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Dissimilar pigment regulation in Serpula lacrymans and Paxillus

involutus during inter-kingdom interactions

James P. Tauber," Ramses Gallegos-Monterrosa,? Akos T. Kovacs,?® Ekaterina Shelest“t and Dirk Hoffmeister'™*

Abstract

Production of basidiomycete atromentin-derived pigments like variegatic acid (pulvinic acid-type) and involutin
(diarylcyclopentenone) from the brown-rotter Serpula lacrymans and the ectomycorrhiza-forming Paxillus involutus,
respectively, is induced by complex nutrition, and in the case of S. lacrymans, bacteria. Pigmentation in S. lacrymans was
stimulated by 13 different bacteria and cell-wall-damaging enzymes (lytic enzymes and proteases), but not by lysozyme or
mechanical damage. The use of protease inhibitors with Bacillus subtilis or heat-killed bacteria during co-culturing with
S. lacrymans significantly reduced pigmentation indicating that enzymatic hyphal damage and/or released peptides, rather
than mechanical injury, was the major cause of systemic pigment induction. Conversely, no significant pigmentation by
bacteria was observed from P. involutus. We found additional putative transcriptional composite elements of atromentin
synthetase genes in P. involutus and other ectomycorrhiza-forming species that were absent from S. lacrymans and other
brown-rotters. Variegatic and its precursor xerocomic acid, but not involutin, in return inhibited swarming and colony biofilm
spreading of Bacillus subtilis, but did not kill B. subtilis. We suggest that dissimilar pigment regulation by fungal lifestyle was
a consequence of pigment bioactivity and additional promoter motifs. The focus on basidiomycete natural product gene
induction and regulation will assist in future studies to determine global regulators, signalling pathways and associated

transcription factors of basidiomycetes.

INTRODUCTION

Basidiomycetes play a critical role in element cycling and
lignocellulose disintegration, yet they have also entered the
spotlight for their unprecedented capacity to make an array
of natural products. These small and often highly function-
alized molecules may serve local or global processes (e.g.
defence or carbon cycling, respectively). The terphenylqui-
none atromentin is a widespread pigment and precursor to
numerous compounds depending on the cleavage of the
benzoquinone ring and subsequent various modifications
(Fig. 1; [1, 2]). Atromentin-derived compounds, variegatic
acid from Serpula lacrymans and involutin from Paxillus
involutus, were inducible under nutritional cues, and in
vitro evidence identified them as Fe**-reductants in Fenton
chemistry for lignocellulose degradation, thus highlighting
their involvement in carbon cycling [3, 4]. The brown-rotter
S. lacrymans and the ectomycorrhiza-forming P. involutus

are taxonomically related (Boletales), but live different life-
styles. The former is recognized as an economic burden
because it degrades timber whereas P. involutus is an
important symbiont that promotes tree health by nutrient
exchange [5-7].

We previously reported that the enzymes involved in the
production of atromentin are encoded within a cluster that
is widely orthologous in basidiomycetes, and the promoters
of the two essential genes (encoding an atromentin/quinone
synthetase and aminotransferase) have a conserved genetic
promoter motif [8-10]. Additionally, three fungal-bacterial
co-incubations led to gene cluster induction and subsequent
pigment accumulation in the model S. lacrymans [9]. Here,
using both S. lacrymans and P. involutus, we expanded our
understanding of atromentin-derived pigments and its regu-
lation during co-incubation with bacteria. We questioned
(i) how universal pigment induction was in S. lacrymans

Received 16 August 2017; Accepted 16 November 2017

Author affiliations: 'Department of Pharmaceutical Microbiology at the Hans Kndll Institute, Friedrich-Schiller-University, Winzerlaer Str. 2, 07745
Jena, Germany; Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University, Neugasse 23, 07743 Jena, Germany; >Bacterial
Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Anker Engelunds Vej, 2800 Kgs.
Lyngby, Denmark; “Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans

Knoll Institute, Beutenbergstr. 11a, 07745 Jena, Germany.

*Correspondence: Dirk Hoffmeister, dirk.hoffmeister@leibniz-hki.de or dirk.hoffmeister@hki-jena.de

Keywords: basidiomycetes; natural products; biofilms; promoters; transcriptional regulation.

Abbreviations: HPLC, high performance liquid chromatography; MEP, malt extract peptone; MEME, Multiple Em for Motif Elicitation.
tPresent address: German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany.

Supplementary material is available with the online version of this article.

000582 © 2017 The Authors


http://www.microbiologysociety.org/
http://mic.microbiologyresearch.org/content/journal/micro/

Tauber et al., Microbiology

Atromentic acid

Xerocomic acid

Variegatic acid

Atromentin

Gyrocyanin R=H
Gyroporin R =OH

Isoxerocomic acid R1

S Ofin S0 O%dﬁaw

OH

OH

Chamonixin Involuton

Involutin

R=H
R =0OH

Fig. 1. Chemical structures of atromentin and congener pigments.

and whether related fungal species that follow a different
lifestyle would be similarly stimulated; (ii) what the underly-
ing eliciting factor was; and (iii) what local function the pig-
ments might have during co-incubation. We show that
although pigmentation by bacteria appeared ubiquitous in
S. lacrymans, this was not the case in P. involutus, and that
certain pigments from S. lacrymans impacted biofilm
spreading and swarming motility.

METHODS

Organisms and growth conditions

For Serpula lacrymans S7.9 [3] co-incubations, we fol-
lowed a published protocol with some modifications [9].
A synthetic medium agar plug containing S. lacrymans
mycelium was inoculated atop a fresh synthetic agar plate
(KH,PO, 500 mg 1", NH,Cl 200 mg 17, MgSO, x7 H,0
150mg 17!, CaCl, x2 H,0 50mg 17!, NaCl 25mg 17,
FeCl; x6 H,O 12mg 1"!, Thiamin 1mg 17", p-glucose
monohydrate 5g 17!, 1.8% w/v agar, pH 5.6 by NaOH)
and grown axenically for 13-14 days at ambient tempera-
ture. For all bacteria except B. subtilis to be inoculated
atop the fungus, an overnight culture from a 25% glyc-
erol stock was grown in LB (tryptone 10g 17!, yeast
extract 5g 17", NaCl 5g I') or German Collection of
Microorganisms and Cell Culture M?79-Medium 426
(D-glucose monohydrate 10g 17", bacto peptone 10g 177,
casamino acids 2g 17", yeast extract 2g 17!, NaCl 6g 1",
pH 7.8) with agitation at 28 °C. The culture was pelleted,
washed three times with autoclaved water in 50ml tubes
and resuspended in water to make a 200-fold concentrate
from the initial culture. Two 500 pl and two 250 ul drop-
lets were then added atop a fungal mycelial bed which
started the co-incubation. B. subtilis 3610 was grown in
LB with agitation at 37°C and concentrated 100-fold. For
B. subtilis, rinsed and suspended bacteria were split and

tested under three conditions: (i) as is, with ca. 3.8x10°
cfu. per 250 ul droplet; (ii) autoclaved; or (iii) incubated
with one EDTA-free protease inhibitor cocktail tablet
(Sigmafast, Sigma) before being introduced to the fungus.
Separately, enzymatic damage to the fungus was per-
formed. Here, two 500 ul droplets (50 mg ml™" solution
in PBS) of lysing enzymes from Trichoderma harzianum
(Sigma), proteases (from Streptomyces griseus, Sigma), or
lysozyme from chicken egg white (Sigma) were inoculated
atop the fungal mycelial bed. As controls, mechanical
damage to the mycelia was carried out by scalpel wound-
ing, and all cultures were run alongside water or PBS
droplet controls. Co-cultures, enzymatic assay cultures or
controls were run at ambient temperature in darkness in
duplicates and repeated twice. Co-cultures were extracted
after 7 days, B. subtilis-related co-cultures after 2 days,
and enzymatic assays after 3 days. O. olearius [11] co-cul-
tures with B. subtilis or P. putida were executed the same
as for S. lacrymans, except cultures were extracted after 3
days of growth. Co-cultures of Suillus bovinus JMRC:
SF013586 with B. subtilis were also performed as
described for S. lacrymans, but using an 11-day-old axenic
culture prior to adding Bacillus.

P. involutus ATCC 200175 [6] was grown at ambient tem-
perature in darkness. For P. involutus co-culturing, condi-
tions I-III (below) were tested, each based on established
growth methodologies utilizing glass beads submerged in
liquid media whereby the fungus remained stationary
within the same petri dish, and liquid media can be
exchanged [12-14].

Condition I: the fungus was grown axenically on 15ml syn-
thetic broth for 14 days. Then, 150 ul pre-rinsed bacteria
listed in Table 1 was spotted atop the mycelia (similar to
above with S. lacrymans’ co-culturing), and co-incubated
for 3 days until extraction.
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Table 1. Bacteria used in co-incubation experiments with S. lacrymans and P. involutus

Bacteria were obtained from previous works or the Jena Microbial Resource Collection.

Bacterium Taxonomy Strain/reference
Bacillus subtilis 3610* Bacilli [9]
Lysinibacillus fusiformis M5 Bacilli [28]
Streptomyces iranensis* Actinobacteria [9]
Arthrobacter spp. Actinobacteria [59]
Micrococcus luteus Micrococcales [59]
Acetobacter pasteurianus subsp. pasteurianus Alphaproteobacteria ATCC 9433
Sphingomonas spp. Alphaproteobacteria ST027129
Methylobacterium mesophilicum Alphaproteobacteria ATCC 29983
Pseudomonas putida* Gammaproteobacteria [9]
Escherichia coli XL1-Blue Gammaproteobacteria Stratagene
Pseudomonas tolaasii Gammaproteobacteria [60]
Pseudomonas fluorescens Gammaproteobacteria [59]
Acinetobacter spp. Gammaproteobacteria [59]

*Indicated initial bacteria tested that set the basis for testing various other strains [9].

Condition II: the fungus was axenically grown for 9 days on
15 ml synthetic broth, whereby the broth was then discarded
and the petri was replaced with fresh synthetic media. Then,
3 days later, soil-isolated bacteria, each set to an ODggo=1.8
by water from pelleted and rinsed bacterial pre-cultures,
were inoculated (1 ml each or 1 ml from equally pre-mixed
consortia) into the media and atop of the fungus. The co-
culture was terminated after 7 days.

Condition III: an agar plug containing mycelium (mycelium
facing aerially) was placed atop glass beads submerged in
15ml synthetic broth and the fungus grown for 9 days.
Then, the broth was removed, the mycelia and beads
washed with autoclaved dH,O, and 15 ml synthetic broth
without inorganic nitrogen was added. After 24 h, the broth
was discarded from the N-starved fungal mycelia, and then
introduced to 15ml MEP (malt extract peptone medium;
malt extract 30g 1", soytone 3g 17") amended with p-glu-
cose monohydrate (5g17"). The day before the onset of co-
culturing, soil-isolated Bacilli (isolation described later)
were grown overnight at 37 °C with agitation (180 r.p.m.) in
400 ml LB and used as a seed culture in fresh LB, which was
then grown to an ODgp=0.20-0.25. Then, 0.2 ml of bacteria
suspension was added to the fungal MEP culture. For the
bacterial consortia, 0.2 ml of each bacterium was added. As
a negative control, 0.6 ml of blank LB was added to axenic
fungal cultures. After 7 days, the conditioned broth was
extracted for chromatography (below).

Soil samples for quantification and isolation

Soil was collected from directly underneath P. involutus
mushrooms. 16S and 28S rDNA was amplified from the soil
samples after gDNA nucleic acid extraction (cetyltrimethy-
lammonium bromide and phenol:chloroform:isoamyl alco-
hol methodology), using taxonomic-specific or universal
primers for bacteria, fungi, or archaea (detailed in Table S1

and Fig. S3; available in the online version of this article).
Isolation of spore-forming bacteria from soil samples was
performed by suspending 1 g wet soil samples in 10 ml PBS,
incubating at 80°C for 15min, creating a 1:10 dilution
series using PBS, spreading 100 pl of the suspension onto
MEP or synthetic agar, and incubating at 28 °C or ambient
temperature for up to 2 weeks until colony growth was
observed. Bacteria were re-streaked until single colonies
were isolated and chosen by distinct colony morphology.
Colonies were grown in liquid LB or M79, and their 16S
rDNA was sequenced using 27F and 1492R universal pri-
mers (Table S1, [15, 16]). Soil isolates were deposited at the
Jena Microbial Resource Collection (Table S2).

Sequence collection and motif search

Sequence data were downloaded from the JGI MycoCosm
portal [17]. A list of the 23 atromentin-producing species is
provided in Fig. 4 [2, 3, 6, 11, 18, 19]. Promoter sequences
of Tapinella panuoides and Suillus grevillei were collected
from a cosmid library [2, 9, 10]. The promoter region was
selected as —1000/+2 bp around the transcription start site
[20]. De novo motif prediction was performed by the
MEME (Multiple Em for Motif Elicitation) software [21,
22]. The negative promoter set used for discriminative
mode had been established and reapplied here [9]. In short,
it contained 41 promoters including (i) promoters of genes
flanking cluster regions, and (ii) promoters of non-second-
ary metabolite genes. The parameters for the MEME search
were: motif length: 8-12bp; and 0 or 1 motifs per sequence.
Analyses were grouped as follows: (i) 23 fungi in total; (ii)
‘larger Paxillus’ and ‘Serpula’ groups; and (iii) within the
‘Paxillaceae.” The generic name NPS was used for annotated
or characterized atromentin/quinone synthetases, ADH for
alcohol dehydrogenases/oxidoreductases, and AMT for
aminotransferases.
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Sequence alignment and phylogeny reconstruction

Alignments were performed in MUSCLE with standard
parameters [23, 24]. The phylogenetic trees were built by
PhyML v3.0.1 [25], and statistical branch supports were
computed with a Bayes likelihood-based method. The best
evolutionary model for the ML analysis was selected by the
Smart Model Selection (SMS) in PhyML [26], and the best
substitution models according to the selection criterion AIC
(Akaike information criterion) were HKY85 for nucleotide
sequences and Le-Gascuel for proteins. The architectures of
the promoter and protein ML trees were compared by tan-
glegrams that were performed by the EPoS framework for
phylogenetic analysis [27].

Pigment isolation and chromatographic analyses

For S. lacrymans, S. bovinus and O. olearius co-cultures, the
plates including the inocula and mycelia (two plates made
one biological replicate) were soaked in 200 ml ethyl acetate,
which was amended to a final volume of 400 ml using dH,0
and glacial acetic acid (1 % v/v), and incubated with inter-
mittent shaking for 1 h. The organic phase was removed,
and dried under reduced pressure, followed by lyophiliza-
tion [9]. For P. involutus co-cultures, the conditioned broth
(two plates made one biological replicate) was extracted vig-
orously with twice volume ethyl acetate amended with 1%
(v/v) glacial acetic acid with intermittent shaking or in a
rotator, and dried as above.

High performance liquid chromatography (HPLC) analy-
ses followed a published protocol [9]. Authentic stand-
ards were isolated from the axenic, aged secretomes of
either S. lacrymans S7.9 (variegatic, xerocomic, isoxero-
comic and atromentic acids; xerocomorubin and variega-
torubin), or P. involutus (involutin, gyroporin and
chamonixin) by semi-preparative HPLC as performed
before with some modifications [1, 8, 9], and purity was
verified by analytical HPLC. Statistical significance from
three biological replicates was determined by one-way
ANOVA with a post-hoc Tukey honest significant differ-
ence test using the peak area under the curve of known
pigments.

Bioactivity assays

We used a described assay to assess the effect that different
pigments have on biofilm development and wrinkle forma-
tion of B. subtilis 3610 [28]. To assess the effect that differ-
ent compounds have on swarming motility of B. subtilis
3610 we used 90 mm diameter LB plates with 0.7 % (w/v)
agar that were prepared and dried as described [29]. The
antibiotic activity of different compounds was assessed via
ODsy, kinetics of liquid cultures of B. subtilis 3610 (final
concentration of 0.25 mg ml ™). All bright-field and fluores-
cence images of colonies were obtained with an Axio Zoom
V16 stereomicroscope (Zeiss, Germany) [29]. More details
are found in the supplement.

RESULTS AND DISCUSSION

Cell-wall-damaging enzymes induced pigmentation
in S. lacrymans

We used our established S. lacrymans-bacterium co-incuba-
tion system to screen for additional organisms or mecha-
nisms that could also induce pigmentation as examined by
HPLC [9]. We analysed pigmentation intensity by focusing
on the signals (area under the curve) for the main pulvinic
acid-type pigments (variegatic, xerocomic, isoxerocomic
and atromentic acids; Fig. 1; [1]). Additionally, other var-
iants of pulvinic acid-type pigments were detected. We also
identified oxidized variants of variegatic acid and isoxero-
comic acid, which are formed from the production of a sec-
ond lactone ring from the carboxylic acid to produce
variegatorubin and xerocomorubin, respectively.

In total, a set of 13 different bacteria were tested (Table 1),
all of which induced pigmentation after 72 h when the fun-
gus was grown on non-inducing media. As a control, cul-
tures were compared to axenic fungal cultures that were
exposed to water droplets in lieu of bacteria. Accumulation
of pulvinic acid-type pigments from co-culturing was
observed in all cases by HPLC (Fig. S1). As an exemplar co-
incubation, S. lacrymans - Sphingomonas sp. showed
intense pigmentation (Fig. 2a). As different bacteria were
able to induce pigmentation, we then considered that a
common inducing mechanism may be shared amongst
many bacteria. Numerous bacteria release degrading
enzymes, such as general proteases or oxidoreductases and
hydrolases (reviewed in [30, 31]). Thus, we hypothesized
that hyphal damage may represent such a common factor.
We tested this hypothesis and exposed S. lacrymans to fun-
gal cell-wall-lysing enzymes (containing 8-glucanase, cellu-
lase, protease and chitinase activity) or general proteases.
Pulvinic acid-type pigments were observed in the chromato-
grams for both instances (Fig. 2b). For controls, we tested
lysozyme that does not target fungal cell-walls, and mechan-
ical damage by scalpel. Mechanical damage was shown to
induce the biosynthesis of polyene defence compounds in a
stereaceous mushroom [32]. Various other controls that did
not result in pigmentation were run in parallel (excessive
inorganic nitrogen, water or PBS). Based on the enzymatic
assays we hypothesized that an eliciting factor from the bac-
terial partner, like a protease, was secreted which damaged
the fungal cell-wall. For example, proteases are involved in
mycoparasitism [33]. Therefore, we grew the fungus in the
presence of pre-rinsed and water-resuspended B. subtilis
NCIB 3610 (hereafter 3610) amended with a protease/met-
alloprotease inhibitor cocktail, in addition to testing heat-
killed B. subtilis. The inhibition of proteases or introduction
of dead bacteria showed a significantly reduced fungal pig-
ment response compared to the alive B. subtilis 3610 co-
incubation (*P<0.01; Fig. 2¢). Nevertheless, the amended or
heat-killed B. subtilis caused slight pigmentation. We cannot
exclude that the protease inhibitor cocktail would fail to
abolish all protease activity (for example, B. subtilis 168, the
derivative of 3610, is known to produce eight different
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Fig. 2. (a) Representative example of strong pigment induction of S. lacrymans by Sphingomonas spp. The two 500 pl inocula had a
greater observed effect than the 250 pl inocula. (b) Representative chromatograms (A=254 nm) of enzymatic assays that show pigment
induction by proteases and lysing enzymes, but not in the controls. Chromatograms are proportionally scaled. Further, chromatograms
of authentic standards are shown: variegatic acid (tg=42.1 min), xerocomic acid (tg=49.2 min), isoxerocomic acid (tz=51.4 min) and atro-
mentic acid (tg=59.5 min). (c) Cumulative compound titres (as assessed by the signal area under the curve at A=254nm) of the four
main pigments (variegatic, xerocomic, isoxerocomic and atromentic acid) showing statistical difference (*P<0.01) between S. lacrymans
co-incubated with alive B. subtilis, and B. subtilis amended with a protease inhibitor cocktail or heat-killed B. subtilis. The arithmetic
mean and standard error from three biological replicates are shown, as well as representative chromatograms of each condition.

proteases [34-36]). Released peptides or cell-wall compo-
nents from the fungus itself or exo-proteins due to the
action of proteases or lysing enzymes may trigger pigmenta-
tion, and would draw comparisons that organic, but not
inorganic, nitrogen also induced pigmentation [3]. Nor
could we eliminate the idea that the fungus may be stimu-
lated by other bacterial factors, such as secreted peptides,
secreted low molecular weight compounds, competition for

nutrition, or intimate physical contact [37, 38]. Degrading
exo-enzymes from bacteria such as proteases, lysing
enzymes or oxidases that harm the fungus may be a direct
consequence of the co-incubation or merely the bacterium
modifying the environment to, for example, secure food.
This remains to be studied by focusing on the bacterial part-
ner’s response during co-incubation using proteomics and/
or transcriptomics. Due to the lack of genetic tractability of
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basidiomycetes, the global transcriptomic response of the
fungal partner is of additional interest which will help
deduce whether bacterium-induced pigmentation correlates
with cell-wall repair, stress-related or nitrogen metabolism
genes, or whether these responses are independent. Our
bacteria-induced pigmentation was also applicable for
another atromentin-producing, wood-rotting basidiomy-
cete, Omphalotus olearius, whereby significant brown pig-
mentation occurred after the introduction of either
B. subtilis 3610 or P. putida. The pigment was verified to be
atromentin by HPLC (Fig. S2). All in all, our results showed
that pigment induction was triggered, although not defini-
tively correlated, by an enzymatic degradation of the fungal
cell-wall.

Co-culturing with P. involutus did not cause
pigmentation

To expand our Serpula-based study on natural product
induction through inter-kingdom co-incubation, we tested
if a similar pigmentation response was also valid for atro-
mentin-producing Boletales that follow a symbiotic lifestyle.
We chose the model ectomycorrhizal fungus Paxillus invo-
lutus, and focused on the most abundantly secreted pigment
under known media-inducing conditions, involutin [4]. The
route to biosynthesize involutin via atromentin is redun-
dantly secured by three atromentin synthetase genes [8, 39],
which are constitutively expressed at low levels even in non-
pigment inducing media (the same with S. lacrymans), and
overly expressed in high organic nitrogen-containing media
[8]. Other atromentin-derived pigments (gyroporin, chamo-
nixin, involuton and atromentic acid) from P. involutus are
generally produced in insignificant amounts under labora-
tory conditions [8].

For our co-culturing work with P. involutus, we grew the
fungus on non-pigment-inducing media [4], and tested a
diverse set of bacteria pairwise against P. involutus that were
used for S. lacrymans (most species from Table 1). The bac-
teria did not cause significant pigmentation when examin-
ing involutin titres by HPLC (condition I; Fig. 3a). We also
co-incubated P. involutus with B. subtilis 3610 as performed
with S. lacrymans by using alive B. subtilis, and for control
heat-killed B. subtilis, and B. subtilis incubated with a prote-
ase inhibitor. We presumed that the conditions used before
may have an opposite effect. Here, we found no significant
change in accumulation of involutin between all these
conditions.

We presumed that if ‘outside, antagonistic’ bacteria did not
induce pigmentation, then perhaps community-associated
bacteria may do so. Such species interactions can be quite
specific (discussed below), and thus we wanted to perform a
community-guided approach. We first monitored the soil
directly underneath a troop of growing P. involutus mush-
rooms at two time points by qRT-PCR using 16S or 28S
rDNA (Fig. S3). The isolation of bacteria pertaining to Acti-
nobacteria and Firmicutes was led by the verification of their
highest 16S copy numbers at both measured time points.
After isolation by morphology, the following soil-derived

bacteria were identified by 16S rDNA sequencing and used
for further co-incubation work: Bacillus aryabhattai, Bacil-
lus subtilis subsp. subtilis, Bacillus subtilis subsp. inaquoso-
rum and Micromonospora aurantiaca (Table S2). The
bacteria we isolated were deposited in the Jena Microbial
Resource Collection.

From the soil-guided approach, we tested the bacteria with
P. involutus using two further conditions involving multi-
partner interactions that may resemble the soil community
around fungal hyphae. For condition II, we continued test-
ing P. involutus on non-inducing synthetic media. We used
pairwise and consortia co-incubations of soil isolates. Simi-
lar to the previous results, we observed no accumulation of
involutin when compared to the axenic fungal control
(Fig. 3b). We then co-incubated the fungus with different
consortia of Bacilli soil-isolates in a rich medium (malt
extract-peptone) that supported both strong growth of bac-
teria and was also a rich source of organic nitrogen that is
known to stimulate the secretion of involutin (condition III;
[4]). The multi-partner cultures were carried out with the
fungus co-incubated with either one (pairwise), two (tripar-
tite) or three (consortia) different soil-isolated Bacilli. We
found that the control (i.e. axenic P. involutus) had
increased involutin titres when compared to the fungus
grown on non-inducing medium which was consistent with
previous work [4]; concurrently, no signals for the other
pigments were found. We looked for even the slightest var-
iations in pigment accumulation. Each co-culture in condi-
tion III showed no statistical difference in involutin
accumulation when compared to the control, and the only
statistical difference was determined to be between pairwise
B. aryabhattai and two tripartite co-cultures (*P<0.01;
Fig. 3c). Representative chromatograms in all cases are
shown in Fig. S4. Another ectomycorrhizal-forming basid-
iomycete, Suillus bovinus, that produces atromentin-derived
metabolites [1] was also tested for bacteria-induced pigmen-
tation. Here, no pigmentation after the introduction of bac-
teria was observed (Fig. S5), authentic standards of relevant
pigments are shown in Fig. S6.

One hypothesis that may support the more passive
response of ectomycorrhizal fungi is that saprophytes asso-
ciate with less bacteria than ectomycorrhizae [40], i.e. fun-
gal lifestyle dictates the surrounding community structure,
which may indicate that saprophytes are more competitive.
In support of this, mycorrhizae generally support (or at
least allow for) the formation of biofilms on their hyphae
[41]. Hence our results, at least with respect to pigmenta-
tion, follow suit. Conversely, such microbial communities
can be very specific and biotic interactions can have very
specific outcomes. Examples have shown that the mush-
room’s identity shapes its specific bacterial community
[42]; fungal-bacterial and bacterial-bacterial interactions
and consequences therefrom (antagonistic, growth promot-
ing or neutral) can be quite species-specific [43, 44]; a dis-
similar fungal response by the exact same ‘mycorrhiza
helper’ strain was possible [45]; a ‘mycorrhiza helper’ strain
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Fig. 3. (a, b) Representative HPLC chromatograms (A=254 nm) of P. involutus co-cultures. Chromatograms are proportionally scaled.
(a) Testing growth condition | using various bacteria from Table 1 whereby no substantial accumulation of involutin was observed.
Spectroscopic data for involutin is shown in Fig. Sé6. Co-cultures with B. subtilis 3610 and other growth manipulations of B. subtilis are
shown in Fig. S4. (b) Testing growth condition Il using various soil-isolates. Again, no substantial accumulation of involutin was
observed. (c) Mushroom soil-isolates, Bacillus aryabhattai, B. subtilis subsp. inaquosorum, B. subtilis subsp. subtilis, were both individu-
ally co-incubated with P. involutus as well as in various consortia in organic nitrogen-rich medium (condition lll). The arithmetic mean
of involutin titres (HPLC, A=254nm) from three biological replicates and standard error are shown. Statistical significance was
observed between pairwise B. aryabhattai and two tripartite co-cultures (*P<0.01), but no statistical significance was observed between
the control (axenic P. involutus) and the remaining samples. Representative chromatograms are shown in Fig. S4.

possesses both the capacity to promote and suppress fungal [47]. Thus, we cannot definitively exclude that other bac-
growth [46]; and the presence of the symbiotic plant part- teria could have stimulated pigmentation in P. involutus.
ner affects the secretion of fungal bioactive compounds Similarly, there may have been other fungal responses that
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were missed because we only looked for pigmentation in
order to draw comparisons with S. lacrymans. Still, the
conditions that induced and altered pigmentation in S.
lacrymans and O. olearius do not parallel the observations
from P. involutus and S. bovinus. The dissimilar pigment
response was further investigated bioinformatically and
biochemically to help explain the discrepancy.

Dissimilar genetic regulation of atromentin
synthetase genes

Our initial observation between orthologous atromentin
biosynthetic gene clusters of 12 basidiomycetes was a com-
mon promoter motif shared in the clustered atromentin
synthetase (NPS) and aminotransferase genes (AMT) [9].
We now expanded our search to a total of 23 atromentin-
producing basidiomycetes [17]. Applying MEME software
[21, 22] to discover ungapped motifs in upstream sequences
of the clustered genes to the new, extended set of fungi
genomes, we again observed the aforementioned core pro-
moter motif, termed motif 1, for NPS and AMT which was
absent for most clustered alcohol dehydrogenase genes
(Fig. 4a; Table S3). In addition, we not only found remark-
able conservation of the atromentin clusters and respective
promoter motifs, but also of the whole orthologous NPS
promoter regions, suggesting that promoters co-evolved
with their respective genes (Fig. 4b; combined tree: Fig. S7).
The high degree of conservation gave rise to our initial
hypothesis that multiple basidiomycetes would have a simi-
lar pigmentation response to bacteria.

As only S. lacrymans, but not P. involutus, was stimulated
for pigment production by bacteria, we re-inspected the
upstream regions of the atromentin clusters to look for var-
iations in transcriptional regulatory elements. Aiming at the
differences between ectomycorrhizal and non-mycorrhizal/
brown-rot fungi, we confronted these two groups using rep-
resentative species. For a more focused search, we used sub-
groups from the larger groups as shown in Fig. 4(a). Within
the ectomycorrhizal group, the first subgroup was termed
the ‘larger Paxillus group’, denoted with *, and therein also
‘Paxillaceae’, denoted with **. From the non-mycorrhizal/
brown-rot group, the subgroup was termed the ‘Serpula
group’, denoted with *.

As mentioned, promoter sequences followed the same evo-
lutionary paths as their cognate genes. A MEME search for
promoters of all 23 species confirmed that there were no
further motifs other than the core motif 1 between species
within the ‘larger Paxillus group’ and ‘Serpula group’. The
promoters of the ‘Paxillaceae group’ were highly conserved
and this conservation was unusually high for fungal pro-
moters [on average ~80 % similarity with up to 100 % cover-
age (Table 2)]. Hydnomerulius pinastri had the least amount
of coverage when compared to the other species, likely due
to divergence within the Paxillaceae. The overall conserva-
tion of the promoter sequences suggested the possible
occurrence of other motifs shared within. To find the motifs
that were specific to either group, we ran a discriminative
MEME search confronting the ‘larger Paxillus’ and ‘Serpula’

groups. No significant motifs were predicted for the ‘Serpula
group’, possibly because of higher phylogenetic divergence
within the group [6, 39]. Promoters of the ‘larger Paxillus
group’, in contrast, showed several interesting features that
were not present in the ‘Serpula group’. First, we found
highly conserved palindromic sequences around the core
motif 1 of the NPS in Paxillaceae, and in two Suillus spp. (S.
brevipes and S. luteus), as shown underlined in Fig. 4(a).
Interestingly, a separate search thereafter showed the
observed palindromic sequence in Pisolithus microcarpus
(family: Sclerodermataceae). Secondly, we found two further
statistically significant motifs (motif 2: consensus DYRSD-
CABSBBB, E-value 1.3e-004; and motif 3: consensus YGAR-
YCRRNBM, E-value 1.2e-003) in the promoters of the
‘ectomycorrhizal group’ that were absent in S. lacrymans
and other representatives of non-mycorrhizal/brown-rot
fungi (Fig. 4a: motifs 2 and 3). Motif 2 seemed as prevalent
as motif 1 for all examined ectomycorrhiza fungi, even in
the distantly related Thelephora ganbajun. With one excep-
tion, Hydnomerulius pinastri, a brown-rotter that is mono-
phyletic within the ectomycorrhizal ‘Paxillaceae group’,
contained the additional observed motifs. The motif search
results and their respective position to the ‘start’ site and
P-values are listed in Table S3.

To summarize, we found significant differences in the pro-
moter structure of NPS in S. lacrymans and P. involutus,
with the latter possessing a highly conserved pattern of three
motifs. Even though the core motif 1 was present in the
majority of the atromentin-producing fungi and thus the
transcription factor in question could recognize each bind-
ing site similarly, the fact that there exists a palindromic
sequence around the core motif as well as a co-occurrence
of two additional motifs (possible composite elements) for
P. involutus indicated that there may be a different regula-
tory mechanism, e.g. involving homodimer-binding and
co-transcription factors. Many species considered to be
ectomycorrhiza-forming also share brown-rot mechanisms,
and many of the species in question formed a paraphyletic
group [39]. It is possible that the additional genetic regula-
tion involved in the biosynthesis of atromentin was the
result of a divergence in lifestyle from brown-rot to symbio-
sis, especially with the formation of the Paxillaceae clade.
We question how and why the distantly related T. ganbajun
has the same motifs, the inconsistencies in the promoter
regions between S. luteus, S. brevipes and the remaining Suil-
Ius spp., and which (co-)transcription factors are supposedly
widely shared.

For basidiomycetes there is a scarcity of sustenance on regu-
latory mechanisms regarding natural products. For exam-
ple, in vitro combined with in vivo evidence for
basidiomycete transcription factors in natural product regu-
lation is mostly undescribed. As a rare example, a putative
transcriptional gene in Ustilago maydis was identified [48].
Deletion of said gene caused constitutive production of a
siderophore under suppressed conditions, and the gene was
speculated to encode for a zinc factor-like transcription
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(a) . . . .
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[ Boletus edulis Boled AAGGTTCGAC ATGCACATGGCT CGAATCAGCTC
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Fig. 4. In silico analyses of the upstream regions of annotated or characterized atromentin synthetase genes (NPSs) from various
atromentin-producing basidiomycetes. Annotated genomes were accessed via the JGI MycoCosm portal, except for T. panuoides and
S. grevillei. (a) A total of 23 atromentin-producing basidiomycetes, including abbreviation of species’ names used in the tanglegram
(below), that are grouped into ectomycorrhizal fungi and non-mycorrhizal/brown-rot fungi, and then further subgrouped. Within the
ectomycorrhizal group, the first subgroup was termed the ‘larger Paxillus group’ (*), and therein ‘Paxillaceae’ (**). Within the non-mycor-
rhizal/brown-rot group, the ‘Serpula group’ (*). Motif 1 was shared by all fungi, whereas motifs 2 and 3 were only found in the ectomy-
corrhizal fungi group and in the brown-rotter Hydnomerulius pinastri. The palindromic sequence around motif 1, shared mostly in
‘Paxillaceae’, is underlined. All motifs with their respective position to the 'start’ and P-value are listed in Table S3. For P. involutus, two
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atromentin synthetases (InvA2 and InvA5) were used. (b) A tanglegram comparing trees'architectures that represent congruent evolu-
tionary histories of the promoter region (nucleotide) and respective NPS (amino acids). The trees were built separately for the ‘Paxilla-
ceae’ and ‘Serpula’ groups, and rooted by T. ganbajun and O. olearius, respectively. Only NPSs that were part of gene clusters were

used for the tree reconstruction.

factor. The three largest families of fungal transcription fac-
tors are ‘Cg Zn cluster’, ‘C,H, Zn finger’ and ‘HD-like’ [49].
The Zn cluster family has progressively increased its distri-
bution in the genomes from chytrids, to zygomycetes, basi-
diomycetes, and finally to ascomycetes (where it has the
largest distribution), and is considered the most common
family of transcription factors that regulate fungal gene clus-
ters [49-51]. While we can get an idea of what families of
transcription factors are associated with different fungal
groups, their associated motifs are rarely experimentally
verified for basidiomycetes (e.g. reviewed for U. maydis
[52]). We preliminary searched our motif 1 from the ecto-
mycorrhizal group against a motif database (JASPAR CORE
(2016) fungi) in the tool TomTom [21]. Top hits were
motifs associated with the Zn coordinating class of tran-
scription factors, but no definitive conclusions could be
made from such a search. With this knowledge though, it
may not be overly zealous to presume that the transcription
factor in question that regulates atromentin biosynthesis
may fall into this class. Similarly, to our knowledge, there is
no in vivo evidence describing a global regulator like LaeA
in basidiomycetes, although, for example, Velvet domain-
containing protein homologues that would associate with
LaeA were noted in Coprinopsis cinerea as well as in most of
the fungal kingdom [53-55]. Compounding our research
for regulatory elements of the atromentin gene cluster was
the fact that the gene cluster has no adjacent annotated reg-
ulatory genes. Therefore, we relied on motif searches for a
first insight into possible regulatory mechanisms of the atro-
mentin gene cluster. In conclusion, our approach suggested,
although not yet experimentally proven, that additional reg-
ulatory requirements are involved in atromentin regulation
for ectomycorrhizal fungi.

Bioactivity of pulvinic acid-type pigments

We investigated the bioactivity of the pigments to determine
if the pigment response may have a specific role during co-
incubation. We chose our mode S. lacrymans — B. subtilis
co-incubation system as a model for further investigation.
We first tested whether a growing colony of B. subtilis 3610
exposed to compounds freely diffusing from a filter disc
would show phenotypic changes, mainly focusing on the
formation of wrinkled colony biofilms [28, 56]. When
B. subtilis was exposed to methanol as a control, atromentic
acid, involutin, or atromentin, B. subtilis developed wrinkled
colony biofilms that showed an opaque surface (i.e. no
effect). However, upon exposure to variegatic or xerocomic
acid, colonies developed flat or only slightly wrinkled colo-
nies that showed decreased expansion on the agar plates
(Fig. 5a). We first assumed that these effects might have
been due to antimicrobial activity of the tested compounds.
Therefore, we monitored the growth of B. subtilis in liquid
cultures exposed to each pigment. After 18 h of incubation,
we did not observe growth differences between cultures
exposed to methanol (2.5 % v/v) or the pigments (0.25 mg
ml™Y) (Fig. 5b). This was congruent with our previous
results that the pulvinic acid-type pigments do not inhibit
microbial growth [9].

Next, we examined the ability of variegatic and xerocomic
acid to affect the motility behaviour of B. subtilis. Biofilm
colonies of B. subtilis exposed to these compounds showed
decreased colony expansion. We therefore monitored the
swarming motility of B. subtilis colonies as they swarm
across an agar plate whereby they would be challenged with
an area infused with variegatic or xerocomic acid [29].
B. subtilis showed constant motility and swarming over an
area infused with methanol (control) at a similar rate as on
areas distant from the methanol deposition spot. In

Table 2. The promoter regions (—1000/+2 bp) of the five species from Paxillaceae showing the percentage of region similarity (% identity)

For P. involutus, two characterized NPSs were included. The grey shades show the percentage of coverage. Corresponding JGI protein IDs are listed

in Table S3.
% identity P. involutus P. involutus Paxillus Paxillus Hydnomerulius Gyrodon
(InvA2) (InvA5) ammoniavirescens adelphus pinastri lividus
P. involutus (InvA2) 72 % 74 %
P. involutus (InvA5) 82 % 72 %
Paxillus 92 % 73 %
ammoniavirescens
Paxillus adelphus 84 % 83% 83% - 80 % 72%
70 %
Hydnomerulius 72% 82 % 92 % 81% - 77 % 30~
pinastri 50 %
Gyrodon lividus 74 % 72 % 73% 72 % 76 % - <30 %
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Fig. 5. Effect of diverse compounds on swarming colony expansion and spread of biofilm formation of B. subtilis 3610. (a) Effect of the
pigments on colony biofilm development of B. subtilis 3610. Bright-field images of colonies are shown after 72 h of incubation. The
scale bar represents 5 mm. (b) No antibiotic activity by the pigments was observed when accessed by ODsgq kinetics of liquid cultures
of B. subtilis 3610. (c) Delay in swarming colony expansion caused by variegatic and xerocomic acid. Composite and artificially marked
images of green fluorescence and bright-field are shown. White circles mark the bacterial inoculation spot. White stars mark the depo-
sition spot for tested compounds. Dashed white lines mark the edge of the expanding colonies. The scale bar represents 5 mm. The
figure without markings is shown as Fig. S8. (d) Colony expansion after 4, 5, 6 and 7h on 0.7 % LB agar when exposed to methanol,
variegatic acid or xerocomic acid. Each data point represents the average of five independent colonies. Error bars represent sb.

contrast, swarming colonies of B. subtilis showed a delay in
motility when exposed to variegatic or xerocomic acid
(20 ug; Figs 5¢, d, S8). Upon reaching the compound depo-
sition spot (~4h of incubation), the front of the swarming
colony showed a delay in growth atop of the natural prod-
uct-infused area, while B. subtilis continued to grow around
the deposition area. After 7 h of incubation, the colony cov-
ered the natural product-infused area and continued to
swarm, covering similar distances over the agar plate as col-
onies challenged with methanol.

Taken together, these results suggested that variegatic acid
and xerocomic acid affected biofilm colony morphology of
B. subtilis not as a consequence of antimicrobial activity,
but rather by inhibiting the ability of the colonies to
expand upon surfaces. It remains to be determined
whether this nontoxic effect is because bacteria are able to
extrude polyphenols and thus are resistant to these

compounds [57], or the fungus is simply modulating the
bacterium in its favour. Although B. subtilis utilizes differ-
ent molecules for quorum sensing, compared to Gram-
negative bacteria, we speculate that basidiomycetes have
resources to modulate bacterial communications, given the
example of lactonases from Coprinopsis cinerea that can
cleave quorum sensing N-acyl-homoserine lactones [58].
Here, pulvinic acid-type pigments would be responsible for
such influences. Alternatively, the significant reduction in
pigmentation due to protease inhibition could be that
external proteases are involved in swarming motility of
B. subtilis [34]. The inhibition of proteases could have
severely limited swarming and biofilm spreading of B. sub-
tilis and thus S. lacrymans may not have required such a
strong response to modulate B. subtilis. Conversely and
noted beforehand, lack of released peptides from proteases
may be the cause. Future research is warranted to study
the influence of said compounds on the other bacteria
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tested in our co-incubations and whether or not the pig-
ments have overlapping functional roles.

Conclusions

Although the atromentin biosynthetic gene cluster appeared
well conserved in basidiomycetes, our work revealed dissim-
ilar, lifestyle-dependent pigment stimulation. We suggest
that this phenomenon, at least in part, can be explained by
the bioactivity of these pigments and by additional putative
composite elements of the atromentin synthetase gene pro-
moters. Hence, our results set the stage for further research
to understand basidiomycete natural product regulation.
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