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Cauchy Noise Removal by Nonconvex ADMM with
Convergence Guarantees ∗

Jin-Jin Mei† Yiqiu Dong‡ Ting-Zhu Huang§ Wotao Yin¶

Abstract

Image restoration is one of the most important and essential issues in image processing.
Cauchy noise in engineering application has the non-Gaussian and impulsive property. In or-
der to preserve edges and details of images, the total variation (TV) based variational model
has been studied for restoring images degraded by blur and Cauchy noise. Due to the noncon-
vexity and nonsmoothness, there exist computational and theoretical challenges. In this paper,
adapting recent results, we develop an alternating direction method of multiplier (ADMM) in
spite of the challenges. The convergence to a stationary point is guaranteed theoretically under
certain conditions. Experimental results demonstrate that the proposed method is competitive
with other methods in terms of visual and quantitative measures. Especially, by comparing to
the PSNR values, our method can improve about 0.5dB on average.

Key words: nonconvex variational model, image restoration, total variation, alternating
direction method of multiplier, Kurdyka-Łojasiewicz

1 Introduction

In many practical applications, the images inevitably mix some natural noises with the non-
Gaussian property, such as impulse noise, Poisson noise, multiplicative noise and Cauchy noise.
At the same time, the noisy images often be blurred by the point spread function (PSF) during the
acquisition and transmission. Therefore, the image restoration problem is one of the most impor-
tant and essential image processing tasks in applied mathematics. The researchers have proposed
many algorithmic methods to restore the blurry and noisy images; see [?,?,?,?,?,?,?,?] and refer-
ences therein. In this paper, we focus on recovering the blurred images corrupted by Cauchy noise.
This kind of noise usually arises in echo of radar, low-frequency atmospheric noises and under-
water acoustic signals [?, ?, ?]. According to [?, ?], it follows Cauchy distribution and possesses
impulsive character.

Without loss of generality, we assume that the original gray-scale image u is defined on a
connected bounded space Ω ⊂ R2 with compacted Lipschitz boundary. The observed image with
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blur and Cauchy noise is given as follows:

f = Ku + η, (1)

where f ∈ L2(Ω) denotes the observed image, K ∈ L(L1(Ω), L2(Ω)) represents a known linear and
continuous blurring (or convolution) operator and η ∈ L2(Ω) denotes Cauchy noise. Here we aim
at recovering u from the observed image f , which is an ill-posed inverse problem.

In recent years, more attentions have been paid on Cauchy noise, and several related denoising
methods have been proposed. In [?], the authors applied a recursive algorithm based on Markov
random field to reconstruct images and retain the sharp edges. In 2005, Achim and Kuruoǧlu uti-
lized a bivariate maximum a posteriori estimator (BMAP) to propose a new statistical model in the
complex wavelet domain for removing Cauchy noise [?]. In [?], Loza et al. proposed a statistical
approach based on non-Gaussian distribution in the wavelet domain for tackling the image fusion
problems. Their method achieved an obvious improvement with respect to the fusion quality and
the noise reduction. In [?], Wan et al. developed a novel image segmentation method for RGB
images corrupted by Cauchy noise. They combined the statistical methods with the denoising
techniques to obtain the satisfactory performance. In 2015, Sciacchitano et al. proposed a new
total variation (TV) based variational method for recovering Cauchy noise corrupted images [?].
According to [?], the TV regularization can preserve effectively the fine features and the important
edges of the images. But, since the data-fitting term based on Cauchy distribution is nonconvex,
the solutions of the corresponding optimisation problem strongly depend on initializations and
numerical schemes. To overcome this difficulty, based on the median filter’s result by adding a
quadratic penalty term, in [?] the new convex variational model is given as

min
u∈BV(Ω)

∫
Ω

|Du| +
λ

2

(∫
Ω

log
(
γ2 + (u − f )2

)
dx + α‖u − ũ‖22

)
, (2)

where γ > 0 is the scale parameter of Cauchy distribution, and BV(Ω) is the space of functions of
bounded variation, i.e. u ∈ BV(Ω) iff u ∈ L1(Ω) and its total variation (TV)∫

Ω

|Du| = sup
{ ∫

Ω

u div~v dx : ~v ∈ (C∞0 (Ω))2, ‖~v‖∞ ≤ 1
}

is finite. Here, (C∞0 (Ω))2 is the space of vector-valued functions with compact support in Ω. The
space BV(Ω) endowed with the norm ‖u‖BV(Ω) = ‖u‖L1(Ω) +

∫
Ω
|Du| is a Banach space; see, e.g., [?].

In (??), λ denotes the positive regularization parameter, which achieves the trade-off between the
smoothness from TV regularization and a good fit to f and ũ, ũ is the result obtained by the median
filter, and α is a positive penalty parameter. Note that if 8αγ2 ≥ 1, the objective functional in (??)
is strictly convex and there exists a uniqueness solution. Then, the primal-dual algorithm [?] is
utilized to solve the convex minimization problem (??). The last term in (??) is in fact pushing the
solution close to the median filter results, but the median filter does not always provide satisfactory
results on removing Cauchy noise. Hence, in this paper we turn our focus back to the nonconvex
model to discover its performance and properties.

Recently, researchers have discovered some convergence properties of the optimization al-
gorithms for solving nonconvex minimization problems [?, ?, ?, ?]. In particular, the paper [?]
introduced the global convergence of the alternating direction method of multipliers (ADMM) for
nonconvex nonsmooth optimization with linear constraints. To take advantages of the recent re-
sults, in this paper we develop the ADMM algorithm to solve the nonconvex variational model
directly for denoising and deblurring simultaneously, i.e.,

min
u∈BV(Ω)

∫
Ω

|Du| +
λ

2

∫
Ω

log
(
γ2 + (Ku − f )2

)
dx. (3)
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Then, we prove that the ADMM algorithm starting from any initialization is globally convergent
to a stationary point under certain conditions. Furthermore, comparisons with the state-of-the-
art method proposed in [?] show the effectiveness of our proposed method in terms of the image
restoration quality and noise reduction.

The outline of the paper is summarized as follows. In the next section, we analyse some
fundamental properties of Gaussian distribution, Laplace distribution and Cauchy distribution. In
Section 3, we illustrate the nonconvex variational model for denoising and deblurring, and prove
the existence and uniqueness of the solution. In Section 4, we develop the ADMM algorithm for
the proposed nonconvex model and present the convergence results. In Section 5, we demonstrate
the performance of the ADMM algorithm on the nonconvex model (??) by comparing with other
existing algorithms. Finally, we conclude the paper with some remarks in Section 6.

2 Statistical Properties for Cauchy Distribution

Cauchy distribution is a special case of the α-stable distribution with α = 1, and is important
as a canonical example of the “pathological” case [?, ?, ?]. It is closed under linear fractional
transformations with real coefficients [?]. However, different from the most α-stable distributions,
it possesses a probability density function that can be expressed analytically [?, ?]:

PC(x) =
γ

π
(
(x − µ)2 + γ2) ,

where µ is the parameter to specify the location of the peak, γ > 0 is the scale parameter that
decides the half-width at half-maximum. Here, we use C(µ, γ) to denote Cauchy distribution. Its
mode and median are both µ, while the mean, variance and higher moments are undefined. In
addition, Cauchy distribution is infinitely divisible, i.e., for every positive integer n, there exists n
independent identically distribution (i.i.d.) random variables Xn1, Xn2, . . . Xnn satisfied that Xn1 +

Xn2 + · · ·+ Xnn follows Cauchy distribution. Due to the property of the infinite divisibility, random
variables following Cauchy distribution obey the generalized central limit theorem [?].

Cauchy distribution is closely related to some other probability distributions. Cauchy distri-
bution belongs to the heavy-tailed distribution, where the tail heaviness is determined by the scale
parameter γ. In particularly, if X and Y are two independent Gaussian distributed random variables
with mean 0 and variance 1, then the ratio X/Y follows with the standard Cauchy distribution, i.e.,
C(0, 1) [?, ?]. Therefore, we determine to apply this property to create the noisy images corrupted
by Cauchy noise in the following Section 5.

Further to show the statistical properties of the Cauchy distribution, we compare it with two
most common used probability distributions: Gaussian distribution (N(µ, σ2) with mean µ and
variance σ2) and Laplace distribution (L(µ, b) with mean µ and variance 2b2).

Since both Gaussian distribution and Cauchy distribution belong to α-stable distribution with
α = 2 and α = 1, respectively, they both are bell-shaped. Moreover, we can easily obtain the
following relation between them at x = 0.

Proposition 2.1. Let X be a random variable. Assume that X ∼ N(0, 1). Then X has the same

values of the probability density functions as C(0,
√

2
π ) at x = 0.

In addition, both Laplace distribution and Cauchy distribution belong to the heavy-tailed dis-
tributions. We demonstrate the mutual relation among them around the tails of distribution curves
in the following proposition.

Proposition 2.2. Let X be a random variable. Assume that µ = 0, we have the following relations:
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Figure 1. Comparison for probability density functions of N(0, 1), L(0,
√

2
π
) and C(0,

√
2
π
). (a) The plots

of three distributions, (b) the zoomed-in portion of the curves around the peaks, (c) the zoomed-in portion
of the curves around the tails.

1. If x = σ = b = γ, the ratio of PG, PL and PC is 1 :
√

π
2e :

√
e

2π .

2. If x = 3σ = 3b = 3γ, the ratio of PG, PL and PC is 1 :
√

π
2 e

3
2 :

√
1

50πe
9
2 ,

where PG and PL denote the probability density functions for N(0, σ2) and L(0, b).

Based on Proposition ??, for these three specific distributions, we can see that a random vari-
able with Gaussian distribution has largest probability to fall at x = σ = b = γ, which corresponds
to small perturbation. But at x = 3σ = 3b = 3γ, which corresponds to high perturbation, the
probability from Laplace distribution is 5 times more than that from Gaussian distribution, and the
probability from Cauchy distribution is even 7 times more.

In Figure ??, we show the curves of three probability density functions of Gaussian distribu-
tion, Laplace distribution and Cauchy distribution. From Figure ??(a), we find that these three
distributions have different behaviours at the peaks and tails, see the details in the zoomed-in por-
tions. Figure ??(b) shows the zoomed-in portion around the peaks of three distributions. Gaussian
distribution has the same peak compared with Cauchy distribution while the curve of Gaussian
distribution is slightly higher on both sides of the peak. Figure ??(c) shows the zoomed-in portion
around the tails of three distributions. The tail of Laplace distribution is closer to Cauchy distri-
bution compared with Gaussian distribution. However, there still exists a gap between the curves
of Laplace distribution and Cauchy distribution. Therefore, Cauchy distribution can not be simply
replaced with Gaussian distribution or Laplace distribution in image restoration problems.

3 Nonconvex Variational Model

In this paper, we focus on the deblurring and denoising case. In [?], a variational model for
the denoising case was proposed. For self-containedness, similarly we deduce the nonconvex
variational model for the deblurring and denoising case based on the maximum a posteriori (MAP)
estimator and the Bayes’s rule. Subsequently, we prove its existence and uniqueness.

3.1 Nonconvex variational model via MAP estimator

We consider f (x) and u(x) for each x ∈ Ω as random variables. The maximum a posteriori (MAP)
estimate of u is the most likely value of u given f , i.e., u∗ = arg maxu P(u| f ). Based on Bayes’s
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rule and the independence of u(x) and f (x) for all x ∈ Ω, we obtain

max
u

P(u| f )= max
u

P( f |u)P(u)
P( f )

= min
u
− log P( f |u) − log P(u)

= min
u
−

∫
Ω

log P( f (x)|u(x)) dx − log P(u),

(4)

where the term log P( f (x)|u(x)) describes the degradation process that produced f from u based
on (??), and the term log P(u) is called as the prior on u. Since η follows C(0, γ) for each x ∈ Ω,
we have

P( f (x)|u(x)) =
γ

π
(
((Ku)(x) − f (x))2 + γ2) .

In addition, we use the prior P(u) = exp(−µ
∫
Ω
|Du|). Then, we obtain the variational model for

the deblurring and denoising case

min
u∈BV(Ω)

∫
Ω

|Du| +
λ

2

∫
Ω

log
(
γ2 + (Ku − f )2

)
dx, (5)

where λ = 2
µ > 0 is the regularization parameter. Although the TV regularization is convex, due

to the logarithm in the data-fitting term,
∫
Ω

log
(
γ2 + (Ku − f )2

)
dx is nonconvex. Therefore, the

solutions of (??) strongly depend on the initializations and numerical schemes.

3.2 Existence and uniqueness of a solution to the model (??)

According to the properties of the total variation, we prove that there exists at least one solution
for the nonconvex variational problem in the BV space.

Theorem 3.1. Assume that Ω is a connected bounded set with compacted Lipschitz boundary and
f ∈ L2(Ω). Suppose that K ∈ L(L1(Ω), L2(Ω)) is nonnegative and linear with K1 , 0. Then the
model (??) has at least one solution u∗ ∈ BV(Ω).

Proof. Set E(u) =
∫
Ω
|Du|+ λ

2

∫
Ω

log
(
γ2 + (Ku − f )2

)
dx. Obviously, E(u) is bounded from below.

Considering a minimizing sequence {uk}, we know that E(uk) is bounded, so we have that both{∫
Ω
|Duk|

}
and

∫
Ω

log
(
γ2 + (Kuk − f )2

)
dx are

Since the logarithmic function is strictly increasing and γ > 0, we can easily obtain that {Kuk}

is bounded in L2(Ω) and in L1(Ω).
Based on

{∫
Ω
|Duk|

}
bounded, by using the Poincaré inequality [?], we have

‖uk − mΩ(uk)‖2 ≤ C
∫

Ω

|D(uk − mΩ(uk))| = C
∫

Ω

|Duk|, (6)

where mΩ(uk) = 1
|Ω|

∫
Ω

ukdx, C is a positive constant and |Ω| represents the measure of Ω. As
Ω is bounded, then ‖uk − mΩ(uk)‖2 and ‖uk − mΩ(uk)‖1 are bounded for each k. Because K ∈
L(L1(Ω), L2(Ω)) is continuous, we have that {K(uk − mΩ(uk))} is bounded in L2(Ω) and L1(Ω).
Thus, we have that

|mΩ(uk)| · ‖K1‖1 ≤ ‖K(uk − mΩ(uk))‖1 + ‖Kuk‖1.

Due to K1 , 0, we get that mΩ(uk) is uniformly bounded. Combining with (??), the sequence {uk}

is bounded in L2(Ω) and in L1(Ω). Recalling that
{∫

Ω
|Duk|

}
is bounded, we get the boundedness

of {uk} in BV(Ω).
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Therefore, there exists a subsequence {unk } that converges strongly in L1(Ω) to some u∗ ∈
BV(Ω) as k → ∞, while {Dunk } converges weakly as a measure to Du∗. Since K is linear and
continuous, {Kunk } converges strongly to Ku∗ in L2(Ω). According to the lower semicontinuity of
the total variation and Fatou’s lemma, we obtain that u∗ is a solution of the model (??). �

Although the objective function in (??) is nonconvex, we are still able to obtain a result on the
uniqueness of the solution under some assumptions.

Theorem 3.2. Assume that f ∈ L2(Ω) and K is injective, then the model (??) has a unique solution
u∗ in ΩU := {u ∈ BV(Ω) : f (x) − γ < (Ku)(x) < f (x) + γ for all x ∈ Ω}.

Proof. For each fixed x ∈ Ω, we define a function g : R→ R as

g(t) = log
(
γ2 + (t − f (x))2

)
.

Based on the second order derivative of g:

g′′(t) =
2
(
γ2 − (t − f (x))2

)
(
γ2 + (t − f (x))2)2 ,

we get that g is strictly convex, if f (x) − γ < t < f (x) + γ. Since K is injective, we have that if
f (x) − γ < (Ku)(x) < f (x) + γ, g((Ku)(x)) is strictly convex. Combining with the fact that the TV
is convex and K is a linear operator, the objective function of the model (??) is strictly convex in
ΩU . Hence, there exists a unique solution for the model (??) in ΩU . �

Note that Cauchy noise is so impulsive even with small γ that many points in f are heavily
corrupted. Then, the images in ΩU should still have some impulsive noise left. If we also take the
smoothing property of the blurring operator K into account, the unique solution in ΩU will not be
a satisfactory restoration result. In Section 5.1, we will show it numerically.

4 Proposed ADMM Algorithm

Due to the nonconvexity, the solutions of the variational model (??) strongly depend on the initial-
izations and numerical algorithms. Taking advantage of the recent results in [?], in this section we
apply the ADMM algorithm to solve the minimization problem in (??) for restoring the degraded
images with blurring and Cauchy noise. Then, we prove that the proposed ADMM algorithm is
globally convergent to a stationary point under certain conditions.

4.1 The ADMM algorithm for nonconvex and nonsmooth problem

Before applying the ADMM algorithm to solve the nonconvex model (??), we briefly review this
algorithm and its convergence result under the nonconvex and nonsmooth case in [?].

Let x = [x>1 , · · · , x
>
s ]> ∈ RN and A = [A1, · · · , As] ∈ RM×N where xi ∈ R

ni , Ai ∈ R
M×ni ,∑s

i=1 ni = N. We consider the minimization problem formulated as,

min
x,y
F (x) + G(y) (7)

s.t. Ax + By = 0

where F (x) is a continuous, proper, possibly nonsmooth and nonconvex function, G(y) is a proper,
differentiable and possibly nonconvex function, and y ∈ RL is a variable with the corresponding
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coefficient B ∈ RM×L. By introducing a Lagrangian multiplier w ∈ RM for the linear constraint
Ax + By = 0, we have the augmented Lagrangian function

Lβ(x, y; w) = F (x) + G(y) + w>(Ax + By) +
β

2
‖Ax + By‖22,

where β is a positive penalty parameter.
According to the framework of the ADMM algorithm [?, ?], the solution (xk+1, yk+1) of the

nonconvex optimization can be achieved iteratively:

xk+1
1 = arg min

x1

Lβ(x1, xk
2, · · · , x

k
s, y

k; wk)

... =
...

...

xk+1
s = arg min

xs

Lβ(xk+1
1 , xk+1

2 , · · · , xs, yk; wk)

yk+1 = arg min
y
Lβ(xk+1, y; wk)

wk+1 = wk + β(Axk+1 + Byk+1).

(8)

The convergence result of the ADMM algorithm under the nonconvex and nonsmooth case is as
follows [?].

Theorem 4.1. LetD =
{
(x, y) ∈ RN+L : Ax + By = 0

}
be the nonempty feasible set andF (x)+G(y)

is coercive over D, i.e., F (x) + G(y) → ∞ for any (x, y) ∈ D and ‖(x, y)‖ → ∞. Suppose that
A, B have full column rank 1 and Im(A) ⊂ Im(B). Assume that F (x) is either restricted prox-
regular 2 or piecewise linear, and G(y) is Lipschitz differentiable with the constant L∇G > 0. Then,
the ADMM algorithm is subsequentially convergent for any β larger than a certain constant β0.
If Lβ satisfies the Kurdyka-Łojasiewicz (KL) inequality [?, ?, ?, ?], then the ADMM algorithm
(??) starting from any initialization (x0, y0,w0) globally converges to a unique stationary point
(x∗, y∗,w∗) of the augmented Lagrangian Lβ(x, y; w).

4.2 The ADMM algorithm for solving (??)

Taking advantage of the convergence result of the ADMM algorithm, we apply it to solve the
nonconvex variational model in (??) for simultaneously denoising and deblurring the degraded
images corrupted by Cauchy noise. From now on we proceed in discrete terms, but, for the sake of
simplicity, we keep the notation from the continuous context. We assume that the discrete image
domain Ω contains n×n pixels. The discrete minimization nonconvex model of (??) is formulated
as follows:

min
u∈Rn2

‖∇u‖1 +
λ

2

〈
log

(
γ2 + (Ku − f )2

)
, 1

〉
, (9)

1Note that the full column rank assumption can be weakened by the following assumption: for the general matrix
A and B, there exists two Lipschitz continuous maps such that H1(u) = arg minx{F (x) : Ax = u} and H2(v) =

arg miny{G(y) : By = v}.
2A function h : RN → R is restricted prox-regular, if for any sufficiently large M ∈ R+ and any bounded set T ⊂ RN ,

there exists τ > 0 such that

h(y) +
τ

2
‖x − y‖2 ≥ h(x) + 〈d, y − x〉, for all x, y ∈ T \ S M , d ∈ ∂h(x), ‖d‖ ≤ M

where S M := {d ∈ dom(∂h) : ‖d‖ > M for all d ∈ ∂h} is the exclusion.

7



where f ∈ Rn2
is obtained by stacking the columns of the corresponding n × n gray-scale image,

and K ∈ Rn2×n2
. The TV regularization ‖∇u‖1 is given as,

‖∇u‖1 =

n2∑
i=1

√
(∇xu)2

i + (∇yu)2
i ,

where ∇x ∈ R
n2×n2

and ∇y ∈ R
n2×n2

are the discrete first order forward differences in the x- and
y-direction under the periodic boundary condition, respectively. The discrete gradient of u, ∇u, is
defined as ∇u = [(∇xu)>, (∇yu)>]> ∈ R2n2

.
Based on the framework of the ADMM algorithm, we introduce a new auxiliary variable

v ∈ Rn2
and obtain the following constrained nonconvex minimization problem:

min
u,v∈Rn2

‖∇u‖1 +
λ

2

〈
log

(
γ2 + (v − f )2

)
, 1

〉
(10)

s.t. Ku = v.

Let w ∈ Rn2
be the Lagrangian multiplier for the constraint Ku = v. Then we have the correspond-

ing augmented Lagrangian function,

Lβ(u, v,w) = ‖∇u‖1 +
λ

2

〈
log

(
γ2 + (v − f )2

)
, 1

〉
+ 〈w,Ku − v〉 +

β

2
‖Ku − v‖22,

where β > 0 is a penalty parameter that controls the convergence speed of the ADMM algo-
rithm. The whole algorithm for restoring the blurred images corrupted by Cauchy noise is given
in Algorithm 1.

Algorithm 1. ADMM algorithm for solving (??)

1: Initialize u0, v0, w0; set λ, β.
2: For k = 1, 2, . . . , calculate iteratively uk+1, vk+1,wk+1.

uk+1 ∈ arg min
u
‖∇u‖1 +

β

2

∥∥∥∥∥∥Ku − vk +
wk

β

∥∥∥∥∥∥2

2
(11)

vk+1 = arg min
v

λ

2

〈
log

(
γ2 + (v − f )2

)
, 1

〉
+
β

2

∥∥∥∥∥∥Kuk+1 − v +
wk

β

∥∥∥∥∥∥2

2
(12)

wk+1 = wk + β(Kuk+1 − vk+1) (13)

3: If uk+1 satisfies the stopping criteria, it returns uk+1 and stops.

In Algorithm ??, the main computations are in the steps to solve the minimization problems
in (??) and (??). The u-subproblem (??) can be efficiently solved by many methods, for instance
the dual algorithm [?], the split-Bregman algorithm [?, ?, ?, ?], the primal-dual algorithm [?, ?]
,the infeasible primal-dual algorithm of semi-smooth Newton-type [?], and the ADMM algo-
rithm [?, ?, ?]. Here, we apply the dual algorithm proposed in [?]. Since there exists the second-
order derivative for the objective function in (??), we can utilize the Newton method to solve it
efficiently. Inspired by [?], as a special case of (??), we have the following convergence result
for Algorithm ??. In addition, taking some specific properties of the variational model (??) into
account, we will give a relatively simple proof.
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Theorem 4.2. Let (u0, v0,w0) be the initial value and {(uk, vk,wk)} be the iterative sequence gen-

erated by Algorithm ??. Then, if β >
λ+
√
λ2+8λγ2

2γ2 and K has full column rank, the sequence

{(uk, vk,wk)} converges globally to the unique limit point (u∗, v∗,w∗). Moreover, the unique limit
point is a stationary point of Lβ.

In order to prove Theorem ??, based on the model in (??) we define the following functions:

F : Rn2
→ R, F (u) = ‖∇u‖1

G : Rn2
→ R, G(v) =

λ

2

〈
log

(
γ2 + (v − f )2

)
, 1

〉
. (14)

The feasible set is ΩF = {(u, v) ∈ Rn2
⊗ Rn2

: Ku − v = 0}. First, we give some useful lemmas that
will be used in the main proof.

Lemma 4.1. Algorithm ?? holds that,

1. for all k ∈ N, ∇G(vk) = wk.

2. ‖wk − wk+1‖ ≤ λ
γ2 ‖vk − vk+1‖.

Proof. Substituting (??) on wk into the first-order optimality condition of the v-subproblem on vk:
∇G(vk) − wk−1 + β(vk − Kuk) = 0, we have ∇G(vk) = wk for all k ∈ N.

Since G is smooth, we can calculate its second derivative

∂2
vi
G = λ

γ2 − (vi − f )2

(γ2 + (vi − f )2)2 ≤
λ

γ2 ,

and L∇G = λ
γ2 is Lipschitz constant for ∇G. Then, we obtain

‖wk − wk+1‖ = ‖∇G(vk) − ∇G(vk+1)‖ ≤ L∇G‖vk − vk+1‖.

�

Lemma 4.2. Let {(uk, vk,wk)} be the iterative sequence generated by Algorithm ??. If β >
λ+
√
λ2+8λγ2

2γ2 , the iterative sequence {(uk, vk,wk)} satisfies:

1. Lβ(uk, vk,wk) is lower bounded and nonincreasing for all k ∈ N.

2. {(uk, vk,wk)} is bounded.

Proof. According to the optimality condition of the u-subproblem (??), we define

dk+1 := −(K>wk + βK>(Kuk+1 − vk)) ∈ ∂F (uk+1). (15)

From the equation (??) and the definition of subgradient F , it follows

Lβ(uk, vk,wk) − Lβ(uk+1, vk,wk)

= F (uk) − F (uk+1) + 〈wk,Kuk − Kuk+1〉 +
β

2
‖Kuk − vk‖2 −

β

2
‖Kuk+1 − vk‖2

= F (uk) − F (uk+1) + 〈K>wk + βK>(Kuk+1 − vk), uk − uk+1〉 +
β

2
‖Kuk − Kuk+1‖2

= F (uk) − F (uk+1) − 〈dk+1, uk − uk+1〉 +
β

2
‖Kuk − Kuk+1‖2

≥
β

2
‖Kuk − Kuk+1‖2

(16)

9



where the second equality follows from the cosine rule: ‖b+c‖2−‖a+c‖2 = ‖b−a‖2 +2〈a+c, b−a〉
and the last inequality follows from the fact that F (u) is convex.

For the updates of vk+1, wk+1, by the cosine rule and Lemma ??, we have

Lβ(uk+1, vk,wk) − Lβ(uk+1, vk+1,wk+1)

= G(vk) − G(vk+1) + 〈wk+1, vk+1 − vk〉 − β‖Kuk+1 − vk+1‖2 +
β

2
‖vk − vk+1‖2

= G(vk) − G(vk+1) − 〈∇G(vk+1), vk − vk+1〉 −
1
β
‖wk − wk+1‖2 +

β

2
‖vk − vk+1‖2

≥ −
L∇G

2
‖vk − vk+1‖2 −

L∇G
β
‖vk − vk+1‖2 +

β

2
‖vk − vk+1‖2

= C‖vk − vk+1‖2

(17)

where C =
β
2 −

L∇G
2 −

L∇G
β . In order to make sure C > 0, we need that the penalty parameter β

satisfies:

β >
L∇G +

√
L2
∇G

+ 8L∇G

2
=
λ +

√
λ2 + 8λγ2

2γ2 .

According to (??) and (??), we have

Lβ(uk, vk,wk) − Lβ(uk+1, vk+1,wk+1) ≥ C‖vk − vk+1‖2 +
β

2
‖Kuk − Kuk+1‖2.

This means that Lβ(uk, vk,wk) is nonincreasing for all k ∈ N.
As K has full column rank, there exists v̂ such that Kuk − v̂ = 0. Therefore, we have

F (uk) + G(v̂) ≥ min
u,v
{F (u) + G(v) : Ku − v = 0} > −∞.

So we obtain the following result

Lβ(uk, vk,wk) = F (uk) + G(vk) + 〈wk,Kuk − vk〉 +
β

2
‖Kuk − vk‖2

= F (uk) + G(vk) + 〈∇G(vk), v̂ − vk〉 +
β

2
‖Kuk − vk‖2

≥ F (uk) + G(v̂) −
L∇G

2
‖v̂ − vk‖2 +

β

2
‖Kuk − vk‖2

= F (uk) + G(v̂) +
β − L∇G

2
‖Kuk − vk‖2 > −∞

Since Lβ(uk, vk,wk) is upper bounded by Lβ(u0, v0,w0) and obviously F (u) +G(v) is coercive
over ΩF , we obtain that {uk} and {vk} are bounded. Based on Lemma ??, we have that {wk} is also
bounded. �

Lemma 4.3. Set ∂L(uk+1, vk+1,wk+1) = (∂uL, ∂vL, ∂wL). Then there exists a constant C1 > 0
such that ‖∂L(uk+1, vk+1,wk+1)‖ ≤ C1‖vk − vk+1‖.

Proof. Because ∂wL = Kuk+1 − vk+1 = 1
β (wk+1 − wk) and ∂vL = wk+1 − wk, based on Lemma ??,

we have

‖∂wL‖ ≤
L∇G
β
‖vk − vk+1‖, (18)

‖∂vL‖ ≤ L∇G‖vk − vk+1‖. (19)
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By the definition of the subgradient, we have

∂uL = ∂F (uk+1) + K>wk+1 + βK>(Kuk+1 − vk+1)

= ∂F (uk+1) + K>wk + βK>(Kuk+1 − vk) + K>(wk+1 − wk) + βK>(vk − vk+1).
(20)

Thus, according to the optimal condition 0 ∈ ∂F (uk+1) + K>wk + βK>(Kuk+1 − vk), we have
K>(wk+1 − wk) + βK>(vk − vk+1) ∈ ∂uL. Combining (??), (??), (??) and Lemma ??, we obtain

‖∂L(uk+1, vk+1,wk+1)‖ ≤
(
L∇G

(
1 +

1
β

+ ‖K‖
)

+ β‖K‖
)
‖vk − vk+1‖

= C1‖vk − vk+1‖

where C1 =
(
L∇G(1 + 1

β + ‖K‖) + β‖K‖
)
. �

In the end of this section, we give the proof for the convergence theorem.

Proof. ( of Theorem ??)
As K has full column rank, the feasible set ΩF is nonempty. By Lemma ??, the iterative se-
quence {(uk, vk,wk)} is bounded, so there exists a convergent subsequence {(unk , vnk ,wnk )}, i.e.,
(unk , vnk ,wnk ) converges to (u∗, v∗,w∗) as k goes to infinity. Due to the nonincreasing and lower-
bounded Lβ(uk, vk,wk), we have ‖K(uk − uk+1)‖ → 0 and ‖vk − vk+1‖ → 0 as k → ∞. According to
Lemma ??, there exists pk ∈ ∂Lβ(uk, vk,wk) such that ‖pk‖ → 0. Further, this leads to ‖pnk‖ → 0 as
k → ∞. Based on the definition of the general subgradient [?], we obtain that 0 ∈ ∂Lβ(u∗, v∗,w∗),
i.e., (u∗, v∗,w∗) is a stationary point.

Referring to [?, ?], the function F (u) is semi-algebraic and G(v) is a real analytic function.
Thus, we conclude that Lβ satisfies the KL inequality [?]. Then, as in the proof of Theorem 2.9
in [?], we can deduce that the iterative sequence {(uk, vk,wk)} is globally convergent to (u∗, v∗,w∗).

�

Remark 1. In the Theorem ?? we need that K has full column rank. Since K is a blurring matrix
in our problem, this requirement does not impose serious restriction. Especially under the periodic
boundary condition, this condition is satisfied.

5 Numerical Experiments

In this section, we present several numerical experiments to demonstrate the performance of the
proposed method for restoring the blurred images corrupted by Cauchy noise. Here, we use ten
8-bit 256-by-256 gray-scale test images, see Figure ??. All numerical results are performed under
Windows 10 and Matlab Version 7.10 (R2012a) running on a Lenovo laptop with a 1.7GHz Intel
Core CPU and 4G RAM memory.

In order to evaluate the performance of the proposed method, we utilize the peak signal-to-
noise ratio (PSNR) and the structural similarity index (SSIM) [?], which are defined as

PSNR = 20 log 10
(

255n
‖ũ − u‖2

)
, SSIM =

2µũµu(2σ + c2)
(µ2

ũ + µ2
u + c1)(σ2

ũ + σ2
u + c2)

,

where ũ is the restored image, u is the original image, µũ and µu denote their means, σ2
ũ and σ2

u
represent their variances, σ is the covariance of ũ and u, and c1, c2 > 0 are constants. The values of
PSNR are satisfied for the human subjective sensation, which the higher PSNR value implies the
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(a) Parrot (b) Cameraman (c) Baboon (d) Boat (e) Bridge

(f) House (g) Leopard (h) Plane (i) Test (j) Montage

Figure 2. Original images.

better quality of restored images. The SSIM conforms with the quality perception of the human
visual system (HVS). If the SSIM value is closer to 1, the characteristic (edges and textures) of
restored images is more similar to the original image.

In our method, we set the stopping condition based on the following relative improvement
inequality, ∣∣∣∣∣∣E(uk+1) − E(uk)

E(uk+1)

∣∣∣∣∣∣ < ε (21)

where E is the objective function in (??) and ε = 5×10−5. In addition, since the regularization pa-
rameter λ balances the trade-off of the good fit to f and the smoothness from the TV, we manually
tune it in order to obtain the highest PSNR values of the restored images. The selection method
with respect to λ is out of the scope in this paper. The parameter β in Algorithm ?? controls the

convergent speed. Based on Theorem ??, we round β > λ+
√
λ2+8λγ2

2γ2 up to the nearest value with
two digits after the decimal point as β. In addition, we set the iteration number for the Newton
method in solving v-subproblem as 3. The iteration number for solving u-subproblem equals 5 for
the denoising case and 10 for the simultaneous deblurring and denoising.

5.1 Different initializations

Since the model (??) is nonconvex, although we are able to prove that the ADMM algorithm
converges globally to a unique stationary point with given starting point (u0, v0,w0), the local min-
imizers that we obtained still depends on the initializations. To study the influence of initializations
and find the one which provides better restoration, in this section we test on three different choices
of u0 on denoising case:

(I) :u0 = max(0,min( f , 255));

(II) :u0 = med f ile2( f );

(III) :u0 = f ,

12



Table 1. PSNR and SSIM for the test images “Parrot” and “Cameraman” with different initial values.
Parrot Cameraman

Noise Condition PSNR SSIM PSNR SSIM
I 29.06 0.8729 28.72 0.8520

γ = 5 II 27.83 0.8505 26.31 0.8500
III 24.88 0.7730 23.75 0.7275
I 27.12 0.8268 26.67 0.7949

γ = 10 II 26.68 0.8218 25.60 0.8093
III 22.87 0.6895 22.43 0.6653

(a) (b) (c) (d)

Figure 3. Comparison of different initial values for removing Cauchy noise in the image “Parrot”, with
γ = 5 (in the 1st row) and 10 (in the 2nd row). (a) noisy images, (b) restored images of (I), (c) restored
images of (II), (d) restored images of (III).

where med f ile2( f ) denotes the result from the median filter with window size 3. Note that due
to the impulsive features of Cauchy noise, the median filter usually provides fairly good results.
In addition, based on Theorem ?? with u0 in case (III) we will obtain the unique solution in ΩU .
But due to the impulsive property of Cauchy noise, some pixel values in the restored image is far
beyond the range [0, 255].

In Table ??, we list the values of PSNR and SSIM by using different initializations in our
method for the test images “Parrot” and “Cameraman” with the noise level γ = 5 and 10. It is
obvious that the values of both PSNR and SSIM are highest in the case (I), and are lowest in the
case (III). Hence, the unique solution in ΩU is not a satisfactory local minimizer.

In Figure ?? we show the restored “Parrot” images in order to compare the visual performance
by applying different initial values. In Figure ?? (d), we see that there is still some noise left in
restored images. Compared with the results from (II), the ones from (I) include clearer features
with less noise, especially in the region around the eye and black stripes of “Parrot”. Hence, we
choose (I) as the initial value in the following numerical experiments.

Theorem ?? demonstrate that with given initial value Algorithm ?? converges globally to a
unique stationary point. In Figure ??, we show the plots of the objective function values in (??)

13
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Figure 4. Plots of the objective function values versus iterations for the noisy images “Parrot” and “Cam-
eraman” with γ = 5 (in the 1st row) and 10 (in the 2nd row).

versus the number of iteration in order to observe the convergence of our method. It’s clear that the
objective function value keeps decreasing along the iterations. Furthermore, our method basically
converges very fast except in case (III), which does not provide good restorations.

5.2 Comparisons of image deblurring and denoising

In order to show the superior performance of the proposed method, we compare our method with
the other two well-known methods: the median filter (matlab function ‘medfilt2’) with window
size 3 and the convex variational method proposed in [?] (“conRE” for short). For fair comparison,
we use the same stopping rule in the convex variational method, and adjust the two parameters in
the model in turn to obtain the highest PSNR values.

First, we compare the three methods for Cauchy noise removal, i.e., by setting K as identity
operator. The noisy images are obtained by the degradation f = u + γ

η1
η2

, where η1 and η2 are
independent random variables following Gaussian distribution with mean 0 and variance 1. Table
?? and ?? list the values of PSNR and SSIM for the restored images with the noise levels γ = 5 and
γ = 10, respectively. Obviously, comparing with the other two variational methods, the median
filter provides worst results with respect to the values of PSNR and SSIM. We always obtain the
highest PSNR values by our method. Especially with lower noise level (γ=5), the PSNR values
from our method are around 1dB higher than the convex method in [?]. Furthermore, in most
cases, the SSIM values from our methods are higher than others.

In Figure ?? and ??, we show the results from different methods for removing Cauchy noise
in images “Parrot”, “Cameraman”, “Baboon”, “Boat” and “Plane”. Although the median filter
effectively removes Cauchy noise, it also oversmooths the edges and losses many details. It is
obvious that two variational methods outperform the median filter. Comparing with the convex
variational method, our method is able to preserve more details and remove most Cauchy noise.
To further illustrate the performance of our method, we show the zoomed regions of the restored

14



Table 2. PSNR and SSIM for the noisy images and the restored images by applying different methods
(γ = 5).

PSNR SSIM
Image Noisy Median conRE Ours Median conRE Ours
Parrot 19.20 27.18 27.19 29.06 0.8341 0.8465 0.8729

Cameraman 18.98 25.94 26.51 28.72 0.7996 0.8225 0.8520
Baboon 17.74 19.18 21.18 22.56 0.5069 0.7178 0.7781

Boat 18.01 25.94 27.03 27.94 0.7779 0.8165 0.8541
Bridge 19.13 22.63 24.32 25.25 0.6312 0.7857 0.8097
House 17.94 24.06 25.25 26.26 0.7510 0.7774 0.8308

Leopard 19.07 25.34 26.54 27.51 0.7787 0.7861 0.8309
Plane 17.37 25.09 25.83 27.23 0.8235 0.8354 0.8611
Test 19.19 34.79 39.55 40.77 0.8922 0.9726 0.9864

Montage 19.14 27.52 27.94 31.08 0.8772 0.9180 0.9135

Table 3. PSNR and SSIM for the noisy images and the restored images by applying different methods
(γ = 10).

PSNR SSIM
Image Noisy Median conRE Ours Median conRE Ours
Parrot 16.35 25.51 26.74 27.12 0.7254 0.8202 0.8268

Cameraman 16.06 24.68 25.68 26.67 0.6801 0.7896 0.7981
Baboon 14.87 18.79 20.27 20.96 0.4671 0.6336 0.6634

Boat 15.11 24.39 25.71 25.79 0.6843 0.7710 0.7769
Bridge 16.30 21.94 23.37 23.58 0.5870 0.7123 0.7033
House 15.01 22.91 24.24 24.37 0.6631 0.7465 0.7582

Leopard 16.16 24.16 25.40 25.60 0.6981 0.7649 0.7800
Plane 14.49 23.64 24.85 25.25 0.7104 0.8085 0.8161
Test 16.29 30.45 37.38 38.01 0.7078 0.9607 0.9793

Montage 16.27 26.10 27.16 28.89 0.7451 0.8922 0.8850

images “Parrot”, “Baboon” and “Boat” in Figure ?? and ??, where we can clearly see the difference
among the results from the three methods, e.g., the stripes around the eye in “Parrot”, the nose and
whiskers of “Baboon”, and the ropes and iron pillars of “Boat”.

In the following experiments, we compare the three methods on recovering the blurred images
corrupted by Cauchy noise. Here, we consider the Gaussian blurring operator with size 7 and
standard deviation 3, and the out-of-focus blurring operator with size 5. Further, Cauchy noise
with γ = 5 is added into the blurry images. Table ?? and ?? list the values of the PSNR and SSIM
by applying different methods for the images “Parrot”, “Cameraman”, “Plane” and “Test”. Figure
?? and ?? show the restored images for deblurring and denoising the degraded images.

From Table ?? and ??, we find that our method provides the largest values on both PSNR and
SSIM. Comparing with the convex variational method, our method can improve at least 0.36dB
on PSNR values. In Figure ?? and ??, it is clear that the restored images by the median filter are
oversmoothing, since the median filter cannot deal with deblurring. The convex variational method
can recover edges and textures, but some noise is still not removed. However, our method not only
preserves the fine features but also effectively removes Cauchy noise, which can be clearly seen
from zoomed regions shown in Figure ??.
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(a) Noisy image:19.20 (b) Median:27.18 (c) conRE:27.91 (d) Ours:29.06

(e) Noisy image:18.98 (f) Median:25.94 (g) conRE:26.51 (h) Ours:28.72

(i) Noisy image:17.74 (j) Median:19.18 (k) conRE:21.18 (l) Ours:22.56

(m) Noisy image:18.01 (n) Median:25.94 (o) conRE:27.03 (p) Ours:27.94

(q) Noisy image:17.37 (r) Median:25.09 (s) conRE:25.83 (t) Ours:27.25

Figure 5. Comparison of different methods for removing Cauchy noise, with γ = 5.
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(a) Noisy image:16.35 (b) Median:25.51 (c) conRE:26.74 (d) Ours:27.12

(e) Noisy image:16.06 (f) Median:24.68 (g) conRE:25.68 (h) Ours:26.67

(i) Noisy image:14.87 (j) Median:18.79 (k) conRE:20.27 (l) Ours:20.96

(m) Noisy image:15.11 (n) Median:24.39 (o) conRE:25.71 (p) Ours:25.79

(q) Noisy image:14.49 (r) Median:23.64 (s) conRE:24.85 (t) Ours:25.25

Figure 6. Comparison of different methods for removing Cauchy noise, with γ = 10.
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(a) (b) (c) (d)

Figure 7. Zoomed version of the restored images in Figure ??. (a) original images; (b) the median filter; (c)
the “conRe” model; (d) our method.

6 Conclusion

In this paper, we review and analyze the statistic properties of Cauchy distribution by compar-
ing with Gaussian distribution and Laplace distribution. According to the MAP estimator, we
illuminate the nonconvex variational model for restoring images degraded by blur and Cauchy
noise. Taking advantage of the recent results in [?], the alternating direction method of multiplier
(ADMM) algorithm is applied to solve the nonconvex variational optimization problem, and it is
proved with global convergence. Numerical experiments show that the proposed method outper-
forms another two well-known methods with respect to the qualitative and quantitative compar-
isons.
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(a) (b) (c) (d)

Figure 8. Zoomed version of the restored images in Figure ??. (a) original images; (b) the median filter; (c)
the “conRe” model; (d) our method.

Table 4. PSNR and SSIM for the images degraded by Gaussian blur and Cauchy noise (γ = 5) and the
restored images by different methods.

PSNR SSIM
Image Noisy Median conRE Ours Median conRE Ours
Parrot 17.16 21.13 23.73 24.45 0.6698 0.7174 0.7649

Cameraman 17.17 21.61 23.51 24.10 0.6397 0.6846 0.7490
Plane 15.74 20.52 22.11 22.57 0.6508 0.6666 0.7521
Test 18.86 29.60 32.31 36.71 0.8713 0.8263 0.9647

Table 5. PSNR and SSIM for the images degraded by the out-of-focus blur and Cauchy noise (γ = 5) and
the restored images by different methods.

PSNR SSIM
Image Noisy Median conRE Ours Median conRE Ours
Parrot 17.59 22.26 25.02 25.45 0.7157 0.7496 0.8005

Cameraman 17.42 22.36 24.62 25.08 0.6777 0.7125 0.7735
Plane 15.98 21.31 23.41 23.77 0.6956 0.7210 0.7854
Test 18.94 30.61 33.68 36.97 0.8784 0.8553 0.9560
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(a) (b) (c) (d)

Figure 9. Comparison of the restored results by applying different methods for deblurring and denoising
the images degraded by a Gaussian blur (G, 7, 3) and Cauchy noise (γ = 5). (a) Degraded images; (b) the
median filter; (c) the “conRe” model; (d) our method.
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(a) (b) (c) (d)

Figure 10. Comparison of the restored results by applying different methods for deblurring and denoising
the images degraded by the out-of-focus blur (A, 5) and Cauchy noise (γ = 5). (a) Degraded images; (b) the
median filter; (c) the “conRe” model; (d) our method.

(a) (b) (c) (d)

Figure 11. Zoomed version of the restored results for the image “Parrot” degraded by the Gaussian blur (in
the 1st row) and the out-of-focus blur (in the 2nd row), respectively. (a) Degraded images; (b) the median
filter; (c) the “conRe” model; (d) our method.
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