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Future highly renewable energy systems will couple to complex weather and climate dynamics. This

coupling is generally not captured in detail by the open models developed in the power and energy system
communities, where such open models exist. To enable modeling such a future energy system, we describe
a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission
network model, as well as information for generation and demand. Generation includes conventional
generators with their technical and economic characteristics, as well as weather-driven forecasts and
corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled
according to the envisioned degrees of renewable penetration in a future European energy system. The
spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling
analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination
and forecasting of renewable power generation.

Design Type(s) data integration objective ¢ modeling and simulation objective
Measurement Type(s) renewable energy
Technology Type(s) digital curation

Factor Type(s)

Sample Characteristic(s) Europe e electric power system e power plant

Technical University of Denmark, Department of Electrical Engineering, Elektrovej 325, 2800 Kgs Lyngby,
Denmark. Correspondence and requests for materials should be addressed to T.V.J. (email: tvjens@dtu.dk) or to
P.P. (email: ppin@dtu.dk).
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Background & Summary

Most countries around the world have high ambitions in terms of deployment and integration of
renewable energy generation capacities' . Such a rapid increase in renewable energy penetration comes
with technical, economical and regulatory challenges. Power systems and electricity markets were
originally designed for conventional (say, thermal, nuclear and hydro-based) and centralized power
generation, while near-future systems are set to rely on distributed and non-dispatchable generation as
triggered by the deployment of renewable power generation capacities. These produce energy with nearly-
zero marginal cost according to Nature’s will, with the inherent characteristics of being highly variable
and of limited predictability. This induces substantial challenges in the operation of power systems and
electricity markets®.

In that context, decision problems in operation and planning of power systems ought to rely on large-
scale models and datasets allowing us to weigh and appraise alternative options in an ever more dynamic
and uncertain environment. Assembling such models is often made difficult by a combination of
confidentiality issues and competitive industrial interests. This is complemented by the need to take a
multidisciplinary approach since the renewable energy system combines aspects of meteorology,
economics and power systems engineering. It is our objective here to make a first proposal for such a
large-scale dataset for the whole Europe in an open-access format for all researchers to have a common
playground to benchmark their own ideas, scale them up to a large system, but also replicate and build on
those of others. The resulting Renewable Energy Europe (RE-Europe) dataset allows envisaging a future
where a large part of the energy consumption may be met by renewable energy generation. It may then
readily be used for assessing market designs over the whole Europe, e.g., flow-based coupling of day-
ahead markets™°, benchmarking new cross-zonal coordination mechanisms for ancillary services”® or
comparison of alternative forecasting models”'’. We see a multitude of other applications for the dataset
in the fields of, e.g., energy systems, statistics, complex networks, economics and mechanism design,
comprising too many to be extensively listed here.

Previous efforts in building open system models have focused on specific sections of such a model, e.g.,
the transmission system and generation capacity''~'> or the renewable infeed'®'”, provide some data only
at an aggregate level'®, or cover only a portion of Europe at high detail'®. In addition, open tools have
been developed which allow putting together portions such a data set'>'®?°, for overviews, see®"**.
Building on these previous efforts, we provide a complete, ready-to-use, open license dataset of the full
electricity system at a high level of detail.

Assembling the RE-Europe dataset required defining a number of individual components, which
comprise the separate, but coupled components of the data set. These include the power network,
conventional generators, as well as renewable energy generation and electric power demand. While the
first two may be described in a static manner, in terms of their technical and economic characteristics,
weather- and demand-related signals are best described in a dynamic manner with sequences of forecasts
and observations in the form of time-series. These components are outlined in Fig. 1. Since most
renewable generating capacities being deployed today are for wind and solar power, we will concentrate
on these here®.

The electric power system is a physical network, connecting people and industries with intricate
demand patterns, and now, distributed renewable energy generation with complex spatial and temporal
dependencies. As all electrical interactions on the network happens through injection or extraction of
energy through the nodes of this network, renewable production and demand signals are to be aggregated
at the node level. In practice, then, the physical network model defines the granularity of the dataset. The
granularity is key here, as considering, for instance, a single node per country would most likely mask
some of the important effects to look at in a renewable energy future (e.g., bottlenecks in transporting
power between Northern and Southern parts of Germany), while using a fully detailed grid model
increases computational burden disproportionately. Attempts at proposing sensible open-access network
descriptions already exist''* and we build on those here.

When it comes to conventional generators in Europe, one naturally cannot get access to their full
detailed information (both technical and economic) in view of industrial interests. Initiatives for
summarizing their most important characteristics for operations and planning studies already exist, as an
example in the GlobalEnergyObservatory database'® that was used as a basis here. This database contains
location, fuel type and other basic characteristics of these generators, covering in total 78% of European
generation capacity. On top of that, we complement the unit descriptions with some important
characteristics for more complete studies, including cost data and minimum online capacity using
standard methods from the power market literature. Full details are given in the Methods section.

While renewable power production signals and forecasts at the level of each node are generally not
available due to commercial interests, even if they were, such signals only serve to describe the production
capacity in place today. Since a large part of the renewable energy infrastructure has yet to be built, the
production signals of today only inform in a limited manner about the impact of future installations. To
describe the potential wind and solar power available at each node, we use the method of Andresen
et al.'® to convert high-resolution numerical weather data using simple physical models of wind turbine
and solar panel power curves. This approach represents wind and solar spatio-temporal production
patterns, while allowing modeling renewable production capacity even where none exists today. By using
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Figure 1. Overview of dataset components. (a) Transmission network, (b) Generator database, (c) Per bus

wind and solar production and electrical load signals (fully drawn), with wind and solar production forecasts
(dashed).

forecasts from numerical weather systems, our production forecasts capture the full spatio-temporal
dynamics of the underlying meteorological fields.

Eventually, we obtain a large-scale dataset that has the fundamental information required to study a
renewable energy future in Europe, as a basis for operational and planning studies. Each component can
be individually extended in the future. An overview of each component is given on Fig. 1, with the size
and resolution of each given in Table 1. For a detailed discussion of each component, see the relevant
sections below. Foreseen improvements to the current dataset include longer sequences for the dynamic
information (permitting to simulate a wider range of operating conditions), probabilistic information on
renewable power production and power consumption and extending the network to cover the remaining
areas of Europe.

Methods

The dataset consists of three static components (network, generators and installed renewable capacity per
node),and three dynamic components (demand signal, renewable production signals and renewable
production forecasts). The following paragraphs detail how these components were derived from their
primary sources, the challenges inherent in their construction, as well as the value of their inclusion
within the whole dataset. Further, we discuss the potential and ease of extension of each component.

Network georeferencing

The electricity grid acts as the connector of all resources, its size and resolution determining which
phenomena may be examined. As this data set aims at resolving and representing effects stemming from
renewable energy production, the network should be large and detailed enough to capture and resolve the
dynamics of available renewable resources. Such dynamics are closely related to the size and resolution of
weather systems, which may stretch for thousands of kilometers and have dynamics which, when
averaged over the hour, are smaller than ~50 km, as expressed through the synoptic scale speed, typically
7-10 m/s (ref. 24). To accommodate both the extent and resolution of renewables, the most pertinent
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Dataset components

Network 1,494 buses 2,156 lines
Generators 969 units Technical & cost data
Demand 3 years Hourly per bus
Wind & solar production 3 years Hourly per bus
Wind & solar forecast 91h at 00:00 & 12:00

Table 1. Dataset components.

network model available is that of Hutcheon and Bialek'', which comprises a network of 1,494 buses
connected by 2,322 conductors which form 2,156 transmission lines, with flow limits on cross-border
lines. This network model covers mainland Europe, excluding the British Isles, Fennoscandia and the
Baltic states, and is thus extensive enough to cover several weather patterns. Further, the model covers
transmission lines down to the 110/220 kV voltage level, with a typical transmission line length of 30-70
km. Both the extent and resolution of the grid thus make it well-suited to model the hourly-averaged
renewable infeed. While other extensive and detailed grid models exist, e.g.,'>'>'?, these either cover a
smaller area than'’, or are not easily georeferenced. Due to the modular structure of the RE-Europe data
set, future versions can switch to these alternate grid models as and when it is deemed advantageous
to do so.

While this network model is extensive, and provides an accurate network layout, it does not contain
the latitude and longitude of buses. The geographical locations of the buses are important as they define
which resources, e.g., generators and wind production capacity, are attached to which buses. For our
purposes, this information is critical to use the grid model, and the geographical coordinates of the buses
must be reconstructed.

The network comes with a set of display coordinates 3" which correspond to each bus’ map
coordinates on the ENTSO-E Grid Map. In order to extract these, however, the proprietary program in
which the network is delivered requires using another coordinate transformation. Thus, the coordinates
available after extraction 7', are related to the actual latitudes and longitudes of each bus % as shown
schematically below

ENTSO-E Grid Extraction from
< Map Projection 7 Work by [11] 7 Program -

(1)

From the length of this chain, recovering x” by inverting map projections is clearly not a feasible strategy.
Instead, we seek to fit a smooth function f which takes the extracted coordinates z* for each bus and
outputs the geographical location X~ of that bus.

To this end, we fit z,, for a subset of buses to the geographical coordinates x,, of their associated towns,
and use the fit to approximate X  for the remaining buses. Provided the fit achieves errors of less than
~50 km, the renewable energy signal should not be adversely affected Due to the entry process for the
underlying grid, where parts of the grid were entered at a time and then stitched together, small
inconsistencies exist between bus positions along country borders. Selecting a very high number of buses
is likely to be adversely affected by these inconsistencies, degrading the quality of the fit.

We find that using a third-order polynomial ansatz for f along with 34 buses, chosen for their
geographical coverage, yields a fit with a small error while avoiding overfitting. The fit was carried out by
ordinary least-squares. For details on the outcome and the buses chosen, see the Technical Validation
section.

Generator data

As Europe has no official database of generators, we use the curated open-access generator database'”.
From the database, each generator’s geographical coordinates, production capacity and fuel type is listed.
The production capacity coverage for the relevant part of Europe is 78%, with the lowest individual
coverages being Switzerland (53%), Austria (54%) and Slovenia (62%), as compared to 2012 numbers®’.

The database does not list economic parameters for the generators, as these are typically not publicly
available. In view of the confidentiality issues, and that we would not want to discriminate among power
plants at such large scale, we choose to estimate the economic parameters for each plant based on their
fuel types. The choices made below are to be seen as a representative frame in which to study future
highly renewable energy systems. That is, they should neither be seen as a scenario, nor as an optimized
portfolio, for a future generation mix.

The marginal costs of each fuel type is based on the data in ref. 26, which gives variable operation and
management cost (O&M) estimates including fuel cost for new plants erected in 2019. We note, that CO,
prices are not included in the marginal price estimates. A wealth of other sources of cost data exist,
e.g,>?7?. Cost estimates given in these sources span a wide range, e.g.,”® gives a range of 50-100
DKK2013/G]J for gas prices in 2020, leading to a comparable spread for the marginal cost of electricity
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Figure 2. Variable operational & marginal (O&M) costs per fuel type.

Fuel type Fuel cost Heat value [G]/t] Thermal efficiency [%] Marginal cost of fuel [$/MWh]
Coal 608/t 24.0 40.5 222
Lignite 208/t 24.0 40.5 7.4
Natural Gas 3.76 $/GJ — 54 25.1
Fuel Oil 563/t 40.7 54 922

Table 2. Estimated costs for fuel only.

from gas turbines at this time. In the interest of providing a complete dataset, we choose to limit ourselves
to the median numbers given in ref. 26.

To comply with the limitations of ref. 26, the 67 fuel types present in the generator database'” are
reduced to 9 generic types. As only 5 fuel types are described in ref. 26, covering the other 4 fuel types
requires additional assumptions. To assign specific numbers to each fuel type, we make the following
assumptions about plant types and production cycles: Coal, lignite, oil, and natural gas plants are
assumed to be outfitted with carbon capture and sequestration systems. Coal and lignite are assumed to
use the efficient but experimental integrated gasification and combined cycle (IGCC) process for
production, while oil and gas use the combined cycle. Plants with unknown fuel type are taken to have
the highest marginal cost of all technologies. For the fuel types not listed in ref. 26, we assume that the
non-fuel portion of the O&R cost is the same for similar plant types, and that only the fuel cost changes.
As lignite is nearly interchangeable with coal in operation®’, and oil plants can run on the same cycle
types as the gas fired plants®’, we use costs for coal plants to calculate costs for lignite plants, and costs for
gas plants to calculate costs for oil plants.

To compute the fuel-only costs, the following sources are used. Price of coal from NYMEX QL*', and
the price gas are the Henry Hub natural gas index price?, both from the 8th of August 2014. The price of
fuel oil is the Rotterdam IFO 380 index price on the 7th of August 2014 (ref. 33). Lignite has no exchange
price, as it is mostly used in the local area of the mine, but its price is historically about a third of the coal
price®®. Heat values are from ref. 35, and thermal efficiencies are from ref. 30. Both of these parameters
for lignite are assumed the same for lignite as for coal. Table 2 gives the estimates of fuel cost used to
compute variable O&M for lignite and fuel oil, with the final variable O&M costs given on Fig. 2. The
above price for oil is no longer representative, as the price of fuel oil has been cut in half since the dataset
was compiled”®. Due to the volatility of fuel prices, these costs should be taken as representative, and we
encourage users to provide their own fuel cost estimates in accordance with their use case.

If all plants were to be set to exactly the same marginal cost, the system would have a high degree of
degeneracy, which can lead to computational problems when optimizing for the lowest-cost generator
dispatch. In reality there is some variation in costs between different plants, owing to geographical
variation in prices and technological variance. As an example, the levelised costs of electricity are found
in ref. 26 to vary by approximately 10% due to these factors. Given the scale of our dataset, and the lack of
available industrial expert knowledge, one cannot retrieve real values for these variations. Without
relevant specific knowledge, the best way to achieve required diversity of costs figures is by incorporating
a random component. To model cost variation in a simple way, we multiply the marginal cost of each
plant by a factor chosen uniformly at random from 90 to 110%. For any specific use case that may be
sensitive to localized information on variation in marginal costs of electricity, this could be examined e.g.,
by Monte Carlo simulation.

In order to model unit commitment problems, additional generator parameters are needed. With the
wealth of possible cycle types, number of valves and steam engines, variations in boiler, turbine, and
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Fuel type Min. up/downtime Cycling cost [$/MW] Min. online capacity [%]
Up [h] Down [h]

Biomass/waste 8 8 65 30
Coal 8 (4-48) 8 (8-24) 65 (55-78) 30
Fuel Oil 2 (1-10) 4 (1-12) 55 40
Geothermal 0 0 55 15
Hydro 0 0 4.3 (2.1-8.6) 15
Lignite 8 8 65 30
Natural Gas 2 4 55 (32-93) 40
Nuclear 24 24 300 20 (20-50)
Undefined 8 8 65 40

Table 3. Generator parameters for unit commitment problems. Quantities in parens indicates the range
given in the applicable source.

generator designs, and consideration of the ages of the plants, it is impossible, based on publicly available
data, to accurately describe these parameters for each plant type. Instead, our goal is the more modest one
of giving reasonably representative values for each fuel class of the plants. It is our expectation, that any
research which require more nuanced estimates will provide these themselves.

Table 3 gives the chosen parameters for unit commitment problems, with ranges indicated in parens.
The parameters were selected as follows: When a plant shuts down, and is subsequently started back up,
additional fuel is used to bring the plant fully online, and thermal stresses may cause wear on
components. The cost of this is called the cycling cost of the plant. Kumar et al.*” list cycling costs for coal
and gas plants depending on the cycle type of the plant. For both fuel types, the median value for warm
start is used, with the coal and gas unit types taken to be large sub critical and combined cycle gas turbine
(CCGT), respectively. Lignite-fired, biomass/waste, geothermal, and plants with unknown fuel type are
assumed to have the same cycling costs as coal-fired plants due to their similar cycle types, while fuel oil-
fired plants are giving the same cost as natural gas-fired ones. As reported by Nilsson and Sjelvgren®®, the
start-up costs of hydro vary by about a factor of three, depending on the operator and plant type. From
their Fig. 2, a middling estimate of 150$ for startup of a 50MW turbine is found, corresponding to a
startup cost of 4.3$/MW in 2012 dollars. No good source of nuclear plant cycling costs could be found.
Usually, these plants are run as baseload plants, and are not taken offline except for maintenance.
To reflect this, they have been assigned a very high cycle cost compared to the other plants.

When a plant is delivering power, it has a minimal amount of power that can be delivered during
stable operation, called the minimal online capacity. For gas turbines™, lists 40% as a state-of-the art
figure. This figure is also assumed to hold for the fuel oil plants, and for plants with unknown fuel type.
Coal plant parameters are found in ref. 40, and lignite plants are assumed to be equal to these. The
minimal online capacity of a hzdro turbine depends on the type of turbine, but all types lose efficiency at
or below 15% of rated power™'. Though this limit may be circumvented by redirecting water between
multiple turbines, we use 15% as an estimate of the total plant minimal production capability. For nuclear
plants*?, states that European regulations do not require a lower online capacity than 50%, but that
manufacturers set their own standards, typically 20%. We use the latter number as our estimate. No
source could be found for the minimal online capacity of a geothermal plant, and we arbitrarily set it
to 15%.

Unit commitment models often include constraints which limit the amount to which plants can be
turned on and off. Typically, these specify that if the plant is turned off, it cannot be restarted before a
certain amount of time, called the minimum down-time. Similarly, the plant cannot be shut down after
starting up before the minimal up-time has passed. However, there is a dearth of data on what these times
are for different plants, and discussion if such times are able to capture the physical operation of plants*’.
A commonly used source for up- and down times is Grigg et al.**, but no sources are listed for the
numbers given. Furthermore, the up- and downtimes in this source depend more on the size of the
respective plants rather than their fuel type or cycle. This indicates that grouping plants by fuel as has
been done thus far is insufficient to capture model up- and downtimes. To provide a complete data set,
we report the values in Table 3, which are consistent with mid-sized plants from Grigg et al.**.

Definition of demand signal

The electrical demand signal, or load signal, informs the need for system balancing and use of resources.
In particular, the spatial distribution of the load signal defines the need for transmission, as power may be
generated far from consumption centers. From the ENTSO-E website*®, data for the aggregated demand
of each country is available hour by hour. However, the current application requires data at the resolution
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of the network model. This makes it necessary to disaggregate the load signal, i.e., to split the country-
aggregate load signal into its many component signals.

This disaggregation is an impossible task to achieve exactly, and we instead content ourselves with a
heuristic approach. Intuitively, it is reasonable to project according to demographic or economic data; the
more people live in an area and the more industry is in that area, the higher we would expect the
electricity demand of that area to be. This notion is supported by*, who observe that the load in regions
of Italy is reasonably correlated with the population in that zone. In contrast*’, finds power consumption
to be slightly negatively correlated with relative regional population, but strongly correlated with relative
regional GDP.Given the lack of detailed maps of GDP, as compared to the relative ease of obtaining
highly detailed population data, we choose to project the demand signal proportional to the population.

For this purpose we use the population density data of*®, sampled at the center of each grid cell of a
coordinate grid consistent with the ECMWF renewable energy data (grid resolution 0.25°x 0.25°). This
population density is multiplied by the area of the grid cell to obtain an estimate of the population in the
grid cell. For each country, the aggregate consumption time series is then distributed on the onshore grid
cells for that country proportional to estimated population. The end result is a map of mainland Europe
with each country having a spatially static demand pattern which fluctuates in time according to the
country-aggregate data.

The resulting synthetic demand data describes the effect of national load centres on flows, but is
naturally unable to describe dynamic intra-country variations. However, extending the demand signal to
include such dynamic inhomogeneities is currently impossible given the lack of open-access sources of
demand at higher spatial resolution.

Renewable energy signals and forecasts

As wind- and solar-driven energy sources come to dominate energy production, system operation is
critically dependent on weather patterns. Where and when situations of high and low solar and wind
availability occur inform the need for use of the transmission system and/or activation of dispatchable
generation. Mis-estimation of the need for and use of these resources may thus result from failure to
accurately model the spatio-temporal structures of the weather. To properly represent these structures,
we utilize data from numerical weather prediction systems. These use data from a multitude of weather
monitoring stations and related sources to estimate the past, present and future state of the atmosphere,
storing the output as meteorological field data. Such data has previously been used to obtain approximate
renewable energy production signals, see Andresen et al.'® for an overview.

When constructing wind- and solar production signals by the method described here, the outcome is
necessarily synthetic, and will not reproduce real-world signals exactly. A proper term for the signals
produced would be ‘synthetic observations and forecasts’, possibly with an additional moniker relating
that the signals capture the aggregate space-time dynamics of the real-world weather signal. Still, since
actual bus-level production data is not typically shared, and in the interest of brevity, we shall refer to the
signals as simply ‘observations’ and ‘forecasts’ below.

Based in this line of work*®, develops a framework for wind and solar energy conversion, which forms
the basis for the present data set. In this framework, wind speed and insolation fields are converted into
production factors through wind turbine and solar panel models. The wind turbine model converts wind
speed into produced power using a power curve. Based on the recommendations in ref. 49, we use a
smoothed power curve for a Siemens SWT 107 turbine for both onshore and offshore wind. This turbine
is suggested as a good proxy for future turbine fleets, for which the majority of production will come from
very large units. For the solar panel, we use the Scheuten P6-54 215 Multisol Integra Gold°. This panel is
of a typical size for residential installations. For simplicity, we assume all panels are mounted at a 30
degree angle from zenith and facing due south. A more realistic conversion would angle the panels
optimally, and use a mixture of orientations to represent the diversity of conditions under which these
panels are installed. We leave these considerations on the best mix of panel parameters and turbine types
to be addressed in a future version of the dataset.

As input to the conversion, we use the ECMWF deterministic forecast’' and the COSMO-REA6 data
set>® for the years 2012 to 2014. The ECMWF deterministic forecast is provided every 12h for the
subsequent 90h at hourly time steps, with a spatial resolution of approximately 16x16km. The
COSMO-REAG data set contains hourly data at a spatial resolution of approximately 7 x 7 km. In order to
use these data set in the conversion process, additional processing is needed.

For conversion to wind turbine power factors, the wind speed at turbine hub height (80 m) is needed.
However, neither data set supplies wind speeds at this height, and an interpolation method must be used.
In the ECMWF data set, wind speeds are given at 10 and 100 m. For such data®, recommends using
logarithmic interpolation in this case, which for wind speeds v, and v, at heights h; and h, yields an
expression for the wind speed at height h. In contrast, the COSMO-REA6 data set gives values of the
wind speed at 6 different layers of the atmosphere from a near ground level to ~240 m above the ground.
For the COSMO-REAG6 data, we follow the advice of>?, and use linear interpolation between model levels
to obtain the wind speed at turbine hub height.

For solar power conversion, the beam (or direct), diffuse and ground-reflected components of
insolation at short wavelength are needed. All three components are directly available from the COSMO-
REA6 data set, while the ECMWF data set only provides the sum of the beam and diffuse fields. To
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determine the portion of incoming insolation from the diffuse component for the ECMWEF data, the
method of Reindl et al.>* is used. We omit a complete description of the solar conversion method for
brevity, and refer the interested reader to*’ for a more detailed description.

Adapting wind and solar forecasts to form a continuous signal

The forecasts issued in the ECMWF data set may be inconsistent with the realized production as given by
converted data based on COSMO-REAG6 data set. For modeling purposes, it may be beneficial to have a
continuous signal that is consistent with the forecast signal. Consequently, we use the ECMWF forecasts
as a basis to produce another continuous signal, to be seen as an alternative realization. This new signal is
referred to as the ECMWF signal, not to be confused with the ECMWF forecast or the COSMO signal.

The inclusion of continuous signals derived from both ECMWF and COSMO-REA6 data means the
data set comes with two ‘truths’, one derived from the ECMWF data, and one from the COSMO-REA6
data. Naturally, neither of these signals conform exactly to real-world production, due to errors inherent
in the type of modeling used here, or to each other, owing to differences in the derivation of the
meteorological fields and conversion procedures. By including two signals, our dataset offers a built-in
check to which extent results are sensitive to the specific renewable energy signal used.

We form a continuous signal from the ECMWF data by stitching together forecasts as they become
available: A new forecast is available every 12 h, so we take the first 12 h of each forecast and stitch them
together to form the signal. As the ensemble mean forecast represents a best guess of the actual physical
trajectory of the system, it is reasonable to expect the synthetic signal to track the real world. However,
due to inherent inaccuracies and uncertainty in numerical weather prediction, there will be differences in
wind speeds across the seam between two forecasts. This unphysical jump is a concern in examining
systems which are coupled in time. For the power system application considered here, it represents large,
recurring ramp events. To avoid the impact of these ramp events, the seam must be smoothed over in a
way which does not adversely affect the spatial information in the wind time series. To the best of the
authors’ knowledge, this problem is unexplored in the climate reanalysis literature.

As there need not be a physical path connecting the forecasted state some time steps before the seam
to the state some time steps after the seam, a detailed physically-motivated model is not guaranteed to be
able to solve the issue of joining forecasts. As such, we are not looking to construct a physical system
trajectory, but rather to smooth out the seam in a sensible way through interpolation. The important
characteristics that we wish to keep in the wind data are the typical ramp characteristics of the local wind
field, and the spatial patterns of wind production. The spatial patterns are approximately preserved in the
Empirical Orthogonal Function (EOF) decomposition of the wind fields>, and we base our interpolation
method on this.

To construct the EOF components, let w; be a vector of the u- and v components of the wind field at
the N positions of the grid,

T
Wt - (uxl.tv 7uxN,t,Vx1,t7 ,VxN,t)» (2)

and construct the correlation matrix C of the wind signal as the outer product of these w’s, averaged

over time
— —T 1 T
C:<wtwt> = ZWW". (3)
t
Let 'y, ... , @y be the orthonormal eigenvectors of C, and construct the eigensignals of W', as
ki(t) =W, Wy (4)

Using an interpolation method to construct the interpolated eigensignal k;(t), the interpolated wind
signal is found as

Wt = Z];z(t)ﬁz (5)

Since the interpolation is done on the eigensignals, the spatial characteristics of the wind signal are
preserved. The use of a proper interpolation method will ensure that the temporal characteristics are not
unduly disturbed.

The method as described above is computationally very expensive, as N is very large, and the task of
finding eigenvectors scales poorly with N. In order to make the problem computationally feasible, we first
divide the signal into months, and compute a correlation matrix C,, for each month separately. We then
exploit that since the number of hours in a month <N, the matrix C,, is of much lower rank than N. This
means, that we can instead find the eigenvectors v; of WTW, and re-construct Wi via

“i = WTVi? (6)

with appropriate normalization. The use of a monthly correlation matrix restricts the dimensionality of
the span of y;, but as we are merely seeking a reasonable method to smooth out the signal, this is not a
great concern. In performing the actual interpolation of k;(f), a cubic spline method is used across each
seam. For the results of this interpolation, see the discussion in the Technical Validation section.
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For solar data, the answer to the problem of a seam is much simpler; The first 24 h of the forecasts
issued at midnight are used instead of the first 12h from every forecast. Apart from some of the
northernmost areas of Norway, there is never any solar radiation across the seam, and the problem is
avoided altogether. This does mean that a user of the dataset should take care if the forecast issued at
midnight is used to schedule production for the period from noon to midnight of the following day, as
the solar production forecast will be perfect at this time; see the Technical Validation section.

Aggregation of renewable energy and load signals to nodes

The previous sections define maps of renewable energy production and demand on a series of grid cells.
To combine these maps with the network data requires aggregating onto the space of nodes. For this
purpose, it is reasonable to assume that a renewable installation or consumption area will be connected to
the closest transmission substation, as this leads to the lowest cost of setting up the connection. This
implies that each node aggregates consumption and production from its nearest grid cells. Our aim in this
section is to construct matrices which project a vector of data defined for each grid cell onto the space of
nodes in such a way that each node receives data from the area closest to the node.

For aggregating the solar signal, we consider areas available for PV installation if they are onshore. For
aggregating the wind signal, we consider both onshore and offshore grid cells available for installation,
with offshore grid cells only available provided the water depth is less than 70 m. This latter depth is a
conservative estimate of the maximum water depth for wind turbine installation for near-future
technologies, see”®. Through this process, offshore wind is thus mixed in with onshore wind, such that
nodes with a significant share of offshore grid cells will see their signals dominated by offshore wind. To
rectify this, we intend to provide separate time series for off- and onshore wind in future versions. Last,
when aggregating the demand signal, all grid belonging to the onshore areas of countries covered are
aggregated, even if those grid cells belong to areas which are not covered by the grid, e.g., eastern
Denmark and Corsica.

When aggregating load data, the total load across Europe should be preserved. For this purpose, a
projection matrix that preserves the sum is required, call it M*". On the other hand, when aggregating
capacity factors for wind and solar, a projection matrix that averages over the underlying area is required,
call it M**. Each of these matrices should define a proportional sharing rule between each grid cell and its
associated nodes. A node and a grid cell are considered associated if either (1) the node is closer to the
grid cell than any other node or (2) the grid cell is closer to the node than any other grid cell. This ensures
that each node receives data from at least one grid cell. Further, if a grid cell is associated to multiple
nodes, the contribution from that §rid cell should be split evenly among all associated nodes.

The construction of M*" and M proceeds as follows: Let P be the set of grid cells in the map, P’ C P
the re%ion over which we wish to aggregate the data, and N the set of nodes in the graph. Let
M e RIN*IP| be a matrix initialized with all zeros. Then, for all nodes n € N and grid cells p € P/, set
M,,=11if (1) n is closest to p or (2) p is closest to n.

Using M, we find M*” and M** as

M
MSP — np (7)
" Zn’ eN M"’P
SP
MAP _ np (8)

" Zp’ 4 M fl};’
These matrices aggregate load data maps and maps of renewable energy capacity from grid cells to
each node.

In the construction of M*”, we implicitly assume that the weight given to each grid cell is equal.
However, some grid cells cover a larger area than others, such that their contribution to the average
should be greater. We choose to avoid this complication, as this difference over the domain covered by
the network is less than 5%.

Definition of renewable energy capacity layouts

Following aggregation, the load data is in units of MWh, while the renewable production signals are given
as the estimated production relative to installed capacity, which at this point is undefined. Though a
layout representing the capacity installed in current systems may be of interest, the lack of good open-
source databases for solar installation in particular makes such layouts impossible to generate. Further, as
the bulk of renewable energy installations have yet to be built, the current-day layout of capacity does
little to inform on future energy systems.

To provide a ready-to-use data set, we define two capacity layouts, which we term the uniform and the
proportional layouts. In the uniform layout, installed capacity is spread uniformly across Europe, and the
capacity of each node will be proportional to the area aggregated by the node. In the proportional layout
more capacity is installed in areas with high renewable production potential, such that the capacity for an
area is proportional to the yearly mean capacity factor for that area.

The uniform and proportional layouts lack a constant factor to set the total installed capacity. We fix
this constant factor, such that using the capacity layout directly represents a situation of 100% gross
penetration of renewables. That is, the total energy production of wind/solar across all years with each
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layout exactly matches the total energy demand of the system over the same period; given enough storage
and transmission capacity, no dispatchable generation capacity would need to be activated. To use the
layouts, one need simply scale the resulting production by a factor corresponding to the desired gross
penetration of the renewable resource in question.

The layouts are defined as follows. For the uniform layout, the total nameplate capacity aggregated by
bus n € N is proportional to the area aggregated by that bus, A,,. Further, across all hours ¢ € T, all nodes
produce energy P, equal to the total load ), _,crLme. These taken together define the capacity
layout C,;: '

: A
C:llmform _ n Lmt- (9)
thAumtm e%t:e T

For the proportional layout, the installed energy at a node is proportional to both the area aggregated by
that node A,, and the node’s average capacity factor > P, /|T|. The proportional layout can then be
found as

. Ap> Py
Cproportlonal _ ngat™ n L. 10
[ S e o

Table 4 lists the total nameplate capacities found by these layouts.

To use the capacity layouts, the user should scale them to the desired degree of gross penetration. If,
for example, one wishes to simulate a system with 20% gross penetration of wind in each country, one
would multiply this layout by 0.20 before multiplying it with the wind energy signal. If control of the
gross penetration of each country is desired, one can scale the nodes belonging to that country separately
from the others, using the data provided in the network description. We finally note, that the layouts
defined here have not been optimized for renewable usage, and as such may lead to a high degree of
curtailment of renewable energy. Provided this is an issue in the application considered, we encourage the
user to define their own renewable capacity layout.

Code availability
The code used to generate the data set is available at>’. All scripts have been tested working as of 20/08/
2015 on machines running Ubuntu Linux 15.04, using Python version 2.7.9 with the packages Pandas
version 0.15.0, Numpy 1.8.2, Scipy 0.14.0 and PyGrib 2.0.0. Certain steps in the conversion of renewable
energy data may require that the user has at least 16 GB of ram. To re-generate the data set, the user
would need to download the meteorological data from ECMWE*! and COSMO??, which are not provided
here due to licensing. For the data from ref. 51, a MARS-access file is provided in ref. 57, which automates
the download of files when updated with the user’s credentials.

The workflow when using the code is as follows (Each bullet corresponds to a folder of scripts to be
executed in order):

Network latlon Fit positions of network buses.

Extract ECMWEF signals Cut out first 12 h of each forecast to be used for the ECMWF signals. Also
extracts a latitude-longitude grid for projection purposes.

Interpolate ECMWEF Wind Interpolates the extracted signals to reduce the impact of the stitching of
forecasts.

Build Projection Matrix Builds matrices to project load, wind and solar signals to the nodal domain.

Convert Signals Convert the extracted wind and solar fields to capacity factors. Aggregate to nodal
signals.

Convert Forecasts Convert the forecasts for wind and solar to capacity factors. Aggregate to nodal
signals.

Make Load Maps Project country-aggregate load signals to maps, aggregate to nodal domain.

Build projection matrix COSMO Build aggregation matrices for the COSMO signals.

Convert COSMO signals Convert COSMO signals to capacity factors, aggregate to nodal domain.

Save * CSV Save output files to.csv files.

Data Records

All data associated with this work is available in the associated repository (Data Citation 1). The data
consists of 5 parts: The transmission grid model, the generator database, the demand signal, the
renewable energy forecast, the renewable energy signals and the capacity layouts, see Table 5. Each part

ECMWF COSMO
Capacity [GW] Uniform Proportional Uniform Proportional
Solar 1,048 1,032 1,284 1,259
Wind 1,734 1,207 1,554 1,186

Table 4. Total nameplate capacities of layouts at 100% gross penetration.
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Field type No. of files Total size Notes

Network data 3 175 KB

Generator data 1 141 KB

Demand signal 1 336 MB

Wind and solar signals 4 1.07GB 2x Wind, 2x Solar
Wind and solar forecasts 3,834 1.5GB Forecasts issued at h and 12h
Wind and solar capacity layouts 4 136 KB

Table 5. Number of files and sizes in full data set.

Col. Col. name Format Units Range Description

1 ID int — 1-1,514 Node ID

2 name string — — Name of bus in''

3 country string — — 3-letter country ISO code
4 voltage float kv 110-380 Bus voltage

5 latitude float °N 35.5-57.3 Latitude (WGS84)

6 longitude float °E -9.24-29.0 Longitude (WGS84)

Table 6. Summary of columns in node data.

consists of comma-separated value (.csv) files, with the first row the name of each column. Missing values
are indicated by empty strings.

The transmission grid data is given in three files, one for nodes (Metadata/network_nodes.csv),
one for AC transmission lines (Metadata/network_edges.csv) and one for HVDC transmission lines
(Metadata/network_hvdc_links.csv). The file containing the nodes (Metadata/network_nodes.csv) is
structured such that each row corresponds to a node (n=1,494) respectively, with columns (n=6)
describing each node’s position and voltage (Table 6). The file for the transmission lines (Metadata/
network_edges.csv) describes each transmission line (n=2,156), with columns (n=6) describing each
line’s associated nodes, susceptance, number of parallel lines and limit (Table 7). A thermal limit of 0
indicates that a line has unlimited capacity. The file containing the HVDC line data (Metadata/
network_hvdc_links.csv) has a single row (n=1) with the line’s associated nodes, limit and voltage
(Table 8). We chose not to use the IEEE Common Data Format for the dataset®®, as the inclusion of wind
and solar signals and forecasts are not supported by this format.

Table 9 contains an overview of the files associated with wind, solar and load data. The files pertaining
to wind and solar observations (Nodal_TS/wind_signal ecmwf.csv, etc.) have columns corresponding to
each node (n=1,494), with rows corresponding to the time of observation (n =26,304). Each observation
is given as a percentage of the installed capacity. Demand data (Nodal_TS/load_signal.csv) is structured
similarly, with the observations giving the hourly load in MWh. Each wind and solar forecast file (e.g.,
Nodal_FC/YYYYMMDDHH/wind_forecast.csv) gives the forecast for wind and solar power issued at
YYYY-MM-DD HH:00:00 for the subsequent 91 h. The forecasts are given as a percentage of installed
capacity.

We supply two capacity layouts (e.g., Metadata/wind_layouts_ ECMWF.csv), each of which specifies
the capacity in MW to install in each node to reach 100% gross renewable penetration. Each capacity
layout has columns (n=2) corresponding to the uniform and proportional layouts, respectively, with
rows (n=1,494) corresponding to each node. Using the capacity layout directly will result in a total
energy production across all 3 years which matches the total load over all three years—i.e., given a large
enough lossless storage and no thermal limits on lines, the system could be supplied fully by wind/
solar power.

Technical Validation

Network data validation

After fitting 34 buses using a third-order polynomial, the remaining buses were transformed through the
fit. The fitted network data is shown on Fig. 3, with the buses used for fitting highlighted in white. For the
34 buses which were used to calibrate the fit, the root-mean-square (RMS) error is (0.115° 0.104°), with a
maximal difference of (0.380°, 0.234°). At European latitudes, these correspond to deviations of
approximately 17 km RMS and 50 km maximal. With a view to the application, the error in the fit is
sufficiently small to not severely distort the hourly-averaged dynamics of the renewable energy signals.
We tried out other orders of fitting polynomials, and found that a second-order polynomial was unable to
properly capture the nonlinearity of the transformation, leading to a larger number of nodes positioned
offshore, while a fourth-order polynomial leads to unstable behavior due to the small errors inherent in
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Col. Col. name Format Units Range Description

1 fromNode int — 1-1,508 Origin node ID

2 toNode int — 2-1,514 Destination node 1D

3 X float p.u. 107°-0.577 Line reactance (10 ~°=no data)
4 Y float p-u. 1.73-10° Line susceptance (= 1/X)

5 numLines int — 1-4 Number of parallel lines

6 limit float MW 0-15,000 Thermal flow limit (0 = unlimited)
7 length float km 8.5-256 Line length from bus positions

Table 7. Summary of columns in AC line data.

Col. Col. name Format Units Range Description

1 1D string — — DC line ID

2 fromNode int — 1,514 Origin node ID

3 toNode int — 1,513 Destination node ID

4 limit float MW 500 Thermal flow limit (0 = unlimited)
5 length float km 313 Line length from bus positions

Table 8. Summary of columns in DC line data.

Signal type Col. header First column Remaining columns

Wind/solar signal Node ID Time Capacity factor [% of max cap.]

Wind/solar forecast —'— L e

Load signal —"— —"— Hourly demand [MWh]

Wind/solar layout Layout type NodelD Assigned capacity at 100% gross penetration [MW]

Table 9. Structure of load, wind and solar signals, wind and solar forecasts and capacity layouts. Time
is given in as YYYY-MM-DD hh:mm:ss.

identifying buses with their associated towns. For the electrical properties of the network, we refer to the
verification in ref. 11.

Generator data validation

A map of generators in the data set is given in Fig. 4. When a generator is submitted to the underlying
database'®, administrators manually verify the data with available sources, ensuring that the information
given is accurate at the time of submission. After extraction from the database, a sample of 30 data entries
were manually compared with the database to ensure the conversion process was carried out correctly. A
manual scan of the extracted generator data revealed a few generators with missing information on
generation capacity. This information was manually filled in using data given in the GEO database'.
Finally, some generators in the database are not connected to the mainland or are known duplicates.
These were removed from the final product, and are listed in Table 10.

The cost data provided here is based on standard literature sources, and taken to depend only on the
fuel type of the generator. This is standard practice in the power systems literature, as providing more
accurate estimates involves detailed technical modeling which is outside the scope of the data set.

The generator database provided here covers only 78% of currently installed generation capacity in
Europe, due to incompleteness of the underlying database'’. Rather than apply ad-hoc methods for
rescaling, we prefer to leave the issue of how to compensate for the lack of coverage up to the user.

Wind signal interpolation

For the ECMWF-derived wind signal, the interpolation method given by equation (5) leaves the number
of hours of interpolation undefined. In order to quantify this, we look at the spatially averaged 1-hour
root-mean-square change in the wind speed fields:

AW(H) = \(Wlx £+ 1) - W(x, 1)), (11)

which gives a measure of the typical wind speed change. Here, W(x, t) is the raw wind speed at grid
position x at time t. We expect this quantity to change slowly over time, as it essentially measures changes
in the energy available in the near-surface wind layer.
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Figure 3. Fitted geographical coordinates for the transmission grid. White nodes are used for fitting the
network.
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ID Note

2,402 Duplicate of 39,749
2,638 Duplicate of 39,746
42,778 Crete, Greece
42,779 Chios, Greece
43,804 Canary Islands, Spain
43,815 Canary Islands, Spain

Table 10. Generators removed from extracted data.
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Figure 5. Wind duration curves versus ENTSO-E data from 2015, aggregated over the indicated country.
All curves are normalized to have mean 1.

Indeed, AW(f) =0.726 +0.12 m/s on average for times away from the seam between forecasts, while
AW(t)=1.06+0.13 m/s across the forecast seam. After interpolating over 1hour every 12h, AW(¢)
shrinks to 0.749 +0.11 m/s, within the range of typical behavior. By further examining the differential of
AW(t), and by plotting the interpolated wind fields, interpolation across 1 hour every 12 h was found to
give the best compromise between smoothing out the seam and introducing the smallest change in the
affected fields.

Comparison of solar and wind signals to real-world signals

We aim here at analysing how our datasets composed of forecasts and observation signals reproduce
some of the salient features from a real large scale power system. This is not to be seen as a strict
comparison with reality, as the data background which would be required for such a comparison is not
available in practice. This lack of availability is one of the very reason which motivated the generation of
this dataset in the first place.

Consequently here, we compare our data with signals at a more aggregated level. For that purpose, the
reference data for comparison is hourly generation data for wind and solar power in 2015 extracted from
the ENTSO-E transparency portal*®. To be consistent, a country-aggregated signal is obtained from our
dataset, using the ‘proportional” capacity layout. As our aim is not to replicate real-world data exactly, but
merely to show that the trends are largely captured by the data, we focus on duration curves of
production. In addition, since these signals differ in overall scale due to differences in the installed
capacity, we scale them to have mean 1. Resulting sample duraction curves for the case of wind and solar
power are depicted in Figs 5 and 6, respectively.
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Figure 6. Solar duration curves versus ENTSO-E data from 2015, aggregated over the indicated country.
All curves are normalized to have mean 1.

In both cases, i.e., for wind and solar power, the agreement of duration curves between generated
datasets and aggregated data from ENTSO-E displays a reasonable qualitative agreement. This is
especially true, in view of the simple assumptions used as a basis, as well as the limited knowledge of all
renewable power generation capacities over Europe.

Even so, for some countries, e.g., Spain here for the wind data, the generated dataset tend to have more
frequent low production hours than in the reality. This could be explained by difference in capacity
layouts, or fundamentally by a bias in the low wind speed range of the input meteorological data. In
parallel, for the solar case, Spain is also an example of higher mismatch between generated and ENTSO-E
data. There, Spain’s solar signal includes power generation of concentrating solar power units, whose
production stretches into the night as power production can be delayed. This inflates the mean, leading to
a lower curve overall, and causes the bump between 4,000 and 6,000 h. This indicates, that a future
version of the dataset should model concentrating solar power to properly model the Spanish
generation mix.

It should be noted that most of the information content in the renewable energy signals originate from
the meteorological data used, which are nonlinearly converted to power production. As these forecasts
and re-analysis data sets are generally validated in a thorough manner by the meteorological community,
they can represent variations over areas smaller than the country scales at which this comparison takes
place. Thus, one should expect the correspondance shown here to project to smaller length scales,
bounded by the error made in the power conversion choice.

Forecast verification

The dataset contains three sets of renewable production data: A point forecast derived from ECMWF
weather data (ECMWE-Forecast), a continuous signal derived from COSMO-REA6 weather reanalysis
data (COSMO-Signal), and a second continuous signal stitched together from ECMWF weather data
(ECMWE-Signal). While ECMWEF-Forecast and ECMWE-Signal have model consistency, ECMWE-
Forecast and COSMO-Signal lack it. One should thus expect ECMWE-Forecast to be a better predictor
for ECMWEF-Signal than for COSMO-Signal.

To evaluate the forecasts, we calculate the root-mean-square error

1 )
RMSE; = \/WZ(PM—P”,)27 (12)
nt

where P, is the point forecast of capacity factor for node n at time ¢, given k hours in advance, and P,,, is
the corresponding observed production. The resulting curves are plotted on Fig. 7 for both signals, split
depending on whether the forecast was issued at noon or midnight.
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Figure 7. Root-mean-square errors for wind and solar forecasts. Plots of (12) for (a) wind and (b) solar
forecasts against ECMWF (red) and COSMO (black) signals, plotted for all lead times. Fully drawn curves are
for forecasts issued at midnight, dashed curves for ones issued at noon.

Source Fields/Files Note

ECMWF 1| P165, P166, P167, P169, P243, P246, P247 lafYYYYMMDDHHO0000; wind-u (x6), wind-v (x6), | MARS access file available at™

COSMO- 2 | Temp 2 m, Ibeam, Idiffuse, Iground Inventory example available at™

REA6

Global Energy | '* | GEO_PP_[Type] _[Country]_2000-2009.kml All applicable types for covered countries
Observatory

ENTSO-E | [Country]_[Year].xls Country packages

Table 11. List of fields and files needed to re-derive the data set.

Some comments on the curves are in order. First, note that the wind forecasts on Fig. 7 graph (a) for
the ECMWEF signal display no forecast errors for k = 1,... , 11 h. The same is true for solar on graph (b)
in the same figure at k = 1,... ,23 h for the forecast issued at midnight. This is not an error, but due to
the construction of the ECMWEF signal from forecasts. The signal uses the first 12 h of each wind forecast,
and the first 24 h of each solar forecast issued at midnight, where it will naturally agree exactly with the
forecast. Second, the forecast error for the COSMO signals are significantly higher than for the ECMWF
signals. This is due to inherent biases in the underlying signals due to differences in their derivation,
spatial resolution and modeling methods. No attempt has been made for this version of the data set to
correct for these biases; we leave this as a task for future research. Further, as the ECMWF data is
naturally consistent with itself, it is natural that the forecast is closer to the ECMWEF signal than the
COSMO signal.

Our choice for an RMSE criterion is in line with current practice in the renewable energy forecasting
community, which sees it as a lead error measure to report. Additional criteria., e.g., bias and Mean
Absolute Error (MAE) could also be reported, while a finer analysis could be based on diagnostic tools
and error distributions.

Evaluation of full dataset

We have run simple linear economic dispatch models using the dataset and found that no load shedding
is necessary for any level of renewables. These economic dispatch models employed no unit commitment
constraints or other constraints coupling across timesteps. Thermal limits on the full transmission grid
was taken into account, with the coupling of flows to bus phasors represented in the DC-approximation.
Further, load shedding was modeled as a high-cost generator at each bus, limited by the load in that bus.

These results indicate, that the generation capacity detailed in the data is sufficient to supply load in
the linearized case, indicating that the lack of full coverage of the generator database is not critical to
applicable studies.

In view of the multiple and diverse foreseen applications of the dataset, we consider it outside the
scope of this manuscript to attempt a full evaluation of the dataset’s efficacy for various applications.
Instead, we encourage users of the dataset to identify caveats and limitations for their specific use case,
and to provide feedback in order for the dataset to evolve and improve as a community initiative.

Usage Notes
The dataset is available from Zenodo as indicated in Data Citation 1, with the source code available
from ref. 57.
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fo

Most aspects related to use of the data set are self-explanatory, but we would like to insist on the
llowing two points. First, network admittances are given per-unit for the connection as a whole; it is not

necessary to correct these for voltage levels, length of the line or number of parallel lines. Second,

re

newable production data is given as capacity factors, which necessitates the use of a capacity layout. The

capacity layouts included in the data set are scaled such that if they are used directly, the total production
of wind or solar matches total load across all 3 years, i.e., for a gross penetration of 100%. These capacity
layouts do not correspond to the currently installed capacity.

For a user looking to re-generate the dataset, Table 11 sketches the data needed. An extensive list of

data sources required and the processing thereof is given in the Github repository”’.
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