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We address the problem of understanding, from first principles, the conditions under which a quantum
system equilibrates rapidly with respect to a concrete observable. On the one hand, previously known
general upper bounds on the time scales of equilibration were unrealistically long, with times scaling
linearly with the dimension of the Hilbert space. These bounds proved to be tight since particular
constructions of observables scaling in this way were found. On the other hand, the computed equilibration
time scales for certain classes of typical measurements, or under the evolution of typical Hamiltonians, are
unrealistically short. However, most physically relevant situations fall outside these two classes. In this
paper, we provide a new upper bound on the equilibration time scales which, under some physically
reasonable conditions, give much more realistic results than previously known. In particular, we apply this
result to the paradigmatic case of a system interacting with a thermal bath, where we obtain an upper bound
for the equilibration time scale independent of the size of the bath. In this way, we find general conditions
that single out observables with realistic equilibration times within a physically relevant setup.
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I. INTRODUCTION true for the evolution under typical Hamiltonians [9-11]
and for systems starting from typical nonequilibrium
subspaces [4]. Remarkably, this rapid equilibration has
even been observed experimentally in certain systems [5].
Yet, one can construct observables that take an extremely
long time to approach equilibrium, up to a time propor-
tional to the Hilbert space dimension of the system [2,3].
Note that by fast-vs-slow equilibration we do not mean
picoseconds vs years; slow can refer to time scales longer
than the ““age of the universe” for the constructions found in
the papers mentioned above.

It is important to note that the above-mentioned results
do not teach us a great deal about what happens for a given
physically relevant observable. For instance, they do not
tell us what the time scales of equilibration for a system
interacting with an environment are. Meanwhile, the typical
(in the mathematical sense) measurements considered will
generally not represent physically relevant observables.

Moreover, the fact that one can always find mathematical
constructions of observables that equilibrate after
extremely long times, as in Refs. [2] and [3], implies that
extra—more physical—conditions are fundamental in sin-
gling out the observables that equilibrate within reasonable
time scales.

Knowing the details of how systems approach equilib-
rium is a major topic within statistical mechanics. However,
deriving results on the equilibration time scales that are
both general and apply to physically relevant situations has
proven to be a challenge; this is one of the major open
problems in understanding equilibration processes of
quantum systems.

This paper addresses the time scales for reaching
equilibrium in closed quantum systems. Recently, there
have been promising advances [1-5], that add to the vast
amount of literature on these issues in more specific models
[6-19] (for recent thorough reviews of this and related
topics, see Refs. [20-22]). In particular, we have learned
that typical observables (when appropriately drawn at
random) equilibrate rapidly [2,3,5] and that the same is
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In this paper, we consider the following physically
relevant scenario—measurements on a small system that
is interacting with a large, highly mixed bath via a given
(nonrandom) Hamiltonian. The main result is to find
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sufficient conditions on the initial state, observable, and
Hamiltonian that ensure reasonably fast time scales, in
particular, time scales that do not grow or decrease with the
full dimension of the Hilbert space. We find that this is the
case for sufficiently mixed initial states (such as thermal
states of not-too-low temperature)—provided some natural
conditions on the off-diagonal matrix elements of the
observable and initial state in the energy basis are met—
that essentially ensure that a wide range of frequencies are
involved in the evolution. This will be applied to the
paradigmatic case of a small system interacting with a
thermal bath in the microcanonical ensemble [23], where
we obtain an upper bound on the equilibration time scale
which does not depend on the dimension of the bath.
Importantly, the results obtained here do not depend on
particular details of the system under consideration.

We say that a system equilibrates when it approaches
some steady state, and remains close to it, for some
reasonably long time interval [24]. Given the fact that
for finite-dimensional systems there always exist revivals—
times (in general, very long) in which the system returns
arbitrarily close to the initial state—in quantum mechanics,
one cannot have equilibration in the strict sense. Therefore,
following Ref. [25], we say that a system equilibrates if, for
most times, its state is close to some fixed steady state. This
fixed steady state is then called the equilibrium state.

Here, this closeness is assessed with respect to some
particular observable A, so we say equilibration takes place
if A cannot distinguish the instantaneous state from the
equilibrium one. Restricting to different kinds of observ-
ables leads to different notions. Then, for instance, an
observable acting on a subsystem probes whether that
subsystem has equilibrated, and what happens in the
remainder of the closed system is only relevant in how
it affects the evolution of this subsystem. However, taking
other kinds of observables, for example, A being some
many-body observable, gives a different view of the
process. These sort of questions are particularly relevant
since experiments are bringing mesoscopic quantum sys-
tems closer to observation [26-30]. Notice that these
situations are, in general, not described by master equa-
tions, and usually one needs to solve the actual evolution of
the system in order to learn about time scales of
equilibration.

We start in Sec. II by introducing the necessary notions
for this paper and a statement of the main result. Section III
contains a general upper bound on the time-averaged
distance between instantaneous and equilibrium states,
and an analysis of the time decay of this bound.
Section IV contains an expression for the time scale of
equilibration, which depends on the observable, state, and
Hamiltonian under consideration, the first main proof in the
paper. In Sec. V, we apply the result to the case of a system
interacting with a thermal bath in the microcanonical
ensemble, an important application of the previous part.

We end in Sec. VI with an analysis of the conditions
necessary to obtain reasonably fast equilibration. All
detailed calculations can be found in the appendixes.

II. SETTING AND SPECIAL CASES
OF THE MAIN RESULTS

Consider a closed quantum system with a Hamiltonian H
and an initial state given by the density matrix p, in a
Hilbert space H. We start by focusing on a weak notion of
distance between states, based on comparing the instanta-
neous expected value of an observable A to its equilibrium
expected value,

~ |Tr[p,A] — Tr[wA][?
D ,0) = , 1
A(pt (1)) 4||A||2 ( )
where the evolved state is p, = e Hipye’, and

= (p))e s the equilibrium state  [25,31], where
<f( Ny = (1/T) [T f(r)dt denotes a time average. Note
that the equilibrium state is simply the initial state deco-
hered in the energy basis since the infinite time averaging
removes any oscillating terms. The operator A is assumed
to be Hermitian, with ||A|| denoting its spectral norm [32].
With this definition, 0 < f)A < 1. For simplicity, we take
units such that 72 = 1.

Obviously, equilibration of expectation values does not
imply equilibration in general, since one can have very
different distributions with the same expected values.
However, even for this weak notion of equilibration, no
reasonable time-scale bounds for physically relevant
observables were known up to now. Furthermore, it is
easy to extend our calculations to a stricter notion of
equilibration, the distinguishability between p, and w,
given a measurement of A (for completeness, we show
this in Appendix A). In order to distinguish the quantity

f)A (p;, w) from the actual distinguishability, we call it the
weak distinguishability.

We can express the time average of the weak distinguish-
ability as

Ak
D D1 @)Yy = < —i(E;~E)t (p; ki >
_—<‘Zva€_i0"t >
4 - T
1 )
= 2D vatjle @O, @)
aff

where energy levels are denoted by Ej, and the matrix
elements of the initial state, equilibrium state, and observ-
able in the energy basis are p i, @i, and A j, respectively
[1]. The index a represents pairs (j,k) of levels with
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distinct energies; we denote the corresponding energy gap
by G, = (E; — E;) and define the coefficients

Akj
Vg = V() =Pk - 3
(J.k) Jk Al ( )

Notice that only terms with nonzero energy gaps appear in
the sum in Eq. (2) since wj, = pj for E; = E;.

Our aim is to prove that the time average of the weak
distinguishability considered above becomes small. Since

D is a positive quantity, this would allow us to conclude
that, for most times, the weak distinguishability is small,
showing that equilibration occurs. The main objective of
this paper is to determine, or at least to upper bound, the
time scale Ty in which this decay happens.

The following normalized distribution will be crucial for
our proofs:

v 1 |pjiAsl
P(IE| (l‘ — J J , (4)
o 0O Al
with the normalization factor
_ B |A;]
0= Z|U(1| = Z |ij|m- (5)
a JkE;#E;

The distribution p,, contains information of all the physical
quantities relevant for the dynamics, namely, the observable
A, the initial state p,, and the Hamiltonian H, and it is a
measure of the significance of the different energy gaps G,,.

Our main technical result is a general bound on equili-
bration times for observables when the initial state is highly
mixed (Theorem 6). Before embarking on the proofs of our
general technical results, it may be illuminating to see how
they apply in certain special cases that are of physical
interest. The first case concerns a small system interacting
with a bath that is in a maximally mixed state. The second
case is a version of our main physical theorem (Theorem 8),
in which the bath is in a microcanonical state.

Let us first consider a small system S of dimension d
interacting with a large bath in the maximally mixed state
pg = [(15)/d%]. We can then prove the following [this
follows straightforwardly from Theorem 6 by taking A =
Ag ® 15 and Q bounded by Eq. (29)].

Theorem 1 (Bound for a system interacting with
a maximally mixed bath). For any system observable
A=Ag® T, initial state py=ps ® [(15)/d%], and
Hamiltonian H = Hg + Hg + H|,

~ ma(e)||Agl|'? Q2
Dy(ps0))r <
O T s s + 5 S

+ 7€) 07, (6)

where

Q < \/dsTrslpg]. (7)

and a(e) and 5(¢) depend on the distribution p, and an
arbitrary parameter € > 0. They are described briefly below
and defined in Proposition 5.

Crucially, we show in Sec. III that if the initial state py),
observable A, and Hamiltonian H are such that p,, is spread
over many different energy gaps and approximately unim-
odal, then we can choose e such that 6(¢) <1 and
a(e) ~ 1. We argue that this is to be expected for a wide
range of initial states in systems with interacting
Hamiltonians, and in Appendix F, we show it explicitly
in a simulation of a spin ring, i.e., a 1D Ising model
with transversal magnetic field and periodic boundary
conditions.

Moreover, we will argue in Sec. IV B that we would
expect to achieve a reduction in &(¢) as the size of the bath
increases; hence, the second term in Eq. (6) becomes small
for large baths, and we find that equilibration occurs for
large enough times 7.

We can think of Theorem 1 as describing the system
coupled to an infinite-temperature bath. To extend the
analysis to a more physically realistic finite-temperature
bath (with inverse temperature f3), we consider a bath that is
initially in the microcanonical ensemble. Hence, the bath
starts in a state pg = [(15)/d%], where 1% is the projector
on some microcanonical window of width A and dimen-
sion d5.

We can then prove the following. (This is Theorem 8 in
Sec. 1V, applied to the special case in whichA = A ® 1;.
Theorem 8§ also applies to general observables.)

Theorem 2 (Bound for a system interacting with a
thermal bath). For any system observable A = Ag ® 15,
initial state py = ps ® [(15)/d%], Hamiltonian H =
Hp+Hg+ H;, and any K >0 and ¢ > 0, the weak
distinguishability satisfies

) ma(e)llAs]' 03

Dalpra))r <

o O . it s + 7). s + 5]
18

Fs

+m6(e) 03 + (8)

where a(¢) and §(¢) are defined in Proposition 5. For a bath

with density of states proportional to ¢” in the vicinity of
the microcanonical window,

0 < \/dSTrS[pg]emlell+<l+ SR

a-pa-em kY

Considering a sufficiently large bath and choosing the
constant K such that the last term is also small, we obtain
that equilibration eventually occurs for large enough
times 7.
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More precisely, we find that the system will be equili-
brated with respect to A, in the sense described above, for
times 7 > Teq, where

. ma(e)lAsll' 2 Q3 (10)
g = .
 VITe([lpo. Hs + Hj|. Hg + H]Ay)]

Crucially, note that if interactions between the system and
bath are short-ranged, such that H; only couples the system
to a finite region in the bath (e.g., nearest-neighbor
interactions in a spin lattice), then T, does not scale with
the size of the bath. Instead, it depends on details of the
system and its coupling to the environment, and it can be
easily calculated from the initial state, the observable, and
the Hamiltonian once a(e) has been estimated.

In the next section, we will show a general bound on the
weak distinguishability, setting the groundwork for proving
the above results.

ITII. GENERAL BOUND
ON AVERAGE DISTANCE

Since D, is a positive quantity, it satisfies

Balpr e < Balprol)y, ()

where (£(1)), = [, {[f(1)T)/[T>+ (1~ T/2)?]} denotes
the Lorentzian time average of the function f [3]. Upper
bounding the sum in Eq. (2) by taking the absolute value of
all of the terms, incorporating Eq. (11), and using the fact

that [(e™), | = e T, we get

~ 520 G-
(Dalpr @)1 S1—62Pa19/3€ GGl (12)
af

with po = (|0,]/0) and 0 =S, Jval.

We are interested in the decay in time of (D, (p;, w)) .
For the normalized probability distribution p,, we define
the function &, as follows.

Definition 3 Given any normalized probability distri-
bution p over the values of a real variable Y, we define
&, (x) as the maximum probability of any interval of length
x. In particular, when Y is discrete,

> pa (13)

X) = max
& (x) eR
a:y,€[yo.yo+x]

In Appendix B, we prove the following.
Proposition4 (General bound). For any initial state p,
any Hamiltonian, and any observable A,

Datpr s <50, (1 ). (14)

The function &,(x) will, in general, be difficult to
compute explicitly, but for small x, it can be bounded

(and well approximated) by a linear function. We will
capture this behavior in the following.
Proposition 5 For any distribution p,

£p(e)

fp(x)STercf,,(e), Yee (0,00). (15)

It will be convenient to reexpress this as
a(e)
&p(x) STX‘HS(G), (16)

where o is the standard deviation of the distribution, and we
define

8(€) = &,(e). (17)

Proof—Take (n—1)e < x < ne, with n > 1 a natural
number. The function &, is nondecreasing; hence,
&,(x) <&,(ne). Since &,(e) quantifies the maximum
probability that can fit any interval e, we also have that
&, (ne) < né,(e), which results in

() <&, (n0) < (1= 1&,(0) + &,0) < 2V x4 £, 0).
(19
O

We now derive some general properties of £,,. For many
distributions p, we would expect to be able to find an € such
that a(e) ~ 1 (in terms of its approximate order of magni-
tude) and §(¢) < 1. To visualize how this can be so,
consider the case in which the distribution essentially has a
single “peak” and in which the standard deviation o
approximately quantifies the width of this peak. In such
a case, a rough estimate for the maximum probability that
can fit inside an interval € can be given by

Eple) ~=. (19)
(2

With this estimate, we indeed get a(e)~ 1. Figure 1
illustrates this for the case of a binomial distribution, where
0.2 < a(e) < 0.8 for all € > 1.

In general, the above will work when the distribution p is
approximately unimodal, i.e., characterized by a single
distinct peak. If, on the contrary, the distribution was
composed of two or more peaks, the estimate in
Eq. (19) might not hold, as Fig. 2 exemplifies.

When Eq. (19) holds, taking ¢ < ¢ is also enough to
ensure 5(e) < 1. Note that in Fig. 1, a(e) diverges for
small e. To avoid such behavior, we would typically want to
choose € larger than the gaps between consecutive values of
the variable. Overall, we would expect to be able to find an
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FIG. 1. We show a and 6 as functions of ¢ for a binomial

distribution of 2 x 10 randomly chosen bits (mean 10°, standard
deviation ~707).

Approximately unimodal distributions

0.3

Gaussian: a = 0.398
Uniform: a,= 0.288

0.2F Arbitrary: a = 0.390
01}
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| Superposition of gaussians: a, = 34.25|
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-300 -200 -100 0 100 200 300

FIG. 2. Examples of approximately unimodal distributions
(above) and bimodal distribution (below), for continuous dis-
tributions in the limit ¢ — 0. The bimodal distribution can violate
the estimate &,(e) ~ (¢/0), simply because one can make the
standard deviation arbitrarily large by placing the peaks further
apart without changing the actual value of £, (e).

e satisfying both a(e) ~ 1 and §(¢) < 1 if the distribution is
approximately unimodal and spread over many different
values of the random variable.

In our particular case, Proposition 4 refers to the
distribution  p, = p(;x) = [(Ipjl|Ax;1)/ QAN which
depends strongly on the distribution of energy gaps of
the system. For large systems with typical energy ranges
(e.g., finite positive temperatures), their energy levels tend
to be more densely packed for larger energies, which leads
to a much larger concentration of small gaps than large
gaps. For most A and p,, we would therefore expect the
distribution p, to be more peaked towards the center and
decay for larger values of the energy gaps G, leading to an
approximately unimodal distribution over a dense spectrum
as considered above. Nevertheless, this will not always be
the case, as we will discuss in Sec. VI.

IV. OBSERVABLE-DEPENDENT
TIME-SCALE BOUND

Propositions 4 and 5 lead to the following result.

Theorem 6 (Observable-dependent bound). Given an
initial state p,, observable A, Hamiltonian H, and any
€ > 0, the time-averaged weak distinguishability satisfies

Dulpr ) <20 (2 + a(c))
ra(e)|A|l'/> Q5 .
= 7 /[Te({p. L HJA)

cs(e)Q%,  (20)

where
Q? < dTr[pf], (21)

o 1s the standard deviation of energy gaps G, for the
distribution p,, a(e) and &(¢) are as in Proposition 5, and d
is the rank of w.

Since the distribution p, is symmetric with respect to
interchanging the indices {j, k} while G, is antisymmetric,
we get that its variance, denoted by o7, satisfies

O-ZG = Zpach - <ZpaGa> ’ = ZpaGtzx

Z |p]k| |Ak]|
Q||A||

1
)’ Zm’ZﬂjkAkj(Ej -E)?
i

Q”A” Siap rlleo. H, HJA)]. (22)

Notice that for a local Hamiltonian and observable, and a
known initial state, this expression (combined with the
bound for Q which soon follows) is much simpler to
compute than o4 since it does not require detailed knowl-
edge of the Hamiltonian’s spectrum and eigenbasis, which
is needed in order to construct the distribution p, in the
first place.

Moreover, we find an upper bound for Q,

|Ak'|>2
2 _ . J
¢ ( 2, il

ki EAE,

G (5 5. 5
(Z' wlar) =200 kzpp AP

Tr[II, AT, Al

(0) (0]

A2

=Tr[p3] <Tr[p3|Tr[Il,] =dTrlp], (23)

where II, projects onto all the energy levels of the
Hamiltonian that occur with nonzero probability in p, (this
is given by the support of w). In the second line, we restrict
ourselves to this set of energy levels and use the Cauchy-
Schwarz inequality. For the last line, notice that using
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the Cauchy-Schwarz inequality for the scalar product
(0,P)=Tr[OP"], we can bound Tr[I,AIl,A] <Tr[I1,A?].
Then, using that for any two positive semidefinite matrices,
Tr[OP] < ||O||Tr[P], we find Tr[I1,A?] < Tr[I1,]||A%|| =
dl|AlP.
Inserting the above into Egs. (14) and (16) proves
our claim. O
If the second term on the right-hand side of Eq. (20) is
small, the system will eventually equilibrate with respect
to A. The time dependence is determined by the first term.
In particular, the system will be equilibrated (in the sense
described in Sec. II) for times 7' > T, where
1/2()5/2
S ) . o)
VITe({lpo. H]. H|A)|

It is interesting to note the dependence of the above
expression on [[py, H|, H], which is, up to a minus sign, the
second time derivative of the state at 7 = 0. Therefore, T,
can be alternatively written as

_ ma(e)|A]'2Q%?

- =
[TrZE oAl

(25)

€q

Remarkably, the denominator of this expression is what one
would expect from a Taylor expansion of the distance for
short times, assuming the system is initially as far from
equilibrium as possible (then, the first derivative term is 0,
and one is left with the second derivative as leading order).

We argued earlier that we would typically expect
a(e) ~ 1 and 6(¢) < 1. However, we still have to address
the size of the bound for Q given by Eq. (21), which could
greatly influence the speed of equilibration. Notice that, in
general, the dimension d of the Hilbert space is extremely
large since it scales exponentially with the number of
constituents of the closed system being considered.
Therefore, in order for this bound to show rapid equili-
bration, we would need a very mixed initial state, spread
over a significant fraction of the Hilbert space.

Moreover, the constant Q appears in the second term in
Theorem 6, along with 6(¢). In order to show equilibration
at all, this second term needs to be small, too.

In the next section, we consider an important physical
scenario and then use our bound to show reasonably fast
equilibration.

V. SYSTEM INTERACTING WITH A BATH

We now turn to the paradigmatic case of a small system
interacting with a large thermal bath. This situation
corresponds to decomposing the closed system considered
in the previous sections into a small system S and a bath B.
By assuming the observable A to be of the form

A:As®ﬂ3, (26)

where Ag acts on the system and 1 is the identity acting on
the bath, one can focus on the system’s behavior.
The total Hamiltonian is denoted by

H:H5+HB+H], (27)

where Hg and Hp are the system and bath Hamiltonians,
and H; denotes the interaction between them.

We assume that the system S is initially in an arbitrary
state pg and, for simplicity, not correlated with the initial
state of bath pp, that is, py = pg ® pp, corresponding to a
system that is initially isolated and suddenly allowed to
interact with B via H;.

To show that such a situation can lead to a small value for
Q, we first consider the case in which the bath is in a
maximally mixed state, with

= —_— 2
Po PS®dB (28)

In this case, it is easy to see from Eq. (21) that

2

Q < dTr[p}] < (dsdp)Trg[p3|Trp B—g] = dsTrslp3]. (29)

The remainder of this section corresponds to extending
this simple example (which could be understood as a
system interacting with an infinite-temperature bath) to the
more physical case of a system interacting with a finite-
temperature bath.

In what follows, given a Hamiltonian H, we denote an
energy window of width A centered around an energy E in

terms of its corresponding Hilbert space Hf,’A, defined as
A A
HED = span{|E,,) :E— ) <E,<E+ 5} (30)

We consider the state of the bath from the micro-
canonical ensemble viewpoint. Consequently, we consider
an energy window of the bath Hamiltonian of width A
centered around Eg. The subspace that this defines, Hf,‘z ’A,
will be referred to as a microcanonical window, and its
dimension will be denoted by d3. The initial state of the
bath is then pg = [(14)/d3], and the initial state of the
system plus bath is

I3
Po=prs® A (31)
B
which we will use from now on.
The width of the microcanonical window is to be taken
large enough such that it contains many energy levels, in
particular, many more than the dimension of the system, yet
small in comparison to the whole spectrum of the bath
Hamiltonian Hjp.
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A. Truncation of the Hilbert space

Notice that the state py = pg ® [(15)/d5], correspond-
ing to a bath in the microcanonical ensemble, is quite
mixed. This is good news for our bound Q% < dTr[p§|
given by Eq. (21) since the purity of the state will be a small
number. However, the presence of the dimension of the
Hilbert space implies that the bound for Q could still be
extremely large. In this section, we show a truncation
method for the state and the Hilbert space, which allows us
to reduce the relevant dimension significantly.

As the eigenvalues of H lie between —||H|| and || H]l,
the initial state p, is contained inside an energy window of

width A+2||H || of the unperturbed Hamiltonian H¢+ Hg.

In other words, p, lies within the subspace Hg‘; ’ﬁ,ﬁ?”H"‘ I

However, this no longer holds when considering the full
Hamiltonian H = Hg+ Hp + H;; in principle, p, can

. EpA+2||Hy
have support outside the subspace H” HZLLH"IH. Yet, one

has the intuition that if the interaction is small compared to
the unperturbed Hamiltonian, the energy window where the
state is supported should not grow significantly. This would
imply that one does not need to consider the full Hilbert

space but rather a truncated subspace corresponding to a

window somewhat larger than the original Hf,’;‘i;f”Hs I,

The above reasoning is proved to be correct in
Appendix C, where we show that the trace distance
between the state p, and a truncated state IIpyI1 is small,
where I1 is a projector onto the truncated subspace. More
precisely, we find the following.

Proposition 7 (Hilbert space truncation). For any K,

the state py = ps ® [(15)/d3] that lies within #7521

can be truncated to the state IlpyIl, with

2

llpo — Hpollll; < X’ (32)

. Eg A+2||Hgll+n -

where II projects onto the subspace H;", H‘;l H, 1 with a

width extended by n = +/8ds||H/|| K.
As a straightforward corollary, one obtains that

~ 1

Dy (p,. Tp ) < K2 (33)

where p, = e7pyeif! is the evolved state. This shows

that, as long as we take K large enough, the two states give
similar evolutions.
This truncation procedure will be particularly useful to

us since the dimension of the accessible Hilbert space

HEBA+2||HS||+'7
Hy+Hot+H,

dimension.

We also find in Appendix C that, if the density of states
of the bath is denoted by vg(E), the dimension of the
truncated state, di, = rank(II), satisfies

is, in general, much smaller than the full

dg Ep+(A/2)+(14+/2d) K| H ||+ Hs |
d Up E
E

truncsl__

1
K Y Ep—(8/2)=(1++/2d,)K|| H, ||| Hs]l

(34)

Meanwhile, the dimension of the (unperturbed) micro-
canonical window of the bath is given by

Ep+(A/2)
48 = / T R(E)dE.
Ey—(8/2)

(35)

Typically, thermal baths have a (coarse-grained) density
of states which grows approximately exponentially with
energy. Thus, if we take

vg(E) = NePE, (36)

where f is the inverse temperature and A/ a normalization
constant, it is easy to obtain

dsdy sinh 5+ BIlHs| + (1 + /2d,)KBIIH,||]

dl'unC S .
t (1- %) sinh W%}
dsdy PUHSI+ (14 /24 KBIH, |
< s DKBIH, 37
ST pi-em)¢ o

Note that, given that the energy width of the micro-
canonical window grows as the number of constituents
of the bath increases, in general, A > 1 holds for a large
enough bath, in which case the last inequality is a
particularly good approximation.

B. Time scales for a system in contact with a bath

Proposition 7 allows us to truncate the microcanonical
state pg to IpyIl since the error introduced is small. This
greatly reduces the dimension of the relevant Hilbert space
and, consequently, the corresponding bound for the con-
stant Q in Theorem 6.

However, this reasoning would also lead us to use the
truncated state in the theorem itself, which would cause the
replacement of Tr([[py, H], H]A) by Tr([[Ilp,I1, H], H]A)
in Eq. (20). This not only introduces additional complexity
but could possibly significantly weaken the bound.
Moreover, even if the Hamiltonian involved nearest-
neighbor-type interactions, IT could be highly nonlocal,
and indeed, we may have no way of computing it.
Nevertheless, we prove in Appendix D that the time
average of the weak distinguishability can be bounded
with a commutator involving the original state p, instead of
the truncated one while still having a relevant Hilbert space
with much smaller dimension than the original space.

We finally have all the ingredients to apply Theorem 6 to
the case of a system in contact with a thermal bath, which
turns into the following.
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Theorem 8 (Bound for a system interacting with a
thermal bath). For any ¢ >0, K > 0, observable A,
Hamiltonian H = Hp + Hg+ H;, and initial state
po = ps ® [(15)/d5], the weak distinguishability satisfies

. ra(e)||A|V2 05
Dp(ps, o)) <
N N (N0

18
+ ﬂ5(€)Q% + F,

where a(e) and &(e) are as in Proposition 5, and

/ -2
Q2 < Tr[p%}dtrunc + ? ’

dy Ep+5+(1+
dtrunc < 1= 1 A
K JEp—5—(1+

2d, K| H; I+ Hl
vp(E)dE, (39)
2d,)K|\H, ||~ Hsll

where vy (E) is the density of states of the bath. Moreover,
if we take the density of states of the bath to be v (E) o e/F
(as we would expect for a thermal bath in the vicinity of the
microcanonical window), we obtain from Eq. (37) that

21 AIH I+ (14++/2d ) KBIIH, ||
QZ < \/dSTrS[pS]e 2 (40)

(1-pi-em 'k

Taking a system observable A = Ag ® 1, we recover
the main result in Sec. II since the Hamiltonian Hp in
Eq. (38) commutes with p, and A.

Let us consider this result more closely. To begin with,
all time-independent terms have to be small for our theorem
to imply equilibration in the first place. The factors
involving K in Eqs. (38) and (40) come from the truncation
procedure and are small as long as the microcanonical
window and the truncation window are large enough.

The other time-independent term is z5(e)Q3, which
we have neglected so far. As discussed in Sec. III, for
distributions p, that are approximately unimodal and
sufficiently spread over different values, one can estimate
that 5(¢) ~ [¢/(0)]. Notice that as the bath grows in size,
one would expect that this holds for smaller values of ¢
since the distribution p, would be spread over more values.
We could therefore take ¢ smaller and smaller and reduce
5(e). At the same time, the bound on Q, in Eq. (40) will
generally not grow with the dimension of the bath. To see
this, note that typically (e.g., for short-ranged interactions
in a lattice system), ||H,|| will not increase significantly as
the bath size increases and that increasing the width A of
the microcanonical window as the bath grows will cause the
bound to become tighter. Therefore, in the limit of
increasing bath sizes, the term z5(e)Q3 becomes negli-
gible, as needed.

The fact that the results in Theorem 8 do not depend on
the dimension of the full Hilbert space is a very noticeable
aspect of this paper. This is in stark contrast with previously
known general upper bounds on the time scale of equili-
bration [1], which essentially scale with the full Hilbert
space dimension.

Finally, the first term in Eq. (38) determines the time
decay of the weak distinguishability and can be interpreted
the same way as in the corresponding term in Theorem 6
(see subsequent discussion). Notice that, once a(e) is
estimated, the time dependence can, in general, be calcu-
lated analytically for a given initial state, Hamiltonian, and
observable. Moreover, performing this calculation is
much simpler than solving the exact time evolution, which
involves commutators of the initial state and Hamiltonian
of all orders and can only be done for simple models.

It is illuminating to ask how our bound behaves in a case
where no equilibration occurs. Take, for example, a spin
1/2 in a pure initial state |¥) = \/LE (1) + |{)) as the system

S, and a bath composed of N other spins in the micro-
canonical ensemble. Furthermore, take the Hamiltonian
H = QoS + Hp and the observable A = 65 ® 1. Since the
system does not interact with the bath, it does not equilibrate
with respect to the observable A. The key to understanding
where our bound expresses this fact is in the factor 5(¢). It is
easy to see that the distribution p, is composed of only two
values, corresponding to the gaps Q and —€, which results
in 5(€) > 1 for any e and hence no equilibration at all.

C. System interacting with an environment
in a pure state: Typical behavior

So far, we have considered mixed initial states of the
total closed system. Here, we show that our results can be
extended to the typical behavior of pure initial states of the
environment that interact with the system.

Let us consider the environment’s initial state to be pure
and drawn at random from the microcanonical window.
Any pure state from the microcanonical window can be
written as

Py = Uly)(y|U", (41)
where U is a unitary operator acting on HZIL’A. By
averaging over all possible U’s, drawn from the Haar
measure, we have the typical behavior for random pure
states from the microcanonical subspace Hg‘;’A.

It turns out that taking the initial environment state to be
a pure state chosen at random from a microcanonical
window leads to results very similar to the environment
starting in the microcanonical mixed state [(15)/d5] in the
subspace Hg’;’A. More precisely, we show, in Appendix E,
the following.

Proposition 9  (Evolution for typical initial states of the
bath). The weak distinguishability averaged over all
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possible initial pure states of the environment drawn from a
microcanonical window of width A satisfies

. . d
(Da(p! . 0V))y < Dylpy. @) +d_i’
B

(42)
where p{ = ps ® Uly)(w|UT with corresponding evolved
and equilibrium states p¥ and 0", and py = pg ® [(15)/d5]
with corresponding evolved and equilibrium states p, and @.

Since the microcanonical window is assumed to contain
many more levels than the system’s dimension, d§ > d,
the above expression implies that, for typical initial pure
states of the bath, the evolution is as if the initial state
was po = ps ® [(13)/d3].

It is straightforward to combine this Proposition with
Theorem 8 and show that the upper bound for the typical
time scale of equilibration for a system interacting with a
bath in a pure state is the same as if the bath were in the
microcanonical state.

VI. DISCUSSION

From previous work, we know that one needs to impose
further conditions in order to prove reasonably fast equili-
bration since extremely slow observables can always be
constructed [2,3].

In this article, we have found a set of sufficient con-
ditions that ensure this. More precisely, when the distri-
bution p, = [1/(QllAll)]|pk||Ax;| (which characterizes the
energy gaps that are most relevant to the particular state and
observable under consideration) is approximately unimodal
and spread over many different values, one expects
a(e) ~ 1 and §(e) < 1. In the setting of a system interact-
ing with a thermal bath, this implies equilibration time
scales that do not scale as the size of the bath grows, as
Theorem 8 shows.

Whether the above holds or not ultimately boils down to
the values of the off-diagonal matrix elements of the
observable and initial state in the energy basis, and to
the distribution of energy gaps. Nevertheless, there are
general arguments indicating that a(e) ~ 1 and §(¢) < 1
might hold for a wide range of systems. First, in typical
situations, one might expect that a state is spread roughly
equally over a range of energies (this occurs, for example,
for thermal states) and that, unless the observable A is fine-
tuned, its components are also spread relatively smoothly
over this band of energies, at least in a coarse-grained
sense. Second, for large systems, the distribution of energy
levels tends to grow exponentially with energy in the region
of finite temperature. It is easy to check that if one assumes
a density of states (E) « e’E, the corresponding density of
gaps scales like u(|G|) o e#I6l, with an exponential
decrease. This implies that, in order to have a resulting
distribution that is characterized by one peak, it is sufficient
to have matrix elements of A and of the initial state p that

grow subexponentially as a function of the energy gaps.
This does not seem like a particularly strong assumption.
Finally, let us note that even when p,, is not unimodal and is
instead composed of a number of distinct peaks, Theorem 8
will still give reasonable equilibration times (in particular,
times that are approximately independent of the size of the
bath) except in the case where the individual peaks get
sharper as the size of the bath is increased. Our intuition is
that such behavior is rare and thus that the bound will have
very general applicability.

The remaining question is whether physically relevant
cases will, in general, be of this form [satisfying a(¢) ~ 1 and
5(e) < 1, and therefore “reasonably fast equilibrating”] or
of the other (violating these conditions and therefore “slow
equilibrating”). Appendix F illustrates the transition to
approximate unimodality, and the conditions being met,
as environment size increases in a simulation of a 1D Ising
model with transversal magnetic field and periodic boun-
dary conditions. However, proving that this occurs and
finding the physical conditions under which it happens
remain interesting open problems for future study.

It is worthwhile comparing our conditions with the
assumptions made in previous work in order to prove
equilibration of closed quantum systems. Equilibration can
be proven by assuming that the effective dimension defined
as degr = [1/(32,p7;)] (for a nondegenerate spectrum, for
simplicity) is large [25,31] and that the Hamiltonian does
not have too many degenerate energy gaps [1]. Notice that,
although we do not make these assumptions explicitly, we
are, in some sense, implicitly assuming both of them. On
the one hand, a high effective dimension is related to having
many energy levels populated in the system, which is
necessary in order to have a distribution p, that is spread
over many different values. On the other hand, the presence
of a very degenerate energy gap results in a distribution p,,
such that 6(¢) < 1 does not hold, as the simple example
after Theorem 8 illustrates.

The present paper emphasizes the importance of the off-
diagonal matrix elements of the observable and initial state
to the study of the equilibration time scales in closed
quantum systems.

The eigenstate thermalization hypothesis, introduced by
Deutsch and Srednicki as a sufficient condition for thermal-
ization [33,34], has motivated extensive work on the
distribution of diagonal matrix elements of observables
[35-42]. However, much less work dealing with the
distribution of the off-diagonal matrix elements is available,
some examples being Refs. [43-46]. The recent papers
[44,45] show, in certain models, Gaussian distributions of
these matrix elements for local observables, which supports
our claim that a unimodal distribution of p, is to be
expected in many situations. Moreover, Ref. [46] numeri-
cally verifies our predictions in an experimentally realiz-
able setup consisting of an electron in a quantum dot
interacting with a bath of nuclear spins. Remarkably, the
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authors find that, even though our results are model
independent and not tailored to this particular system,
our new bounds fall within 2 orders of magnitude of the
actual time scale.

Our paper focuses on the equilibration of a small system
with respect to a pre-equilibrated bath, but many open
questions remain regarding general equilibration time scales.
One direction of particular interest is an equilibration time
scale for the bath itself, as well as what aspects are necessary
for it to play its usual thermodynamic role. We hope that the
tools developed here will aid in further study along these lines
and help shed more light into this important topic.
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APPENDIX A: EQUILIBRATION IN TERMS
OF DISTINGUISHABILITY

Equilibration of the expectation value of some observ-
able does not imply equilibration of the observable itself.
Here, we show how the results can be cast into a stronger
sense of equilibration in terms of the distinguishability, as
we used in Ref. [3]. Distinguishability of states p and ¢ with
respect to an observable M = {P, P,, ..., Py}, where P;
are a complete set of projectors, is defined by

Do(p. ) = 3 S ITeP ]l ~TrlPiall. (A1)

and it characterizes the probability of successfully guessing
between the two states (assuming they are given with equal
probabilities), via pgyccess =%+%DM (p,o0). By Jensen’s
and Cauchy-Schwarz’s inequalities, we can relate the
distinguishability D, to the weak distinguishability bP,-
considered in this paper:

<D3\4<pt’a))>7‘
= \/N\/%Z“TI[PI./),] - Tr[P;w]|*) 7
= \/]V\/Z(bpi(psz»r‘

(Dum(pr @) <

(A2)

Each term <7~Dpl_ (p1,®)), can be bounded via the results
from Theorems 6 and 8, and therefore, fast equilibration of
the projectors will imply fast equilibration of the
distinguishability.

APPENDIX B: THE §, (1)
FUNCTION—PROPOSITION 4

We wish to bound the decay with time 7 of

> pappeTI0GIT. (B1)
aff
To connect this to the function
& (5) = > (B2)
\r) "G Lo P
GaelG.G+)]
we define the auxiliary function
) {1 if xel0,1) (B3)
x) = .
g 0 otherwise

This definition allows us to upper bound the exponential as

e Sie"’gﬂx\ —n). (B4)
n=0

One can then see

0
> pappe” %G <N ey "p > ppg(|Go— Gyl T —n)
ap n=0 a B

o]
= Z e—nzpa Z Py
=0« b
(IGa=Gg|T-n)€l0.1)
Szoo:e‘”Zpa l ; ppt ﬂz Pﬁ}
n=0 a . “(n)

(}/j€1<_n) (:

oS- )

n=0 a

2 1
“im (1)

where 1" =[G, + (n/T).G, + [(n + 1)/T]) and I =
(Gy—[(n+1)/T],G,— (n/T)], and the inequality in the
penultimate line is valid for any n and a.

Together with Eq. (12),

G/;EI

(85)

~ 57Q? _IG—
<DA<P,70))>T < TZpap/;e |Ga G/"T, (B6)
ap

we obtain
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(Dalp, )»sﬁ%( )

S ﬂQzép (?) )

showing Proposition 4.

APPENDIX C: TRUNCATION OF THE
HILBERT SPACE—PROPOSITION 7

As mentioned in the main text, the state py =
ps ® (15/d5) lies within the subspace Hfff;j”HS”
We will show that, when considering the full interacting
Hamiltonian H = Hg+ Hp + H,, it is enough to con-
sider the truncated subspace Hgif;ﬂgi”ﬂ
denotes the amount by which the energy window is
extended.

The effect of “cutting”

Eg A+2||Hgll+n s : : :
HorHy+H, will obviously introduce errors. We wish

to do it such that the truncated state remains close to the
original one in trace distance:

, where 7

the state outside the space

2
llpo — poll; < X’ (C1)
where II is the projector onto Hi@*ﬁ,ﬂ’,’g”*" and n =

V8ds||H K.

An arbitrary initial state of the system can be written as

Ps = Zﬂfz/ |E1S> <E1S

Lr

(C2)

where |ES) are eigenvectors of Hg with energy E7. As seen
in the main text, the state of the bath is effectively
proportional to the identity on a window of Hp and
therefore diagonal in the basis Hp. Hence, we can write
the total state as

ZZC/IPH’|ES
Ll

= il | B ER)(ES EZ,
AL

Ej| ® |EJ)(E]]

(C3)

where |E?) are the eigenvectors of H and the coefficients
¢, are positive and normalized (we do the calculation for an
arbitrary state of the bath commuting with Hp, but in our
case, actually ¢, = 1/d%).

The following result will be useful.

Lemma 10 (Gentle measurement [47]). For any state p
and positive operator X such that X <[ and

1

one has

o~ VEpVXIlL < = (c5)

In order to apply the lemma for the state p = p, and the
operator X = /X = II, we start with

1 = Trlpo] = Tr[polTH]

= i Tr[|ES, EX)(ES. |
AL

< S cilpfES. BN ES. ED)|
AL

< clpd I ES. ER) [T | ES. EB)|I.
AL

(Co)

by taking absolute values in line 3, using the Cauchy-
Schwarz inequality (with |||y)|| = v/(y|w) as usual) in
line 4, and denoting the orthogonal complement of Il
by IT+.

In order to upper bound this expression, we use Bhatia’s
perturbation theory result (Theorem VIL.3.1) in Ref. [48]
(for another very interesting application treating the prob-
lem of proving thermalization in closed quantum systems,
see Ref. [49]).

Theorem 11 Let O and P be normal operators, let S,
and S, be two subsets of the complex plane that are
separated by a strip (or annulus) of width A, and let E (F)
denote the orthogonal projection onto the subspace
spanned by the eigenvectors of O (P) corresponding to
those of its eigenvalues that lie in S; (S,). Then, for every
unitarily invariant norm ||| - |||,

O-P
ey < WO=PIll ()
A
In our notation, this theorem implies
L |ES, EB T4 ES, EBY(ES, EB||| < =2 ”H’” C8

LA

where we have related the Euclidean vector norm on the
left to the operator norm on the right. In the above
expression, A, is the distance between the supports of
|E7, EB)Y(ES, E®| and IT*. Note that this distance satis-
fies A, > (n/2).

Using Eqgs. (C6) and (C8), the fact that

<lefp ) <& |yl =

Lr Lr

LTrlp?] < (C9)

and > ,c; = 1, we get
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4”H1”2

1= Trlpoll] <> cilp3)|

ALY

4)|H,||?
< g, MM
n

(C10)

Choosing the truncation window with n = K+/8d||H,||
and using the gentle measurement lemma leads to the main
result

2
llpo — Hpolll S?. (C11)

It is easy to extend this to the weak distinguishability.
Note that the trace distance is invariant under global
unitaries; in particular, it is invariant under the

Hamiltonian evolution. Therefore, expectation values of
an observable A will be close since we have

[Tr(Ap,) ~ THATIp | < llo, = o Tl 1A
= lloo = TipoTTll 1A
2||A
<Al c12)
K

by using, in the first step, that for any two operators O and P,
Holder’s inequality implies Tr[OP] < ||OP||; < ||O|l;||P]l.
From the above results, we obtain

ZN)A (ps, Tp,IT) < K2

(C13)
To conclude, it will be useful to relate the rank of I to the

rank of a projector P onto yet another extended subspace

HEBaA+2||HS||+'7+’7/
Hp+Hg

spectrum of unperturbed system and bath Hamiltonians, it
will prove simpler to calculate.
First, denoting by P~ the orthogonal projector to P, we get

. Since the rank of P is related to the

T = TIP|l, = TP,
< rank(IT) | TP

2”HI” (1T

K 9

< [Tl (C14)

by using the fact that for any operator || Q||; < rank(Q)||Q]l,
using Bhatia’s theorem, and setting 7’ = 2K||H,||. The
triangle inequality then leads to

1Tl < |IXLP|ly + |ITT - ITP|l

[I1T]]
<P+ (C15)
Recall that d,y,. = rank(IT) = ||IT||,. Hence,
P
Ao < ) ”{ : (C16)
1—1
K

Note that, since P projects onto the subspace
Hﬁgﬁ,ﬁf””ﬂ'*”*” corresponding to a system that does

not interact with the bath, we can denote the density of
states of the bath by v(E), and

Ep+4++5-+1|Hsl
1Pl < ds / vp(E)dE

Ey=3~4-5—I1Hs)

2 2
Ep+5+(14++/2d, ) K| H, ||+ Hs |
= ds/ I/B(E)dE
E

(C17)
=5~ (14++/2d,) K| H,||-|| Hs |l

The inequality comes from upper bounding the number of
accessible states of the system by dg¢ and counting the states
of the bath as if it could access all of the possible energies
of the space H./ A+2”H5 11" The second line comes from

using ' = 2K||H1|| and n = /8dsK || H/||.
APPENDIX D: PROOF DETAILS
OF THEOREM 8

We write the original state in the basis |j) of eigenvectors
of the full Hamiltonian H as

Po = ijk|j><k (D1)
Jk
The truncated state is then
Tpoll = pili) (k (D2)
jkeJ
where II projects to the truncated Hilbert space

Ep A+2||Hs||+ . .
HHS CHaiH, and J is the set of eigenvalues of

Hg + Hp + H, restricted to such space.

We now expand the Hilbert space to include two new
energy eigenvectors |jmin) and |jna.), with corresponding
energies E.;, and E|,,, respectively, such that the new
Hamiltonian is

H=H + Emin|jmin><jmin| + Emax|jmax><jmax|' (D3)
Next, we define a new density matrix on the enlarged
space by

ﬁO = C <Hp0H + 5 |]m1n><]m1n| +3 |]min> <jmax|

X, . x|, . .
+ 5 |Jmax><]min| + 7 |]max><]max|) ) (D4)

where x is a real constant and { is an appropriate
normalization constant to ensure that Tr[py] = 1. The
above definition ensures that p, remains a positive operator.
Note also that IT is orthogonal to |ji,) and | .y ) since the
truncation we perform is in the original Hilbert space.
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It will also be useful to define an observable A in a
similar way, as

< _1 lIAIl . Al . .
A=-(TATT+ 22 il A = i) Gime
é/ < + 2 IIlll’l> <-]IH11’1| + 2 |Jm1n> <-1de|

Al
* 2

Al

il ). (9

Jmax) min| +—5—

In the derivation of Theorem 6, the commutators that
appear in the denominator of Eq. (20) came from the
standard deviation of the distribution p,, as explained in
Sec. III. We intend to use p,, and A as the initial state and
observable for our calculation, while proving that x can be
taken such that

(1) GG - Q”A” |Tr([L00’ ]’ ] )|’
(i) {po,A, H} lead to approximately the same physics
as {po, A, H},

where Q is the normalization factor for the distribution p,,
corresponding to p, and A.

Point (i) will lead to a result in Theorem 8 with
commutators involving the original triple {p,, A, H}, as
desired, while point (ii) allows us to use the redefined state,
observable, and Hamiltonian instead of the original ones.

1. Going from {p,,A,H} to commutators
involving {py,A,H}

Let us revisit Eq. (22), this time with the state p, and the
observable A. We can see

EZG:ZE Z\P,kH GI(Ej—E)?
a

QIIAII —
1 x| [1AT
ol ,Zkej
x||All .,
| Pk k E Ek) |+ Gmx s (D6)
QIIA||<,Zk€,’ J 2 ™

where we defined the maximum energy gap G =
Ernax - Ernin'
We now impose that x is such that

o| 5l o >

2
Zp/k kj )2

= 5z el )

QIIAII

H]A)|, (D7)

which together with Eq. (D6) already gives condition (i).

From the equation above, we obtain

IAlGS
Tmax = ijkAkj(Ej - Ek)2
jk
- ijkAkj(Ej - E)?
jkeJ

‘kAkj (Ej - Ek)2

- Z/’jkAkj(Ej - Ek>2

jkes
= [Tr([[po — Hpoll, H], H]A)|
= [Tr([[po — TpolIl, H'], H'|A)],

(D8)

where, in the last line, we define the auxiliary Hamiltonian
H' = H — [(Epax + Enmin)/2]1, shifted so that its spectrum
is centered around 0. By noting that |H'||=
”H” - [(Emax +Emin)/2] = [(Emax _Emin)/z} = [(Gmax)/z]a
expanding the four terms in the above commutators, using
the fact that for any two operators O and P one has
Tr[OP] < ||O||||P||; from Holder’s inequality, and using
Eq. (C11), we end up with

2
————4|lpo

— Tpo ||, AN 1 H 12
= JAlGE ‘

4
= 2|lpo — HpolI|l; < X (D9)

Similarly, we can show that —x < (4/K), and hence,

4
<-—. D10
< (D10)

2. {py,A,H} give approximately the
same physics as {py.A.H}
We now check that condition (ii) is also satisfied. Note
that

| TrlpoA] = Tr{poAll

< [Tr[poA] = Tr[IIpoIIA]| + |Tr[TIpoITA] — Tr[poAll

= [Telpoa] ~ Tepgna] + | 41 R

< llpo — OpoIIll; IAIl + [x]IIA]

< % + % : (D11)
by using, in the third line, Tr[pyA] = Tr[Allp,Il] +

2[(x||All)/4] + 2[(|x|l|All)/4] (which comes from the def-
inition of A and p,), and the fact that IT is orthogonal to
|jmin> and |jmax>'
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The above equation justifies the approach of defining
the auxiliary state and observable since we proved that
these mimic the original state and observable in the
predictions.

The result can be translated into the weak distin-
guishability between p, and w. By using the triangle
inequality, a similar calculation as above, and the fact
that the trace distance is invariant under unitary evolu-
tion, we see

| Tr[p,A] = Tr[wA]|? < [Tr[p,A] - Tr[p,A]|*

+|Tr[p,A] - Tr[@A]|?
+ | Tr[@A] — Tr[wA]|?
<[]~ TeiwA) -+ 2 el )

(D12)
where p, = ¢=iHip,e' and @ is the corresponding
dephased state. This implies

~ IAIl? ~ 18

Dy(ps ) SWDz(ﬁz@) ta (D13)

For the term b;(ﬁ,, @), we can apply Propositions 4 and
5, and condition (i) to get

(DA, @)y < FOL

o
Tog + 78(e) Q?

x| A|l'*a(e) 0°

78(e)0>.
=Tl i Ay |2

(D14)

The last inequality comes from our convenient construction
of py and A, which is specifically designed for this.

3. The factor Q for p, and A

It is easy to see that the factor Q for the auxiliary state
and observable satisfies

|Ak]

Pl 5=
9=> P Al

J#k

P IAII 2 21|1Af]

jkeJ
_ AT ( |x|)
||A|| Qtrunc D)

||A||< g)
=jan \%mx )

(D15)

where Q.nc 1S the normalization constant of the distribu-
tion that results from IIpyIT and A.
The above bound, plus Egs. (D13) and (D14), results in

i IAIP _za(e)lIA]*Q""
Dalp; =
< A(p w)>T<||A||2T\/|Tr([[ﬂo7H]’H]A)|
1A 502 + 28
Flapmeet
< ﬂa(€)||A||1/2(Qtrunc %)
T+/|Tr([[po. H], H]A)]
2\2 18
+ﬂ'5(€)(Qtrunc+K) +F7 (D16)

which, defining Q) = Qune + (2/K) to simplify notation,
gives the first part of Theorem 8.

In order to finish the Theorem’s proof, we upper bound
Otune- From Eq. (23), we see that for this state

Oftune < Tr[(TlpoIT)?| Tr[IT]
= Tr[[poTpo] diunc
< /TR Trlpo TP o] de
< TN Te[p5) diune
= Tr[p3)diuncs

(D17)

by using the definition of d,,., the Cauchy-Schwarz
inequality, and the fact that, for two positive semidefinite
matrices, Tr[OP] < ||O|| Tr[P].

Since py = ps ® [(15)/(d%)], we see that
2 Trs%]
Tr[pd] = —> 157 (D18)
dp
In the main text, we found [Eq. (37)]
dgd%
dune < ePIHslI+(14/2dO)KBIHN - (D19
e S D1 — )¢ (D19)
which leads to
Qt2runc S Tr m%]dtrunc
2
dsTrslps] — pimglie(1+/2a KA1 (D20)
T (=) (1=

Substituting this back into the

gives Eq. (40).

definition for Q,
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APPENDIX E: TYPICAL BEHAVIOR FOR
ENVIRONMENT IN A PURE INITIAL
STATE—PROPOSITION 9

With the initial state

Pl =ps @ Uly)(w|U" = ps ® pg. (E1)

we focus on the average over all unitaries U within the
subspace Hf,’;’A of Dy(p?, wY):

(ITrlp?’A] = Tr[w”A][?)
4[|l

(Dalp? "))y = (E2)

By shifting the time dependencies to the observable A,
we get

Tr[pl A] = Tr[p¥ e AeH1] = Tr[pUA(r)].  (E3)

If A, is the infinite-time-averaged A(z), we have
Tr[wVA] = Tr[p{ Ay]. Then,

Ba(eV 0
— g (T A0 = AP

- mﬂwﬂ%ﬁs[ﬂs ® 15(A(1) = APy

= ([T oIy

= Trye[(pff ® p§)yC ® CJ, (E4)

where, in the third line, we have used pY§ = 15p41% to
wiite € = [1/(2IIAIN|Trglps ® 15(A(1) = Agg)T5 ® 18]
as an observable acting on the microcanonical window
of the bath Hilbert space.

Via the same calculations as used in the Appendix of
Ref. [3], we get

(s ® Py = (U (ly) (w| & lw) (W) (U®*)")y

= oll; + pI1,, (ES)

where IT; = {[(13)®?+$]/2} and IT, = {[(15)®* - $]/2}
project onto the symmetric and antisymmetric subspaces,

and $ is the swap operator on Hg“;’A ® Hg‘; 4, defined by

$|¢1)|#2) = |#2)|eb1)- Since

(1 =Trlpf ® pi3$))u

(1 ="Tr[(p5)*))y

Tr[(pf @ p§)yll,] =

O = =

(E6)

we see that #=0, and from Tr[{p} ® p¥),] =1,
we obtain a = {2/[d3(d5 + 1)]}, which leads to the
simple expression (p¥ ® pl), = {2/[d5(d5 + 1)]}HI,.
Then,

<DA(/)IU7CUU)>U Trpe: [I1,C ® C]

T dy(dg+)

= sy Telp®ced
—+ TI‘B®2 [$C (024 C])

= m (Trg[C]* + Trg[C?]). (ET)

The operator C is of the form C = Trg[O], with O
Hermitian and acting only on the microcanonical
window, from its definition above. Any such operator
can be written as

aijij, (ES)

=0 k=0

where aj; are real coefficients, and {X;} and {Y,} are
orthonormal bases of Hermitian operators on the
system and microcanonical window, respectively [50].
They satisfy

Trs[X]XJ/]:(s]]/, V {],]l}:(o,dé—l),

Trg[YiYy] = 6w, ¥ {k,K'} = (0, -‘-(d%)z -1), (BE9)

with Xy = [(T5)/+/ds] and Yy = [(15)/+/d5], while all
other operators have trace 0. With these definitions, we can
write

Trg[C?] = Trp[Trs[O]Trs[O]]

di—1 (d§)*~1
= Z Z ajiajp Trp[Trs[X;| Trg[X ]V, Y]
J7=0 k=0
(dp)*-1
= Z aoaor Trp[Y Y | Trs[Xo] Trg[Xo)
=0
(dg)*~1 (dy)*-1
= ds z aokaor O = ds a%k
k=0 k=0
E-1 (d3)-1
<ds) a}, = dsTr[0?)]. (E10)
=0 =0

From this result, and the definition of C above, we
obtain
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Tey[C7] < o (s © 13(A(0) = 4’
< e Tl @ TH(AM) = A s © 17)
X JTH(A() = Acg) (05 ® T9)2(A(1) — Acg)]
d
< giage Trles ® T A() = Ay
< dgd5 (E11)

by using Cauchy-Schwarz inequality on line 2, the fact that
for positive semidefinite operators Tr[PQ] < Tr[P]||Q]| on
line 3, and the triangle inequality plus ||A¢ll < |A(7)|| =
[|A]l on the last line.

With this result, we see that Eq. (E7) becomes

(Dalpl . 0"))y

dA(dA+1)(TrB[ ] +TrB[C2]>

Trlps ® 13(A(1) -

Ao +dds
dA dA—l-l <4|IA”2 eq)] —+ S B>

? A
et (s @ (4(0) - )] +dsa
(A

AT
— Ad r[po () ; )] AdS ) (El2)
d +1 4)|A] d +1
where py = ps ® [(15)/d%]. We can now shift the time

dependence back to the state to get

d§ Trl(p,—w)AP | dy

Da(pl V) <
<Tr[(pt—w)A}2 ds
T AAlr dy
~ dS
:DA(pt’ ) dA’ (E13)

which proves our claim. The bound [1/(d5+1)]<[1/(d%)]
is only for presentation reasons and does not change the
result much since d§ > ds > 1 in the regime we are
interested in.

APPENDIX F: DISTRIBUTION
7. FOR A SPIN RING

In order to get a deeper grasp of the behavior of p,, we
simulated L interacting spin 1/2’s, with a Hamiltonian
given by

L L
H=QY 6i+yQ) oi®oc},, (F1)

where ¢ and o7 are the Pauli z and x operators for the spin
4, and we adopt the notation o} | = o7. The spin 4 = 1 is
taken to represent the system S, and we focus on an
observable A, and initial state p given by

L L
A=d®@L,  p=INIe®F (P
1=2 =2

the latter representing a bath in a maximally mixed initial
state and the system in the eigenvector |1) of o] with
eigenvalue 1.

Figure 3 depicts the normalized distribution p, =
(1/0)[(lpjxAxj|)/IALIl] as a function of the energy gaps
G, = (E; — Ey) as the number of spins increases, illustrat-
ing the transition between a distribution with several
distinct peaks and a unimodal distribution. In Fig. 4, we
plot a(e) and &(e) for different values of L, illustrating their
decrease with increasing L, for most values of €. Thus, even
for moderate sizes of the bath, one can find an interval e
such that §(¢) <1 and a~ 1. The first condition is
necessary for Theorem 1 and the subsequent results in
order to imply that equilibration occurs, while the second
condition is necessary to ensure that the equilibration time
scale does not grow for increasing bath sizes (see dis-
cussion after Theorem 8).

For example, in this model, we find that for L = 9, one
can take e such that a(e) =1 and () ~ 0.006. Then,
Theorem 1 gives

25/477:”14 ”1/2
= T\/|Te([[po. Hs + H;]. Hs + H/]Ag)|
+0.04, (F3)

(Dalpr @)y <

with an upper bound on the equilibration time scale

254\ Ag|/?
VITr([[po. Hs + H,]. Hs + H,]As)| ’

T,

(F4)

q

dictated by the observable, initial state, and system and
interaction Hamiltonians, which are straightforward to
calculate.

Figure 5 shows similar behavior of a(e) and (¢) for a
spin ring with random couplings. We simulated a
Hamiltonian

H=Q) 6i+Q) Kioi®0},,. (F5)
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FIG. 3. Normalized histogram of the distribution p, for an observable A, = o7 @ @%_,1, and initial state py = [1)(1| @ @ ,1,/2
as a function of the energy gaps for a spin ring with coupling strength y = 1.1€Q, for an increasing number L of spins. For small L, the
distribution p, is composed of distinct peaks. On the other hand, p, is spread over more values as the size of the system increases. At the
same time, as L increases, the distribution becomes more distinctly unimodal.

J63)
0.4

0.3f

0.2r

0.1}

OM

0 0.1 0.2 0.3

elIQ

a(e)
12t —— [ =3 ]
—— L =5
10 |—L=7 1
—— [ =9
st
a
6}
4.
ot
M—::#: ,,,,,,,,,,,,,,,
0 . H
0 0.1 0.2 0.3

e/Q

FIG. 4. Plots of &(¢) and a(e), defined in Proposition 5, for an observable A, =o} @ @%_,1, and initial state

po=|1){(1] ® ®~L_,1,/2, for a spin ring with coupling constant y = 1.1 Q. There is a trade-off between having small §(e) and

small a(¢). However, for a fixed energy gap interval ¢, both a(¢) and &(¢) decrease as L increases. Hence, as L increases, it becomes
possible to find ¢ such that a ~ 1 and § < 1. Indeed, for L = {3,5,7,9}, we have a(¢) ~ 1 and 6(¢) ~ {1, 0.62,0.02,0.006} for

€~ {3.26,1.65,0.05,0.02}Q, respectively.
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FIG. 5.

a(e)

—— L =4

0 0.1 0.2
elIQ

Plots of average 5(¢) and average a(¢) and their respective standard deviations (after 1000 realizations) for an observable

A. =0t ® ®L_,1, and initial state py = |1)(1| ® @?%_,1,/2, for a spin ring with random couplings K ; with mean y = Q and standard
deviation w = 0.2 Q. Once again, both a(e) and 5(¢) decrease as L increases, for a fixed energy gap interval e. Hence, as L increases, it

becomes possible to find ¢ such that a ~ 1 and 6 < 1.

where the couplings K, are drawn at random from
a Gaussian distribution with mean y and standard
deviation w. For completeness, in Fig. 5 we focus on an
observable A, and the same initial state as above:

L L q
Az:07®®“A7P0:|1><1|®®%~ (Fo)
= =
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