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WEIGHTED SOLYANIK ESTIMATES FOR

THE STRONG MAXIMAL FUNCTION

Paul Hagelstein and Ioannis Parissis

Abstract: Let MS denote the strong maximal operator on Rn and let w be a non-

negative, locally integrable function. For α ∈ (0, 1) we define the weighted Tauberian

constant CS,w associated with MS by

CS,w(α) ··= sup
E⊂Rn

0<w(E)<+∞

1

w(E)
w({x ∈ Rn : MS(1E)(x) > α}).

We show that limα→1− CS,w(α) = 1 if and only if w ∈ A∗∞, that is if and only if w

is a strong Muckenhoupt weight. This is quantified by the estimate CS,w(α) − 1 .n

(1 − α)
(cn[w]A∗∞

)−1

as α → 1−, where c > 0 is a numerical constant independent
of n; this estimate is sharp in the sense that the exponent 1/(cn[w]A∗∞ ) can not

be improved in terms of [w]A∗∞ . As corollaries, we obtain a sharp reverse Hölder

inequality for strong Muckenhoupt weights in Rn as well as a quantitative imbedding
of A∗∞ into A∗p. We also consider the strong maximal operator on Rn associated

with the weight w and denoted by Mw
S . In this case the corresponding Tauberian

constant CwS is defined by

CwS (α) ··= sup
E⊂Rn

0<w(E)<+∞

1

w(E)
w({x ∈ Rn : Mw

S (1E)(x) > α}).

We show that there exists some constant cw,n > 0 depending only on w and the

dimension n such that CwS (α)− 1 .w,n (1− α)cw,n as α→ 1− whenever w ∈ A∗∞ is

a strong Muckenhoupt weight.
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1. Introduction

We are interested in asymptotic estimates for the distribution func-
tions of maximal functions and allied issues. We work in the multipa-
rameter setting so that our main operator is the strong maximal operator

MSf(x) ··= sup
x∈R

1

|R|

∫
R

|f(y)| dy, x ∈ Rn,

where the supremum is taken over all rectangular parallelepipeds R ⊆ Rn
with sides parallel to the coordinate axes. This operator is in many senses
a prototype for multiparameter harmonic analysis as it is a geometric
maximal operator that commutes with the full n-parameter group of
dilations (x1, x2, . . . , xn) 7→ (δ1x1, δ2x2, . . . , δnxn). Unlike the Hardy–
Littlewood maximal operator, the strong maximal operator is not of
weak type (1, 1). It does however satisfy a weak distributional estimate
of the form

|{x∈Rn : MSf(x)>λ}|.n
∫
Rn

|f(x)|
λ

(
1+
(

log+ |f(x)|
λ

)n−1
)
dx, λ>0;

here log+ t ··= max(log t, 0). This endpoint distributional inequality es-
sentially goes back to Jessen, Marcinkiewicz, and Zygmund, [22], and it
allows us to show that the collection of all rectangles in Rn with sides
parallel to the coordinate axes differentiates functions that are locally
in L(logL)n−1(Rn). See also [3] for a geometric proof of the same result.

In this paper we take up the study of weighted analogues of Solyanik
estimates for the Tauberian constants associated with the basis of axes
parallel rectangles. Recall that, in the unweighted case, the Tauberian
constant associated with MS is defined by

CS(α) ··= sup
E⊂Rn

0<|E|<+∞

1

|E|
|{x ∈ Rn : MS(1E)(x) > α}|, α ∈ (0, 1).

(The term “Tauberian constant” in this context is now conventional, hav-
ing been used in the context of maximal operators since the paper [4] of
A. Córdoba and R. Fefferman. More information regarding this terminol-
ogy may be found in the introduction of the paper [16] of the authors.)

Solyanik showed in [34] that CS(α)−1 hn (1−α)
1
n as α→ 1− and thus

we refer to such an asymptotic estimate as a Solyanik estimate. Solyanik
also showed in [34] an identical estimate for the Hardy–Littlewood max-
imal operator defined with respect to cubes with sides parallel to the
coordinate axes while in [15] a similar estimate is proved for the Hardy–
Littlewood maximal operator defined with respect to Euclidean balls.
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We recall here that for α ∈ (1,∞) the function φS(α) ··= CS(1/α)
is the so-called halo function of the basis of rectangular parallelepipeds
in Rn with sides parallel to the coordinate axes; by convention we define
φS(α) ··= α for α ∈ [0, 1]. More generally, given any collection B consist-
ing of bounded open sets in Rn one can define the halo function φB with
respect to the geometric maximal operator MB defined by

MBf(x) ··= sup
x∈B∈B

1

|B|

∫
B

|f(y)| dy, x ∈
⋃
B∈B

B,

and MBf(x) ··= 0 otherwise. This definition of φB is related to the halo
conjecture which claims that the differentiation basis B should differen-
tiate functions f for which φB(f) ∈ L1

loc; see for example [13] for an
extensive discussion related to the halo problem. Some partial results
towards this direction are contained in [13, 17, 18, 33, 35]. Our origi-
nal goal when studying the Tauberian constants of differentiation bases
was to enrich the limited information we have for the corresponding halo
functions and, in particular, to provide some continuity and regularity
estimates.

The endpoint continuity question as α→ 1− seems however to relate
to a variety of different questions in analysis. For example, we will see
in the current paper that Solyanik estimates also find very concrete ap-
plications in the theory of weighted norm inequalities. Indeed, the most
important example is Theorem 1.3 which shows that weighted Solyanik
estimates give an alternative characterization of the class of multiparam-
eter Muckenhoupt weights A∗∞. In a similar note, one can show quanti-
tatively sharp reverse Hölder inequalities for A∗∞ weights assuming some
weighted Solyanik estimate and quantitative embeddings of the class of
multiparameter Muckenhoupt weights A∗∞ into A∗p. On the other hand,
Solyanik estimates, in the unweighted or weighted setting, are intimately
related to covering properties of the collections of sets used to define MB,
and thus also CB. This is especially relevant when one wants to quantify
covering arguments of Córdoba–Fefferman type, as in [3]. See §5 for a
detailed discussion of these applications of weighted Solyanik estimates.

Recently, Michael Lacey brought to our attention that Solyanik esti-
mates have been implicitly used in a number of papers in multiparameter
harmonic analysis; for example, in [2], Solyanik estimates for the basis of
rectangles are used in order to provide versions of Journé’s Lemma with
small enlargement. Furthermore, in [9, 26], Solyanik estimates play a
role in results providing a characterization of the product BMO space of
Chang and Fefferman, in terms of commutators. See also [5] for more
general results of this type. From recent developments it has become
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apparent that Solyanik estimates and weighted Solyanik estimates will
have a role to play, especially towards the direction of providing quanti-
tative covering arguments in the multiparameter setting, where the one
parameter covering arguments of Vitali or Besicovitch type fail.

Very relevant to the theme of this paper are the weighted Solyanik esti-
mates and the Solyanik estimates with respect to weights, studied in [16]
for the case of one-parameter operators. The main purpose of this pa-
per is to prove Solyanik estimates under the presence of weights for the
strong maximal operator. In order to explain the terminology, a weighted
Solyanik estimate vaguely corresponds to the bound MS : Lp(w)→ Lp(w)
where the Lebesgue measure in the ambient space is replaced by w but
the maximal operator is still defined with respect to the Lebesgue mea-
sure. On the other hand, a Solyanik estimate with respect to a weight
corresponds to a bound Mw

S : Lp(w) → Lp(w) where the Lebesgue mea-
sure is replaced by w both in the ambient space as well as in the definition
of the maximal operator.

In this paper we shall see that Solyanik estimates also find very con-
crete applications in the theory of weighted norm inequalities. In partic-
ular we discuss in §5 a series of corollaries of weighted multiparameter
Solyanik estimates that exhibit an intimate connection to reverse Hölder
inequalities, weighted covering lemmas for rectangles in Rn, as well as
quantitative embeddings of the class of multiparameter Muckenhoupt
weights A∗∞ into A∗p.

Weighted multiparameter Solyanik estimates. In the study of
Solyanik estimates in [16] the class of Muckenhoupt weights A∞ comes
up naturally as a certain weighted Solyanik estimate for the Hardy–
Littlewood maximal operator is shown to actually characterize the
class A∞. It is thus no surprise that the class of strong Muckenhoupt
weights A∗∞ is central in the current paper. Our approach heavily de-
pends on one-dimensional notions so we immediately recall the definition
of Ap weights on the real line.

Definition 1.1. We say that a non-negative, locally integrable func-
tion w in R, that is, a weight, belongs to the Muckenhoupt class Ap on
the real line, 1 < p < +∞, if

[w]Ap ··= sup
I

(
1

|I|

∫
w(y) dy

)(
1

|I|

∫
B

w(y)−
1
p−1 dy

)p−1

< +∞,

where the supremum is taken over all bounded intervals I ⊆ R. The
class A1 is defined to be the set of weights w on the real line such that

[w]A1
··= sup

I

(
1

|I|

∫
I

w(y) dy

)
ess sup

I
(w−1) < +∞.
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Also, we define the class A∞ to be the set of weights w such that

[w]A∞ ··= sup
I

1

w(I)

∫
I

M1(w1I) < +∞.

Some remarks are in order. Firstly, the class A∞ can be also de-
scribed as A∞ = ∪p>1Ap, while many equivalent definitions exist in the
literature; see [7]. Definition 1.1 for p = ∞ goes back to Fujii [10] and
Wilson [37, 38]. Recently several papers used the Fujii–Wilson constant
above in order to provide sharp quantitative weighted bounds for max-
imal functions and singular integrals; see for example [20, 21, 28]. We
also recall that the class of Muckenhoupt weights Ap characterizes the
boundedness property M1 : Lp(R, w) → Lp(R, w) for p ∈ (1,∞) where
M1 denotes the non-centered Hardy–Littlewood maximal operator on R.

These definitions extend in higher dimensions in different ways. If
we replace intervals by cubes in Rn with sides parallel to the coordi-
nate axes we get the one-parameter Muckenhoupt classes in Rn which
are still denoted by Ap. The classes Ap characterize the boundedness
of the n-dimensional Hardy–Littlewood maximal operator on Lp(Rn, w).
However, if we replace the intervals in Definition 1.1 by rectangular par-
allelepipeds in Rn with sides parallel to the coordinate axes, the result-
ing classes define the strong or multiparameter Muckenhoupt weights,
denoted by A∗p. The class of strong Muckenhoupt weights characterizes
the boundedness property MS : Lp(Rn, w) → Lp(Rn, w) for p ∈ (1,∞)
and thus is very relevant to the content of this paper. See for exam-
ple [11] for a more detailed discussion on these issues.

Here we adopt a one-dimensional point of view on strong Mucken-
houpt weights and their corresponding constants. For x= (x1, . . . , xn) ∈
Rn let us define the (n−1)-dimensional vector x̄j ··= (x1, . . . , xj−1, xj+1,
. . . , xn) ∈ Rn−1. We then consider the one-dimensional weight

wx̄j (t) ··= w(x1, . . . , xj−1, t, xj+1, . . . , xn), t ∈ R.
It is well known that w ∈ A∗p if and only if wx̄j ∈ Ap on the real line,

uniformly for a.e. x̄j ∈ Rn−1; see [11] or [1, Lemma 1.2]. This motivates
the following definition.

Definition 1.2. Let w ∈ A∗p be a strong Muckenhoupt weight in Rn
and let 1 ≤ p ≤ ∞. We define

[w]A∗p
··= sup

1≤j≤n
ess supx̄j∈Rn−1 [wx̄j ]Ap .

The discussion above is then translated to the statement that for
p ∈ [1,∞] we have that w ∈ A∗p ⇔ [w]A∗p < +∞. We will overview the
basic properties of strong Muckenhoupt weights in more detail in §2.
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Under the presence of a weight in the ambient space, the natural
definition for the Tauberian constant becomes

CS,w(α) ··= sup
E⊂Rn

0<w(E)<+∞

1

w(E)
w({x ∈ Rn : MS(1E)(x) > α}).

Our first main theorem gives a new characterization of the class A∗∞ in
terms of weighted Solyanik estimates for MS.

Theorem 1.3. Let w be a non-negative, locally integrable function in Rn.
If w ∈ A∗∞ we have

CS,w(α)− 1 .n (1− α)(cn[w]A∗∞ )−1

for all 1 > α > 1− e−cn[w]A∗∞ ,

where c > 0 is a numerical constant independent of n. Furthermore this
estimate is sharp in the following sense: if there exist B, β > 1 and γ > 0

such that CS,w(α)−1 ≤ B(1−α)
1
β for all 1 > α > 1−e−γ then w ∈ A∗∞

and [w]A∗∞ . β(1 + max(γ/β, lnB)).

It is well known that A∗∞ weights satisfy reverse Hölder inequalities.
Sharp quantitative versions of these inequalities are contained in several
places in the literature as for example in [20, 21] and [24] for the one-
parameter case, and in [23, 30] for the multiparameter case. In one
dimension even more precise results are known which also describe the
optimal numerical constants involved in the estimates; see for example [6]
and [36]. As a corollary of Theorem 1.3 we obtain a reverse Hölder
inequality for strong Muckenhoupt weights.

Theorem 1.4. Let w ∈ A∗∞ be a strong Muckenhoupt weight on Rn
and define [w]A∗∞ as above. There exists a numerical constant c > 0
independent of n such that(

1

|R|

∫
R

wr
) 1
r

.n
1

(1− (r − 1)(cn[w]A∗∞ − 1))
1
r

1

|R|

∫
R

w,

for all r < 1 + 1
cn[w]A∗∞−1 . Furthermore, the exponent in the reverse

Hölder inequality is optimal up to dimensional constants: if a weight w
satisfies (

1

|R|

∫
R

wr
) 1
r

≤ B 1

|R|

∫
R

w,

for all rectangular parallelepipeds R, then w ∈ A∗∞ and [w]A∗∞ . r′(1 +
lnB).
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It is of some importance to note that the reverse Hölder inequality
above holds with an exponent defined with respect to the A∗∞-constant
from Definition 1.2, which is essentially one-dimensional. This results
to a wider range for the exponent in the reverse Hölder inequalities
for multiparameter weights, compared to the ones that were known or
implicit in the literature; indeed, these involve the Arec

p -constants which
are defined with respect to rectangles and are in general larger than the
A∗p-constants we use here; see §5.1.

We remark that nonequivalent counterparts to Theorem 1.4 exist in
the literature; we particularly mention the book by Korenovskii [25] and
the work of his students Leonchik and Malaksiano [27, 31] in this regard.
We wish to thank a referee for pointing out these references to us.

Multiparameter Solyanik estimates with respect to weights. A
parallel investigation concerns the weighted strong maximal operator
defined for a non-negative locally integrable function w on Rn as

Mw
S f(x) ··= sup

x∈R

1

w(R)

∫
R

|f(y)|w(y) dy, x ∈ Rn.

Of course the same definition makes perfect sense for essentially any
locally finite Borel measure µ in place of w. However, our understanding
of multiparameter maximal operators defined with respect to measures
is rather rudimentary and the case dµ(x) = w(x) dx for w ∈ A∗∞ is one
of the few examples where we have a more or less complete picture of the
available bounds. For example it is known that if w ∈ A∗∞ then Mw

S is
bounded on Lp(w) for p ∈ (1,∞); see for example [8]. Surprisingly, the
question whether this basic mapping property persists for the case of
product doubling measures remains open. See however [14] for a related
discussion and a characterization of this property in terms of Tauberian
conditions.

For a non-negative, locally integrable function w on Rn we define the
Tauberian constant corresponding to Mw

S as

CwS (α) ··= sup
E⊂Rn

0<w(E)<+∞

1

w(E)
w({x ∈ Rn : Mw

S (1E)(x) > α}).

The second main result of this paper is a Solyanik estimate for CwS in
the case that w ∈ A∗∞.

Theorem 1.5. Let w∈A∗∞ be a strong Muckenhoupt weight. There exists
a constant cw,n>0 depending only upon w and the dimension such that

CwS (α)− 1 .w,n (1− α)cw,n

as α→ 1−.
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Notation. We use the letters C, c > 0 to denote numerical constants
that can change even in the same line of text. A dependence of some
constant c on some parameter τ is indicated by writing cτ . We write
A . B whenever A ≤ cB and A h B whenever A . B and B . A. We
denote dependencies on parameters by writing, for example, A .τ B.
A weight w is a non-negative locally integrable function and we use the
notation w(E) ··=

∫
E
w(x) dx for measurable sets E ⊆ Rn. Finally we

use the letters R, S to denote rectangular parallelepipeds in Rn, which
we will frequently colloquially refer to as rectangles, whose sides are
parallel to the coordinate axes. In the one-dimensional case, bounded
subintervals of the real line are denoted by I.

2. Preliminaries; some properties of A∗∞ weights

The literature concerning one-parameter Muckenhoupt weights is ex-
tremely rich and refined, providing very sharp estimates and alternative
proofs for all the properties of interest. In the multiparameter case
the literature is quite limited. In many cases, the properties of one-
parameter weights extend without difficulty to the multiparameter case.
See for example [11] where most of these classical properties of strong
Muckenhoupt weights are described. Some attention should be given
however when transferring properties from the one-parameter case to
the multiparameter case, especially when the endpoint bounds for the
corresponding maximal operators are involved. In this section we gather
the properties of strong Muckenhoupt weights that we need in the rest
of the paper and briefly review their proofs in the multiparameter case.

Concerning the gauges used for strong Muckenhoupt weights, it is
quite common in the literature to define A∗p-constants with respect to
rectangles by

[w]Arec
p
··= sup

R

(
1

|R|

∫
R

w

)(
1

|R|

∫
R

w−
1
p−1

)p−1

,

with the supremum taken over all rectangular parallelepipeds in Rn with
sides parallel to the coordinate axes. In fact, there are not so many, if
any, quantitative weighted bounds for multiparameter weights in the
literature; see however [30] and the references therein. The following
simple lemma gives the equivalence of the definition of A∗p in terms of
the constants [w]A∗p and [w]Arec

p
. Note however the qualitative flavor of

the statement of the lemma in one of the two directions.
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Lemma 2.1. Let w be a non-negative, locally integrable function in Rn
and let 1 ≤ p ≤ ∞. Then w ∈ A∗p if and only if [w]A∗p < +∞ if and only if

[w]Arec
p
< +∞. Furthermore, for all p ∈ [1,∞) we have [w]A∗p ≤ [w]Arec

p
.

This lemma is classical and the proof can be found for example in [11].
The inequality relating the two constants above is a simple consequence
of the Lebesgue differentiation theorem. Observe that in dimension
one there is no distinction between one-parameter and multiparame-
ter weights so we will just use the notation [w]Ap for one-dimensional
weights.

Observe that in the lemma above, equality may occur in [w]A∗p ≤
[w]Arec

p
as for example in the case w(x) ··= υ(x1), where υ is a one-

dimensional weight. However, [w]A∗p can be a lot smaller than [w]Arec
p

as

for example in the case w(x) ··= υ(x1) · · · υ(xn) with υ as above. Indeed,
in this case we have [w]A∗p = [υ]Ap while [w]Arec

p
= [υ]nAp � [w]A∗p .

We now recall one of the most important properties of Muckenhoupt
weights, the fact that they satisfy a reverse Hölder inequality, together
with an alternative characterization of A∗∞. We state here a quantitative
one-dimensional version which is tailored to the needs of this paper.

Lemma 2.2. Let w be a non-negative, locally integrable function on the
real line.

(i) If w ∈ A∞ then for all intervals I ⊆ R and all 0 < ε ≤ (4[w]A∞ −
1)−1 we have the reverse Hölder inequality

1

|I|

∫
I

w1+ε ≤ 2

(
1

|I|

∫
I

w

)1+ε

.

Furthermore, for all intervals I ⊆ R and all measurable E ⊆ I we
have

w(E)

w(I)
≤ 2

(
|E|
|I|

)(4[w]A∞ )−1

.

(ii) Conversely, if there exist constants B, β ≥ 1 such that for all in-
tervals I ⊆ R and all measurable E ⊆ I we have

w(E)

w(I)
≤ B

(
|E|
|I|

) 1
β

,

then w satisfies the reverse Hölder inequality(
1

|I|

∫
I

wr
) 1
r

≤ B
β
r′

(
β′ − 1

β′ − r

) 1
r 1

|I|

∫
I

w,

for all intervals I ⊆ R, whenever r < β′; here 1/β + 1/β′ = 1.
Furthermore w ∈ A∞ and [w]A∞ . β(1 + lnB).
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Proof: The reverse Hölder inequality of (i) is the one-dimensional case
of [21, Theorem 2.3]. The second statement in (i) follows immediately
by a simple application of Hölder’s inequality and the reverse Hölder
inequality. For (ii) let us fix an interval I. In order to prove the reverse
Hölder inequality in the statement of the lemma we can assume that
w(I)/|I| = 1. Defining Eλ ··= {x ∈ I : w > λ} we then have

|Eλ|
|I|
≤ 1

λ

w(Eλ)

w(I)
≤ B

λ

(
|Eλ|
|I|

) 1
β

,

where the first inequality is trivial and the second inequality following
by the hypothesis of (ii). Thus for λ > 0 we get the estimate

|Eλ|
|I|
≤
(
B

λ

)β′
.

Using the hypothesis of (ii) the previous inequality implies

w(Eλ)

w(I)
≤ Bβ

′
λ−

β′
β .

Now for 1 < r < 1 + β′/β = β′ we can estimate

1

w(I)

∫
I

wr =
1

w(I)

∫
I

wr−1w =
1

w(I)

∫ ∞
0

(r − 1)λr−2w(Eλ) dλ

≤ Bβ(r−1) + (r − 1)Bβ
′ Bβ(r−1−β′/β)

β′/β − (r − 1)
= Bβ(r−1) β

′ − 1

β′ − r
,

which is the desired reverse Hölder inequality. In order to see the esti-
mate for [w]A∞ we utilize the Lp bounds of the Hardy–Littlewood max-
imal operator M1 on the real line. As in the proof of [20, Theorem 2.3]
we have for every interval I ⊆ R that

1

|I|

∫
I

M1(w1I) ≤
(

1

|I|

∫
I

(
M1(w1I)

)r) 1
r

. r′
(

1

|I|

∫
I

wr
) 1
r

≤ r′B
β
r′

(
β′ − 1

β′ − r

) 1
r 1

|I|

∫
I

w.

Taking the supremum over all intervals I and using the Fujii–Wilson
definition of [w]A∞ we get

(2.3) [w]A∞ . inf
1<r<β′

r′B
β
r′

(
β′ − 1

β′ − r

) 1
r

.
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If β > 2 then consider r0 ··= 1 + β′/(2β(1 + lnB)). Obviously 1 < r0 <
1 + β′/β = β′ and we can estimate

r′0 h β(1 + lnB) and B
β

r′0

(
β′ − 1

β′ − r0

) 1
r0

. 1.

By (2.3) this gives the claim for β > 2. If β ∈ [1, 2] then the hypothesis
is always true for β = 2 so the previous argument gives

[w]A∞ . (1 + lnB) . β(1 + lnB),

and we are done.

We close this section with a technical lemma which will be useful in
a number of occasions when one assumes, or manages to prove, some
Solyanik estimate for CS,w. In particular, we will use this lemma when
showing the optimality of Theorem 1.3 as well as in the proof of Theo-
rem 1.4.

Lemma 2.4. Let w be a weight in Rn and assume that there exist con-
stants B, β ≥ 1 and γ > 0 such that

CS,w(α)− 1 ≤ B(1− α)
1
β for all 1 > α > 1− e−γ .

Then the following hold:

(i) For all rectangular parallelepipeds R ⊆ Rn whose sides are parallel
to the axes and all measurable sets E ⊆ R we have

w(E)

w(R)
≤ max(B, e

γ
β )

(
|E|
|R|

) 1
β

.

(ii) For all rectangular parallelepipeds R ⊆ Rn whose sides are parallel
to the axes we have the reverse Hölder inequality(

1

|R|

∫
R

wr
) 1
r

≤ max(B, e
γ
β )

β
r′

(
β′ − 1

β′ − r

) 1
r 1

|R|

∫
R

w,

for all 1 < r < β′.

(iii) We have that w ∈ A∗∞ and [w]A∗∞ . β(1 + max(γ/β, lnB)).

Proof: For (i), let α ∈ (0, 1) with α > 1−e−γ and consider a rectangular
parallelepiped R ⊆ Rn with sides parallel to the coordinate axes and a
measurable set S ⊆ R. If |S|/|R| > α then R ⊆ {x ∈ Rn : MS(1S)(x) >
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α}. Thus w(R) ≤ CS,w(α)w(S) and calling E ··= R \ S we have

w(E) ≤ CS,w(α)− 1

CS,w(α)
w(R) ≤ B(1− α)

1
βw(R)

whenever
|E|
|R|

< 1− α, α > 1− e−γ ,

by the hypothesis and the fact that we always have CS,w(α) ≥ 1. Letting
α→ 1− |E|/|R| we get

w(E)

w(R)
≤ B

(
|E|
|R|

) 1
β

whenever
|E|
|R|

< e−γ .

If |E|/|R| > e−γ we trivially have

w(E)

w(R)
≤ e

γ
β

(
|E|
|R|

) 1
β

.

Thus for every rectangular parallelepiped R and measurable E ⊆ R we
can conclude

w(E)

w(R)
≤ B̃

(
|E|
|R|

) 1
β

with B̃ ··= max(B, e
γ
β ),

as we wanted.

The proof of (ii) is identical to the proof of the reverse Hölder inequal-
ity in (ii) of Lemma 2.2.

For (iii) we begin by fixing some j ∈ {1, . . . , n}. For a.e. x̄j ∈ Rn−1,
the estimate in (i) and the Lebesgue differentiation theorem implies that
for all intervals I ⊆ R and all measurable sets E ⊆ I we have

wx̄j (E)

wx̄j (I)
≤ max(B, e

γ
β )

(
|E|
|I|

) 1
β

.

By (ii) of Lemma 2.2 this implies that for a.e. x̄j ∈ Rn−1 we have wx̄j ∈
A∞ and [wx̄j ]A∞ . β(1 + max(γ/β, lnB). Since the previous estimate
is uniform in j ∈ {1, . . . , n} and a.e. x̄j ∈ Rn−1 it follows that [w]A∗∞ .
β(1 + max(γ/β, lnB) as we wanted.

3. One-dimensional results

A typical technique of proof in multiparameter harmonic analysis is
based on induction or reduction of parameters. The base step of the
induction is the one-parameter case which is naturally, but not neces-
sarily, identified with the one-dimensional case. Thus we gather here all
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the weighted one-dimensional results which will be used in the inductive
proofs in the rest of the paper. The unweighted versions of these results
are contained in [34]. Here we adopt a slight variation introduced in [15]
which is more suitable for our purposes.

3.1. Weighted one-dimensional Solyanik estimates. Remember
that the one-dimensional Hardy–Littlewood maximal operator is defined
by

M1f(x) ··= sup
x∈I

1

|I|

∫
I

|f(y)| dy, x ∈ R,

where the supremum is taken over all intervals I ⊆ R with I 3 x. The
corresponding Tauberian constant with respect to a weight w is defined
for α ∈ (0, 1) as

C1,w(α) ··= sup
E⊂R

0<w(E)<+∞

1

w(E)
w({x ∈ R : M1(1E)(x) > α}).

The following lemma is the weighted version of a completely analogous
lemma from [15].

Lemma 3.1. Let w ∈ A∞ be a Muckenhoupt weight on the real line
and let E ⊂ R be a measurable set with 0 < |E| < +∞. Then for all
0 ≤ γ < α < 1 with 1− α < 4−4[w]A∞ (1− γ) we have

w({x ∈ R : M1(1E+γ1Ec) > α}) ≤
(

1− 4
(1− α

1− γ

)(4[w]A∞ )−1)−1

w(E).

Proof: For convenience we set fE,γ ··= 1E + γ1Ec and first prove the

case γ > 0. There exists a countable collection of intervals {Ĩj}j such

that Eα,γ ··= {x ∈ R : M1(1Eγ + 1Ec)(x) > α} ⊆ ∪j Ĩj and

1

|Ĩj |

∫
Ĩj

fE,γ > α.

Fixing some compact K ⊆ Eα,γ we have that K ⊆j ∪jIj for a fi-

nite collection {Ij}j ⊆ {Ĩj}j . Furthermore, there exists a subcollec-
tion {Ijk}k ⊆ {Ij}j such that ∪kIjk = ∪jIj and

∑
j 1Ijk ≤ 2; see for

example [12, p. 24] for more details on this classical covering argument.
Observe that for each k we then have

1

|Ijk |

∫
Ijk

1E >
α− γ
1− γ
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and so |Ijk ∩ Ec|/|Ijk | ≤ (1− α)/(1− γ). Using (i) of Lemma 2.2 for w
we get that

w(Ijk ∩ Ec)

w(Ijk)
≤ 2

(
1− α
1− γ

)(4[w]A∞ )−1

.

We thus have

w

(⋃
k

Ijk

)
≤ w(E) + 2

(
1− α
1− γ

)(4[w]A∞ )−1 ∑
j

w(Ijk)

≤ w(E) + 4

(
1− α
1− γ

)(4[w]A∞ )−1

w

(⋃
k

Ijk

)
,

and accordingly

w(K) ≤
(

1− 4
(1− α

1− γ

)(4[w]A∞ )−1)−1

w(E).

This easily implies the desired estimate for γ > 0.
Now for α > 1− 4−4[w]A∞ we have for sufficiently small δ > 0

w({x ∈ R : M1(1E)(x) > α}) ≤
(

1− 4
(1− α

1− δ

)(4[w]A∞ )−1)−1

w(E).

Letting δ → 0+ we get the claim for γ = 0 as well.

3.2. One-dimensional Solyanik estimates with respect to Borel
measures. In this section we consider the weighted maximal operator
in one dimension

Mµ
1f(x) ··= sup

x∈I

1

µ(I)

∫
I

|f(y)| dµ(y), x ∈ R,

where the supremum is taken with respect to all intervals I 3 x. The
Tauberian constant associated with Mµ

1 is then defined as

Cµ1 (α) ··= sup
E⊂R

0<µ(E)<+∞

1

µ(E)
µ({x ∈ R : Mµ

1 (1E)(x) > α}).

In this case the corresponding Solyanik estimates are very simple to
prove.

Lemma 3.2. Let µ be a non-negative, locally finite Borel measure on
the real line. Then there exists a numerical constant c > 0 such that for
all 0 ≤ γ < α < 1 we have

µ({x ∈ R : Mµ
1 (1E + γ1Ec)(x) > α}) ≤

(
1 + 2

( 1− α
α− γ

))
µ(E).
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Proof: It is enough to prove the lemma for γ > 0. As in the proof of
Lemma 3.1, given a compact K ⊆ {x ∈ R : Mµ

1 (1E + γ1Ec)(x) > α}
there exist disjoint intervals {Ik}k with

∑
k 1Ik ≤ 2, K ⊆ ∪kIk, and

1

µ(Ik)

∫
Ik

fE,γ dµ > α′,

where fE,γ is defined as in the proof of Lemma 3.1. Observe that then
we get µ(E ∩ Ik)/µ(Ik) > (α− γ)/(1− γ). We thus have∑

k

µ(Ik ∩ Ec) ≤ 1− α
1− γ

∑
k

µ(Ik) ≤ 1− α
1− γ

1

α

∑
k

∫
Ik

fE,γ dµ

≤ 1

α

1− α
1− γ

∑
k

(
µ(E ∩ Ik) + γµ(Ec ∩ Ik)

)
≤ 2

α

1− α
1− γ

µ(E) +
γ

α

1− α
1− γ

∑
k

µ(Ik ∩ Ec).

Since 0 < γ < α < 1 we can conclude that∑
k

µ(Ik ∩ Ec) ≤ 2(1− α)

α− γ
µ(E),

and thus

µ(K) ≤
(

1 +
2(1− α)

α− γ

)
µ(E).

This proves the desired claim.

As a corollary we immediately obtain a one-dimensional Solyanik es-
timate with respect to Borel measures.

Corollary 3.3. Let µ be a non-negative locally finite Borel measure on
the real line. Then for all α ∈ (0, 1) we have

Cµ1 (α)− 1 ≤ 2
1− α
α

.

Observe that the previous corollary is an extension of Theorem 1.5 in
the one-dimensional case. It is important to note here that the one-
dimensional result is uniform over the class of Borel measures, thus
strictly stronger than Theorem 1.5. In general, Solyanik estimates do
not hold for the Hardy–Littlewood maximal operator Mµ, or the strong
maximal operator Mµ

S , defined with respect to arbitrary locally finite
Borel measures µ on Rn, whenever n ≥ 2. A quick example of this type
of behavior is given as follows. Let {Sj}j be a countable collection of
sets in Rn, n ≥ 2, all of which contain the origin and such that, for
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each j there exists xj ∈ Sj \∪k 6=jSk. Then define the locally finite Borel
measure µ ··= δ0 +

∑
j cjδxj for a sequence {cj}j of positive real numbers

with limj→+∞ cj = 0 and
∑
j cj = +∞. If the Sj ’s are cubes this shows

that the Hardy–Littlewood maximal operator Mµ, defined with respect
to µ, does not satisfy any Solyanik estimate. If the Sj ’s are rectangular
parallelepipeds with sides parallel to the coordinate axes the same ex-
ample shows that Mµ

S does not satisfy any Solyanik estimates either. In
particular, these operators are unbounded on Lp(µ) for all p <∞.

The discussion above shows that extending Corollary 3.3 to higher
dimensions will require some additional hypothesis on µ. For example,
the corollary is still true in Rn uniformly over all Borel measures which
are tensor products of one-dimensional Borel measures as above. A less
trivial generalization is contained in Theorem 1.5 which however is re-
stricted to measures of the form dµ(x) = w(x) dx for w ∈ A∗∞. On
the other hand, one could consider a version of Corollary 3.3 for the
centered Hardy–Littlewood maximal operator, or the dyadic maximal
operator defined with respect to some locally finite Borel measure µ. In
these cases the result easily extends to Rn and is uniform over all Borel
measures as above. This is an easy consequence of the Besicovitch cov-
ering theorem, and the Calderón–Zygmund decomposition, respectively.

4. Weighted Solyanik estimates for the strong maximal
operator

We now move to the study of weighted Solyanik estimates for strong
Muckenhoupt weights in higher dimensions. We actually prove a stronger
estimate which we describe below.

Let B ··= {β1, . . . , βN} be an ordered set of indices with each βj ∈
{1, . . . , n}. Note that we allow the case that βj = βk for j 6= k. We
let |B| denotes the number of members of the set B allowing for higher
multiplicity (e.g. |{1, 1, 2}| = 3). We define the maximal operator MB

as

MB ··= Mβ1
· · ·MβN ,

that is, MB is the composition of the operators MβN , . . . ,Mβ1
, where

Mj denotes the directional maximal operator acting on the j-th direction
of Rn

Mjf(x) ··= sup
s<xj<t

1

t− s

∫ t

s

|f(x1, . . . , xj−1, u, xj+1, . . . , xn)|du, x ∈ Rn.
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Lemma 4.1. Let w ∈ A∗∞ be a strong Muckenhoupt weight on Rn and
E⊂Rn be a measurable set with 0 < |E| < +∞. Let α1 ∈ (0, 1) and B
as above. For j ∈ {1, . . . ,max{1, |B| − 1}} we define 1 − αj+1 ··= (1 −
α1)(1− αj). Then for all α1 > 1− 4−4[w]A∗∞ we have

w({x ∈ Rn : MB1E(x) > α|B|}) ≤ (1− 4(1− α1)(4[w]A∗∞ )−1

)−|B|w(E).

Proof: Let us fix a strong Muckenhoupt weight w ∈ A∗∞. For x̄j ∈ Rn−1

we remember that the one-dimensional weight wx̄j , defined as wx̄j (t) ··=
w(x1, . . . , xj−1, t, xj+1, . . . , xn) for t ∈ R, is a Muckenhoupt weight in R
uniformly in x̄j ; that is we have [wx̄j ]A∞ ≤ [w]A∗∞ for all x̄j ∈ Rn−1 and
[w]A∗∞ is as in Definition 1.2.

The proof is by way of induction on the size |B|. For |B| = 1 we
can assume without loss of generality that B = {1}; this is just for
notational convenience. Let then x̄1 ∈ Rn−1 be temporarily fixed. Since

α1 > 1− 4−4[w]A∗∞ ≥ 1− 4−4[wx̄1 ]A∞ we can use Lemma 3.1 in order to
estimate

wx̄1({t ∈ R : M11E(t, x̄1)>α1}) ≤
(
1− 4(1− α1)(4[wx̄1 ]A∞ )−1)−1

wx̄1(E)

≤
(
1− 4(1− α1)(4[w]A∗∞ )−1)−1

wx̄1(E).

Integrating over x̄1 ∈ Rn−1 we get the desired estimate for |B| = 1.
Suppose now that

w({x ∈ Rn : MB1E(x) > αj}) ≤
(
1− 4(1− α1)(4[w]A∗∞ )−1)−j

w(E)

for all strong Muckenhoupt weights w ∈ A∞ and for all sets of indices B
with |B| = j. We proceed to show the corresponding estimate for all
sets of indices B with |B| = j + 1. Without loss of generality we can
assume that B = {1, β2, . . . , βj+1}. We define

Ej ··= {x ∈ Rn : Mβ2
· · ·Mβj+1

1E(x) > αj}.
Observe that

MB1E(x) ≤ M1(1EjMβ2
· · ·Mβj+1

1E + 1Ec
j
Mβ2
· · ·Mβj+1

1E)(x)

≤ M1(1Ej + αj1Ec
j
)(x).

We fix x̄1 ∈ Rn−1. Since 1−αj+1 = (1−α1)(1−αj) < 4−4[w]A∗∞ (1−αj)
we can use the inequality above together with Lemma 3.1 to estimate

wx̄1({t ∈ R : MB1E(t, x̄1) > αj+1})
≤ wx̄1({t ∈ R : M1(1Ej + αj1Ec

j
)(t, x̄1) > αj+1})

≤
(

1− 4
(1− αj+1

1− αj

)(4[wx̄1 ]A∞ )−1)−1

wx̄1(Ej).
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Integrating over x̄1 ∈ Rn−1 and using the inequality [wx′ ]A∞ ≤ [w]A∗∞
we get

w({x ∈ Rn : MB1E > αj+1}) ≤
(

1− 4
(1− αj+1

1− αj

)(4[w]A∗∞ )−1)−1

w(Ej)

=
(
1− 4(1− α1)(4[w]A∗∞ )−1)−1

w(Ej).

The inductive hypothesis now implies that

w(Ej) ≤
(
1− 4(1− α1)(4[w]A∗∞ )−1)−j

w(E),

which together with the previous estimate completes the inductive proof
of the lemma.

We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3: Assume that w ∈ A∗∞ is a strong Muckenhoupt
weight. We use the elementary estimate MSf ≤ M1 · · ·Mnf and Lem-
ma 4.1 with B ··= {1, 2, . . . , n} and α1 ··= 1− (1− α)

1
n to conclude

w({x ∈ Rn : MS1E(x) > α}) ≤
(
1− 4(1− α)(4n[w]A∗∞ )−1)−n

w(E)

for α > 1− e−4(ln 4)n[w]A∗∞ . It follows that

CS,w(α)− 1 .n (1− α)(4n[w]A∗∞ )−1

for all α > 1− e−4(ln 8)n[w]A∗∞ ,

and the implied constant depends only upon dimension. The optimality
part of the theorem follows immediately by Lemma 2.4.

5. Some applications of weighted Solyanik estimates

In this section we present some applications of the multiparameter
weighted Solyanik estimates of Theorem 1.3. These show that Solyanik
estimates become a very natural and useful tool in the theory of weighted
norm inequalities. An underlying principle, which is due to the multi-
parameter nature of the weights involved, is that we can many times
reduce to the problem under study to a one dimensional one and then
lift it again to higher dimensions.

5.1. A reverse Hölder inequality for A∗∞. As a corollary of the
weighted multiparameter Solyanik estimate we get, rather unexpectedly,
a reverse Hölder inequality for multiparameter Muckenhoupt weights.
This is the content of Theorem 1.4 which we now prove.
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Proof of Theorem 1.4: As w ∈ A∗∞, Theorem 1.3 implies that w satisfies
the Solyanik estimate

CS,w(α)− 1 .n (1− α)(cn[w]A∗∞ )−1

for all α > 1− e−cn[w]A∗∞ ,

where c > 0 is a numerical and the implied constant depends only on
the dimension n. Thus Lemma 2.4 implies that for every rectangular
parallelepiped R ⊆ Rn we have(

1

|R|

∫
R

wr
) 1
r

.n
(
1− (r − 1)(cn[w]A∗∞ − 1)

)− 1
r

1

|R|

∫
R

w

for all r < 1 + 1
cn[w]A∗∞−1 . The optimality of the exponents up to dimen-

sional constants follows from Lemma 2.4.

The reader may appreciate that the exponent in the reverse Hölder
inequality provided in Theorem 1.4, 1 + (cn[w]A∗∞ − 1)−1, is in terms
of the essentially one-dimensional A∗∞-constant from Definition 1.2, and
represents an improvement over a more typical reverse Hölder exponent
given in terms of the A∞-constant [w]Arec,H

∞
associated to the Hruščev

constant, [19], defined by

[w]Arec,H
∞
··= lim

p→∞
[w]Arec

p
= sup

R

(
1

|R|

∫
R

w

)
exp

(
1

|R|

∫
R

logw−1

)
,

where the supremum is taken over rectangular parallelepipeds in Rn with
sides parallel to the coordinate axes. To see this improvement, let [ν]AH

∞

denote the Hruščev constant of a weight ν on R1; note that for a.e.
x̄j ∈ Rn−1 we have

[wx̄j ]AH
∞
≤ [w]Arec,H

∞
.

Furthermore, as was shown in [20], the Fujii–Wilson constant of a weight
on R1 is bounded above by a constant times the Hruščev constant of the
weight. Thus for a.e. x̄j ∈ Rn−1 we get [wx̄j ]A∞ . [wx̄j ]AH

∞
≤ [w]Arec,H

∞
so that [w]A∗∞ . [w]Arec,H

∞
.

One can argue in a similar fashion and relate Solyanik estimates
to reverse Hölder inequalities for A∗p weights when p ∈ (1,∞). Note
however that, while the sharp reverse Hölder inequalities for multipa-
rameter A∗1 weights are known from [23] to hold with exponents and
constants independent of the dimension, this can never be captured
by Solyanik estimates. Indeed, in the unweighted case we have that
CS(α) − 1 hn (1 − α)

1
n . Thus the dependence on the dimension ap-

pearing in the weighted Solyanik estimates of Theorem 1.3 is essentially
optimal and no dimension free reverse Hölder inequalities can be pro-
duced with the methods of this paper.
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As another corollary of Theorem 1.3 and Lemma 2.4 we obtain

Corollary 5.1. Let w ∈ A∗∞. There exists a numerical constant c > 0
independent of n and a dimensional constant cn > 0 such that, for all
rectangular parallelepipeds R ⊆ Rn whose sides are parallel to the axes
and all measurable sets E ⊆ R we have

w(E)

w(R)
≤ cn

(
|E|
|R|

)(cn[w]A∗∞ )−1

.

5.2. Embedding of A∗∞ into A∗p. The connection between Solyanik
estimates and quantitative embeddings of A∗∞ into the classes A∗p was
first presented in [16]. Here we present the analogous result for multi-
parameter weights.

Theorem 5.2. There exists some numerical constant c > 0 such that,
for all strong Muckenhoupt weights w ∈ A∗∞ we have w ∈ A∗p for all

p ≥ ec[w]A∗∞ and [w]A∗p ≤ e
e
cp[w]A∗∞ .

Proof: We begin by fixing some weight w ∈ A∗∞, j ∈ {1, . . . , n} and
x̄j ∈ Rn−1. Then for a.e. x̄j ∈ Rn−1 the weight wx̄j is an A∞ weight
on the real line, uniformly in x̄j . By Lemma 3.1 for γ = 0, which is the
one-dimensional version of Theorem 1.3, we have the Solyanik estimate

C1,wx̄j
(α)−1≤8(1−α)(4[wx̄j ]A∞ )−1

whenever 1>α>1−e−4(ln 8)[wx̄j ]A∞ .

Since [wx̄j ]A∞ ≤ [w]A∗∞ for a.e. x̄j we get

C1,wx̄j
(α)−1≤8(1−α)(4[w]A∗∞ )−1

whenever 1 > α > 1−e−4(ln 8)[w]A∗∞ ,

uniformly, for a.e. x̄j . Setting α0 ··= 1−e−8(ln 8)[w]A∗∞ we finally conclude
that C1,wx̄j

(α0) ≤ 1+8−2, uniformly for a.e. x̄j . Now a close examination
of the proof of [14, Theorem 6.1] shows that for every measurable set E ⊆
R we have

wx̄j ({x ∈ R : M11E(x) > λ})

≤ exp

[
logC1,wx̄j

(α0)

(⌈− log α0

λ

logα0

⌉⌈
2 +

log+(2α0)

log 1/α0

⌉
+ 1

)]
wx̄j (E),

where dxe denotes the smallest positive integer which is no less than x.
Thus for a.e. x̄j ∈ Rn−1 we have that

wx̄j ({x ∈ R : M11E(x) > λ}) ≤ C1,wx̄j
(α0)

w(E)

λp0
.
w(E)

λp0
,
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where p0 = log(C1,wx̄j
(α0))ec[w]A∗∞ for some numerical constant c > 0.

However, this means that M1 is of restricted weak type (p0, p0) with re-
spect to wx̄j , uniformly for a.e. x̄j . By restricted weak type interpolation
we conclude that M1 maps Lp(wx̄j ) to itself with

‖M1‖Lp(wx̄j )→Lp(wx̄j ) ≤ 2
p

1
p (C1,wx̄j

(α0))
p0
p

(p− p0)
1
p

for p > p0. From this we conclude that ‖M1‖L2p0 (wx̄j )→L2p0 (wx̄j ) ≤
4(C1,wx̄j

(α0))
1
2 . Now Riesz–Thorin interpolation, applied to a lineariza-

tion of M1 gives the bound

‖M1‖Lp(wx̄j )→Lp(wx̄j ) ≤ 4
2p0
p (C1,wx̄j

(α0))
p0
p ,

for p > 2p0. We now remember the lower bound

‖M1‖Lp(υ)→Lp(υ) &p [υ]
1
p

Ap
, p ∈ (1,∞),

valid for all one-dimensional weights υ∈Ap. This is a simple consequence
of the definition of the Ap-constant; the details are in [32]. We conclude

that wx̄j ∈ Ap for all p > ec[w]A∗∞ and [wx̄j ]Ap .p exp(exp(c[w]A∗∞)) for
some numerical constant c > 0. Since these bounds are uniform in j ∈
{1, . . . , n} and x̄j ∈ Rn−1 this concludes the proof of the theorem.

5.3. A weighted covering lemma for rectangles. We close the dis-
cussion on applications of weighted Solyanik estimates by providing a
covering lemma for rectangles in Rn under the presence of A∗p-weights.
This is an immediate application of our results. The formulation that
follows might moreover turn out to be useful for future reference. Note
that the statement of the corollary is given with respect to the “rectan-
gular” A∗p-constants, [w]Arec

p
.

Corollary 5.3. Let {Rj}Nj=1 be a finite collection of rectangular paral-
lelepipeds in Rn whose sides are parallel to the coordinate axes, w ∈ A∗p
for some p ∈ [1,∞) be a strong Muckenhoupt weight in Rn, and δ ∈
(0, e

−cn[w]Arec
p ) be a parameter. There exists a subcollection {R̃k}Mk=1 ⊆

{Rj}Nj=1, such that

(i) We have

w

(⋃
j

Rj

)
≤ (1 + cnδ

(cn[w]Arec
p

)−1

)w

(⋃
k

R̃k

)
.
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(ii) The rectangles in the collection {R̃k}k are sparse in the sense that∑
k

w(R̃k) ≤
[w]Arec

p

δp
w

(⋃
k

R̃k

)
.

Here c > 0 is a numerical constant and cn > 0 depends only on the
dimension.

Proof: We perform the standard Córdoba–Fefferman selection algorithm
from [3]. Thus we define R̃1 ··= R1 and let us assume that we have chosen

R̃1, . . . , R̃j =·· RJ . We then choose R̃j+1 to be the first rectangle R
among the ones in the list {RJ+1, . . . , RN} that satisfies∣∣∣∣R ∩⋃

`≤j

R̃j

∣∣∣∣ ≤ (1− δ)|R|.

If no such rectangle exists the selection algorithm terminates. Suppose
now that R ∈ {Rj}j were not selected. Then there exists k ≤ M such
that ∣∣∣∣R ∩ ⋃

`≤k

R̃`

∣∣∣∣ > (1− δ)|R|,

and thus
N⋃
j=1

Rj ⊆ {x ∈ Rn : MS(1∪kR̃k)(x) > 1− δ}.

Now since for one dimensional weights we have [w]A∞ ≤ [w]Ap , see [20],
it follows that [w]A∗∞ ≤ [w]Arec

p
for all p ∈ [1,∞). Therefore, for δ <

e
−cn[w]Arec

p ≤ e−cn[w]Arec
∞ we have by Theorem 1.3

w

(⋃
j

Rj

)
≤ (1 + cnδ

(cn[w]A∗∞ )−1

)w

(⋃
k

R̃k

)

≤ (1 + cnδ
(cn[w]Arec

p
)−1

)w

(⋃
k

R̃k

)
,

hence the proof of (i) is complete.

Now we define the increments Ẽ0 ··= R̃0 and Ẽk ··= R̃k \ ∪`<kR̃` so

that the Ẽk’s are disjoint and ∪kR̃k = ∪kẼk. Note that the selection
algorithm guarantees that |Ẽk| ≥ δ|R̃k|. Since w ∈ A∗p we also have

δp ≤
(
|Ẽk|
|R̃k|

)p
≤ [w]Arec

p

w(Ẽk)

w(R̃k)
.
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Thus ∑
j

w(R̃k) ≤
[w]Arec

p

δp

∑
k

w(Ẽk) =
[w]Arec

p

δp
w

(⋃
k

R̃k

)
,

as desired.

6. Solyanik estimates with respect to weights

In this section we give the proof of Theorem 1.5. The idea of the
proof is very simple and bypasses all the problems that can be caused
by the fact that, in the definition of Mw

S , the presence of w couples
the variables making it technically hard to develop inductive arguments
as the one in the proof of Theorem 1.3. An inductive proof for the
bound Mw

S : Lp(w) → Lp(w) is however possible. See for example [8]
and [29]. Here we adopt a different approach and use the hypothe-
sis w ∈ A∗∞ in order to obtain Solyanik estimates for Mw

S by the weighted
Solyanik estimates for MS.

Proof of Theorem 1.5: Let α ∈ (0, 1), w ∈ A∗∞, and let x ∈ Eα ··= {y ∈
Rn : Mw

S (1E)(y) > α}. There exists a rectangular parallelepiped Rx
such that w(Rx∩E)/w(Rx) > α and x ∈ Rx. Since w ∈ A∗∞ there exists
1 ≤ p0 < +∞ such that w ∈ A∗p0

. Then w has the property that for each
rectangular parallelepiped R ⊆ Rn and each measurable A ⊆ R we have(

|A|
|R|

)p0

≤ [w]Arec
p0

w(A)

w(R)
.

Thus for each measurable S ⊂ R we have

|S|
|R|
≥ 1− [w]

1
p0

Arec
p0

(
1− w(S)

w(R)

) 1
p0

.

Applying the inequality for S ··= Rx ∩ E ⊆ Rx we can conclude

|E ∩Rx|
|Rx|

≥ 1− [w]
1
p0

Arec
p0

(1− α)
1
p0 for 1 > α > 1− 1

[w]Arec
p0

.

Thus

Eα ⊆ {x ∈ Rn : MS(1E)(x) > 1− [w]
1
p0

Arec
p0

(1− α)
1
p0 },

and using Theorem 1.3 we get

CwS (α)− 1 ≤ CS,w

(
1− [w]

1
p0

Arec
p0

(1− α)
1
p0

)
− 1

.n
(
[w]

1
p0

Arec
p0

(1− α)
1
p0

)(cn[w]A∗∞ )−1

.w,n (1− α)
1

cw,n



156 P. Hagelstein, I. Parissis

for some cw,n > 1, as long as α is sufficiently close to 1, depending only
on w and n.
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darrera versió rebuda el 29 d’agost de 2016.

https://doi.org/10.1090/S1061-0022-03-00802-1
https://doi.org/10.1215/S0012-7094-87-05502-5
https://doi.org/10.1215/S0012-7094-87-05502-5
https://doi.org/10.1007/978-3-540-74587-7

	1. Introduction
	Weighted multiparameter Solyanik estimates
	Multiparameter Solyanik estimates with respect to weights
	Notation

	2. Preliminaries; some properties of A* weights
	3. One-dimensional results
	3.1. Weighted one-dimensional Solyanik estimates
	3.2. One-dimensional Solyanik estimates with respect to Borel measures

	4. Weighted Solyanik estimates for the strong maximal operator
	5. Some applications of weighted Solyanik estimates
	5.1. A reverse Hölder inequality for A*
	5.2. Embedding of A* into Ap *
	5.3. A weighted covering lemma for rectangles

	6. Solyanik estimates with respect to weights
	Acknowledgments
	References



