

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Can Real-Time Systems Benefit from Dynamic Partial Reconfiguration?

Pezzarossa, Luca; Kristensen, Andreas Toftegaard; Schoeberl, Martin; Sparsø, Jens

Published in:
Proceedings of the IEEE NorCAS 2017

Link to article, DOI:
10.1109/NORCHIP.2017.8124984

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Pezzarossa, L., Kristensen, A. T., Schoeberl, M., & Sparsø, J. (2017). Can Real-Time Systems Benefit from
Dynamic Partial Reconfiguration? In Proceedings of the IEEE NorCAS 2017 IEEE. DOI:
10.1109/NORCHIP.2017.8124984

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/141513988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/NORCHIP.2017.8124984
http://orbit.dtu.dk/en/publications/can-realtime-systems-benefit-from-dynamic-partial-reconfiguration(a7e82c6a-d6fd-4e05-b9f6-bc1153abead3).html

978-1-5386-2844-7/17/$31.00 c�2017 IEEE

Can Real-Time Systems Benefit from
Dynamic Partial Reconfiguration?

Luca Pezzarossa, Andreas Toftegaard Kristensen, Martin Schoeberl, and Jens Sparsø
Department of Applied Mathematics and Computer Science

Technical University of Denmark, Kongens Lyngby
Email: [lpez, atkris, masca, jspa]@dtu.dk

Abstract—In real-time systems, a solution where hardware
accelerators are used to implement computationally intensive
tasks can be easier to analyze, in terms of worst-case execution
time (WCET), than a pure software solution. However, when
using FPGAs, the amount and the complexity of the hardware
accelerators are limited by the resources available. Dynamic
partial reconfiguration (DPR) of FPGAs can be used to overcome
this limitation by replacing the accelerators that are only required
for limited amounts of time with new ones. This paper investigates
the potential benefits of using DPR to implement hardware
accelerators in real-time systems and presents an experimental
analysis of the trade-offs between hardware utilization and
WCET increase due to the reconfiguration time overhead of
DPR. We also investigate the trade-off between the use of
multiple specialized accelerators combined with DPR instead of
the use of a more general accelerator. The results show that, for
computationally intensive tasks, the use of DPR can lead to a
more efficient use of the FPGA, while maintaining comparable
computational performance.

I. INTRODUCTION

In general-purpose systems, hardware accelerators (HwAs)
are mainly used to speed up average-case execution time of
computationally intensive tasks of an application. In real-time
systems, such average case speed-up is not in itself relevant,
since it is the worst-case execution time (WCET) of tasks that
determines the ability of the system to respond in time. Exe-
cution time analysis of hardware used to implement software-
equivalent tasks is often easier to perform than analysis of a
pure software solution. From a real-time perspective, moving
functionality from software into hardware can lead to reduction
of the WCET and time-analysis simplification [1], [2].

FPGAs can today implement complete systems-on-chip,
composed of soft-core processors and HwAs. For real-time
systems, where a low production volume often makes ASIC im-
plementations prohibitively expensive, FPGAs are particularly
attractive. One of the drawbacks in using FPGAs, however, is
that the complexity of the HwAs is limited by the available
resources, especially considering that the FPGA cost is very
sensitive to its size.

This limitation can be overcome, to some extent, by using
the dynamic partial reconfiguration (DPR) feature offered by
modern FPGAs [3]. DPR allows for dynamic reconfiguration
of selected regions on the FPGA, while the remaining parts
of the FPGA remain unaffected by the reconfiguration. This
allows for a more efficient utilization of FPGA resources, since
HwAs that are only required for limited amounts of time

can be replaced when the functionality implemented in these
regions is no longer required. From a real-time perspective,
this translates into the possibility to use HwAs to simplify
the WCET analysis of selected software tasks. However, the
required reconfiguration time introduces an overhead that needs
to be considered every time an HwA is reconfigured.

In this paper, we try to experimentally answer the question:
“Can real-time systems benefit from dynamic partial reconfigura-
tion?”. In order to do this, we investigate the potential benefits
of using DPR to implement HwAs in real-time systems and we
present an experimental WCET analysis and hardware resources
utilization for four test cases. More specifically, we compare a
static approach, in which non-reconfigurable HwAs are used
to implement software tasks, with a reconfigurable approach,
in which DPR is used to switch between different HwAs. We
therefore analyze the trade-offs between hardware-resource
utilization and the computational performance loss due to the
reconfiguration time overhead of DPR, which directly affects
the overall WCET.

For one of the test cases, we also investigate whether using
DPR to switch between multiple specialized HwAs could
provide a lower WCET bound with respect to the use of
a more general HwA.

The experiments are carried out targeting the Patmos
processor [4] and using HwAs generated from four selected
real-time TACLe suite benchmarks [5] using the Xilinx high-
level synthesis (HLS) tool Vivado HLS [6]. The Patmos WCET
analysis tool-chain is used to perform the WCET analysis of
the accelerated tasks and of the reconfiguration process.

This paper makes two contributions: 1) it investigates the
benefits of using DPR to implement HwAs in real-time
systems analyzing the hardware utilization vs. computational
performance trade-offs (in terms of WCET), and 2) it presents
an experimental evaluation using HLS-generated HwAs from
four selected real-time TACLe benchmarks.

This paper is organized in six sections: Section II presents
the related work. Section III provides the general background
related to DPR, the reconfiguration controller RT-ICAP, and
the Patmos processor infrastructure. Section IV describes the
experimental setup used to produce the results, which consists
of the hardware platform and the set of HwAs from the
TACLe benchmark suite. Section V presents and discusses
the experimental results. Finally, section VI concludes the
paper.

II. RELATED WORK

To our knowledge, the use of DPR in real-time systems
represents a novel and unexplored field of research and the
related work that addresses the use of DPR from a real-time
perspective is very limited. Therefore, we also include some
related work regarding the use of DPR in general-purpose
systems.

In the following, we list some relevant hardware/software
frameworks especially developed to support reconfiguration
and some works addressing scheduling-related problems. These
works are representative of the benefits and the challenges
experienced from using DPR.

A complete survey of the most relevant hardware aspects
of reconfigurable computing can be found in [7]. The work
explores the challenges of runtime hardware reconfigurable
architectures, addressing both single-chip and multi-chip archi-
tectures.

The work presented in [8] proposes a software framework
that exploits HwAs combined with DPR in the development
of safety-critical real-time systems. It presents a model used to
derive the response-time analysis to verify the schedulability of
a real-time task set under given constraints and assumptions.

In [9], the author studies the dynamic behavior of reconfig-
urable architectures, especially focusing on the use of DPR.
The work proposes a simulation framework for reconfigurable
architectures that comprises a generic application model and
an architecture model, the combination of which captures the
dynamic behavior of the reconfigurable architectures.

Another framework is the one presented in [10], called
ReCoBus-builder, that addresses component-based, recon-
figurable, non-real-time systems. It uses DPR to generate
dynamically reconfigurable systems providing one or more
runtime reconfigurable areas.

The work presented in [11] provides an overview of the
hardware-software partitioning, scheduling, and placement
issues and proposes an exact and a heuristic approach for
hardware-software partitioning in a system that uses DPR.
The paper takes into account key factors such as placement
implications and configuration pre-fetching for minimizing the
schedule length.

In [12], the authors present the PaRA-Sched automated
design methodology. This takes into account DPR in the
scheduling infrastructure to improve overall performance by
automatically masking reconfiguration time when possible. This
allows a rapid exploration of the DPR impact during the early
stages of the design process.

Finally, we present some of our previous work that relates
to this paper. In [1], we explore the use of DPR in real-
time systems to implement mode changes in the context of
the T-CREST multi-core platform and in [2] we present a
hardware/software infrastructure to support time-predictable
reconfiguration. In this paper, by means of experiments we
explore some of the concepts that were presented from only a
purely theoretical perspective in these two papers.

III. BACKGROUND

In this section, we present the general background related to
DPR, the reconfiguration controller RT-ICAP, and the Patmos
processor infrastructure.

A. Dynamic Partial Reconfiguration

DPR is a feature of modern FPGAs that allows runtime
modification of an operating FPGA [3]. Partial bit-streams
can be loaded into the FPGA to reconfigure selected regions
without compromising the functionality of other parts of
the device. A system that uses DPR can be conceptually
divided into two main parts: a non-reconfigurable static part
configured at boot-time with a full bit-stream, and a runtime
reconfigurable part, which may consist of many independent
reconfigurable regions. Each reconfigurable region can be
reconfigured multiple times during runtime with different partial
bit-streams without interfering with the functionality of the
static part.

For Xilinx FPGAs, DPR is performed at runtime by loading
a partial bit-stream through one of the FPGA configuration
interfaces. For this work, the ICAP (internal configuration
access port) is used to provide access to the configuration
memory and partially reconfigure the FPGA after its initial
configuration. Modifying the content of the configuration
memory corresponds to a change in the hardware implemented
on the FPGA.

The time needed to perform a reconfiguration is proportional
to the size of the partial bit-stream to be transferred over the
ICAP interface, which depends on the size of the region to
be reconfigured. For example, assuming the widest possible
interface (32 bits) and the fastest possible clock (100 MHz) for
the ICAP interface, the reconfiguration time of a reconfigurable
region of 500 slices (which can accommodate a double-
precision floating-point adder) is 300µs [1].

The reconfiguration time is a very important parameter
since it introduces a time overhead of DPR that needs to
be considered every time an HwA is reconfigured, leading to
a computational performance loss when compared to a fully
static approach (not using DPR), since it increases the WCET.

B. The RT-ICAP Reconfiguration Controller

The ICAP interface needs to be interfaced with a controller
that manages the reconfiguration. For this purpose, we have
developed the time-predictable reconfiguration controller RT-
ICAP, presented in [2]. The RT-ICAP controller is a time-
predictable lightweight DPR controller that enables a processor
to perform DPR.

The RT-ICAP controller, integrated in the hardware architec-
ture used in this paper, is shown in Figure 1. The controller is
interfaced to the processor, the bit-stream scratch-pad memory
(SPM), and the ICAP interface. Once the bit-stream is stored
in the SPM, the processor sets up the RT-ICAP controller to
initiate a reconfiguration, which autonomously fetches the bit-
stream from the bit-stream-SPM and loads it into the FPGA
configuration memory through the ICAP interface.

The RT-ICAP controller is supported by a software tool,
named convbitstream. For each configuration, the convbitstream
tool computes, at compile-time, the reconfiguration time.

The reconfiguration time is from the moment the processor
initiates the reconfiguration and until the partial bit-stream is
completely written into the FPGA’s configuration memory and
the reconfigurable region is ready to be used. This time interval
is needed to perform WCET analysis of an application that
uses the reconfiguration feature.

C. The Patmos Processor and the ‘platin’ Time-Analysis Tool

The processor used in this work is Patmos [4]. Patmos is
a time predictable, dual-issue, RISC processor used in the
T-CREST [13] multi-core platform and it has been developed
specifically for use in real-time applications. It contains special
instruction and data caches, and local private SPMs for
instructions and data.

In real-time systems, the calculation of the WCET is
fundamental to determine the system ability to respond in
time. For this reason, several commercial tools and research
prototypes have been developed to satisfy this need [14]. Patmos
is supported by an LLVM-based compiler, also developed
with focus on WCET [15] and by the WCET analysis tool
platin (portable LLVM-based annotation and timing analysis
integration) [16], which allows static derivation of tight WCET
bounds. The tool computes the WCET by analyzing the
software without executing it on hardware. It works both at the
intermediate representation of the LLVM-based compiler to
determine the structure of the program and at the machine code
level, taking into account the hardware timing and architecture
specific information of the utilized hardware platform.

The platin tool, together with the convbitstream tool and
the HwA execution time information, are used in this work to
compute the WCET reported in the results section.

IV. EXPERIMENTAL SETUP

This section describes the experimental setup used to
produce the results. More specifically, we describe the hardware
platform and the set of HwAs from the TACLe benchmark
suite that we use.

A. Hardware Platform

The hardware platform used in our experiments is shown in
Figure 1. The I/O devices are connected to the Patmos processor
using a bus that implements a subset of the open-core protocol
(OCP) [17]. The HwA is connected to a shared memory (HwA-
SPM) for data exchange with Patmos and to a controller (HwA-
ctrl) used to manage the HwA and provide the current status to
the processor. The HwA uses the ap ctrl hs interface protocol
to communicate with the HwA-ctrl, as defined in [6, p. 89].

The HwA-SPM is divided into a certain number of banks
decided at synthesis time. The HwA-SPM appears as a single
address space to the processor, but the banks can be accessed in
parallel by the HwA to increase the memory bandwidth towards
it. Note that the HwA-SPM is not the local SPM of Patmos,

Patmos
processor

F
P

G
A

 c
on

fig
. l

og
ic

 a
nd

 m
em

o
ry

ICAP
interface

Local
SPM

HwA
ctrl.

HwA
SPM

RT-ICAP
ctrl.

Bit-stream
SPM

HwA

O
C

P
 b

u
s

Reconfigurable region

FPGA logic

Fig. 1. An overview of the hardware platform used for the experiments. All
the I/O devices are connected to the processor using the OCP bus.

which is used by the processor to store easily accessible data
and instructions.

Both the HwA and the HwA-SPM reside in the recon-
figurable region, since the number of memory banks used
is dependent on the HwA and, therefore, it needs to be
reconfigured together with the HwA.

The reconfiguration is managed by the RT-ICAP controller
presented in subsection III-B. The RT-ICAP controller can
modify the content of the FPGA configuration memory through
the ICAP interface. Therefore, by writing a partial bit-stream
(stored in the bit-stream SPM) into this memory, the content of
the reconfigurable region is dynamically modified. The dashed
arrow in Figure 1 characterizes this dependency.

Assuming that the bit-streams are available in the bit-stream
SPM, the full operational flow of the system to use the HwA
is as follows:

1) Patmos requests the RT-ICAP controller to reconfigure
the needed HwA;

2) Patmos moves the data to be processed into the HWA
SPM;

3) Patmos activates the HwA by interacting with the HWA
controller;

4) When the HwA has finished, Patmos can read the
processed data from the HWA SPM.

The step 1) can be skipped if the reconfigurable area does not
need to be reconfigured. During step 3), when the HwA is
running, the processor is free to execute other operations.

B. Benchmarks and Hardware Accelerators

The HwAs used in this paper are based on code from four
benchmarks from the TACLe suite, which is a collection
of open-source C programs, for timing analysis and real-
time related research [5]. For the selected benchmarks, the
computationally intensive part of the program is identified
and moved into hardware. The benchmark is then modified
to interact with the HwA to perform the section of the
program that was moved into hardware. When DPR is used,
the reconfiguration of the dynamic region with the needed
HwA is performed before using the HwA.

The HwAs used in this paper are generated using Xilinx
Vivado HLS, which is an automated design process able to

transform high-level language code, such as C, into functionally
equivalent synthesizable RTL HDL code [6]. In our case, it is
used to transform C code from the TACLe real-time benchmarks
into VHDL.

The benchmarks have been chosen to be representative of
HwAs working on large data sets, small data sets, and data
streams. In the following, we provide a brief description of the
functionality of each benchmark and of the characteristics of
the associated HwA. The data type used in all the benchmarks
is single-precision floating-point.

Matrix multiplication: This benchmark executes the matrix
multiplication between two square matrices. For this benchmark,
we have generated different specialized HwAs for matrices of
size 4×4, 16×16, and 32×32. Moreover, we have generated
a generic HwA for matrix multiplication which can take any
given matrix size up to 32×32. This is used to analyze how
the specialized HwAs combined with partial reconfiguration
perform in comparison with a generic HwA.

Matrix inversion: This benchmark computes the matrix
inversion operation on a square matrix. For this benchmark, we
have also generated HwAs for matrices of size 4×4, 16×16,
and 32×32.

2D FIR filter: This benchmark performs a bi-dimensional
FIR filtering on a matrix of size M×N using a 3×3 coefficient
mask. This kind of filtering is commonly used for smoothing
or sharpening bi-dimensional data sets. More specifically, the
benchmark computes the cross-correlation between a 4×4 area
surrounding each value and the coefficient mask. Zero-padding
is performed at the matrix edges to satisfy the filter conditions.
For this benchmark, we have generated an HwA for a matrix
of size 3×3, corresponding to the minimum input matrix size.

Filterbank: This benchmark implements a filter-bank with
FIR filters for multi-rate signal processing. The input signal is
passed into eight different FIR filters. The filtered signals are
then down-sampled and up-sampled again. The up-sampled
signal is passed through a second set of FIR filters and
finally the outputs are summed together. Normally, some data
processing is performed between the down-sampling and
the up-sampling. In our benchmark, we do not perform any
processing. For this benchmark, we have generated an HwA
where the input data and the two sets of filter coefficients are
passed as arguments.

V. RESULTS AND DISCUSSION

This section presents the experimental evaluation of the use
of DPR in real-time systems, in terms of reconfiguration over-
head, hardware utilization, and trade-off between specialized
and generic HwAs.

All the results of our architecture, presented in this sec-
tion, are produced using Xilinx Vivado and HLS (v16.4)
and targeting the Xilinx Artix-7 FPGA (model XC7A100T-
1CSG324C). Equivalent results can be obtained when targeting
a different FPGA model. The size of the reconfigurable region
used in all the experiments is 1500 slices, which contains

TABLE I
CONTRIBUTIONS TO THE WCET IN CLOCK-CYCLES AND THE NUMBER

OF TIMES (N95%) THE HWA HAS TO BE USED TO REACH A PERFORMANCE
THAT IS 95 % OF THE ONE OF A SYSTEM THAT USES A STATIC HWA.

Benchmark Software
(Csw)

Hardware
(Thwa)

Reconfig.
(Crec) N95%

Matrix mult.
- 4×4 3 203 42 133 436 781
- 16×16 30 345 1 107 130 786 79
- 32×32 114 816 8 351 133 823 21

Matrix inv.
- 4×4 2 307 793 130 772 802
- 16×16 21 363 12 168 131 885 75
- 32×32 78 859 55 223 130 071 18

2D FIR filter 3 174 137 132 098 758

Filterbank 46 450 216 264 132 152 10

6000 look-up tables (LUTs), 12000 flip-flops (FFs), 30 block-
RAMs (BRAMs), and 40 digital signal processing (DSP)
elements.

A. Reconfiguration Overhead

The first set of results is related to the WCET of the bench-
marks and aims to characterize the overhead of reconfiguration
over actual computation time.

Three factors contribute to the WCET of a benchmark: Csw,
Chwa, and Crec. The first contribution Csw is the WCET of
the software section of the benchmark produced by the platin
time-analysis tool. This includes the WCET of the data transfer
to and from the HwA-SPM and the WCET of the setup of the
HwA. The second contribution Chwa is the time needed by
the HwA to perform the computation. This result is produced
by the Vivado HLS tool. The third contribution Crec is the
reconfiguration time needed to perform the reconfiguration of
the reconfiguration region. This time interval is produced by
the convbitstream tool. All time periods are measured in clock
cycles.

Table I presents the values of these three contributions for
all the benchmarks considered in this work. The total WCET
of a benchmark that uses DPR is denoted Ctot dpr and it can
be calculated using equation (1), where N is the number of
computations executed by the HwA after a reconfiguration.

Ctot dpr = Crec +N (Csw + Chwa) (1)

The reconfiguration time, Crec, represents an overhead, and the
effect of this overhead reduces the more times the HwA is used.
The last column of table Table I with heading N95% shows
the number of times the HwA has to be used in order to reach
a performance that is 95 % of the performance of a system
that uses a static HwA. It is possible to observe that, for the
HwAs that perform computationally intensive tasks, such as
Matrix multiplication and Matrix inversion for 32×32 matrices
and Filterbank, the value of N95% is very low. Low values of

0
10
20
30
40
50
60
70
80
90

100

1 20

M. mult. 4x4

M. mult. 16x16

M. mult. 32x32
M. inv. 32x32

M. inv. 4x4

M. inv. 16x16

Filterbank

2D FIR filter

N10 155

Relative performance - DPR vs. static (%)

Fig. 2. Plot showing the performance when using DPR relative to the
performance when using static HwAs for values of N ∈ [1, 20].

N95% show that the reconfigurable solution may be particularly
beneficial, even if only a small number of computations are
required, since the loss of performance is compensated for by
lower hardware cost as discussed in the next subsection.

Figure 2 provides additional insight into the relation between
reconfiguration overhead and the number of times, N , that the
HwA is used. The figure shows the performance when using
DPR relative to the performance when using static HwAs for
values of N ∈ [1, 20]. In the figure, it is possible to observe how
results for similar benchmarks tend to cluster together. In the top
of the plot we can find the curves related to Filterbank and the
benchmarks operating on 32×32 matrices. Right below, in the
second group, we can find the curves related to the benchmarks
operating on 16×16 matrices. For these two groups, the solution
using DPR becomes comparable to the static approach, in terms
of computational performance, for low values of N . Finally,
the curves related to the 2D FIR filter and to the benchmarks
operating on 4×4 matrices are located in the lower part of
the plot, showing that it is unlikely that a real application can
benefit from using DPR.

B. Hardware Utilization

One of the advantages of using DPR is the possibility of
reducing the hardware utilization in the case when some of the
hardware resources implemented in a system are only utilized
for a limited amount of time, since the HwAs can be loaded
in the reconfigurable regions when needed.

Table II shows the hardware utilization results for the main
components of the hardware platform (shown in Figure 1)
and for all the HwAs used in the experiments, in LUTs, FFs,
BRAMs, and DSP elements.

Considering a hypothetical application that includes all
the functionality of the benchmarks used in this work, it is
possible to observe that the minimum size of the reconfigurable
region should be enough to contain the largest hardware
requirements across all the HwAs. In our case, this corresponds
to 5 126 LUTS, 7 411 FFs and 3 BRAMs to fit the Filterbank
HwA, and 20 DSP elements to fit the Matrix multiplication
and Matrix inversion HwAs requirements. In a static solution,
where all the HwAs need to be implemented, the total resource
utilization would be roughly equal to the sum of the hardware

TABLE II
HARDWARE UTILISATION RESULTS FOR THE HARDWARE PLATFORM

AND FOR ALL THE HWAS USED IN THE EXPERIMENTS.

Entity LUT FF BRAM DSP

Patmos 4 931 3 602 8.5 4
HwA controller 7 4 0 0
ICAP controller 289 105 0 0

Matrix mult.
- 4×4 1 270 1 138 0 20
- 16×16 1 979 2 523 0 20
- 32×32 2 763 4 048 0 20

Matrix inv.
- 4×4 2 051 2 017 0.5 5
- 16×16 3 425 3 725 0.5 20
- 32×32 4 080 4 636 0.5 20

2D FIR filter 1 816 1 987 0 10

Filterbank 5 126 7 411 3 10

Generic matrix mult. 2 912 4 037 0 5

resources of each HwA. This leads to a relevant saving in
the hardware cost, since the required minimum size of the
reconfigurable region is the 23 % of LUTs and the 27 % of
FFs of the estimated hardware cost of a static solution.

Taking the hardware resource utilization results and the
performance results presented in the previous subsection into
account, we can observe that, for a value of N sufficiently
high, DPR leads to a more efficient use of FPGA resources,
while maintaining comparable computational performance.

C. Specialized vs. Generic Accelerator

The goal of this experiment is to determine what benefits a
very specific HwA combined with DPR may bring compared
to a generic one, since the reconfiguration feature can be used
to just change the type of specialized HwA based on current
requirements.

As previously mentioned, for Matrix multiplication we have
generated specialized HwAs for matrix sizes of 4×4, 16×16,
32×32, and a generic HwA which can take in input matrices of
any size up to 32×32. The idea is to investigate the trade-offs
between using DPR to switch between multiple specialized
HwAs and using a more general HwA, in terms of WCET and
hardware utilization.

Table III shows the WCETs for both the specialized HwAs
and the generic one in clock cycles for the Matrix multiplication
benchmark for the three different matrix sizes. Table III also
shows the reconfiguration time for the specialized HwA.

Contrarily to the experiment presented in Subsection V-A,
where the solution using reconfiguration is always slower
than the static one, in this experiment the solution using
reconfiguration can be faster than a static solution, since the
specialized HwAs are faster than the generic ones.

TABLE III
WCET RESULTS FOR GENERAL AND SPECIALIZED HWAS, RECONFIG-

URATION TIME FOR THE SPECIALIZED HWAS, AND THE MINIMUM NUMBER
OF OPERATIONS N100% FOR WHICH IT IS CONVENIENT TO USE DPR.

4×4 16×16 32×32

General HwA 8 028 49 438 152 933
Specialized HwA 3 245 31 452 123 167
Reconfig. time 133 436 130 786 133 823

N100% 28 8 5

Therefore, after a certain amount of computation, the
overhead introduced by the reconfiguration time will be
compensated for by the difference in speed between the
specialized and the general HwA. The value N100%, shown in
the last row of Table III, is the threshold value of N (number of
times the HwA is used) in which the general and the specialized
HwAs, including reconfiguration, are equivalent in performance.
For values of N > N100%, the use of the specialized HwA
combined with reconfiguration outperform the general HwA.

In terms of hardware, it is possible to observe from Table II
that the minimum size of the reconfigurable region should be
enough to contain the specialized Matrix multiplication HwA
for size 32×32, which is smaller than the hardware resources
needed to implement the generic HwA (last row of Table II).

VI. CONCLUSION

In this paper, we tried to answer the question: “Can real-
time systems benefit from dynamic partial reconfiguration?”. In
order to do this, we have performed an experimental analysis
of the WCET and hardware resources utilization for four test
cases derived from the real-time TACLe benchmark suite.

Our conclusion is that, in the case where an application
performs a sequence of tasks in a way that allows differ-
ent HwAs to be loaded in the reconfigurable region when
needed, the use of DPR can lead to a significant reduction
in the hardware cost if the tasks moved into hardware are
sufficiently computationally intensive. In our benchmarks, this
was observed for computationally intensive tasks, such as the
Filterbank and the benchmarks operating on 32×32 matrices.

Similarly, the experiments regarding the trade-offs between
specialized and general HwAs suggest that, for computationally
intensive tasks, the use of the specialized HwAs combined
with reconfiguration is advantageous with respect to the general
HwA, both in terms of performance and hardware utilization.

SOURCE ACCESS

The source code used for synthesis is available at https:
//github.com/A-T-Kristensen/patmos HLS/ tree/master/hls and
the code required to run on the T-CREST platform is available
at https://github.com/A-T-Kristensen/patmos/ tree/patmos hls.

The full T-CREST platform is available at https://github.com/
t-crest/ . The entire work is open-source under the terms of the
simplified BSD license.

REFERENCES

[1] L. Pezzarossa, M. Schoeberl, and J. Sparsø, “Reconfiguration in FPGA-
based multi-core platforms for hard real-time applications,” in Proc. of the
International Symposium on Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC). IEEE, 2016, pp. 1–8.

[2] ——, “A controller for dynamic partial reconfiguration in FPGA-based
real-time systems,” in Proc. of the 20th International Symposium on
Real-Time Distributed Computing (ISORC). IEEE, 2017, pp. 92–100.

[3] XILINX, “UG909: Vivado Design Suite User Guide - Partial Reconfigu-
ration (v2017.1),” Tech. Rep., 2017, online (last accessed: Aug. 2017).

[4] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn, “Towards a time-predictable dual-issue
microprocessor: The Patmos approach,” in Proc. of the Workshop
on Bringing Theory to Practice: Predictability and Performance in
Embedded Systems (PPES), 2011, pp. 11–20.

[5] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Waegemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in Proc. of the 16th International Workshop on Worst-Case
Execution Time Analysis (WCET), 2016, p. 10.

[6] XILINX, “UG902: Vivado Design Suite User Guide - High-Level
Synthesis (v2017.1),” Tech. Rep., 2017, online (last accessed: Aug. 2017).

[7] K. Compton and S. Hauck, “Reconfigurable computing: A survey of
systems and software,” ACM Computing Surveys, vol. 34, no. 2, pp.
171–210, 2002.

[8] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo, “A framework for supporting real-time applications on dynamic
reconfigurable FPGAs,” in Proc. of the Real-Time Systems Symposium
(RTSS). IEEE, Nov 2016, pp. 1–12.

[9] K. Wu, “Reconfigurable architectures: from physical implementation to
dynamic behavoir modelling,” Ph.D. dissertation, Dept. of Informatics
and Mathematical Modelling, Technical University of Denmark, 2007.

[10] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder - a novel tool and
technique to build statically and dynamically reconfigurable systems for
FPGAs,” in Proc. of International Conference on Field Programmable
Logic and Applications. IEEE, 2008, pp. 4 629 918, 119–124.

[11] S. Banerjee, E. Bozorgzadeh, and N. D. Dutt, “Integrating physical
constraints in HW-SW partitioning for architectures with partial dynamic
reconfiguration,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 14, no. 11, pp. 1189–1202, Nov 2006.

[12] R. Cattaneo, R. Bellini, G. Durelli, C. Pilato, M. D. Santambrogio, and
D. Sciuto, “Para-sched: A reconfiguration-aware scheduler for recon-
figurable architectures,” in Proc. of the Parallel Distributed Processing
Symposium Workshops, IEEE, May 2014, pp. 243–250.

[13] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann, S. Hepp,
B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Tocchi, “T-
CREST: Time-predictable multi-core architecture for embedded systems,”
Journal of Systems Architecture, vol. 61, no. 9, pp. 449–471, 2015.

[14] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström, “The worst-case execution
time problem – overview of methods and survey of tools,” Trans. on
Embedded Computing Systems, vol. 7, no. 3, pp. 1–53, 2008.

[15] P. Puschner, R. Kirner, B. Huber, and D. Prokesch, “Compiling for time
predictability,” in Computer Safety, Reliability, and Security, ser. Lecture
Notes in Computer Science. Springer, 2012, vol. 7613, pp. 382–391.

[16] S. Hepp, B. Huber, J. Knoop, D. Prokesch, and P. P. Puschner, “The platin
tool kit - The T-CREST approach for compiler and WCET integration,”
in Proc. of the 18th Kolloquium Programmiersprachen und Grundlagen
der Programmierung (KPS), 2015.

[17] OCP official website, “Webpage: http://www.accellera.org/downloads/
standards/ocp/,” (last accessed: Aug. 2017).

