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Abstract: In this article we characterize all possible cases that may occur in the rela-

tions between the sets of p for which weak type (p, p) and strong type (p, p) inequalities

for the Hardy–Littlewood maximal operators, both centered and non-centered, hold
in the context of general metric measure spaces.
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1. Introduction

Let X = (X, ρ, µ) be a metric measure space with a metric ρ and a
Borel measure µ such that the measure of each ball is finite and strictly
positive. Define the Hardy–Littlewood maximal operators, centered M c

and non-centered M , by

M cf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f | dµ, x ∈ X,

and

Mf(x) = sup
B3x

1

µ(B)

∫
B

|f | dµ, x ∈ X,

respectively. Here B refers to any open ball in (X, ρ) and by B(x, r) we
denote the open ball centered at x ∈ X with radius r > 0.

Recall that an operator T is said to be of strong type (p, p) for
some p∈ [1,∞] if T is bounded on Lp =Lp(X). Similarly, T is of weak
type (p, p) if T is bounded from Lp to Lp,∞=Lp,∞(X) (we use the con-
vention L∞,∞=L∞). Obviously, the operators M c and M are of strong
type (∞,∞) in case of any metric measure space. Moreover, by using
the Marcinkiewicz interpolation theorem, if M c (equivalently M) is of
weak or strong type (p0, p0) for some p0 ∈ [1,∞), then it is of strong (and
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hence weak) type (p, p) for every p > p0. If the measure is doubling, that
is µ(B(x, 2r)) . µ(B(x, r)) uniformly in x ∈ X and r > 0, then both M c

and M are of weak type (1, 1). However, in general, the weak type (1, 1)
inequalities may not occur. Furthermore, as we will see, it is even pos-
sible to construct a space for which the associated operators M c and M
are not of weak (and hence strong) type (p, p) for every p ∈ [1,∞).

Finding examples of metric measure spaces with specific properties of
associated maximal operators is usually a nontrivial task; see Aldaz [1],
for example. H.-Q. Li greatly contributed the program of searching
spaces which are peculiar from the point of view of mapping properties
of maximal operators. In this context, in [2], [3], and [4], he considered
a class of the cusp spaces. In [2] H.-Q. Li showed that for any fixed
1 < p0 < ∞ there exists a space for which the associated operator M c

is of strong type (p, p) if and only if p > p0. Then, in [3] examples of
spaces were furnished for which M is of strong type (p, p) if and only
if p > p0. Moreover, for every 1 < τ ≤ 2 there are examples of spaces
for which M c is of weak type (1, 1), and M is of strong type (p, p) if and
only if p > τ . Finally, in [4] H.-Q. Li showed that there are spaces with
exponential volume growth for which M c is of weak type (1, 1), while
M is of strong type (p, p) for every p > 1.

The aim of this article is to complement and strengthen the results
obtained by H.-Q. Li. For a fixed metric measure space X denote by P cs
and Ps the sets consisting of such p ∈ [1,∞] for which the associated
operators, M c and M are of strong type (p, p), respectively. Similarly,
let P cw and Pw consist of such p ∈ [1,∞] for which M c and M are of
weak type (p, p), respectively. Then

(i) each of the four sets is of the form {∞}, [p0,∞], or (p0,∞], for
some p0 ∈ [1,∞);

(ii) we have the following inclusions

Ps ⊂ P cs , Pw ⊂ P cw, P cs ⊂ P cw ⊂ P cs , Ps ⊂ Pw ⊂ Ps,

where E denotes the closure of E in the usual topology of R∪{∞}.
We will show that the conditions above are the only ones that the

sets P cs , Ps, P
c
w, and Pw must satisfy. Namely, we will prove the follow-

ing:

Theorem 1. Let P cs , Ps, P
c
w, and Pw be such that the conditions (i) and

(ii) hold. Then there exists a (non-doubling) metric measure space for
which the associated Hardy–Littlewood maximal operators, centered M c

and non-centered M , satisfy
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• M c is of strong type (p, p) if and only if p ∈ P cs ,

• M is of strong type (p, p) if and only if p ∈ Ps,
• M c is of weak type (p, p) if and only if p ∈ P cw,

• M is of weak type (p, p) if and only if p ∈ Pw.

The proof of Theorem 1 is postponed to Section 4.

2. First generation spaces

We begin with a construction of some metric measure spaces called
by us the first generation spaces. The common property of these spaces
is a similarity in the behavior of the associated operators M c and M , by
what we mean the equalities P cs = Ps and P cw = Pw. We begin with an
overview of the first generation spaces and then we consider two subtypes
separately in detail.

Let τ = (τn)n∈N be a fixed sequence of positive integers. Define

Xτ = {xn : n ∈ N} ∪ {xni : i = 1, . . . , τn, n ∈ N},

where all elements xn, xni are pairwise different (and located on the
plane, say). We define the metric ρ = ρτ determining the distance
between two different elements x and y by the formula

ρ(x, y) =

{
1 if xn ∈ {x, y} ⊂ Sn for some n ∈ N,
2 in the other case.

By Sn we denote the branch Sn = {xn, xn1, . . . , xnτn} and by S′n the
branch without the root, S′n = Sn \ {xn}. Figure 1 shows a model of
the space (Xτ , ρ). The solid line between two points indicates that the
distance between them equals 1. Otherwise the distance equals 2.

x1

x11 x12 x1τ1
. . .

x2

x21 x22 x2τ2
. . .

. . .

xn

xn1 xn2 xnτn
. . .

. . .

Figure 1.
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Note that we can explicitly describe any ball: for n ∈ N,

B(xn, r) =


{xn} for 0 < r ≤ 1,

Sn for 1 < r ≤ 2,

Xτ for 2 < r,

and for i ∈ {1, . . . , τn}, n ∈ N,

B(xni, r) =


{xni} for 0 < r ≤ 1,

{xn, xni} for 1 < r ≤ 2,

Xτ for 2 < r.

We define the measure µ = µτ,F on Xτ by letting µ({xn}) = dn and
µ({xni}) = dnF (n, i), where F > 0 is a given function and d = (dn)n∈N is
an appropriate sequence of strictly positive numbers with d1 = 1 and dn
chosen (uniquely!) in such a way that µ(Sn) = µ(Sn−1)/2, n ≥ 2. Note
that this implies µ(Xτ ) <∞. Moreover, observe that µ is non-doubling.
From now on we shall use the sign |E| instead of µ(E) for E ⊂ Xτ . It
will be clear from the context when the symbol | · | refers to the measure
and when it denotes the absolute value sign.

For a function f on Xτ (which is in fact a ‘sequence’ of numbers) the
Hardy–Littlewood maximal operators, centeredM c and non-centeredM ,
are given by

M cf(x) = sup
r>0

1

|B(x, r)|
∑

y∈B(x,r)

|f(y)| · |{y}|, x ∈ Xτ ,

and

Mf(x) = sup
B3x

1

|B|
∑
y∈B
|f(y)| · |{y}|, x ∈ Xτ ,

respectively. In this setting M is of weak type (p, p) for some 1 ≤
p < ∞ if ‖Mf‖p,∞ . ‖f‖p uniformly in f ∈ `p(Xτ , µ), where ‖g‖p =(∑

x∈Xτ |g(x)|p|{x}|
)1/p

and ‖g‖p,∞ = supλ>0 λ|Eλ(g)|1/p with Eλ(g) =

{x ∈ Xτ : |g(x)| > λ}. Similarly, M is of strong type (p, p) for some
1 ≤ p ≤ ∞ if ‖Mf‖p . ‖f‖p uniformly in f ∈ `p(Xτ , µ), where ‖g‖∞ =
supx∈Xτ |g(x)|. Here the notation A . B is used to indicate that A ≤
CB with a positive constant C independent of significant quantities.
Moreover, for given a function f ≥ 0 and a set E ⊂ Xτ we denote the
average value of f on E by

AE(f) =
1

|E|
∑
x∈E

f(x)|{x}|.
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Analogous definitions and comments apply to M c instead of M and then
to both M and M c in the context of the space (Yτ , µ) in Section 3.

We are ready to describe two subtypes of the first generation spaces.

2.1. We first construct and investigate first generation spaces for which
the equalities P cs = Ps and P cw = Pw hold and, in addition, there is no
significant difference between the incidence of the weak and strong type
inequalities, by what we mean that P cs = P cw and Ps = Pw. Of course,
combining all these equalities, we obtain that for such spaces all four
sets take the same form. In the first step, for any fixed p0 ∈ [1,∞] we

construct a space denoted by X̂p0 for which P cs = Ps = P cw = Pw =
[p0,∞] (by [∞,∞] we mean {∞}). Then, after slight modifications, for

any fixed p0 ∈ [1,∞) we get a space X̂′p0 for which P cs = Ps = P cw =
Pw = (p0,∞].

Fix p0 ∈ [1,∞] and let X̂p0 = (Xτ , ρ, µ) be the first generation

space with τn =
⌊ (n+1)p0

n

⌋
in the case p0 ∈ [1,∞), or τn = 2n in the

case p0 = ∞, and F (n, i) = n, i = 1, . . . , τn, n ∈ N. The key point for
considerations that follow is that we have: for p0 6= 1,

lim
n→∞

nτn
(n+ 1)p

=∞, 1 ≤ p < p0,

and for p0 6=∞,
nτn

(n+ 1)p0
≤ 1, n ∈ N.

Proposition 2. Fix p0 ∈ [1,∞] and let X̂p0 be the metric measure space
defined above. Then the associated maximal operators, centered M c and
non-centered M , are not of weak type (p, p) for 1 ≤ p < p0, but are of
strong type (p, p) for p ≥ p0.

Proof: It suffices to prove that M c fails to be of weak type (p, p) for
1 ≤ p < p0 and M is of strong type (p0, p0). First we show that M c is
not of weak type (p, p) for 1 ≤ p < p0. Consider p0 ∈ (1,∞] and fix p ∈
[1, p0). Let fn = δxn , n ≥ 1. Then ‖fn‖pp = dn and M cfn(xni) ≥ 1

n+1 ,

i = 1, . . . , τn. This implies that |E1/(2(n+1))(M
cfn)| ≥ nτndn and hence

lim sup
n→∞

‖M cfn‖pp,∞
‖fn‖pp

≥ lim
n→∞

nτndn
(2(n+ 1))pdn

=∞.

In the next step we show that M is of strong type (p0, p0). Consider

p0 ∈ [1,∞), since the case p0 =∞ is trivial. Let f ∈ `p0(X̂p0). Without
any loss of generality we assume that f ≥ 0. Denote D = {{xn, xni} :
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n ∈ N, i = 1, . . . , τn}. We use the estimate

‖Mf‖p0p0 ≤
∑
B⊂Xτ

∑
x∈B

AB(f)p0 |{x}| =
∑
B⊂Xτ

AB(f)p0 |B|.

Note that each x ∈ Xτ belongs to at most three different balls which are
not elements of D. Combining this with Hölder’s inequality, we obtain∑

B/∈D

AB(f)p0 |B| ≤
∑
B/∈D

∑
x∈B

f(x)p0 |{x}| ≤ 3‖f‖p0p0 .

Therefore

(1) ‖Mf‖p0p0 ≤ 3‖f‖p0p0 +
∑
n∈N

τn∑
i=1

(
f(xn) + nf(xni)

n+ 1

)p0
|{xn, xni}|.

Finally, we use the inequalities (f(xn) + nf(xni))
p0 ≤ (2f(xn))p0 +

(2nf(xni))
p0 and |{xn, xni}| ≤ 2|{xni}| = 2n|{xn}| to estimate the dou-

ble sum in (1) by

2p0+1

(∑
n∈N

nτn
(n+ 1)p0

f(xn)p0 |{xn}|+
∑
n∈N

τn∑
i=1

(
nf(xni)

n+ 1

)p0
|{xni}|

)
≤ 2p0+1‖f‖p0p0 .

A modification of arguments from the proof of Proposition 2
shows that, for a fixed p0 ∈ [1,∞), replacing the former τn by τ ′n =⌊
(log(n) + 1) (n+1)p0

n

⌋
leads to the space X̂′p0 for which P cs = Ps =

P cw = Pw = (p0,∞]. Moreover, it may be noted that only the prop-

erties limn→∞
nτ ′
n

(n+1)p =∞, 1 ≤ p ≤ p0, and supn∈N
nτ ′
n

(n+1)p <∞, p > p0,

are essential.

2.2. In contrast to the former case, for the spaces we now construct
and study, the equalities P cs = Ps and P cw = Pw still hold, but there is a
difference between the incidence of the weak and strong type inequalities.

For any fixed p0 ∈ [1,∞) we construct a space denoted by X̃p0 for which
P cs = Ps = (p0,∞] and P cw=Pw=[p0,∞]. We begin with the case p0 =1,
which is discussed separately because it is relatively simple and may be
helpful to outline the core idea behind the more difficult case p0 ∈ (1,∞).

By X̃1 we denote the first generation space (Xτ , ρ, µ) with construc-
tion based on τn = n and F (n, i) = 2i. Recall that µ is non-doubling.
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Proposition 3. Let X̃1 be the metric measure space defined above. Then
the associated maximal operators, centered M c and non-centered M , are
not of strong type (1, 1), but are of weak type (1, 1).

Proof: First we note that M c fails to be of strong type (1, 1). In-
deed, let fn = δxn , n ≥ 1. Then ‖fn‖1 = dn and for i = 1, . . . , n
we have M cfn(xni) ≥ (1 + 2i)−1 > 1/2i+1 and hence ‖M cfn‖1 ≥∑n
i=1 2idn/2

i+1 = n‖fn‖1/2.

In the next step we show that M is of weak type (1, 1). Let f ∈ `1(X̃1),
f ≥ 0, and consider λ > 0 such that Eλ(Mf) 6= ∅. If λ < AXτ (f),
then λ|Eλ(Mf)|/‖f‖1 ≤ 1 follows. Therefore, from now on assume
that λ ≥ AXτ (f). With this assumption, if for some x ∈ Sn we have
Mf(x) > λ, then any ball B containing x and realizing AB(f) > λ must
be a subset of Sn. Take any n ∈ N such that Eλ(Mf) ∩ Sn 6= ∅. If
λ < ASn(f), then

(2)
λ|Eλ(Mf) ∩ Sn|∑
x∈Sn f(x)|{x}|

≤ 1.

Assume that λ ≥ ASn(f) and take x ∈ Eλ(Mf) ∩ Sn. Now, any
ball B containing x and realizing AB(f) > λ must be a proper sub-
set of Sn. If Eλ(Mf) ∩ S′n = ∅, then x = xn so we obtain f(xn) > λ
and hence (2) again follows. In the opposite case, if Eλ(Mf) ∩ S′n 6= ∅,
denote j = max{i ∈ {1, . . . , n} : Mf(xni) > λ}. Then f(xnj) > λ or
f(xn)|{xn}|+f(xnj)|{xnj}|

|{xn}|+|{xnj}| > λ. Therefore, f(xn)|{xn}| + f(xnj)|{xnj}| >
λ|{xnj}| and combining this with the estimate |Eλ(Mf)∩Sn| ≤ 2|{xnj}|,
we obtain

λ|Eλ(Mf) ∩ Sn|∑
x∈Sn f(x)|{x}|

≤ 2λ|{xnj}|
f(xn)|{xn}|+ f(xnj)|{xnj |}

≤ 2.

Since λ|Eλ(Mf)∩Sn|∑
x∈Sn f(x)|{x}|

≤ 2 for any branch Sn such that Eλ(Mf)∩Sn 6=
∅, we have

λ|Eλ(Mf)|
‖f‖1

≤ 2,

and, consequently, the weak type (1, 1) estimate ‖Mf‖1,∞ ≤ 2‖f‖1 fol-
lows.

Now fix p0 ∈ (1,∞) and consider X̃p0 = (Xτ , ρ, µ), with construction
based on τn = τn(p0) and F (n, i) = Fp0(n, i), defined as follows. Let

cn =
⌊ (n+1)p0

n

⌋
and

en = max

{
k ∈ N : 2k−1 ≤ cn and 21−k−p0 ≥

(
1

1 + n

)p0}
, n ∈ N.
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Note that limn→∞ en =∞. Then, for j ∈ {1, . . . , en}, n ∈ N, define mnj

by the equality

21−j
(

1

1 +mnj

)p0
=

(
1

1 + n

)p0
,

and snj by

snj = min{k ∈ N : kmnj ≥ 21−jncn}.
Observe that for j ∈ {1, . . . , en}, n ∈ N,

1 ≤ mnj ≤ n, 21−jncn ≤ snjmnj ≤ 22−jncn.

Finally, denote τn =
∑en
j=1 snj , n ∈ N, and F (n, i) = mnj(n,i), i =

1, . . . , τn, n ∈ N, where

j(n, i) = min

{
k ∈ {1, . . . , en} :

k∑
j=1

snj ≥ i
}
.

Proposition 4. Let X̃p0 be the metric measure space defined above. Then
the associated maximal operators, centered M c and non-centered M , are
not of strong type (p0, p0), but are of weak type (p0, p0).

Proof: First we note that M c is not of strong type (p0, p0). Indeed, let
fn = δxn , n ≥ 1. Then ‖fn‖p0p0 = dn and for i = 1, . . . , τn we have

M cfn(xni) ≥ (1 +mnj(n,i))
−1 and hence

‖M cfn‖p0p0 ≥
en∑
j=1

snj∑
k=1

(
1

1 +mnj

)p0
dnmnj = dn

en∑
j=1

snjmnj

(1 +mnj)p0

≥ dn
en∑
j=1

21−jncn
(1 +mnj)p0

=dn

en∑
j=1

ncn
(1 + n)p0

=en
ncn

(1 + n)p0
‖fn‖p0p0 .

Since limn→∞ en =∞ and limn→∞
ncn

(1+n)p0 = 1, we are done.

In the next step we show that M is of weak type (p0, p0). Let f ∈
`p0(X̃p0), f ≥ 0, and consider λ > 0 such that Eλ(Mf) 6= ∅. If λ <

AXτ (f), then using the inequality ‖f‖1 ≤ ‖f‖p0 |Xτ |1/q0 , where q0 is the
exponent conjugate to p0, we obtain λp0 |Eλ(Mf)|/‖f‖p0p0 < 1. Therefore,
from now on assume that λ ≥ AXτ (f). Take any n ∈ N such that
Eλ(Mf)∩Sn 6= ∅. If λ < ASn(f), then using similar argument as above
we have

(3)
λp0 |Eλ(Mf) ∩ Sn|∑
x∈Sn f(x)p0 |{x}|

≤ 1.
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Assume that λ ≥ ASn(f). If Eλ(Mf) ∩ S′n = ∅, then f(xn) > λ and
hence (3) again follows. In the opposite case, we have |Eλ(Mf)∩ Sn| ≤
2|Eλ(Mf)∩S′n|. Assume that f(xn) < (1+mnen)λ/2. If x ∈ Eλ(Mf)∩
S′n, then f(x) ≥ λ/2 and hence

λp0 |Eλ(Mf) ∩ Sn|∑
x∈Sn f(x)p0 |{x}|

≤ 2λp0 |Eλ(Mf) ∩ S′n|∑
x∈Sn f(x)p0 |{x}|

≤ 2p0+1.

Otherwise, if f(xn) ≥ (1 + mnen)λ/2, denote r = min{j ∈ {1, . . . , en} :

f(xn) ≥ (1 + mnj)λ/2}. Let S
(r)
n = {xni : i ∈ {1, . . . ,

∑r−1
j=1 snj}}.

Note that the case S
(r)
n = ∅ is possible. Assume that S

(r)
n 6= ∅. If

x ∈ Eλ(Mf) ∩ S(r)
n , then f(x) > λ/2 and hence

λp0 |Eλ(Mf) ∩ S(r)
n |∑

x∈S(r)
n
f(x)p0 |{x}|

≤ 2p0+1.

Moreover, we have

λp0 |Eλ(Mf) ∩ (Sn \ S(r)
n )|

f(xn)p0 |{xn}|
≤
(

2

1 +mnr

)p0 |Sn \ S(r)
n |

|{xn}|

≤
(

2

1 +mnr

)p0 2|(Sn \ S(r)
n ) ∩ S′n|

|{xn}|

≤
(

2

1 +mnr

)p0
2

en∑
j=r

ncn22−j

< 2p0+4−rncn

(
1

1 +mnr

)p0
= 2p0+3 ncn

(1 + n)p0
≤ 2p0+3.

Therefore, regardless of the posibilities, S
(r)
n = ∅ or S

(r)
n 6= ∅, we obtain

λp0 |Eλ(Mf)∩Sn|∑
x∈Snf(x)

p0 |{x}| ≤ 2p0+3. Since λp0 |Eλ(Mf)∩Sn|/
∑
x∈Snf(x)p0 |{x}|≤

2p0+3 for any branch Sn such that Eλ(Mf) ∩ Sn 6= ∅, we have
λp0 |Eλ(Mf)|/‖f‖p0p0 ≤ 2p0+3 and, consequently, ‖Mf‖p0p0,∞≤2p0+3‖f‖p0p0 .

3. Second generation spaces

Now we construct and study metric measure spaces called by us the
second generation spaces. The common attribute of these spaces is a sig-
nificant difference in the behavior of the associated operators M c and M ,
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by what we mean that M c is of strong type (1, 1), which implies the ba-
sic property P cs = P cw = [1,∞], while Ps (and possibly Pw) is a proper
subset of [1,∞]. Let τ = (τn)n∈N be a fixed sequence of positive integers.
Define

Yτ = {yn : n ∈ N} ∪ {yni, y′ni : i = 1, . . . , τn, n ∈ N},

where all elements yn, yni, y
′
ni are pairwise different. We define the

metric ρ = ρτ determining the distance between two different elements x
and y by the formula

ρ(x, y) =


1 if {x, y} = Tni or yn ∈ {x, y} ⊂ Tn \ T ′n

for some n ∈ N, i ∈ {1, . . . , τn},

2 in the other case.

By Tn we denote the branch Tn = {yn, yn1, . . . , ynτn , y′n1, . . . , y′nτn}. Ad-
ditionally, we denote T ′n = {y′n1, . . . , y′nτn} and Tni = {yni, y′ni}. Figure 2
shows a model of the space (Yτ , ρ).

y1

y11 y12 y1τ1
. . .

y′11 y′12 y′1τ1
. . .

. . .

yn

yn1 yn2 ynτn
. . .

y′n1 y′n2 y′nτn
. . .

. . .

Figure 2.

Note that we can explicitly describe any ball: for n ∈ N,

B(yn, r) =


{yn} for 0 < r ≤ 1,

Tn \ T ′n for 1 < r ≤ 2,

Yτ for 2 < r,

and for i ∈ {1, . . . , τn}, n ∈ N,

B(yni, r) =


{yni} for 0 < r ≤ 1,

{yn} ∪ Tni for 1 < r ≤ 2,

Yτ for 2 < r,
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and

B(y′ni, r) =


{y′ni} for 0 < r ≤ 1,

Tni for 1 < r ≤ 2,

Yτ for 2 < r.

We define the measure µ = µτ,F by letting µ({yn}) = dn, µ({yni}) =
dn
τn

, and µ({y′ni}) = dnF (n, i), where F > 0 is a given function and

d = (dn)n∈N is an appropriate sequence of strictly positive numbers
with d1 = 1 and dn chosen (uniquely!) in such a way that |Tn| =
|Tn−1|/2, n ≥ 2. Note that this implies |Yτ | < ∞ and observe that µ is
non-doubling.

We are ready to describe two subtypes of the second generation spaces.

3.1. We first construct spaces for which apart from the basic property
P cs = P cw = [1,∞] we also have Ps = Pw. In the first step, for any fixed

p0 ∈ (1,∞] we construct a space denoted by Ŷp0 for which Ps = Pw =
[p0,∞]. Then, after a slight modification, for any fixed p0 ∈ [1,∞) we

get a space Ŷ′p0 for which Ps = Pw = (p0,∞].

Fix p0 ∈ (1,∞] and let Ŷp0 be the second generation space with

τn =
⌊ (n+1)p0

n

⌋
in the case p0 ∈ (1,∞), or τn = 2n when p0 = ∞, and

F (n, i) = n, i = 1, . . . , τn, n ∈ N.

Proposition 5. Let Ŷp0 be the metric measure space defined above.
Then the associated centered maximal operator M c is of strong type (1, 1),
while the non-centered M is not of weak type (p, p) for 1 ≤ p < p0, but
is of strong type (p, p) for p ≥ p0.

Proof: First we show that M c is of strong type (1, 1). Let f ∈ `1(Ŷp0),
f ≥ 0. Denote G = {{yn} ∪ Tni : n ∈ N, i = 1, . . . , τn} and By =
{B(y, 12 ), B(y, 32 ), B(y, 52 )}, y ∈ Yτ . We use the estimate

‖M cf‖1 ≤
∑
y∈Yτ

∑
B∈By

AB(f)|{y}|.

Note that each y ∈ Yτ belongs to at most four different balls which are
not elements of G. Thus we obtain∑

y∈Yτ

∑
B∈By\G

AB(f)|{y}| ≤
∑
B/∈G

∑
y∈B

f(y)|{y}| ≤ 4‖f‖1.

Therefore

‖M cf‖1 ≤ 4‖f‖1 +
∑
n∈N

τn∑
i=1

AB(yni,
3
2 )

(f)|{yni}|.
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It suffices to see that the last term of the above expression is estimated
by

∑
n∈N

τnf(yn)|{yn1}|+
∑
n∈N

τn∑
i=1

(
f(yni)|{yni}|+ f(y′ni)|{y′ni}|

)
= ‖f‖1.

In the next step we show that M is not of weak type (p, p) for 1 ≤
p < p0. Indeed, fix p < p0 and let fn = δyn , n ≥ 1. Then ‖fn‖pp = dn
and Mfn(y′ni) ≥ 1

n+1+(1/τn)
≥ 1

n+2 , i = 1, . . . , τn. This implies that

|E1/(2(n+2))(Mfn)| ≥ nτndn and hence we obtain

lim sup
n→∞

‖Mfn‖pp,∞
‖fn‖pp

≥ lim
n→∞

nτndn
(2(n+ 2))pdn

=∞.

To complete the proof, it suffices to show that M is of strong
type (p0, p0) in the case p0 ∈ (1,∞). Let f ∈ `p0(Ŷp0), f ≥ 0. We
use the estimate

‖Mf‖p0p0 ≤
∑
B⊂Yτ

∑
y∈B

AB(f)p0 |{y}| =
∑
B⊂Yτ

AB(f)p0 |B|.

Once again note that each y ∈ Yτ belongs to at most four different balls
which are not elements of G. Combining this with Hölder’s inequality,
we obtain ∑

B/∈G

AB(f)p0 |B| ≤
∑
B/∈G

∑
y∈B

f(y)p0 |{y}| ≤ 4‖f‖p0p0 .

Therefore

(4) ‖Mf‖p0p0 ≤ 4‖f‖p0p0

+
∑
n∈N

τn∑
i=1

(
f(yn) + 1/τnf(yni) + nf(y′ni)

1 + 1/τn + n

)p0
|{yn, yni, y′ni}|.

Finally, we use the inequalities

(f(yn) + 1/τnf(yni) + nf(y′ni))
p0

≤ (3f(yn))p0 + (3f(yni)/τn)p0 + (3nf(y′ni))
p0 ,
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and |{yn, yni, y′ni}| ≤ 3|{y′ni}| = 3n|{yn}| to estimate the double sum
in (4) by

3p0+1

(∑
n∈N

nτnf(yn)p0

(n+ 1)p0
|{yn}|

+
∑
n∈N

τn∑
i=1

(f(yni)/τn)p0 + (nf(y′ni))
p0

(1 + 1/τn + n)p0
|{y′ni}|

)
≤3p0+1‖f‖p0p0 .

Note that in the same way as it was done at the end of Subsection 2.1,

replacing the former τn by τ ′n =
⌊
(log(n)+1) (n+1)p0

n

⌋
, p0 ∈ [1,∞), results

in obtaining the space Ŷ′p0 for which Ps = Pw = (p0,∞].

3.2. In contrast to the former case the spaces we now construct, apart
from the basic property P cs = P cw = [1,∞], satisfy Ps  Pw. Namely, for

any fixed p0 ∈ [1,∞) we construct a space Ỹp0 for which Ps = (p0,∞]
and Pw = [p0,∞]. We consider the cases p0 = 1 and p0 > 1 separately,
similarly as it was done in Section 2.

By Ỹ1 we denote the second generation space (Yτ , ρ, µ) with construc-
tion based on τn = n and F (n, i) = 2i. Recall that µ is non-doubling.

Proposition 6. Let Ỹ1 be the metric measure space defined above. Then
the associated centered operator M c is of strong type (1, 1), while the
non-centered M is of weak type (1, 1), but is not of strong type (1, 1).

Proof: First note that it is easy to verify that M c is of strong type (1, 1),
by using exactly the same argument as in the proof of Proposition 5. In
the next step we show that M is not of strong type (1, 1). Indeed,
let fn = δyn , n ≥ 1. Then ‖fn‖1 = dn and for i = 1, . . . , n we have
Mfn(y′ni) ≥ (1 + 1/n+ 2i)−1 > 1/2i+1 and hence we obtain ‖Mfn‖1 ≥∑n
i=1 2idn/2

i+1 = n‖fn‖1/2.
To complete the proof, it suffices to show that M is of weak type (1, 1).

Let f ∈ `1(Ỹ1), f ≥ 0, and consider λ > 0 such that Eλ(Mf) 6= ∅. If
λ < AYτ (f), then λ|Eλ(Mf)|/‖f‖1 < 1 follows. Therefore, from now on
assume that λ ≥ AYτ (f). With this assumption, if for some y ∈ Tn we
have Mf(y) > λ, then any ball B containing y and realizing AB(f) > λ
must be a subset of Tn. Take any n ∈ N such that Eλ(Mf)∩ Tn 6= ∅. If
λ < ATn(f), then

(5)
λ|Eλ(Mf) ∩ Tn|∑
y∈Tn f(y)|{y}|

≤ 2.
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Assume that λ ≥ ATn(f) and take y ∈ Eλ(Mf) ∩ Tn. Now, any ball B
containing y and realizing AB(f) > λ must be a proper subset of Tn.
First, consider the case Eλ(Mf)∩T ′n = ∅. If yn ∈ Eλ(Mf)∩Tn, then we
obtain

∑
y∈Tn\T ′

n
f(y)|{y}| > λ|{yn}| and since |Eλ(Mf)∩Tn| ≤ 2|{yn}|,

(5) follows. Otherwise, if yn /∈ Eλ(Mf)∩Tn, then, necessarily, f(y) > λ
for every y ∈ Eλ(Mf) ∩ Tn and hence (5) again follows. Finally, in the
case Eλ(Mf) ∩ T ′n 6= ∅, denote j = max{i ∈ {1, . . . , n} : Mf(y′ni) >
λ}. Therefore,

∑
y∈Tn f(y)|{y}| > λ|{y′nj}| and combining this with

the estimate |Eλ(Mf) ∩ Tn| ≤ 2|{y′nj}|, we conclude that (5) follows.
Since λ|Eλ(Mf) ∩ Tn|/

∑
y∈Tn f(y)|{y}| ≤ 2 for any branch Tn such

that Eλ(Mf)∩Tn 6= ∅, we have λ|Eλ(Mf)|/‖f‖1 ≤ 2 and, consequently,
‖Mf‖1,∞ ≤ 2‖f‖1.

Now, fix p0 ∈ (1,∞) and consider Ỹp0 = (Yτ , ρ, µ) with construction
based on τn = τn(p0) and F (n, i) = Fp0(n, i), defined in the same way
as in Subsection 2.2, by using the auxiliary sequences cn, en, and mnj ,
snj , j ∈ {1, . . . , en}, n ∈ N.

Proposition 7. Let Ỹp0 be the metric measure space defined above.
Then the associated centered maximal operator M c is of strong type (1, 1),
while the non-centered M is of weak type (p0, p0), but is not of strong
type (p0, p0).

Proof: First note once again that it is easy to verify that M c is of strong
type (1, 1), by using the same argument as in the proof of Proposition 5.
In the next step we show that M is not of strong type (p0, p0). Indeed,
let fn = δxn , n ≥ 1. Then ‖fn‖p0p0 = dn and for i = 1, . . . , τn we have

Mfn(y′ni) ≥ (1 + 1/τn +mnj(n,i))
−1 ≥ (2(1 +mnj(n,i)))

−1 and hence

‖Mfn‖p0p0 ≥
en∑
j=1

snj∑
k=1

dnmnj

(2(1 +mnj))p0
= dn

en∑
j=1

snjmnj

(2(1 +mnj))p0

≥ dn
en∑
j=1

21−j−p0ncn
(1 +mnj)p0

= 2−p0dn

en∑
j=1

ncn
(1 + n)p0

= 2−p0en
ncn

(1 + n)p0
‖fn‖p0p0 .

Since limn→∞ en =∞ and limn→∞
ncn

(1+n)p0 = 1, we are done.

To complete the proof, it suffices to show that M is of weak

type (p0, p0). Let f ∈ `p0(Ỹp0), f ≥ 0, and consider λ > 0 such
that Eλ(Mf) 6= ∅. If λ < AYτ (f), then using the inequality ‖f‖1 ≤
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‖f‖p0 |Yτ |1/q0 , we obtain λp0 |Eλ(Mf)|/‖f‖p0p0 < 1. Therefore, from now
on assume that λ ≥ AYτ (f). Take any n ∈ N such that Eλ(Mf)∩Tn 6= ∅.
If λ < ATn(f), then using similar argument as above we have

(6)
λp0 |Eλ(Mf) ∩ Tn|∑
y∈Tn f(y)p0 |{y}|

≤ 1.

Consider λ ≥ ATn(f). Assume that Eλ(Mf)∩T ′n = ∅. If λ < ATn\T ′
n
(f),

then (6) again follows. Otherwise, if λ ≥ ATn\T ′
n
(f), then we consider

two cases. If yn ∈ Eλ(Mf), then we obtain f(yn) ≥ λ and hence

λp0 |Eλ(Mf) ∩ Tn|∑
y∈Tn f(y)p0 |{y}|

≤ 2λp0 |{yn}|∑
y∈Tn f(y)p0 |{y}|

≤ 2.

In the other case, if yn /∈ Eλ(Mf), then f(y) > λ holds for every y ∈
Eλ(Mf) ∩ Tn and hence (6) follows one more time. Now assume that
Eλ(Mf)∩T ′n 6= ∅. See that |Eλ(Mf)∩Tn| ≤ 3|Eλ(Mf)∩T ′n|. Consider
the case f(yn) < (1 + 1/τn +mnen)λ/3. If y′ni ∈ Eλ(Mf) ∩ T ′n for some
i ∈ {1, . . . , τn}, then f(y′ni) ≥ λ/3 or f(yni)|{yni}| ≥ |{y′ni}|λ/3 and
hence f(y′ni)

p0 |{y′ni}|+ f(yni)
p0 |{yni}| ≥ |{y′ni}|(λ/3)p0 , which implies

λp0 |Eλ(Mf) ∩ Tn|∑
y∈Tn f(y)p0 |{y}|

≤ 3λp0 |Eλ(Mf) ∩ T ′n|∑
y∈Tn f(y)p0 |{y}|

≤ 3p0+1.

Finally, in the case f(yn) ≥ (1 + 1/τn +mnen)λ/3, denote r = min{j ∈
{1, . . . , en} :f(yn)≥ (1+1/τn+mnj)λ

3 }. Let T
(r)
n ={y′ni : i∈{1, . . . ,

∑r−1
j=1snj}}.

Note that the case T
(r)
n = ∅ is possible. Assume that T

(r)
n 6= ∅. If y′ni ∈

Eλ(Mf) ∩ T (r)
n , then f(y′ni)

p0 |{y′ni}| + f(yni)
p0 |{yni}| ≥ |{y′ni}|(λ/3)p0

and hence

λp0 |Eλ(Mf) ∩ T (r)
n |∑

i:y′ni∈T
(r)
n

(f(y′ni)
p0 |{y′ni}|+ f(yni)p0 |{yni}|)

≤ 3p0+1.
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Moreover, we have

λp0 |Eλ(Mf) ∩ (Tn \ T (r)
n )|

f(yn)p0 |{yn}|
≤
(

3

1 +mnr

)p0 |Tn \ T (r)
n |

|{yn}|

≤
(

3

1 +mnr

)p0 3|(Tn \ T (r)
n ) ∩ T ′n)|
|{yn}|

≤
(

3

1 +mnr

)p0
3

en∑
j=r

ncn22−j

< 23−r3p0+1ncn

(
1

1 +mnr

)p0
= 4 · 3p0+1 ncn

(1 + n)p0
≤ 4 · 3p0+1.

Therefore, regardless of the possibilities, T
(r)
n = ∅ or T

(r)
n 6= ∅, we ob-

tain λp0 |Eλ(Mf)∩Tn|/
∑
y∈Tn f(y)p0 |{y}| ≤ 4·3p0+1. Since λ|Eλ(Mf)∩

Tn|/
∑
y∈Tn f(y)p0 |{y}| ≤ 4·3p0+1 for any branch Tn such that Eλ(Mf)∩

Tn 6= ∅, we have λp0 |Eλ(Mf)|/‖f‖p0p0 ≤ 4 · 3p0+1 and consequently

‖Mf‖p0p0,∞ ≤ 4 · 3p0+1‖f‖p0p0 .

4. Proof of Theorem 1

All spaces discussed above were constructed in such a way as to avoid
any interactions between the different branches in the context of consid-
erations relating to the existence of the weak and strong type inequali-
ties. Therefore we can construct a new space consisting of two types of
branches, one borrowed from some first generation space and one from
some second generation space, and to ensure that the operators M c

and M inherit a particular property of a particular space. We explain
the construction of such a space in detail proving Theorem 1.

Proof of Theorem 1: We consider a few cases. If the equalities P cs = Ps
and P cw = Pw are supposed to hold, then the expected space may be
chosen to be a first generation space. If, in turn, we have P cs = P cw =
[1,∞], but Ps 6= [1,∞], then the expected space may be chosen to be
a second generation space. Finally, in other cases we can find spaces
X = (X, ρX , µX) and Y = (Y, ρY , µY ), of first and second generation,
respectively, for which

• P cs (X) = Ps(X) = P cs and P cw(X) = Pw(X) = P cw,

• P cs (Y) = P cw(Y) = [1,∞], Ps(Y) = Ps, and Pw(Y) = Pw.
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Using X and Y and assuming that X ∩ Y = ∅ we construct the space
Z = (Z, ρZ , µZ) as follows. Denote Z = X ∪Y . We define the metric ρZ
on Z by

ρZ(x, y) =


ρX(x, y) if {x, y} ⊂ X,
ρY (x, y) if {x, y} ⊂ Y,
2 in the other case,

and the measure µZ on Z by

µZ(E) = µX(E ∩X) + µY (E ∩ Y ), E ⊂ Z.

It is not hard to show that Z has the following properties

• P cs (Z) = P cs (X) ∩ P cs (Y) = P cs ∩ [1,∞] = P cs ,

• Ps(Z) = Ps(X) ∩ Ps(Y) = P cs ∩ Ps = Ps,

• P cw(Z) = P cw(X) ∩ P cw(Y) = P cw ∩ [1,∞] = P cw,

• Pw(Z) = Pw(X) ∩ Pw(Y) = P cw ∩ Pw = Pw,

and therefore it may be chosen to be the expected space. Finally, it is
not hard to see that µZ is non-doubling, since it is bounded and there
is a ball B in Z with radius r = 1 and |B| < ε for any arbitrarily
small ε > 0.
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