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Integrated Very High Frequency Switch Mode
Power Supplies: Design Considerations

Jens Christian Hertel, Student Member, IEEE, Yasser Nour, Member, IEEE, and Arnold Knott

Abstract—This paper presents a power supply using an in-
creased switching frequency to minimize the size of energy storing
components, thereby addressing the demands for increased power
densities in power supplies. 100 MHz and higher switching
frequencies have been used in resonant power converters, which
along with the possible integration of passive components on
silicon wafer, present a beneficial solution in applications such as
mobile phones. This paper presents a design for a 9 W class
E resonant power converter in an 0.18 µm CMOS process.
The converter is driven by a self oscillating gate drive, which
is presented in an in-depth mathematical analysis. The gate
resistance of the designed transistors is of critical importance in
order to achieve the correct phase shift required for zero-voltage-
switching. The Z-parameter method is used to characterize the
transistors which is verified through simulations. The required
spiral inductors was modeled, and simulations show Q values of
as high as 14 at a switching frequency of 250 MHz. Simulations
of the converter show an efficiency of 55 % with a self oscillating
gate drive. However the modeled inductor was not adequate for
operating with the self oscillating gate drive, presenting a future
challenge for power supplies on chip.

Index Terms—DC-DC power converters, Radiofrequency inte-
grated circuits, VHF circuits, Integrated circuit modeling, Zero
voltage switching

I. INTRODUCTION

Consumer, industrial and automotive electronics are ever
decreasing in size and consequently, the demand for smaller
power supplies is increasing. The size of power supplies
can be reduced through increasing the switching frequency,
minimizing the energy storing components. In the classic hard-
switched DC/DC Switch Mode Power Supply (SMPS) energy
is lost every time the power transistor is turned on and off.
The switching loss thus increases with switching frequency.
This problem has led to the combination of power electronics
and radio frequency technology, known as resonant power
converters. The advantages are the elimination of switching
losses, using Zero Voltage Switching (ZVS) and in some
cases also Zero Current Switching (ZCS). The technology has
proved itself, with switching frequencies in the Very High
Frequency (VHF) band [1]–[4]. So far this has mainly been
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applied to LED drivers [5]–[7], but has far more possible
applications. The energy storing components are small enough
that integration onto a silicon wafer is possible. Achieving
a fully integrated SMPS would be useful in e.g. cellphone
applications, where size and high production volume are
important parameters.

In [8] two types of integrated power supplies are defined,
Power Supply in Package (PwrSiP) and Power Supply on Chip
(PwrSoC). PwrSiP integrates the power transistors and control
circuitry monolithically, with the energy storage integrated into
the package, e.g. [9]. There are various products available on
the market, from several companies, [10]–[14] that implement
power supplies in complete packaging. PwrSoC has all the
components integrated into the same die. The advantage of the
fully monolithic converter is reduced parasitic capacitance and
inductance generated from connections needed in the PwrSiP
solution. This is important when increasing the switching
frequency above 100 MHz [1]. On the other hand the quality
of most inductors on chips today are very low. A possible
solution would be excluding the inductors using a switched
capacitor network [15], [16], however these are often not
efficient outside their optimum voltage conversion ratio [17].
Achieving an efficient PwrSoC solution would require an
inductor having a high quality factor [8], [18]. The PwrSiP
products available have power densities of 0.2-0.5 W/mm3,
and efficiencies around 90-95 % [8]. PwrSoC is still a very
new concept, and research have achieved power densities
comparable to the PwrSiP products with efficiencies ranging
from 30-80 % [8]. Dibene et.al. [19] presents a 400 A PwrSoC
with a power density of 8 W/mm3, and an efficiency just
below 80 %, using multiple phases, and advanced control
mechanisms.

A possible application within the field of cellphones is a
power supply for an audio amplifier. There are many ways to
amplify audio from an inherently inefficient class AB amplifier
to the ideally lossless class D amplifier [20]. The quiescent
current in the class AB topology generates constant losses,
making it undesirable for a cellphone application. The more
commonly used class D amplifier is, due to the Pulsed-Width
Modulation (PWM) technique, ideally lossless. However a side
effect of the PWM is increased EMI [21]. If a power supply
is designed to only deliver the required power of a class AB
amplifier, eliminating the quiescent current, then efficiencies
can be increased from the maximum of 78.5 % to ideally 100
%. This is effectively known as a class H amplifier.

This paper presents an integrated class E resonant power
converter supplying a class AB audio amplifier. It is supplying
a maximum output voltage of 6 V from a Li-Ion battery,
assumed to have constant 3.7 V input. The output power is
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Fig. 1. Flowchart describing the design procedure of an integrated VHF resonant power supply

TABLE I
SPECIFICATIONS FOR THE POWER SUPPLY

Vin 3.7 V
Vout 6 V
Pout 9 W

Process 20 V 0.18 µm CMOS

9 W in a 4 Ω speaker. The power supply is designed in a 20
V 0.18 µm CMOS process, with a listed breakdown voltage
of 27 V. The specs can be seen in table I. It is noted that for
this to be used in a class H amplifier, it should track an audio
sample, and supply the output accordingly. The design of the
tracking circuitry has not been carried out.

Section II presents the design flow for the resonant power
converter. The converter topology will be discussed and pre-
sented in section II-A. The power losses are introduced in
section II-B. The device parasitics are discussed and a method
for extracting them is presented in section II-C. Section
II-D presents the self-oscillating gate drive, along with the
mathematical equations underpinning its operation. Section
II-E discusses inductors on a chip which is followed by section
III, where the final design is presented, and the results of the
simulations are shown. Finally, section IV concludes on the
achieved results.

II. DESIGN PROCEDURE

The design procedure is presented in fig. 1. All the relevant
theories will be presented in-depth in the following. This
procedure was developed for designing a Class E resonant
converter. Similar theories applies to other resonant power
converters, and the procedure can be modified to fit the
relevant equations. The main design variable in this pro-
cedure is the frequency. When a switching frequency has

been selected the component values are calculated and tuned
in ideal simulations. The higher the frequency, the smaller
the converter. However in most resonant power converters
the output capacitance of a transistor is used as a design
parameter [1], [5]. This capacitance is proportional to the size
of the transistor, which again is inversely proportional to the
drain source resistance of the transistor. At higher frequencies
the requirements for smaller capacitances results in higher
conduction losses. This will set the first limitation. Following
this, the losses in the inverter are calculated, and the transistor
in the inverter is designed accordingly. Some tuning of the
resonant components might be necessary after introducing the
models of the power transistors. When this has been done, the
self-oscillating gate drive can be designed. If the gate drive can
not achieve a desired phase shift and gain, the designer must
redesign the transistors. Final simulations must be carried out,
to confirm a working and acceptable power converter. If one is
unable to obtain ZVS or an acceptable efficiency and power
density, the designer must either redesign the transistors, or
ultimately limit the switching frequency of the converter.

A. Converter Topology

The topology selection is limited to the resonant power
converters. Among these, three topologies are often used in
the VHF range; the class DE [22]–[24], SEPIC [25]–[27],
and class E converter [28], [29], shown in fig. 2. They all
work in a similar way with an inverter and a rectifier part.
For the class DE and class E the inverter and rectifier can
be interchanged. While the class DE converter (fig. 2a) only
contains one resonant inductor, preferable in an integrated
circuit, it also has three high side semiconductors. High side
semiconductors, on a silicon wafer, requires their own wells,
which is difficult to implement, and involves more advanced
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Fig. 2. Resonant Power Converters

processes, such as triple well or Silicon on Insulator (SOI).
Furthermore, it adds parasitic capacitances through body and
substrate, which will complicate higher frequency design.

The SEPIC converter (fig. 2c) also has a high side diode. It
does have one less inductor compared to the class E, and the
trade off between one less inductor and a high side diode could
be investigated further. However, diodes capable of working
in frequencies above 100 MHz are not commonly available in
CMOS design kits. At very high frequencies, the conductivity
modulation of power diodes has a tremendous contribution in
the total loss. This effect was described in [30], [31]. Schottky
diodes are the most suitable devices for very high frequency
converters due to their low forward voltage drop and high
switching speeds. Even with discrete schottky diodes, which
outperform the integrated devices, forward recovery voltage
is very severe. For a few nanoseconds the forward voltage
increases by 50 %, generating unacceptable losses [32]. In
high output voltage, low output current applications, diodes
might be favorable.

Consequently the class E converter (fig. 2b) is deemed the
most feasible to investigate for an integrating purpose, even
though it has three inductors in total. The rectifier is usually
implemented with a diode, but it can be exchanged for a
synchronous transistor, avoiding the requirements of a diode
capable of handling the high frequency. The shunt capacitances
Cs,i and Cs,r of the inverter and the rectifier respectively at
higher frequencies are so small that they are realized using
the parasitic capacitances of the MOSFETs. In the inverter the

input inductor is designed to match the shunt capacitance of
the transistor. In the rectifier the transistor is designed such
that the output capacitance matches the selected switching
frequency.

1) Class E Inverter: The class E inverter has two conditions
in relation to the load, Ri, and the shunt capacitance, Cs,i, that
must be met, to achieve both ZVS and ZCS. From [33] they
are given in (1) and (2) at the bottom of this page. Dinv is
the duty cycle of the inverter, fs is the switching frequency
and φi, the phase of the current, is given by:

φi = π + arctan

(
cos (2πDinv)− 1

2π (1−Dinv) + sin (2πDinv)

)
(3)

In the VHF inverter the shunt capacitance needed to achieve
both ZVS and ZCS often is much lower than any achievable
output capacitance of the MOSFET. The size of the transistor
determines the output capacitance, and the drain-to-source
resistance Rds,on. Designing for a very low output capacitance
requires a small transistor resulting in a higher Rds,on. As a
result the requirements for the frequency are hard to meet.
Adjusting the input inductance can however compensate for
this requirement, to ensure that ZVS is still achieved. This is
well described in [34]. The load, Ri, on the inverter is simpler
to achieve, either by designing the rectifier accordingly, or
adding a matching circuit [35]. The latter is not explored in
this paper.

The components are calculated from [36]. Assuming that
the voltage across the drain-source of the transistor is half a
sine wave when it is on, and zero otherwise, the RMS voltage
of transistor drain-to-source can be calculated from (4). The
output RMS voltage is calculated from the required load and
output power (5). The required reactance of the reactance
circuit can then be calculated from (6).

VDS,i,rms = VIN
π

2 (1−Dinv)

√
(1−Dinv)

2
(4)

VDS,r,rms =
√
POUT Ri (5)

XRC = Ri

√(
VDS,i,rms

VDS,r,rms

)2

− 1

= ωr Lr,i −
1

ωr Cr,i
(6)

The RMS voltage of the output cannot exceed the RMS voltage
of the drain-source voltage of the transistor. This gives rises
to some limits on the duty cycle when the class E inverter
is working in a step-up configuration. The needed inductance

Ri =
2 sin2(πDinv) sin2(πDinv + φi)

π2 (1−Dinv)2
· VIN

2

Pout
(1)

fs,max =

(
(1−Dinv)2 π

tan(πDinv) tan(πDinv + φi)

(1−Dinv)

tan(πDinv + φi)

)
· Pout

2π Cs,i VIN
2 (2)
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and capacitance in the resonant tank is found using the right
hand side of (6), ωr is resonance frequency of the LC tank:

ωr =
2π fs

2 (1−Dinv)
(7)

To ensure ZVS Lin is designed to match reactance of the
output capacitance of the transistor and resonance tank [34].
The output capacitance is scaled to its effective capacitance,
Cs,eff = Cs,i/(1−Dinv). [5].

1

ωr Cs,eff
=

1
1

ωr Lin
+ 1

XRC

⇔

Lin =
1

ωr

(
ωr Cs,eff − 1

XRC

) (8)

The output capacitance is assumed linear, ignoring its voltage
dependencies.

2) Class E Rectifier: In the class E rectifier the passive
components are designed in such a way that the rectifier is
seen as a resistive load at the switching frequency [35]. The
current into the rectifier is assumed to be sinusoidal. From
[33] the shunt capacitance and resonance inductance, is given
in (9) at the bottom of this page. The loading of the inverter is
important to achieve ZVS. The components calculated ensure
that the input resistance to the rectifier, Ri, is resistive at the
desired switching frequency. The required input impedance
of the rectifier is achieved by adjusting the duty cycle [2].
See (10) at the bottom of the current page.

3) Components: With the above described equations a set
of components can be calculated, and through simulation tune
them, to achieve ZVS. To achieve the correct loading the duty
cycles of the inverter and rectifier is selected as close to 50 %,
which is a requirement for the used gate drive. From (1) and
(10) the two duty cycles are connected, to achieve optimum
performance. If a duty cycle in the inverter of 60 % is chosen,
then the calculated duty cycle in the rectifier is 43 %. The
calculated and simulated components is listed in table II. The
simulated components had to be tuned. The output power of
the calculated inverter was lower than expected, due to not
having pure sinusoidal current in the tank, and to increase it
the resonance inductance Lr,i was increased. To match the
effect of the increased inductance, the input choke Lin, was
adjusted, to ensure ZVS.

B. Power Loss Estimation in MOSFET

The resonant power conversion eliminates the switching
losses known from hard switching applications. From [37] the
power losses associated with a MOSFET in a resonant power
converter can be separated into three parts - the conduction

TABLE II
CALCULATED AND SIMULATED COMPONENT-VALUES OF A 250 MHZ

CLASS E CONVERTER

Inverter
Component Calculated Simulated

Lin 455 pH 750 pH
Cs,i 300 pF 300 pF
Cr,i 300 pF 300 pF
Lr,i 2.3 nH 3.5 nH

Rectifier
Component Calculated Simulated

Ri 1.43 Ω -
Cs,r 120 pF 140 pF
Lr,r 4.49 nH 4.5 nH
Cout 80 nF 80 nF

loss, the off-state conduction loss due to the ESR in the shunt
capacitance of the MOSFET, and the gate losses determined
by the gate resistance and input capacitance.

Pcond = Rds,on Isw,rms
2 (11)

Poff,cond =

(
Ioff,rms

COSS + Cext

)2

ROSS COSS
2 (12)

Pgate = 2 (π Vgate,AC−pk fsw)
2
Rg CISS

2 (13)

ROSS is the series resistance associated with the shunt ca-
pacitance. The capacitances CISS and COSS are the collective
capacitance seen on gate and drain respectively.

COSS = Cgd + Cds

CISS = Cgd + Cgs

The total loss from the transistor is:

Ptot,sw = Pcond + Poff,cond + Pgate (14)

C. Characterization of Transistor

When designing a class E converter with discrete compo-
nents the choice of transistors are limited to commercially
available discrete parts. Often the transistor is described with
the needed parameters available from the data sheet. In the
integrated circuit the parameters required to design a DC-
DC converter are not readily available. Many of the available
process technologies have different purposes, and extracting
the parameters directly from the documentation are tedious
and time consuming. Therefore, another method is necessary.

The voltage stresses on the switches in a class E converter
are often four times the input or output voltages [33]. To

Cr =
1

2π ωr RL
·
(

1− 2π2(1−Drec)
2 − cos (2πDrec) +

[2π(1−Drec) + sin (2πDrec)]
2

1− cos (2πDrec)

)
∧ Lr = 1

ωr
2 Cr

(9)

Ri

RL
= 2 sin2(φr)⇔

√
Ri

2RL
= arctan

(
1− cos (2πDrec)

2π (1−Drec) + sin (2πDrec)

)
(10)
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support this a technology with medium to high voltage capa-
bilities was necessary. In this design a 0.18 µm 20 V process
was used, with a breakdown voltage of 27 V. The simulation
models available are level 49 HSPICE models, which are an
enhanced BSIM3V3 model, especially for use with HSPICE.

The six most important parasitics of the transistor are the
gate- (Rg) and drain-source (Rds,on) resistance and the gate-
source- , gate-drain- and drain-source capacitances (Cgs, Cgd

and Cds respectively). Lastly the series resistance associated
with the drain-source capacitance, ROSS , is important to
determine the off state losses. Fig. 3 illustrates the most
important parasitics.

Gate

Drain

Source

Rg

Cgd

Cgs

Rds,on

Cds

ROSS

Fig. 3. Transistor with Parasitic Components

To extract the parasitics of the transistor, the two-port Z-
parameter analysis is used. It is noted that the Z-parameter
method creates a small signal equivalent model; however,
by sweeping the frequencies and voltages, the large signal
behavior can be derived [37], [38].

The described method of analyzing a circuit is done with
a network-analyzer. It is often used in characterization of RF
MOSFETs e.g [39]–[43] at frequencies above 10 GHz. These
models are much more detailed than those of regular power
MOSFETs. In the following, the simplest possible setup and
analysis is described and the method is verified with a known
device.

The two ports are connected to gate-source and drain-source
respectively. Two equations govern the voltages, here shown
on matrix-form:[

v1
v2

]
=

[
z11 z12
z21 z22

] [
i1
i2

]
⇔ ~V = ~Z ·~I (15)

Now applying current vectors, the expression for each Z-
parameter in the matrix can be derived. To find the capaci-
tances, the resistive parts of the circuit is ignored - see (16).
Similarly the other parameters are derived, and the desired
impedances are isolated in (17), (18) and (19).

ZCgs = ={−z11z22 − z12z21
z21 − z22

} (17)

ZCgd
= ={z11z22 − z12z21

z21
} (18)

ZCds
= ={z11z22 − z12z21

z11 − z21
} (19)

Note that in the above equations the parameters zmn are
only the imaginary part of the Z-parameters, giving the ca-
pacitances. For the resistive elements Rg and ROSS , the S-
parameter measures are more complicated. The gate resistance
can be estimated from the parameter z11. The z22 parameter
are at Vgs ≥ Vth equal to the drain source on resitance of the
device. At Vgs ≤ Vth, and ignoring the restive influence on
the capacitances, ROSS can be estimated using (21).

<{z11} = Rg (20)

<{z22} =


1

ROSS · Cgd
2 · ω2

, for Vgs = 0 (21)

Rds,on , for Vgs > Vth (22)

Another method to extract Rds,on is to use a DC current-
source connected at the drain, sweeping the gate voltage, and
sampling the drain voltage. This gives some limitations to how
the models work, because they are forced in saturation. To
avoid this, instead a small voltage on the drain will keep the
transistor in its linear region, where it is used, and sweeping
the gate-voltage, the current is read. This method is used for
extracting the parameters of the designed device.

1) Verification of Characterization: To verify that this way
of measuring the parasitics is correct, a IRF5802 from Inter-
national Rectifier with a highly detailed datasheet and SPICE
model was used. The datasheet for IRF5802 contains graphs
of Rds,on vs. gate-source voltage (Vgs), and capacitances Ciss,
Coss and Crss vs. drain-source voltage (Vds). Its SPICE model
is a sub circuit, modeled to the behavior of the device at 1
MHz.

In the datasheet the capacitances are measured at 1 MHz
and a gate-source voltage of 0 V, and the simulation and
measurements are carried out with the same conditions. Fig. 4
shows the results of the simulations and datasheet values. The
capacitances fit their datasheet values. For the Rds,on values
the Z-parameter analysis does not accurately produce the same
results as the datasheet in values of Vgs < 10 V; on the other
hand, the method described in the datasheet, with a DC current
source, produce close to the expected results.

Furthermore, measurements of the IRF5802 was carried out,
to confirm the simulations. It was done using a Agilent 4396B
network analyzer together with a HP 85046A S-parameter Test
set. The measurement circuit can be seen in fig. 5a and the
resulting measured capacitances can be seen in fig. 5b. The
measured data matches the datasheet values.

v1

∣∣∣∣
i2=0

= ={z11} · i1 = ZCgs
· iCgs

= ZCgs
·

ZCgd
+ ZCds

ZCgd
+ ZCds

+ ZCgs

· i1 ⇒ ={z11} = ZCgs
·

ZCgd
+ ZCds

ZCgd
+ ZCds

+ ZCgs

(16)
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Fig. 5. Measurement of IRF5802

2) Transistor Estimation: To ease the process of estimating
the parameters of the transistor, a unit-transistor with an Rds,on

of 1 Ω is designed. Parallel coupling two 1-Ω-unit (2x1-Ω-unit)
transistors halves the Rds,on and doubles the capacitance. The
simulated results is shown in fig. 6 and 7.

Fig. 6 shows the resistances. Both methods of extracting the
Rds,on produce similar results. At 5 V gate-to-source voltage
the expected on-resistance is approximately 1 Ω.

Fig. 7 provides the capacitances - both versus voltage and
frequency. The gate-drain and gate-source capacitance are
linear over the voltage. While this is the results of the model,
experimental data might reveal some non-linearities. However,
as these devices are vertical CMOS devices, their gate-related
capacitances are often more linear, than what is known from
often lateral power MOSFET. The drain to source capacitance
vary largely over both frequency and voltage.

The results of z22 parameter at Vgs = 0, reveal a large
resistance associated with the drain-source capacitance of 3.75
Ω. This resistance will result in off state losses. The resulting
parasitic elements of the unit transistor are summarized in table
III.

D. Driving the Transistor

Driving a transistor at high frequency is a challenge. In VHF
converters it is very impractical to drive the gate with a PWM
signal. There are several methods to drive the gate, either with
an externally generated signal, or with a self-oscillating circuit.

TABLE III
PARASITIC ELEMENTS OF THE 1 ΩRds,on UNIT TRANSISTOR

Parasitic element Value Unit Notes
Rds,on 1.144 Ω

@ Vgs = 5 V
Rg 298 mΩ

ROSS 3.75 Ω @ Vgs = 0 V

Cgs 28 pF
@ Vds = 5 V, Freq = 250 MHzCgd 6 pF

Cds 18.48 pF

Externally gate drives are used in implementation such as [29],
[44]. One self-oscillating gate drive, commonly used in the
class E converter is the class E oscillator, described in [2],
[4], [28]. This procedure involves making a feedback circuit,
through advanced analytic approach, but limits the duty cycle
to 0.5 making it unsuitable for this design.

Recently though a new passive gate drive has been intro-
duced in [5] and used in among others [1], [45]. In design
aspects it looks like the class E oscillator, but is simpler. It is
effectively an LC-filter generated by utilizing the capacitances
of the MOSFET and introducing a gate-inductor. Looking
at fig. 3 a schematic of the parasitics can be drawn and
introducing a gate inductance, Lg , to achieve the desired filter.
Fig. 8a shows the schematic for the described gate drive.

In resonant power converters, the drain voltage of the
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Fig. 6. Resistance of the 1-Ω Unit-transistor

transistors are close to half a sinusoidal. The added gate
inductance creates a filter, with the transfer function from drain
to gate shown in (23). Adjusting the inductance the poles of the
filter are placed 5-10 % higher than the switching frequency,
resulting in a phase shift of the drain signal as close to 180 ◦

as possible. This will ensure the gate signal turning on, when
the voltage on the drain is zero. An added bias voltage can be
tuned such that the correct duty cycle is achieved.

HLg(s) =
(Lg s+Rg)Cgd s

Lg s2 +Rg s+ 1
Cgd+Cgs

(23)

The introduced gate inductance will in most cases be able to
give the desired phase shift at the chosen frequency. It is clear,
that two zeros occur, at s = 0 and s = −Rg

Lg . Neither of these
zeros contain any imaginary parts, and the resulting frequency
at which they occur is both 0.
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From (23) the poles of the system is found:

spole =
−Rg ±

√
Rg

2 − 4Lg

Cgs+Cgd

2Lg
(24)

The poles are a complex pole pair. To determine the frequency
the real and imaginary parts are found, and from the imaginary
parts the frequency is found:

fpole = ±=(spole)

2π
= ±

√
Rg

2 − 4Lg

Cgs+Cgd

4π Lg
(25)

If the attenuation achieved at the switching frequency is too
high, or low, for a desired gate signal, then external capacitors
can be introduced. Fig. 8b and 8c shows the schematics of
the gate drives, and the transfer functions are found in (26)
and (29). The zeros of these transfer functions are found using
(27), (28) and (30), (31) respectively. All these equations are
found at the bottom of the current page.

HLg+Cl(s) =
(Cl Lg Rg s

2 + Lg s+Rg)Cgd s

Cl Lg Rg s3 + (1 + Cl)Lg s2 +Rg s+ 1
Cgd+Cgs

(26)

z1,Lg+Cl = 0 (27)

z2,Lg+Cl = −

Lg ±
√
Lg

(
Lg + 4ClRg

2
)

2Cl Lg Rg

 (28)

HLg+Ch(s) =
(Ch Lg Rg s

2 + Lg s+Rg)Cgd s+ Ch Lg s
2

Ch Lg Rg s3 + (1 + Ch)Lg s2 +Rg s+ 1
Cgd+Cgs

(29)

z1,Lg+Ch = 0 (30)

z2,Lg+Ch = −

 (Cgd + Ch)Lg ±
√
Lg

(
Lg (Ch + Cgd)2 − 4Ch Cgd

2Rg
2
)

2Ch Cgd Lg Rg

 (31)



8 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS

Vb

Vd

Vg

Vs

Lg Rg

Cgs

Cgd

(a) Gate Inductor

Vb

Vd

Vg

Vs

Lg Rg

Cgs

Cgd

Cl

(b) Ext. Cap. to source

Vb

Vd

Vg

Vs

Lg Rg

Cgs

CgdCh

(c) Ext. Cap. to drain

Vb

Vd

Vg

Vs

Lg Rg

Cgs

Cgd

Cl

Ch

(d) Both Ext. Cap.

Fig. 8. Passive Gate Drives

For small values of the gate resistance these zeros are all
real, so their effect will be minimal at very high frequencies.
Even further any zeros effect from a higher gate resistances,
can be adjusted by adding the capacitances to the gate-drain
of the signal. The poles of the system are solutions to a third
order polynomial, and analytically hard to interpret. From [5]
a good approximation of the frequency of the pole is:

fp '
1

2π
√
Lg (Cext + Cgd + Cgs)

⇔

Lg '
1

(2π fp)2 (Cext + Cgd + Cgs)
(32)

This is the resonant frequency neglecting the gate resistance.
As with the previous gate drives, the resonance frequency is
desired to be kept a little higher than the switching frequency
of the converter.

The final simple gate drive that can be designed is adding
both the external capacitance to source and to drain, shown
in fig. 8d. Using external capacitance can be an advantage
because it gives the option for more linear capacitances (i.e
Metal-Insulator-Metal (MIM) capacitors on chip) than the
intrinsic capacitance of the MOSFET, and thus better control
of the gate signal. The transfer function of the gate drive with
both capacitors is seen in (33).

The zeros are found similarly to the other gate drives, see
(34) and (35). The gate resistance has an influence on the
zeros, if it is large enough, however this influence can be tuned,
by adjusting the external capacitances.

As with the previous gate drives, analytically investigating
the poles is unfruitful but using (32) is still a good approxima-
tion of the poles frequency. The gate resistance has a very real
effect on the achievable phase shift of the gate drive, and in
a transistor design should be kept as low as possible to avoid
the effects of the zeros.
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In table IV the four different gate drives designed are
listed. They are all designed for a 10x1-Ω-unit transistor.
The design of the gate drives was focused on achieving
similar performance, while reducing component sizes. The
bode plots of the resulting transfer functions are shown in
fig. 9. Adding the external capacitors result in a smaller
inductor, a component desired to keep as small as possible,
when designing the integrated circuit.

E. Inductors

There is several methods to choose from, when designing
an inductor on a chip. From the more simple ones using a
planar spiral [46]–[49], to toroids [50], [51], and also using
magnetic films to reduce the required size of the inductors [8],

HLg+Ch+Cl(s) =
(Ch + Cl)Lg Rg Cgd s

3 + (Cgd + Ch)Lg s
2 + CgdRg s

(Ch + Cl)Lg Rg s3 + (Ch + Cl)Lg s2 +Rg s+ 1
Cgs+Cgd

(33)

z1,Lg+Ch+Cl = 0 (34)

z2,Lg+Ch+Cl = −

 (Cgd + Ch)Lg ±
√
Lg

(
Lg (Ch + Cgd)2 − 4 (Ch + Cl)C2

gdR
2
g

)
2 (Ch + Cl)Cgd Lg Rg

 (35)
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TABLE IV
RESULTING COMPONENT SIZES, ATTENUATION AND PHASE SHIFT OF

THE GATE DRIVES

Gate Ext. Cap. Ext. Cap Both Ext. Cap
Inductor to source to drain (Cl & Ch)

Lg 1 nH 400 pH 500 pH 250 pH

Cl - 610 pF - 300 pF

Ch - - 200 pF 400 pF

|H| at 250 MHz -0.77 dB -0.49 dB -0.35 dB -2.03 dB
6 H at 250 MHz 173.3 ◦ 173 ◦ 177.5 ◦ 178.23 ◦

[18], [19]. The main concern is the achievable Q values - the
relation between its inductive value, frequency and resistive
value. In an integrated circuit the close proximity to the highly
conducting silicon layer results in very high losses from eddy
currents induced.

Increase of the Q values is the subject of substantial
research. In [49] Q values as high as 50 at 7GHz was
achieved. These where, however, constructed in a very fragile
structure, and not suitable for most application. Others have
tried different shielding methods, to remove the capacitive
coupling to the substrate [46]. This limits the self-resonance
significantly [52]. The toroidal designs presented in [50], [51]
although producing promising results on the Q values of the
inductors, as high as 50, the frequencies of these technologies
are also currently limited around 10 MHz [8].

The research in this field is in fast development, and is
one of the key components to achieving the monolithically
integrated power supply. The inductors lack in both modeling
for simulations, and in the achievable Q-value. Gardner et.
al. [18] made an overview of on-chip inductors, and the only
inductors usable in frequencies above 100 MHz are planar
spiral structured air inductors. These inductors have not shown
Q values above 10. Very recently Ferric Inc. introduced post-
processed inductors on chip, capable of handling frequencies
at 50-150 MHz, with magnetic thin film [53]. Sturcken et.al.
demonstrated in a 1.8V to 1V integrated voltage regulator,
with efficiencies ∼70 %. [54] These inductors was, however,
not available for this work. Lastly, it is worth mentioning that
another solution could be bond wires. With inductance values
around 1nH/mm and Q values approaching 50 at 1 GHz they

are very interesting. Automated setups can keep variations of
inductance to within 1% [55]. Nonetheless, in this work, the
fully monolithic integration was of highest priority and bond
wires were therefore ruled out.

In this paper the lump-model of a spiral inductor on chip
is used, obtained from [55], shown in fig. 10. It consist
of an inductance L, a series resistance Rs, together with
a resistance associated with the eddy-current losses induced
in the substrate, Reddy . It has parasitic capacitances both to
the substrate, Cox and to the cross under path, CP , which
is needed to connect the innermost winding to the outside.
Finally there are parasitics associated with the substrate, both
its resistivity, R1 and capacitance, C1.

RsL Reddy

CpCox/2 Cox/2

R1 C1 R1C1

Substrate

Fig. 10. Inductormodel based on [55]

Three octagonal inductors used in the simulations are here
presented. The inductors are all designed from the process
parameters for the current process, using the top metal layer,
farthest from the silicon, and largest thickness. The results is
shown in table V. The Q value of 14 is higher than described
in the literature. This is due to the crudeness of the model,
and the results would have to be verified before an actual
implementation.

Fig. 11 shows the Q value over frequency of the designed
inductors. The two larger inductors have an optimum around
200 MHz, and decreases, until their self resonance frequency
of approximately 2 GHz at which Q is zero. The 750pH
inductor can be seen to have a maximum much higher, at
a frequency close to 3 GHz. For all of the above described
inductors their self resonance frequency is well above the
desired switching frequency of the circuit.

TABLE V
DESIGN OF THE INITIAL INDUCTORS

Inductor L [H] Rs [mΩ] Reddy [µΩ] Cp [fF ] Cox [fF ] R1 [Ω] C1 [fF ] Q @ 250 MHz

Lin 750p 193.5 12.4 116.6 303.8 469.5 21.3 6.1
Lr,i 3.5n 294.8 846.7 859.9 2730 52.14 191.8 15.6
Lr,r 4.5n 338.7 2010 1070 3920 36.34 275.8 14.8

TABLE VI
DESIGN OF THE FINAL INDUCTORS

Inductor L [H] Rs [mΩ] Reddy [µΩ] Cp [fF ] Cox [fF ] R1 [Ω] C1 [fF ] Q @ 250 MHz Tr. W. [µm] Est. Area [mm2]

Lin 550p 200.52 4.26 59.51 159.03 896.83 11.15 4.31 25 0.033
Lr,i 1.8n 430.19 85.39 107.12 494.75 288.27 34.69 6.52 30 0.15
Lr,r 4n 581.14 258.09 204.11 912.30 156.33 63.96 10.33 35 0.18
Lgate 300p 121.86 2.16 64.27 140.15 1020 9.83 3.87 30 0.031
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III. RESULTS

Referring back to the design flowchart in fig. 1, a switching
frequency has to be selected. To achieve the smallest possible
converter, the highest possible switching frequency is desired.
From (9) the shunt capacitance in the rectifier is inverse
proportional to the frequency. If a switching frequency of 500
MHz is chosen, the resulting capacitance of the transistor will
be so small that the resulting drain-source resistance gives a
conduction loss above 20 % of the total power.

To address this issue, the switching frequency is decreased.
Several steps were taken in this design procedure, and three
different converters were designed. All designs were made
with MIM-capacitors, and ideal inductors.

• A 250 MHz design with 22 parallel coupled 1-Ω-unit
transistor in the inverter

• A 150 MHz design with 22 parallel coupled 1-Ω-unit
transistor in the inverter

• A 250 MHz design with 10 parallel coupled 1-Ω-unit
transistor in the inverter

The first design had issues with currents induced through the
gate-drain capacitor to the drain channel because of the large
capacitive value and a high dv/dt of the gate-signal. As a
result two other designs were made, lowering the frequency,
and with a smaller device (i.e. lowering the gate capacitance).
Although the 150 MHz design showed improvement in terms
of efficiency, their respective inductors was twice as large in
physical size. The power density became much lower than
desired. In the end, the 250 MHz design with the 10x1-Ω-unit

transistor was chosen for further implementation, with the self
oscillating gate drive because of its smaller size. The results
of the converters designed are shown in table VII.

A. 250 MHz Converter with Self Oscillating Gate Drive

The 250 MHz design is implemented with the self-
oscillating gate drive with both external capacitors to ground
and drain respectively. Fig. 12 and 13 presents the simulation
results. The switching frequency achieved is 272 MHz.
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Fig. 12. Inverter waveforms of the 250 MHz Converter with Self Oscillating
Gate Drive

The circuit has been tuned for optimum performance, and
the self resonance of the circuit became a little higher. Due to
the nature of the self oscillating gate drive, no adjustment is
needed in the gate drive. The gate signal has a peak-to-peak

TABLE VII
SUMMARY OF DESIGNED CONVERTERS

Inverter Rectifier Power
VDS,i,pk [V ] Isw,rms [A] Iout,pp [A] VDS,r,pk [V ] Isw,rms [A] Iout,ripple [mA] Pavg,in [W ] η [%]

250 MHz
15.45 8.8 8.52 27.44 2.62 1.22 22.14 43.21

(22x1Ω-unit transistor)
150 MHz

14.47 5.32 6.73 27 2.54 3.1 14.71 64.84
(22x1Ω-unit transistor)

250 MHz
13.46 6.25 10.56 20.89 2.9 3.62 17.24 52.1

(10x1Ω-unit transistor)
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Fig. 13. Rectifier waveforms of the 250 MHz Converter with Self Oscillating
Gate Drive

amplitude of 33V, and from (13) this will result in a high loss
in charging and discharging of the gate capacitances.

The duty cycle achieved is 46 % and 43 % in the inverter
and rectifier respectively. The results are close to the expected
in the rectifier, but the duty cycle achieved in the inverter
is smaller. Tuning the bias to increase the duty cycle unfortu-
nately was not possible, without compromising the breakdown
voltage on the gate. The drain current of the transistor is seen
to spike just at turn off, and not achieving ZCS. However,
ZVS is achieved, naturally by the self-oscillating gate drive.
The efficiency of the converter is 55.5 %, which is comparable
to other PwrSoC designs [8]. To understand the power losses
in the circuit, the losses in the transistors were calculated
according to section II-B. The results are presented in table
VIII and fig. 14. The RMS currents were extracted from the
resulting simulations.

TABLE VIII
POWER LOSSES IN THE TRANSISTORS

Inverter [W] Rectifier [W]
Pcond 2.15 0.76
Poff,cond 0.42 0.35
Pgate 2.52 0.66
Ptot 5.09 1.77

Inverter FET

Rectifier FET

Other

0.25 W (3.5%)

1.77 W (24.9%)

5.09 W (71.6%)

Offstate

0.42 W (5.9%)

Conduction

2.12 W (30.2%)

Gate

2.52 W (35.4%)

Offstate

0.35 W (4.9%)

Gate

0.66 W (9.3%)

Conduction

0.76 W (10.7%)

Fig. 14. Power Loss Breakdown in the 250 MHz Converter with Self
Oscillating Gate Drive

The total loss in the transistors is close to 6.85 W. The
converter has been tuned for an output power of 9 W, and
had a total average input power of 16.11 W. The remaining
losses of 0.25 W can be contributed to the ESR of the MIM
capacitors. The results of the converter with the self oscillating
gate drive are shown in table IX.

With a loss of approximately 7W, the design of the thermal
handling also becomes important. If 100 K temperature rise
is allowed, from ambient, then the thermal resistivity from
silicon to the ambient surroundings cannot exceed 14 K/W.
The estimated overall size of the final converter, assuming
MIM-capacitors of 3 fF/µm2, and no overlaying of capacitors
or inductors, is 28.6 mm2. This gives a power density of 0.314
W/mm2.

TABLE IX
SUMMARY OF 250 MHZ CONVERTER WITH 10X1Ω-UNIT TRANSISTOR IN

THE INVERTER AND SELF OSCILLATING GATE DRIVE

Inverter

Vds,pk 10.53
Isw,rms 7
Iout,pp 24.25

Rectifier

Vds,pk 18.88
Isw,rms 4.13

Iout,ripple 5.1

Power

Pavg,in [W ] 16.11
η [%] 55.54

B. Implementing Inductor Models

The results shown so far have been simulations with ideal
inductances. A simulation with the presented model for in-
ductors was carried out. However the inductors are damping
the voltages of the circuit, and oscillations were not possible.
Fig. 15 presents an AC analysis of the gate drive with the
implemented inductors. The added parasitic resistance and
capacitance of the inductors effects the gate drive, and a
phase shift of over 155◦ is unachievable. These inductors were
designed to the best performance possible, in the available IC
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process, and it is very clear that these performances are just
not good enough. The best available inductors integrated on
chip are currently not much better than that of a standard
spiral inductor, so as of right now, a different solution to the
inductors has to be found. Increasing the Q factor to 10-20,
showed oscillating circuits, however still with poor efficiency.
One such solution could be the VHF magnetic inductors,
recently introduced by Ferric Inc. [53]. These are limited
at 150 MHz, so a reduction of switching frequency is an
undesired side-effect. Finally, redistribution layer techniques
could be implemented. Inductor values of 80 nH, with Q
factors greater than 35 at 100 MHz were reported in [56].
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Fig. 15. AC Analysis of the Gate Drive with the Modeled Inductors

IV. CONCLUSION

To achieve higher power densities switching frequencies
have increased. This paper presents an integrated VHF res-
onant power converter, switching at 250 MHz. The class
E topology was deemed the most interesting for integration
purposes due to lack of high side power semiconductors.
However, limitations in the class E rectifier design and the
process selected meant that higher switching frequencies were
not desirable because of power losses. From the relations
between the frequency, the capacitances in the transistors and
their relation to the achievable Rds,on, and the power losses
in the transistors an optimum frequency for a given load and
power can be found. Such an optimum could also find the
best achievable inductors, either through the crude models, or
using more advanced modeling. This is left for future work.

The two-port Z-parameter method was used to character-
ize the transistor models, utilizing the internal capacitances
of the transistor in the class E converter. Furthermore the
design was implemented with the self oscillating gate drive,
implemented with external LC-filters. This gate drive was
thoroughly mathematically analyzed, revealing the necessity
to keep gate resistance at a minimum, to achieve the best
performance. The four designed converters were designed for
a 9W output power in a 4-Ω load, and efficiencies in the
range from 43-64 % were reached. With the self oscillating
gate drive the simulated efficiency with ideal inductors was
55 %. The power density based on simulations with ideal

inductor models was 0.314 W/mm2. However implementing
models of integrated spiral inductors showed that the added
parasitics lowers the performance of the gate drive, eliminating
the possibility for ZVS. Other methods of implementing the
inductors are necessary, for a working integrated resonant
power converter with this type of gate drive.
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