

- 12.0 - - - 0.04 0.05 3.54 6.82 0.54 

(S/Ni) 
a) Sulfided and subsequently exposed to the same procedure of increasing temperature and pressure as applied in experiments. At the 

point in time, where ethylene glycol would normally be added, flushing and cooling was performed according to the procedure 

applied for experiment shutdown. 

 

3.5. Characterization of Active Phases 

3.5.1. Oxide Phase  

The calcined catalyst precursors (see Table 1) were analyzed with Raman spectroscopy to assess the 

dispersion of Mo, NiMo, and CoMo phases (see Figure 7). The identification of the various phases ACCEPTED M
ANUSCRIP

T
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present was supported by curve fitting analyses (see supplementary information, Figure S.12 and 

Table S.2). 

Broad main signals around 910 and 895 cm-1 were found indicating a small crystallite size of 

tetrahedrally coordinated MoO4
2- species [57,78]. The bands can be assigned to symmetric and 

asymmetric stretching modes, while broad bands around 315 cm-1 are caused by the bending modes 

of terminal Mo=O [57]. The lack of broad bands at 200-230 cm-1 (Mo-O-Mo vibration) and 943-

965 cm-1 further suggests that the tetrahedral entities were isolated and not present as 

polymolybdates, which is in agreement with the low catalyst loading that was applied [57,58,78]. 

For NiMo#1, the main band is slightly shifted to lower wavenumbers, which may represent a lower 

bond order (higher coordination) or a longer atomic distance of MoO4
2- species. The Raman bands 

at 406, 670, and 769 cm-1 refer to the Eg, F2g, and A1g modes of the support material, MgAl2O4 [79] 

and were found for all samples. An additional Raman band at 555 cm-1 was found for NiMo#1 and 

corresponds to supported and dispersed NiO [80]. Similarly, a Raman band at 593 cm-1 can be 

attributed to supported CoO for CoMo#1 [80]. 

Bulk NiMoO4, CoMoO4, and MoO3 is unwanted, as crystallites of these phases do not convert into 

the active NiMoS and CoMoS phases during sulfidation [31]. No sharp Raman bands of crystalline 

NiMoO4 (≈ 912 and 962 cm-1) or CoMoO4 (≈ 936 (α-CoMoO4 or 935 and 946 cm-1 (β-CoMoO4)) 

[81,82] were observed. For CoMo#1, no bulk Co3O4, CoO, or CoAl2O4 was found (≈ 480, 520, 620, 

and 690 cm-1) [83,84] and similarly, the lack of a broad peak around 525 cm-1 for NiMo#1 indicated 

that no bulk NiO was present in this catalyst precursor [85]. In general, the presence of bulk MoO3 

(667, 820, and 992 cm-1) [57] could be ruled out for all catalyst precursors. Supported MoOx may 

show Raman shifts at higher wavenumbers than 992 cm-1 [86]. Nevertheless, this may not explain 

the observed Raman bands between 1045-1090 cm-1 (Figure 7). Minor Si impurities with a 
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characteristic Raman shift at 521 cm-1 were assigned to potential impurities in the support or in the 

Mo precursor used for the preparation. 
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Figure 7 Baseline corrected Raman spectra of Mo#1, NiMo#1, and CoMo#1 in the oxide phase (calcined, not dehydrated, see Table 

1). The Raman bands were assigned to monomolybdate tetrahedral (blue: 315,895, 910 cm-1), the MgAl2O4 support (orange: 406, 

670, 769 cm-1), supported and dispersed NiO (red: 555 cm-1), supported CoO (green: 593 cm-1), and Si impurities (turquoise: 521 

cm-1).  

 

The presence of highly dispersed MoOx was also verified by XAS. Figure 8 shows XANES spectra 

of the dehydrated and sulfided Mo#1 along with references, which exhibit different features 

depending on the oxidation state and coordination geometry of the central Mo atom. Similar 

XANES spectra of dehydrated and sulfided NiMo#1 and CoMo#1 at the respective Mo, Ni, and Co 

K-edges are given in the supplementary information, Figure S.4. The XANES spectrum of the 

dehydrated sample exhibits a pre-edge peak at ≈ 20,005 eV indicating the presence of Mo6+ (see 

Figure 8). This pre-edge peak, which was seen for all dehydrated samples, is quite intense, which 

further indicates tetrahedral geometry around the central Mo atom [87,88]. ACCEPTED M
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Figure 8 Mo K-edge XANES spectra of the dehydrated and sulfided Mo#1 together with MoO3 and MoS2 references. 

 

The EXAFS fitting results obtained at the Mo K-edge for all dehydrated samples are shown in 

Table 3. The corresponding Fourier transformed (FT) spectra with fitted theoretical models are 

given in the supplementary information, Figure S.5-FigureS.6 (Mo K-edge) and Figure S.7 (Ni K-

edge and Co K-edge). For the dehydrated samples, the CN of Mo-O was found in the range of 4.2-

4.6 with an average bond length of 1.75 Å, which is in accordance with the XANES results. Higher 

metal-metal shells were not observed in the FT spectra of these samples indicating high dispersion 

as also found by Raman spectroscopy.  

Table 3 Mo K-edge EXAFS fitting results for the dehydrated oxide phase precursors. Δ states the uncertainty in the reported values. 

 Mo-O 

Catalyst R CN (ΔCN) σ2 (Δσ2) 

 [Å] [-] [Å-2]·103 

Mo#1 1.76 4.2(0.4) 4.9(0.7) 

NiMo#1 1.73 4.6(0.7) 5.8(1.6) 

CoMo#1 1.75 4.3(0.4) 5.1(0.7) 
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3.5.2. Oxide to Sulfide Conversion during Sulfidation 

The transition of oxide to sulfide was followed in-situ with XANES and EXAFS (see Figure 9 and 

Figure 10). Similarly to what has been obtained in literature [89–92], the oxide precursor underwent 

transformation into intermediate oxy-sulfide species prior to conversion into the final sulfide form.  

      

Figure 9 Mo K-edge XAS results as (a) XANES spectra and (b) corresponding magnitude of the FT (fitted k3-weighted EXAFS 

spectra) for in-situ sulfidation of Mo#1. (a) Overlaid view; arrows indicate change over time. (b) Averaged magnitude of FT spectra 

are shown as a function of time indicating presence of oxide (black), intermediate oxy-sulfide (red), and sulfide (green) phases.  

 

    

Figure 10 XANES spectra for in-situ sulfidation of (a) CoMo#1 at the Co K-edge and (b) NiMo#1 at the Ni K-edge; arrows indicate 

change over time. 

 

A linear combination fitting (LCF) analysis of the XANES spectra obtained during sulfidation of 

the three catalysts (Mo#1, NiMo#1, CoMo#1) showed that Ni promotion increased the rate of 

sulfidation (see Figure 11). Based on the Mo K-edge spectra, 10 % oxide phase remained at ≈ 320 

°C in Mo, at ≈ 335 °C in CoMo, and at ≈ 295 °C in NiMo (Figure 11a-c). Looking at the promotor 
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K-edges, 10 % Co oxide phase remained at ≈ 335 °C, whereas 10 % Ni oxide phase remained at ≈ 

260 °C (Figure 11d-e). Thus, Ni was sulfided faster than Mo and this aided the sulfidation of Mo, 

whereas Co had no significant influence on the sulfidation rate of Mo. 

  

           

   

Figure 11 LCF analysis of fitted EXAFS spectra from in-situ sulfidation at the Mo K-edge for (a) Mo#1, (b) CoMo#1, (c) NiMo#1, at 

the Co K-edge for (d) CoMo#1, and at the Ni K-edge for (e) NiMo#1.  
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3.5.3. Sulfide Phase 

The presence of small and highly dispersed MoS2 particles was revealed by EXAFS. The structural 

parameters determined from fitting the Mo K-edge spectra of the sulfided catalysts and at the 

promotor K-edges spectra for the dehydrated and sulfided samples are shown in Table 4.  

Table 4 EXAFS fitting results. Mo K-edge results for all three sulfided catalysts and Ni and Co K-edge results for dehydrated and 

sulfided NiMo#1 and CoMo#1. Δ states the uncertainty in the reported values. 

K-edge/ catalyst R CN 

(ΔCN) 

σ2  

(Δσ2) 

 R CN 

(ΔCN) 

σ2  

(Δσ2) 

 R CN 

(ΔCN) 

σ2 

(Δσ2) 

 [Å] [-] [Å-2]·103  [Å] [-] [Å-2]·103  [Å] [-] [Å-2]·103 

Mo K-edge / Mo-O  Mo-S  Mo-Mo 

Mo#1 1.65 0.19(0.07) 4.9(0.7)a  2.40 4.1(0.2) 8.4(0.5)  3.16 0.40(0.07) 3.2(0.2)b 

NiMo#1 1.62 0.32(0.11) 4.9(0.7)a  2.40 4.8(0.3) 8.9(0.6)  3.17 0.43(0.10) 3.2(0.2)b 

CoMo#1 1.64 0.32(0.11) 4.9(0.7)a  2.41 4.4(0.4) 9.8(0.9)  3.17 0.26(0.09) 3.2(0.2)b 

Ni K-edge / Ni-O  Ni-Ni  Ni-Mo 

Dehydrated 2.04 5.4(0.7) 7.7(1.4)  3.20 3.0(-)c 6.7(2.8)  3.20 3.0(-)c 6.7(2.8) 

 Ni-S  Ni-Ni  Ni-Mo 

Sulfided 2.22 3.60(0.6) 8.6(1.8)  2.83  1.0(-)c 7.8(4.4)  3.30 1.0(-)c 5.7(1.4) 

Co K-edge / Co-O     

Dehydrated 1.92 4.5(1.1) 3.1(2.0)         

 Co-S  Co-Co (1st)  Co-Mo 

Sulfided 2.16 2.54(0.55) 6.1(1.8)  2.53 3.0(-)c 13.3(1.7)  3.81 2.0(-)c 5.7(3.3) 

     Co-Co (2nd)   

     3.85 3.0(-)c 9.0(0.6)     
a) Δσ2 for Mo-O was fixed to the value as determined from dehydrated Mo#1 sample. 

b) Δσ2 for Mo-Mo was fixed to the value as determined from a MoS2 reference. 

c) The parameter was fixed during the fitting. 

 

The Mo K-edge results show that all three sulfided catalysts had a Mo-O contribution at 1.62-1.65 

Å with a very low CN of 0.19-0.32 (see Table 4). This may be explained by an interaction with the 

support resulting in the formation of highly dispersed, small particles as indicated by Raman. The 

very low CN observed for the Mo-O coordination, indicates that there is no actual bonding between 

Mo and O but only a slight interaction. In a recent study, Rochet et al. [89] also reported a very 

short Mo-O contribution at 1.68 Å with a CN of 1, which was proposed to be due to the presence of 

molybdenum oxysulfide species. In our case, the Mo-O CN is too low to predict the formation of 

such phases. Furthermore, Rochet et al. [89] observed a weak pre-edge feature in the XANES 

spectrum corresponding to the presence of molybdenum oxide species. In the sulfided samples of 
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this work, however, no such peak was observed. Thus, most probably the short Mo-O bond with 

very low CN was due to interaction with the support. 

The Mo-S coordination at 2.40-2.41 Å with a CN of 4.1-4.8 corresponds to the MoS2 phase and is 

in agreement with published values [56,90,93]. The Mo-Mo coordination at 3.16-3.17 Å also 

corresponds to literature results [56,90], but the CN = 0.26-0.43 is too low to obtain a precise 

estimate of the particle size (e.g. due to high temperature leading to a high Debye-Waller factor and 

small particle size due to mobility at > 300 °C), which is expected to be < 2 nm [93]. A TEM 

analysis was performed (see supplementary information, Figure S.13 and Figure S.14) giving an 

average slab length of 4.3±2.8 nm with a mean stacking of 1.2. But with an average Mo-Mo CN < 1 

from EXAFS, the majority of the particles were too small (< 2 nm) to detect with TEM at the 

applied resolution.  These results are in line with the findings of Seo and Lee [94], who showed that 

the formation of MoS2 particles can take place through the initial formation of nanoparticles of ≤ 1 

nm at mild sulfidation conditions. No Mo-Mo backscattering at 3.16 Å was detected for these 

particles indicating a very low coordination number, but at the same time, a Mo-S signal at 2.4 Å 

with a CN of 3.6 was reported, and the elemental S/Mo ratio was 1.3 [94]. As the sulfidation 

temperature was increased, they showed (TEM and EXAFS) that the nanoparticles merged to form 

the well-known MoS2 slab structures giving stronger Mo-Mo backscattering. In this work, a low 

Mo loading (sub monolayer, see Table 1) and rather mild sulfidation conditions were applied; i.e. 

moderate temperature and low pressure. Together with a strong support interaction as indicated by 

the Mo-O contribution at 1.62-1.65 Å, this is proposed to have caused the formation of very small 

and highly dispersed MoS2 particles. 

Using the EXAFS results (Table 4), a MoS2 cluster was constructed from a bulk MoS2 model by 

only including the first shell of S and a single Mo atom from the second Mo shell. The central Mo 

atom thus had a Mo-S CN of 6, similar to bulk MoS2, and a Mo-Mo CN of 1. The outer Mo atom 
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had a Mo-S CN of 2 and a Mo-Mo CN of 1, which gives an average Mo-S CN of 4, corresponding 

to the EXAFS results (see Table 4), and Mo-Mo CN of 1. The structure of this cluster is shown in 

the supplementary information, Figure S.8. FEFF9 simulations were performed with each of the 

two Mo atoms as the absorber, and the obtained spectra were averaged to get the XANES spectrum 

shown in Figure 12. The Debye-Waller factor obtained from the EXAFS fitting was used to 

introduce the disorder in the model. The spectra were averaged with a 1:1 ratio between the two Mo 

atoms, which gave a good agreement between modelled and experimental XANES spectra and 

supported the EXAFS results (see Figure 12). There are, however, some regions where the shape of 

the modelled spectrum deviates from the experimental spectrum, possibly due to presence of further 

contributions from Mo-S and Mo-Mo in the sample not considered in the model. 

 

Figure 12 XANES spectrum for sulfided Mo#1 together with the average calculated XANES spectrum (FEFF9) for a MoS2 cluster 

consisting of two Mo atoms and with an average Mo-S CN of 4 and an average Mo-Mo CN of 1. 

 

The EXAFS results obtained at the Co K-edge indicate that a bulk Co9S8 phase was present in the 

sulfided CoMo catalyst (see Table 4). The Co-S CN of 2.54 with bond length 2.16 Å is similar to 

one of the shorter Co-S coordinations present in Co9S8 [95], and the low CN of 2.54 indicates the 

presence of smaller particles on the surface. The presence of a Co-Co shell was observed at a higher 

distance of 3.85 Å supporting presence of a Co9S8 phase after sulfidation [95]. Also, a Co-Mo shell 
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was found at about the same distance of 3.81 Å indicating that some Co atoms were replaced by 

Mo, which points towards the presence of a CoMoS phase. Thus, the sulfided phase in the CoMo 

catalyst seemed to contain a mixture of Co9S8 and CoMoS. 

Especially CoMo catalysts have been reported to be sensitive towards bulk Co9S8 formation during 

sulfidation with the propensity to form this undesired phase being dependent on the catalyst 

preparation method. Co9S8 is most likely to form in samples prepared from a stepwise incipient 

wetness impregnation where the Co precursor has been added prior to the Mo precursor [13]. Co9S8 

formation can be minimized by application of a chelating agent, such as citric acid, to the 

impregnation solution, which has been reported to stabilize Co and Mo precursors at the catalyst 

surface and facilitate a high degree of promotion of Co in the resulting MoS2 structure [56,90,96]. 

The catalytic activity repeatability test (see section 3.3.1 and Figure 6) might thus be improved by 

altering the catalyst preparation procedure.  

For NiMo, the EXAFS results obtained at the Ni K-edge indicated the presence of a NiMoS phase. 

The Ni-S CN of 3.60 with bond length 2.22 Å is similar to the results obtained by Rochet et al. [97] 

for a sulfided NiMo/Al2O3 catalyst, which was prepared with approximately the same metal loading 

per nm2 available support surface area as for this work. The Ni K-edge XANES spectrum for the 

sulfided catalyst (see supplementary information, Figure S.4), showed similar features as the 

NiMoS XANES spectrum reported in literature [98]. Furthermore, a small bump at ≈ 8352 eV 

corresponded to the white line characteristics of NiAl2O4 indicating some interaction of Ni with the 

MgAl2O4 support. 

3.5.4. Stability against Varying H2O/H2S 

The stability of promoted and unpromoted MoS2 against H2O/H2S variations was investigated in-

situ by XAS. After sulfidation, the catalysts were exposed to different molar ratios of H2O/H2S (30, 

100, 190, and 300) corresponding to 100-500 ppm H2S and 1.6-3.0 % H2O. In the performed 

ACCEPTED M
ANUSCRIP

T



38 
 

activity tests (Figure 4 and Figure 5), full conversion corresponded to a H2O/H2S ratio of ≈ 125 and 

≈ 30 at 550 and 2200 ppm H2S, respectively.  

Figure 13 shows the in-situ XANES spectra at the Mo K-edge for Mo#1, CoMo#1, and NiMo#1, at 

the Co K-edge for CoMo#1, and at the Ni K-edge for NiMo#1, respectively, during H2O/H2S 

variations. Any changes induced by adding water to the gas and increasing the H2O/H2S ratio were 

negligible, which indicates that all catalysts were stable against water induced phase change such as 

oxidation for H2O/H2S ratios ≤300. Also, the variation in the EXAFS parameters for the catalysts 

exposed to H2O were too small to predict any phase transformation and are hence not presented 

here.  

The presence of promotors in the CoMo and NiMo catalysts could stabilize the catalyst against 

oxidation as indicated by the DFT results (see Figure 2), which suggested a lower stability of 

unpromoted MoS2, but at the same time only provided general trends. Furthermore, the stability 

could be due to a stabilizing effect from the strong interaction between the small and highly 

dispersed particles with the support. A possibility for further investigating the influence of H2O/H2S 

variations could be to perform modulation excitation spectroscopy (MES) during in-situ 

experiments, which can potentially enhance the sensitivity of small and fast changes [99]. This is 

outside the scope of this paper, and it is the topic of further research. 
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Figure 13 Average XANES spectra from in-situ H2O/H2S variations at the Mo K-edge for (a) Mo#1, (b) CoMo#1, (c) NiMo#1, (d) at 

the Co K-edge for CoMo#1, and (e) at the Ni K-edge for NiMo#1. Numbers indicate molar H2O/H2S ratios. Start and end denote 

whether the averaged XANES spectra are from the first or last 5 minutes of the exposure time at the given ratio.  
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3.6. Target Sulfide Phase for HDO at Elevated Temperature 
A strong support interaction (commonly through Mo-O-Al linkages) has often been associated with 

formation of the less active type I sulfide phases [56,90,96]. Type I sulfides are smaller particles 

with higher dispersion than type II sulfides that more resemble bulk MoS2 [100]. A moderately 

active catalyst stabilized through the support interaction of highly dispersed MoS2 particles was the 

aim in this work, where a catalyst for in-situ HDO of pyrolysis vapors at high temperatures (≈ 500 

°C) is targeted. If a too active catalyst (such as type II sulfides) is prepared, extensive cracking can 

minimize (potentially remove) the oil yield when a real biomass feed is used. Additionally, the 

strong active phase-support interaction helps in stabilizing the active phase upon water exposure, 

this could further favor the use of type I sulfides in high temperature HDO of pyrolysis vapor.  

A bulk-like MoS2 structure with a Mo-S CN of ≈ 6 can be obtained by lowering the interaction with 

the support; either by the use of a chelating agent during impregnation on Mo-O-Al anchoring 

supports such as Al2O3 [56,90,96], or by the use of  an inert support such as carbon [96]. Sulfidation 

conditions (temperature, pressure, and sulfur source) can additionally be used to alter the 

composition of formed sulfides [56,90,100,101]. As mentioned, the loading of Mo also influences 

the type I/II distribution as a higher loading minimized the support interaction and favors the 

formation of fully sulfided MoS2 with Mo-S CN = 6 [13,55]. 

It has been reported that NiMo catalysts are more active for HDO of aliphatic species, while CoMo 

catalysts are more active for HDO of aromatic species [29,44,45,102]. In this work, similar 

activities were seen with the prepared NiMo and CoMo catalysts tested for ethylene glycol 

conversion. Biomass fast pyrolysis vapor will contain both aliphatic and aromatic oxygenates. It 

could therefore be interesting to test the activity and stability of the prepared catalysts for HDO of 

aromatic species. Mixtures of aromatic and aliphatic species should be tested as well to study 

possible competitive inhibition. However, the aliphatic oxygenates (sugar derived polyols, ketones, 
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acids, and aldehydes) are responsible for the most detrimental properties of bio-oil. These species 

should be upgraded by HDO immediately when formed during catalytic hydropyrolysis. Further 

upgrading of more refractory aromatic species could potentially be performed downstream in a 

fixed bed reactor operating with another catalyst at other operating conditions. 

4. Conclusions 
DFT, catalytic activity tests, and in-situ XAS was conducted to provide detailed information on the 

activity and stability of MoS2, Ni-MoS2, and Co-MoS2 catalysts used for HDO upon variation of the 

partial pressures of H2O and H2S. H2S was added to the reaction gas to stabilize the sulfide catalyst, 

while H2O is a HDO reaction product. DFT calculations showed that the active edge of MoS2 could 

be stabilized against S-O exchanges by increasing the partial pressure of H2S or by promotion with 

either Ni or Co. HDO activity tests were performed using Mo, NiMo, and CoMo catalysts prepared 

by incipient wetness impregnation using a MgAl2O4 support. Ethylene glycol was chosen as a 

model compound representing the more reactive cellulose derived species formed during pyrolysis 

of biomass. The prepared MoS2 based catalysts were all active and fairly selective for ethylene 

glycol HDO at 400 °C, 27 bar H2, and 550-2200 ppm H2S, and produced ethane, ethylene, and C1 

cracking products at C2/C1 ratios of 1.5-4.8 and conversions of ≈ 50-100 %. Both DFT and catalytic 

activity tests indicated that increasing the H2S concentration in the gas increased the concentration 

of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO 

performance. In-situ XAS showed that the catalysts were tolerant towards water, and that the active 

phases were present as small and highly dispersed particles. 
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