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Abstract 13 

Ammonium chloride (NH4Cl) was usually used as a model ammonia source to simulate 14 

ammonia inhibition during anaerobic digestion (AD) of nitrogen-rich feedstocks. However, 15 

ammonia in AD originates mainly from degradation of proteins, urea and nucleic acids, which 16 

is distinct from NH4Cl. Thus, in this study, the inhibitory effect of a “natural” ammonia 17 

source (urea) and NH4Cl, on four pure methanogenic strains (aceticlastic: Methanosarcina 18 

thermophila, Methanosarcina barkeri; hydrogenotrophic: Methanoculleus bourgensis, 19 

Methanoculleus thermophilus), was assessed under mesophilic (37°C) and thermophilic (55°C) 20 

conditions. The results showed that urea hydrolysis increased pH significantly to unsuitable 21 

levels for methanogenic growth, while NH4Cl had a negligible effect on pH. After adjusting 22 

initial pH to 7 and 8, urea was significantly stronger inhibitor with longer lag phases to 23 

methanogenesis compared to NH4Cl. Overall, urea seems to be more toxic on both aceticlastic 24 

and hydrogenotrophic methanogens compared to NH4Cl under the same total and free 25 

ammonia levels.  26 

 27 

Keywords 28 
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1 Introduction 30 

Biogas (a mixture of CH4 and CO2) is an attractive renewable energy (Holm-Nielsen et al., 31 

2009), which is formed during anaerobic digestion (AD) of different biomasses. As one of the 32 

most promising and widely used green technologies, AD is a complex biological process with 33 

different microorganisms involved, which can reduce the waste pollution and offset part of the 34 

energy usage (Chynoweth et al., 2001). However, it is reported that some potential substrates 35 

are toxic to AD process by inhibiting the microorganisms' activity (Chen et al., 2008). Among 36 

these substrates, nitrogen-rich substrates stand out, due to the ammonia formation during their 37 

degradation. A low ammonia concentration (< 200 mg NH4
+
-N L

-1
) is beneficial to AD 38 

process; nevertheless, relatively high ammonia levels (> 2000 mg NH4
+
-N L

-1
) would inhibit 39 

AD, causing instability and even process failure (Liu and Sung, 2002). Total ammonia (TAN) 40 

in aqueous solutions is the sum of ammonium ions (NH4
+
) and free ammonia (FAN, NH3). 41 

The NH4
+
 and NH3 exist in an equilibrium (Eq. (1)), which is affected by the temperature and 42 

the pH (Emerson et al., 1975). Specifically, FAN, which was suggested to be the most toxic 43 

form of ammonia (Massé et al., 2014), increases along with temperature and pH. 44 

Methanogenesis, the last step of AD process, is more sensitive to ammonia than hydrolysis, 45 

acidogenesis and acetogenesis steps (Yenigün and Demirel, 2013). Furthermore, in most of 46 

the studies, hydrogenotrophic methanogens were reported to be more robust to ammonia 47 

toxicity than aceticlastic methanogens (Schnürer et al., 1999; Werner et al., 2014; Dai et al., 48 

2017). However, controversial results can also be found (Calli et al., 2005; Karakashev et al., 49 

2005). 50 

Considering ammonia inhibition is such a serious and highly debated topic, a great 51 

number of studies focusing on the impact of ammonia levels and on inhibition mechanism 52 

have been conducted in different reactor types (Angelidaki and Ahring, 1993; Sung and Liu, 53 

2003; Cuetos et al., 2008; Wang et al., 2015; Chen et al., 2016). As a result, it is reviewed that 54 
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50% inhibition was caused by TAN concentrations ranging from 1700 to 14000 mg NH4
+
-N 55 

L
-1

 depending on different experimental conditions (Chen et al., 2008). However, in most of 56 

the aforementioned studies, ammonium chloride (NH4Cl) was used as the inhibitor (ammonia 57 

source), and only few experiments can be found using other ammonia sources (Sterling et al., 58 

2001; Westerholm et al., 2012; Dai et al., 2017). As a salt, NH4Cl can dissociate immediately 59 

after addition into aqueous solutions and release chloride anions and ammonium cations, as 60 

shown in Eq. (2). However, since chloride anions could also be a potential inhibitor to AD 61 

process (Riffat and Krongthamchat, 2006; Viana et al., 2012), it is difficult to differentiate if 62 

the inhibitory effect only comes from ammonia. Moreover, in the real AD applications, when 63 

nitrogen-rich substrates are used as feedstocks, ammonia is usually formed by the degradation 64 

of proteins, urea and nucleic acids (Rajagopal et al., 2013). Furthermore, urea is the main part 65 

of animal urine besides water; thus abounds in animal slurry (e.g. poultry, mink pig, cattle) 66 

and slaughterhouse wastewater (Møller et al., 2004). Without urease, which is the enzyme that 67 

catalyses urea hydrolysis, urea in aqueous solutions has a negligible reaction rate constant of 68 

6.3*10
-9

 s
-1

 and a half-life of 3.5 years (Krajewska, 2009). However, urease can be 69 

synthesized by different microorganisms, including some bacteria involved in AD process, 70 

which can accelerate the hydrolysis of urea by nearly 10
14

 times faster than the uncatalysed 71 

decomposition (Ciurli et al., 1999). As shown in Eq. (3), the direct hydrolysed product of urea 72 

is the most toxic ammonia form (i.e. FAN) (Zimmer, 2000). In addition, hydrolysis of urea 73 

causes sudden pH increase, which could negatively affect the AD process (Mobley et al., 1995; 74 

Ciurli et al., 1999). 75 

 76 

NH3 (aq.) + H2O (l.   NH4
+
 (aq.) +OH

-
 (aq.)   Eq. (1) 77 

NH4Cl (s.) + H2O (l.)   NH4
+
 (aq.) + Cl

-
 (aq.)   Eq. (2) 78 

CO(NH2)2 (s.) + 2H2O (l.) 
      
      2NH3 (aq.) + H2CO3 (aq.)  Eq. (3) 79 
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 80 

Thus, in order to separate the inhibition only caused by ammonia and simulate this 81 

process closer to realistic conditions, urea was used as ammonia source in reactors fed with 82 

cattle manure (Sterling et al., 2001). However, among the limited studies using urea as 83 

ammonia source, nothing can be found about its effect on methanogens. Considering 84 

methanogenesis is the most sensitive step of AD process (Chen et al., 2008), it is important to 85 

understand the urea effect on different methanogens. In addition, to date, there are no studies 86 

assessing simultaneously the effect of NH4Cl and urea on methanogenic archaea.  87 

Therefore, the main aim of the present study was to investigate the effect of two different 88 

ammonia sources on four pure methanogenic strains (i.e. two aceticlastic and two 89 

hydrogenotrophic), under mesophilic (37°C) and thermophilic (55°C) conditions. To fulfil this 90 

aim, firstly, the effect on pH caused by the NH4Cl dissociation and urea hydrolysis in AD 91 

batch reactors was investigated. Secondly, under controlled pH conditions (i.e. 7 and 8), five 92 

different TAN levels (i.e. ten different FAN levels) were applied on each pure methanogenic 93 

strain to evaluate the effect of the two ammonia sources on the cultures, independently of the 94 

pH. 95 

2 Materials and methods 96 

2.1 Pure strains, ammonia sources and enzyme 97 

Four pure methanogenic strains (aceticlastic: Methanosarcina thermophila TM-1 DSM 98 

No.1825 and Methanosarcina barkeri MS DSM No. 800; hydrogenotrophic: Methanoculleus 99 

thermophilus CR-1 DSM No. 2373 and Methanoculleus bourgensis MS2
T
 DSM No. 3045) 100 

were purchased from DSMZ GmbH Company and used throughout the study. M. thermophila 101 

and M. thermophilus are thermophilic, while M. barkeri and M. bourgensis are mesophilic 102 

methanogens. All the pure strains were cultivated in the specific growth media suggested by 103 
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DSMZ GmbH Company. Specifically, the growth media used were medium 120 (DSMZ, 104 

2014a) for M. thermophila, medium 120a (DSMZ, 2014b) for M. barkeri, medium 141 105 

(DSMZ, 2017) for M. thermophilus, and medium 332 (DSMZ, 2014c) for M. bourgensis. The 106 

carbon sources that were used for each strain were: acetate and methanol for M. thermophila; 107 

CO2 for M. thermophilus; methanol for M. barkeri; and formate and CO2 for M. bourgensis. 108 

Ammonium chloride (Sigma-Aldrich, CAS no. 12125-02-9) and urea (Sigma-Aldrich, 109 

CAS no. 57-13-6) were used as ammonia sources for the main experiment. Urease (Type IX, 110 

Sigma-Aldrich, CAS no. 9002-13-5) from Canavalia ensiformis (jack bean) seeds was used as 111 

enzyme to hydrolyse urea. A buffer solution consisted of 0.2 M sodium phosphate with pH 112 

7.3 was prepared for the dissolution of the enzyme before use.  113 

2.2 Experimental setup 114 

Two batch experimental assays were performed in this study to investigate the effect of 115 

different ammonia sources on pH fluctuation of the reactors (Assay I) and on the 116 

methanogenic process efficiency (Assay II). Before the experiments started, the pure strains, 117 

bought from DSMZ (DSMZ GmbH Company, Germany), were cultivated according to its 118 

corresponding cultivation protocols (DSMZ, 2014c; DSMZ, 2014b; DSMZ, 2014a; DSMZ, 119 

2017). After several (4-6) generations, the cultures were used as inocula in the two 120 

experimental assays of the current study with a 20/80 (v/v) inoculum to medium ratio 121 

throughout the experiment. Meanwhile, urease was added to all batch reactors regardless of 122 

the ammonia source. Furthermore, all the experiments were conducted in triplicates. 123 

2.2.1 Assay I: Effect on pH 124 

All the pure strains were tested under different ammonia levels as depicted in Table 1. 125 

Serum vials were used with 40 and 118 mL working and total volume, respectively. After 126 

adding the corresponding medium, each vial was closed with butyl rubber stopper and sealed 127 

with aluminium caps, then flushed with a mixture gas of N2/CO2 (80/20, v/v) to create anoxic 128 
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conditions and autoclaved to provide sterile conditions. Other solutions that could not be 129 

autoclaved according to the instructions (NaHCO3, Na2CO3, Vitamin, Methanol, L-cysteine-130 

HCl·H2O and Na2S·9H2O) were introduced by using sterilized, 0.2 μm pore size, Minisart
®
 131 

NML Syringe Filters (Sartorius Stedim Biotech GmbH, Germany) to avoid any contamination. 132 

Na2S·9H2O solution was added as a reducing agent after inoculation. In addition, pure H2 133 

(62.4 mL) and CO2 (15.6 mL) were added in the headspace of the batch reactors of the 134 

hydrogenotrophic strains. Afterwards, all the batch reactors were incubated at their 135 

corresponding temperatures (37±1
o
C for mesophilic and 55±1

o
C for thermophilic). The pH 136 

was measured after the urea hydrolysis finished (approximately 20 hours after the incubation 137 

stated based on preliminary hydrolysis test, and the details were provided in the E-supplement 138 

file).  139 

2.2.2 Assay II: Effect on methanogenesis 140 

In this assay, two different ammonia sources with five different TAN and ten different 141 

FAN levels (as shown in Table 2) were tested on all the methanogens. For all the strains, 142 

serum vials with 40 mL working volume was used, while total volume of 245 mL was used 143 

for M. thermophila and M. thermophilus cultivation, and total volume of 118 mL was used for 144 

M. barkeri and M. bourgensis. The reactors were closed with rubber stoppers, sealed with 145 

aluminium caps, and flushed with a mixture N2/CO2 gas (80/20, v/v) after the addition of 146 

medium. All the reactors containing medium were autoclaved before inoculation. Chemical 147 

solutions, which could not be autoclaved, were added through sterilized filters afterwards. In 148 

addition, for hydrogenotrophic M. thermophilus and M. barkeri, H2/CO2 (80/20, v/v) mixture 149 

gas was injected into the headspace of the reactor to form 1 bar overpressure. Furthermore, a 150 

pH adjustment strategy (the details were provided in the E-supplement file) was performed to 151 

ensure the same pH levels (7 and 8) for each individual experiment using 4 M HCl and/ or 152 

NaOH solutions. Specifically, for reactors with NH4Cl, where the dissociation happened 153 
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immediately, pH adjustment was performed before the incubation started. However, for 154 

reactors containing urea and the hydrolysis happened slowly, the pH was adjusted several 155 

times until the hydrolysis finished (the details were provided in the E-supplement file). Finally, 156 

all the batch reactors were incubated in their corresponding temperatures (37±1
o
C for 157 

mesophilic and 55±1
o
C for thermophilic). 158 

2.3 Analytical methods 159 

Methane accumulation in the headspace of the batch reactors was determined by a gas 160 

chromatographer (Trace 1310 GC-TCD, Thermo Fisher, Denmark) equipped with a 161 

TracePLOT TG-BOND Q 26004–6030 column (30 m x 0.32 mm I.D., film thickness 10 μm) 162 

(Thermo Fisher), and helium was used as carrier gas (Tian et al., 2017). The pH of each 163 

reactor was measured with PHM99 LAB pH meter (Radiometer TM). 164 

2.4 Calculations and statistics 165 

2.4.1 Free ammonia 166 

The free ammonia concentration was calculated based on the following equation (Siles et 167 

al., 2010): 168 

FAN = 
   

   
     

  

     Eq. (1) 169 

where Ka is the dissociation constant affected by temperature, which equals to 1.29 × 10
-9

 170 

and 3.91 × 10
-9

 in this study for mesophilic and thermophilic condition, respectively. 171 

2.4.2 Methane production inhibition 172 

The methane production inhibition was defined as the ratio of the difference between 173 

theoretical and practical methane production divided by the maximum theoretical methane 174 

production. Maximum theoretical production, for the different carbon sources in the medium, 175 

was calculated according to Angelidaki et al. (2011) and it was 122, 373 and 525 mL CH4·g
-1

 176 
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VS for formate, acetate and methanol. Meanwhile, for the H2/CO2 mixture gas, it was 177 

calculated based on that 1 mL CH4 forms from 4 mL H2 and 1 mL CO2.  178 

2.4.3 Maximum specific growth rate 179 

Maximum specific growth rate (μmax) was calculated through the OriginLab program 180 

(OriginLab Corporation, Northampton, Massachusetts) by calculating the slope of the linear 181 

part of the semi-logarithmic graph of the methane production of the reactors versus time 182 

(Gray et al., 2009). 183 

2.4.4 Statistical analysis 184 

The OriginLab program was used for statistical analyses and data plotting. One-way and 185 

two-way ANOVA were used to evaluate the statistically differences (p<0.05) of ammonia 186 

inhibition under different parameters (e.g. different ammonia sources, ammonia levels and pH 187 

levels). Single outliers test was applied to the triplicate measurements if needed. 188 

3 Results and discussion 189 

3.1 Impact on pH from two different ammonia sources 190 

The impact of urea hydrolysis and NH4Cl dissociation on pH was significantly different 191 

(p<0.05, Fig. 1). Specifically, after urea hydrolysis completed, except for the basic TAN 192 

levels, the pH increased to around 9 for M. thermophila, M. barkeri, and M. bourgensis, 193 

which was outside of the pH limits (6.5-8.5) for AD process (Lay et al., 1998). This increase 194 

in pH after urea hydrolysis, was in agreement with a previous study (Udert et al., 2003) where 195 

elevated pH was observed alongside the extent of urea hydrolysis. The pH of M. thermophilus 196 

increased alongside the urea concentration, and it was about 8.5 at the highest TAN level 197 

(5000 mg NH4
+
-N·L

-1
). This different performance of M. thermophilus from the other strains 198 

could be explained by the stronger buffer capacity in M. thermophilus medium compared to 199 

the other media due to the higher NaHCO3 concentration. In contrast, NH4Cl dissociation did 200 



  

10 

not have any significant effect on the pH of batch reactors, with a maximum pH drop of 201 

approximately 0.3 units at the highest TAN levels (10000 mg NH4
+
-N·L

-1
). Therefore, it 202 

seems that NH4Cl is not a representative ammonia source to simulate ammonia inhibition in 203 

AD reactors because, contrary to urea, it does not have an analogous pH effect.  204 

Meanwhile, it also can be seen that a medium with strong buffer capacity could mitigate 205 

the effect of urea hydrolysis on pH (e.g. M. thermophilus case); thus, it is reasonable to 206 

suspect that the pH of manure-based AD reactors (high buffer capacity) would not increase in 207 

such a great extent. At the same time, without pH adjustment, the pure strains are not expected 208 

to grow with urea (except in the basic TAN concentrations), due to the unfavourable pH levels 209 

(> 8.5). Therefore, all the following methanogenesis batch experiments in assay II, were 210 

designed with a pH adjustment strategy (adjust the initial pH level to 7 and 8, respectively) to 211 

compare the effect of the two different ammonia sources on the pure methanogenic strains, 212 

independently of the pH. 213 

3.2 Methanogenesis performance of different methanogens 214 

3.2.1 Aceticlastic M. thermophile and M. barkeri 215 

Urea had similar or significantly higher (p<0.05) inhibitory effect on both aceticlastic 216 

strains compared to NH4Cl in the majority of the tested TAN levels. For example, NH4Cl 217 

inhibited the methane production of M. thermophila by 58% at 5000 mg NH4
+
-N·L

-1
 (pH=8); 218 

at the same time, urea inhibited the same strain more than 90% at 5000 mg NH4
+
-N·L

-1
 for 219 

pH=7 and at all TAN levels above 3000 mg NH4
+
-N·L

-1
 for pH=8 (Fig. 2a). The different 220 

inhibition effects were also reflected on the longer lag phases at the same ammonia levels for 221 

urea compared to NH4Cl. To be specific, up to threefold longer lag phase periods were in urea 222 

reactors compared to NH4Cl reactors (Table 3). Furthermore, at lower FAN levels (< 151 mg 223 

NH3-N·L
-1

), μmax of M. thermophila was between 0.04-0.06 h
-1

 for both urea and NH4Cl 224 

reactors coinciding with μmax values reported before (Sowers et al., 1984; Mladenovska and 225 
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Ahring, 2000). However, NH4Cl reactors had significantly higher μmax compared to urea 226 

reactor for FAN levels above 151 mg NH3-N·L
-1

, which indicates a stronger inhibitory effect 227 

of urea (Fig. 2c). 228 

M. barkeri was the most sensitive methanogenic strain to ammonia compared to all the 229 

other tested strains. Almost 100% inhibition was observed at 64 (5000 mg NH4
+
-N·L

-1
, pH=7) 230 

and 89 mg NH3-N·L
-1

 (7000 mg NH4
+
-N·L

-1
, pH=7) for reactors with urea and with NH4Cl, 231 

respectively (Fig.2b). These results were in accordance to previous studies reporting 50% 232 

inhibition of M. barkeri growth at 42 mg NH3-N·L
-1

 and more than 95% inhibition at 88 mg 233 

NH3-N·L
-1

 (Sprott and Patel, 1986; Hajarnis and Ranade, 1993). However, although complete 234 

inhibition occurred in most ammonia levels, for FAN levels lower than 64 mg NH3-N·L
-1

, 235 

where methanogenesis was observed, urea was clearly stronger inhibitor than NH4Cl. 236 

Furthermore, urea prolonged the lag phase up to fourfold compared to NH4Cl (Table 3). Even 237 

though M. barkeri was the most sensitive methanogenic strain tested in the present study, it 238 

had the highest μmax of 0.11-0.12 h
-1

 (optimal conditions), which decreased alongside with the 239 

increase of ammonia levels (Fig. 2d). Similar specific growth rates (0.10-0.14 h
-1

) of M. 240 

barkeri were reported by Jarrell et al. (1987) when TAN was below 1.4 NH4
+
-N·L

-1
, and more 241 

than 50% reduction was detected around 4 NH4
+
-N·L

-1
. However, no significant difference 242 

(p>0.05) of the μmax can be found between urea and NH4Cl reactors. 243 

3.2.2 Hydrogenotrophic M. thermophilus and M. bourgensis 244 

Overall, hydrogenotrophic methanogens were, as expected (Werner et al., 2014), more 245 

tolerant to NH4Cl than the aceticlastic methanogens tested in the current study. Interestingly, 246 

it was also found that hydrogenotrophic methanogens were more tolerant to urea than 247 

aceticlastic methanogens. Nevertheless, similar to aceticlastic strains, urea also had a higher 248 

inhibitory effect on the hydrogenotrophic methanogens compared to NH4Cl. However, there 249 

was an exception for M. thermophilus at low TAN levels (< 3000 mg NH4
+
-N·L

-1
), where 250 
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NH4Cl seemed to be more toxic than urea (Fig. 3a). The reasons might be firstly, the pH of 251 

the urea reactors did not increase due to the strong buffer capacity of M. thermophilus 252 

medium as discussed previously; Secondly, NH4Cl reactors suffered higher toxicity than urea 253 

reactors at the beginning because of the higher ammonia concentration from instant NH4Cl 254 

dissociation compared to from the gradual urea hydrolysis process. However, at higher TAN 255 

levels (> 3000 mg NH4
+
-N·L

-1
), urea inhibited M. thermophilus significantly stronger (p<0.05) 256 

than NH4Cl. All the M. thermophilus reactors had a lag phase smaller than 1.2 days (Table 4) 257 

maintaining a μmax between 0.03-0.04 h
-1

 indicating that M. thermophilus was able to cope 258 

with the strong ammonia toxicity. This was in agreement with Wang et al. (2015) reporting no 259 

significant drop (p>0.05) on methane production at ammonia levels up to 7000 mg NH4
+
-N·L

-
260 

1
 for M. thermophilus with a μmax around 0.03 h

-1
. 261 

M. bourgensis was the most ammonia tolerant methanogenic strain tested in the current 262 

study, in which no more than 15% inhibition was observed, and independently of the 263 

ammonia sources, ammonia levels and pH levels (Fig.3b). This high tolerance was expected 264 

because M. bourgensis was reported (Fotidis et al., 2014) to thrive under high ammonia levels 265 

(5000 mg NH4
+
-N L

-1
). Moreover, Westerholm et al. (2015) observed that M. bourgensis was 266 

the dominant archaeon in AD reactors operated under high FAN levels (900 mg NH3-N·L
-1

), 267 

and Wang et al. (2015) also demonstrated that M. bourgensis can work properly at TAN 268 

levels up to 7000 mg NH4
+
-N·L

-1
. However, even with this tolerant methanogen, urea was 269 

proven more toxic than NH4Cl, resulting in lag phases up to ten days for TAN levels above 270 

5000 mg NH4
+
-N·L

-1
 (pH 8), compared to only two days lag phase for the NH4Cl at the 271 

highest TAN levels. The same trend was observed among the specific growth rates, with 272 

significantly lower μmax for the urea reactors compared to NH4Cl reactors in majority of the 273 

tested ammonia levels.  274 
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3.3 The ammonia sources and the inhibition mechanism 275 

In general, urea was a significantly stronger inhibitor than NH4Cl (Table 5). This could be 276 

explained by the different manners that urea and NH4Cl introduce TAN and FAN into the 277 

reactors. Specifically, NH4Cl, as an easily soluble salt, can fully dissociate in aqueous phase 278 

immediately after its addition and the direct dissociative products are ammonium ions (Eq. 2), 279 

instead of the more toxic FAN form (Massé et al., 2014). On the contrary, urea, which is an 280 

organic compound, can only be hydrolysed slowly with the presence of urease, and produce 281 

directly FAN (Eq. (3)), which is the most toxic ammonia form (Zimmer, 2000). Therefore, 282 

relatively high FAN levels develop instantly after urea hydrolysis, before the final 283 

NH4
+
NH3 equilibrium (Eq. 1) is established, driven by the pH and the temperature 284 

(Emerson et al., 1975). Compared to low FAN levels after NH4Cl dissociation, this 285 

momentary exposure of the methanogenic cells to such high FAN concentrations after urea 286 

hydrolysis, could have a greater impact in their metabolic activity. Furthermore, NH4Cl 287 

dissociation does not have a significant effect on the pH of the reactor and thus does not create 288 

unfavourable pH conditions for the methanogens. On contrary, urea hydrolysis without pH 289 

control could increase the pH of the reactor into unfavourable levels. Even though pH was 290 

adjusted constantly in the current experiment, until the hydrolysis of urea was completed, it 291 

was impossible to avoid a temporal pH increase during the urea hydrolysis period (details are 292 

provided in the E-supplement file). Thus the combined effect of momentary high FAN 293 

concentrations and pH increase, even for short time periods during the hydrolysis phase, is 294 

proposed as the main mechanism for the stronger inhibitory effect of urea compared to NH4Cl 295 

on the pure methanogenic strains tested in this study.  296 

4 Conclusions 297 

The current study demonstrated that urea was significantly more toxic compared to NH4Cl 298 

during AD process. Furthermore, urea hydrolysis resulted in a great pH increase to 299 
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unfavourable levels for methanogenic growth. However, a high buffer capacity can mitigate 300 

the pH increase and lower the ammonia toxicity from urea. Additionally, hydrogenotrophic 301 

methanogens were more tolerant, not only to NH4Cl but also to urea, compared to aceticlastic 302 

methanogens. Finally, considering only pure strains were tested in this study, further studies 303 

in a more complex environment of real AD digesters are still needed to analyse the inhibition 304 

effect of urea. 305 

Appendix A. Supplementary material 306 

E-supplementary data for this work can be found in e-version of this paper online: Fig. S1. 307 

Preliminary urea hydrolysis test at different ammonia and pH levels with/ without urease 308 

under two different incubation temperatures, a) for thermophilic M. thermophila and b) for 309 

mesophilic M. bourgensis. Fig. S2. pH adjustment strategies to 7 and 8 at different urea 310 

concentrations for a) M. thermophila, b) M. barkeri, c) M. thermophilus, d) M. bourgensis 311 
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Figure legends 432 

Fig. 1. pH value after the hydrolysis of the urea and the dissolution of the NH4Cl at different 433 

ammonia levels, a) M. thermophila, b) M. barkeri, c) M. thermophilus, d) M. bourgensis 434 

Fig. 2. Final methane production inhibition and μmax of M. thermophila and M. barkeri under 435 

different ammonia sources, ammonia levels and pH levels, a) inhibition of M. 436 

thermophila, b) inhibition of M. barkeri, c) μmax of M. thermophila, d) μmax of M. 437 

barkeri. 438 

Fig. 3. Final methane production inhibition and μmax of M. thermophilus and M. bourgensis 439 

under different ammonia sources, ammonia levels and pH levels, a) inhibition of M. 440 

thermophilus, b) inhibition of M. bourgensis, c) μmax of M. thermophilus, d) μmax of M. 441 

bourgensis. 442 

 443 

  444 



  

http://ees.elsevier.com/bite/download.aspx?id=1878504&guid=06174ad9-7671-41e5-be65-a47447af1de0&scheme=1


  

http://ees.elsevier.com/bite/download.aspx?id=1878505&guid=a47ada3a-c3a2-4451-97fa-7583d137f6c1&scheme=1


  

http://ees.elsevier.com/bite/download.aspx?id=1878506&guid=57feb6ef-2e1d-48e5-a817-e55ee38c7d63&scheme=1


  

21 

Table 1. Different ammonia levels for the two ammonia sources in Assay I. 445 

Strains Ammonia sources TAN (mg NH4
+
-N·L

-1
) *  

M. thermophila CO(NH2)2 130, 2000, 3000, 4000 and 5000 

 NH4Cl 130, 3000 and 5000 

M. barkeri CO(NH2)2 130, 3000, 5000, 7000 and 10000 

 NH4Cl 130, 5000 and 10000 

M. thermophilus CO(NH2)2 70, 2000, 3000, 4000 and 5000 

 NH4Cl 70, 3000 and 5000 

M. bourgensis CO(NH2)2 260, 3000, 5000, 7000 and 10000 

 NH4Cl 260, 5000 and 10000 

* The lowest TAN level is the basic ammonia levels of the medium. 446 

  447 
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Table 2. Different ammonia and pH levels under the two different ammonia sources of Assay 448 

II. 449 

Strains TAN (mg NH4
+
-N·L

-1
) * Ammonia sources pH levels 

M. thermophila 130, 2000, 3000, 4000 and 5000 NH4Cl, CO(NH2)2 7, 8 

M. barkeri 130, 3000, 5000, 7000 and 10000 NH4Cl, CO(NH2)2 7, 8 

M. thermophilus 70, 2000, 3000, 4000 and 5000 NH4Cl, CO(NH2)2 7, 8 

M. bourgensis 260, 3000, 5000, 7000 and 10000 NH4Cl, CO(NH2)2 7, 8 

* The lowest TAN level is the basic ammonia levels of the medium. 450 

  451 
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Table 3. Lag phase (days) of M. thermophila and M. barkeri under different experimental 452 

conditions. 453 

Strains Ammonia 

sources 

pH TAN levels (mg NH4
+
-N·L

-1
) 

   130 

(130) * 

2000 

(3000)  

3000 

(5000) 

4000 

(7000) 

5000 

(10000) 

M. 

thermophila 

NH4Cl 7 0 0 0 0 0 

 8 7.0 ± 

3.0 

11.0 ± 

6.2 

17.5 ± 

7.5 

32.6 ± 

7.6 

ND ** 

CO(NH2)2 7 0 0 3.6 ± 0.5 4.4 ± 0.5 ND 

 8 3.6 ± 

1.9 

33.0 ± 

6.2 

ND ND ND 

M. barkeri NH4Cl 7 1.0 6.9 32.8 ± 

5.9 

ND ND 

 8 0.9 ND ND ND ND 

CO(NH2)2 7 1.1 24.8 ± 

8.0 

ND ND ND 

 8 1.2 ND ND ND ND 

*Numbers outside parentheses were ammonia concentrations for M. thermophila, and the ones inside for M. 454 

barkeri.  455 

** ND: Not defined. 456 

 457 
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Table 4. Lag phase (days) of M. thermophilus and M. bourgensis under different experimental 459 

situation. 460 

Strains Ammonia 

sources 

pH TAN levels (mg NH4
+
-N·L

-1
) 

   70 

(260)* 

2000 

(3000)  

3000 

(5000) 

4000 

(7000) 

5000 

(10000) 

M. 

thermophilus 

NH4Cl 7 0 0 0 0 0 

 8 0 1.2 ± 0.5 1.2 ± 0.5 1.2 ± 0.8 0.9 ± 0.7 

CO(NH2)2 7 0 0 0 0 0 

 8 0 0 0 0 0 

M. bourgensis NH4Cl 7 0 0 0 0 0 

 8 0 0 0 0 2.0 

CO(NH2)2 7 0 0 0 0 0 

 8 0 1.0 2.7 ± 0.5 4.3 10.1 

*Numbers outside parentheses were the ammonia concentrations for M. thermophilus, and the ones inside for M. 461 

bourgensis.  462 
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Table 5. Overall comparison of highest methane production inhibition of all strains. 464 

Strains pH NH4Cl CO(NH2)2 

M. thermophila * 7 22.9 ± 0.9 % 91.0 ± 0.8 % 

 8 57.9 ± 0.5% 98.5 ± 0.2 % 

M. barkeri ** 7 99.4 ± 0 % 99.4 ± 0.1 % 

 8 99.5 ± 0 % 99.6 ± 0.1 % 

M. thermophilus * 7 3.8 ± 2.7 % 0% 

 8 28.7 ± 1.2 % 42.2 ± 6.6 % 

M. bourgensis * 7 3.1 ± 0.8 % 28.7 ± 1.2 % 

 8 6.8 ± 0.7 % 15.2 ± 1.0 % 

* Detected under the highest ammonia levels, specifically, for both pH levels, 5000 mg NH4
+
-N·L

-1
 for M. 465 

thermophila and M. thermophilus, and 10000 mg NH4
+
-N·L

-1
 for M. bourgensis. 466 

** Detected under a relatively low ammonia levels, specifically, 7000 and 5000 mg NH4
+
-N·L

-1
 at pH 7 for 467 

NH4Cl and urea, respectively, and 3000 mg NH4
+
-N·L

-1
 at pH 8 for both. 468 
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Highlights 470 

 Urea hydrolysis increases reactor pH significantly more than ammonium chloride  471 

 Urea is more toxic to methanogenic archaea than ammonium chloride 472 

 Combined high free ammonia and pH levels is the toxicity mechanism of urea 473 

 Hydrogenotrophic methanogens are more robust than aceticlastic methanogens to urea 474 

 475 



  


