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Abstract—The increasing design complexity of systems-on-chip
(SoCs) requires designers to work at higher levels of abstraction.
High-level synthesis (HLS) is one approach towards this. It
allows designers to synthesize hardware directly from code
written in a high-level programming language and to more
quickly explore alternative implementations by re-running the
synthesis with different optimization parameters and pragmas.
HLS is particularly interesting for FPGA circuits, where different
hardware implementations can easily be loaded into the target
device. Another perspective on HLS is performance. Compared
to executing the high-level language code on a processor, HLS can
be used to create hardware that accelerates critical parts of the
code. When discussing performance in the context or real-time
systems, it is the worst-case execution time (WCET) of a task that
matters. WCET obviously benefits from hardware acceleration,
but it may also benefit from a tighter bound on the WCET.
This paper explores the use of and integration of accelerators
generated using HLS into a time-predictable processor intended
for real-time systems. The high-level design tool, Vivado HLS, is
used to generate hardware accelerators from benchmark code,
and the system using the generated hardware accelerators is
evaluated against the WCET of the original code. The design
evaluation is carried out using the Patmos processor from the
open-source T-CREST platform and implemented on a Xilinx
Artix 7 FPGA. The WCET speed-up achieved is between a factor
of 5 and 70.

I. INTRODUCTION

The increasing design complexity of systems-on-a-chip
(SoCs) has encouraged the design community to seek design
abstractions with a higher productivity than register-transfer
level (RTL). High-level synthesis (HLS) plays a role in this, by
enabling the automatic synthesis of high-level specifications,
in languages such as C or SystemC, to a low-level cycle-
accurate RTL specification for implementation in application-
specific integrated circuits (ASICs) or field-programmable gate
arrays (FPGAs). Additionally, HLS allows for an efficient
reuse of intellectual property (IP) cores specified in a high-
level language. These IPs can more quickly be re-targeted
for other systems, compared to RTL IPs, which have a more
fixed architecture. HLS thus allows designers to better and
faster take advantage of FPGAs, where different hardware
implementations can easily be refined and replaced in the
device.

In general, when systems utilize hardware accelerators
(HwAs), the benefit comes from the speed-up of the average-
case execution time for specific tasks. Hardware platforms for
hard real-time systems are characterized by strict constraints

on the execution time of tasks, and the worst-case execution
time (WCET) therefore becomes the more important measure
of performance. These systems must therefore exhibit a time-
predictable behavior, which can be analyzed to guarantee worst-
case execution times can be met [1].

When analyzing software, complexity arises from the many
possible branches taken in the code, cache misses and the time
needed for these actions [2]. Using hardware instead of software
may simplify this analysis, particularly if the integration method
allows the HwA to operate in isolation from other (peripheral)
hardware devices. The latency of the HwA can then be obtained
using the HLS tool and an input data set. Furthermore, the
software required to use the HwA is often relatively simple,
mainly involving data transfer. The purpose of utilizing HwAs
in a real-time system is thus the WCET speed-up due to the
hardware acceleration itself and a possible reduction in the
pessimism of the estimations.

This paper explores the integration of HwAs with the
time predictable Patmos CPU of the T-CREST platform [3].
The HwAs are based on benchmark code and synthesized to
RTL code in a hardware description language (HDL) using
Vivado HLS [4]. HwAs presented in the paper are for matrix
multiplication, filter operations and compression.

We evaluate the speed-up achieved for the WCET when
utilizing the HwAs and the resource cost of the HwA integration
on the Artix 7 FPGA. The WCET evaluation is carried out
using the WCET analysis tool platin [5]. We provide speed-up
results for solutions using the HwA compared to pure software
solutions, both for WCET and average-case execution time
(ACET). This allows us to explore whether HLS has matured
for real-time applications since HwAs for real-time systems
are usually designed at RTL.

This paper has two main contributions: (1) it presents an
integration method for HwAs generated using Vivado HLS
with the Patmos CPU, and (2) it investigates and evaluates the
use of HLS to minimize the WCET of a hard real-time system.

This paper is organized into six sections: Section II presents
related work. Section III presents the background on real-time
systems, HLS and the Patmos architecture. Section IV details
the integration of the HwAs with Patmos, the general tool flow
used to obtain the results for the paper and the benchmark
programs. Section V presents the results for the paper and
evaluates these. Finally, we conclude the paper in section VI.



II. RELATED WORK

A large body of literature exists addressing the development
of accelerators in HDL and the co-operation among CPUs and
HwAs. In [6], an FPGA accelerator for a convolutional neural
network is evaluated against a hard-core CPU, with a reported
speed-up of a factor of 17.42. The authors in [7] evaluate the
co-operation of an ARM CPU and HwAs on the Xilinx Zynq
for the average-case speedup and the energy efficiency for
a filtering task. In [8], a hardware accelerator for 2D-DCT
computations is evaluated as a co-processor for the Xilinx
MicroBlaze soft-core processor, providing an overall speed-up
of around 20%.

Accelerators designed using HLS are also common in the
literature. In [9], vision and navigation applications such as
SLAM are accelerated on an FPGA using HLS to generate
the HwAs. The interconnect to a 2 GHz Intel Xeon processor
is modeled and speed-ups ranging from 4.4 to 15 times are
reported. In [10], the authors use the HLS tool LegUp and
explore speed-ups when varying amounts of code from the
CHStone benchmark suite [11] are moved into hardware,
instead of executing on a soft-core MIPS processor. In [12], the
average-case speed-up achieved using HwAs generated with
LegUp is evaluated for the computation of the Mandelbrot set
for an image, presenting speed-ups ranging from 1.11 to 5.70
times.

Accelerators have also been used to reduce the WCET. [13]
presents a hardware scheduler architecture for real-time systems
and the WCET for using either the hardware or the software
implementation is provided. In [14], an implementation of
time-consuming RTOS parts in hardware is proposed as
reconfigurable co-processors. One of these, a hardware task-
status manager (HTSM), is prototyped on an FPGA for
hardware task-status manager and speed-ups ranging between
1.8 to 13.3% are reported. In [15], the authors report a 60%
performance increase when context switching and software
interrupt processing operations in an RTOS are accelerated as
FPGA-based co-processors.

While the literature on the average-case speed-ups achieved
when using either HDL or HLS are plentiful, this paper
considers the speed-up achieved with the co-operation between
a CPU and HwA for the WCET, where the HwAs are generated
using an HLS tool.

III. BACKGROUND

This section provides a brief overview of real-time systems,
HLS, the Patmos architecture and how the HwAs have been
integrated with Patmos.

A. Real-Time Systems

Real-time systems are a class of systems characterized
by timing and reliability requirements, beyond the required
functional correctness of the operations [1]. Real-time systems
can be classified according to the consequences of not meeting
a deadline. For hard real-time systems, missing a deadline
could mean total system failure, some examples include nuclear
power systems and the anti-lock braking system in cars.

Since time is critical for real-time systems, it should be
possible to determine whether all timing constraints will be
met, by computing the upper bound of the WCET for a piece
of code [16].

In WCET analysis, the computed upper bound is dependent
on the hardware information, meaning that the same piece of
code could have different WCET bounds depending on the
hardware that the software will run on. The WCET analysis
determines the CPU time reserved for different tasks during
task scheduling. A pessimistic WCET result, the pessimism
being the difference between the upper bound and the true
WCET, may require some compensation in the form of hand-
crafted modifications or faster hardware, in order to meet timing
constraints.

B. High-Level Synthesis and Accelerators

High-level synthesis (HLS) is an automated design process,
where the functionality expressed in high-level language code,
such as C or SystemC, is synthesized into a hardware descrip-
tion. This synthesis is guided by constraints and directives
provided by the designer, in order to meet design specifications
for clock frequency, resource utilization and performance. For
this paper, the Vivado HLS tool from Xilinx has been utilized
to generate HwAs which co-operate with the Patmos CPU [4].

Vivado HLS provides a number of optimization options
controlled by applying directives. Loop operations can be
pipelined and loops can be unrolled by any given factor to
construct a parallelized version of a circuit. By analyzing
the code, the bit-widths can be optimized manually, using
custom bit-widths, to create circuits which better utilize
FPGA resources such as DSP blocks. Arrays in the code
can be mapped into shared or individual memory blocks
to reduce BRAM utilization or improve memory bandwidth
respectively. The tool also performs a large number of automatic
optimizations, such as if-conversion, dead-code elimination and
many of the standard optimizations used by modern software
compilers.

For a more thorough discussion of the theoretical and
practical aspects of HLS, the reader is directed to [17]. A
survey and evaluation of different FPGA HLS tools is also
provided in [18].

C. The Patmos processor

The HwAs have been integrated with the Patmos CPU of
the open-source T-CREST platform [3], as shown in Figure 1
and explained later in subsection IV-A

Patmos is designed for real-time systems and optimized for
time predictability. It uses special instruction and data cache
memories to ease WCET analysis, and it contains a local private
scratchpad memory for instructions and data. The processor
does not stall, except for explicit instructions that wait for data
from the memory controller. All instruction delays are thus
explicitly visible at the ISA-level.

The platform is supported by a compiler, also developed with
a focus on WCET [19]. In the T-CREST platform, the platin
tool-kit is used for WCET analysis [5]. This tool has been
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Fig. 1. An overview of the system on the CPU bus. The HwA is controlled by
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integrated with the LLVM-based T-CREST compiler, and the
tool is also able to interface with several research and industrial
strength tools. The platin tool has dedicated support for the
specific architecture of Patmos, such as the method caching.

IV. METHOD AND EVALUATION SETUP

A. Integration of processor and accelerator

The HwA is attached to the internal bus of the Patmos
CPU, as shown in Figure 1, using an interface that implements
a subset of the open-core protocol (OCP) [20]. As shown,
the HwA has its own memory bank(s) (the RAM blocks
in Figure 1). These private memory bank(s) allows for the
separation of the HwA operation from the operation of the
processor, which is necessary to ease the WCET analysis.
Without this separation, the interference between the processor
and the HwA would be very challenging to analyze and results
could well be overly pessimistic.

For performance reasons, the HwA typically uses several
memory banks in parallel, allowing it to access multiple
operands in a single clock-cycle. This requires the code used
for HLS to be structured in such a way that the available
memory bandwidth is optimally utilized [21]. Vivado HLS
supports several data allocation schemes which ensures that
multiple memory banks are used whenever possible.

The role of the memory control unit (MCU) is to present the
memory banks as a single address space towards the processor
and enable hardware support for some of the data allocation
schemes supported by Vivado HLS. This requires some address
transformation and this transformation is controlled/configured
from the processor before the HwA is used. When this is
in place, the processor may write operands into the private
memory of the HwA, start it, and at some later point read
back the results. The processor polls the HwA, allowing for
the processor and the HwA to operate concurrently.

B. Synthesis and Design Flow

Figure 2 presents an overview of the tool flow used to obtain
the results of the paper. We will now go through this process.

First, an application is selected and code regions which
can benefit from acceleration are identified. For evaluation,

TABLE I
AN OVERVIEW OF THE TACLE [22] AND CHSTONE [11] BENCHMARKS

USED IN THE PAPER WITH THE AMOUNT OF BYTES WRITTEN AND READ FOR
THE HWAS.

Accelerator Data
type

Lines
of code

Input
data

Output
data

ADPCM dec. Int 293 16 12
ADPCM enc. Int 316 12 16
Filterbank Float 75 1 024 1 024
fir2dim Float 75 208 64
Matrix mult. Int 28 8 192 4 096

we use a set of relatively small benchmark programs which
are described in Section IV-C. The code regions selected for
acceleration are simply the main computational kernels. For
real programs, the WCET analysis tool may be used to identify
code regions which contribute the most to the WCET. We then
partition the code and new .c files are written for HLS, we also
write a new main .c file to use the generated HwA with Patmos.
The new .c files for HLS are written explicitly for synthesis,
with directives and constraints added to guide the process.
The region of code to be accelerated is also passed through
the WCET analysis tool, along with parameters characterizing
the Patmos CPU to estimate the WCET results for the pure
software.

The code for hardware acceleration is synthesized using
Vivado HLS to generate the HwAs, each of which can be
integrated as shown in Figure 1. Vivado HLS can then output
the latency of the HwA given an input data set, thereby
providing a measurement of the WCET for the HwA. This
is used together with the code required to run the HwA and
hardware information, to compute the WCET of the system
with the HwA integrated. The optimal solution is obtained by
testing the effect of different constraints and directives on the
latency and resource utilization of the HwAs and selecting the
solution which minimizes the latency for a reasonable resource
utilization. This includes varying the number of memory
banks available, unrolling and pipelining loops, rewriting code,
constraining resource utilization etc.

Finally, to obtain the resource utilization, the synthesized
design, along with constraint files and the HDL code for the
Patmos CPU are synthesized for the FPGA using Vivado. The
different designs have also been verified on the FPGA.

C. Benchmarks

Table I presents the benchmark programs used from the
TACLe [22] and CHStone [11] benchmark suites. The amount
of data transferred are also presented in Table I. Since we are
performing WCET analysis, the TACLe benchmark suite is
used for the benchmarking process. The CHStone benchmark
code is only used to synthesize the ADPCM HwA, since this
has already been prepared for synthesis, and the code of the
two benchmarks have the same functionality.

For this paper, all the benchmarks have been changed to
32-bit integer data-types. Patmos does not contain a floating-
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Fig. 2. An overview of the tool flow used to obtain the results of the paper.

point unit, and any WCET analysis involving floating-point
operations are very pessimistic since the compiler generates
code to handle floating-point operations. The matrix multipli-
cation benchmark has been changed from a 10× 10 matrix to
a 32× 32 matrix since the original size is deemed too small
to show the benefit of hardware acceleration.

For all TACLe benchmark programs running on the Patmos
CPU, the code has been optimized to utilize the local SPM
for the main data structures. These data structures are the
arrays of the programs which contain the input operands and
the intermediate and final results. This reduces the pessimism
of the WCET results for the software benchmarks, since the
WCET tool is less pessimistic about the SPM than the caches
for data. Whenever the HwA is used, the required data is written
from the local SPM to the HwA’s memory banks through the
MCU, and the results are read back to the local SPM when it
has finished.

We now briefly describe the benchmark programs.
ADPCM encoder/decoder: ADPCM (Adaptive Differen-

tial Pulse Code Modulation) implements the CCITT G.722
ADPCM algorithm for voice compression. It includes both
encoding and decoding functions, selected before using the
ADPCM HwA.

Filterbank: This benchmark implements a filterbank with
several FIR filters for the processing of multiple frequency
sub-bands.

fir2dim: This program performs 2-dimensional filtering,
using the cross-correlation operation.

Matrix mult.: Matrix multiplication is one of the most
fundamental operations in linear algebra, and it is therefore
interesting to have this included in the paper.

V. RESULTS

This section evaluates the HwAs and the associated hardware
in terms of hardware cost and the ACET/WCET speed-up. All
the results of our architecture were produced using Xilinx
Vivado (v16.4) targeting the Xilinx Artix-7 FPGA (model

TABLE II
THE UTILIZATION OF THE DIFFERENT HARDWARE MODULES IN TERMS OF
FLIP-FLOPS (FFS), LOOK-UP TABLES (LUTS), DSP BLOCKS (DPSS) AND

BLOCK-RAMS (BRAMS).

Entity LUT FF BRAM DSP

Patmos 4 931 3 602 8.5 4
MCU 215 215 0 0

ADPCM enc/dec. 5 165 4 798 1 (3)† 26
Filterbank 5 358 4 849 3.5 (4)† 12
fir2dim 2 038 2 108 0 (2)† 6
Matrix mult. 1 439 3 159 0 (9)† 12
†Number in parenthesis denote required number of memory banks.

XC7A100T-1CSG324C). The clock frequency of the system is
80 MHz, limited by the Patmos CPU. All synthesis properties
were set to their defaults.

A. Utilization

Utilization results are presented in Table II, providing the
FPGA resource usage. The different HwAs each have their
own requirements for the number of memory banks, and the
BRAM utilization is thus shown in parenthesis to distinguish
between the requirements for the HwAs themselves, and the
amount of memory banks utilized outside the HwA.

We note that the MCU is very small compared to the HwAs
and the CPU, adding little resource overhead to the system
while providing the benefit of handling data distribution in
hardware, which simplifies the WCET analysis.

Regarding the HwAs, the ADPCM and filterbank HwAs
are comparable to the Patmos CPU itself, which is expected
given the code complexity of the ADPCM and the utilized
parallelization for the filterbank.



TABLE III
ACET AND WCET RESULTS (CLOCK-CYCLES) FOR SOFTWARE, HARDWARE AND THE CALCULATED SPEED-UPS WHEN USING THE HWAS.

Acc. ACET (CC) WCET (CC)

SW HwA Speed-up SW HwA Speed-up

ADPCM enc. 9 010 779 11.57 12 426 1031 12.05
ADPCM dec. 7 714 629 12.26 10 083 762 13.23
Filterbank 6 253 891 217 028 28.81 15 279 271 217 316 70.31
fir2dim 3 695 781 4.73 4 155 848 4.90
Matrix mult. 508 653 36 012 14.12 530 534 36 041 14.72
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Fig. 3. The contribution of the writes, computation and reads in percentages to the total execution time of the HwAs for the WCET and ACET cases.

B. Performance

WCET and ACET results for the HwAs are shown in
Table III. The speed-ups are calculated by dividing the software
measurement with the total measurement for the system using
the HwAs. The ACET and WCET measurements have been
divided into write, compute and read components, and the
contribution of each of these factors to the total execution time
is represented in Figure 3 as bar charts. For each entry in the
bar chart, we have normalized to the total execution time for
each HwA, as given in Table III and presented at the top of
the bars.

For all benchmarks, speed-ups are observed for the ACET
and WCET, but the filterbank benchmark stands out with a
speed-up of around 70.31 times for the WCET. This is also
the benchmark with the largest WCET for software, which
is expected since this is the most computationally demanding
benchmark. The 2D FIR-filter has the smallest speed-up overall,
this is also the benchmark with the least computationally
demanding code. The remaining benchmarks show speed-ups
around 12-14 times both for ACET and WCET.

The difference between the total ACET and WCET for
the HwAs is relatively small, around a couple of hundred

cycles. The WCET results for the HwAs thus show very little
pessimism. The SW ACET and WCET measurements have a
much larger difference, in the range of 400 cycles for the 2D
FIR-filter and up to 9 million cycles for the filterbank. The large
difference between the ACET and WCET measurements for the
filterbank leads to a larger speed-up for the WCET compared to
the ACET, since we do not only see a computational speed-up
but also a reduction in the pessimism.

For the remaining benchmarks, the WCET speed-up is
always larger than the ACET speed-up. However, since the
WCET speed-up is only slightly larger, there is room for
measurement errors affecting any conclusions which can be
drawn from these results.

We can also look at what contributes to the WCET and
ACET when the HwAs are utilized, with the time to perform
writes, reads and computations independently presented in
Figure 3. This provides us with some knowledge of how the
data transfer to the memory banks affects the total speed-
up. The ratio between the three types of measurements is
approximately the same for the ACET and WCET.

For the ADPCM and filterbank benchmarks, the computa-
tions are the main contributor to the WCET, and we would



therefore see little benefit if the local SPM of Patmos could
be used for the HwAs as well, since data transfer is relatively
insignificant. For these benchmarks, greater acceleration may
be possible by exploring other designs, since the computation
is the main bottleneck.

For the matrix multiplication and 2D FIR-filter, the data
transfer is the largest contributor, which reduces the speed-
ups observed. For the 2D FIR-filter and matrix multiplication
benchmarks, we could expect a larger speed-up if the local
SPM was to be utilized since the data transfer accounts for
the largest contributor to the total execution time. The local
SPM would then have to be able to support memory banking,
and we would have to consider its support for instructions,
which take up a portion of the address-space of the local SPM
besides the data.

For other applications, we may also just write directly from
memory to the memory banks for the HwA, such that the
local SPM would not be used to write from. This would, of
course, result in a more pessimistic WCET results due to the
involvement of the memory and cache.

VI. CONCLUSION

This paper presented a method for integrating HwAs gener-
ated using Vivado HLS with the Patmos CPU of the T-CREST
platform. We have also presented some considerations for the
functionality of associated hardware modules to improve the
WCET performance of the system with the HwAs integrated.

The system with the different HwAs integrated was evaluated
in terms of hardware cost and the ACET and WCET speed-
ups. HwAs generated using HLS proved to give a speed-up of
the WCET, showing the benefit of HLS in a real-time system
implemented on a reconfigurable platform.

SOURCE ACCESS

The source code used for synthesis are available at https:
//github.com/A-T-Kristensen/patmos HLS/ tree/master/hls and
the code required to run on the T-CREST platform is available
at https://github.com/A-T-Kristensen/patmos/ tree/patmos hls
paper. The full T-CREST platform is available at https://github.
com/ t-crest/ . The entire work is open-source under the terms
of the simplified BSD license.
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