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1 Introduction

Abstract convexity has found many applications in the study of problem of mathematical
analysis and optimization. Also, it has found interesting applications to the theory of
inequalities. Abstract convexity opens the way for extending some main ideas and results
from classical convex analysis to much more general classes of functions, mappings and
sets. It is well-known that every convex, proper and lower semicontinuous function is the
upper envelope of a set of affine functions. Therefore, affine functions play a crucial role
in classical convex analysis. In abstract convexity, the role of the set of affine functions
is taken by an alternative set H of functions, and their upper envelopes constitute the
set of abstract convex functions. Different choices of the set H generate variants of the
classical concepts, and have shown important applications in global optimization (see
[23, 24, 25, 26]).
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Abstract convexity has mainly been used for the study of point-to-point functions. Ex-
amples of its use in the analysis of multifunctions can be found in [1, 9, 10, 20]. Several
approaches to the theory of monotone multifunctions have established links between max-
imal monotone multifunctions and convex functions (see [2, 3, 6, 8, 13, 14, 19, 29, 30]).
The richness of the theory of monotone operators has given rise to a great number of works
and the simplification of proofs and theory that results from the use of convex analysis
techniques justifies an interest in these links. Roughly speaking, the study of monotone
operators is reduced to the study of the convexification of the coupling function, restricted
to the monotone set. However, convexity is sometimes a restrictive assumption, and there-
fore the problem arises how to generalize the theory of monotone operators via abstract
convexity. Recently, a theory of monotone operators has been developed in the framework
of abstract convexity (see [5, 15]).

In 1970, Moreau [17] observed that Fenchel conjugation theory and the second conjugate
theorem can be established in a very general setting, using two arbitrary sets and arbitrary
coupling functions. The second conjugate theorem in this setting, known as Fenchel-
Moreau theorem, has given rise to the rich theory of abstract convexity (see [18, 22, 28]).
Extensions of Fenchel duality theorem and Fenchel-Rockafellar theorem, which have played
key roles in the application of convex analysis, have been presented for abstract convex
functions in [7]. The aim of the present paper is to develop a theory of monotone operators
in the framework of abstract convexity by using generalized Fenchel duality theorem. In
fact, we present criteria for maximal abstract monotonicity and obtain some results on
maximal abstract monotonicity by using an additivity constraint qualification.

The structure of the paper is as follows: In section 2, we provide some preliminary def-
initions and results related to abstract convexity and abstract monotonicity. In section
3, we present a Rockafellar type surjectivity result. In section 4, by using an additiv-
ity constraint qualification, we obtain a generalization of Fenchel duality theorem in the
framework of abstract convexity and give also criteria for maximal abstract monotonicity.
Necessary and sufficient conditions for maximality of abstract monotone operators are
given in section 5.

2 Preliminaries

Let X and Y be two sets. Recall (see [4]) that a set valued mapping (multifunction) from
X to Y is a mapping F : X −→ 2Y , where 2Y represents the collection of all subsets of Y.
We define the domain and graph of F by

dom (F ) := {x ∈ X : F (x) 6= ∅},

and

G(F ) := {(x, y) ∈ X × Y : y ∈ F (x)},

respectively. The inverse of F is the set valued mapping F−1 : Y −→ 2X defined by

F−1(y) := {x ∈ X : y ∈ F (x)}.
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Now, let X be a set and L be a set of real valued abstract linear functions l : X −→ R

defined on X. For each l ∈ L and c ∈ R, consider the shift hl,c of l on the constant c :

hl,c(x) := l(x)− c, (x ∈ X).

The function hl,c is called L-affine. Recall (see [22]) that the set L is called a set of abstract
linear functions if hl,c /∈ L for all l ∈ L and all c ∈ R\{0}. The set of all L-affine functions
will be denoted by HL. If L is the set of abstract linear functions, then hl,c = hl0,c0 if and
only if l = l0 and c = c0.

If L is a set of abstract linear functions, then the mapping (l, c) −→ hl,c is a one-to-one
correspondence. In this case, we identify hl,c with (l, c), in other words, we consider an
element (l, c) ∈ L× R as a function defined on X by x −→ l(x)− c (x ∈ X).

A function f : X −→ (−∞,+∞] is called proper if dom f 6= ∅, where dom f is defined by

dom f := {x ∈ X : f(x) < +∞}.

Let F(X) be the set of all functions f : X −→ (−∞,+∞] and the function −∞.

Recall (see [22]) that a function f ∈ F(X) is called H-convex (H = L, or H = HL) if

f(x) = sup{h(x) : h ∈ supp (f,H)}, ∀ x ∈ X,

where

supp (f,H) := {h ∈ H : h ≤ f}

is called the support set of the function f, and h ≤ f if and only if h(x) ≤ f(x) for all
x ∈ X.

Let P(H) be the set of all H-convex functions f : X −→ (−∞,+∞]. We say that (see [7])
the set valued mapping supp (.,H) : P(H) −→ 2H is additive in f and g if

supp (f + g,H) = supp (f,H) + supp (g,H).

Note that if X is a locally convex Hausdorff topological vector space and L is the set of
all real valued continuous linear functionals defined on X, then f : X −→ (−∞,+∞] is
an L-convex function if and only if f is lower semi-continuous and sublinear. Also, f is
an HL-convex function if and only if f is lower semi-continuous and convex.

Now, we consider the coupling function 〈., .〉 : X × L −→ R is defined by 〈x, l〉 := l(x) for
all x ∈ X and all l ∈ L. For a function f ∈ F(X), define the Fenchel-Moreau L-conjugate
f∗L of f (see [22]) by

f∗L(l) := sup
x∈X

(l(x)− f(x)), l ∈ L.

Similarly, the Fenchel-Moreau X-conjugate g∗X of an extended real valued function g de-
fined on L is given by

g∗X (x) := sup
l∈L

(l(x)− g(l)), x ∈ X.
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The function f∗∗L,X := (f∗L)
∗
X is called the second conjugate (or biconjugate) of f, and by

definition we have
f∗∗L,X(x) := sup

l∈L

(l(x)− f∗(l)), x ∈ X.

The following properties of the conjugate function follow directly from the definition.

(i) Fenchel-Young’s inequality: if f ∈ F(X), then

f(x) + f∗L(l) ≥ l(x), ∀ x ∈ X; ∀ l ∈ L.

(ii) For f1 and f2 ∈ F(X), we have

f1 ≤ f2 =⇒ f2
∗ ≤ f1

∗.

A set C ⊂ F(X) is called additive if for f1, f2 ∈ C, then f1 + f2 ∈ C.

If X is a set on which an addition + is defined, then we say that a function f ∈ F(X) is
additive if

f(x+ y) = f(x) + f(y), ∀ x, y ∈ X.

Let f : X −→ (−∞,+∞] be a function and x0 ∈ domf. Recall (see [22]) that an element
l ∈ L is called an L-subgradient of f at x0 if

f(x) ≥ f(x0) + l(x)− l(x0), ∀ x ∈ X.

The set ∂Lf(x0) of all L-subgradients of f at x0 is called L-subdifferential of f at x0. The
subdifferential ∂Lf(x0) (see [22, Proposition 1.2]) is non-empty if and only if x0 ∈ domf
and

f(x0) = max{h(x0) : h ∈ supp (f,HL)}.

Recall (see [7]) that for proper functions f, g ∈ F(X), the infimal convolution of f with
g is denoted by f ⊕ g : X −→ (−∞,+∞] and is defined by

(f ⊕ g)(x) := inf
x1+x2=x

[f(x1) + g(x2)], ∀ x ∈ X.

The infimal convolution of f with g is said to be exact provided the above infimum is
achieved for every x ∈ X (see [7]).

Now, assume that X is a set and L is a set of real valued abstract linear functions l : X −→
R defined on X, with the coupling function 〈., .〉 : X × L −→ R defined by 〈x, l〉 := l(x)
for all x ∈ X and all l ∈ L. In the following, we present some definitions and properties of
abstract monotone operators (see [5, 10, 15, 20]).

(i) A set valued mapping T : X −→ 2L is called L-monotone operator (or, abstract
monotone operator) if

l(x)− l(x′)− l′(x) + l′(x′) ≥ 0 (2.1)
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for all l ∈ Tx, l′ ∈ Tx′ and all x, x′ ∈ X.

It is worth noting that if X is a Banach space with dual space X∗ and L := X∗, then T
is a monotone operator in the classical sense.

(ii) A set valued mapping T : X −→ 2L is called maximal L-monotone (or maximal
abstract monotone) if T is L-monotone and T = T ′ for any L-monotone operator T ′ :
X −→ 2L such that G(T ) ⊆ G(T ′).

(iii) A subset S of X × L is called L-monotone (or, abstract monotone) if

l(x)− l(x′)− l′(x) + l′(x′) ≥ 0, ∀ (x, l), (x′, l′) ∈ S.

(iv) A subset S of X ×L is called maximal L-monotone (or, maximal abstract monotone)
if S is L-monotone and S = S′ for any L-monotone set S′ such that S ⊆ S′.

(v) Let T : X −→ 2L be a set valued mapping. Corresponding to the mapping T define
the L-Fitzpatrick function (or, abstract Fitzpatrick function) ϕT : X × L −→ R̄ by

ϕT (x, l) := sup
l′∈Tx′, x′∈X

[l(x′) + l′(x)− l′(x′)] (2.2)

for all x ∈ X and all l ∈ L.

There exist examples of abstract convex functions such that their L-subdifferentials are
maximal L-monotone operators (for more details see [15, 16]).

In the following, we gather some results which will be used later.

Lemma 2.1. [15]. Let T : X −→ 2L be a maximal L-monotone operator. Then

ϕT (x, l) ≥ l(x), ∀ x ∈ X; ∀ l ∈ L, (2.3)

with equality holding if and only if l ∈ Tx.

Lemma 2.2. [22, Theorem 7.1]. Let f ∈ F(X). Then, f = f∗∗L,X if and only if f is an
HL-convex function.

Lemma 2.3. [7, Theorem 7.1]. Let L be an additive set of abstract linear functions and
f, g : X −→ (−∞,+∞] be HL-convex functions such that dom (f) ∩ dom(g) 6= ∅. Then
the following assertions are equivalent:

(i) The mapping supp (.,HL) is additive in f and g.
(ii) (f + g)∗L = f∗L ⊕ g∗L with exact infimal convolution.

3 A surjectivity result

Let U be an arbitrary set and L be an additive group of abstract linear functions on U .
We define the coupling between U × L and L× U as
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< (u, l) , (m, v) >= m (u) + l (v) ,

for all (u, l) ∈ U × L and (m, v) ∈ L × U . Let X ⊆ U. We will say that A : X −→ 2L is
L-monotone if so is its extension to U obtained by assigning empty images to the elements
in U \X. Similarly, a function h : X ×L→ (−∞,+∞] will be called HL×U -convex if it is
the restriction of an HL×U -convex function on U × L.

Given an L-monotone operator A : X −→ 2L, consider the Fitzpatrick family of abstract
convex representations of A

HA = {h : X × L→ (−∞,+∞] : h is HL×U -convex,

h(x, l) ≥ l(x) ∀(x, l) ∈ X × L, h(x, l) = l(x) ∀(x, l) ∈ G(A)} .

Moreover, for all l0 ∈ L, denote by Al0 : X → L the multifunction such that Al0 (x) =
A (x) − l0, for all x ∈ X. It is easy to check that, for any h ∈ HA, the function hl0 :
X × L→ (−∞,+∞], defined by

hl0 (x, l) := h (x, l + l0)− l0 (x) ,∀ (x, l) ∈ X × L,

belongs to HAl0
. Notice that, for any (m,u) ∈ L× U ,

(hl0)
∗

L×U (m,u) = sup
(x,l)∈X×L

{m (x) + l (u)− h (x, l + l0) + l0 (x)}

= sup
(x,l)∈X×L

{(m+ l0) (x) + (l − l0) (u)− h (x, l)}

= sup
(x,l)∈X×L

{(m+ l0) (x) + l (u)− h (x, l)} − l0 (u)

= h∗L×U (m+ l0, u)− l0 (u) .

If A : X −→ 2L is an L-monotone operator and h ∈ HA, denote by Ãh : U −→ 2L the
operator defined by

G
(
Ãh

)
=

{
(u, l) ∈ U × L : h∗L×U (l, u) = l(u)

}
.

In particular, when h = ϕA, we will simply write Ã, instead of ÃϕA
, for ease of notation.

According to the following proposition, Ã is an extension of A, i.e. G(A) ⊆ G
(
Ã
)
.

Proposition 3.1. Let X ⊆ U and A : X −→ 2L be an L-monotone operator. Then Ã is
an extension of A.
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Proof: Notice first that, for any (m,x) ∈ L × X, one has (ϕA)
∗

L×U (m,x) ≥ ϕA(x,m).
Indeed, since ϕA(y, l) = l(y) for all (y, l) ∈ G(A),

(ϕA)
∗

L×U (m,x) = sup
(y,l)∈X×L

{m(y) + l(x)− ϕA(y, l)}

≥ sup
(y,l)∈G(A)

{m(y) + l(x)− ϕA(y, l)}

= sup
(y,l)∈G(A)

{m(y) + l(x)− l(y)}

= ϕA(x,m).

Moreover, for all (x,m) ∈ G(A), one has (ϕA)
∗

L×U (m,x) ≤ m(x), since

(ϕA)
∗

L×U (m,x) = sup
(y,l)∈X×L

{m(y) + l(x)− ϕA(y, l)}

= sup
(y,l)∈X×L

{m(y) + l(x)−m(x) +m(x)− ϕA(y, l)}

≤ m(x) + sup
(y,l)∈X×L

{
sup

(z,n)∈G(A)
{l(z) + n(y)− n(z)} − ϕA(y, l)

}

= m(x) + sup
(y,l)∈X×L

{ϕA(y, l)− ϕA(y, l)}

= m(x).

Therefore, for all (x,m) ∈ G(A), one obtains

m(x) = ϕA(x,m) ≤ (ϕA)
∗

L×U (m,x) ≤ m(x),

i.e. (x,m) ∈ G
(
Ã
)
. Thus, Ã is an extension of A.

Definition 3.1. Let f, g : X × L → (−∞,+∞] be HL×U -convex functions. We call an
abstract skewed Fenchel functional for f and g any (m,u) ∈ L× U such that

f∗L×U (m,u) + g∗L×U (−m,u) ≤ 0.

Remark 3.1. If U is an additive set and the elements of L are odd functions, then,
defining the function ̺2 : X × L → X × L by ̺2(x, l) = (x,−l) for all (x, l) ∈ X × L,
the existence of an abstract skewed Fenchel functional for f and g is equivalent to the
existence of an abstract Fenchel functional for f and g ◦̺2, i.e. an element (m,u) ∈ L×U
such that

f∗L×U (m,u) + (g ◦ ̺2)
∗
L×U (−m,−u) ≤ 0.
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The proof of this fact is immediate, given that, for all (m,u) ∈ L× U ,

(k ◦ ̺2)
∗

L×U (−m,−u) = sup
(x,l)∈X×L

{−m (x) + l (−u)− (k ◦ ̺2) (x, l)}

= sup
(x,l)∈X×L

{−m (x) + l (−u)− k (x,−l)}

= sup
(x,l)∈X×L

{−m (x)− l (−u)− k (x, l)}

= sup
(x,l)∈X×L

{−m (x) + l (u)− k (x, l)}

= k∗L×U (−m,u) .

Theorem 3.1. Let X ⊆ U and A,B : X −→ 2L be L-monotone operators. If there exist
h ∈ HA and k ∈ HB such that h∗L×U (m,u) ≥ m (u) and k∗L×U (m,u) ≥ m (u), for all
(m,u) ∈ L× U , and such that, for any l0 ∈ L, the functions hl0 and k admit an abstract
skewed Fenchel functional, then R

(
Ãh + B̃k

)
= L.

Proof: By hypothesis, there exists an abstract skewed Fenchel functional (m,u) for hl0
and k, i.e.

(hl0)
∗

L×U (m,u) + k∗L×U (−m,u) ≤ 0.

Moreover, since h∗L×U (m,u) ≥ m (u) and k∗L×U (m,u) ≥ m (u) for all (m,u) ∈ L× U , by
hypothesis

(hl0)
∗

L×U (m,u) + k∗L×U (−m,u) = h∗L×U (m+ l0, u)− l0(u) + k∗L×U (−m,u)

≥ (m+ l0)(u)− l0(u)−m(u)

= m(u) + l0(u)− l0(u)−m(u)

= 0.

Then one concludes
(hl0)

∗

L×U (m,u) + k∗L×U (−m,u) = 0,

from which

h∗L×U (m+ l0, u) = (m+ l0) (u) and k∗L×U (−m,u) = −m (u) ,

so that
(u,m+ l0) ∈ G

(
Ãh

)
and (u,−m) ∈ G

(
B̃k

)
.

Thus,
l0 = l0 +m−m ∈ Ãh (u) + B̃k (u) ,
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i.e., as a consequence of the arbitrariness of l0 ∈ L,

R
(
Ãh + B̃k

)
= L. (3.1)

Remark 3.2. (a) The hypotheses of the previous theorem hold whenever A and B are
maximal monotone operators of type (D) defined on a Banach space X and there
exist h ∈ HA and k ∈ HB such that

domh− ρ2 (dom k) = F ×X∗,

where
⋃
λ>0

λF is a closed subspace of X. Indeed, in this case [21, Corollary 4.3]

guarantees the existence of a Fenchel functional for hw∗ and k ◦ ̺2, for all w
∗ ∈ X∗.

Then, identifying X with its image through the canonical inclusion in X∗∗, setting
L := X∗, U := X∗∗ and taking Remark 3.1 into account, the previous theorem
applies.

(b) Let X,Y be reflexive Banach spaces and t : X → Y be an injective and continuous
function. Define

L := {f : X → R : ∃y∗ ∈ Y ∗, f = y∗ ◦ t}

and, for all l ∈ L, set

‖l‖L := sup

{∣∣∣∣
l(x)

‖t(x)‖Y

∣∣∣∣ : x ∈ X, t(x) 6= 0Y

}
.

It is easy to check that the definition of ‖ · ‖L does not depend on the choice of y∗

and that (L, ‖ ·‖L) is a normed space. Setting U := L∗, then (t, Id) : X×L→ Y ×L
is a continuous and injective function, L×L∗ can be taken as a set of abstract linear
functions on X × L and the HL×L∗-convex functions will be called hidden convex
functions [27]. Moreover, one can prove that the function ζ : X → L∗ defined by

ζ(x)(l) = l(x), ∀l ∈ L,

for any x ∈ X, is injective. It does indeed take values in L∗, given that ζ(x) is linear
and

|ζ(x)(l)| = |l(x)| ≤ ‖l‖L‖t(x)‖Y

for all x ∈ X and l ∈ L, and its injectivity is a direct consequence of that of t.
As a consequence of [7, Corollary 5.4], if A,B : X −→ 2L are maximal L-monotone
operators and the abstract Fitzpatrick function of B, ϕB : X × L → (−∞,+∞],
is continuous on X × L, then, for all l0 ∈ L, there exists a Fenchel functional
(m,m∗) ∈ L × L∗ for (ϕA)l0 and ϕB ◦ ρ2. Therefore, if the functions in L are odd,
identifying X with ζ(X) and taking Remark 3.1 into account, then the surjectivity
condition (3.1) holds for the extensions Ã and B̃.

9



4 Some Results on Abstract Monotonicity

In this section, we present a generalization of Fenchel duality theorem in the framework
of abstract convexity, and by using this theorem, we give criteria for maximal abstract
monotonicity and obtain some other related results.

Let X be a set with an operation + having the following properties:
(A1) x+ y ∈ X, ∀ x, y ∈ X.
(A2) There exists a unique element 0 ∈ X such that 0 + x = x+ 0 = x, ∀ x ∈ X.
(A3) For each x ∈ X there exists a unique element − x ∈ X such that x + (−x) =
(−x) + x = 0.

Let L be a set of real valued additive abstract linear functions defined on X. Assume
that L is equipped with the point-wise operation + of functions such that (L,+) satisfies
the properties (A1), (A2) and (A3), where for each l ∈ L, define (−l)(x) := −l(x) for all
x ∈ X, and define the function 0 ∈ L by 0(x) := 0 for all x ∈ X. We consider the coupling
function 〈., .〉 : X × L −→ R defined by 〈x, l〉 := l(x) for all x ∈ X and all l ∈ L.

Remark 4.1. Note that for each l ∈ L, we have l(0) = 0. Moreover, l(−x) = −l(x) for
all x ∈ X and all l ∈ L. Indeed, assume that l ∈ L and x ∈ X are arbitrary. Then

0 = l(0) = l(x+ (−x)) = l(x) + l(−x),

and hence l(−x) = −l(x) for all x ∈ X and all l ∈ L.

Let K ⊆ X ×L be any non-empty set such that K satisfies the properties (A1), (A2) and
(A3), where −(x, l) := (−x,−l) and 0 := (0, 0) ∈ K. Define L∗ := {(l, x) ∈ L×X : (x, l) ∈
K} ⊆ L ×X. It is clear that L∗ satisfies the properties (A1), (A2) and (A3). Define the
coupling function 〈., .〉∗ : K × L∗ −→ R by

〈(x′, l′), (l, x)〉∗ := l(x′) + l′(x), ∀ (x′, l′) ∈ K; ∀ (l, x) ∈ L∗. (4.1)

We can consider an element (l, x) ∈ L∗ as the function defined on K by :

(l, x)(x′, l′) := 〈(x′, l′), (l, x)〉∗, ∀ (x′, l′) ∈ K,

and an element (x, l) ∈ K as a function is defined on L∗ by :

(x, l)(l′, x′) := 〈(x, l), (l′, x′)〉∗, ∀ (l′, x′) ∈ L∗.

Note that the coupling function 〈., .〉∗ is symmetric, that is

〈(x′, l′), (l, x)〉∗ = 〈(x, l), (l′, x′)〉∗, for all (x′, l′) ∈ K, and all (l, x) ∈ L∗.

It is easy to check that L∗ and K are sets of real valued abstract linear functions. Indeed,
if there exist (l0, x0) ∈ L∗ and c0 ∈ R \ {0} such that h(l0,x0),c0 ∈ L∗, where h(l0,x0),c0 :=
(l0, x0)− c0, then h(l0,x0),c0 = (l, x) for some (l, x) ∈ L∗. It follows that

l0(x
′) + l′(x0)− c0 = l(x′) + l′(x), ∀ (x′, l′) ∈ K. (4.2)
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Since (0, 0) ∈ K, put x′ = 0 and l′ = 0 in (4.2). Thus, we have c0 = 0. This is a
contradiction, because c0 6= 0. Hence, h(l,x),c /∈ L∗ for all (l, x) ∈ L∗ and all c ∈ R \ {0}.
Therefore, L∗ is a set of abstract linear functions. By a similar argument, K is also a set
of abstract linear functions.

Example 4.1. Let X := Z be the set of all integer numbers endowed with the ordinary
addition. Then, X satisfies the properties (A1), (A2) and (A3). Now, for each x ∈ X,
define the function lx : X −→ R by lx(y) := xy for all y ∈ X. Let L := {lx : x ∈ X}. It
is easy to check that L is a set of real valued additive abstract linear functions. Hence, L
satisfies Remark 4.1; moreover, it satisfies properties (A1), (A2) and (A3).

Example 4.2. Let X and L be as in Example 4.1. Define the function T : X −→ L by
T (x) := lx for all x ∈ X. Then

G(T ) = {(x, lx) ∈ X × L : x ∈ X},

and T is a maximal L-monotone operator (for more details see [5]).

Denote by P(HL∗) := {h : K −→ (−∞,+∞] : h is a proper HL∗-convex function}
the set of all proper HL∗-convex functions defined on K. Define the transpose operator
t : K −→ L∗ by t(x, l) := (l, x) for all (x, l) ∈ K.

Remark 4.2. Let S be any non-empty subset of K. Then the restriction to K of the
L-Fitzpatrick function ϕS : X × L −→ R̄ associated with S, defined by

ϕS(x, l) := sup
(x′,l′)∈S

[l(x′) + l′(x)− l′(x′)], (4.3)

is an HL∗-convex function. Indeed, by definition, we have

ϕS(x, l) = sup
(x′,l′)∈S

[l(x′) + l′(x)− l′(x′)]

= sup
(x′,l′)∈S

[〈(x, l), (l′, x′)〉∗ − l′(x′)]

= sup{〈(x, l), (l′, x′)〉∗ − c : ((l′, x′), c) ∈ supp (ϕS,HL∗)}

for all (x, l) ∈ K, and hence the result follows.

Remark 4.3. Let h : K −→ (−∞,+∞] be a function. Then, h∗L∗ ◦ t is an HL∗-convex
function on K. To this end, let (x, l) ∈ K be arbitrary. Then

[h∗L∗ ◦ t](x, l) = h∗L∗(l, x)

= sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − h(x′, l′)]

= sup
(x′,l′)∈dom h

[〈(x′, l′), (l, x)〉∗ − h(x′, l′)]

= sup
(x′,l′)∈dom h

[〈(x, l), (l′, x′)〉∗ − h(x′, l′)]

= sup[〈(x, l), (l′, x′)〉∗ − c : ((l′, x′), c) ∈ supp (h∗L∗ ◦ t,HL∗)},

and hence h∗L∗ ◦ t is an HL∗-convex function on K.
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Remark 4.4. Note that for a maximal L-monotone subset S of K, it follows from Lemma
2.1 that

ϕS(x, l) = l(x) ⇐⇒ (x, l) ∈ S. (4.4)

Then, for arbitrary (x, l) ∈ K, we have

ϕS(x, l) = sup
(x′,l′)∈S

[l(x′) + l′(x)− l′(x′)]

= sup
(x′,l′)∈S

[l(x′) + l′(x)− ϕS(x
′, l′)]

≤ sup
(x′,l′)∈K

[l(x′) + l′(x)− ϕS(x
′, l′)]

= sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − ϕS(x
′, l′)]

= [(ϕS)
∗
L∗ ◦ t](x, l),

that is
(ϕS)

∗
L∗ ◦ t ≥ ϕS . (4.5)

In the sequel, we we will use the following assumption.

Assumption (D): Assume that there exists a function γ ∈ P(HL∗) such that
(i) 0 ≤ γ < +∞ on K,
(ii) γ∗L∗ ◦ t = γ on K,
(iii) 〈., .〉 + γ ≥ 0 on K,
(iv) If γ(x, l) = 0, then (x, l) = (0, 0).
(v) γ(−(x, l)) = γ(x, l) for all (x, l) ∈ K.
(vi) γ(0, 0) = 0.

In view of Remark 4.3, the condition γ ∈ P(HL∗) is automatically satisfied by any function
γ : K −→ (−∞,+∞] satisfying Assumption (D)(ii).

Notice that, in the case when X is a Banach space with the dual space X∗ and L := X∗,

the function γ defined by γ (x, x∗) :=
1

2

(
‖x‖2 + ‖x∗‖2

)
satisfies the Assumption (D).

Define the function δ : K −→ R by

δ(x, l) := l(x) + γ(x, l), ∀ (x, l) ∈ K.

By Assumption (D)(iii), we have δ(x, l) ≥ 0 for all (x, l) ∈ K.

The following two results have been proved in [5].

Lemma 4.1. [5, Lemma 4.2]. Let (x0, l0) ∈ K be arbitrary. Suppose that the Assumption
(D) holds. Define the function k(x0,l0) : K −→ R by

k(x0,l0)(x, l) := −l(x) + δ(x0 − x, l0 − l), ∀ (x, l) ∈ K.

Then, k(x0,l0) is an HL∗-convex function and

[(k(x0,l0))
∗
L∗ ◦ t](−x,−l) = k(x0,l0)(x, l), ∀ (x, l) ∈ K.
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Lemma 4.2. [5, Theorem 4.1]. Let f and g ∈ P(HL∗) be such that domf ∩ domg 6= ∅,
and supp (.,HL∗) be additive in f and g. Assume that f + g ≥ λ on K (λ ∈ R). Then
there exists (l, x) ∈ L∗ such that

f∗L∗(l, x) + g∗L∗(−(l, x)) ≤ λ.

In the following, we give some examples of a function which satisfies the Assumption (D).

Let X := Qn ⊂ Rn, where Q is the set of all rational numbers endowed with the ordinary
addition. It is clear that X satisfies the properties (A1), (A2) and (A3). Let p : X −→ R be
an additive function. Let a ∈ R and y ∈ X be arbitrary. Define the function ly,a : X −→ R

by

ly,a(x) := ap(x) + [y, x], ∀ x ∈ X,

where [., .] is an inner product on Rn. The function ly,a (a ∈ R, y ∈ X) has the following
properties.

(1) ly,a is an additive function for each a ∈ R and each y ∈ X.
(2) ly1,a1 + ly2,a2 = ly1+y2,a1+a2 for each a1, a2 ∈ R and each y1, y2 ∈ X.
(3) αly,a = lαy,αa for each a ∈ R, α ∈ Q and each y ∈ X.

Now, let

L := {ly,a : a ∈ R, y ∈ X}.

In view of (1), (2) and (3), it is easy to check that L is a set of real valued additive abstract
linear functions defined on X which satisfies the properties (A1), (A2) and (A3). Define

K := {(x, ly,p(y)) ∈ X × L : x, y ∈ X} ⊂ X × L,

and

L∗ := {(ly,p(y), x) ∈ L×X : x, y ∈ X} ⊂ L×X.

Since p is additive and p(−x) = −p(x) for all x ∈ X, it is easy to see that K and L∗ satisfy
the properties (A1), (A2) and (A3). Define the coupling function 〈., .〉∗ on K × L∗ as in
(4.1). Now, we present the following example.

Example 4.3. Define the function γ : K −→ (−∞,+∞] by

γ(x, ly,p(y)) :=
1

2
[p(x)2 + p(y)2 + ‖x‖2 + ‖y‖2], ∀ x, y ∈ X,

where ‖ . ‖2 := [., .]. Then, γ satisfies the Assumption (D). Indeed, it is clear that γ satisfies
the Assumption (D)(i), (iii), (iv), (v) and (vi). We show that γ satisfies the Assumption
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(D)(ii). Let (x, ly,p(y)) ∈ K be arbitrary. Then, one has

[γ∗L∗ ◦ t](x, ly,p(y)) = γ∗L∗(ly,p(y), x) = sup
(s,lt,p(t))∈K

{〈(s, lt,p(t)), (ly,p(y), x)〉∗ − γ(s, lt,p(t))}

= sup
(s,lt,p(t))∈K

{lt,p(t)(x) + ly,p(y)(s)−
1

2
[p(s)2 + p(t)2 + ‖s‖2 + ‖t‖2]}

= sup
s,t∈X

{p(t)p(x) + [t, x] + p(s)p(y) + [s, y]

= −
1

2
[p(s)2 + p(t)2 + ‖s‖2 + ‖t‖2]}

= sup
s,t∈X

{
1

2
[p(x)2 + p(y)2 + ‖x‖2 + ‖y‖2]

−
1

2
[(p(t)− p(x))2 + (p(s)− p(y))2 + ‖t− x‖2 + ‖s− y‖2]} (4.6)

=
1

2
[p(x)2 + p(y)2 + ‖x‖2 + ‖y‖2] = γ(x, ly,p(y)). (4.7)

Moreover (4.7), together with Remark 4.3, implies that γ ∈ P(HL∗), and therefore γ
satisfies the Assumption (D).

The following example is a special case of Example 4.3.

Example 4.4. Let X := Q be the set of all rational numbers endowed with the ordinary
addition. Then, X satisfies the properties (A1), (A2) and (A3). Now, for each x ∈ X,
define the function lx : X −→ R by lx(y) := xy for all y ∈ X. Let L := {lx : x ∈ X}. It
is easy to check that L is a set of real valued additive abstract linear functions. Hence, L
satisfies Remark 4.1; moreover, it also satisfies properties (A1), (A2) and (A3). Also, we
have λlx ∈ L for all lx ∈ L and all λ ∈ Q, since λlx = lλx. Note that −lx = l−x for all
x ∈ X, and l0 = 0. Let K := X ×L and L∗ := L×X. It is clear that K and L∗ satisfy the
properties (A1), (A2) and (A3). Define the coupling function 〈., .〉∗ on K ×L∗ as in (4.1),
and the function γ : K −→ (−∞,+∞] by

γ(x, ly) :=
1

2
(x2 + y2), ∀ x, y ∈ X.

Therefore, by a similar argument as in Example 4.3, one can show that γ satisfies the
Assumption (D).

Example 4.5. Let 〈., .〉 be an inner product on R2. Define the function T : R2 −→ R2 by

T (x, y) := (x, y), ∀ (x, y) ∈ R2.

It is clear that T is a continuous linear operator and

〈(x, y), T (x, y)〉 = 〈(x, y), (x, y)〉 ≥ 0, ∀ (x, y) ∈ R2.

Also, G(T ) is a linear subspace of R2 × R2.
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Let K := G(T ) and L∗ := G(T ). Define the coupling function 〈., .〉∗ : K × L∗ −→ R by

〈((x1, y1), (x2, y2)), ((x3, y3), (x4, y4))〉∗ := 〈(x1, y1), (x3, y3)〉+ 〈(x2, y2), (x4, y4)〉

for all ((x1, y1), (x2, y2)) ∈ K and all ((x3, y3), (x4, y4)) ∈ L∗.

Define γ : K −→ (−∞,+∞] by γ((x, y), (x, y)) := 〈(x, y), (x, y)〉 for all ((x, y), (x, y)) ∈ K.
Therefore, γ satisfies the Assumption (D) (for more details see [5]).

Example 4.6. Let X be a reflexive real Banach space with dual space X∗ and duality
product 〈., .〉 : X ×X∗ −→ R, defined by

〈x, x∗〉 := x∗(x), ∀ x ∈ X; ∀ x∗ ∈ X∗.

We norm X × X∗ by ‖(x, x∗)‖ := (‖x‖2 + ‖x∗‖2)
1
2 . Then the dual space of X × X∗ is

X∗ ×X, under the pairing

〈(x, x∗), (y∗, y)〉∗ := 〈x, y∗〉+ 〈y, x∗〉,

for all (x, x∗) ∈ X ×X∗ and all (y∗, y) ∈ X∗ ×X. Further, ‖(y∗, y)‖ := (‖y‖2 + ‖y∗‖2)
1
2 .

Let K := X ×X∗ and L∗ := X∗ ×X. Define γ : K −→ (−∞,+∞] by γ(x, l) := 1
2‖(x, l)‖

2

for all (x, l) ∈ K. Then, γ satisfies the Assumption (D) (for more details see [5]).

Remark 4.5. Let X, L, K, L∗ and γ be as in Example 4.4. Then, ∂L∗γ(x, ly) 6= ∅ for
each (x, ly) ∈ K = X × L. Indeed, let (x, ly) ∈ K be arbitrary. Then we have

1

2
(t− x)2 +

1

2
(z − y)2 ≥ 0, ∀ t, z ∈ X,

and so

1

2
(t2 + z2) +

1

2
(x2 + y2) ≥ tx+ zy, ∀ t, z ∈ X.

Thus we get

1

2
(t2 + z2)−

1

2
(x2 + y2) ≥ −x2 − y2 + tx+ zy, ∀ t, z ∈ X.

This is equivalent, by the definition of γ, to the following inequality:

γ(t, lz)− γ(x, ly) ≥ 〈(t, lz), (lx, y)〉∗ − 〈(x, ly), (lx, y)〉∗, ∀ (t, lz) ∈ K,

that is, (lx, y) ∈ ∂L∗γ(x, ly).

Theorem 4.1. Suppose that the Assumption (D) holds. Let h ∈ P(HL∗) be such that

h(x, l) + γ(x, l) ≥ 0, ∀ (x, l) ∈ K.

If supp (.,HL∗) is additive in h and γ, then there exists (x0, l0) ∈ K such that

(h∗L∗ ◦ t)(x0, l0) + γ(x0, l0) ≤ 0.
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Proof: This is an immediate consequence of Lemma 4.2 and the Assumption (D)(ii) and
(v).

Remark 4.6. Note that necessary and sufficient conditions for additivity of the mapping
supp (.,HL) have been given in [7]. Also, in [7] it has given some examples of sets of
abstract linear functions and functions f and g such that the mapping supp (.,HL) is
additive in functions f and g.

In the following, we give an example such that the mapping supp (.,HL∗) is additive in
ϕS and δ.

Example 4.7. Let X, L, K, L∗ and γ be as in Example 4.4. Now, let S := {(x, lx) ∈ K :
x ∈ X}. It is worth noting that it is not difficult to check that S is a maximal L-monotone
subset of K. We have ϕS(x, ly) =

1
4(x + y)2 for all (x, ly) ∈ K. Indeed, let (x, ly) ∈ K be

arbitrary. Consider

ϕS(x, ly) = sup
(t,lt)∈S

[ly(t) + lt(x)− lt(t)]

= sup
t∈X

[ty + tx− t2]

= sup
t∈X

[
1

4
(x+ y)2 − (t−

1

2
(x+ y))2]

=
1

4
(x+ y)2, ∀ (x, ly) ∈ K.

Therefore we have

ϕS(x, ly) =
1

4
(x+ y)2

=
1

4
(x2 + y2) +

1

2
xy

=
1

2
[γ(x, ly) + ly(x)]

=
1

2
δ(x, ly), ∀ (x, ly) ∈ K,

and hence

δ(x, ly) = 2ϕS(x, ly) =
1

2
(x+ y)2, ∀ (x, ly) ∈ K.

Note that δ = 2ϕS on K.

Finally, We show that supp (.,HL∗) is additive in ϕS and δ. It is easy to check that

supp (ϕS ,HL∗) + supp (δ,HL∗) ⊆ supp (ϕS + δ,HL∗).

For the converse inclusion, suppose that f ∈ HL∗ and f ≤ ϕS + δ. Let f1 := 1
3f on K,

and f2 := 2
3f on K. Since f ∈ HL∗ and λ(ly, x) ∈ L∗ = L × X for all (ly, x) ∈ L∗ and

all λ ∈ Q, it is easy to check that f1, f2 ∈ HL∗ , f1 ≤ ϕS and f2 ≤ δ. Thus, we have
f1 ∈ supp (ϕS ,HL∗) and f2 ∈ supp (δ,HL∗). Also, we have f = f1 + f2, and hence

supp (ϕS ,HL∗) + supp (δ,HL∗) = supp (ϕS + δ,HL∗).
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Now, let S be a non-empty subset of K. Define the function ψS : K −→ (−∞,+∞] by

ψS(x, l) := sup
(x′,l′)∈S

[l(x′) + l′(x)− l′(x′)− l(x)], ∀ (x, l) ∈ K.

It is clear that
ϕS(x, l) = ψS(x, l) + l(x), ∀ (x, l) ∈ K. (4.8)

Theorem 4.2. Suppose that the Assumption (D) holds. Let S be a non-empty subset of
K, and supp (.,HL∗) be additive in ϕS and γ. If S is maximal L-monotone, then there
exists (x0, l0) ∈ S such that δ(x0, l0) = 0.

Proof: By maximality of S we conclude that ψS(x, l) ≥ 0 for all (x, l) ∈ K. Therefore, by
Assumption (D) and (4.8) we deduce that

ϕS(x, l) + γ(x, l) = ψS(x, l) + l(x) + γ(x, l) = ψS(x, l) + δ(x, l) ≥ 0, ∀ (x, l) ∈ K.

Since by Remark 4.2 ϕS is an HL∗-convex function, it follows from Theorem 4.1 that there
exists (x0, l0) ∈ K such that

[(ϕS)
∗
L∗ ◦ t](x0, l0) + γ(x0, l0) ≤ 0. (4.9)

But, by Remark 4.4 we have (ϕS)
∗
L∗ ◦ t ≥ ϕS on K, and hence it follows from (4.9) that

ϕS(x0, l0) + γ(x0, l0) ≤ 0.

This implies that

ψS(x0, l0) + δ(x0, l0) = ϕS(x0, l0) + γ(x0, l0) ≤ 0.

This, together with the definition of ψS , implies that

l0(x) + l(x0)− l(x)− l0(x0) + δ(x0, l0) ≤ 0, ∀ (x, l) ∈ S.

Thus, we have

l(x)− l0(x)− l(x0) + l0(x0) ≥ δ(x0, l0), ∀ (x, l) ∈ S, (4.10)

and so
l(x)− l0(x)− l(x0) + l0(x0) ≥ 0, ∀ (x, l) ∈ S, (4.11)

because δ(x0, l0) ≥ 0. Since S is a maximal L-monotone set, it follows from (4.11) that
(x0, l0) ∈ S. Therefore, in view of (4.10) we conclude that δ(x0, l0) ≤ 0, and hence
δ(x0, l0) = 0, which completes the proof.

In the following, we give an example of a non-empty set S such that the mapping supp (.,HL∗)
is additive in ϕS and γ.
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Example 4.8. Let X, L, K and L∗ be as in Example 4.4. Let

S := {(1, l1)},

and let g ∈ P(HL∗) be arbitrary. We show that supp (.,HL∗) is additive in ϕS and g.
Hence, in particular, supp (.,HL∗) is additive in ϕS and γ. We have

ϕS(x, ly) = ly(1) + l1(x)− l1(1) = x+ y − 1, ∀ (x, ly) ∈ K.

Therefore, one has

ϕS(x, ly) = 〈(x, ly), (l1, 1)〉∗ − 1, ∀ (x, ly) ∈ K.

It is easy to see that

supp (ϕS ,HL∗) + supp (g,HL∗) ⊆ supp (ϕS + g,HL∗).

For the converse inclusion, let f ∈ HL∗ and f ≤ ϕS + g. Let f1 := ϕS. Then, f1 ∈ HL∗ ,
and so f1 ∈ supp (ϕS,HL∗). Define

f2(x, ly) := f(x, ly) + 〈(x, ly), (l−1,−1)〉∗ + 1, ∀ (x, ly) ∈ K.

By using the properties of L∗, and since f ∈ HL∗ and f ≤ ϕS + g, it is easy to show that
f2 ∈ HL∗ and f2 ≤ g. Thus, f2 ∈ supp (g,HL∗). Also, we have f = f1 + f2, and hence the
proof is complete.

Let S be a subset of K and (x0, l0) ∈ K. Define the translation of S by

St := S − (x0, l0) := {(x, l) − (x0, l0) : (x, l) ∈ S}.

Lemma 4.3. If S is a maximal L-monotone subset of K and (x, l) ∈ K, then St :=
S − (x, l) is a maximal L-monotone subset of K.

Proof: Since S is L-monotone, it is easy to check that St is an L-monotone set. Now, we
show that St is maximal. To this end, let (x0, l0) ∈ K be arbitrary and

l0(x0)− l0(x
′)− l′(x0) + l′(x′) ≥ 0, ∀ (x′, l′) ∈ St. (4.12)

Let (x1, l1) ∈ S be arbitrary and let x′ = x1 − x and l′ = l1 − l. Then we have (x′, l′) =
(x1, l1)− (x, l) ∈ K, and therefore it follows from (4.12) that

l0(x0)− l0(x1 − x)− (l1 − l)(x0) + (l1 − l)(x1 − x) ≥ 0, ∀ (x1, l1) ∈ S,

and so

l1(x1)− l1(x+ x0)− (l + l0)(x1) + (l + l0)(x+ x0) ≥ 0, ∀ (x1, l1) ∈ S. (4.13)

Since S is maximal L-monotone, in view of (4.13) we conclude that (x + x0, l + l0) ∈ S,
and hence (x0, l0) ∈ S

t, which completes the proof.

The following theorem gives criteria for maximal abstract monotonicity, which is a gener-
alization of [29, Theorem 10.3].
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Theorem 4.3. Suppose that the Assumption (D) holds. Let S be an L-monotone subset
of K. Then the following assertions are true:

(1) Let supp (.,HL∗) be additive in ϕSt and γ, where St is a translation of S. If S is
a maximal L-monotone set, then for each (x, l) ∈ K there exists (x0, l0) ∈ S such that
δ(x0 − x, l0 − l) = 0.
(2) If for each (x, l) ∈ K there exists (x0, l0) ∈ S such that δ(x0 − x, l0 − l) = 0, then S is
a maximal L-monotone set.

Proof: (1). Assume that S is a maximal L-monotone set and (x, l) ∈ K is given. Then,
by Lemma 4.3, St := S − (x, l) is a maximal L-monotone set. Therefore, since by the
hypothesis supp (.,HL∗) is additive in ϕSt and γ, in view of Theorem 4.2 there exists
(x1, l1) ∈ St such that

δ(x1, l1) = 0. (4.14)

Since (x1, l1) ∈ St, it follows that there exists (x0, l0) ∈ S such that x1 = x0 − x and
l1 = l0 − l. Thus, the result follows from (4.14).

(2). We have by the hypothesis S is an L-monotone set. Now, we show that S is a maximal
L-monotone subset of K. To this end, let (x0, l0) ∈ K and

l0(x0)− l0(x)− l(x0) + l(x) ≥ 0, ∀ (x, l) ∈ S. (4.15)

By the hypothesis for this (x0, l0) ∈ K there exists (x1, l1) ∈ S such that δ(x0−x1, l0−l1) =
δ(x1 − x0, l1 − l0) = 0. Therefore, by the definition of δ and (4.15) we obtain

0 = δ(x0 − x1, l0 − l1) = (l0 − l1)(x0 − x1) + γ(x0 − x1, l0 − l1)

= l0(x0) + l0(−x1)− l1(x0)− l1(−x1) + γ(x0 − x1, l0 − l1)

= l0(x0)− l0(x1)− l1(x0) + l1(x1) + γ(x0 − x1, l0 − l1) ≥ γ(x0 − x1, l0 − l1) ≥ 0.

This implies that γ(x0 − x1, l0 − l1) = 0, and so by Assumption (D)(iv), we deduce that
x0 = x1 and l0 = l1. Consequently, (x0, l0) = (x1, l1) ∈ S. Hence, S is a maximal L-
monotone subset of K. This completes the proof.

In the following, we give an example of a non-empty set S such that the mapping supp (.,HL∗)
is additive in ϕSt and γ, where St is any translation of S.

Example 4.9. Let X and L be as in Example 4.4. Define the function T : X −→ L by
T (x) := lx for all x ∈ X. Then

G(T ) = {(x, lx) ∈ X × L : x ∈ X},

and T is a maximal L-monotone operator. Let K := G(T ) ⊆ X × L, and

L∗ := {(lx, x) ∈ L×X : x ∈ X} ⊆ L×X.

It is easy to check that K and L∗ satisfy the properties (A1), (A2) and (A3). Define the
coupling function 〈., .〉∗ on K × L∗ as in (4.1). Assume that γ is defined on K as in
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Example 4.4. Thus, we have γ(x, lx) = x2 = lx(x) for all x ∈ X. Moreover, γ satisfies the
Assumption (D). Let S := G(T ). Since T is a maximal L-monotone operator, we deduce
that S is a maximal L-monotone set. Thus, it follows from Lemma 2.1 that

ϕS(x, lx) = lx(x) = x2 = γ(x, lx), ∀ x ∈ X.

Now, let (x0, lx0) ∈ K be arbitrary and St := S − (x0, lx0). Therefore, we have

ϕSt(x, lx) = sup
(y,ly)∈St

[lx(y) + ly(x)− ly(y)]

= sup
(y,ly)∈St

[2xy − y2]

= sup
s∈X

[2x(s − x0)− (s − x0)
2]

= sup
s∈X

[x2 − (x− (s− x0))
2]

= x2 = ϕS(x, lx), ∀ x ∈ X.

Hence, ϕSt = ϕS = γ on K.

Now, we show that supp (.,HL∗) is additive in ϕSt and γ. It is clear that

supp (ϕSt,HL∗) + supp (γ,HL∗) ⊆ supp (ϕSt + γ,HL∗).

Let f ∈ supp (ϕSt + γ,HL∗) be arbitrary. Then, f ∈ HL∗ and f ≤ ϕSt + γ. Let f1 =
f2 := 1

2f. Therefore, by using the properties of L∗ and since f ∈ HL∗ , we conclude that
f1, f2 ∈ HL∗, f1 ≤ ϕSt and f2 ≤ γ, that is, f1 ∈ supp (ϕSt,HL∗) and f2 ∈ supp (γ,HL∗).
Since f = f1 + f2, it follows that

f ∈ supp (ϕSt ,HL∗) + supp (γ,HL∗).

5 Necessary and Sufficient Conditions for Maximal Abstract

Monotonicity

In this section, we give a generalization of [11, Theorem 2.1] and, by using this generaliza-
tion, we obtain necessary and sufficient conditions for maximality of abstract monotone
operators.

Let X, L, K and L∗ be as in section 4, which satisfy the properties (A1), (A2) and (A3).
Define the coupling function 〈., .〉∗ on K × L∗ as in (4.1). Suppose that the Assumption
(D) holds. Let (x0, l0) ∈ K be arbitrary. Define the function k(x0,l0) : K −→ R by

k(x0,l0)(x, l) := −l(x) + δ(x0 − x, l0 − l), ∀ (x, l) ∈ K. (5.1)

In view of Lemma 4.1, we have k(x0,l0) ∈ P(HL∗) and

[(k(x0,l0))
∗
L∗ ◦ t](−x,−l) = k(x0,l0)(x, l), ∀ (x, l) ∈ K. (5.2)
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Also, we define the function α : K −→ R by

α(x, l) := γ(x,−l), ∀ (x, l) ∈ K. (5.3)

It is easy to see, by Assumption (D)(i), (ii) and (v), that

α ∈ P(HL∗), α∗
L∗ ◦ t = α, and α(−x,−l) = α(x, l), ∀ (x, l) ∈ K. (5.4)

In the following, we give an assumption.

Assumption (C): Assume that the infimal convolution α ⊕ k(x0,l0) of α with k(x0,l0) is
exact and an HL∗-convex function for each (x0, l0) ∈ K.

The following example shows that for a function α and a function k(x0,l0) the infimal
convolution α ⊕ k(x0,l0) of α with k(x0,l0) is exact and an HL∗-convex function for each
(x0, l0) ∈ K.

Example 5.1. Let X, L, K, L∗ and γ be as in Example 4.4. Let (x0, ly0) ∈ K be arbitrary.
By (5.3), one has α(x, ly) = γ(x,−ly) =

1
2(x

2 + y2) for all (x, ly) ∈ K. Also, in view of
(5.1) and Example 4.7, we have

k(x0,ly0)
(x, ly) = −ly(x)+δ(x0−x, ly0 − ly) = −xy+

1

2
[(x0−x)+(y0−y)]

2, ∀ (x, ly) ∈ K.

Therefore, one has

(α⊕ k(x0,ly0)
)(x, ly) = inf

(x1,ly1)+(x2,ly2)=(x,ly)
[α(x1, ly1) + k(x0,ly0)

(x2, ly2)]

= inf
(x1,ly1)+(x2,ly2)=(x,ly)

{
1

2
(x1

2 + y1
2)− x2y2

+
1

2
[(x0 − x2) + (y0 − y2)]

2}

= inf
x1, y1∈X

{
1

2
(x1

2 + y1
2)− (x− x1)(y − y1)

+
1

2
[x0 + y0 − x+ x1 − y + y1]

2}.

It is not difficult to see that the above infimum is achieved at x1 = 1
2 (x − x0 − y0), y1 =

1
2(y − x0 − y0) for each (x, ly) ∈ K. Moreover, we have

(α⊕ k(x0,ly0)
)(x, ly) =

1

4
(x2 + y2)−

1

2
(x+ y)(x0 + y0), ∀ (x, ly) ∈ K.

That is, the infimal convolution α⊕ k(x0,ly0)
is exact for each (x0, ly0) ∈ K. Also, by using

the properties of L∗, one has

(α⊕ k(x0,ly0)
)(x, ly) =

1

2
γ(x, ly) + 〈(x, ly), (lt0 , t0)〉∗, ∀ (x, ly) ∈ K,

where t0 = −1
2(x0 + y0) ∈ X. Therefore the infimal convolution α ⊕ k(x0,ly0)

is an HL∗-
convex function for each (x0, ly0) ∈ K.
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Theorem 5.1. Suppose that the Assumptions (C) and (D) hold. Then the mapping
supp (.,HL∗) is additive in α and k(x0,l0) for each (x0, l0) ∈ K.

Proof: It is enough to show that

(α+ k(x0,l0))
∗
L∗ = α∗

L∗ ⊕ (k(x0,l0))
∗
L∗

and the infimal convolution α∗
L∗ ⊕ (k(x0,l0))

∗
L∗ is exact. Then by Lemma 2.3 the result

follows. To this end, let (x0, l0) ∈ K be fixed and arbitrary. Then, by (5.2) and (5.4), we
have

[(α⊕ k(x0,l0))
∗
L∗ ◦ t](x, l) = (α⊕ k(x0,l0))

∗
L∗(l, x)

= sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − (α⊕ k(x0,l0))(x
′, l′)]

= sup
(x′,l′)∈K

{〈(x′, l′), (l, x)〉∗

− inf
(x1,l1)+(x2,l2)=(x′,l′)

[α(x1, l1) + k(x0,l0)(x2, l2)]}

= sup
(x1,l1)∈K

[〈(x1, l1), (l, x)〉∗ − α(x1, l1)]

+ sup
(x2,l2)∈K

[〈(x2, l2), (l, x)〉∗ − k(x0,l0)(x2, l2)]

= [α∗
L∗ ◦ t](x, l) + [(k(x0,l0))

∗
L∗ ◦ t](x, l)

= α(x, l) + k(x0,l0)(−x,−l) = α(−x,−l) + k(x0,l0)(−x,−l)

= (α+ k(x0,l0))(−x,−l), ∀ (x, l) ∈ K. (5.5)

On the other hand, by (5.2) and (5.4), one has

[(α∗
L∗ ⊕ (k(x0,l0))

∗
L∗) ◦ t](x, l) = (α∗

L∗ ⊕ (k(x0,l0))
∗
L∗)(l, x)

= inf
(l1,x1)+(l2,x2)=(l,x)

[α∗
L∗(l1, x1) + (k(x0,l0))

∗
L∗(l2, x2)]

= inf
(x1,l1)+(x2,l2)=(x,l)

[[α∗
L∗ ◦ t](x1, l1) + [(k(x0,l0))

∗
L∗ ◦ t](x2, l2)]

= inf
(x1,l1)+(x2,l2)=(x,l)

[α(x1, l1) + k(x0,l0)(−x2,−l2)]

= inf
(x1,l1)+(x2,l2)=(x,l)

[α(−x1,−l1) + k(x0,l0)(−x2,−l2)]

= inf
(x1,l1)+(x2,l2)=(−x,−l)

[α(x1, l1) + k(x0,l0)(x2, l2)]

= (α⊕ k(x0,l0))(−x,−l), ∀ (x, l) ∈ K. (5.6)

Since, by Assumption (C), the infimal convolution α⊕k(x0,l0) is exact, it follows from (5.2),
(5.4) and (5.6) that the infimal convolution α∗

L∗⊕(k(x0,l0))
∗
L∗ is exact for each (x0, l0) ∈ K.
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Finally, by (5.5) we have

[(α+ k(x0,l0))
∗
L∗ ◦ t](x, l) = (α+ k(x0,l0))

∗
L∗(l, x)

= sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − (α + k(x0,l0))(x
′, l′)]

= sup
(l′,x′)∈L∗

[〈(−x,−l), (−l′,−x′)〉∗ − (α⊕ k(x0,l0))
∗
L∗(−l′,−x′)]

= (α⊕ k(x0,l0))
∗∗
L∗,K(−x,−l), ∀ (x, l) ∈ K. (5.7)

Since, by Assumption (C), the infimal convolution α⊕ k(x0,l0) is an HL∗-convex function,
it follows from Lemma 2.2 that (α⊕ k(x0,l0))

∗∗
L∗,K = α ⊕ k(x0,l0). This, together with (5.6)

and (5.7) implies that

(α+ k(x0,l0))
∗
L∗ ◦ t = [α∗

L∗ ⊕ (k(x0,l0))
∗
L∗ ] ◦ t,

that is, (α+ k(x0,l0))
∗
L∗ = α∗

L∗ ⊕ (k(x0,l0))
∗
L∗ , which completes the proof.

In the sequel, let X ′ ⊆ X be any non-empty set such that X ′ satisfies the properties (A1),
(A2) and (A3). Also, let L

′ ⊆ L be any non-empty set such that L′ satisfies the properties
(A1), (A2) and (A3). Define K := X ′ × L′ and L∗ := L′ ×X ′. It is clear that K and L∗

satisfy the properties (A1), (A2) and (A3). Now, suppose that the Assumption (D) holds
and define D as follows:

D := {(x, l) ∈ K : δ(x,−l) = 0}. (5.8)

It is worth noting that under the hypotheses of Theorem 4.2, for each maximal L′-
monotone subset S of K we have D 6= ∅.

Define the set valued mapping d : X ′ −→ 2L
′

by

d(x) := {l ∈ L′ : δ(x,−l) = 0}, ∀ x ∈ X ′. (5.9)

It is clear that G(d) = D. Also, define the set valued mapping −d : X ′ −→ 2L
′

by
(−d)(x) := −d(x) for each x ∈ X ′. Therefore, we have

(−d)(x) = {l ∈ L′ : δ(x, l) = 0}, ∀ x ∈ X ′. (5.10)

It is easy to check that d(−x) = −d(x) for each x ∈ X ′.

In the following, we give an example of a function d such that dom (d) = X. Moreover, d
is single-valued.

Example 5.2. Let X, L, K, L∗ and γ be as in Example 4.4. Now, d : X −→ 2L is defined
by

d(x) := {ly ∈ L : δ(x,−ly) = 0}, ∀ x ∈ X.

(Note that −ly = l−y.) Therefore, for each x ∈ X, we have

d(x) = {ly ∈ L : δ(x,−ly) = 0} = {ly ∈ L : γ(x,−ly) = ly(x)}

= {ly ∈ L :
1

2
(x2 + y2) = xy} = {ly ∈ L : (x− y)2 = 0} = {ly ∈ L : x = y} = {lx}.
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This implies that dom (d) = X, and also, d is single-valued. Moreover, one has d−1(ly) =
{y} for each y ∈ X, that is, dom (d−1) = L and d−1 is single-valued.

Proposition 5.1. Suppose that the Assumption (D) holds. Then the set valued mapping
d is an L′-monotone operator.

Proof: Assume that (x, l), and (x0, l0) ∈ G(d) are arbitrary. Then, by the definition of d,
we have δ(x,−l) = 0 and δ(x0,−l0) = 0. This implies that

γ(x,−l) = l(x) and γ(x0,−l0) = l0(x0). (5.11)

Note that by Assumption (D)(v) we get

γ(−x, l) = γ(x,−l), ∀ (x, l) ∈ K. (5.12)

In view of Fenchel-Young inequality and the Assumption (D)(ii) we conclude that

γ(x1, l1) + γ(x2, l2) ≥ l1(x2) + l2(x1), ∀ (x1, l1), (x2, l2) ∈ K. (5.13)

By putting (x1, l1) = (−x, l) and (x2, l2) = (x0,−l0) in (5.13), we obtain

γ(−x, l) + γ(x0,−l0) ≥ l(x0) + l0(x).

This, together with (5.11) and (5.12) implies that

l(x)− l(x0)− l0(x) + l0(x0) ≥ 0,

which completes the proof.

Proposition 5.2. Suppose that the Assumptions (C) and (D) hold. Then the set valued
mapping d is a maximal L′-monotone operator.

Proof: By Proposition 5.1, d is an L′-monotone operator. For maximality of d, suppose
that (x0, l0) ∈ K and

l′(x′)− l′(x0)− l0(x
′) + l0(x0) ≥ 0, ∀ (x′, l′) ∈ G(d). (5.14)

Define the function k(x0,l0) on K as in (5.1), and the function α on K as in (5.3). Since
δ(x′, l′) ≥ 0 for all (x′, l′) ∈ K, we have

α(x, l) + k(x0,l0)(x, l) = γ(x,−l)− l(x) + δ(x0 − x, l0 − l) = δ(x,−l) + δ(x0 − x, l0 − l)

≥ 0, ∀ (x, l) ∈ K.

Therefore, it follows from Lemma 4.2 and Theorem 5.1 that there exists (x1, l1) ∈ K such
that

[α∗
L∗ ◦ t](x1, l1) + [(k(x0,l0))

∗
L∗ ◦ t](−x1,−l1) ≤ 0. (5.15)
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By using the Assumption (D)(ii) and (v) we have [α∗
L∗ ◦ t](x1, l1) = γ(x1,−l1). Since, by

(5.2), one has
[(k(x0,l0))

∗
L∗ ◦ t](−x1,−l1) = k(x0,l0)(x1, l1),

we conclude from (5.15) that

γ(x1,−l1)− l1(x1) + δ(x0 − x1, l0 − l1) ≤ 0. (5.16)

This implies that

0 ≤ δ(x1,−l1) = γ(x1,−l1)− l1(x1) ≤ γ(x1,−l1)− l1(x1) + δ(x0 − x1, l0 − l1) ≤ 0,

and hence δ(x1,−l1) = 0. That is, (x1, l1) ∈ G(d). Therefore, it follows from (5.14) that

l1(x1)− l1(x0)− l0(x1) + l0(x0) ≥ 0. (5.17)

On the other hand, since δ(x1,−l1) = 0, we conclude from (5.16) that δ(x0−x1, l0−l1) = 0.
Thus, by using (5.17) and the definition of δ we have

0 = δ(x0 − x1, l0 − l1)

= (l0 − l1)(x0 − x1) + γ(x0 − x1, l0 − l1)

= l1(x1)− l1(x0)− l0(x1) + l0(x0) + γ(x0 − x1, l0 − l1)

≥ γ(x0 − x1, l0 − l1)

≥ 0,

and so γ(x0 − x1, l0 − l1) = 0. This, together with the Assumption (D)(iv) implies that
x0 = x1 and l0 = l1. Consequently, (x0, l0) = (x1, l1) ∈ G(d), and hence the proof is
complete.

In the sequel, for any non-empty subset S of K, define

hS(x, l) := ϕS(−x, l), ∀ (x, l) ∈ K := X ′ × L′. (5.18)

The following theorem is a generalization of [11, Theorem 2.1].

Theorem 5.2. Suppose that the Assumptions (C) and (D) hold. Let A : X ′ −→ 2L
′

be
any L′-monotone operator. Assume that supp (.,HL∗) is additive in ϕA′ and hS , where
A′ is any operator whose graph is a translation of G(A), hS is defined by (5.18) and S is
any non-empty subset of K. Then the following assertions are equivalent:

(1) A is a maximal L′-monotone operator.
(2) G(A)+G(−B) = K := X ′×L′ for every maximal L′-monotone operator B : X ′ −→ 2L

′

such that ϕB is finite-valued.
(3) There exist an operator B : X ′ −→ 2L

′

such that G(A) + G(−B) = K and a point
(x̃, l̃) ∈ G(B) such that

l̃(x̃)− l̃(x)− l(x̃) + l(x) > 0, ∀ (x, l) ∈ G(B) \ {(x̃, l̃)}.
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Proof: (1) =⇒ (2). Assume that (1) holds and B : X ′ −→ 2L
′

is any maximal L′-
monotone operator such that ϕB is finite-valued. Let (x0, l0) ∈ K be arbitrary. Consider
the set valued mapping A′ : X ′ −→ 2L

′

such that G(A′) := G(A) − (x0, l0). Since A is
a maximal L′-monotone operator, in view of Lemma 4.3 we conclude that A′ is also a
maximal L′-monotone operator. Let S := G(B). Then, ϕS is finite-valued and by Remark
4.2 we have hS ∈ P(HL∗). Since A′ and B are maximal L′-monotone operators, it follows
from Lemma 2.1 that

ϕA′(x, l) + hS(x, l) ≥ l(x) + l(−x)

= l(x+ (−x))

= l(0) = 0, ∀ (x, l) ∈ K.

Since by the hypothesis supp (.,HL∗) is additive in ϕA′ and hS , it follows from Lemma
4.2 that there exists (l̄, x̄) ∈ L∗ := L′ ×X ′ such that

(ϕA′)∗L∗(l̄, x̄) + (hS)
∗
L∗(−l̄,−x̄) ≤ 0. (5.19)

But we have

(hS)
∗
L∗(−l̄,−x̄) = sup

(x,l)∈K
[〈(x, l), (−l̄,−x̄)〉∗ − hS(x, l)]

= sup
(x,l)∈K

[〈(x, l), (−l̄,−x̄)〉∗ − ϕS(−x, l)]

= sup
(x,l)∈K

[〈(−x, l), (l̄,−x̄)〉∗ − ϕS(−x, l)] = (ϕS)
∗
L∗(l̄,−x̄).

Therefore, it follows from (5.19) that

(ϕA′)∗L∗(l̄, x̄) + (ϕS)
∗
L∗(l̄,−x̄) ≤ 0.

This, together with Remark 4.4 implies that

ϕA′(x̄, l̄) + ϕS(−x̄, l̄) ≤ 0. (5.20)

On the other hand, by maximality of A′ and B we have

ϕA′(x̄, l̄) + ϕS(−x̄, l̄) ≥ l̄(x̄) + l̄(−x̄) = l̄(x̄+ (−x̄)) = l̄(0) = 0. (5.21)

Thus, we deduce from (5.20), (5.21) and the maximality of A′ and B that

ϕA′(x̄, l̄) = l̄(x̄) and ϕS(−x̄, l̄) = l̄(−x̄),

and hence
(x̄, l̄) ∈ G(A′) and (−x̄, l̄) ∈ S = G(B).

Then, we have

(x0, l0) = (x0, l0) + (x̄, l̄) + (−x̄,−l̄)

∈ (x0, l0) +G(A′) +G(−B)

= G(A) +G(−B).
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This completes the proof of the implication (1) =⇒ (2).

(2) =⇒ (3). Suppose that (2) holds. Let B := d, where d is defined by (5.9). Since the
Assumptions (C) and (D) hold, then in view of Proposition 5.2 we conclude that B is a
maximal L′-monotone operator. Also, we have

G(B) = {(x, l) ∈ K : δ(x,−l) = 0}

= {(x, l) ∈ K : γ(x,−l) = l(x)}.

Thus, by Assumption (D)(i) and (ii), one has

ϕB(x, l) = sup
(x′,l′)∈G(B)

[l(x′) + l′(x)− l′(x′)] (5.22)

= sup
(x′,l′)∈G(B)

[〈(x′,−l′), (l,−x)〉∗ − γ(x′,−l′)]

≤ sup
(x′,l′)∈K

[〈(x′,−l′), (l,−x)〉∗ − γ(x′,−l′)]

= [γ∗L∗ ◦ t](−x, l)

= γ(−x, l) < +∞, ∀ (x, l) ∈ K.

This implies that ϕB is finite-valued. Therefore, by the hypothesis (2), we have G(A) +
G(−B) = K.

Moreover, since by Assumption (D)(vi) we have γ(0, 0) = 0, we deduce that (0, 0) ∈ G(B).
Let (x̃, l̃) := (0, 0) ∈ G(B). Thus, for every (x, l) ∈ G(B) \ {(x̃, l̃)}, one has

l̃(x̃)− l̃(x)− l(x̃) + l(x) = l(x) = γ(x,−l) > 0,

because if γ(x,−l) = 0, then by Assumption (D)(iv) we have (x, l) = (0, 0), which is a
contradiction.

(3) =⇒ (1). Assume that (3) holds. By the hypothesis, A is an L′-monotone operator.
For maximality of A, suppose that (x0, l0) ∈ K and

l(x)− l(x0)− l0(x) + l0(x0) ≥ 0, ∀ (x, l) ∈ G(A). (5.23)

Assume that (x̃, l̃) ∈ G(B) is such that

l′(x′)− l′(x̃)− l̃(x′) + l̃(x̃) > 0, ∀ (x′, l′) ∈ G(B) \ {(x̃, l̃)}. (5.24)

Since
(x0 + x̃, l0 − l̃) ∈ K = G(A) +G(−B),

we have
(x0 + x̃, l0 − l̃) = (x1, l1) + (x2, l2) (5.25)
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for some (x1, l1) ∈ G(A) and some (x2, l2) ∈ G(−B). It follows from (5.25) that x0 − x1 =
x2− x̃ and l0− l1 = l2+ l̃. Hence, since (x2,−l2), (x̃, l̃) ∈ G(B), (x1, l1) ∈ G(A) and (5.23)
and (5.24) hold, we conclude that

0 ≤ l1(x1)− l1(x0)− l0(x1) + l0(x0)

= (l0 − l1)(x0 − x1)

= (l2 + l̃)(x2 − x̃)

= −[(−l2)(x2)− (−l2)(x̃)− l̃(x2) + l̃(x̃)]

≤ 0.

This implies that
(−l2)(x2)− (−l2)(x̃)− l̃(x2) + l̃(x̃) = 0,

and so in view of (5.23) we deduce that x2 = x̃ and −l2 = l̃. Therefore, (5.25) yields

(x0 + x̃, l0 − l̃) = (x1, l1) + (x̃,−l̃),

and hence (x0, l0) = (x1, l1) ∈ G(A), which proves the maximality of A.

Remark 5.1. It is worth noting that in Theorem 5.2 the additivity of the mapping
supp (.,HL∗) in ϕA′ and hS is only necessary for the implication (1) =⇒ (2).

Corollary 5.1. Suppose that the Assumptions (C) and (D) hold. Let A : X ′ −→ 2L
′

be
an L′-monotone operator. Assume that supp (.,HL∗) is additive in ϕA′ and hG(d), where
A′ is any operator whose graph is a translation of G(A) and hG(d) and d are defined by
(5.18) and (5.9), respectively. Then the following assertions are equivalent:

(1) A is a maximal L′-monotone operator.
(2) G(A) +G(−d) = K := X ′ × L′.

Proof: (1) =⇒ (2). Assume that (1) holds. Since the Assumptions (C) and (D) hold,
it follows from Proposition 5.2 that d is a maximal L′-monotone operator and in view of
(5.22) ϕd is finite-valued, thus (2) follows from the proof of the implication (1) =⇒ (2)
of Theorem 5.2 (indeed, in that proof the equality G (A) + G (−B) = K requires the
additivity of supp (.,HL∗) only in ϕA′ and hG(B)).

(2) =⇒ (1). Suppose that (2) holds. Since by the hypothesis A is an L′-monotone
operator, we have G(A) is an L′-monotone subset of K. Now, let (x, l) ∈ K be arbitrary.
Then, by the hypothesis (2), there exists (x0, l0) ∈ G(A) such that (x−x0, l− l0) ∈ G(−d),
and so by (5.10) we have δ(x0 − x, l0 − l) = 0. Therefore, in view of Theorem 4.3(2) we
conclude that G(A) is a maximal L′-monotone set, and hence A is a maximal L′-monotone
operator.

Theorem 5.3. Suppose that the Assumptions (C) and (D) hold. Let A : X ′ −→ 2L
′

be a
maximal L′-monotone operator. Assume that supp (.,HL∗) is additive in ϕA′ and hG(d),
where A′ is any operator whose graph is a translation of G(A) and hG(d), d are defined by
(5.18) and (5.9), respectively. Then, R(A+ d) = L′.
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Proof: It is clear that R(A + d) ⊆ L′. Since A is a maximal L′-monotone operator,
it follows from Corollary 5.1 that G(A) + G(−d) = K := X ′ × L′. Now, let l ∈ L′ be
arbitrary. Then, (0, l) ∈ K, and so there exist (x1, l1) ∈ G(A), x2 ∈ X ′, and l2 ∈ d(x2)
such that (0, l) = (x1, l1) + (x2,−l2). This implies that x1 = −x2 and l = l1 − l2. Since
d(−x) = −d(x) for every x ∈ X ′, we have

l = l1 − l2 ∈ l1 − d(x2)

= l1 + d(−x2)

⊆ A(−x2) + d(−x2)

= (A+ d)(−x2)

⊆ R(A+ d),

which completes the proof.

In the following, we give an example of an L-monotone operator A : X −→ 2L and a
non-empty subset S of K := X × L such that the mapping supp (.,HL∗) is additive in
ϕA′ and hG(d), where A

′ is any operator whose graph is a translation of G(A) and hS is
defined by (5.18).

Example 5.3. Let X, L, K and L∗ be as in Example 4.4. Consider the set valued mapping
A : X −→ 2L such that

G(A) := {(1, l1)}.

Let g ∈ P(HL∗) and S ⊆ K be arbitrary. We show that supp (.,HL∗) is additive in ϕA′

and g. Hence, in particular, supp (.,HL∗) is additive in ϕA′ and hS . It is clear that A is
an L-monotone operator. Let (x0, ly0) ∈ K be arbitrary. Then, one has

G(A)t := G(A)− (x0, ly0) = {(1− x0, l1−y0)}.

Therefore, we have

ϕA′(x, ly) = ly(1− x0) + l1−y0(x)− l1−y0(1− x0)

= −yx0 − xy0 + x0 + y0 − x0y0 + x+ y − 1

= 〈(x, ly), (l1−y0 , 1− x0)〉∗ − x0y0 + x0 + y0 − 1, ∀ (x, ly) ∈ K.

It is easy to see that

supp (ϕG(A)t ,HL∗) + supp (g,HL∗) ⊆ supp (ϕG(A)t + g,HL∗).

For the converse inclusion, let f ∈ HL∗ and f ≤ ϕA′ + g. Let f1 := ϕA′ . Then, f1 ∈ HL∗ ,
and so f1 ∈ supp (ϕA′ ,HL∗). Define

f2 := f − ϕA′ .

By using the properties of L∗, and since f ∈ HL∗, −ϕA′ ∈ HL∗ and f ≤ ϕA′ + g, it is easy
to check that f2 ∈ HL∗ and f2 ≤ g. Thus, f2 ∈ supp (g,HL∗). Also, we have f = f1 + f2,
and hence the proof is complete.
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