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Maximum Number of Common Zeros of Homogeneous

Polynomials over Finite Fields

Peter Beelen, Mrinmoy Datta, Sudhir R. Ghorpage

Abstract

About two decades ago, Tsfasman and Boguslavsky conjectured a formula for the max-
imum number of common zeros that r linearly independent homogeneous polynomials of
degree d in m+ 1 variables with coefficients in a finite field with q elements can have in the
corresponding m-dimensional projective space. Recently, it has been shown by Datta and
Ghorpade that this conjecture is valid if r is at most m + 1 and can be invalid otherwise.
Moreover a new conjecture was proposed for many values of r beyond m+ 1. In this paper,
we prove that this new conjecture holds true for several values of r. In particular, this settles
the new conjecture completely when d = 3. Our result also includes the positive result of
Datta and Ghorpade as a special case. Further, we determine the maximum number of
zeros in certain cases not covered by the earlier conjectures and results, namely, the case
of d = q − 1 and of d = q. All these results are directly applicable to the determination of
the maximum number of points on sections of Veronese varieties by linear subvarieties of a
fixed dimension, and also the determination of generalized Hamming weights of projective
Reed-Muller codes.

1 Introduction

Let d,m be positive integers and let Fq denote the finite field with q elements. Let us denote by
S the ring Fq[X0, X1, . . . , Xm] of polynomials in m + 1 variables with coefficients in Fq and by
Sd its dth graded component, i.e., let Sd be the space of all homogeneous polynomials in S of
degree d (including the zero polynomial). Given any homogeneous polynomials F1, . . . , Fr ∈ S,
let V(F1, . . . , Fr) denote the corresponding projective algebraic variety over Fq, i.e., the set of
all Fq-rational common zeros of F1, . . . , Fr in the m-dimensional projective space Pm. Now fix a

positive integer r ≤ dimFq Sd =
(
m+d
d

)
. We are primarily interested in determining

er(d,m) := max {|V(F1, . . . , Fr)| : F1, . . . , Fr ∈ Sd linearly independent} . (1)

The first nontrivial case is r = 1 and here it was conjectured by Tsfasman in the late 1980’s that

e1(d,m) = dqm−1 + pm−2 whenever d ≤ q, (2)

where for any integer k,

pk :=

{
|Pk(Fq)| = qk + qk−1 + · · ·+ q + 1 if k ≥ 0,

0 if k < 0.

The conjecture was proved in the affirmative by Serre [9] and, independently, by Sørensen [10]
in 1991. Later in 1997, Boguslavsky [1] showed that

e2(d,m) = (d− 1)qm−1 + qm−2 + pm−2 whenever 1 < d < q − 1.
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In the same paper, Boguslavsky [1] made several conjectures, ascribing some of them to Tsfas-
man. Surmising from the conjectural statements and results in [1], one arrives at the Tsfasman-
Boguslavsky Conjecture (TBC), which states that

er(d,m) := pm−2j +

m∑
i=j

νi(pm−i − pm−i−j) whenever 1 ≤ d < q − 1,

where (ν1, . . . , νm+1) is the rth element in descending lexicographic order among (m+ 1)-tuples
(α1, . . . , αm+1) of nonnegative integers satisfying α1 + · · ·+αm+1 = d, and j := min{i : νi 6= 0}.

The conjectural formula above for er(d.m) was motivated by the computations of Boguslavsky
[1, Lem. 4] for the number of Fq-rational points of the so-called linear (r,m, d)-configurations, and
a conjecture of Tsfasman [1, Conj. 1]. For details about these, see [1, § 2] and [3, Rem. 3.6]. The
TBC remained open for a considerably long time. However, two important developments took
place shortly after Boguslavsky’s paper was published. First, working on a seemingly unrelated
question (and unaware of the TBC), Zanella [11] determined er(2,m) completely. Second, Heijnen
and Pellikaan [6], found exact formulae for the affine analogue of (1), namely,

eAr (d,m) := max {|Z(f1, . . . , fr)| : f1, . . . , fr ∈ T≤d linearly independent} ,

where T denotes the polynomial ring Fq[x1, . . . , xm] in m variables over Fq and T≤d the set of
polynomials in T of degree ≤ d, and for any f1, . . . , fr ∈ T , Z(f1, . . . , fr) denotes the set of
all Fq-rational common zeros of f1, . . . , fr in the m-dimensional affine space Am. The result of
Heijnen-Pellikaan can be stated as follows.

eAr (d,m) = Hr(d,m) :=

m∑
i=1

βiq
m−i whenever 1 ≤ d < q, m ≥ 1, and 1 ≤ r ≤

(
m+ d

d

)
, (3)

where (β1, . . . , βm) is the rth element in descending lexicographic order among all m-tuples
(γ1, . . . , γm) of nonnegative integers satisfying γ1 + · · ·+ γm ≤ d.

Recently, it was shown in [3] that the TBC is false, in general, by showing that er(d,m) can
be strictly smaller than the conjectured quantity if r > m+ 1. Further, in [4] it was shown that
the TBC holds in the affirmative if r ≤ m+ 1; this gives

er(d,m) = (d− 1)qm−1 + bqm−rc+ pm−2 if 1 < d < q − 1 and r ≤ m+ 1. (4)

While this settles in a way the Tsfasman-Boguslavsky Conjecture, there still remains the question
of determining er(d,m) in all the remaining cases. In fact, besides (2), (4), and the result of
Zanella for er(2,m) mentioned earlier (see Theorem 2.10), the only other known results about
er(d,m) are the following. First, it is easy to determine er(d,m) for the initial values of d or m
for all permissible r, that is, for 1 ≤ r ≤

(
m+d
d

)
. More precisely, we have

er(1,m) = pm−r for 1 ≤ r ≤ m+1. and er(d, 1) = d−r+1 for 1 ≤ r ≤ d+1 and d ≤ q; (5)

see, for instance, [4, § 2.1]. It is not difficult to determine er(d,m) for some terminal values of r:

er(d,m) =
(
m+d
d

)
− r for

(
m+d
d

)
− d ≤ r ≤

(
m+d
d

)
and d < q − 1. (6)

A proof can be found in [5, Thm. 4.7]. At any rate, the results obtained thus far do not yield
the exact values of

• er(d,m) whenever m+ 1 < r <
(
m+d
d

)
− d and 2 < d < q − 1
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• er(d,m) whenever 1 < r ≤
(
m+d
d

)
and d ≥ q − 1

Note also that the case d ≥ q + 1 is trivial for many values of r (see [4, Rem. 6.2] for more
details). But the cases d = q − 1 and d = q were unresolved for most values or r and m, and it
is conceivable that the TBC may even be valid in some of them, at least when r ≤ m + 1. For
going beyond r = m+ 1, a conjecture that ameliorates the TBC was made in [4] for many (but
not all) values of r and for values of d up to and including q − 1. The conjecture simply states
that

er(d,m) = Hr(d− 1,m) + pm−1 if 1 < d ≤ q − 1 and r ≤
(
m+ d− 1

d− 1

)
. (7)

where Hr(d− 1,m) is as in (3) except with d replaced by d− 1.
We can now describe the contents of this paper. Our main result (Theorem 5.3) is an

affirmative solution of the new conjecture (7) when d > 2 and r ≤
(
m+2
2

)
. In particular, this

completely proves the conjectural formula (7) when d = 3. Furthermore, while our methods are
partly inspired by those in [4], the results of [4] are not used directly. As such our results yield
(4) as a corollary. In fact, we do a little better, since the case d = q − 1 is also covered, and
moreover, the proof is somewhat simpler. Our second main result (Theorems 6.2 and 6.3) is the
determination of er(d,m) in the case d = q and 1 ≤ r ≤ m + 1. The result matches with the
answer predicted by the TBC as well as (4) and (7) when r = 1 and r = m+1, but not otherwise.

The key ingredients in our proofs are as follows. We make use of the nontrivial results
of Heijnen and Pellikaan [6] as well as Zanella [11]. In addition, we utilize an inequality of
Serre/Sørensen [9, 10], a variant of Bézout’s theorem by Lachaud and Rolland [8], a simple
lemma given by Zanella [11] (see also [3, Rem. 2.3]), and an inequality of Homma and Kim
[7] about the maximum number of points on a hypersurface without an Fq-linear component.
Another important ingredient in our proof is the use of a quantity that we call the t-invariant
associated to a linear space of homogeneous polynomials of the same degree. This notion can be
traced back to the proof of [5, Thm. 5.1] in a special case, but here it is used more systematically.

We remark here that the determination of er(d,m) is equivalent to the determination of the
maximum number of Fq-rational points on linear sections Vm,d ∩L of the Veronese variety Vm,d

corresponding to the d-uple embedding of Pm in PM−1, whereM =
(
m+d
d

)
and where L varies over

linear subvarieties of PM−1 of codimension r. Moreover, finding er(d,m) is essentially the same
as finding the rth generalized Hamming weight of the projective Reed-Muller code PRMq(d,m)
of order d and length pm. Also, results on the determination of er(d,m) complement the recent
result of Couvreur [2] on the number of points of projective varieties of given dimensions and
degrees of its irreducible components. These connections are explained in [3, 5], and one may
refer to them for more details on these aspects.

2 Preliminaries

Fix for the remainder of this paper a prime power q and positive integers d,m, r. In subsequent
sections and subsections, some further assumptions on d or m or r will be made, depending on
the context. For the convenience of the reader, the basic underlying assumptions, if any, will be
specified in the “context” mentioned at the beginning of the section or subsection. We will denote
by N the set of all nonnegative integers and by Nm the set of m-tuples of nonnegative integers.
We will continue to use the notations introduced in the previous section. In particular, given any
subset W of S := Fq[X0, X1, . . . , Xm], we denote by V(W ) the set of Fq-rational points of the
corresponding projective variety in Pm, i.e., V(W ) := {P ∈ Pm(Fq) : F (P ) = 0 for all F ∈ W}.
If W = {F1, . . . , Fr} or if W is a Fq-linear subspace of S spanned by F1, . . . , Fr, then we may
write V(F1, . . . , Fr) for V(W ). Likewise, given any subset U of T := Fq[X1, . . . , Xm], we shall
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denote by Z(U) the set {P ∈ Am(Fq) : f(P ) = 0 for all f ∈ U}. If U = {f1, . . . , fr} or if U
is a subspace of T spanned by f1, . . . , fr, then we may write Z(f1, . . . , fr) for Z(U). Note that
we use the word algebraic variety as synonymous with algebraic set, i.e., a variety need not be
irreducible. When we speak of geometric attributes such as dimension or degree of an (affine or
projective) algebraic variety such as V(W ) or Z(U), it will always be understood that it is the
same as the dimension or degree of the corresponding variety over an algebraic closure Fq of Fq.

2.1 Projective Hypersurfaces and Affine Varieties

We recall here several results from the literature that we will need later on. Let us begin with
the result of Serre [9] and Sørensen [10] (see also [3]) that was mentioned in the Introduction.

Theorem 2.1. Let F be any nonzero homogeneous polynomial in S of degree d. Then

|V(F )| ≤ dqm−1 + pm−2.

Moreover e1(d,m) = dqm−1 + pm−2 whenever d ≤ q.

Next, we recall a variant of Bézout’s Theorem given by Lachaud and Rolland [8, Cor 2.2]. It
should be noted that since S as well as T are unique factorization domains, a gcd (= greatest
common divisor) of any finite collection F1, . . . , Fr of polynomials in either of these rings exists
and is unique up to multiplication by a nonzero scalar, and it may be denoted by gcd(F1, . . . , Fr).
Note also that in case F1, . . . , Fr are homogeneous, then so is their gcd.

Theorem 2.2. Let f1, . . . , fr ∈ T be nonzero polynomials such that Z(f1, . . . , fr) is an affine
algebraic variety of dimension s. Then

|Z(f1, . . . , fr)| ≤ deg(f1) · · · deg(fr)qs.

In particular we have
|Z(f1)| ≤ deg(f1)qm−1

and
|Z(f1, f2)| ≤ deg(f1) deg(f2)qm−2, provided gcd(f1, f2) = 1.

Proof. The first assertion is [8, Cor 2.2]. The next two are immediate consequences because
if f1 ∈ T is nonconstant, then the hypersurface Z(f1) has codimension 1 in Am, whereas if
f1, f2 ∈ T are coprime of positive degrees, then arguing as in the proof of [4, Lem. 2.2], we see
that the codimension of Z(f1, f2) is 2. The case when deg(fi) = 0 for some i = 1, 2, is trivial.

Let us deduce a refinement of the last result, which will be useful to us later.

Lemma 2.3. Assume that r ≥ 2. Let f1, . . . , fr ∈ T≤d be linearly independent polynomials such
that gcd(f1, . . . , fr) = 1. If deg(f1) ≤ d− 1, then

|Z(f1, . . . , fr)| ≤ (d− 1)dqm−2.

If, in addition, deg(f2) ≤ d− 1, then

|Z(f1, . . . , fr)| ≤ (d− 1)2qm−2.

4



Proof. For r = 2 this follows directly from Theorem 2.2. Therefore we assume r > 2 from
now on. To estimate |Z(f1, . . . , fr)| we proceed as follows: Let p be an irreducible factor of
f1. Since we assume that gcd(f1, . . . , fr) = 1, there exists i ≥ 2 such that gcd(p, fi) = 1.
Using Theorem 2.2, we see that |Z(p, f2, . . . , fr)| ≤ |Z(p, fi)| ≤ deg(p)dqm−2. On the other
hand if f1 = p1 · · · pk for some irreducible, but not necessarily distinct, p1, . . . , pk ∈ T , then
|Z(f1, . . . , fr)| ≤

∑
j |Z(pj , f2, . . . , fr)|. Combining these two estimates, we find that

|Z(f1, . . . , fr)| ≤ deg(f1)dqm−2 ≤ (d− 1)dqm−2.

Now suppose deg(f1) ≤ d − 1 and deg(f2) ≤ d − 1. Here, we need a more refined analysis.
Let g = gcd(f1, f2) and write b = deg(g) and f1 = gf ′1, f2 = gf ′2. Since f1 and f2 are linearly
independent, f ′1 and f ′2 are nonconstant polynomials. Hence b < d− 1. It is clear that

|Z(f1, . . . , fr)| ≤ |Z(f ′1, f
′
2)|+ |Z(g, f3, . . . , fr)|.

By Theorem 2.2, we find that |Z(f ′1, f
′
2)| ≤ (d − b − 1)2qm−2. To estimate |Z(g, f3, . . . , fr)| we

proceed on similar lines as before and obtain that

|Z(g, f3, . . . , fr)| ≤ bdqm−2.

Hence we see that

|Z(f1, f2, f3, . . . , fr)| ≤ (d− b− 1)2qm−2 + bdqm−2 =
(
(d− 1)2 + b(b− d+ 2)

)
qm−2.

Since 0 ≤ b ≤ d− 2, the maximal value of b(b− d+ 2) is attained for b = 0 (or b = d− 2). The
conclusion of the lemma now follows in this case as well.

We will also need the following result due to Homma and Kim [7, Thm.1.2]:

Theorem 2.4. Let X ⊂ Pm(Fq) be a hypersurface of degree d defined over Fq without an Fq-
linear component, and let X (Fq) denote the set of its Fq-rational points. Then

|X (Fq)| ≤ (d− 1)qm−1 + dqm−2 + pm−3.

The following lemma will play an important role later and it appears, for example, in [11,
Lem. 3.3]. See also [3, Lem. 2.1 and Rem. 2.3]. We outline a proof for the sake of completeness.

Lemma 2.5. Let X ⊆ Pm(Fq) be any subset. Define

a := max
H
|X ∩ H|,

where H ranges over all hyperplanes in Pm defined over Fq. Then

|X | ≤ aq + 1 and if X 6= Pm(Fq), then |X | ≤ aq.

Proof. Let P̂m(Fq) denotes the set of hyperplanes in Pm defined over Fq. Counting the incidence

set {(P,H) ∈ X × P̂m(Fq) : P ∈ H} in two ways using the first and the second projections, we
obtain |X |pm−1 ≤ apm. This gives |X | ≤ aq + (a/pm−1) ≤ aq + 1, since a ≤ pm−1. Further, if
a < pm−1, then |X | ≤ aq, since |X | is an integer, whereas if a = pm−1 and |X | = aq + 1 = pm,
then we must have X = Pm(Fq). This completes the proof.

We have already alluded to an important result of Heijnen and Pellikaan [6]. We end this
subsection by recording its statement essentially as in [6, Thm. 5.10], and then outline how the
version stated in the Introduction can be deduced.
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Theorem 2.6. Assume that 1 ≤ d < q and r ≤
(
m+d
d

)
. Then

eAr (d,m) = qm −
(

1 +

m∑
j=1

αjq
m−j

)
, (8)

where (α1, . . . , αm) is the rth tuple in ascending lexicographic order among m-tuples (λ1, . . . , λm)
with coordinates from {0, 1, . . . , q − 1} satisfying λ1 + · · ·+ λm ≥ m(q − 1)− d,

To see the equivalence with (3), let us rewrite the expression on the right in (8) as

m∑
j=1

(qm−j+1 − qm−j − αjq
m−j) =

m∑
j=1

βjq
m−j , where βj := q − 1− αj for j = 1, . . . ,m.

Note that (β1, . . . , βm) is precisely the rth tuple in descending lexicographic order among all
m-tuples γ = (γ1, . . . , γm) with coordinates in {0, 1, . . . , q − 1} satisfying γ1 + · · · + γm ≤ d.
Moreover, if d < q, then the last condition implies γj ≤ q − 1 for j = 1, . . . ,m. So if we take

Σ(d,m) := {γ = (γ1, . . . , γm) ∈ Nm : γ1 + · · ·+ γm ≤ d} (9)

and β the rth element of Σ(d,m) in descending lexicographic order, then (8) implies (3).

2.2 Combinatorics of Hr(d,m)

As mentioned in the Introduction, we are mainly interested in this paper in conjectural equality
(7) and it is therefore important to understand Hr(d,m) a little better. Let us begin by recalling
the definition:

Hr(d,m) :=

m∑
j=1

βjq
m−j , for m ≥ 1, 1 ≤ d < q and 1 ≤ r ≤

(
m+d
d

)
,

where β the rth element of Σ(d,m) in descending lexicographic order and where Σ(d,m) is as in
(9). We shall now proceed to establish several elementary properties of Hr(d,m). These might
seem disparate at first, but they will turn out to be useful in later sections.

Observe that if λ1, . . . , λm are integers, not all zero, with |λj | ≤ q − 1 for j = 1, . . . ,m, then
the sum

∑m
j=1 λjq

m−j has the same sign as that of the first nonzero integer among λ1, . . . , λm.
Now if d < q and if γ, γ′ ∈ Σ(d,m), then using the above observation for λ = γ − γ′, we see that

γ <lex γ
′ ⇐⇒

m∑
j=1

γjq
m−j <

m∑
j=1

γ′jq
m−j .

This implies the strict monotonicity of Hr(d,m) in the parameter r:

H1(d,m) > H2(d,m) > · · · > H(m+d
d )(d,m). (10)

We will now try to determine Hr(d.m) explicitly for “small” values of r. For 1 ≤ i ≤ m+ 1, let
emi be the m-tuple with 1 in ith place and 0 elsewhere; when i = m + 1, this is the zero-tuple.
Clearly, the first m+1 elements of Σ(d,m) are (d−1)em1 +emr for r = 1, . . . ,m+1. Consequently,

Hr(d,m) = (d− 1)qm−1 + bqm−rc for 1 ≤ r ≤ m+ 1 and 1 ≤ d < q. (11)
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In particular, if d = 1, then we have the simple expression bqm−rc for Hr(d,m) for all permissible
values of r. Now suppose 2 ≤ d < q. Then the first

(
m+2
2

)
elements can be described in blocks

of (m+ 1),m, (m− 1), . . . , 2, 1 as follows

(d− 2)em1 + em1 + emj for j = 1, . . . ,m+ 1,

(d− 2)em1 + em2 + emj for j = 2, . . . ,m+ 1,

(d− 2)em1 + em3 + emj for j = 3, . . . ,m+ 1,

...

(d− 2)em1 + emm + emj for j = m,m+ 1,

(d− 2)em1 + emm+1 + emm+1 = (d− 2)em1 .

Put another way, for r ≤
(
m+2
2

)
, the rth element of Σ(d,m) is of the form

(d− 2)em1 + emi + emj for unique i, j ∈ Z with 1 ≤ i ≤ j ≤ m+ 1. (12)

An easy calculation shows that these unique i, j are related to r ≤
(
m+2
2

)
by:

r = (i− 1)m−
(
i−1
2

)
+ j and 1 ≤ i ≤ j ≤ m+ 1. (13)

The conditions (13) determine i, j uniquely from a given r ≤
(
m+2
2

)
. From (12), we see that

Hr(d,m) = (d− 2)qm−1 + bqm−ic+ bqm−jc for r ≤
(
m+2
2

)
with i, j as in (13). (14)

Notice that in the above setting i = 1 if and only if r ≤ m+ 1 and in this case (14) simplifies to
(11), at least when d ≥ 2. As an additional illustration of (14), we may also note that

Hm+2(d,m) = (d− 2)qm−1 + 2bqm−2c for 2 ≤ d < q. (15)

Having observed that Hr(d,m) is strictly monotonic in the parameter r, we will examine in the
next two results the behavior of Hr(d,m) as a function of the parameter d or the parameter m.

Proposition 2.7. Assume that 1 < d < q and let c be an integer with 0 < c < d− 1. Then

Hr(d,m) = cqm−1 +Hr(d− c,m) for 1 < r ≤
(
m+2
2

)
. (16)

In particular, Hr(d− 1,m) < Hr(d,m) whenever 2 < d < q and 1 < r ≤
(
m+2
2

)
.

Proof. Fix r with 1 < r ≤
(
m+2
2

)
, and let i, j be as in (13). Then j ≥ 2. Also 1 < d − c < q.

Thus by (14), we see that Hr(d,m)−Hr(d− c,m) = cqm−1. This implies the desired result.

Proposition 2.8. Assume that 1 ≤ d < q and m > 1. Then

(i) qHr(d,m− 1) ≤ Hr(d,m) whenever 1 ≤ r ≤
(
m+d−1

d

)
.

(ii) qHr−1(d,m− 1) ≤ Hr(d,m) whenever m+ 1 ≤ r ≤
(
m+d−1

d

)
.

Proof. Consider φ : Σ(d,m− 1)→ Σ(d,m) defined by φ(γ1, . . . , γm−1) = (γ1, . . . , γm−1, 0). It is
clear that φ preserves lexicographic order and that it maps the first m−1 elements of Σ(d,m−1)
to the first m− 1 elements of Σ(d,m). Thus if β is the rth element of Σ(d,m− 1), then φ(β) is
the sth element of Σ(d,m) for some s ≥ r. Hence in view of (10), we find, for r ≤

(
m+d−1

d

)
,

qHr(d,m− 1) = q

m−1∑
j=1

βjq
m−1−j =

m∑
j=1

φ(β)jq
m−j = Hs(d,m) ≤ Hr(d,m). (17)
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This proves (i). Next, observe that the image of φ misses the mth element of Σ(d,m), namely,
(d− 1, 0, . . . , 0, 1). It follows that if r − 1 ≥ m and if γ is the (r − 1)th element of Σ(d,m− 1),
then φ(γ) is the sth element of Σ(d,m) for some s ≥ r = (r − 1) + 1. Thus as in (17), we see
that qHr−1(d,m− 1) ≤ Hr(d,m) whenever m+ 1 ≤ r ≤

(
m+d−1

d

)
. This proves (ii).

2.3 Projective Varieties containing a Hyperplane and Zanella’s Theo-
rem for Quadrics

The following result about projective varieties containing a hyperplane is a slightly more general
version of [4, Lem. 2.5]. We include a quick proof for the sake of completeness.

Lemma 2.9. Assume that d ≤ q. Let F1, . . . , Fr be linearly independent homogeneous polyno-
mials in Sd. Suppose that L ∈ S1 divides each of F1, . . . , Fr. Then

|V(F1, . . . , Fr)| ≤ Hr(d− 1,m) + pm−1.

Proof. The conditions on L show that L is nonzero and thus without loss of generality, we may
assume that L = X0. For 1 ≤ i ≤ m, let fi(X1, . . . , Xm) := Fi(1, X1, . . . , Xm); note that
deg(fi) ≤ d− 1, since X0 | Fi. Hence (3) implies that |Z(f1, . . . , fr)| ≤ Hr(d− 1,m), and so

|V(F1, . . . , Fr)| = |Z(f1, . . . , fr)|+ |V(X0)| ≤ Hr(d− 1,m) + pm−1,

as desired.

Note that for the hypothesis of Lemma 2.9 to hold, it is necessary that r ≤
(
m+d−1
d−1

)
, because

otherwise the polynomials F1, . . . , Fr cannot be linearly independent. Indeed, by assumption,
the polynomials F1, . . . , Fr are in the vector space L · Sd−1, which has dimension

(
m+d−1
d−1

)
.

The last preliminary result we need is the following theorem of Zanella [11, Thm. 3.4]
about maximum possible number of Fq-rational points on intersections of r linearly independent
quadrics in Pm.

Theorem 2.10. Assume that r ≤
(
m+2
2

)
. Let k be the unique integer such that −1 ≤ k < m

and
(
m+2
2

)
−
(
k+3
2

)
< r ≤

(
m+2
2

)
−
(
k+2
2

)
. Then

er(2,m) = bq(
m+2

2 )−(k+2
2 )−r−1c+ pk.

In particular, if r ≤ m+ 1, then k = m− 1 and thus er(2,m) = bqm−rc+ pm−1.

We have now gathered all known results from the literature that we need. We finish this
section by restating the following conjecture from [4], which was alluded to in the Introduction.

Conjecture 1. Assume that 1 < d < q and 1 ≤ r ≤
(
m+d−1
d−1

)
. Then

er(d,m) = Hr(d− 1,m) + pm−1.

This conjecture was proved to be correct for r ≤ m + 1 and d < q − 1 in [4]. For r = 1,
the conjecture follows from Theorem 2.1, whereas for d = 2, it follows as a particular case of
Theorem 2.10 [in view of (11)], or alternatively, as a special case of [4, Thm. 6.3]. Also when
m = 1, the conjecture is a trivial consequence of (5). Based on the above, we may always assume
that m > 1, r > 1, and d ≥ 3. We will provide significant more evidence for this conjecture by
proving it for any pair (d, r) satisfying 2 < d < q and r ≤

(
m+2
2

)
. In particular, we show that
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the conjecture holds if d = 3. The main step in our proof would be to show if r ≤
(
m+2
2

)
and if

F1, . . . , Fr are any linearly independent polynomials in Sd, then

|V(F1, . . . , Fr)| ≤ Hr(d− 1,m) + pm−1. (18)

The equality in Conjecture 1 is established by using (3) to show that there exists a family of
polynomials where the upper the bound in (18) is attained.

3 Reduction to the relatively prime case

In order to prove (18) for any linearly independent F1, . . . , Fr ∈ Sd, we will establish in this
section auxiliary results that deal with the case when gcd(F1, . . . , Fr) has degree c > 1. Since
(18) is known already when r = 1, we will usually assume that r > 1. Note that when r > 1, the
linear independence of F1, . . . , Fr implies that c < d.

Lemma 3.1. Assume that r > 1 and 1 < d ≤ q. Let F1, . . . , Fr ∈ Sd be linearly independent
and G be a gcd of F1, . . . , Fr and let c := degG. Let F ′1, . . . , F

′
r ∈ Sd−c be such that Fi = GF ′i

for i = 1, . . . , r. Suppose c > 0 and G has no linear factors. Then

|V(F1, . . . , Fr)| < cqm−1 + |V(F ′1, . . . , F
′
r)|.

Proof. Since r > 1, we must have c < d and so c ≤ q − 1. Hence using Theorem 2.4, we obtain

|V(G)| ≤ (c− 1)qm−1 + cqm−2 + pm−3 < cqm−1.

Since we clearly have |V(F1, . . . , Fr)| ≤ |V(G)|+ |V(F ′1, . . . , F
′
r)|, the lemma follows.

Similar to the remark after Lemma 2.9, one can deduce that if G and c are as in Lemma 3.1,
then we necessarily have r ≤

(
m+d−c
d−c

)
, since F1, . . . , Fr ∈ G · Sd−c. This gives an alternative

argument to show that if r > 1, then c < d.

Proposition 3.2. Assume that 1 < r ≤
(
m+2
2

)
and 2 < d ≤ q. Let F1, . . . , Fr ∈ Sd be linearly

independent and G be a gcd of F1, . . . , Fr and let c := degG. Let F ′1, . . . , F
′
r ∈ Sd−c be such that

Fi = GF ′i for i = 1, . . . , r. If 0 < c < d− 2 and |V(F ′1, . . . , F
′
r)| ≤ Hr(d− c− 1,m) + pm−1, then

|V(F1, . . . , Fr)| < Hr(d− 1,m) + pm−1.

Proof. If G contains a linear factor and in particular, if c = 1, then the result follows from
Lemma 2.9. Now suppose G has no linear factors, 1 < c < d − 2, and |V(F ′1, . . . , F

′
r)| ≤

Hr(d− c− 1,m) + pm−1. By Lemma 3.1, we see that

|V(F1, . . . , Fr)| < cqm−1 +Hr(d− c− 1,m) + pm−1.

On the other hand, changing d to d−1 in (16), we find Hr(d−1,m) = cqm−1 +Hr(d− c−1,m).
This yields the desired inequality.

The cases c = d−2 and c = d−1 that are not covered by Proposition 3.2 need to be dealt with
independently. However, since the values of er(1,m) and er(2,m) are known for all permissible
values of r, this is not hard to do.

Proposition 3.3. Assume that 1 < r ≤
(
m+2
2

)
and 2 < d ≤ q. Let F1, . . . , Fr ∈ Sd be linearly

independent and let G be a gcd of F1, . . . , Fr. Suppose c := degG equals d− 2 or d− 1. Then

|V(F1, . . . , Fr)| ≤ Hr(d− 1,m) + pm−1.
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Proof. If G contains a linear factor, then Lemma 2.9 gives the desired result. Now assume that
G has no linear factors. Then Theorem 2.4 implies that

|V(G)| ≤ (c− 1)qm−1 + cqm−2 + pm−3.

As in the previous proposition, let F ′1, . . . , F
′
r ∈ Sd−c be such that Fi = GF ′i for i = 1, . . . , r.

Then |V(F1, . . . , Fr)| ≤ |V(G)|+ |V(F ′1, . . . , F
′
r)|. Consequently,

|V(F1, . . . , Fr)| ≤ (c− 1)qm−1 + cqm−2 + pm−3 + er(d− c,m). (19)

First, let us suppose c = d − 1. Then we necessarily have 1 < r ≤ m + 1. Also in view of (5),
er(1,m) = pm−r ≤ pm−2. Thus (19) implies that

|V(F1, . . . , Fr)| ≤ (d− 2)qm−1 + (d− 1)qm−2 + pm−3 + pm−2.

Since d ≤ q, we see that the expression on the right-hand side of the above inequality is strictly
smaller than (d− 2)qm−1 + pm−1. Hence in view of (11) and (10), we see that

|V(F1, . . . , Fr)| < (d− 2)qm−1 + pm−1 = Hm+1(d− 1,m) + pm−1 ≤ Hr(d− 1,m) + pm−1,

as desired. Next, let us suppose c = d− 2. Then by Theorem 2.10, we see that

er(2,m) = bqm−rc+ pm−1 ≤ qm−2 + pm−1 if 1 < r ≤ m+ 1,

whereas

er(2,m) ≤ em+2(2,m) = bqm−2c+ pm−2 if m+ 1 < r ≤
(
m+ 2

2

)
.

Using this together with (19) and the assumption that d ≤ q, we see that for 1 < r ≤ m+ 1,

|V(F1, . . . , Fr)| ≤ (d− 3)qm−1 + (d− 2)qm−2 + pm−3 + qm−2 + pm−1 < (d− 2)qm−1 + pm−1,

and thus in view of (10), we find |V(F1, . . . , Fr)| ≤ Hm+1(d−1,m)+pm−1 ≤ Hr(d−1,m)+pm−1.
Likewise, when m+ 1 < r ≤

(
m+2
2

)
, from (19) and the assumption d ≤ q we obtain

|V(F1, . . . , Fr)| ≤ (d− 3)qm−1 + (d− 2)qm−2 + pm−3 + bqm−2c+ pm−2 < (d− 3)qm−1 + pm−1.

In view of (14), the expression on the right is H(m+2
2 )(d − 1,m) + pm−1, which, thanks to (10),

is less than or equal to Hr(d− 1,m) + pm−1. This completes the proof.

4 The relatively prime case

In this section, we will establish results that help in proving (18) when the polynomials F1, . . . , Fr

are relatively prime. Note that for any linearly independent F1, . . . , Fr ∈ Sd, the corresponding
projective variety V(F1, . . . , Fr) coincides with V(W ), where W is the Fq-linear subspace of Sd

spanned by F1, . . . , Fr. Moreover, we can replace F1, . . . , Fr by any other basis of W . We will thus
focus on estimating |V(W )|, where W is any r-dimensional subspace of Sd and take F1, . . . , Fr to
be judiciously chosen basis elements of W . To this end, an important role will be played by an
integer, that we call the t-invariant of the subspace W , which is essentially the largest dimension
of the space of polynomials in W that are divisible by a linear homogeneous polynomial. More
precisely, given any subspace W ⊆ Sd and 0 6= L ∈ S1, we define tW (L) := dim(W ∩ LSd−1).
Note that 0 ≤ tW (L) ≤ dimW . The t-invariant of W is defined by

tW := max{tW (L) : L ∈ S1, L 6= 0}.
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Clearly, 0 ≤ tW ≤ dimW . Moreover, if tW = dimW = r, then there exists 0 6= L ∈ S1 such
that L divides every element of W . In particular, if W is spanned by linearly independent
F1, . . . , Fr ∈ Sd that are relatively prime, then tW < r. Conversely, if tW < r = dimW , then for
any F1, . . . , Fr ∈ Sd that form a basis of W , the polynomials F1, . . . , Fr do not have a common
linear factor, or in other words, V(F1, . . . , Fr) does not contain a hyperplane.

Context

In this section, we will always assume that 2 < d < q and m > 1. Assumption on r may vary
and will be specified.

Our first lemma gives a basic set of inequalities that hold under the hypothesis that the
inequality (18), which we wish to prove, holds when m is replaced by m− 1.

Lemma 4.1. Assume that 1 < r ≤
(
m+d−1
d−1

)
. Suppose

es(d,m− 1) ≤ Hs(d− 1,m− 1) + pm−2 for 1 ≤ s < r. (20)

Then for any r-dimensional subspace W of Sd with t := tW satisfying 1 ≤ t < r, we have

|V(W )| ≤ Hr−t(d− 1,m− 1) + pm−2 +Ht(d− 1,m). (21)

Moreover, if t = 1, then

|V(W )| ≤ Hr−1(d− 1,m− 1) + pm−2 + d(d− 1)qm−2, (22)

whereas if t ≥ 2, then

|V(W )| ≤ Hr−t(d− 1,m− 1) + pm−2 + (d− 1)2qm−2. (23)

Proof. Let W be any r-dimensional subspace W of Sd with t := tW < r. By a linear change of
coordinates, we can and will assume that t = tW (X0). Now we can choose a basis {F1, . . . , Fr} of
W such that {F1, . . . , Ft} is a basis of W∩X0Sd−1. Let F ′1, . . . , F

′
t ∈ Sd−1 be such that Fi = X0F

′
i

for i = 1, . . . , t. Also let f1, . . . , fr denote, respectively, the polynomials in T obtained by putting
X0 = 1 in F1, . . . , Fr. Note that deg fi ≤ d− 1 for i = 1, . . . , t and deg fi ≤ d for i = t+ 1, . . . , r.
Intersecting V(W ) with the hyperplane V(X0) and its complement, we obtain

|V(W )| = |V(Ft+1, . . . , Fr) ∩ V(X0)|+ |Z(f1, . . . , fr)| ≤ er−t(d,m− 1) + |Z(f1, . . . , fr)|.

Consequently, (21) follows from (20) and (3), since |Z(f1, . . . , fr)| ≤ |Z(f1, . . . , ft)|. Moreover,
(22) and (23) are easily deduced from the inequality displayed above and Lemma 2.3.

We shall now proceed to refine the inequalities in (21)–(23) into (18) by considering separately
various possibilities for the t-invariant of a given subspace of Sd. It will be seen that in many
cases we obtain a strict inequality.

Lemma 4.2. Assume that 1 < r ≤ m+ 1. Also suppose (20) holds. Let W be an r-dimensional
subspace of Sd satisfying tW = 1. Then |V(W )| < Hr(d− 1,m) + pm−1.

Proof. By Lemma 4.1, we see that (22) holds. This together with (11) gives

|V(W )| ≤ Hr−1(d− 1,m− 1) + pm−2 + d(d− 1)qm−2

= (d− 2)qm−2 + bqm−rc+ pm−2 + d(d− 1)qm−2

≤ (d− 2)qm−2 + bqm−rc+ pm−2 + (q − 1)(d− 2)qm−2 + (q − 1)qm−2

= (d− 2)qm−1 + bqm−rc+ pm−1 − qm−2

< Hr(d− 1,m) + pm−1,

where the last inequality uses (11) and the assumption that m ≥ 2.
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Lemma 4.3. Assume that 1 < r ≤ m+ 1. Also suppose (20) holds. Let W be any r-dimensional
subspace of Sd satisfying 2 ≤ tW < r. Then |V(W )| < Hr(d− 1,m) + pm−1.

Proof. Let t := tW . By Lemma 4.1, we see that |V(W )| ≤ Hr−t(d−1,m−1)+pm−2+Ht(d−1,m).
Now since t ≤ m and r − t ≤ m− 1, we see from (11) that

|V(W )| ≤ (d− 2)qm−2 + q(m−1)−(r−t) + pm−2 + (d− 2)qm−1 + qm−t.

Further, since 2 ≤ t < r, we find (m − 1) − (r − t) ≤ m − 2 and m − t ≤ m − 2. Consequently,
q(m−1)−(r−t) + qm−t ≤ 2qm−2. Thus the above estimate simplifies to

|V(W )| ≤ dqm−2 + (d− 2)qm−1 + pm−2 ≤ (d− 2)qm−1 + pm−1 − qm−2 < (d− 2)qm−1 + pm−1,

where the second inequality uses d ≤ q − 1. Also Hr(d− 1,m) = (d− 2)qm−1 + bqm−rc, thanks
to (11). Thus (d− 2)qm−1 ≤ Hr(d− 1,m), which yields |V(W )| < Hr(d− 1,m) + pm−1.

Lemma 4.4. Assume that m + 1 < r ≤
(
m+2
2

)
. Also suppose (20) holds. Let W be any

r-dimensional subspace of Sd satisfying 2 ≤ tW ≤ m+ 1. Then |V(W )| ≤ Hr(d− 1,m) + pm−1.

Proof. Let t := tW . By Lemma 4.1, we see that (23) holds. In view of (10), this gives

|V(W )| ≤ Hr−t(d−1,m−1)+pm−2+(d−1)2qm−2 ≤ Hr−(m+1)(d−1,m−1)+pm−2+(d−1)2qm−2.

Now since m+ 1 < r ≤
(
m+2
2

)
, there are unique i, j ∈ Z satisfying conditions as in (13), namely,

r = (i− 1)m−
(
i− 1

2

)
+ j and 2 ≤ i ≤ j ≤ m+ 1.

This implies that an equation for r− (m+ 1) such as (13) with m changed to m− 1, is given by

r − (m+ 1) = (i− 2)(m− 1)−
(
i− 2

2

)
+ (j − 1) and 1 ≤ (i− 1) ≤ (j − 1) ≤ m.

Thus using (14), we see that Hr(d− 1,m) = (d− 3)qm−1 + bqm−ic+ bqm−jc and moreover,

Hr−(m+1)(d− 1,m− 1) = (d− 3)qm−2 + bqm−ic+ bqm−jc,

where we note that Hr−(m+1)(d− 1,m− 1) is well-defined since r− (m+ 1) ≤
(
m+1
2

)
≤
(
m+d−2
d−1

)
,

thanks to our assumptions on d,m and r. Using this in the above estimate for |V(W )|, we obtain

|V(W )| ≤ (d− 3)qm−2 + pm−2 + (d− 1)2qm−2 + bqm−ic+ bqm−jc
= (d− 2)(d+ 1)qm−2 + pm−2 + bqm−ic+ bqm−jc
≤ (d− 2)qm−1 + pm−2 + bqm−ic+ bqm−jc
= (d− 3)qm−1 + pm−1 + bqm−ic+ bqm−jc
= Hr(d− 1,m) + pm−1,

where the second inequality above uses the assumption that d ≤ q − 1.

Lemma 4.5. Assume that m + 1 < r ≤
(
m+2
2

)
. Also suppose (20) holds. Let W be any

r-dimensional subspace of Sd satisfying m+ 1 < tW < r. Then |V(W )| ≤ Hr(d− 1,m) + pm−1.
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Proof. Let t := tW . By Lemma 4.1, we see that |V(W )| ≤ Hr−t(d−1,m−1)+pm−2+Ht(d−1,m).
Here t ≥ m+ 2 and r − t ≥ 1. Hence from (10), we see that

|V(W )| ≤ H1(d− 1,m− 1) + pm−2 +Hm+2(d− 1,m).

Consequently, using (11) and (15), we obtain

|V(W )| ≤ (d− 2)qm−2 + bqm−2c+ pm−2 + (d− 3)qm−1 + 2bqm−2c
= (d− 3)qm−1 + (d+ 1)qm−2 + pm−2.

Since d ≤ q − 1, this gives |V(W )| ≤ (d − 3)qm−1 + pm−1, and so in view of (14), we conclude
that |V(W )| ≤ Hr(d− 1,m) + pm−1.

It remains to prove (18) when tW = 0 and also when tW = 1 and m+ 1 < r ≤
(
m+2
2

)
. Here

we need a slightly different technique.

Lemma 4.6. Assume that 1 < r ≤
(
m+2
2

)
. Also suppose (20) holds. Let W be any r-dimensional

subspace of Sd satisfying either (i) tW = 0 or (ii) tW = 1 and m + 1 < r ≤
(
m+2
2

)
. Then

|V(W )| ≤ Hr(d− 1,m) + pm−1.

Proof. Let t := tW . Given any hyperplane H in Pm, we have H = V(L) for some 0 6= L ∈ S1.
Now tW (L) := dim(W ∩ LSd−1) ≤ t, and hence in view of (20) and (10), we see that

|V(W )∩H| ≤ er−tW (L)(d−1,m−1) ≤ Hr−tW (L)(d−1,m−1)+pm−2 ≤ Hr−t(d−1,m−1)+pm−2.

Since H was an arbitrary hyperplane in Pm, using Lemma 2.5, we obtain

|V(W )| ≤ q (Hr−t(d− 1,m− 1) + pm−2) + 1 = qHr−t(d− 1,m− 1) + pm−1.

Hence the desired result follows from parts (i) and (ii) of Proposition 2.8.

5 Completion of the Proof

In this section we combine the results of the previous sections to prove one of our main results.

Context

As before, d,m, r are fixed positive integers. As in Conjecture 1, we generally assume that
1 < d < q. But the relevant assumptions are specified in the statement of the results.

Lemma 5.1. Assume that 2 < d < q and 1 ≤ r ≤
(
m+2
2

)
. Then (18) holds, that is,

|V(F1, . . . , Fr)| ≤ Hr(d− 1,m) + pm−1 for any linearly independent F1, . . . , Fr ∈ Sd.

Proof. We use induction on d+m. Note that since d ≥ 3 and m ≥ 1, we have d+m ≥ 4 and if
d+m = 4, then d = 3 and m = 1, in which case (18) clearly holds, thanks to (5). Now assume
that d+m > 4 and that (18) holds for smaller values of d+m. Since (18) follows from (5) when
m = 1 and from Theorem 2.1 when r = 1, we shall henceforth assume that m > 1 and r > 1.

Let F1, . . . , Fr be any linearly independent polynomials in Sd. Two cases are possible.

Case 1. F1, . . . , Fr are not relatively prime, i.e., they have a nonconstant common factor.
In this case, the hypothesis of Proposition 3.2 is satisfied, thanks to the induction hypothesis.

Thus from Propositions 3.2 and 3.3, we see that (18) holds.
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Case 2. F1, . . . , Fr are relatively prime.
In this case, (20) is satisfied, thanks to the induction hypothesis. Further if we let W be

the subspace of Sd spanned by F1, . . . , Fr and let t = tW , then we have 0 ≤ t < r. Hence from
Lemmas 4.3, 4.4, and 4.5, we see that (18) holds when t ≥ 2, whereas from Lemmas 4.2, and 4.6,
we see that (18) holds when t ≤ 1. This completes the proof.

The reverse inequality is easy to deduce from the Heijnen-Pellikaan Theorem.

Lemma 5.2. Assume that 1 < d ≤ q and 1 ≤ r ≤
(
m+d−1
d−1

)
. Then

er(d,m) ≥ Hr(d− 1,m) + pm−1.

Proof. Note that 1 ≤ d − 1 < q and hence by (3), there exist linearly independent f1, . . . , fr in
T≤d−1 such that |Z(f1, . . . , fr)| = Hr(d−1,m). For 1 ≤ i ≤ r, let F ′i := Xd−1

0 fi(X1/X0, . . . , Xm/X0)
and let Fi := X0F

′
i . It is easily seen that F1, . . . , Fr are linearly independent elements of Sd and

that er(d,m) ≥ |V(F1, . . . , Fr)| = Hr(d− 1,m) + pm−1.

Theorem 5.3. Assume that 1 < d < q and 1 ≤ r ≤
(
m+2
2

)
. Then er(d,m) = Hr(d−1,m)+pm−1.

Proof. If d = 2, then the desired result follows from Theorem 2.10 as noted in the last paragraph
of Section 2. If d > 2, then it is easily seen that

(
m+2
2

)
≤
(
m+d−1
d−1

)
, and so in this case the desired

result follows from Lemmas 5.1 and 5.2.

6 The case d = q

It may have been noted that several of the lemmas and propositions in previous sections are
actually valid for d = q. Thus one may wonder if Conjecture 1 actually holds for d = q as well.
We will answer this here by showing that a straightforward analogue of Conjecture 1 is not valid
for d = q, in general. More precisely, we will determine er(q,m) for 1 ≤ r ≤ m+1 and show that

er(q,m) > Hr(q − 1,m) + pm−1 = (q − 2)qm−1 + qm−r + pm−1 when q > 2 and 1 < r ≤ m.

Note that the case d = q = 2 is already covered by Theorem 2.10, and here er(q,m) behaves as
in Conjecture 1. Likewise, when d = q and r = 1, thanks to Theorem 2.1.

Lemma 6.1. Assume that 1 ≤ r ≤ m. Then

er(q,m) ≥ qm + pm−r−1.

Proof. For 1 ≤ i ≤ r, consider Fi ∈ Sq defined by Fi := Xq
i −X

q−1
0 Xi. Clearly, F1, . . . , Fr are

linearly independent. Writing X = V(F1, . . . , Fr) and H = V(X0), we see that

|X ∩ H| = |V(X0, X
q
1 , . . . , X

q
r )| = |{(a0 : a1 : · · · : am) ∈ Pm : ai = 0 for 0 ≤ i ≤ r}| = pm−r−1

and
|X ∩ Hc| = |Z(Xq

1 −X1, . . . , X
q
m −Xm)| = qm,

where Hc denotes the complement of H in Pm. Thus er(q,m) ≥ |X | = qm + pm−r−1.

We shall now show that the lower bound in Lemma 6.1 is, in fact, the exact value of er(q,m)
when q ≥ 3. The technique used will be similar to that used in the proof of Theorem 5.3.

14



Theorem 6.2. Assume that q ≥ 3 and 1 ≤ r ≤ m. Then

er(q,m) = qm + pm−r−1.

Proof. In view of Lemma 6.1, it suffices to show that

er(q,m) ≤ qm + pm−r−1 for 1 ≤ r ≤ m. (24)

We will prove this using induction on m. If m = 1, then (24) is an immediate consequence of
(5). Now assume that m > 1 and that (24) holds for smaller values of m. Let F1, . . . , Fr ∈ Sd be
any linearly independent polynomials, spanning a linear space W . We write t = tW and without
loss of generality, we may assume that tW = tW (X0) and also that X0 | Fi for 1 ≤ i ≤ t. We
shall write X = V(F1, . . . , Fr) and H = V(X0), and divide the proof into two cases as follows.

Case 1: t = 0.
Here, using the induction hypothesis and the definition of t, we see that

|X ∩ H′| ≤ qm−1 + p(m−1)−r−1 for every hyperplane H′ in Pm defined over Fq.

Hence from Lemma 2.5, we obtain (24).

Case 2: 1 ≤ t ≤ r.
In this case using the induction hypothesis, we obtain

|X ∩ H| ≤ qm−1 + p(m−1)−(r−t)−1

and since t ≤ r ≤ m and 2 ≤ (q − 1) < q, from (3) and (11), we obtain

|X ∩ Hc| ≤ |Z(f1, . . . , ft)| ≤ Ht(q − 1,m) = (q − 2)qm−1 + qm−t,

where Hc denote the complement of H = V(X0) in Pm. Therefore we have

|X | ≤ pm−r+t−2 + (q − 1)qm−1 + qm−t = qm + pm−r−1 +R,

where

R = pm−r+t−2 − pm−r−1 − qm−1 + qm−t =
(qt−1 − 1)

(
qm−r − qm−t+1 + qm−t

)
(q − 1)

≤ 0,

where the last inequality follows since m− r ≤ m− t and q ≥ 2. This proves (24).

A special case of Theorem 6.2 is that if q > 2, then e1(q,m) = qm + pm−2, and from (11), we
see that this equals H1(q − 1,m) + pm−1. However, when q > 2 and 1 < r ≤ m, by substituting
pm−r−1 = (qm−r−1)/(q−1) and pm−1 = (qm−1)/(q−1), an elementary calculation shows that

(qm + pm−r−1)− (q − 2)qm−1 − qm−r − pm−1 =
(q − 2)

(
qm−1 − qm−r

)
(q − 1)

> 0,

and so er(q,m) > Hr(q − 1,m) + pm−1. Thus, Conjecture 1 does not hold for d = q in general.
Perhaps somewhat surprisingly, it turns out that Conjecture 1 is valid when r = m+1 and d = q.
The proof follows a very similar pattern as in Theorem 6.2

Theorem 6.3. Assume that q ≥ 3. Then

em+1(q,m) = (q − 1)qm−1 + pm−2.
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Proof. We will show using induction on m that em+1(q,m) ≤ (q−1)qm−1 +pm−2. When m = 1,
this follows from (5). Assume that m > 1 and that the inequality holds for smaller values of m.
Let F1, . . . , Fm+1 be any linearly independent polynomials in Sq, and let W be the linear space
spanned by them. Write t = tW and assume without loss of generality that t = tW (X0) and also
that X0 | Fi for 1 ≤ i ≤ t. We shall write X = V(F1, . . . , Fr) and H = V(X0), and divide the
proof into two cases as follows.

Case 1: t = 0 or t = 1.
Using the induction hypothesis, we obtain for any hyperplane H′ in Pm defined over Fq,

|X ∩ H′| ≤ |V(F2, . . . , Fm+1) ∩H′| ≤ (q − 1)qm−2 + p(m−1)−2.

Hence using Lemma 2.5 we obtain |X | ≤ (q − 1)qm−1 + pm−2.

Case 2: 2 ≤ t ≤ m+ 1.
Here, we can apply Theorem 6.2 and it gives

|X ∩ H| ≤ qm−1 + p(m−1)−(m+1−t)−1 = qm−1 + pt−3.

Moreover, using (3) and (11), we obtain

|X ∩ Hc| ≤ |Z(f1, . . . , ft)| ≤ Ht(q − 1,m) = (q − 2)qm−1 + bqm−tc,

where fi ∈ T≤m is obtained by putting X0 = 1 in Fi for 1 ≤ i ≤ t and Hc = Pm \ H. Hence

|X | ≤ qm−1 + pt−3 + (q − 2)qm−1 + bqm−tc = (q − 1)qm−1 + pt−3 + bqm−tc.

Since 2 ≤ t ≤ m+ 1, this implies |X | ≤ (q − 1)qm−1 + pm−2.
It follows that em+1(q,m) ≤ (q − 1)qm−1 + pm−2. The reverse inequality follows from

Lemma 5.2. This completes the proof.

It is thus seen that the formulas for er(q,m) obtained in this section for 1 ≤ r ≤ m + 1 are
of a different kind than those for er(d,m) when d < q. The general pattern for er(q,m) for
1 ≤ r ≤

(
m+q
q

)
does not seem clear, even conjecturally. At any rate, it remains an interesting

open problem to determine er(d,m) for all the remaining values of r and m when 1 < d < q and
also when d = q.
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