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ON THE PERIODIC SOLUTIONS OF THE
5–DIMENSIONAL LORENZ EQUATION MODELING
COUPLED ROSBY WAVES AND GRAVITY WAVES

TIAGO CARVALHO1 AND JAUME LLIBRE2

Abstract. Lorenz studied the coupled Rosby waves and gravity
waves using the differential system

U̇ = −V W + b V Z,

V̇ = UW − bUZ,

Ẇ = −UV,

Ẋ = −Z,

Ż = b UV + X.

This system has the two first integrals

H1 = U2 + V 2,

H2 = V 2 + W 2 + X2 + Z2.

Our main result shows in each invariant set {H1 = h1 > 0}∩{H2 =
h2 > 0} there are at least 4 (respectively 2) periodic solutions of the
differential system with b ̸= 0 and h2 > h1 (respectively h2 < h1).

1. Introduction

In [3] E.N. Lorenz studied slow manifolds in coupled Rosby waves
and gravity waves. In order to model the behavior he used the following
5-dimensional differential system

(1)

U̇ = −V W + b V Z,

V̇ = UW − bUZ,

Ẇ = −UV,

Ẋ = −Z,

Ż = b UV + X,

where b ∈ R is a parameter. In [4] it was studied the integrability of
this differential system and, mainly its analytic integrability. In the
present paper we shall use the first integrals of system (1) and the
theory of averaging of first order for studying the periodic solutions of
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system (1), for more details on the averaging theory see [2, 5, 6] and
the appendix.

In [3] it is proved that

(2)
H1(U, V,W,X, Z) = U2 + V 2,

H2(U, V,W,X, Z) = V 2 + W 2 + X2 + Z2,

are first integrals of the differential system (1) when b ̸= 0, and that

(3)

H1(U, V, W,X, Z) = U2 + V 2,

H2(U, V, W,X, Z) = V 2 + W 2,

H3(U, V, W,X, Z) = X2 + Z2,

are first integrals of (1) when b = 0.

Our main results on the periodic solutions of the differential system
(1) are the following.

Theorem 1. For every pair of positive real numbers h1 and h2 in the
invariant set {H1 = h1} ∩ {H2 = h2}, where H1 and H2 are given
in (2), there are at least 4 (respectively 2) periodic solutions of the
differential system (1) with b ̸= 0 and h2 > h1 (respectively h2 < h1).
We give explicit approximations of these periodic solutions and of their
linear stability.

Theorem 1 is proved in section 2.

Proposition 2. For every triple of positive real numbers h1, h2 and h3

the general solution of differential system (1) with b = 0 and h2−h1 > 0
in the invariant set {H1 = h1} ∩ {H2 = h2} ∩ {H3 = h3} is

(4)

u(t) = ±
√

h1sn

(√
h2 − h1 t

∣∣∣∣
h1

h1 − h2

)
,

v(t) = ±
√

h1 − u(t)2,

w(t) = ±
√

h2 + u(t)2,

x(t) = x0 cos t − z0 sin t,

z(t) = z0 cos t + x0 sin t,

with x2
0 + z2

0 = h3, and where H1, H2 and H3 are given in (3).

In the statement of Proposition 2 sn(u|m) denotes the sinus elliptic
Jacobi function whose period is 4F (π/2|m), where F is the incomplete
elliptic integral of the first kind, for more details see [1].

Proposition 2 is proved in section 3, where we also provide the peri-
odic solutions of the differential system (1) with b = 0.
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2. Proof of Theorem 1

Since in this section we shall prove Theorem 1 we consider b ̸= 0.

Analyzing the differential system (1) we obtain that the axes U , V
and W are filled of equilibria. The Jacobian matrix M of system (1) is

M =




0 −W + bZ −V 0 b V
W − b Z 0 U 0 −b U

−V −U 0 0 0
0 0 0 0 −1

b V bU 0 1 0




.

Then the eigenvalues at the equilibrium point (U, V, W,X,Z) = (0, 0, 0, 0, 0)
are 0, 0, 0, i, −i.

In order to simplify the next computations we shall write the linear
part of system (1) at the origin of coordinates in its real Jordan normal
form

J =




0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




.

For this we do the linear change of variables



U
V
W
X
Z




=




0 0 0 1 0
0 0 0 0 1
0 −1 0 0 0
1 0 0 0 0
0 0 1 0 0







U
V
W
X
Z




.

In the new variables (U, V , W, X, Z) the differential system (1) be-
comes

(5)

U̇ = −V ,

V̇ = U − b WX,

Ẇ = bV X − XZ,

Ẋ = −bV W + WZ,

Ż = WX,

whose Jacobian matrix at the origin is J .

Since the main tool for proving our results is the averaging theory,
we need to transform the differential system (5) into the normal form
(10) for applying the averaging theory, see the appendix. Thus, first
we introduce in such a system a small parameter. For this we re-scale
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our variables as follows (U, V ,W, X, Z) → (εu, εv, εw, εx, εz). Then
system (5) becomes

(6)

u̇ = −v,
v̇ = u − εbwx,
ẇ = εbvx − εxz,
ẋ = −εbvw + εwz,
ż = εwx.

Now we shall consider the following generalized polar coordinates
(r, θ, R, α, Z) defined by

u = r cos θ , v = r sin θ , w = R cos α , x = R sin α and z = z.

Therefore the differential system (6) in these generalized polar coordi-
nates writes

(7)

ṙ = −ε
1

2
bR2 sin θ sin(2α),

θ̇ = 1 − ε
1

2r
bR2 cos θ sin(2α),

Ṙ = 0,

α̇ = ε
(
z − br sin θ

)
,

ż = ε
1

2
R2 sin(2α).

As consequence R = R0, with R0 ∈ R. As it will be clear later on, we
consider R0 > 0.

Now we take as new independent variable in the differential system
(7) the variable θ and this system on the invariant set {H1 = ε2R2

0}
can be written as

(8)

r′ = −ε
1

2
bR2

0 sin θ sin(2α) + O(ε2),

α′ = ε
(
z − br sin θ

)
+ O(ε2),

z′ = ε
1

2
R2

0 sin(2α) + O(ε2).

Here the prime denotes derivative with respect to the variable θ.

First note that the differential system (8) has the additional first
integral

H2(r, α, z) = ε2
(
r2 + z2 + R2

0 cos2 α
)
,

obtained from (2) after the successive change of variables listened above.
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Now isolating r from the expression of H2 = ε2h2 > 0 we obtain that

r =

√
h2 − z2 − R2

0 cos2 α.

So substituting r into system (8) this reduces to the system

(9)
α′ = ε(z − b

√
h2 − z2 − R2

0 cos2 α sin θ) + O(ε2),

z′ = ε
1

2
R2

0 sin(α) cos(α) + O(ε2),

on the invariant set {H1 = ε2R2
0 = h1} ∩ {H2 = ε2h2 = h2}.

Note that the differential system (9) is written into the normal form
(10) for applying the averaging theory, see for more details the appen-
dix. Using the notation of the appendix we have

x = (α, z), t = θ, F1(t, x) = F1(θ, α, z),

where

F1(θ, α, z) =

(
F11(θ, α, z)

F12(θ, α, z)

)
=




z − b
√

h2 − z2 − R2
0 cos2 α sin θ

1

2
R2

0 sin(α) cos(α)


 .

We note that our differential system (9) satisfies all the assumptions of
Theorem 3 of the appendix, so we can apply it.

Now we consider the averaging function (12) of the appendix

f(α, z) =

(
f1(α, z)

f2(α, z)

)
=




∫ 2π

0

F11(θ, α, z)dθ

∫ 2π

0

F12(θ, α, z)dθ


 =




z

1

2
R2

0 sin(α) cos(α)


 .

The zeros of the averaged function f(α, z) in the interval [0, 2π) are
z1 = (0, 0), z2 = (0, π/2), z3 = (0, π) and z4 = (0, 3π/2).

The Jacobian Jf of the function f at these zeros are

Jf(z1) = Jf(z3) = −R2
0 ̸= 0 and Jf(z2) = Jf(z4) = R2

0 ̸= 0.

Clearly we need that R0 > 0, otherwise the Jacobian is zero and the
averaging theory does not provide information about the periodic so-
lutions.

On the other hand, the eigenvalues associated to the zeros z1 and
z3 are −R0 and R0, while the ones to the zeros z2 and z4 are −iR0

and iR0. Therefore according to statement (b) of Theorem 3 the two
periodic solutions of system (9) associated to the zeros z1 and z3 are
unstable, having a stable and an unstable invariant manifolds formed



6 T. CARVALHO AND J. LLIBRE

each one by two cylinders. While the two periodic solutions of system
(9) associated to the zeros z1 and z3 are linear stable.

Now we go back through the changes of variables in order to estimate
in the initial variables (U, V,W,X, Z) how are the four periodic orbits
that we found in the invariant set {H1 = ε2R2

0 = h1} ∩ {H2 = ε2h2 =
h2}.

According to statement (a) of Theorem 3 the periodic solution of
system (9) associated to the zero z1 = (α, z) = (0, 0) is of the form

α(θ, ε) = O(ε), z(θ, ε) = O(ε).

This periodic solution in the differential system (8) is

r(θ, ε) =

√
h2 − R2

0 + O(ε), α(θ, ε) = O(ε), z(θ, ε) = O(ε),

and in the differential system (7) becomes

r(t, ε) =
√

h2 − R2
0 + O(ε), θ(t, ε) = t + O(ε), R(t, ε) = R0,

α(t, ε) = O(ε), z(t, ε) = O(ε).

This periodic solution in the differential system (6) writes

u(t, ε) =
√

h2 − R2
0 cos t + O(ε), v(t, ε) =

√
h2 − R2

0 sin t + O(ε),

w(t, ε) = R0 + O(ε), x(t, ε) = O(ε), z(t, ε) = O(ε).

Now for the differential system (5) this last periodic solution writes

U(t, ε) = ε
√

h2 − R2
0 cos t + O(ε2), V (t, ε) = ε

√
h2 − R2

0 sin t + O(ε2),

W (t, ε) = εR0 + O(ε2), X(t, ε) = O(ε2), Z(t, ε) = O(ε2).

Finally for our differential system (1) we get the periodic solution

U(t, ε) = O(ε2), V (t, ε) = −εR0 + O(ε2), W (t, ε) = O(ε2),

X(t, ε) = ε
√

h2 − R2
0 cos t + O(ε2), Z(t, ε) = −ε

√
h2 − R2

0 sin t + O(ε2),

or equivalently, since h1 = ε2R2
0 and h2 = ε2h2 we have that the pe-

riodic solution corresponding to the zero z1 for the differential system
(1) in the invariant set {H1 = h1} ∩ {H2 = h2} is

U(t, ε) = O(ε), V (t, ε) = −
√

h1 + O(ε), W (t, ε) = O(ε),

X(t, ε) =
√

h2 − h1 cos t + O(ε), Z(t, ε) = −
√

h2 − h1 sin t + O(ε),

once we have substitute R0 and h2 by
√

h1/ε and h2/ε
2, respectively.

Note that this last solution satisfies that it is on the invariant set {H1 =
h1} ∩ {H2 = h2}.



ON THE PERIODIC SOLUTIONS OF A 5–D LORENZ SYSTEM 7

In a similar way we can study the periodic solutions of the differential
system (1) corresponding to the zeros zk for k = 2, 3, 4, and we obtain

U(t, ε) = −
√

h1 + O(ε), V (t, ε) = O(ε), W (t, ε) = O(ε),

X(t, ε) =
√

h2 cos t + O(ε), Z(t, ε) = −
√

h2 sin t + O(ε),

for the zero z2,

U(t, ε) = O(ε), V (t, ε) =
√

h1 + O(ε), W (t, ε) = O(ε),

X(t, ε) =
√

h2 − h1 cos t + O(ε), Z(t, ε) = −
√

h2 − h1 sin t + O(ε),

for the zero z3, and

U(t, ε) =
√

h1 + O(ε), V (t, ε) = O(ε), W (t, ε) = O(ε),

X(t, ε) =
√

h2 cos t + O(ε), Z(t, ε) = −
√

h2 sin t + O(ε),

for the zero z4. This completes the proof of Theorem 1.

3. Proof of Proposition 2

Using an algebraic manipulator as mathematica the general solution
(4) of the differential system (1) with b = 0 is easily obtained.

We note that system (1) with b = 0 has the axes u, v and w filled of
equilibria.

Moreover we remark that the 3–dimensional subspace {x = 0}∩{z =
0} and the 2–dimensional subspace {u = 0} ∩ {v = 0} ∩ {w = 0} are
filled of periodic solutions if we remove the equilibria which are in these
subspaces.

When the quotient h1/(h1 −h2) satisfies 4F (π/2|h1/(h1 −h2)) = 2π,
the 3–dimensional invariant sets {H1 = h1} ∩ {H2 = h2} are filled of
period solutions of period 2π.

Appendix: The averaging theory of first order

Consider the differential system

(10) ẋ = εF1(t, x) + ε2F2(t, x, ε), x(0) = x0

with x ∈ D, where D is an open subset of Rn, t ≥ 0. We also assume
that the functions F1(t, x) and F2(t, x, ε) are T−periodic in t. We define
in D the averaged differential system

(11) ẏ = εf(y), y(0) = x0,

where

(12) f(y) =
1

T

∫ T

0

F1(t, y)dt.
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The next result shows that under the convenient hypotheses the equilib-
ria of the averaged system will provide T−periodic solutions of system
(10).

Theorem 3. Consider the two initial value problems (10) and (11).
Suppose that

(i) the functions F1, ∂F1/∂x, ∂2F1/∂x2, F2 and ∂F2/∂x are de-
fined, continuous and bounded by a constant independent of ε
in [0,∞) × D and ε ∈ (0, ε0];

(ii) the functions F1 and F2 are T−periodic in t (T independent of
ε).

Then the following statements hold.

(a) If p is an equilibrium point of the averaged system (11) satisfy-
ing

det

(
∂f

∂y

)∣∣∣∣
y=p

̸= 0,

then there is a T−periodic solution x(t, ε) of system (10) such
that (0, ε) → p as ε → 0.

(b) The kind of stability or instability of the periodic solution x(t, ε)
coincides with the kind of stability or instability of the equilib-
rium point p of the averaged system (11). The equilibrium point
p has the kind of stability behavior of the Poincaré map associ-
ated to the periodic solution x(t, ε).

For a proof of Theorem 3, see sections 6.3, 11.8 of Verhulst [6].
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