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Classification of the dynamical mechanisms that support bistability between bursting oscillations

and silence has not yet been clarified in detail. The purpose of this paper is to demonstrate that the

coexistence of a stable equilibrium point with a state of continuous bursting can occur in a slightly

modified, biophysical model that describe the dynamics of pancreatic beta-cells. To realize this

form of coexistence, we have introduced an additional voltage-dependent potassium current that is

activated in the region around the original, unstable equilibrium point. It is interesting to note that

this modification also leads the model to display a blue-sky catastrophe in the transition region

between chaotic and bursting states. Published by AIP Publishing.
https://doi.org/10.1063/1.4986401

Multistability is a characteristic feature of many types of

cells, neural networks, and other forms of oscillatory bio-

physical systems. This feature is particularly significant

in connection with the study of interacting ensembles of

many, nearly identical subsystems. It is well-known that,

for instance, a variety of unusual phenomena that emerge

in ensembles of coupled oscillators can lead to significant

reconstructions of an oscillator population, and the pres-

ence of coexisting states can significantly influence on the

dynamics of all ensemble. In this paper, we introduce a

modified version of the well-known model describing

dynamics of pancreatic beta-cells obtained by introduc-

ing a new type of potassium-like ion channel with a char-

acteristic set of channel parameters selected in

accordance with a standard Hodgkin-Huxley formalism.

The suggested modification is designed to be local and

small enough to allow for the existence of an attracting

state inside the regime of stable bursting dynamics. This

provides for the presence of multistability in the modified

beta-cell model and, at the same time, serves as an exam-

ple of a biophysical system that allows for the coexistence

of a stable equilibrium point with large amplitude

bursting.

I. INTRODUCTION

Multistability, or coexistence of dynamical regimes,

is a characteristic feature of many types of cells, neural

networks,1–4 and other forms of oscillatory biophysical sys-

tems.5–11 This feature is particularly significant in connec-

tion with the study of interacting ensembles of many, nearly

identical subsystems. It is well-known that, for instance, a

variety of unusual phenomena that emerge in ensembles of

coupled oscillators can lead to the overall reconstruction of

the oscillator population or to its total collapse. It is broadly

accepted that, for instance, synchronization plays an impor-

tant role in the pathogenesis of neurological diseases such as

Parkinson’s disease and essential tremor10–12 and, more

specifically, Parkinson’s disease is associated with asynchro-

nous pacemaker activity involving a population of many

thousands of neurons in the basal ganglia.13,14 Another funda-

mental phenomenon that can emerge in ensembles of coupled

system is oscillator quenching.15 The biomedical significance

of this phenomenon again hinges on the fact that the suppres-

sion or disruption of oscillations is involved in the treatment

of a variety of neuronal disorders such as Alzheimer’s and

Parkinson’s disease.

In this context, the coexisting states of the single ele-

ment of the system play a significant role. Special attention

should be paid to hidden or rare attractors. In line with the

recent survey papers by Leonov and Kuznetsov et al.,16–18

an attracting state may be classified as either “hidden” or

“self-excited,” with hidden attractors representing all such

attractors that do not connect to a stable equilibrium state.

The presence of hidden attractors in a system is associated

with multistability, and in some cases finding of hidden or

rare attractor may be a challenging task, but it can influences

the dynamics of the integrated system dramatically.

At present, the mechanisms that allow bistability, such as

the coexistence of tonic spiking and silence or the coexis-

tence of tonic spiking and bursting, appear to be relatively

well described. On the other hand, the dynamical mechanisms

that support bistability between bursting and silence have not

yet been examined to the same extent.4 Classification of

mechanisms that support the coexistence of oscillatory and
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silent regimes is so far incomplete, and this remains a chal-

lenge both in relation to the progress of dynamical systems

theory and in relation to important issues in neuroscience. An

example of a system that displays coexistence of silence and

bursting oscillations was presented in the recent paper by

Malashchenko et al..4 Yet, further attention to this problem is

clearly desirable.

This study takes a point of departure in the classic

Sherman model that has been widely used to describe the

spiking and bursting dynamics of insulin-secreting pancre-

atic beta-cells,19,20 and also this model is widely used for

description of the dynamics of neuron. Experimentally, one

can observe, for instance, how the secretion of insulin

increases with the fraction of time that the cells spend in the

spiking state. On the other hand, the duration of the silent

phase between two bursts is regulated by the rate at which

calcium is removed from the interior of the cell. The spiking

oscillations typically display a period of 1–10 s, whereas the

duration of the bursting period typically varies from 0.2 to

5.0 min. It is interesting to note that, however, individual

beta-cells do not burst.21,22 The opening probability for the

potassium channels is too small for the individual cell to pre-

sent a regular spiking signal and, only in the form of clusters

of 30–100 synchronized cells, regular spiking oscillations

will occur. Both electrical coupling and so-called glucose

sensing are involved in the cellular synchronization.

We have previously performed a variety of one- and

two-dimensional bifurcation analyses21 for the considered

beta-cell model23 and demonstrated how the dynamics of

this system after an initial Hopf bifurcation may display an

unusual structure of overlapping resonance tongues. We

have also outlined the main bifurcation structure for a model

of two coupled, identical pancreatic cells24 and we have

described an interesting form of phase synchronization that

can occur when the uncoupled oscillators can synchronize in

a variety of different configurations.25 Most recently, we

have contributed to a study of the co-existence of hidden

attractors in a variety of different systems,26 and we used

fluorescence microscopy to demonstrate how externally

forced glucose oscillations can induce distinct 1:1 and 1:2

entrainment of oscillations in islet Ca2þ concentrations and

mitochondrial membrane potential.27

In this paper, we introduce a modified version of the

Sherman model obtained by introducing a new type of

potassium-like ion channel with a characteristic set of chan-

nel parameters selected in accordance with a standard

Hodgkin-Huxley formalism. The suggested modification

is designed to be local and small enough to allow for the

existence of an attracting state inside the regime of stable

bursting dynamics. This provides for the presence of multi-

stability in the modified beta-cell model and, at the same

time, serves as an example of a biophysical system that

allows for the coexistence of a stable equilibrium point with

large amplitude bursting. Besides the possibility of observing

hidden attractors in a type of beta-cell like model, our inter-

est in the considered system originates from the possibility

of observing processes such as the intracellular dynamics of

Ca2þ-sensitive Kþ-channel dynamics28 or the effect of alter-

native controls on the cell dynamics.29 We first present the

structure of the original model and describe some of the

characteristic bifurcation structure of that model. Hereafter

follows a description of the modified cell model and the

associated characteristic phenomena. Finally, in the last sec-

tion, we discuss the modified beta cell model in the light of

its underlying biological mechanisms.

II. PRESENTATION OF THE BURSTING MODEL

It is well known that the electrical activity of pancreatic

beta-cells and other biological cells relies on a number of

different types of voltage- and ligand-gated ion channels that

are permeable to inorganic ions such as sodium, potassium,

chloride, and calcium. Increasing evidence suggests that ion

channels not only regulate membrane potential, ion homeo-

stasis, and electrical signaling of these cells but also play an

important role in cell proliferation, migration, apoptosis, and

differentiation. Recently, the role of ion channels in different

oncogenic processes was demonstrated.30–32

Over the years, studies of complex pancreatic systems

have been performed on individual beta-cells from mice, on

small and larger groups of interacting beta-cells, and on clus-

ters of interacting islets. Together these studies have contrib-

uted significantly to a better understanding of the role of the

inhomogeneity that exists at different levels of the interac-

tion including, for instance, the more or less random mix of

different cell types across the pancreatic tissue, the anisot-

ropy associated with the preferential arrangement of the

beta-cells along the pancreatic blood vessels, and the varia-

tion of the tissue properties along the edges of the islets.

However, as mentioned above, only reasonably large and

uniform clusters of pancreatic beta-cells display the charac-

teristic bursting dynamics with its alternation between of

rapid spiking and periods of silence.

As the starting point for our analysis, let us use the

following simplified pancreatic beta-cell model based on the

Hodgkin-Huxley formalism as suggested by Sherman

et al.:20

s _V ¼ �ICaðVÞ � IKðV; nÞ � ISðV; SÞ;
s _n ¼ rðn1ðVÞ � nÞ;

sS
_S ¼ S1ðVÞ � S: (1)

Here, V represents the membrane potential, n may be inter-

preted as the opening probability of the potassium channels,

and S accounts for the presence of a slow variable in the sys-

tem. As previously noted, the precise biophysical interpreta-

tion of this variable remains unclear. The variables ICa(V)

and IK(V,n) are the calcium and potassium currents,

gCa¼ 3.6 and gK ¼ 10.0 are the associated conductances, and

VCa¼ 25 mV and VK ¼�75 mV are the respective Nernst (or

reversal) potentials. Together with IS(V, S), the slow calcium

current ICa and the potassium current IK define the three

transmembrane currents of our basic system

ICaðVÞ ¼ gCam1ðVÞðV � VCaÞ; (2)

IKðV; nÞ ¼ gKnðV � VKÞ; (3)

ISðV; nÞ ¼ gSSðV � VKÞ; (4)
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with the gating variables for m, n, and S representing the

opening probabilities of the fast and slow potassium

channels

x1ðVÞ ¼ 1þ exp
Vx � V

hx

� ��1

; x ¼ m; n; S: (5)

Table I lists the parameter values corresponding to the

observed bursting dynamics for the model (1). In principle,

the characteristic time constant for the membrane potential is

determined by the membrane capacity and the corresponding

electrical conductance. In accordance with the original for-

mulation of the model,20 there is no electrical capacitance in

Eq. (1), and the conductances are all dimensionless. To elim-

inate the dependence on cell size, the conductances have

thus been scaled relative to some appropriate conductance.

With time constants of s¼ 0.02 s and sS¼ 35 s, the ratio

kS¼ s/sS is quite small, and the model is numerically stiff.

Figures 1(a) and 1(b) show typical examples of the time

series obtained for the fast variable V and slow variable S.

Calcium functions as an essential part of a double-sided

feedback loop that controls the bursting process and involves

modulations of both electrical activity and hormonal secre-

tion.19 Calcium removal leads to depolarization and controls

the silent phase through deactivation of calcium activated

potassium channels. This depolarization activates both the

voltage-gated calcium channels and the Hodgkin-Huxley

like potassium channels until a renewed influx of calcium

takes place and the spiking dynamics is initiated again.

Following Izhikevich,3 the bursting attractor in the

model (1) is born through simultaneous Hopf and saddle-

node bifurcations. As long as VS<�44.7 mV, the equilib-

rium point is stable [examples of fast and slow manifolds are

presented in Fig. 1(d)]. For VS¼�44.7 mV, a Hopf bifurca-

tion has occurred, the equilibrium point has turned unstable,

and the bursting attractor exists [Fig. 1(e)]. The parameter VS

only controls the slow manifold, and with increasing values

of this parameter, the slow manifold moves upwards rela-

tively to the fast manifold. The bursting attractor is born in

the vicinity of the equilibrium point, but after the bifurcation

that occurs for increasing values of VS, the equilibrium point

moves far away from the bursting attractor. Finally, at

VS¼�33.7 mV, the bursting attractor turns into the spiking

attractor as shown in Fig. 1(f).

An interesting feature of the biological bursting system

is the large variation one often observes for the bursting

period. We have already referred to this variability in rela-

tion to the discussion of slow and fast bursters. Besides var-

iations associated with differences in clusters size, the most

obvious reason for variations to occur is inhomogeneity in

the cell clusters. This has inspired a number of authors19,20

to propose a so-called phantom burster model that allows

fast and slow bursting to occur simultaneous, i.e., by replac-

ing the original equation for the slow potassium current by a

set of two (or more) parallel potassium currents. The idea

has been to use a multiple degree-of-freedom approach to

generate a broader range of interacting bursting oscillators

while maintaining the overall structure of the system. If the

conductance is large, the bursting that results from this feed-

back will be fast. On the other hand, if the conductance is

small, this feedback has little influence, and the bursting that

results from it will be slow. In this way, it has been possible

TABLE I. Parameters for model (1).18

s¼ 0.02 s sS¼ 35 s r¼ 0.93

gCa¼ 3.6 gK¼ 10.0 gS¼ 4.0

VCa¼ 25.0 mV VK¼�75 mV

hm¼ 12.0 mV hn¼ 5.6 mV hS¼ 10.0 mV

Vm¼�20.0 mV Vn¼�16.0 mV VS¼�35 mV

FIG. 1. Time series of the fast (a) and

slow (b) variables; (c) fast (blue) and

slow (red) manifolds together with a

two-dimensional projection of phase

portrait for the original Sherman

model.18 During the spiking phase,

Ca2þ-ions flow into the cells and, dur-

ing the silent phases, Ca2þ-ions are

pumped out. The fast (spiking) dynam-

ics is related to the flow of Kþ-ions.

(d) VS¼�45 mV; (e) VS ¼�44.7 mV;

and (f) VS ¼�33.7 mV.
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to account for a range of biomedical phenomena, including

the ubiquitous tri-phase response to a step increase in glu-

cose, the response to perturbations of intra-cellular Ca2þ

stores, and different intracellular functions of potassium.20,29

III. MODIFICATION OF THE MODEL

Figure 1(c) shows the two-dimensional projection of the

phase portrait (brown color) together with the fast and slow

manifolds for VS¼�35 mV. For these parameters, the (peri-

odic) trajectories do not intersect the neighborhood of the

equilibrium point, but the bursting state terminates in a

homoclinic bifurcation as the trajectory hits the slow mani-

fold at some other point. Hence, it appears possible to reor-

ganize the conditions around the equilibrium point in such a

way that this point is stabilized while the bursting trajectory

continues to exist. Between the stable equilibrium point and

the bursting state, we expect to find some rejecting structure

and, under these conditions, the bursting state represents a

hidden attractor.

To achieve stabilization of the equilibrium point, we

propose a form of the voltage-dependent potassium current

that varies strongly with the membrane potential right near

this equilibrium point and, hence, its stability can exist with-

out affecting the global flow in the model. The suggested

form of the potassium current is specified by the equation:

IK2ðVÞ ¼ gK2p1ðVÞðV � VKÞ; (6)

where the function

p1ðVÞ ¼ exp
V � Vp

hp
þ exp

Vp � V

hp

� ��1

(7)

represents the opening probability for the suggested new

type of potassium channel. The same probability functions

for the normal channels are represented by sigmoidal func-

tion (5) [see Figs. 2(a) and 2(b)]. When the membrane volt-

age reaches a threshold voltage, the potassium channel will

open with probability n1(V) ¼ 1.0. For the new channels,

the opening function never equals to 1.0. When the mem-

brane voltage reaches a threshold voltage, the opening proba-

bility will be equal only to 0.5 [this probability function is

presented in Fig. 2(c)]. From the physiological point of view,

such situation can be interpreted as some dysfunction of ion

channel, for instance, like blocking of potassium channel or

inactivation.33 Also we have to remind that for the individual

potassium channels of pancreatic beta-cell the opening prob-

ability is very small.21,22

Thus, the modified model has the form

s _V ¼ �ICaðVÞ � IKðV; nÞ � IK2ðVÞ � ISðV; SÞ;
s _n ¼ rðn1ðVÞ � nÞ;

sS
_S ¼ S1ðVÞ � S; (8)

with IK2(V) and p1(V) as given by (6) and (7).

All the parameters of the original model (1) still apply.

However, the modified model has three additional parame-

ters gK2, Vp, and hp, which can be used to characterize the

new ion channel. Figure 2(e) shows the null-clines of the

modified model (8). These curves illustrate how one can

FIG. 2. Dependence of the membrane potential on the different ions: (a) calcium channel; (b) potassium channel; (c) probability function of new ion channel;

(d) current of Ca2þ (2) (red) and sum of current Ca2þ (2) and current of new channel (6) (blue); (e) fast (blue) and slow (red) manifolds of the modified model

(8). Supplementing parameters for the new ion channel: gK2¼0.14, hp¼1 mV, and Vp¼�46 mV.
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introduce new types of ion channels to the model, each lead-

ing to the appearance of new pairs of extreme points (min-

ima and maxima) on the fast manifold without affecting the

slow manifold. By changing the parameter Vp, one can deter-

mine the extreme points or the range of voltage where the

system is most sensitive. The parameter hp¼1 controls the

voltage range in which the new ion channel is active in

dependence of the membrane potential V. In this situation,

the equilibrium point can be stable, but bursting dynamics

can develop on the same branch of manifold as in the origi-

nal model (1). Figure 2(d) illustrates the variation of Ca2þ-

current (red) and of the sum of the Ca2þ-currents and the

current associated with new ion channel. One can see that,

however, changing of the current can only be local, very

small, and without major changes of the system. Figure 2(e)

shows the fast (blue) and slow (red) manifolds of the modi-

fied Sherman model (8).

IV. DYNAMICAL REGIMES

Let us now consider the mode distribution across a plane

spanned by the parameters Vp and gK2 that characterize the

new ion channel in the model. Figure 3 shows charts of

dynamical modes for the modified system (8) with different

initial conditions and different magnifications. These charts

were constructed in the following way: Using a standard

Poincar�e section technique, the parameter plane was scanned

in small steps. The dynamical state was determined by using

a sufficiently long transient for each point in the Poincar�e
section defined by n¼ 0.02. The distribution of points in the

Poincar�e section and the corresponding number/colors in

Fig. 3 are shown below. If the number of points exceeded

120, the corresponding region was considered to represent a

chaotic mode. Charts (a) and (b) were constructed with dif-

ferent initial conditions. Chart (c) is a magnified part of chart

(b). In Figs. 3(a) and 3(b), the line of Hopf bifurcation of the

equilibrium point is indicated by blue color. This curve was

obtained by the use of the software package XPP AUTO.

As the control parameters, we have used the parameter

gK2 that characterizes the conductance of the new ion chan-

nel and parameter Vp that determines the point on the fast-

slow manifold where the transition occurs. By varying Vp,

we can move the fast manifold relatively to the slow mani-

fold, and in this way we can shift the equilibrium point. In

the original model, the unstable equilibrium point falls in the

point EP0(V0, n0, S0)¼ (�48.578, 0.0029663, 0.2046). In the

following, we will vary parameter Vp in the vicinity of V0. In

Fig. 3, the vertical green line is the line that corresponds to

line Vp¼V0.

For small values of the conductance gK2 ¼ (0–0.05), one

observes a broad range with different shades of purple. This

color represents bursting dynamics in our model. Different

shades of purple reflect different number of spikes per burst.

For vanishing supply of gK2, one can see bursting regime

with a few spikes per burst. This implies that the influence of

the new ion channel on the dynamic of the model (8) is still

of limited significance, and the overall dynamics is practi-

cally similar to that of the original model (1). When parame-

ter gK2 increases, one can observe an increasing number of

spikes per burst. The equilibrium point may become unstable

under such variations.

Finally, to the left in the chart of modes, where

gK2>0.05, one observes a cascade of period-doubling bifur-

cations. Green represents a limit cycle of period-1. Period

doubling bifurcations take place with decreasing parameter

gK2 and increasing parameter Vp. This dynamical regime

represents only spiking dynamics. Figure 4(a) shows the

corresponding bifurcation diagram. With increasing values

of the parameter Vp, the spiking limit cycle is transformed

into a period-2 cycle via a period-doubling bifurcation. In

the chart of modes, we can hereafter follow the mode lines

for the period-doubling bifurcations. Figures 4(b)–4(e)

show the examples of spiking attractors, and via projections

on the plane (S, V), we can follow how the equilibrium

point moves and how the spiking attractor is placed in rela-

tion to the form of the fast-slow manifolds. With the

increasing values of parameter Vp, the fast manifold moves

upwards relatively to slow manifold, and equilibrium point

is shifted into a position between the two extrema.

Lines of period-doublings converge onto individual

points located in a corner of the area of a stable equilibrium

point. Such regions of parameter space are characteristic for

the formation of bursting dynamics associated with a blue

sky catastrophe.34 A similar phenomenon was observed in a

model of a heart interneuron from the medical leech.34 We

should also notice that the formation of bursting attractor

according to this type of scenario is possible only for values

of parameter Vp less than V0 (Vp<V0).

FIG. 3. Charts of dynamical modes for

the modified model (8). All parameters

from Table I remain unchanged and

hp¼1 mV. Initial conditions for charts:

(a) V0¼�50 mV, n0 ¼ 0.002, and S0

¼ 0.1984 and (b) V0 ¼�40 mV, n0

¼ 0.02, and S0 ¼ 0.1. (c) Magnified part

of Fig. 3(b). In part of the region above

the Hopf bifurcation (blue curve), the

system displays coexistence of the sta-

ble equilibrium point and a variety of

periodic and chaotic solutions.
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On the right hand side of the chart of modes (Vp>V0),

one can observe a broad region with different shades of pur-

ple representing bursting dynamics. The bifurcation diagram

for the bursting and spiking areas is depicted in Fig. 5(a),

and Figs. 5(b) and 5(c) show examples of phase portraits for

this form of regime. On the fast-slow manifold, we can see

that, when the equilibrium point moves to the maximum, the

upper branch of fast manifold becomes unstable, the attractor

is shifted to the lower branch, and a long period of oscilla-

tions occur. As mentioned above, this transition from spiking

to bursting dynamics is associated with a blue-sky catastro-

phe that occurs at Vp��49.47 mV. This transition take

place in accordance with the description presented by

Shilnikov and Cymbalyuk.34 For such kind transformation of

the dynamics, the multistability with silent state is possible

for larger values of parameter gK2, but there is no coexis-

tence between spiking and bursting.

The bifurcation diagram in Fig. 4(a) is a magnified part

of the diagram in Fig. 5(a). Due to the transition associated

with blue-sky catastrophe, the areas of spiking and bursting

have different scales in respect to variable V. In the simplest

version, a blue sky catastrophe occurs in three-dimensional

phase space. At the bifurcation, a saddle-node limit cycle

takes place, whose two-dimensional unstable manifold

returns to the periodic orbit making infinitely many rotations

in the node region. With a shift of a value of the control

parameter in one direction, the saddle-node cycle disappears

and a long large-scale stable periodic orbit containing helical

coils near the former saddle-node cycle is born. In Fig. 5(b),

one can see helical coils on the place of spiking attractors.

With further increase of parameter gK2, one can see line

of Hopf bifurcation. This line corresponds to stabilization of

equilibrium point. In Sec. V, we describe in detail the forma-

tion of coexistence of regime bursting and regime of silent.

V. COEXISTING (HIDDEN) ATTRACTORS

Let us now focus on the coexistent regimes of bursting

and of silence (stable equilibrium) as they appear in our

modified model. In the charts of dynamical modes (Fig. 3),

the red area, representing a region of stable equilibrium, and

the purple area, representing a region bursting dynamics,

overlap. Hence, depending on the initial conditions, either

the stable equilibrium point or the bursting oscillator may be

the final state.

In Fig. 6(a), we have plotted the trajectories for a pair of

coexisting attracting states in three-dimensional phase space.

The purple trajectory represents the stable bursting attractor

and the pink curve represents a phase space trajectory that

goes to the silent regime. Hence, we conclude that the burst-

ing oscillator (for a range of initial conditions) can operate

with a stable equilibrium state in its middle.

Figure 6(b) shows a two-dimensional section of the

basin of attraction for the attractors depicted in Fig. 6(a).

The section covers the (S0, V0) plane while the third variable

n0 was fixed near the equilibrium point at n0¼0.00275. The

dynamical regimes were obtained by Poincare section at the

plane n0¼0.02. Red color represents initial conditions that

lead to the stable equilibrium point and purple represents

initial conditions that lead to the bursting state. The black

curves in Fig. 6(b) represent the lines of the fast and slow

FIG. 4. (a) Bifurcation diagram for the modified model (8) for gK2¼ 0.12

and hp¼ 1. Two-dimensional projections of phase portraits on the V-S plane

demonstrating the transition to chaos through period doubling bifurcations.

Only spiking oscillations occur: gK2¼ 0.12 and hp¼ 1. (b) Vp¼�50 mV; (c)

Vp¼�49.9 mV; (d) Vp¼�49.7 mV; and (e) Vp¼�49.5 mV.

FIG. 5. (a) Bifurcation diagram for the modified model (8) for gK2¼0.12

and hp¼ 1. Two-dimensional projections of phase portraits on the V-S plane

demonstrating the transition from chaos to stable bursting dynamics. (b)

Vp¼�49.4 mV and (c) Vp¼�49 mV.
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manifolds. In this way, we can demonstrate that the basin of

attraction for the bursting oscillator surrounds a three-

dimensional region in which the dynamics is controlled by

the stable equilibrium point. This island of stable equilibrium

dynamics is located between two extrema of null-clines,

which occur as a result of the introduction of the new ion

channel.

We suppose that the boundary of the basin of attraction

for the stable equilibrium point involves an unstable limit

cycle together, presumably, with other structures. In order to

detect this unstable cycle, we have used numerical bifurca-

tion analysis. In Fig. 6(c), the bifurcation diagram is obtained

with XPP AUTO using gK2 as a bifurcation parameter. Red

and black lines mark stable and unstable equilibrium point.

Blue and green circles mark stable and unstable auto-

oscillations. As we can see from Fig. 6(c), at small values of

gK2, there is an unstable equilibrium point together with an

unstable cycle (C2
us).

This unstable cycle associates with the bursting attractor

of the original model. At small values of the conductivity

gK2, the influence of new ion channel is insignificant and

does not change the dynamic of the model. At gK2¼0.1137,

this point is stabilized as a result of Hopf bifurcation. This

bifurcation is supercritical, and the result of bifurcation is

the birth of an unstable and stable limit cycle birth in the

vicinity of equilibrium point, but hereafter limit cycle

became unstable (C1
us). Thus, the island of regime of silent

is limited by unstable cycle (C1
us), which occur as a result of

Hopf bifurcation by adding the new ion channel, but another

unstable orbit (C2
us) which correspond to original bursting

attractor persists. At certain value of the parameter gK2

(gK2� 0.3), a collision of the two unstable orbits take place

to leave only a regime of silent.

VI. CONCLUSIONS

The qualitative theory of dynamical systems provides a

rigorous description of the scenarios that produce multi-

stability of regimes in nonlinear dynamical systems. Early

studies by Rinzel35 and by Guttman et al.36 have formulated

and answered a number of questions that describe the basic

scenario of bistability between tonic spiking and silence. The

answer provided is based on the presence of a repelling peri-

odic orbit separating the basin of attraction of the tonic spik-

ing periodic orbit from the state of equilibrium that

represents the silent regime. The same scenario also

describes the modulation of the neuron dynamics in response

to the variations of a bifurcation parameter. According to

this scenario, the unstable limit cycle emerges through a sub-

critical Andronov-Hopf bifurcation and disappears through a

saddle-node bifurcation for periodic orbits. These bifurca-

tions define the boundaries of bistability.

In this paper, we have used a modified well-known bio-

physical model, which describe dynamics of pancreatic beta-

cells to demonstrate the coexistence of a bursting regime and

a silent regime. For the considered modification of the

model, this type of bistability occurs at the introduction of an

additional voltage-dependent potassium current that is acti-

vated in the region around the original unstable equilibrium

point. The mechanism of bistability is associated with the

birth of an unstable cycle as the result of a subcritical Hopf-

bifurcation inside the bursting attractor. From the point of

view of hidden attractors, the bursting regime is a hidden

attractor that cannot be reached from initial conditions in the

vicinity of the equilibrium point. At the same time, we have

shown that the transition from spiking dynamics to bursting

dynamics occurs as a result of a blue sky catastrophe.

FIG. 6. (a) Three dimensional phase

portrait of the modified model (8), gK2

¼ 0.2, Vp¼�47 mV, and hp¼ 1. The

figure shows the co-existence of the

bursting dynamics and the stable equi-

librium point; purple and red trajectories

have different initial conditions: red

[V0¼�40 mV, n0¼ 0.02, and

S0¼ 0.187] and purple [V0¼�40 mV,

n0¼ 0.02, S0¼ 0.181]; (b) basin of

attraction for co-existing bursting attrac-

tor (purple) and stable equilibrium point

(red), gK2¼ 0.2, Vp¼�47 mV, hp¼ 1,

and n0¼ 0.00275; (c) bifurcation dia-

gram in dependence on the parameter

gK2, Vp¼�47 mV.
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