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CHAPTER 1

Introduction

The development and technological improvement of all different kinds of electronic devices in the
20th century is, without a doubt, extraordinary. One mayor aspect of this rapid enhancement
belays in the discovery of the semiconductor and the following inventions based on these
semiconducting materials. They lead from a mechanically operating society in the early 1900th

to a highly versatile technically based society today. Electronic devices are in such a way
integrated in our everyday live, that a day without them almost seems impossible. In this
world of logic and numbers, voltage and currents, protons and electrons, this work is fitting.

1.1 The Rising of Semicondutor Devices

First over it all a brief passage in semiconductor device history is not only necessary but
astonishing. In this section the timeline of the rising of semiconductor devices is shown with
all important discoveries and inventions.

It all started with the discovery of semiconducting materials. According to Busch [1] the phrase
"semiconductor" was firstly mentioned in a letter from Alessandro Volta in 1782. He observed
that the speed with which an electrometer is discharged by touching its knob with different
materials varies. Metals did it instantaneously, semiconductors slowly and insulators not at all.
A more scientific experiment to capture the semiconducting effect was done by Michael Faraday
[2] in 1833. He was interested in the influence of the temperature on the conductivity of
different materials. One material of particular interest and surprising behavior was a "sulphuret
of silver" like Ag2S. It showed a very low conductivity at room temperature, but at 175 ◦C an
abrupt rise in conductivity occurred to nearly metallic magnitude.
The first time the term "semiconductor" was published in today’s sense of the word was in 1910
by Weiss [3]. In his work he measured the thermoelectric power, Thomson heat and Peltier
coefficient of various combinations of different materials with oxides and sulfides of iron and
titanium. During that time the poor reproducibility of results is the main reason for the bad

1
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2 1 Introduction

reputation semiconductor research suffered for the upcoming years [1].
In 1931 Wilson published his famous papers on semiconductors [4] and distinguished between
"intrinsic" and "extrinsic" semiconductors and mentioned the presence of donors and acceptors.
It was also him, who introduced the band theory of solids, which explains the difference between
metals and insulators based on the idea of filled and empty energy bands. His contributions
dominate solid state physics up to date.

It was years later in 1940 when Russel Ohl accidentally created the first p-n junction [5]. During
his work on radio wave detectors, he realized that the problems with the cat’s whisker detectors
belay in the bad quality of the semiconductor. So he remelted the silicon in quartz tubes and
cooled it down. The result was still polycrystalline but the properties were much more uniform.
Based on that improvement, he identified the impurities, which lead to the p-n junction, the
basic principle of so many following inventions.
In 1945 a concept of a semiconductor amplifier based on the field-effect principle was firstly
introduced by William Shockley [6]. His basic idea was to change the conductance of a
semiconducting layer by only applying a transverse electric field. At this point the effect could
not be reproduced experimentally due to surface states. However, based on these creative
failures Shockley’s colleagues Bardeen and Brattain were able to discover the point-contact
transistor in 1947 [6]. These were the first transistors to be produced but they were extremely
unstable and their electrical characteristics were hard to control. This unpredictable behavior
strongly depends on the purity of the sample.
With the junction transistor, a much more reliable device was introduced by Shockley in
1951 [6]. This device is later known as the n-p-n bipolar transistor. One year later the first
devices were produced. The fabrication, however, was much more difficult compared to the
point-contact transistor. Due to the complicated doping procedure, the crystal consisted of
three layers forming the n-p-n regions. These layers had to be cut and contacts had to be added
to get the actual devices. The first silicon devices with grown junctions were manufactured by
Gordon Teal in 1954.

Due to the achieved reliability, speed and heat reduction it was imaginable to build large
systems with the bipolar transistor. To minimize delays between the single devices caused
by the interconnects the distance had to be kept very short. Based on this dilemma the first
integrated circuit for an oscillator was fabricated by Kilby in 1958 [7]. In this first circuit
the single devices were still connected via bonding. One year later the first modern diffused
transistor was announced by Hoerni [7]. It combined the photolithographic techniques and a
compatible set of diffusion processes previously developed by Noyce and Moore to produce
dished junctions extending to the surface. The surface and contacts were protected with an
oxide passivation, which also assured more consistency and reproducibility in comparison to
the prior techniques. This was the beginning of the "planar" process [7].
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1.1 The Rising of Semicondutor Devices 3

In 1957 the first concept for the tunneling diode was presented by Esaki [8]. He was experi-
menting with heavily doped junctions in order to find out how high the bipolar transistor base
could be doped before the injection at the emitter junction became inadequate. He was aware
of the backward Zener tunneling at p-n junctions and could adjust the breakdown voltage in
dependency of the applied doping concentration. The device is highly resistant to environmental
conditions since the current transport is not depending on minority carriers or thermal effects.
With that the first device utilizing the tunneling effect was created.

The most important device which now dominates the 21st century was firstly introduced 20
years before the invention of the bipolar transistor by Julius Lilienfeld in 1930 (MESFET) and
following in 1933: the metal-oxide-semiconductor field-effect transistor (MOSFET) [9, 10]. It
took almost 30 years to realize the idea and so it was in 1959 when a group lead by Atalla
at Bell Labs used thermal oxidation to achieve a silicon dioxide layer to stabilize the silicon
surface [11]. In 1960 this technology lead to the first fabrication of a MOSFET [12].
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4 1 Introduction

1.2 MOSFET Technological Improvement

In this section the technological improvement of the MOSFET is shown chronologically. It is im-
portant to know the state-of-the-art technological possibilities for fabricating MOSFET devices,
since all possible upcoming technologies or devices do not only profit, but also have to be based
on them. A complete technological change in terms of fabricating semiconducting devices is
highly unlikely (costly) due to the size and complexity of the established semiconductor industry.

The first MOSFET mentioned in a patent, shown in figure 1.1 was designed by Dawon [13] in
1963. The general structure could be fabricated using the standard planar process [14]. Based
on this structural design, the MOSFET was industrially fabricated for almost 50 years. One of
the leading companies, which is focused on MOSFET based processor technology right from the
beginning is the Intel® Corporation founded in 1968. Therefore, the following shown MOSFET
technology optimization will be orientating on the Intel® product line.

Figure 1.1: Geometric structure of the first MOSFET from its patent [13].

From 1963 till 2003 the main focus of MOSFET technology optimization lay on device scaling
[14]. Reducing the device’s geometrical structure in size has versatile advantages in switching
speed, energy consumption and packing density. This scaling process was firstly captured
by Gordon Moore in 1964, who foretold that the number of transistors on a single chip will
double every year [15]. This prediction later became Moore’s law and somewhat a self-fulfilling
prediction since the future processor development was orientating on it. In 1975 Moore corrected
his prediction and slowed the future rate of increase in complexity to a doubling every two
years [16]. This rate could be held till 2012 where signs of a saturation occurred.

The scaling could not only be continued by simply shrinking the device’s geometric structure.
One of the last technology only based on scaling was the 70 nm node in 2001 [17] (see fig. 1.2
(a)). At this point the scaling continued using new methods and technologies. To gain switching
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speed an increase in carrier mobility was achieved by firstly using strained silicon technology
in the 45 nm node in 2003 [18] (see fig. 1.2 (b)). A further increase in switching speed could
be realized by using a high-κ insulator and a metal gate in addition to the strained silicon
technology in the 45 nm node in 2007 [19] (see fig. 1.2 (c)). Finally, in 2011 a revolutionary
step in the industrial processor development was done by introducing the first processor using
22 nm tri-gated MOSFETs [20] (see fig. 1.2 (d)).

(a) 70 nm - 2001 [17] (b) 45 nm - 2003 [18]

(c) 45 nm - 2007 [19] (d) 22 nm - 2011 [20]

Figure 1.2: Intel® MOSFET technology development (a) 70 nm standard MOSFET 2001 (b)
45 nm strained silicon technology 2003 (c) 45 nm high-κ metal-gate technology 2007 (d) 22 nm
tri-gate technology 2011.

Now the state-of-the-art transistor structure is the 2nd generation of the FinFET structure
with the 14 nm logic technology, shown in fig. 1.3 [21]. In order to look beyond this point the
international technology roadmap for semiconductors (ITRS) tries to predict the course of
future technologies and guides the industry and research community to reach these goals. It is
written by an international group of semiconductor industry experts. Regarding the future of
scaling, the ITRS 2015 says: "The combination of 3D device architecture and low power device
will usher the (Third) Era of Scaling, identified in short as "3D Power Scaling". Increase in
the number of transistors per unit area will eventually be accomplished by stacking multiple
layers of transistors... In the next decade ITRS 2.0 predicts that the advent of the third phase
of scaling "3D Power Scaling" will become the driver of the rejuvenated semiconductor industry"
[22]. Also, a significant part of the research for further improvement in device performance is
concentrated on semiconducting materials from the third and fifth group of the periodic ta-
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ble (III-V materials) and germanium, due to their higher mobilities in comparison to silicon [22].

Figure 1.3: Most recent 14 nm FinFET structure [21]. Fin and gate-cut images.

Challenging aspects for the complementary-MOS (CMOS) technology are low power applications
at 0.5 V to 0.4 V. Due to the thermionic-emission based current transport mechanism in these
devices their minimum subthreshold slope (S) is physically limited to 60 mV/dec at room
temperature [23]. Reducing the supply voltage with a constant slope leads to an increase in
leakage current of the MOSFET and a worsening of the on/off ratio (see fig. 1.4). So called
"steep slope devices" fill the gap and are able to provide a low leakage current while maintaining
a sufficient on-current.

Figure 1.4: Increase in leakage current caused by supply voltage reduction and constant sub-
threshold slope in MOSFETs. Introduction of steep slope devices.

The focus of this work belays on one of the most promising devices to continuously overcome
the 60 mv/dec slope limitation of MOSFETs, and with that, be its successor for at least low
power applications. Based on its band-to-band (b2b) tunneling current transport mechanism
in the on-state, the tunneling field-effect transistor (TFET) provides this possibility [24–26].
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1.3 Tunnel-FET Development

With the invention of the tunneling diode in 1976 the mechanism of band-to-band tunneling
was firstly commercialized [8]. Years later the same effect could be used to fabricate a gated
p-i-n tunneling diode to be used as a transistor: the TFET. In 2004 the first transistor with
a subthreshold slope of 40 mV/dec was fabricated by Appenzeller using a carbon nanotube
channel [27]. Inspired by this achievement several groups started working with TFETs as
well (CEA-Leti, IMEC, UC Berkeley, Stanford). They soon published positive results (slopes
below 60 mV/dec) using widely used semiconducting materials like silicon and germanium [24].
One of the mayor benefits and also requirements is the similarity of TFETs to the MOSFET
in terms of its basic configuration with source, drain, gate, insulator and it shows a similar
electrical behavior as well. With the ability to provide full CMOS compatibility the TFET has
the necessary set of abilities to be the successor of the MOSFET.

The biggest challenge so far with these new devices is the trade-off between a steep subthreshold
slope and a sufficient on-current. The praised tunneling effect, which enables these steep slopes
has a weak spot in indirect band-gap semiconductor materials like silicon and germanium. Here,
in addition to direct transient from one band to another, the electrons have to absorb some
extra energy from vibrations in the materials crystal lattice. This detour significantly lowers
the tunneling probability of the carriers, which reflects badly on the achievable on current in
comparison to MOSFET devices. The logic consequence of this dilemma is the introduction
of direct band-gap materials for TFETs, like III-V semiconductors. The first III-V TFET
was introduced by Datta in 2009, showing a significant increase in on-current in that time
[28]. Nowadays the full potential of technological possibilities is used for fabricating TFETs:
From conventional to III-V semiconductors, hetero-structures, straining techniques, high-κ
gate insulators and a wide range of different 2D and 3D structures are investigated. So far a
specific selection regarding material combination and structure has not been made, although
the greatest potential show 3D structures using III-V semiconductors and high-κ gate dielectrics
[24–26]. In 2011 Dewey published a III-V TFET using InGaAs hetero-junctions with high
on-current and a subthreshold slope below 60 mV/dec [29]. In 2013 Knoll published results of a
complementary TFET inverter using strained silicon nanowire TFETs [30]. The devices showed
a minimum subthreshold slope of 30 mV/dec and high on-currents of >10 µA/µm at Vds=0.5
V. In 2015 Sarkar has shown the first TFET with subthermal swing in a 2D channel. The
device consisted of a p-Ge source, MoS2 channel and an electrolytic polymer gate (PEO:LiClO4)
[31]. An extremely low subthreshold slope is achieved (<10 mV/dec).
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1.4 Modeling and Simulation Needs

Today’s microprocessor transistor count per single chip is already above 1.000.000.000. This
number is so incomprehensibly large, that it is impossible to capture a circuit build from so
many transistors with the human brain. In spite of that, the commercially available transistors
seem to be working without any problems at all. In order to understand the development
process of such processors, this section gives a brief introduction in circuit simulation and
device modeling.

The requirements for circuit simulators differ from the application area. There are different
kinds of simulators depending on the simulation level. Figure 1.5 shows the different simulation
levels with a simulation example. On top is the system level which simulates digital circuits
containing logic blocks. The next level is the circuit level for analog circuit simulations like
a static random-access memory (SRAM) cell or an oscillator. These circuits contain several
transistors, which are simulated using device simulators in the device level. In order to fabricate
these devices process simulators are used in the lower process level. The most mathematically
complex simulations are quantum simulations, which contain only several atoms.

Figure 1.5: Simulation levels with application example.

Between these simulation levels, versatile abstractions are made in order to simplify the compu-
tational complexity. On system level only logic states between blocks are calculated (0 and 1).
The transition between circuit simulator and system level is the coupling of an analog voltage
to a logic state (e.g. 5 V = 1). The circuit level uses compact models for different devices to
calculate the circuit output. These compact models are mathematical equations which describe
the electrical behavior of a single device depending on the applied voltages and currents. The
transition between circuit and device level is a compact model. The developer uses the gained
knowledge from single device simulations on device level to find simple mathematical equations,
describing the observed effects. On device level single transistor simulations are done using
the finite elemente method (FEM). This method is a valued versatile numerical approach to
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1.4 Modeling and Simulation Needs 9

simulate electrical, physical, optical and many other operations in diverse devices. In the
context of this work it is used to calculate the output and transfer characteristics of a TFET
including all necessary physical effects occurring in these devices.

Since the TFET is gaining interest in the research community and first inverters are fabricated
[30], the need for accurate compact models to be implemented in circuit simulators is clearly
visible. There are different possibilities for modeling such devices. The model’s complexity
correlates to the desired accuracy, whereas one-dimensional models are easy to calculate, they
often lack accuracy regarding device variability. The next step is to include two-dimensional
effects, making the model more variable and accurate for short-channel effects (SCE). The
most complex models also include three-dimensional influences making them applicable for 3D
devices such as short-channel FinFETs.
Not only the complexity varies between the compact models but also the general approach
to solve the device current. Some models are based on an electrostatics solution (like this
work) and others use a charge-based approach. So far first model approaches have been pub-
lished. In 2010 Bardon published a pseudo-two-dimensional analytical model for double-gate
(DG) TFETs [32]. The potential, electric field and tunneling generation rate are calculated
analytically with a numerically extraction of the tunneling current. The potential solution
includes the depletion regions inside source and drain. Due to the numerically calculated
current this model is unfit to adapt in a circuit simulator. In 2014 Zhang published a 1D
compact model implemented in SPICE [33]. The potential solution also includes the depletion
regions in source and drain region and provides accurate results. However, two dimensional
short-channel effects are not captured. In 2015 Biswas introduced a DG TFET compact model
for Verlog-A implementation [34]. This approach is also 1D and does not include the influence
of the depletion regions in source and drain, making it not adaptable for hetero-junction devices.

In this thesis an extensive two-dimensional, physics-based, analytical model for the overall
device current in double-gate n-TFETs is introduced. The model is based on 2D compact
solutions for the device potential and electric field, including different material combinations.
Potential adjustments have been included to consider doping profiles at the channel junc-
tions. The band-to-band and trap-assisted-tunneling probability are calculated separately
using a quasi two-dimensional Wentzel-Kramers-Brillouin (WKB) approximation. By applying
Landauer’s transmission theory, the tunneling current is calculated. The model can be used
for short-channel hetero-junction TFET simulations, including all important physical effects
occurring within the TFET.
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CHAPTER 2

Device Physics

In this chapter all basic physical effects occurring within the TFET are explained. Beginning in
section 2.1, the geometry of the device, including all important parameters, is shown. Because
of the highly doped regions within the TFET, the influence of high doping on semiconductor
materials and the consequences in band-structure, as well as different material combinations
are shown in section 2.2. How to calculate accurate carrier concentrations within the highly
doped regions is explained in section 2.2.5. Since the current transport mechanism in TFETs
is the tunnel effect, this effect is generally introduced and explained in section 2.3. The step
from a general description to the occurring tunneling events within the TFET is carried out
in section 2.4. In order to understand the electric behavior of the TFET, the device working
principle is investigated in section 2.5.

2.1 Tunnel-FET Geometry

In this section the investigated TFET geometry is introduced. As mentioned before in chapter 1,
the ongoing TFET research is highly versatile and dynamic regarding the device geometry, since
no optimum has been found so far. However, the general trend seems to be heading towards
multiple gate 3D devices. Keeping this dynamic development in mind, a device geometry for
the model derivation has to be, on one hand, adaptable to different geometries and on the other
hand kept plane to simplify the calculations. For this work the DG structure in figure 2.1 is
chosen. It is more complex than the basic single-gate bulk device and it can be adapted to
cover even Fin-structures, making it a perfect compromise between geometric complexity and
mathematical simplicity. Figure 2.1 (a) shows the modeled silicon n-type DG TFET. Source
and drain region have a length of lsd, the channel region length is lch and their thickness is tch.
The high-κ insulator consists of HfO2 and has a thickness of tin. The width of the device is
defined as w.

11

UNIVERSITAT ROVIRA I VIRGILI 
Two-Dimensional Analytical Modeling of Tunnel-FETs 
Michael Gräf 



12 2 Device Physics

(a) n-type (b) p-type

Figure 2.1: Schematic geometry of an (a) n-type ((b) p-type) DG Tunnel-FET, showing its
structural parameters and doping profiles.

The TFET is basically a gated p-i-n diode. An electron on-state current occurs for an n-type de-
vice (figure 2.1 (a)). For a p-type device (figure 2.1 (b)) the on-state current is hole-carrier based.
For the n-type device, the source is highly p-doped, the channel stays intrinsic and the drain
has a reduced n-doping. In the p-type device the doping types for source and drain are switched.

The most simplest homo-junction devices only contain silicon as semiconductor material in
source, channel and drain region. This setup is also used for the model derivation in chapter 4.
However, the possibilities of different material combinations to create hetero-junction TFETs
are versatile [26]. These alternative materials, mostly III-V semiconductors, provide high carrier
mobilities and small direct band-gaps, which enhance the tunnel effect, and with that, device
performance.

Not only the semiconductor material is important for device performance. The gate insulator
material has a major influence as well. Thereby, the permittivity of the insulator εin directly
correlates to its ability to improve the electrostatic influence of the gate electrode on the channel
region. The usage of high-κ gate insulators, like HfO2, serves as a common tool for performance
enhancement.

2.2 Band-Structure

The band-structure of semiconductor devices enables a deep insight into their physical behavior
and working principles. It also is the basis of many different calculations like carrier concentra-
tions and tunneling probabilities. Because of these possibilities it is important to understand
the band-structure calculation and learn to interpret it. The main influences are the applied
biases, device geometry, used materials and doping types/concentrations.

2.2.1 Energy Bands and Band-Gap

In the first step the derivation of the simplified band-structure from its complex energy-band-
structures is explained. Two materials are considered, one with a direct band-gap: GaAs
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2.2 Band-Structure 13

and one with an indirect band-gap: silicon. Figure 2.2 shows the energy-band-structures of
(a) silicon and (b) GaAs in dependency of the wave vector k. In semiconductors the upper
bands (conduction bands) are energetically separated from the lower bands (valence bands),
the resulting space between them is the band-gap. Electrons are able to move freely in the
conduction band (minus signs in fig. 2.2) and holes in the valence band (plus signs in fig. 2.2).
The curvature of the bands indicates the carrier mass. The higher the curvature, the lower the
mass [35]. For silicon the valence-band maximum Ev occurs at Γ and the conduction band
minimum Ec is misaligned in k-space, therefore indicating an indirect band-gap with

E
0
g = Ec −Ev. (2.1)

In GaAs the band-edges are aligned and indicate a direct band-gap material. In the following
plots of the device band-structure, only the band-edges Ec and Ev are shown.

Figure 2.2: Energy-band-structures of (a) silicon and (b) GaAs. Eg is the band-gap, plus
signs (+) indicate holes in the valence band, minus signs (-) indicate electrons in the conduc-
tion band [35].

2.2.2 Carrier Concentration and Fermi Level

One of the most important properties of a semiconductor is the possibility to vary its resistivity
through doping with different types and concentrations of impurities. Figure 2.3 shows the
three basic bonding types: (a) the intrinsic state without any impurities, (b) n-type Si using
phosphor as doping material adding a free electron to the lattice and a fixed positive charged
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14 2 Device Physics

P-Ion, (c) p-type Si using boron as doping material adding a free hole to the lattice and a fixed
negative charged B-Ion. These ionized impurities often lead to a depletion of carriers and leave
behind a charge density that can result in an electric field and sometimes a potential barrier
inside the semiconductor [35].

Figure 2.3: Three basic bond illustrations of silicon. (a) Intrinsic Si without impurities, (b)
n-type Si with donor (phosphor) and (c) p-type Si with acceptor (boron) [35].

The effective density of states at the conduction band NC and valence band NV describe
the maximum number of carriers, that can occupy the bands in the intrinsic state of the
semiconductor. For silicon the values are given through [35]:

NC = 2 ⋅ (2πmekT

h2 )
3
2
MC , (2.2)

NV = 2 ⋅ (2πmhkT

h2 )
3
2
. (2.3)

with the number of equivalent conduction band minima MC , the effective electron mass me,
effective hole mass mh, Boltzmann constant k, temperature T and the Planck constant h. The
Fermi level EF describes the energy level, where charge neutrality is given. For an intrinsic
(undoped) semiconductor the Fermi level is often described with EFi. This description is
also used to indicate the intrisic Fermi level of an already doped semiconductor. With it the
band-structure from a given potential distribution can be evaluated. The Fermi level is the
basis for calculating the carrier occupancy probability, which is represented by the Fermi-Dirac
distribution function f [35]:

f (E) = 1
1 + exp[(E −EF )/kT ] . (2.4)

By using the effective density of states and the Fermi level, the carriers at the conduction and
valence band can be estimated using Boltzmann statistics. For the electron concentration in
the conduction band n stands [35]
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2.2 Band-Structure 15

n = NC ⋅ exp (−Ec −EF
kT

) or Ec −EF = kT ⋅ ln (NCn ) (2.5)

and for the hole concentration in the valence band p

p = NV ⋅ exp (−EF −Ev
kT

) or EF −Ev = kT ⋅ ln (NVp ) . (2.6)

For semiconductors at room temperature electrons are continuously excited to the conduction
band through thermal agitation, leading to an intrinsic carrier concentration ni for each
semiconducting material. For each electron in the conduction band a hole is created in the
valence band, therefore stands n = p = ni at steady state. The Fermi level for an intrinsic
semiconductor EFi can be calculated with the help of the effective density of states [35]:

EFi =
Ec +Ev

2 +
kT
2 ⋅ ln (NV

NC
) . (2.7)

Therefore, the intrinsic Fermi level almost lies in the middle of the semiconductor band-gap.
The intrinsic carrier concentration can be calculated with [35]

n
2
i = n ⋅ p = NC ⋅NV ⋅ exp (−

Eg

kT
) . (2.8)

By applying an outer (positive) bias to the semiconductor the Fermi level is shifted (downwards)
in energy scale. If in the intrinsic state stands EF = 0 eV , then an applied bias V shifts the
Fermi-level to

EF (V ) = −q ⋅ V, (2.9)

with the elementary charge q.
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2.2.3 Doping Influence

In this section the influence of impurity types and concentrations on the band-structure are
calculated. The n-type donor doping concentration is described with ND and the p-type
acceptor doping concentration with NA. The general calculations are simplified due to the
assumption, that only one doping type per region is applied and the doping concentration is
much higher than the intrinsic carrier concentration (ND/A ≫ ni). Figure 2.4 illustrates the
effects of different impurity doping types on the band-structure, whereby in fig. 2.4 (a) the
intrinsic state is shown. The amount of carriers in conduction and valence band in equilibrium
is (n = p = ni) and the Fermi-level is located in the middle of the band-gap.
By doping a donor impurity concentration ND, additional states within the band-gap of the
semiconductor near the conduction band are created in figure 2.4 (b). The additional electrons
in the conduction band cause a shift of the Fermi-level towards a higher energy level. Vise
versa, the hole concentration in the valence band is reduced. ED stands for the energy of the
Fermi-level for n-type doping. The energy difference of the conduction band and the Fermi-level
(Ec −EF ) can be calculated by using the Boltzmann statistics from equation (2.5) with n ≈ ND

for low doping concentrations.
For a doped p-type impurity concentration NA the Fermi-level is shifted towards a lower energy
level and increases the hole concentration within the valence band, shown in figure 2.4 c). EA
is the energy of the Fermi-level for p-type doping. For this doping type the energy difference
of the Fermi-level and the valence band (EF − Ev) can also be calculated using Boltzmann
statistics from equation (2.6) with p ≈ NA, if the doping concentration is not too high.
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2.2 Band-Structure 17

Figure 2.4: Effects of impurity doping on the band-structure, Fermi-Dirac distribution and
carrier concentrations. (a) intrinsic state, (b) n-type doping and (c) p-type doping [35].

2.2.4 Doping Profiles

Doping profiles occur between regions of different doping concentrations or doping types. In the
n-TFET that is the case at the source/channel (p++ to intrinsic) and drain/channel (n+ to intrin-
sic) interface. The abrupt doping profile at the source/channel junction, as shown in figure 2.1,
is the best achievable result to enhance the performance of the TFET. However, in reality such
a high doping gradient is physically not realistic. During the fabrication of a device in the
annealing step directly after the ion-implantation, the dopants diffuse from the highly doped
region in the region with less doping [36]. This effect results in characteristic doping profiles at
the channel junctions, which can be described with Gaussian distributions or error-functions [37].
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In the TFET two Gaussian distributions are declared for the doping profiles at the source/chan-
nel and drain/channel interface. The Gaussian distributions are described using a peak
concentration from the highly doped area Npeak and a peak position xpeak. The extension
into the channel region is described using a standard deviation σ for which stands at the
source/channel interface N (xpeak + σ) = Npeak/2. The general profile N (x) is given with

N (x) = Npeak ⋅ exp (−1
2 ⋅ [

x − xpeak
σ ]

2

) . (2.10)

Figure 2.5 illustrates the Gaussian doping distributions in the channel region. The constant
doping concentrations in source/drain region N0

s/d are used for the peak concentration Npeak
in equation (2.10). The doping profile at the source/channel junction for x ≥ 0 is given with
xpeak = 0 nm:

Ns(x ≥ 0) = N0
s ⋅ exp (−1

2 ⋅ [xσ ]
2
) . (2.11)

In the drain region the doping concentration is constant with Nd = N0
d . In the channel region

the doping profile for x ≤ lch and xpeak = lch is given with

Nd(x ≤ lch) = N0
d ⋅ exp (−1

2 ⋅ [x − lchσ ]
2

) . (2.12)

Figure 2.5: Realistic doping concentrations along the TFET. Constant doping in source and
drain region with N0

s = 1020
cm

−3, N0
d = 1019

cm
−3. Doping profiles at the channel junctions

with σ = 1 nm.
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2.2 Band-Structure 19

2.2.5 Semiconductor Degeneration

If the doping concentration of a semiconductor is near or higher than the effective density of
states, the semiconductor degenerates and the Boltzmann statistic are getting invalid. The
exact value of the Fermi-Dirac integral has to be considered [35]. To simplify the model, the
values describing the degeneration energy of the p-doped source region Es and the n-doped
drain region Ed, shown in figure 2.6, are extracted from TCAD Sentaurus. They are described
with

Es = Ev(−lsd) −EF (−lsd), (2.13)

Ed = Ec(lch + lsd) −EF (lch + lsd). (2.14)

Figure 2.6: Values Es and Ed describing the degeneration of the semiconductor in source and
drain region.

In table 2.1 the extracted degeneration values for all used doping types and concentrations
are listed. The accuracy of these values is assured because in the simulator the Fermi-Dirac
integral is solved to obtain them [37].

Table 2.1: Degeneration values for different doping types and doping concentrations.

doping [cm−3] Ed [meV] Es [meV]

1020 −62.94 58.47

5 ⋅ 1019 −30.07

1019 23.97

5 ⋅ 1018 43.47
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2.2.6 Band-gap Narrowing

Through experiments it is observed, that a particularly high impurity concentration within a
semiconductor leads to a shrinkage of the band-gap, called band-gap narrowing (bgn) [38–40].
The impurity states within the band-gap of the device overlap and form an additional impurity
band (indicated in figure 2.4), thus reducing the intrinsic band-gap of the semiconductor E0

g .
For p-type doped semiconductors, the valence band is shifted upwards, and for an n-type doping
the conduction band is shifted downwards. This reduction of the conduction band minimum
and the valence band maximum can have a significant influence on the device behavior and has
to be modeled carefully. There are different models available for different doping types.

The first band-gap narrowing model for p-type silicon is introduced by Slotboom in 1976 [38].
It describes the band-gap reduction ∆E0

g in dependency of the acceptor doping concentration
NA (see fig. 2.7 [a])

∆E
0
g = 6.92 ⋅ 10−3

⋅

√
ln ( NA

1.3 ⋅ 1017 )
2

+
1
2 , (2.15)

whereby the model is valid for doping concentrations above 1.3 ⋅ 1017
cm

−3.

For n-type silicon and SiGe the Del Alamo model, introduced in [39], which is implemented for
donor doping concentrations ND above 7 ⋅ 1017

cm
−3

∆E
0
g = −14.07 ⋅ 10−3

+ 18.7 ⋅ 10−3
⋅ ln ( ND

7 ⋅ 1017 ) . (2.16)

For n-type InGaAs the Jain and Roulsten model is used for the band-gap narrowing calculations
[41]

∆E
0
g = (15.5 ⋅N1/3

D ⋅ 10−9
+ 1.95 ⋅N1/4

D ⋅ 10−7
+ 159 ⋅N1/2

D ⋅ 10−12) 10−3 (2.17)

and for p-type InGaAs stands

∆E
0
g = (9.2 ⋅N1/3

A ⋅ 10−9
+ 3.57 ⋅N1/4

A ⋅ 10−7
+ 3.56 ⋅N1/2

A ⋅ 10−12) 10−3
. (2.18)

The effective band-gap Eg can be calculated with

Eg = E
0
g −∆E

0
g . (2.19)
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2.2 Band-Structure 21

(a) p-type (b) n-type

Figure 2.7: Bandgap narrowing models for [a] p-type silicon: Slotboom [38] and [b] n-type
silicon: Del Alamo [39].

The band-gap narrowing of the heavily doped regions in source and drain in combination with
steep doping profiles leads to kinks in the band-structure of the TFET. Figure 2.8 schematically
illustrates these influences.

Figure 2.8: Influences of band-gap narrowing on the band-structure in the TFET.
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2.2.7 Hetero Structures

A hetero structure describes the combination of different semiconducting materials in order to
form a specific band-structure and enhance device performance. Thereby, material combinations
are chosen which differ in carrier mobility and band-gap size. These differences manifest
themselves in a distorted band-structure at the material interface (see figure 2.9).

Figure 2.9: Schematic band-structure of an n-TFET, including band-gap narrowing and
hetero structures. Small band-gap material in source.

2.2.8 Screening Length

The screening length λ is a commonly used simple expression which grants insight into the
quality, and with that, the performance of a device. It is a rough estimation of the band-bending
distance at the source/channel λs and drain/channel junction λd of the TFET (see fig. 2.10).
The most simplest 1D models are using this value to estimate the tunneling distance of a
TFET. In case of a double-gate device λs/d can be estimated quasi two-dimensionally in a
mathematically more complex form [42]

λ(y) = λfit ⋅

√
√√√√√⎷
εch ⋅ tin ⋅ tch

2 ⋅ εin
(1 + εin ⋅ y

εch ⋅ tch
−

εin ⋅ y
2

εch ⋅ tin ⋅ tch
), (2.20)

with the material dependent relative permittivity εin/ch and a fitting factor λfit.
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Figure 2.10: Screening length estimation at source/channel junction λs and drain/channel
junction λd.

2.3 Tunnel Effect

In this section the basics of the tunnel effect are explained since it is the core of the new current
transport mechanism within the TFET. The tunnel effect describes the phenomenon in which
a carrier is able to transmit a finite energy barrier even though its energy is smaller than said
barrier. This effect can not be captured with classical physics and is based on the wave-particle
dualism in quantum electronics. The wavefunction does not end abruptly at a limited barrier
and if the barrier thickness is short enough, the wavefunction is not negligible anymore on the
other side. As a first approach the tunneling probability T is calculated for a simple rectangular
barrier as shown in figure 2.11.

Figure 2.11: Rectangular barrier tunneling.

The wavefunction within the barrier ΨII has to be determined from the general Schrödinger
equation [35]

d
2
Ψ

dx2 +
2m
h̵2 [Ecar − U (x)]Ψ = 0, (2.21)
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with the carrier energy Ecar, the barrier U (x), the effective carrier mass m and the reduced
Planck constant h̵. For a constant barrier height U (x) = U0 and thickness t, the wavelength
solution has the form

ΨII = Ψ
+
II − Ψ

−
II = C ⋅ e

+ikx
−D ⋅ e

−ikx (2.22)

with k =
√

2m(Ecar − U (x))/h̵. Outside the barrier (U (x) = 0), the waveforms have the solution

ΨI = Ψ
+
I − Ψ

−
I = A ⋅ e

+ikx
−B ⋅ e

−ikx (2.23)

ΨIII = Ψ
+
III − Ψ

−
III = E ⋅ e

+ikx
− F ⋅ e

−ikx (2.24)

In figure 2.12 Ψ+
I represents the incoming wave, Ψ−

I the reflected wave and Ψ+
III the transmitted

wave. Ψ−
III is 0 since the wave does not reflect in region III.

Figure 2.12: Wave components for the rectangular barrier tunneling calculation.

Therefore, the tunneling probability T is the ratio of the transmitted carrier probability in
region III ∣ΨIII ∣2 and the carrier probability ∣ΨI ∣2

T =
∣ΨIII ∣2

∣ΨI ∣2
. (2.25)

The constants A,B,C,D,E, F can be calculated by applying boundary conditions to assure
continuity:

ΨI (x1) = ΨII (x1)
dΨI (x1)
dx

=
dΨII (x1)
dx

ΨII (x2) = ΨIII (x2)
dΨII (x2)
dx

=
dΨIII (x2)

dx

Ψ
−
II = 0

Ψ
−
III = 0

With the solution of the wavefunction, the tunneling probability is calculated to be [35]
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T = (1 + U
2
0 sinh2(∣k∣t)

4Ecar(U0 −Ecar)
)
−1

≈
16Ecar(U0 −Ecar)

U2
0

exp (−2∣k∣t) . (2.26)

This solution is only valid for a rectangular tunneling barrier. In reality though, the tunneling
barriers have a more complex form. Therefore, in a next step the tunneling probability is
estimated for a triangular barrier profile, where U (x) is reduced linearly as shown in figure 2.13.
This approach is firstly introduced by Wentzel, Kramers and Brillouin and hence called the
WKB approximation [43–45]. This method is applicable if the potential barrier U (x) does not
vary rapidly due to the assumption of a partially constant barrier in the carrier wavelength
scale [35].

A closer look on equation 2.26 shows, that the prefactor 16Ecar(U0 −Ecar)/U2
0 is not negligible

but weakly dependent on the energy, whereas exp (−2∣k∣t) has a strong dependency. The WKB
approximation shows a similar expression but here the area of the constant barrier ∣k∣t is
replaced with an integral over the barrier [35]

T =
∣ΨIII ∣2

∣ΨI ∣2
≈ exp

⎛
⎜⎜
⎝
−2

x2

∫
x1

∣k(x)∣dx
⎞
⎟⎟
⎠

≈ exp
⎛
⎜⎜
⎝
−2

x2

∫
x1

√
2m
h̵2 (U (x) −Ecar)dx

⎞
⎟⎟
⎠
. (2.27)

Figure 2.13: WKB approximation for triangular barrier tunneling.

The triangular tunneling barrier is used to calculate the occurring tunneling events within the
TFET. The resulting current density can be calculated with the amount of carriers in region I
and the amount of free states in region III [35]
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J =
qm

2πh̵3 ∫ fINIT (1 − fIII )NIIIdE, (2.28)

with the Fermi-Dirac distributions fI/III and the density of states NI/III in the respective
regions.

2.4 Tunnelling Events

There are several possible tunneling events that can occur in semiconductors. In this section
a short overview is given with a more detailed description of the tunneling events happening
within the TFET.

Figure 2.14 illustrates the occurring events to pass a energy barrier. The first one is the
conventional overcoming of the barrier due to thermionic emission. The carrier gains more
energy than the energy barrier and passes above it. The following events are all linked to
single-band barrier tunneling, like gate insulator tunneling. The most simplest form is the
direct barrier tunneling at low energy levels, where the barrier thickness is the largest. If
defect states (traps) are present in the forbidden region of the barrier a trap-assisted tunneling
(tat) is possible, therefore the carrier gains energy till it has the same energy-level as the trap,
which enables a tunneling into it. From the trap, a second tunneling step happens to the
other side of the barrier. If the carrier gains enough energy to reach the region where the
energy barrier thickness decreases (triangular area) and a tunneling event occurs, this is called
Fowler-Nordheim (FN) tunneling [35]. Through the decreasing barrier thickness for higher
energy levels, the tunneling probability is increasing successively, which enables the tunneling.
Additionally, there is a combination of FN and trap-assisted tunneling.

In the TFET no single-band events occur, but instead band-to-band tunneling dominates.
Figure 2.14 also illustrates the two important band-to-band tunneling events. Direct tunneling
is possible in the region, where the bands overlap and a tunneling through the forbidden region
occurs. Similar to the single-band tunneling, here also a trap-assisted tunneling is possible for
carriers with the same energy level as the trap. They can emit into the trap and subsequently
tunnel onto the right-hand band.
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Figure 2.14: Single- and band-to-band tunneling events: Fowler-Nordheim (FN), trap-assisted
tunneling and direct tunneling. Carriers can overcome the barrier with thermionic emission.

2.4.1 Trap-Assisted-Tunneling

In order to calculate the trap-assisted tunneling probability, it is important to know where the
traps occur and how they are distributed at this position. Within the TFET, the traps are
located at the source/channel and drain/channel junction of the device [46]. One of the reasons
for that is the transition of the heavily doped source and drain region to the undoped channel.
The lattice mismatch in this transition regions generates defects, which lead to states within
the band-gap of the semiconductor where carriers are allowed to emit into. The different trap
types can be occupied by electrons, holes or no carriers at all. The carrier amount that can
emit to a defect in a specific time is described with the carrier emission rate e [37].

Figure 2.15: Schematic band-structure at the source/channel junction showing the trap distri-
bution for the trap-assisted tunneling mechanism.

Figure 2.15 shows the exponential trap distribution NT with the maximum trap concentration
NTmax. For the distribution within the band-gap (0 ≤ ∆E ≤ Eg) stands [47]
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NT = NTmax ⋅ exp (− ∆E

n ⋅ kT
) , (2.29)

with a positive integer number n. To show the density of trapped carriers NTc, the trap
distribution can be coupled with the Fermi distribution (either electrons or holes) [47]

NTc = NT ⋅ f. (2.30)

For calculating the trap-assisted tunneling probability Ttat, the WKB-approximation from
equation (2.27) can be used. In the last step, the trap-assisted tunneling calculation differs
from the band-to-band based one due to the limited trap states and emission rate on one side
of the barrier [48]. The tat current density Jtat is given with

Jtat = q

Ec

∫
Ev

Nt ⋅ e ⋅ Ttat ⋅ fII ⋅ dE. (2.31)

2.5 Working Principle

The working principle of the TFET can be explained by means of its band-structure. Therefore,
the bands along the x-cross-section, shown in figure 2.16 (a), are investigated. The cross-section
is chosen to be directly below the gate insulator since here the electrostatic influence of the
gate electrode on the channel region is the biggest, which results in the highest current density
in the device. Figures 2.16 (b) - (d) show the three different states of the n-TFET.
Before explaining the working principle, some remarks regarding the band-structure are neces-
sary. The high p-doping in source region leads to a degradation of the semiconductor, therefore
the bands are shifted in such a drastic way, that even the valence band Ev is energetically
above the Fermi level EF . A similar behavior can be seen in the drain region, only here the
degradation is smaller due to the reduced drain doping and the conduction band Ec is shifted
below the Fermi level for n-type doping. Because of the intrinsic channel region, here the Fermi
level is directly in the middle of the band-gap.

The first band-structure in figure 2.16 (b) shows the operating regime of the n-TFET: the
on-state. A positive gate bias Vg shifts the bands in the channel region downwards. At the
source/channel interface an overlap of the valence band in source region and the conduction
band in the channel region occurs. The higher the gate voltage, the bigger the overlap and
the smaller becomes the horizontal distance between the bands. This small distance and the
steepness of the bands correlate directly with the probability of electron band-to-band tunneling,
and with that, the on-state current.

By reducing the gate voltage, the band overlap at both channel junctions disappears and
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(a) cross-section (b) on-state

(c) off-state (d) ambipolar-state

Figure 2.16: (a) x-cross-section for band-structure illustration. Schematic band-structure
of a n-TFET in (a) on-state, (b) off-state and (c) ambipolar-state. On-state: b2b-current at
source/channel interface. Off-state: tat-current at channel interfaces. Ambipolar-state: b2b-
current at drain/channel interface.

the device enters the off-state shown in figure 2.16 (c). For an idealistic device the current
would be 0 in this state. However, in fabricated devices an off-current occurs, which worsens
the subthreshold slope and the on/off-ratio. During the fabrication of the device, interface
defect states (traps) occur at the channel junctions due to the lattice mismatch caused by the
doping. These defects express themselves as traps in the bandgap, which can be occupied by
carriers with the help of thermionic emission. Once a trap is occupied by a carrier, it has the
possibility to horizontally tunnel along to the channel region of the device, thus creating a
leakage trap-assisted-tunneling current. This effect firstly occurs with electrons for higher gate
biases at the source/channel junction and then is superseded by holes at the drain/channel
junction for lower gate biases.

The last band-structure in figure 2.16 (d) shows a typical TFET effect caused by the symmetry
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of the device: the ambipolar-state. Similar to the on-state a band overlap occurs at the
drain/channel junction of the device. Only here the conduction band of the drain region
overlaps with the valence band of the channel region. Another difference is the tunneling carrier
type. Here holes are enabled for direct band-to-band tunneling. This ambipolarity of the
TFET is an undesired effect, since it does not occur in the MOSFET and it causes problems
in circuit development and design. Different approaches already are investigated to suppress
the ambipolar behavior of the TFET [49]. The easiest way to do so, is the reduction of the
drain doping concentration, because no changes in the devices geometry have to be made. A
reduction of the drain doping results in an increased tunneling distance at the drain/channel
junction as shown in figure 2.16 (d) and hence, a reduced ambipolar current. Other possibili-
ties introduced in [49] are the implementation of a gate-underlap to reduce the electrostatic
influence of the gate on the drain/channel junction to increase the tunneling distance. The
implementation of low-κ gate insulators on the drain-related half of the channel also leads to a
reduction of the gate influence in this region and does not require a change in device geometry.
Another way to suppress the ambipolar current is by using lateral hetero-structures with wide
band-gaps, although this method is too complicated compared to the alternative approaches [49].

Another distinctive behavior of the TFET is the asymmetric source/drain conduction [50]. As
a result of the different drain doping type, the source and drain contact are not interchangeable
like in the MOSFET. For a positive drain voltage the drain/channel diode is reversed biased,
providing a tunneling current at the source/channel interface depending on the gate voltage.
By reducing the drain bias the drain/channel diode is forward biased, showing a conventional
diode behavior, where the gate bias has an influence on the barrier conduction. This effect
leads to an unidirectional behavior of the TFET as shown in figure 2.17. Therefore, some of
the conventional MOSFET circuit designs (like the 6T SRAM cell design) are not feasible with
the TFET. However, this alternative behavior gives access to new circuit design approaches
[51, 52].

Figure 2.17: Comparison of the MOSFET and TFET output characteristics. The asymmetric
structure of the TFET leads to an unidirectional behavior for negative Vds [50].
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CHAPTER 3

Mathematical Basics

The potential and electric field solution of the TFET form the basis of the current calculation
and have to be modeled accurately. There are different approaches to calculate the potential in
a given structure but with increasing complexity of the structure, the calculation gets more
complicated and may even not be solvable in a closed form. In this work, the method of
conformal mapping is applied to simplify a given structure by transforming it into a different
plane, where a potential solution can be obtained more easily.

In this chapter the mathematical basics for the potential and electrical field calculation are
explained. In section 3.1 the Poisson and Laplace equation are introduced. They form the
basis of the complex potential theory, introduced in section 3.2, where the complex potential is
spited in a real potential part and an imaginary dielectric flow part. The theory of conformal
mapping of a complex potential is introduced in section 3.3. Finally the potential determination
is explained in section 3.4.

3.1 Poisson’s and Laplace’s Equation

The basic equation to achieve a potential solution for a given electrostatic problem is a partial
differential equation based on the Maxwell equations: The Poisson equation. It gives the
relation between a potential Φ and electric field E with a charge density ρ, which causes the
potential and electric field. For a charge density in a given material (here Si) the electric field
stands with [53]

∇E(x,y,z) = ρ(x,y,z)
ε0εSi

. (3.1)

The potential and electric field also have a divergence relationship, which can be expressed
with [53]

∆Φ(x,y,z) = −∇E(x,y,z) = −ρ(x,y,z)ε0εSi
. (3.2)

31
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∇ and ∆ stand for the derivations in all directions:

∇ =
d

dx
+
d

dy
+
d

dz
(3.3)

∆ =
d

2

dx2 +
d

2

dy2 +
d

2

dz2 . (3.4)

Based on equation (3.2) the Poisson solution can be obtained by integrating over the charge
density ρ in a defined volume V and adding the surface charge σ at the boundary of this volume
[53]

Φ(x,y,z) = 1
4πε ∰

V

ρ(r)
r dV +

1
4πε ∯

S

σ(r)
r dS. (3.5)

If there is no charge density within the volume ρ = 0, Poisson’s equation becomes Laplace’s
equation [53]

∆Φ(x,y,z) = 0. (3.6)

Functions Φ(x,y,z) which satisfy the Laplace equation in a defined space (3.6) are called har-
monic functions in this space [53]. These harmonic functions have specific properties. They are
able to be superposed and the Dirichlet and Neumann conditions are valid [54].

The Dirichlet condition says, that a harmonic function Φ in a defined volume V reaches the
boundary condition Φv, when approaching the volume boundary. This means there are no kinks
in potential in the transition of volume and boundary. The boundary condition is clearly solvable.

The Neumann condition says, that the derivation of a harmonic function Φ in normal direction
at the surface S of a defined volume V has to match a predefined value (dΦ/dn)∣S . This means
there are no kinks in the normal components of the electric field in the transition of volume
and boundary. This boundary condition is clearly solvable as well.

It is important to know, that these boundary conditions can be mixed for a single Volume,
where in one area Dirichlet boundaries are applied and in another area Neumann conditions
are valid.
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3.2 Complex Potential

This section explains the basics of the complex potential theory. With the help of complex
analysis, it is possible to calculate potential solutions for a simple geometry and to illustrate
equipotential lines and lines of force for a given problem. The basic idea is to find an
expression for a complex function F , where the real and imaginary part both fulfill the
Laplace’s equation (3.6) and are perpendicular to each other (like equipotential lines Φ = const

and −→E-field). By applying boundary conditions for a given problem, the potential can be solved
and the equipotential lines illustrated [53]. Firstly a complex function F is introduced.

w = F (z) = Φ(x,y) + jΨ (x,y), (3.7)

where z is a complex variable z = x+ jy, Φ and Ψ are real functions. With this complex function
a curve in z-plane is directly mapped to another curve in the new w-plane. This mapping
is conform or vise versa and the angle is preserved during mapping. Figure 3.1 illustrates
a mapped equipotential line. Since Ψ is perpendicular to the equipotential line and for the
electrical field stands: −→E = −∇Φ. Therefore, Ψ0 stands for an −→

E-field line.

Figure 3.1: Mapping of a complex potential from z-plane to w-plane. Perpendicularity in
both planes is given for Φ and Ψ .

If specific boundary conditions are defined in z-plane, the same conditions are valid in w-plane.
Furthermore, the curve behavior has to be mapped as well. If a curve in z-plane changes
continuously ∆z, the corresponding curve in w-plane has to change accordingly ∆w.

The necessity of the perpendicularity of the functions Φ and Ψ is granted if the complex function
F is analytic [53]. This implies, that F is also differentiable, meaning that the limit

∂F

∂z
= lim

∆z→0

F (z +∆z) − F (z)
∆z

(3.8)

= lim
∆x,∆y→0

(∂Φ
∂x

+
∂Ψ

∂x
)∆x + j (−∂Φ

∂y
+
∂Ψ

∂y
)∆y

∆x + j∆y
(3.9)
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is unique and independent of the direction of ∆z. This can be achieved by setting ∆y = α∆x,
thus α identifies as direction of ∆z. The limit from equation (3.9) then reduces to [53]

∂F

∂z
= lim
∆x→0

(∂Φ
∂x

+
∂Ψ

∂x
) + j (−∂Φ

∂y
+
∂Ψ

∂y
)α

1 + jα . (3.10)

Independency from α is only given if the bracket terms from equation (3.10) are equal [53]:

∂Φ

∂x
+
∂Ψ

∂x
= −

∂Φ

∂y
+
∂Ψ

∂y
(3.11)

or

∂Φ

∂x
=
∂Ψ

∂y
,

∂Φ

∂y
= −

∂Ψ

∂x
(3.12)

The equations (3.12) are the Cauchy-Riemann differential equations. They grant perpen-
dicularity between Φ and Ψ and indicate an analytic function. They also fulfill Laplace’s
equation (3.6).
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3.3 Conformal Mapping

In this section the conformal mapping is introduced. It is used to transform a rather complicated
domain D in z-plane onto a simpler domain D

∗ in w-plane with the help of an analytic
transformation function t

−1(z). In w-plane the complex potential F̃ (w) can be solved more
easily:

F̃ (w) = Φ̃(w) + jΨ̃ (w), (3.13)

whereby the real Φ̃ and imaginary Ψ̃ parts have to satisfy Laplace’s equation (3.6) and boundary
conditions in w-plane [55]. Figure 3.2 illustrates the mapping of D in z-plane onto D∗ in
w-plane with the help of t−1(z). The boundary condition Φ0 is mapped as well.

Figure 3.2: Conformal mapping of a domain D in z-plane onto a domain D∗ in w-plane with
help of the complex transformation function w = t

−1(z). The boundary condition Φ0 is mapped
as well. The complex potential F̃ (w) is easily solvable in w-plane. The complex potential F (z)
in z-plane from equation (3.7) is derived by the inverse transformation F (z) = F̃ (w = t

−1(z)).

After solving the complex potential F̃ (w) in w-plane, the complex potential F (z) in z-plane can
be derived by the inverse transform [55]

F (z) = F̃ (w)∣w=t−1(z). (3.14)

The real potential is given within the real-part of the complex potential F (z)

Φ(x,y) = Re(F (z = x + jy)). (3.15)

3.3.1 Mapping of a Closed Polygon

After describing the general purpose of the conformal mapping technique in section 3.3, this
section is focused on the complex transformation function t(w), which is the key of this technique.
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Depending on the geometry which is going to be mapped, the transformation function differs.
Since the focus in this thesis lays on a double gate TFET structure, the transformation
function should be valid for a closed polygon. Figure 3.2 shows such a closed polygon in
z-plane with the assumption that the points 1′ and 1′′ extend to infinity (meet in infinity) [55].
The transformation function, which can be used for such a case, is called Schwarz-Christoffel
transformation. The mapping is firstly done from w- to z-plane, since the complex potential
solution is calculated in w-plane. The desired link from a position in z-plane to the complex
potential solution F̃ (w) follows later in section 3.3.2.
Firstly, at this point, the transformation maps a domain D∗ in the upper half of the w-plane,
where a potential solution can be easily determined onto the domain D of a closed polygon in
z-plane, for which a potential solution should be obtained, thereby the real axis in w-plane
is directly mapped onto the edges of the polygon. Therefore, the derivation dz/dw of the
transformation function t(w) is calculated [55]

dz

dw
= C(w − w1)−γ1 (w − w2)−γ2 ...(w − wn)−γn

= C∏
i

(w − wi)−γi . (3.16)

The corner points of the polygon from figure 3.2 are given with zi = t(wi), whereby πγi describes
the change of angle at said corner. The closed region always has to be on the left side [55].
The points 1′ and 1′′ are not considered by the mapping function. In order to obtain the
transformation function t(w), equation 3.16 is integrated

t(w) = C ∫ ∏
i

(w − wi)−γidw +E. (3.17)

E describes the origin of the z-plane. The paramters of the conformal mapping function t(w)
can be calculated by finding relations with the z-plane. The distance of the two parallel edges
of the polygon in figure 3.3 can be calculated by defining the angle for the last factor γn = 1
(=̂180◦), for which zn =∞ [53]

z
′

n − z
′′

n = jπC∏
i≠n

(w − wi)−γi . (3.18)

Figure 3.3: Angle definition for an infinite rectangle.
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In the case for point 1 in figure 3.2 wn = ±∞ on the real axis in w-plane is defined, therefore
the distance can be calculated by [55]

z
′

n − z
′′

n = jπC. (3.19)

With N corner points of a polygon, the integration constants C, E from the transformation
function (3.17) and the points in w-plane wn, there are N + 2 unknown parameters, from which
three are freely selectable. The remaining N − 1 parameters can be calculated with the help of
equation (3.18) and (3.19) [55].

When all paramters in w-plane are chosen in a way that the integral expression from equa-
tion (3.17) is integrateable in closed form, then the inverse function from t(w) enables the
desired calculation of a w-plane position with z-plane coordinates:

w = t
−1(z). (3.20)

3.3.2 Double-Gate Structure Mapping

Firstly, the double-gate structure has to be decomposed from a four corner problem into two
two corner problems, namely source- and drain-related case. With the Schwarz-Christoffel-
transformation from equation (3.17), the transformation function of an unlimited expanding
double-gate structure can be found. Therefore, the corner points of the structure in z-plane
are linked to specific locations on the u-axis in w-plane: z1 = ∞ to w1 = ±∞ with γ1 = 1, z2

to w2 = −1 with γ2 = 1/2, z5 to w5 = +1 with γ5 = 1/2. The boundary conditions Φs and Φg are
mapped as well. Over the insulator, between points 2/3 and 4/5, the boundaries are assumed
to be linear Φlin. Figure 3.4 illustrates the original and mapped geometry. Here only the
decomposed source-related case is shown but the mapping for the drain-related case is also
done later in this section.

Figure 3.4: Mapping of the source-related double-gate structure from z- to w-plane, including
boundary conditions Φg , Φs. The boundaries over the insulator between points 2/3 and 4/5 are
assumed to be linear Φlin. Specific points in w-plane are chosen for the mapping of the edges of
the structure: z1 = ∞ to w1 = ±∞ with γ1 = 1, z2 to w2 = −1 with γ2 = 1/2, z5 to w5 = +1 with
γ5 = 1/2.
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With the chosen point definition, the derivative of the transfer function z = t(w) can be expressed

dz

dw
=

C√
w − 1 ⋅

√
w + 1

. (3.21)

Through integration, the transformation function reads

z = t(w) = C ⋅ cosh−1(w) +E (3.22)

The origin of the coordinate system is irrelevant and therefore E = 0. The factor C can be
calculated with the distance of the parallel lines (device thickness tdev from fig. 3.4) from
equation (3.19)

C =
z
′

1 − z
′′

1
jπ

=
tdev
π . (3.23)

With all constants solved, the transformation function is expressed with

z = t(w) = tdev
π ⋅ cosh−1(w). (3.24)

At this point the domain D∗ in w-plane from figure 3.4 can be linked with D in z-plane. Now
only a function w = t

−1(z) is missing, mapping D in z-plane to D∗ in w-plane, so all boundary
conditions and the original structure given in z-plane can be mapped as well. Only if this
function exists, the mapping is truly conform. It can be calculated with the inverse function
t
−1 of the transformation function t:

w = t
−1(z) = cosh (π ⋅ z

tdev
) (3.25)

With the help of the inverse transformation function t−1(z) from equation (3.25), the corner
points of the structure in figure 3.4 are mapped. For the drain-related case, the structure in
z-plane is mirrored at the y-axis and the point definition is vice versa, since the mapped area
always has to be on the left hand side. In w-plane the positions on the u-axis stay the same.
For mapping the points in z =∞ a distance was chosen to fulfill the lch > t condition: z = 3 ⋅ lch.

Table 3.1: Conformal mapping of source- and drain-related DG-structures

z−Plane Point Source − Related Drain − Related w−plane Point

1
′

(3 ⋅ lch ∣ tch + 2 ⋅ t̃in) (−2 ⋅ lch ∣ 0) u1
′

2 (0 ∣ tch + 2 ⋅ t̃in) (lch ∣ 0) u2

3 (0 ∣ tch + t̃in) (lch ∣ t̃in) u3

4 (0 ∣ t̃in) (lch ∣ tch + t̃in) u4

5 (0 ∣ 0) (lch ∣ tch + 2 ⋅ t̃in) u5

1
′′

(3 ⋅ lch ∣ 0) (−2 ⋅ lch ∣ tch + 2 ⋅ t̃in) u1
′′
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The points on the u-axis are used in section 4.4 as integration borders for the Poisson integral.
An arbitrary point within the channel region in z-plane for the source-related case can be
expressed with the mapping function t−1(z) from equation (3.25)

ws(z) = u + jv = cosh (π(x + j(t̃in + y))
tdev

) (3.26)

and for the drain-related case stands

wd(z) = u + jv = cosh (π((lch − x) + j(t̃in + y))
tdev

) . (3.27)

3.4 Potential Determination

This section explains the calculation of a complex potential solution in w-plane. As mentioned
before in section 3.3, a potential solution in closed form for a transformed geometry in w-plane
should be easier to obtain than for the original geometry in z-plane. In general, mixed boundary
condition problems (Dirichlet and Neumann) occur for the potential solution of a double-gate
structure. In this work, the boundary conditions are chosen in a way, that only Dirichlet
boundary conditions are used for the potential solution [56].

One method to calculate the desired potential in the D∗ domain of the w-plane (see figure 3.2)
for an arbitrary boundary condition Φ0(u) is with the help of the Poisson’s integral [53]

ϕ(u,v) = 1
π

+∞

∫
−∞

v

(u − u)2 + v2Φ(u) du. (3.28)

The mapped boundary conditions Φ(u) are linked with the z-plane by the inverse transformation
function

Φ(u) = Φ(t−1(z)). (3.29)

If the boundary condition is located on the u-axis in w-plane between two points u1 and u2

then the integral is reduced to:

ϕ(u,v) = 1
π

u2

∫
u1

v

(u − u)2 + v2Φ(u)du. (3.30)

The resulting potential solution ϕ(u,v) can also be directly linked to z-plane coordinates with
the inverse transformation function:

ϕ(x,y) = ϕ(w = t
−1(z)) (3.31)
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3.5 Electric Field Determination

Determining the potential solution is only one part of the necessary electrostatic solution for
the device. Another important part is the calculation of the electric field. The following section
shows the development of a closed form solution of said electric field starting with the basic
idea of a summation of small potential differences using the single-vertex approach followed by
the closed form boundary integral.

Since the boundary conditions only apply on parts of the u-axis in w-plane and superposition
is possible, the following solution is a general approach for two different boundary conditions
on the u-axis with an infinitesimal gap between them. Figure 3.5 illustrates the potential
difference dϕ at the infinitesimal gap u and shows the possibilities of superposing numerous
boundary conditions to realize versatile boundary conditions.

Figure 3.5: Applied boundary conditions in w-plane ϕ1 and ϕ2 with an infinitesimal gap in
between at u = u. With the help of superposition of many dϕ at different positions u, versatile
boundary conditions are implementable.

The single vertex approach describes the complex potential solution F̃ in the desired domain
D

∗ for the simplest case of a potential difference dϕ in one point u [53]

F̃ = Φ̃ + jΨ̃ = dϕ + j
dϕ
π ln(w∗

− u). (3.32)

Hereby the electric field component d−→E caused by the potential difference dϕ is described by
the imaginary part of the complex potential F̃ :

d
−→
E(w) = j dϕπ ln(w∗

− u). (3.33)

Note that w∗ describes the complex conjugated coordinate of a point in D∗ domain in w-plane.
The link to z-plane coordinates is given by scaling the absolute values of the electric field with
the absolute differential value of the mapping function (3.16)

d∣−→E∣(z) =
»»»»»»»
dw

dz

»»»»»»»
⋅
»»»»»»»
dϕ
π ln(w∗

− u)
»»»»»»»
, (3.34)
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with
»»»»»»»
dw

dz

»»»»»»»
=

»»»»»»»
dz

dw

»»»»»»»

−1
. For an increasing amount of potential differences dϕ at different positions

on the u-axis u with an infinitesimal distance between these points du the potential difference
can be written as

dϕ =
∂ϕ(u)
∂u

»»»»»»»»u
. (3.35)

At this point the electric field at any position within domain D∗ can be calculated by integrating
the electric field derivative over the potential change on the u-axis

»»»»»»
−→
E

»»»»»» (z) =
1
π

»»»»»»»
dw

dz

»»»»»»»

»»»»»»»»»»»

+∞

∫
−∞

1
w∗ − u

∂ϕ(u)
∂u

»»»»»»»»u
du

»»»»»»»»»»»
. (3.36)
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CHAPTER 4

Electrostatic Model

With the fundamental basics given in chapter 2 and especially in chapter 3, now the development
of the TFET’s electrostatic model stands in focus. All following calculations of the tunneling
probability and device current require an accurate solution of the potential and electric field,
not only within the channel region of the device, but also in the source and drain extensions.

4.1 Overview

In the beginning of this chapter, an overview of the single calculation segments seems appropriate,
due to the superposition of several potential solutions in different device regions with versatile
boundary conditions. There are some requirements for the electrostatics model that have to be
met. Closed form expressions for the potential in source, channel and drain region are needed
to properly model hetero structure TFETs, thereby it is important that there are no constant
boundary conditions at the channel junctions (overestimation of the current in channel mid)
but a parabolic condition which reflects the smaller gate influence on a deeper channel region.
The same is expected on the other ends of the channel junctions, the source/drain potential
extensions. Figure 4.1 illustrates these requirements. A continuous potential solution in source,
channel and drain region (smooth black line) with parabolic boundaries at the channel junctions
(blue and red line). To achieve this result, the potential solution is separated in six parts in
section 4.3 plus one additional model to implement Gaussian-shaped doping profiles at the
channel junctions in section 4.4.3. Four of those six parts are needed for the calculation of the
channel potential, which is split into two source-related and two drain-related solutions. These
are again split in solutions with constant (section 4.4.1.1) and parabolic boundary conditions
(section 4.4.1.3). The source/drain potential extensions are introduced in section 4.4.2. Based
on the device’s potential solution, the band-structure is estimated in section 4.5. The electric
field is obtained for the channel region of the device in section 4.6.

43
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44 4 Electrostatic Model

Figure 4.1: Composition of the device’s potential solution including the 4-part channel po-
tential with constant and parabolic boundary conditions for source- and drain-related cases re-
spectively as well as source/drain extensions. E-field solution for the channel region. Additional
potential adjustment to consider Gaussian-shaped doping profiles at the channel junctions.
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4.2 Preliminary Considerations

Some preliminaries are made to keep mathematics as simple as possible. The intrinsic channel
of the TFET allows the consideration of the absence of channel charges. In a first step the
inversion and depletion charges are neglected as well which leads to the simplification of
Poisson’s equation (3.2) to Laplace’s equation (3.6) [55]:

∆ϕ ≈ 0. (4.1)

The second simplification relates to the discontinuity of the electric field caused by the gate
insulator. This discontinuity can be neglected by scaling the insulator thickness according to
the relation of the permittivity of the insulator εin and the permittivity of the channel material
εch. The discontinuity in electric field at the insulator/channel interface (E0 = const) has to be
avoided, with [55]

Din = ε0εch ⋅E0 = ε0εin ⋅Ein = ε0εin ⋅
Vin
tin

. (4.2)

Din stands for the dielectric displacement and Vin is the voltage drop over the insulator. By
scaling tin to

t̃in =
εch
εin

⋅ tin (4.3)

the electric field E0 has no discontinuity

Din = ε0εch ⋅E0 = ε0εch ⋅
Vin

t̃in
. (4.4)

The next assumption is linked to the Fermi-level near the channel junctions. Since tunneling
takes place within the first few nanometers at the channel junctions and the Fermi level is
almost constant in that region, the simplification of a constant Fermi-level near the channel
junctions is made. This assumption affects the calculation of the carrier distributions in the
channel region of the device.

Since the device’s electric field is calculated within the channel region, the Richardson constant
(A∗) for the current calculation is replaced with [35]

A
∗
=
µn/p ⋅NC/V ⋅ q ⋅ ∣E∣

T 2 , (4.5)

with electron/hole mobility µn/p, effective density of states in conduction/valence band NC/V

and the temperature T .
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4.3 Boundary Conditions

In this section the boundary conditions for the different parts of the potential solution are
introduced. Figure 4.2 illustrates the boundary conditions and their decomposition of an
n-TFET with the applied voltages Vg, Vs and Vd. A direct solution of the channel potential
with applied parabolic boundaries on both junctions plus the gate voltages is mathematically
too complex, hence the calculation has to be simplified. As mentioned before in section 3.1
the potential solution is a harmonic function and fulfills the Laplace’s equation. With that
the method of superposition is possible. Therefore, the boundary conditions of the channel
region can be decomposed to simplify the potential solution. This is done in a way, that two
infinitely expanding regions for the channel are created, a source-related (fig. 4.2 (a,c)) and
drain-related region (fig. 4.2 (b,d)). The parabolic boundary condition at the source/channel
interface, is then again separated in a constant boundary (fig. 4.2 (a)) and a parabolic boundary
(fig. 4.2 (c)). The same is the case in the drain-related region (fig. 4.2 (b,d)). One difference for
the constant boundaries in source- and drain-related case is visible. Since the gate potential
is applied in fig. 4.2 (a), the potential in x = ∞ equals the gate voltage Vg. If the different
potential solutions are now superposed Vg would appear on the drain-side of the channel if it is
not subtracted beforehand like in fig. 4.2 (b). The built-in potentials at source and drain can
be calculated with the help of the intrinsic band structure parameters

Φ
s
bi = − (−Vs +Es +

E
s
g0

2 ) , (4.6)

Φ
d
bi = − (−Vd +Ed −

E
d
g0

2 ) , (4.7)

with the degeneration Es/d and the intrinsic band-gap E
s/d
g0 in source/drain. The built-in

potentials at source and drain serve as one part of the boundary conditions for the source/drain
potential extension in section 4.4.2.
Regarding the boundaries of the channel region, a more complex approach is needed, for which
four potential points have to be calculated accurately: ϕ(0,0), ϕ(0,tch/2), ϕ(lch,0) and ϕ(lch,tch/2),
whereby ϕ(0,0) and ϕ(lch,0) are directly used for the source/drain-related potential solutions
for a constant boundary (fig. 4.2 (a,b)).
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Figure 4.2: Boundary conditions of an n-TFET with built-in potential at source Φsbi and
drain Φdbi side with the applied voltages Vg, Vs and Vd. The channel region including parabolic
boundaries is decomposed into two source-sided cases (a,c) and two drain-sided cases (b,d),
with two constant boundary conditions (a,b) and two solutions with parabolic boundaries (c,d).

The potential distribution at the source/channel junction of the device ϕ(0,y) can be calculated
using the screening length λ(y) from equation (2.20) with an effective built-in potential model
introduced in [57]. In a first step, the long-channel potential at the surface ϕsp is calculated

ϕsp = −(Vg − Vfb − Vin), (4.8)

with the flat-band voltage Vfb and the voltage drop over the insulator Vin, given with

Vin =
q ⋅Nch ⋅ tch ⋅ tin

2 ⋅ εin
. (4.9)

Nch represents the doping concentration within the channel region. Based on equations (2.20), (4.6)
and (4.8) the source/channel junction potential ϕ(0,y) can be calculated [57]
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ϕ(0,y) = Φsbi + (Φsbi − ϕsp) + λ(y)2 ⋅
qNs
εs

⎛
⎜⎜⎜⎜⎜
⎝
1 +

√
√√√√√√√√⎷

1 +
2(Φsbi + Vs − ϕsp)

λ(y)2 qNsεs

⎞
⎟⎟⎟⎟⎟
⎠

(4.10)

At the drain/channel interface the junction potential ϕ(lch,y) can be calculated based on
equations (2.20), (4.7) and (4.8) [57]

ϕ(lch,y) = Φdbi −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(Φdbi − ϕsp) + λ(y)2 ⋅

qNd
εd

⎛
⎜⎜⎜⎜⎜
⎝
1 +

√
√√√√√√√√⎷

1 +
2(Φdbi + Vd − ϕsp)

λ(y)2 qNdεd

⎞
⎟⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.11)

The delta potentials ∆Φs/d for the parabolic boundaries (fig. 4.2 (c,d)) are calculated with the
four potential points:

∆Φs = ϕ(0,0) − ϕ (0, tch2 ) (4.12)

∆Φd = ϕ (lch,
tch
2 ) − ϕ(lch,0) (4.13)

4.4 Electrostatic Potential

With all boundary conditions described in section 4.3, the different potential solutions in all
regions of the device are calculated in this section. Starting with the 2D source- and drain-
related channel potential for constant boundary (sec. 4.4.1.1), linear boundary (sec. 4.4.1.2
and parabolic boundary conditions (sec. 4.4.1.3). Following with the potential extensions in
source and drain (sec. 4.4.2). The last adjustment of the potential due to doping profiles at the
channel junctions is calculated in section 4.4.3. Based on these solutions the band-structure is
evaluated later on in section 4.5.

4.4.1 Channel Potential...

Within this section the potential solution of the decomposed channel structure is explained and
calculated. After the decomposition in source- and drain-related case for constant and parabolic
boundaries in section 4.3, the separated structures are conformally mapped as explained in
section 3.3.2. The potential is firstly solved with constant boundary conditions ϕconst in
section 4.4.1.1, then follows the solution for linear boundaries over the gate insulator ϕlin in
section 4.4.1.2 and at last the solution for parabolic boundaries ϕpara in section 4.4.1.3. The
general approach is to apply Poisson’s integral from equation (3.28) for the different boundary
conditions to obtain a closed form expression for the potential. When all solutions are obtained,
they can be superposed to the closed form 2D channel potential solution
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ϕch = ϕconst + ϕlin + ϕpara. (4.14)

After mapping all important points of the structure in section 3.3.2, where the boundary
conditions are changing, these points are used as integration borders in the Poisson integral (3.28)
with a defined boundary condition between them. Depending on the boundary condition,
different potential solutions are obtained.

4.4.1.1 ...for a Constant Boundary

Constant boundary conditions can be expected if a single voltage is applied to one of the
electrodes of the device (like Vg at the gate). However, they also can be a part of a more
complex boundary, like the constant part of another function (offset of a parabola). All constant
boundaries within the TFET are shown in figure 4.2.

For a constant boundary condition Φconst between two points on the u-axis in w-plane, ua and
ub, the Poisson integral (3.28) is reduced to

ϕconst(w(x,y)) = 1
π

ub

∫
ua

v

(u − u)2 + v2Φconst du = −
Φconst
π tan−1 (u − uv )

ub»»»»»»»»»»
ua

. (4.15)

with a direct link to z-plane through the transformation function w(z). This calculation is done
for all applied constant boundaries shown in table 4.1.

Table 4.1: Potential solutions ϕconst for applied constant boundaries Φconst between two
points on the u-axis ua and ub.

Potential Φconst ua ub

ϕ
g1
const Vg u1

′ u2

ϕ
g2
const Vg u5 u1

′′

ϕ
s
const ϕ(0,0) u3 u4

ϕ
d
const ϕ(lch,0) − Vg u3 u4

The different solutions for constant boundaries are superposed, forming the first part of the 2D
channel potential from equation (4.14)

ϕconst = ϕ
g1
const + ϕ

g2
const + ϕ

s
const + ϕ

d
const. (4.16)
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4.4.1.2 ...for a Linear Boundary

A linear potential drop appears at the insulators of the device, hence a potential solution has
to be obtained for linear boundaries as well. They appear between points 2/3 and 4/5 in the
original structure (see fig. 3.4). For a linear potential drop over the insulator, the electric field
Ein is constant and the potential can be described with Φlin = Ein ⋅ y in z-plane. Mapping this
boundary condition leads to ϕ(u) = Ein

tdev
π cosh−1(u). There is no closed form solution of the

Poisson integral with this boundary, so the cosh−1 function is approximated with a square root
[56]

Ein
tdev
π ⋅ cosh−1(u) ≈ ±

√
u − b
a , (4.17)

which leads to the integral with a closed form solution

ϕlin(w(z)) = 1
π

ub

∫
ua

v

(u − u)2 + v2 ±

√
u − b
a du. (4.18)

The potential is solved for the linear boundaries listed in table 4.2. The different solutions for

Table 4.2: Potential solutions ϕlin for applied linear boundaries Φlin between two points on
the u-axis ua and ub.

Potential Φlin ua ub

ϕ
s1
lin

Vg −ϕ(0,0)
tin

⋅ y +ϕ(0,0) u4 u5

ϕ
s2
lin

ϕ(0,0) − Vg

tin
⋅ y +ϕ(0,0) u2 u3

ϕ
d1
lin

ϕ(lch,0)
tin

⋅ y +ϕ(lch,0) u2 u3

ϕ
d2
lin

−
ϕ(lch,0)
tin

⋅ (y − tch) +ϕ(lch,0) u4 u5

linear boundaries are superposed, forming the second part of the 2D channel potential from
equation (4.14)

ϕlin = ϕ
s1
lin + ϕ

s2
lin + ϕ

d1
lin + ϕ

d2
lin. (4.19)

4.4.1.3 ...for a Parabolic Boundary

Parabolic boundaries occur due to the decreasing electrostatic influence of the gate-electrode
on deeper channel regions at the channel interfaces. They have to be modeled accurately to not
overestimate the device current in later calculations. Figure 4.2 shows the applied parabolic
boundaries for source- and drain-related case. The potential solution for this kind of boundary
is adapted from [58] and is valid for tch << lch. In w-plane the parabola is approximated using
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an elliptical shaped function [58]

ϕ(u) = ∆Φ ⋅
√

1 − u2
. (4.20)

Then the Poisson integral reads as

ϕpara(w(x,y)) = 1
π

ub

∫
ua

v

(u − u)2 + v2∆Φ ⋅
√

1 − u2
du (4.21)

and can be solved to

ϕpara(w(x,y)) = ∆Φ [1
2 (

√
1 − (u − jv)2 +

√
1 − (u + jv)2) − v] . (4.22)

This solution is applied for source- and drain-related case as shown in table 4.3.

Table 4.3: Potential solutions ϕpara for applied parabolic boundaries ∆Φ between two points
on the u-axis ua and ub.

Potential ∆Φ ua ub

ϕ
s
para ϕ(0,0) −ϕ(0,tch/2) u3 u4

ϕ
d
para ϕ(lch,tch/2) −ϕ(lch,0) u2 u3

The two solutions for parabolic boundaries are superposed, forming the last part of the 2D
channel potential from equation (4.14)

ϕpara = ϕ
s
para + ϕ

d
para. (4.23)

With that, the 2D channel potential is complete, and the calculations for the source/drain
potential extensions begin.

4.4.2 Source/Drain Potential Extension

The potential extensions in source and drain area of the TFET are one of the most important
modeling parts. Only with them, an exact tunneling distance can be calculated and they
provide the possibility to model hetero-junction devices. Depending on the applied biases, the
potential drop in source and drain region can easily reach up to 0.5 V. This impact has to
be modeled as accurately as possible. In [59] a model is introduced, which satisfies all these
requirements and hence, is adapted to the TFET.

Firstly, the calculations are done in the source region of the device and then transferred to
obtain the drain potential. Basically, the potential solution is build up on two parabolas along
the x-direction at the surface ϕs(x,0) and the middle of the source region ϕs(x,tch/2). Figure 4.3
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illustrates these two parabolas in green and blue. They are used to model several parabolas in
y-direction, forming the source potential extension.

Figure 4.3: Calculation of the source potential extension based on two parabolas in x-
direction. Scheme of parabolic potential modeling in y-direction at different positions x.

The first step is the calculation of the potential bending distance in source ds and drain
region dd. In [59] an equation for an effective built-in potential model is introduced

−
qNs/d
2εs/d

d
2
s/d −

qNs/dλ

εs/d
ds/d + Φ

s/d
bi − ϕlc + Vs/d = 0, (4.24)

which can be solved for ds/d

ds = −λ +

√

λ2 +
(Φsbi − ϕsp + Vs)2εs

qNs
(4.25)

and

dd = −λ +

√

λ2 +
(Φdbi − ϕsp + Vd)2εd

qNd
, (4.26)

with the screening length λ from equation (2.20) and the long channel surface potential ϕsp
from equation (4.8). With the distances ds/d, the built-in potentials Φs/d

bi
and the potentials
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at the channel junctions ϕsj = ϕ(0,y) and ϕ
d
j = ϕ(lch,y), the general parabolic equations in

x-direction can be described by

ϕ
x
s (x,y) =

ϕ
s
j (y) − Φsbi
d2
s(y)

⋅ (x − ds(y))2 + Φsbi, (4.27)

ϕ
x
d(x,y) =

ϕ
d
j (y) − Φdbi
d2
d
(y)

⋅ (x − (lch + dd)(y))2 + Φdbi. (4.28)

For −lsd ≤ x < ds(y) the potential in source region is given with ϕs = Φsbi and for ds(y) ≤ x < 0
stands

ϕs(x,y) =
ϕ
x
s (x,0) − ϕxs (x,tch/2)

tch/22 ⋅ (y − tch/2)2 + ϕxs (x,tch/2). (4.29)

For (lch + dd(y)) ≤ x < (2lsd + lch) the potential in drain region is given with ϕd = Φdbi and for
lch ≤ x < (lch + dd(y)) stands

ϕd(x,y) =
ϕ
x
d(x,0) − ϕxd(x,tch/2)

tch/22 ⋅ (y − tch/2)2 + ϕxd(x,tch/2). (4.30)

4.4.3 Doping-Profile-Based Potential Adjustment

For a high on-current an abrupt doping profile at the source tunneling barrier is necessary but
technologically difficult to achieve. Therefore, a model is introduced, which captures the impact
of the doping profile steepness on the electrostatics and hence, the device current. The basic
idea is to calculate a potential difference of an abrupt and non-abrupt profile at the tunneling
barrier, in order to adjust the ideal potential solution afterwards. Therefore, the additional
channel charges from the dopants are included into Poisson’s equation.
The definition of the doping profiles is already done in section 2.2.4. By considering the given
boundary conditions expressions for the potential change and the associated electric field have
been found. The resulting parameters from the idealized 1D calculations are adjusted based on
an extensive simulation analysis to include 2D effects. In the following steps, the derivation of
the model is focused on the doping profile at the source/channel junction of the device. The
results are easily transferable to the drain side.

The first step is the definition of a doping profile for the simulation, which is set to a realistic
Gaussian shaped type (see fig. 4.4 a)). In the model the doping profile is assumed to be linear,
depending on the parameter a (see fig. 4.4 a)). The delta doping of donators in source Np is
shown in fig. 4.4 b) and can be described for 0 ≤ x ≤ a through

Np(0 ≤ x ≤ a) = Nlin −Nideal = N0
s ⋅

a − x
a . (4.31)
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Figure 4.4: a) Gaussian-shaped (red dots), linear Nlin (green line) and ideal doping profile
Nideal (orange dashed line) at the source/channel junction, showing the standard deviation σ
and model parameters a, b. b) Delta doping profile Np =Nlin−Nideal, describing the difference
between an linear- and the ideal doping profile c) Schematic change of the electric field Ep due
to additional charges in the channel region. d) Schematic potential difference ϕp calculated by
the model.

In order to find the potential solution, Poisson’s equation is decomposed to

∆ϕ̃ = −
%(x)
ε = ∆ϕideal +∆ϕp, (4.32)

with the potential for a non-ideal (ϕ̃) and ideal (ϕideal) doping profile, note that ∆ stands for
the Laplace operator. The potential difference is given with ϕp = ϕ̃ − ϕideal. Figure 4.5 shows
the decomposition of the potential distribution for the non-ideal doping profile.

Figure 4.5: Decomposition of the potential for non-ideal doping profiles ϕ̃ into ideal ϕideal
and delta potential ϕp, showing intervals for model derivation.

The potential difference originates from the additional dopants within the channel and can be
described through

∆ϕp = −q ⋅
Np(x)
ε , (4.33)

with the linear delta doping profile Np from equation (4.31). In the next step, the boundary
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conditions are defined in order to calculate the potential and electric field differences. The
potential difference has to be zero at the junction, and at a certain point within the channel
region b (see fig. 4.4 d))

ϕp(0) = 0, (4.34)

ϕp(b) = 0. (4.35)

Furthermore, ϕp is continuous and has a smooth transition between interval I and II (see
fig. 4.5). The electric field is considered constant in interval II (see fig. 4.5 c))

ϕpI (a) = ϕpII (a), (4.36)

EpI (a) = EpII . (4.37)

For solving Poisson’s equation in interval I the electric field change is calculated

−EpI (x) =
dϕp(x)
dx

= −
q ⋅Ns
ε ⋅ a (a ⋅ x − x

2

2 ) +Ep(0), (4.38)

with the electric field offset value Ep(0). In interval II the doping difference is Np(x) = 0.
Therefore, stands

−EpII (x) =
dϕp(x)
dx

= −EpI (a). (4.39)

The Poisson’s equation can be solved, assuming the electric field and the potential to be
continuous over the channel length. Therefore, the potential difference in interval I (see fig. 4.4
d)) is given through

ϕp(x) = −
q ⋅Ns
ε ⋅ a (a2 ⋅ x

2
−

1
6 ⋅ x

3) +Ep(0) ⋅ x (4.40)

and in interval II a linear potential drop can be calculated with

ϕp(x) = ϕ(a) − (q ⋅Ns2 ⋅ ε ⋅ a −Ep(0)) (x − a). (4.41)

The electric field at x = 0 can be evaluated by applying the boundary conditions mentioned in
equations (4.34) to (4.37):

Ep(0) = q ⋅Ns/(ε ⋅ b) ⋅ (ab/2 − a2/6). (4.42)

Due to the 2D influence of the gate electrode on the channel region the closer the additional
dopants Np are to the gate insulator, the more they are gate-controlled. An extensive TFET
simulation analysis showed, that this effect can be captured by coupling parameter a with the
doping profile standard deviation σ and the position y in the channel [60]:

a ≈ −
σ ⋅ (c1 − 1)
(tch/2)4 ⋅ (y − t/2)4 + c1 ⋅ σ, (4.43)
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with 1 < c1 < 1.5. The analysis also revealed a dependency of the channel and insulator thickness
on b

b ≈ tch ⋅ π/4 + t̃in, (4.44)

with the scaled insulator thickness t̃in from equation (4.3). Additionally, to the idealized
calculations a shifting of ϕp is needed in order to capture the existing potential drop in source
region. Therefore, stands

ϕp(x) = ϕp(x − xshift). (4.45)

The doping profile at drain region ϕn can be captured by substituting Ns with Nd and mirroring
at x = lch/2

ϕn(x) = ϕp(lch − x) ∣Ns=Nd
. (4.46)

The overall device potential ϕ can now be put together with different solutions for the channel
potential from section 4.4.1, the source and drain potential extension from section 4.4.2 and
doping-profile-based potential adjustment from this section

ϕ = (ϕs + ϕch + ϕd) + ϕp + ϕn. (4.47)

At this point the electrostatic potential for the whole device is complete and includes 2D effects,
as well as doping profiles at the channel junctions. The next step is the calculation of the
band-structure in section 4.5.

4.5 Band-Structure

The band-structure of the device is needed to properly calculate the tunneling probability and
hence, the device current. Especially for hetero-junction devices it is important to consider the
band structure, since here kinks may occur due to different material dependent parameters.
For the calculation, the potential solution from section 4.4 forms the basis. With the material
dependent parameters: electron affinity X, band-gap Eg including bgn and the intrinsic band-
gap E0

g for each region, the band structure can be calculated. At this point, it is necessary to
consider band-gap narrowing, since source and drain region are heavily doped. If the doping
density exceeds a specific limit, the dopants have influence on the band-gap of a semiconductor
depending on the semiconductor material, doping element and doping concentration. The
implemented bgn models are introduced in section 2.2.6.
With the given potential ϕ of the device the valence band Ev and conduction band Ec in each
region is calculated (see fig. 4.6).
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E
s
v = −ϕ − E

0
g,s/2 ∣−lsd<x<0

E
s
c = Ev,s +Eg,s ∣−lsd<x<0

E
ch
v = −ϕ +Xs −Xch − E

0
g,ch/2 ∣0<x<lch

E
ch
c = Ev,ch +Eg,ch ∣0<x<lch

E
d
c = −ϕ +Xs −Xd + E

0
g,d/2 ∣lch<x<(lch+lsd)

E
d
v = Ec,d −Eg,d ∣lch<x<(lch+lsd) (4.48)

Figure 4.6: Schematic band structure of a DG n-TFET showing the potential solution ϕ,
Fermi level EF , intrinsic Fermi level EFi, valence band Ev, conduction band Ec, vacuum level
Evac and the different device parameters. A hetero-junction at the source/channel interface
leads to a kink in the conduction band (+bgn). band-gap narrowing in the drain region causes
the kink at the drain/channel junction.
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4.6 Electric Field

This section shows the closed form calculations of the electric field, based on the single-vertex
approach firstly introduced in section 3.5, which leads to an expression for the electric field based
on non-constant boundary potentials in equation (3.36). There are four boundary conditions
which fulfill these requirements. The linear potential boundaries over the top and bottom gate
insulators for source- and drain-related case are introduced in section 4.4.1.2.

Firstly, the definition of the potential change in equation (3.36) has to be replaced with the
given potential distribution within the insulator [56]

∂ϕ(u)
∂u

»»»»»»»»u
du =

∂y

∂u

∂ϕ

∂y
du, (4.49)

whereby ∂y

∂u
can be replaced by using the conformal mapping function (3.24):

∂y

∂u
=
tdev
π

1√
1 − u2

(4.50)

and since the potential change over the insulator is linear a constant electric field −→Ey is present,
which is used as boundary condition for the later calculations

∂ϕ

∂y
=
−→
Ey = const. (4.51)

The integration of equation (3.36) over a linear boundary with the substitutions from (4.50)
and (4.51) leads to the electric field solution [56]

»»»»»»
−→
E

»»»»»» (z) =
1
π

»»»»»»»
dw

dz

»»»»»»»

»»»»»»»»»»»»

−→
Ey

ub

∫
ua

1
w∗ − u

tdev
π

1√
1 − u2

du

»»»»»»»»»»»»
=

1
π

»»»»»»»
dw

dz

»»»»»»»

»»»»»»»»»»»

−→
Ey [− tdevπ

C√
1 − (w∗)2

]
ub

ua

»»»»»»»»»»»
(4.52)

with

C = ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√
u

2 − 1 + (u ⋅ w∗ − 1)
√

1
(w∗)2 − 1

u − w∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that w∗ describes the complex conjugated coordinate of a point in D∗ domain in w-plane.
The electric field is solved for the linear boundaries listed in table 4.4.

The different solutions for the electric field are superposed, forming the 2D channel electric field
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Table 4.4: Electric field solutions E for applied linear potential boundaries resulting in con-
stant electric fields Ey between two points on the u-axis ua and ub

E − Field
−→
Ey ua ub

−→
E

s1 −
Vg − Vfb −ϕ(0,tch)

t̃in

u4 u5

−→
E

s2 −
Vg − Vfb −ϕ(0,0)

t̃in

u2 u3

−→
E

d1 −
Vg − Vfb −ϕ(lch,tch)

t̃in

u2 u3

−→
E

d2 −
Vg − Vfb −ϕ(lch,0)

t̃in

u4 u5

−→
E =

−→
E
s1 +

−→
E
s2 +

−→
E
d1 +

−→
E
d2 . (4.53)
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CHAPTER 5

Tunneling Probability

Based on the calculations for the device electrostatics in chapter 4 and especially the band-
structure in section 4.5, this chapter deals with the estimation of the different tunneling
probabilities and their pre calculations. A first introduction of the tunnel effect and the
different tunneling events is given in section 2.3 and 2.4.

In the beginning of this chapter, the occurring tunneling events within the TFET are investigated
in section 5.1, followed by the calculation of a quasi 2D WKB approach to estimate the tunneling
probability in section 5.2. The application of this approach is done in section 5.3 for band-to-
band tunneling and in section 5.4 for trap-assisted-tunneling.

5.1 Tunneling Events in Tunnel-FETs

There are four different tunneling events occurring in all different states of the TFET. It is
important to know that the tunneling events are not necessarily displacing each other by passing
through the states instead they are omnipresent. Single tunneling events are only predominant
in a specific bias range. Figure 5.1 illustrates the predominant tunneling events for each state
and indicates the omnipresence in the resulting current transfer characteristics. In the on-state
the band-to-band tunneling at the source/channel interface prevails T sb2b. In the transition
from on- to off-state, the trap-assisted-tunneling at the source side increases T stat, which is then
overtaken by the tat at the drain side T dtat in the transition from off- to the ambipolar-state.
The band-to-band tunneling at the drain side T db2b is predominant in the ambipolar-state.
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62 5 Tunneling Probability

Figure 5.1: Predominant tunneling events in the three states of the TFET. T sb2b in on-state,
T
s/d
tat in off-state and T db2b in ambipolar state. The omnipresence of all events is indicated in the

resulting current transfer characteristics.

5.2 Quasi 2D WKB Approach

The WKB approximation is firstly introduced in section 2.3 as a method for estimating a
tunneling probability through a rectangular barrier. The more complex tunneling barrier shapes
within the TFET are simplified to numerous triangular problems, in order to apply the WKB
approximation.

For the calculation of the tunneling probability for all different tunneling events, a general
quasi 2D WKB approach is introduced. Since the WKB expression (2.27) is integrated over
the barrier, some assumptions have to be made [61].

T ≈ exp
⎛
⎜⎜
⎝
−2

x2

∫
x1

[2m
h̵2 (U (x) −Ecar)]

1/2

dx
⎞
⎟⎟
⎠

(5.1)
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5.2 Quasi 2D WKB Approach 63

The calculations are firstly explained in figure 5.2 for b2b tunneling in the on-state of the
device but are also valid for the other tunneling events. By considering a tunneling path from
a point in source region a to a point on the same energy level in channel region b, a triangular
barrier can be defined with the help of the electric field (potential slope) at point b. Thereby,
the electric field is assumed to be constant over the tunneling length ltun

U (x) = −q∣−→E(b)∣ ⋅ (x − b) (5.2)

which results in the barrier height hbar at position a U (a) = −q∣−→E(b)∣ ⋅ −ltun = hbar and U (b) = 0.
By using the electric field in the channel region to create the triangular profiles, more realistic
tunneling barriers are created. If only carriers are taken into account on the same energy level
as a and b, then Ecar = 0 and the tunneling probability is reduced to

T ≈ exp
⎛
⎜
⎝
−2

b

∫
a

[2m
h̵2 (−q∣−→E(b)∣ ⋅ (x − b))]

1/2

dx
⎞
⎟
⎠
= exp (4

3

√
2m

h̵ ⋅ q∣−→E(b)∣
(q∣−→E(b)∣ ⋅ (b − x))3/2

»»»»»»»»

b

a

)

= exp (4
3

√
2m

h̵ ⋅ q∣−→E(b)∣
(q∣−→E(b)∣ ⋅ ltun)3/2) = exp (4

3

√
2m

h̵ ⋅ q∣−→E(b)∣
(hbar)3/2) , (5.3)

with the carrier dependent effective mass m = mn/p ⋅m0. At this point the tunneling probability
for any point in the channel region b can be calculated depending on the electric field at said
point ∣−→E(b)∣ and the tunneling distance ltun. These calculations can not only be applied at
the source/channel junction to calculate ether b2b- or tat-probabilities but they are also valid
at the drain/channel junction to calculate the hole tunneling probabilities. Only different
expressions for the tunneling lengths have to be found.

Figure 5.2: Parameters for the quasi 2D WKB approximation.
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64 5 Tunneling Probability

5.3 Band-to-Band Tunneling Probability

The band-to-band tunneling current is predominant in the on-state at the source/channel
interface and in the ambipolar-state at the drain-channel interface. By investigating the band-
structure within the channel region, it can be seen that an electron tunneling at the source
junction is likely if the conduction band in the channel region overlaps with the valence band
in the source region. Figure 5.3 illustrates such an overlap, starting at the position x ≥ xint.

Figure 5.3: B2b tunneling length in on-state at source/channel junction.

5.3.1 Tunneling Length

In the range where b2b tunneling is possible the tunneling distance ltun consists of two parts.
One part in the source region lstun and one part at the source side in the channel region ls/chtun .
One part of ltun is already given with the x-coordinate ls/chtun = x, the other part has to be
calculated. Therefore, the valence-band energy at the far source end Esv(y) = Ev(−lsd,y) and at
the source/channel junction Ejsv (y) = Echv (0,y) from equation (4.48) are needed, as well as the
y-depending band bending distance in source region ds(y) from equation (4.25). With those
points a parabola for the source valence band is modeled in order to calculate the tunneling
distance

E
ltun
v (x,y) = E

js
v (y) −Esv
ds(y)2

⋅ (x − ds(y))2 +Esv. (5.4)

The tunneling distance in source region lstun for a specific conduction band energy within the
channel region Echc , which has the same energy level as the valence band in the source region
E
ltun
v = E

ch
c , can be calculated with the reverse function of equation (5.4):

l
s
tun = ds −

√
√√√√√⎷(Echc −Esv) ⋅

d
2
s

E
js
v −Esv

. (5.5)

By adding the missing tunneling distance in the channel ls/chtun = x, the tunneling length for b2b
tunneling in the on-state lonb2b is complete:
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l
on
b2b = x + ds −

√
√√√√√⎷(Echc −Esv) ⋅

d
2
s

E
js
v −Esv

. (5.6)

Figure 5.4 illustrates, that at the drain side, the b2b tunneling length also consists of two parts,
one part in the drain region l

d
tun and one part at the drain end of the channel region l

d/ch
tun .

Here, one part is easily calculable as well ld/chtun = lch − x.

Figure 5.4: B2b tunneling length in ambipolar-state at drain/channel junction.

For the tunneling distance in drain region ldtun, the conduction band energy at the far drain end
E
d
c (y) = Ec(lch+lsd,y) and at the drain/channel junction Ejdc (y) = Echc (lch,y) from equation (4.48),

as well as the band bending distance in drain region dd(y) from equation (4.26) are needed.
With those points a parabola for the conduction band in drain region can be modeled for the
tunneling length calculation

E
ltun
c (x,y) = E

jd
c (y) −Edc
dd(y)2

⋅ (x − (lch + dd(y)))2 +Edc . (5.7)

The tunneling distance in drain region l
d
tun for a specific valence band energy within the

channel region Echv , which has the same energy level as the conduction band in the drain region
E
ltun
c = E

ch
v , can be calculated with the reverse function of equation (5.7) minus the channel

length, since only the distance in drain region is needed

l
d
tun = dd −

√
√√√√√⎷(Echv −Edc ) ⋅

d
2
d

E
jd
c −Edc

. (5.8)

By adding the missing tunneling distance in the channel ld/chtun = lch − x, the tunneling length
for b2b tunneling in the ambipolar-state lambb2b is complete:
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l
amb
b2b = lch − x + dd −

√
√√√√√⎷(Echv −Edc ) ⋅

d
2
d

E
jd
c −Edc

. (5.9)

5.3.2 Transmission Coefficient

With the calculated tunneling lengths lonb2b and l
amb
b2b , the electric field in the channel region −→

E

and the general WKB equation (5.3), the band-to-band tunneling probabilities can be calculated

T
s
b2b(x,y) = exp (4

3

√
2 ⋅mn ⋅m0

h̵ ⋅ q∣−→E(x,y)∣
(hsbar)3/2) , (5.10)

with hsbar = q∣
−→
E(x,y)∣ ⋅ lonb2b and

T
d
b2b(x,y) = exp (4

3

√
2 ⋅mp ⋅m0

h̵ ⋅ q∣−→E(x,y)∣
(hdbar)3/2) , (5.11)

with hdbar = q∣
−→
E(x,y)∣ ⋅ lambb2b .

5.3.3 Barrier Height

For almost flat bands within the channel region of the TFET, the approximation of a trian-
gular barrier profile using the electric field results in very low barrier heights, and with that,
an overestimation of the tunneling probability. Therefore, the barrier height is limited to a
minimum percentage value cbar of the source band-gap hsbar ≥ cbar ⋅E

s
g in the on-state and at

the drain region hdbar = cbar ⋅E
d
g for the ambipolar-state.
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5.4 Trap-Assisted-Tunneling Probability

The trap-assisted-tunneling effect with the trap definition is firstly introduced in section 2.4.1.
Figure 5.5 illustrates that, different to the band-to-band tunneling, the tat probability has to
be calculated for all positions within the channel region.

Figure 5.5: Tat tunneling lengths in off-state.

The calculations for the tat probabilities are not that complex in comparison to the band-to-
band ones. Traps are considered directly at the channel junctions of the device, so the tat
tunneling length at the source-side is easily given with

l
s
tat = x (5.12)

and at the drain-side through

l
d
tat = lch − x. (5.13)

Considering the electric field within the channel region −→E, the tunneling carrier masses mn/p at
source- and drain-side, as well as the tat-lengths ls/dtat , the tat probabilities can be calculated:

T
s/d
tat (x,y) = exp (4

3

√
2 ⋅mn/p ⋅m0

h̵ ⋅ q∣−→E(x,y)∣
(hs/dbar)

3/2) , (5.14)

with hs/d
bar

= q∣−→E(x,y)∣ ⋅ ls/dtat .
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CHAPTER 6

Current Calculation

The last part of the analytical model consists of the device current calculation. The tunneling-
based device current forms the centerpiece of the TFET. It enables subthreshold slopes below
the 60 mV/dec limitation of the conventional thermionic based MOSFET. Thus, making it an
optimal device for low-power applications. The calculation of this current, however, is not at
all trivial.

Based on fundamental physics from chapter 2, the electrostatics solution from chapter 4 and
the tunneling probabilities from chapter 5, the different current parts can be calculated. In the
on-state of the device the b2b-current at the source/channel junction is predominant, whereas
in the off-state the tat-current at both channel junctions is superior. In the ambipolar state,
the b2b-current at the drain/channel junction succeeds. For each current part a different
calculation is valid and explained in this chapter.

6.1 Band-to-Band Tunneling Current

The calculations for the b2b tunneling currents are separated in two parts. The first one is the
on-state b2b current at the source/channel junction Ib2bon and the second one, the b2b current in
ambipolar-state at the drain/channel junction Ib2bamb. In the beginning the calculations for the
on-state current are explained. Both current calculations are based on Landauer’s transmission
theory [62], leading to a carrier gradient depending tunneling mechanism. In order to determine
the carrier concentration on both sides of the barrier, the Fermi-statistics firstly introduced
in section 2.2.2 are needed. Figure 6.1 illustrates the Fermi statistics in source region fs with
source-related Fermi potential [35]

f
on
s (x,y) = 1

1 + exp[(Echc (x,y) −Es
F
)/kT ]

(6.1)

and in channel region with the drain-related Fermi potential fd
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f
on
d (x,y) = 1

1 + exp[(Echc (x,y) −Ed
F
)/kT ]

. (6.2)

In equation (6.1), the energy value of the conduction band in the channel region Echc (x,y) is
used, since it has the same energy level as the valence band in source. With the Fermi-statistics
in both regions, a drain bias depending carrier probability gradient is given, which is used for
the following current calculation.

Figure 6.1: b2b current calculation based on Landauer’s transmission theory, showing source-
and drain-related Fermi-statistics fs/d.

The b2b-current in the on-state at the source/channel interface can be calculated for all
points within the channel region, where a b2b-tunneling is possible. The starting point of the
calculations is the energy overlap of the conduction band in the channel region with the valence
band in source region xint, as indicated in figure 6.1. Then follows an integration over all those
positions to determine the overall b2b current [62]

I
on
b2b = w ⋅

µ
n
tun ⋅NV ⋅ q2

k ⋅ T

tch

∫
0

lch

∫
xint

T
s
b2b ⋅ (fons − f

on
d ) ⋅ ∣−→E∣2 ⋅ dxdy (6.3)

with the device width w, electron tunneling mobility µntun and the density of states in the
valence band NV .

The second b2b current part occurs at the drain/channel interface, when the valence band in
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the channel region overlaps with the conduction band in drain region at position xint2. To
determine the carrier density gradient for Landauer’s transmission theory, the Fermi statistics
for holes in drain region with drain-related Fermi-level fambd and for holes in channel region
with source-related Fermi-level fambs are needed:

f
amb
d (x,y) = 1

1 + exp[(Ed
F
−Echv (x,y))/kT ]

, (6.4)

f
amb
s (x,y) = 1

1 + exp[(Es
F
−Echv (x,y))/kT ]

. (6.5)

Then, the b2b-current in the ambipolar-state at the drain/channel interface can be calculated
[62]

I
amb
b2b = w ⋅

µ
p
tun ⋅Nc ⋅ q

2

k ⋅ T

tch

∫
0

xint2

∫
0

T
d
b2b ⋅ (fambd − f

amb
s ) ⋅ ∣−→E∣2 ⋅ dxdy, (6.6)

with the hole tunneling mobility µptun and the density of states in the conduction band Nc.

6.2 Trap-Assisted-Tunneling Current

The most influencing effect regarding subthreshold slope degradation and off-state current
limitation is the tat effect, which makes it one of the mayor performance factors and has to
be modeled thoroughly. In the off-state of the device only carriers located at midgap traps
at the channel junctions are able to tunnel into the channel area, thus only the tat effect
determines the off-state current. In doing so, it strongly influences the minimum subthreshold
slope depending on the trap density NT and the carrier emission rates e. The tat effect was
firstly introduced in section 2.4.1, where an expression for the trap distribution was given.

Based on equation (2.29), the trap distributions at source- and drain/channel junction Ns/d
T

can be calculated depending on the energy level within the channel region towards which the
carrier should tunnel

N
s
T = N

s
Tmax ⋅ exp (−E

ch
c (x,y) −Ev(0,y)

n ⋅ kT
) , (6.7)

N
d
T = N

d
Tmax ⋅ exp (−Ec(lch,y) −E

ch
v (x,y)

n ⋅ kT
) . (6.8)

Figure 6.2 illustrates the tat based current machanism. Electrons on the valence band at the
channel junction emit onto midgap traps at higher energy levels, from which they can tunnel
into the channel region.
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Figure 6.2: Trap-assisted-tunneling current at the source/channel junction. Electrons emit to
midgap traps and tunnel into the channel region.

For the current calculation, this means that the density of states and carrier mobility is replaced
with the trap concentration and the emission rates

µ
n/p
tun ⋅NV /C ⋅ ∣

−→
E∣ = en/p ⋅NT . (6.9)

With the tat probability Ttat from equation (5.14) follows for the off-state current at source/chan-
nel interface:

I
on
tat = w ⋅

en ⋅ q
2

k ⋅ T

tch

∫
0

lch

∫
0

N
s
T ⋅ T

s
tat ⋅ (fons − f

on
d ) ⋅ ∣E∣ (6.10)

and at drain/channel interface:

I
amb
tat = w ⋅

ep ⋅ q
2

k ⋅ T

tch

∫
0

lch

∫
0

N
d
T ⋅ T

d
tat ⋅ (fambd − f

amb
s ) ⋅ ∣E∣. (6.11)

6.3 Device Current

The overall device current is now put together with the b2b current parts from equation (6.3)
and (6.6) and tat current parts from equation (6.10) and (6.11):

I = I
on
b2b + I

on
tat + I

amb
tat + I

amb
b2b . (6.12)

At this point the analytical 2D current model for the TFET is complete and can be compared
to TCAD Sentaurus simulation data and measurements.
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CHAPTER 7

Model Verification and Performance Evaluation

In this chapter, the model is verified by comparing to TCAD Sentaurus simulation data, as
well as measurement data. Therefore, a standard device and the simulation setup is specified in
section 7.1. Various changes in device geometry were carried out to verify the accurateness of
the model in section 7.2. Conclusions about performance improvements are drawn in section 7.3
by optimizing the subthreshold slope and suppressing the current in ambipolar-state. Also the
capabilities of hetero-junctions are investigated in section 7.3.2.

7.1 Device Specification and Simulation Setup

Within this section the parameters for the device simulation with TCAD Sentaurus are listed
and explained, including the device geometry and materials, doping profiles, band-gap narrow-
ing as well as tat and b2b tunneling models. For the comparison of the model and TCAD,
a standard device is defined from which parameter variations are performed in order to see
how the physics based analytical model is able to predict such variations. Therefore, it is
important to point out that only one initial parameter fitting in the analytical model is done
for the standard device. The fitting parameters shown in table 7.2 are the screening length
parameter λfit from equation (2.20), carrier mass m, tunneling mobility µtun, barrier height
limitation factor cbar from section 5.3.3, doping diffusion potential extension shift xshift from
equation (4.45), trap distribution constant n from equation (2.29) and the carrier emission
rate e from equation (6.10). The large changes in drain doping concentration have to be fitted
separately, as well as the hetero-junction devices, therefore only parameters are listed which
differ from the standard fitting in table 7.2.

The standard device parameters for the comparison to TCAD simulation data are specified
in table 7.1. Investigated is a silicon double-gate n-TFET with a high-κ HfO2 gate insulator
to maximize the gate control over the channel region. The double-gate structure offers the
advantage to estimate the current in fin-structures with large fin heights while keeping the
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mathematics "simple". The source region of the device is highly p-doped, the drain region is
highly n-doped, while the channel region stays intrinsic. Doping profiles at the channel junctions
are implemented to capture the unwanted doping diffusion processes occurring during the
device fabrication. Defect states (midgap traps) are defined at the source- and drain/channel
junction, which limit the off-state current of the device. To simulate the b2b tunneling current a
non-local tunneling model is implemented within the simulation. It considers only energetically
constant (horizontal) tunneling directions and is based on the WKB-approximation [37]. For
the tat current the Hurks tat model is implemented within the simulations [37]. The channel
length is chosen to be 22 nm in order to demonstrate the consideration of short channel effects.
A channel thickness of 10 nm is sufficient to neglect quantization effects [63] and still fullfil
the lch >> tch requirements. For a suppression of the ambipolar current different drain doping
concentrations are investigated. The performance enhancing effects of a hetero-junction (hj)
TFET are shown on two different devices with the same geometry. The first one is a Ge/Si
hj-TFET similar to the device introduced in [64]. The second one is a SiGe/Si hj-TFET similar
to the device shown in [65]. For the device specification and the fabrication process of the
measured nanowire-TFET refer to [66].

Table 7.1: Standard TCAD simulation setup for model verification.

Parameter V alue Parameter V alue

lch 22 nm Ns 1020 cm−3

tch 10 nm Nd 1020 cm−3

tin 2 nm NT max 1012 eV−1cm−2

lsd 20 nm Device material Si

σ 1 nm Oxide material HfO2
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Table 7.2: Model fitting parameters for the standard device, drain doping variation and
hetero-junctions.

Parameter Standard Nd = 5e19 Nd = 1e19 Nd = 5e18 Ge/Si SiGe/Si NW

λ
s
fit [-] 1.1 1.2

mn [-] 0.32 0.27 0.23 0.05

µ
n
tun [cm

2/V s] 4.5 10 10 0.5

c
s
bar [-] 0.28 0.2

λ
d
fit [-] 1 1.2 0.8

mp [-] 0.5 0.43 0.26 0.2 0.3

µ
p
tun [cm

2/V s] 38 200 30 0.5 0.5

c
d
bar [-] 0.32 0.38 0.38 0.33 0.3

xshift [nm] -0.4 -0.2

ns [-] 2 1

en [s−1] 5e7 1e7 3e6 2e13

nd [-] 2 1

ep [s−1] 7e7 1.5e8 8e8 2e9 2e8 7e6 2e16

7.2 TCAD Verification

In this section a comparison of the physics-based analytical model with TCAD Sentaurus
simulation data is performed. Based on the simulation setup introduced in section 7.1, firstly
the electrostatic solution is compared, followed by the current characteristics for the standard
device. The capabilities of the model are tested by various parameter variations at the end of
this section.

7.2.1 Electrostatic Solution

The first results show a comparison of the electrostatic solutions of the TFET model with the
simulations. Keep in mind that the fitting is done for an accurate device current, therefore
some deviations are to be expected in this part of the results to level approximations in the
current calculation.

In figure 7.1 the potential solution is shown along a y-cross-section directly below the gate
insulator at y = 0.05 nm. The gate voltage is varied Vg = −0.25 to 1 V in steps of 0.25 V , while
the drain voltage is Vd = 0.7 V . The three different potential solutions are visible in source,
channel and drain region. Per TCAD definition, the built-in potential in source region is on
the negative intrinsic Fermi-level. The second part of the potential solution shown in figure 7.2

UNIVERSITAT ROVIRA I VIRGILI 
Two-Dimensional Analytical Modeling of Tunnel-FETs 
Michael Gräf 



76 7 Model Verification and Performance Evaluation

illustrates the results at different y-cross-section positions y = 0.05, 1.5, 5 nm at Vg = 0.25 V
and Vd = 0.7 V . With an increasing distance to the gate insulator, the electrostatic influence of
the gate-electrodes on the channel region is weakening, which results in a flattened potential
distribution. Besides small expected deviations, the potential model is able to predict an
accurately behaving 2D potential solution not only within the channel region but at every point
of the device.

Figure 7.1: Comparison of the potential solution with TCAD simulation data for Vg = −0.25
to 1 V in steps of 0.25 V at y = 0.05 nm and Vd = 0.7 V .

Figure 7.2: Comparison of the potential solution with TCAD simulation data at different
y-cross-sections y = 0.05, 1.5, 5 nm at Vg = 0.25 V and Vd = 0.7 V .

An exact potential solution forms the basis of the band-structure calculation, which is compared
in the next results illustrated in figure 7.3. The band-structure of the standard device is
shown for different gate voltages Vg = −0.25, 0.25, 0.75 V in all three states of the device. Some
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deviations at the conduction band at the source/channel interface and the valence band at the
drain/channel interface of the device are visible. Although the doping profiles are accounted for
within the potential solution of the device, the band-gap narrowing transition at the channel
interfaces is still abrupt, thus leading to the visible kinks. However, they are not important in
terms of the current calculation, since at these points no tunneling is occurring.

Figure 7.3: Band-structure comparison of the standard device in all three states of the TFET
at Vg = −0.25, 0.25, 0.75 V and Vd = 0.7 V . The aprubt bgn model leads to kinks at the channel
junctions.

The last results in this section show a comparison of the electric field solution within the
channel region of the device in figure 7.4. Here, the results are shown for all three states of the
device as well at Vg = −0.25, 0.25, 0.75 V . Similar to the band-structure plot, the electric field
directly at the junctions do not account for the current calculation.

Figure 7.4: Electric field comparison in the channel region of the standard device in all three
states of the TFET at Vg = −0.25, 0.25, 0.75 V and Vd = 0.7 V .
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7.2.2 Current Characteristics

Based on the electrostatics solution, the tunneling probability and device current is calculated.
It contains a b2b current in the on-state at the source junction, two tat current parts in the
off-state and a b2b current in the ambipolar-state at the drain junction. This section shows
the transfer- and output-characteristic of the TFET.

The first results in this section show a comparison of the current transfer characteristics of
the standard double-gate n-TFET introduced in section 7.1. Figure 7.5 shows the model
results in comparison to TCAD Sentaurus simulation data for different drain voltages Vd =
0.1, 0.3, 0.5, 0.7 V .

Figure 7.5: Current transfer characteristics of the standard TFET for Vd = 0.1, 0.3, 0.5, 0.7 V .

Evidently, the model captures all necessary drain voltage related dependencies and predicts an
accurate current output. Three different aspects can be seen based on the transfer characteristics.
The first, most fundamental aspect is the current reduction in the on-state of the device for
smaller drain voltages, similar to MOSFET.
The second aspect is tat-based off-state current of the device, typical for the TFET. Here,
direct conclusions can be drawn to the present traps at the channel interfaces. The lower the
off-state current of the device, the less traps are present.
The third aspect, typical for the TFET, is the drain voltage dependent transition into the
ambipolar state of the device. In order to understand this behavior a closer look into the
band-structure is necessary. Figure 7.6 shows the band-structure at the drain/channel interface
for different drain voltages and a constant gate voltage. The ambipolar-state begins when the
valence band in the channel region overlaps with the conduction band in the drain region. For
low drain voltages a much lower gate voltage is necessary to achieve such an overlap, whereas
for the medium drain voltage the overlap has just happened for this particular gate voltage.
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For the highest drain voltage, the device is already deep in the ambipolar-state. In summary,
the drain voltage has direct influence on the band-overlap, and with that, the ambipolar-state.
This behavior is an important (unwanted) aspect in terms of future circuit design and has to
be dealt with carefully. Because of this reason the suppression of the ambipolar-state current is
one of the major goals in TFET development.

Figure 7.6: Drain voltage dependency on the ambipolar-state of the TFET.

The second results in this section show the current output characteristics of the standard device
at different gate voltages Vg = 0.7, 0.8, 0.9, 0.1 V in figure 7.7. The output current behavior
is captured accurately for low and high drain voltages. However, there are some deviations
present in the transition which can be traced back to current calculation using Landauer’s
transmission theory.

Figure 7.7: Current output characteristics of the standard TFET for Vg = 0.7, 0.8, 0.9, 0.1 V .
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7.2.3 Parameter Variation

In this section the capabilities of the physics-based analytical model are tested by varying diverse
parameters and compare the result to TCAD simulation data. Thereby, the model should be
able to predict the resulting outcome without additional fitting within a reasonable parameter
variation range. The obtained results are discussed in terms of performance enhancement.

The first three results cover important geometric changes of the device structure, beginning
with a variation of the channel length in figure 7.8. The results show the impact of an increasing
channel length lch = 22, 45, 65, 90 nm on the current transfer characteristic. While for 22 nm
short channel effects are present which lead to a increased subthreshold slope and lower on-state
current, the simulation data for 45, 65 and 90 nm show almost no difference. Concluding
from this behavior, the TFET shows almost no current dependency from the channel length
(despite short channel effects). The reason for that is the "bottle neck" effect of the tunneling
mechanism at the source/channel junction, which is the major limiting factor for the device
current. The analytical model is able to correctly predict the short-channel based influence on
the subthrehold slope in the on-state. The current increase for long-channel devices at higher
gate voltages, however, has to be fitted separately.

Figure 7.8: Channel length influence on the current transfer characteristic for lch =

22, 45, 65, 90 nm at Vd = 0.7 V .

The second comparison in this section shows the variation of the channel thickness. Especially
in double-gate devices the channel thickness is a very sensitive parameter. By reducing the
distance of both gates to each other, the electrostatic influence of one gate on the not primarily
controlled channel region increases dramatically, thus leading to a big performance enhancement.
Figure 7.9 shows the change in device current for various channel thicknesses tch = 8, 10, 12 nm.
The results show an improved subthreshold slope for thinner device thicknesses, as well as an
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increased current. This performance enhancing behavior is captured by the analytical model,
although the influence is slightly overestimated. At this point it is important to point out, that
this performance enhancing behavior based on a device thickness reduction has a limit. At some
point (below 10 nm [63]) quantum effects occur and subbands are being formed, worsening the
performance.

Figure 7.9: Device thickness influence on the current transfer characteristic for tch =

8, 10, 12 nm at Vd = 0.7 V .

The last geometric variation deals with the influence of the insulator thickness on the device
current and is illustrated in figure 7.10 for thicknesses of tin = 1 to 3 nm in 0.5 nm steps. The
gate insulator thickness has one of the most sensitive influence on the device current. The
thinner the insulator, the bigger the electrostatic influence on the channel region, and with that,
the tunneling barrier and device current. Evidently the model is able to accurately predict a
wide range of different thicknesses. Not only this shows, that a geometric variation is predicted
correctly but a change of the dielectric constant ε, based on the used insulator material, can be
predicted as well due to equation (4.3).
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Figure 7.10: Gate insulator thickness influence on the current transfer characteristic for tin =

1 to 3 nm in 0.5 nm steps at Vd = 0.7 V .

At this point the last two significant performance limiting aspects have to be investigated.
As mentioned before, the device’s off-state current is based on trap-assisted-tunneling events
at the source- and drain/channel interface. Hereby, the current level directly correlates with
the maximum trap concentration at these junction. The following results in figure 7.11
show the influence of the maximum trap concentration on the off-state current for NTmax =
1012

, 1013
, 1014

, 1015
, 1016

eV
−1
cm

−2. The simulation results show a linear correlation between
the trap concentration and the off-state current, which is correctly reproduced by the analytical
model. This shows, that a low off-state current can be directly linked with a low trap concentra-
tion. Due to an improving subthreshold slope of the b2b-related current at low current levels,
the off-state current level limits the lowest achievable subthreshold slope as well. Concluding
from this behavior, the trap concentration limits the off-state current and has the highest
influence on the minimum subthreshold slope.

The last performance limiting aspect is the quality of the doping profiles at the channel
interfaces. The steeper this profile, the steeper the bands in the channel region, and with that,
the shorter the tunneling distances. By considering a Gaussian-shaped doping profile at the
source/channel interface, the standard deviation σ of this profile is a measure of its quality.
The results in figure 7.12 show a comparison of the current transfer characteristics of the model
with the simulation data for various standard deviation σ = 0 to 2 nm in 0.5 nm steps. The
doping profile based potential extension from section 4.4.3 is able to predict the worsening of
the subthreshold slope and on-state current correctly for σ = 0.5, 1 nm. For more extended
profiles only the reduction in on-state current is captured well. The disproportional increase
of off-state current is not captured properly for this regime. Since steep doping profiles are
striven for, the model results are sufficient.
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Figure 7.11: Influence of the maximum trap concentration on the TFET’s off-state current
for NTmax = 1012

, 1013
, 1014

, 1015
, 1016

eV
−1
cm

−2 at Vd = 0.7 V .

Figure 7.12: Influence of the doping profile quality (standard deviation) at the source/chan-
nel junction on the device current for σ = 0 to 2 nm in 0.5 nm steps and Vd = 0.7 V .

7.3 Device Optimization

This chapter already revealed some performance enhancing methods with the variation of
different device geometries, trap concentrations and doping profiles. Within this section other
TFET discrepancies are investigated and prospects of their overcoming are given.
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7.3.1 Suppressing Ambipolar Currents

The ambipolar behavior of the TFET occurs because of its asymmetrical doping. It leads to
additional complexity in circuit design and should be avoided if possible [67]. There already
have been introduced a few methods to suppress this ambipolarity. The simplest way, which can
easily be captured with the analytical model, is a reduction of the drain doping concentration.
Such a measure has direct influence on the band steepness at the drain/channel junction, which
can be equated with an increase of tunneling distance leading to a significant current reduction.
Other methods aim for the same effect of a tunneling distance increase e.g. by gate underlaps
or low-κ dielectrics at the drain end of the channel region [67].
A high variation of the drain doping can not be captured by the model with the fitting for
the standard device, hence all drain doping variations have to be fitted separately as shown
in table 7.2. In figure 7.13 the influence of the drain doping concentration on the ambipolar-
state current is illustrated for Nd = 1020

, 5 ⋅ 1019
, 1019

, 5 ⋅ 1018
cm

−3. The model shows a
good fit with the TCAD simulation data. Evidently, the current in ambipolar-state can be
reduced significantly by this measure. However, the drian doping reduction has its limits. By
further decreasing the doping concentration, an additional potential barrier is formed at the
channel/drain interface. An overcoming of this barrier is only possible by thermionic emission,
which limits the subthreshold slope again to 60 mV/dec.

Figure 7.13: Influence of the drain doping concentration on the current in ambipolar-state of
the TFET for Nd = 1020

, 5 ⋅ 1019
, 1019

, 5 ⋅ 1018
cm

−3 at Vd = 0.7 V .

7.3.2 Introducing Hetero-Junctions

There are several advantages III/V semiconductors offer compared to standard silicon. Their
improved physical parameters such as carrier masses and mobilities directly enhance device
performance. If they are used to form hetero-junctions, their smaller band gaps are beneficial for
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shorter tunneling distances, which results in increased currents [24]. These upsides have already
been recognized and numerous devices with different hetero-junctions have been built. Aim of
this thesis is not the application of the model on all different kinds of hetero-junctions but to
show that it provides the general possibility to include hetero-junctions in the calculations. In
addition to that, the performance enhancing effects of hetero-junctions in TFETs are pointed
out and possible downsides are discussed. To give a comparable example, the standard device
described in section 7.1 is used with different source materials to generate a hetero-junction
at the source/channel interface. The investigated materials are: germanium (Ge), a silicon
germanium alloy (Si0.5Ge0.5) and the standard Si TFET for comparison. The analytical model
has to be fitted individually for each hetero-junction as shown in table 7.2 and the constant
material dependent parameters have to be adjusted according to literature [35].
The results in figure 7.14 show the influence of two different hetero-junctions on the current
transfer characteristics. The model is able to calculate the current with high accuracy. Compared
to the silicon TFET, both hetero-junction devices show an increase in on-state current, due to
superior carrier properties. There is an improvement in subthreshold slope observable as well
for the SiGe hj device. However, this beneficial effect disappears for the Ge hj entirely and the
slope ends up even worse than in the Si TFET. This shows that hetero-junction engineering is
quite delicate and has to be carried out thoughtfully. One important thing can be concluded
from this comparison and the several fabricated hetero-junctions listed in [26]. There seems to
be a trade-off between the maximum on-state current and minimum achievable subthreshold
slope. The higher the current, the worse the slope. Nevertheless, an optimum can be found
where the positive influence of the hj benefits both, the current and the slope, like for the SiGe
hj in figure 7.14.

Figure 7.14: Influence of hetero-junctions within the TFET on the on-state current and sub-
threshold slope with a Ge/Si and Si0.5Ge0.5/Si hetero-structure. Silicon device for comparison
at Vd = 0.7 V .
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7.4 Nanowire n-TFET

Since the model includes all important physical effects that occur in fabricated devices, a
comparison to measurement data is possible. The measured device is a nanowire n-TFET
introduced in [66]. Due to its geometric parameters it is possible to model the current directly
below the gate oxide of the nanowire by using the double-gate Tunnel-FET current with an
equivalent width of wdg ≈

2tnw + wnw
2 , hereby wnw and tnw are the width and the thickness

of the nanowire, respectively. Figure 7.15 shows the modeled current transfer characteristics
for different drain voltages Vd = 0.1, 0.2, 0.3, 0.4, 0.5 V in comparison to the measurement data.
The model fitting is listed in table 7.2.

Figure 7.15: Measured current transfer characteristics of a nanowire n-Tunnel-FET for dif-
ferent Vd = 0.1, 0.2, 0.3, 0.4, 0.5 V in comparison to a single-gate Tunnel-FET model with
equivalent device width. Model parameter: Ns/d = 1020

cm
−3, Ns

Tmax = 1013
eV

−1
cm

−2,
N
d
Tmax = 1017

eV
−1
cm

−2.

The comparison shows that the model is able to reproduce the measured current transfer
characteristics of the nanowire TFET. This shows that all included physical effects are sufficient
for a fabricated device prediction.
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CHAPTER 8

Random Dopant Fluctuation

The influence of random dopant fluctuations (rdf) on device performance is increasing for the
ongoing scaling of nanoscale transistor devices. In the current MOSFET technology this effect
mainly affects the threshold voltage Vth, which is reduced in terms of the actual distribution
of single dopants within the channel region [68]. These dopants are the result of a diffusion
process, that occurs during the annealing step in the fabrication of the doped source/drain
region. This effect influences the TFETs as well and its effect on device performance has to be
investigated.

In this chapter a general explanation of the rdf effect is given in section 8.1, followed by a
description of the possible TCAD simulation methods in section 8.2. A general rdf model is
introduced in section 8.3, which is later customized for MOSFET devices in section 8.4. In
the end an extensive simulation analysis is discussed in section 8.5 for MOSFET and TFET
devices. The developed models are compared to TCAD simulation data in section 8.6.

8.1 RDF Basics

In general random dopant fluctuations describe the influence of localized dopants on the device
electrostatics and the resulting device current. Or put in simpler words: Not only determines
the doping concentration the device characteristics but also the distribution of the discrete
doping atoms within the device. These randomly distributed atoms lead to a range of possible
current outputs. The dimension of this range, and how it can preferably be described is
explained in this section.

87
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The schematic influences of rdf on the drain current in TFETs are illustrated in figure 8.1.
The discretization of dopants leads to different current characteristics. Thereby, the standard
deviation of the current can directly be calculated with the current level leading to σId

. An
equivalent range in gate voltage can also be calculated to cover this current variation, which
leads to σVg

.

Figure 8.1: Random dopant fluctuation influence on TFET device current, showing standard
deviation for gate voltage σVg

and the standard deviation of the drain current σId
.

Figure 8.2 illustrates an example discretization of an n-MOSFET with lch = 40 nm, tch = 5 nm,
w = 30 nm, Ns/d = 1020

cm
−3, Nch = 1018

cm
−3 and σ = 1 nm. There are 37 dopants diffusing

into the channel region from the source- and drain doping (red) and only 3 dopants from the
channel doping (blue). This shows how delicate the position of these few dopants can be,
regarding the current output.
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Figure 8.2: Visualized discrete dopants within a MOSFET for lch = 40 nm, tch = 5 nm,
w = 30 nm, Ns/d = 1020

cm
−3, Nch = 1018

cm
−3 and σ = 1 nm. 37 dopants from the Gaussian

doping profiles in the channel region (red) and 3 dopants from the constant channel doping
(blue).

8.2 Simulation Methods

There are two elaborate simulations methods available to capture the influence of rdf on the
device current. The first one is a small effort noise-based simulation method, called impedance
field method (ifm), which is discussed in section 8.2.1. The second method provides a higher
accuracy and deeper insight into the rdf effect but also requires a high simulation effort, which
is based on randomized profiles and introduced in section 8.2.2.

8.2.1 Impedance Field Method

In this section rdf is simulated in 2D using the impedance field method, which is comparable to
noise modeling [69]. For each point of the device rdf is described by the second-order statistical
moments of the dopant distribution. These moments are modeled using an analytical function.
By using ifm, it is possible to describe the influence of small dopant fluctuations on the applied
terminal voltages [70]. Figure 8.3 shows some example simulation results for a DG n-TFET.
The plot shows the device current Id, its standard deviation σId

, the relative standard deviation
of the device current rel.σId

= σId/Id and the resulting standard deviation of the gate voltage
σVg

. Due to the constant current in the devices off-state, a small current change leads to a
significant gate voltage variation σVg

.

8.2.2 Randomized Profiles

The theory behind randomized profiles is comparable with the introduction of rdf in section 8.1.
In the beginning the analytical doping profiles within the device are discretized using the Sano
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Figure 8.3: 2D TCAD simulation results for a DG n-Tunnel-FET using ifm for Nd =

1019
cm

−3, σ = 1 nm at Vd = 0.5 V . The results for σVg
are scaled for w = 30 nm. Geomet-

ric parameters listed in table 7.1.

method described in [71]. Thereby a specific number of device samples N is created. Figure 8.4
shows the analytical doping profile and the doping discretization at a randomly chosen cross
section of the channel region of a TFET for different standard deviations of the doping profiles
σ. The simulation parameters are listed in table 7.1.

Figure 8.4: Discretization of Gaussian doping profiles using the Sano method.

After creating N devices, they are simulated three-dimensionally with w = 30 nm. After
obtaining the current transfer characteristics, the standard deviations for current and gate
voltage have to be calculated. Therefore, the average current IdAvr is calculated with
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IdAvr(Vg) =
1
N

N

∑
k=1

I
k
d (Vg) (8.1)

and for standard deviation of Id follows

σId
(Vg) =

1
N

√
√√√√√⎷

N

∑
k=1

(Ik
d
(Vg) − IdAvr(Vg))

2
. (8.2)

The standard deviation of Vg can be calculated using the inverse expressions of Id: Vg(Id)

σVg
(Vg(IdAvr)) =

1
N

√
√√√√√⎷

N

∑
k=1

(V kg (IdAvr) − Vg(IdAvr))
2
. (8.3)

8.3 General Modeling Approach

The effects of rdf on the drain current can alternatively be described as a result of a randomly
distributed gate voltage with a specific variation. In figure 8.1 the schematic connection between
rdf and the equivalent standard deviation of the gate voltage is shown. The requirements of a
model are to calculate this equivalent gate voltage standard deviation depending on the doping
profile at the channel junctions and the channel doping. In the beginning a general model is
introduced, which captures the doping influence on the complete channel region of the device.
This model is firstly introduced in [72].

The model is developed in three steps. The first step is the calculation of the expected dopant
variation within the channel region. Therefore, a mesh grid has to be applied to the device as
shown in figure 8.5.

Figure 8.5: Meshing of the channel region, showing a specific cell vector r0 and the mesh
parameters ∆y , ∆x.

The expected total number of dopants in the channel region Ncount can be calculated for every
mesh cell. Therefore, the source/drain doping profile Ns/Nd and the channel doping Nch have
to be superposed [72]
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Ns = ∆y ∫
∆x

Ns ⋅ exp (− x
2

√
2σ2

) ⋅ dx, (8.4)

Nd = ∆y ∫
∆x

Nd ⋅ exp (− (x − lch)2√
2σ2

) ⋅ dx, (8.5)

Nch = Nch ⋅∆x ⋅∆y, (8.6)

Ncount = Ns +Nd +Nch. (8.7)

Assuming Poisson distributed dopants, the expected value Ncount equals the variance of the
dopants σ2

N [70].

The second step is to capture the influence of randomly distributed dopants in the channel
region on the gate charge. Therefore, for every σ2

N , the associated gate charge variation σ2
Q is

calculated. Considering a point charge without boundaries, the electric field variance of these
charges is given through:

∣σ2
−→
E
(−→r − −→r0)∣ =

q ⋅ σ2
N

2πε∣−→r − −→r0∣
. (8.8)

The D-field variance is then given through:

σ
2
−→
D
= ε ⋅ σ

2
−→
E
. (8.9)

In order to get the equivalent charge variance σ2
Q, the D-field variance orthogonal to the gate

insulator has to be integrated (see Fig. 8.6)

Figure 8.6: Visualization of the considered orthogonal D-field components for the gate charge
calculation below the gate oxide and the applied integration borders.
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σ
2
Q(x0,y0) =

2

∫
1

∣σ2
−→
D
(x0,y0)∣ ⋅ cos(α) ⋅ dx+

4

∫
3

∣σ2
−→
D
(x0,y0)∣ ⋅ cos(α) ⋅ dx.

(8.10)

Considering
cos(α) = y − y0

∣−→r − −→r0∣
(8.11)

and
∣−→r − −→r0∣ =

√
(x − x0)2 + (y − y0)2, (8.12)

simplifies equation (8.10) to

σ
2
Q(x0,y0) =

2

∫
1

q ⋅ σ2
N

2πε∣−→r − −→r0∣
⋅
y − y0

∣−→r − −→r0∣
⋅ dx +

4

∫
3

q ⋅ σ2
N

2πε∣−→r − −→r0∣
⋅
y − y0

∣−→r − −→r0∣
⋅ dx

=
q ⋅ σ2

N

2πε

2

∫
1

(y − y0)
(x − x0)2 + (y − y0)2

⋅ dx +

q ⋅ σ2
N

2πε

4

∫
3

(y − y0)
(x − x0)2 + (y − y0)2

⋅ dx

=
q ⋅ σ2

N

2πε ⋅ [arctan (x − x0
y − y0

)]
2

1
+

q ⋅ σ2
N

2πε ⋅ [arctan (x − x0
y − y0

)]
4

3
. (8.13)

In the third and last step the gate voltage variation σ2
Vg

can be calculated with the gate charge
variation σ2

Q and the insulator capacitance Cin. Therefore, σ2
Q has to be integrated over the

whole device:

σ
2
Vg

=

tch

∫
0

lch

∫
0

Qfit
σ

2
Q(x,y)
Cin

dx ⋅ dy, (8.14)

with Cin = εin/tin ⋅ 2 ⋅ lch and a fit factor Qfit, which compensates the assumption of a point
charge without boundaries. The standard deviation of the gate voltage is then given through

σVg
=

√
σ2
Vg
. (8.15)

UNIVERSITAT ROVIRA I VIRGILI 
Two-Dimensional Analytical Modeling of Tunnel-FETs 
Michael Gräf 



94 8 Random Dopant Fluctuation

The adaption of this two-dimensional modeling approach on devices with a specific width w
can be done by considering [70]

σ
3D
Vg

= σ
2D
Vg

⋅
√

1cm/w. (8.16)

8.4 RDF-Model Adjustments for MOSFETs

The basic idea of the general model is used to develop a method for an rdf estimation in
short-channel double-gate MOSFET devices. For MOSFETs, the current limiting attribute
is the potential barrier within the channel region. Therefore, only the influence of randomly
distributed dopants within the channel region on the height of the potential barrier at xm is
important. This calculation is inspired by the impedance field method [70], where for each
point of the device, RDF is described by the second-order statistical moments of the dopant
distribution. In this section all necessary calculation steps are explained to calculate the
rdf-based standard deviation of the threshold voltage in MOSFETs.

In the beginning, the influence of a single dopant within the channel region has to be captured
by using the solution of Poisson’s equation

∆Φ = −
ρ
ε . (8.17)

According to the impedance field method, a variation of doping at a position (x0,y0) has
influence on the potential. In a small volume dV (or small area for a 2D calculation dA) the
doping concentration changes by ∂N , which leads to a charge density change of ∂ρ and results
in a changing potential ∂Φ. This relation can be displayed by a superposition of Poisson’s
equation

∆(Φ + ∂Φ) = ∆Φ +∆∂Φ = −
1
ε (ρ + ∂ρ). (8.18)

The two solutions can be separated to ∆Φ = − ρ
ε
, which is already solved in the mathematical

basics 3.1 of this thesis, and

∆∂Φ = −
∂ρ
ε , (8.19)

whereby the boundary conditions along the channel border are zero, since they are already
attended to in the potential solution. In order to keep the same surface potential while
introducing ∂ρ, the flux in the insulator has to change. For the MOSFET only the position of
the potential barrier xm is important because of its current limiting effect. Therefore, the effect
of ∂N on the shift of threshold voltage Vth is according to the contribution of ∂N to the flux
in the insulator at the potential barrier. Figure 8.7 illustrates the flux caused from a doping
variation and the position of the potential barrier xm. For the simulations in this section, the
device is operated in linear region at Vd = 50 mV, for which the position of xm is assumed to
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8.4 RDF-Model Adjustments for MOSFETs 95

be in the middle of the channel region xm = lch/2.

Figure 8.7: Influence of a doping variation ∂N on the potential barrier at xm. The structure
is decomposed in source- and drain-related case.

In order to calculate the flux at xm, the four-corner structure is decomposed into two two-corner
structures: the source- and drain-related case. The source-related structure is used if ∂N is in
the left half of the channel region (x0 < lch/2), otherwise the drain-related structure is used
(x0 > lch/2).

In order to calculate the flux through xm, the two structures are conformally mapped from
z-plane into w-plane using the inverse transformation function t−1(z) from equation (3.25)

w = u + jv = t
−1(z = x + jy) = cosh (π ⋅ z

tch
) . (8.20)

Applied on the position of the charge x0 + jy0 follows

w0 = u0 + jv0 = cosh (πx0 + jy0
tch

) (8.21)

and for the potential barrier position xm

wm = um = cosh (πxm
tch

) . (8.22)

Figure 8.8 illustrates the mapping of the source-related structure including charge position
(x0 + jy0 → u0 + jv0) and potential barrier (xm → um). With the help of a mirror charge at
u0 − jv0 the flux through the mapped potential barrier position um can be calculated. The
dielectric flux of a line charge is given with
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D(r) = q∂N (x0,y0)dA
2π∣r∣ , (8.23)

where ∣r∣ =
√
(u0 − um)2 + v2

0 . Only the D-field parts orthogonal to the u-axis Du contribute to
the flux and can be calculated with the angle α

Du(r) = D(r) ⋅ cos(α). (8.24)

By superposing the influence of the ± charge, the vertical flux at um can be calculated in
w-plane

∂D
(w)
m = 2 ⋅

q∂N (u0,v0)dA
2π ⋅

cos(α)
√
(u0 − um)2 + v2

0

(8.25)

and with

cos(α) = v0√
(u0 − um)2 + v2

0

(8.26)

follows

∂D
(w)
m =

q∂N (u0,v0)dA
π ⋅

v0

(u0 − um)2 + v2
0
. (8.27)

In the next step the solution of the flux in w-plane has to be scaled by
»»»»»»»
dz

dw

»»»»»»»
from equation (3.21)

to achieve the solution for z-plane [53]

∂D
(z)
m = ∂D

(w)
m ⋅

»»»»»»»
dz

dw

»»»»»»»
»»»»»»»»wm

= ∂D
(w)
m ⋅

π
tch

⋅
»»»»»»
√
u2
m − 1

»»»»»» (8.28)

with

dz

dw
=

tch/π√
w − 1 ⋅

√
w + 1

. (8.29)

For the drain-related case, the same equations apply only for other positions w0 and wm

w0 = u0 + jv0 = cosh (π lch − x0 + jy0
tch

) , (8.30)

wm = um = cosh (π lch − xm
tch

) . (8.31)

With Poisson distributed dopants, the mathematical expectation ∂N equals the variance of
said dopants σ2

∂N [70].The total variance of the flux at xm can be calculated by integrating
over the whole channel region
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Figure 8.8: Schematic mapping of the source-related structure from z- to w-plane. Flux calcu-
lation in um using a mirror charge.

σ
2
Dm

=

lch

∫
x0=0

tch

∫
y0=0

∂D
(z)
m (x0,y0,xm)dydx. (8.32)

This integral is solved numerically by applying a mesh over the channel region as introduced in
section 8.3. Assuming that the variation of the gate voltage equals a variation of the threshold
voltage, it can be calculated using the insulator capacitance C

′

in =
εin/t̃in

σ
2
Vth

=
σ

2
Dm

C
′

in

. (8.33)

The calculations are only considering a single-gate device so far. For the rdf estimation of
double gate devices, the width of a SG-device is doubled wDG ≈ 2 ⋅ wSG in the scaling process.
Additionally the scaling in 3rd dimension is possible using equation (8.16)

σ
3D
Vg

= σ
fit

Vg
⋅ σ

2D
Vg

⋅ β ⋅

√
1cm

2 ⋅ wSG
. (8.34)

with the fitting factor σfit
Vg

and a slope degradation factor β =
Savr

kT ⋅ log(10) . The slope degrada-
tion factor takes into account the reduced gate control of the channel region by the gate due
to short channel effects. In the following results this parameter has been extracted from the
average of TCAD simulations SAvr.
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8.5 Simulation Analysis

In this section a comparative numerical rdf analysis for MOSFETs and TFETs is done in order
to demonstrate the influence of this effect for different device types. The aim is to show general
dependencies and give recommendations to improve device performance.

To compare MOSFET and TFET in a reasonable way, the device geometries shown in figure 8.9
are kept identical. A silicon DG-n-TFET and a silicon DG-n-MOSFET are under investigation.
The TFET device parameters are given in table 7.1. In the MOSFET the only differences are
an n-type source doping and a p-type doped channel. To reduce the rdf effects of the channel
doping in the MOSFET the doping concentration is kept low at Nch = 1015

cm
−3. Gaussian

shaped doping profiles are applied at the channel junctions with different standard deviations
σ = 1, 1.5, 2, 2.5, 3 nm. The doping profile is randomized using the Sano method described in
[71] with a cut-off parameter kc = 112.336 ⋅ 106

cm
−1. This is done for a specific number of

samples N .

Figure 8.9: Geometries of a DG-n-TFET and a DG-n-MOSFET, showing the doping types
and Gaussian doping profiles at the channel junctions.

Firstly the rdf influences on the transfer characteristics in MOSFETs are investigated in
section 8.5.1, followed by an analysis for TFETs in section 8.5.2.

8.5.1 RDF in MOSFETs

With the ongoing miniaturization, the rdf effect gains importance even in the conventional
MOSFET technology. To further investigate the influence of rdf on the device characteristics a
deeper look into the simulations reveals answers. One of the main effects observed is a current
shift, which can be expressed as a negative shift in threshold voltage [68]. Figure 8.10 shows
N = 40 current transfer characteristics simulated with randomized profiles as described in
section 8.2.2. The mentioned threshold voltage shift in figure 8.10 is clearly visible but the
origin of this behavior can not be determined.
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Figure 8.10: Current transfer characteristics of N = 40 dg-n-MOSFETs with randomized pro-
files, showing the calculated average current IdAvr and standard deviation of the gate voltage
σVg

at Vd = 1 V . The green triangle indicates a 60 mV/dec slope.

In order to understand the rdf dependency in the MOSFET, figure 8.11 shows the band
structure of the device directly below the gate oxide for randomly chosen N = 5 devices.

Figure 8.11: Band structure below the gate oxide at a randomly chosen cross-section for
Nsample = 5 MOSFET devices in ON-state with Vg = 1 V , Vd = 1 V and a standard deviation of
the doping profile of σ = 2 nm. The green circle shows the area of interest.

Generally, the band structures vary in energy due to the randomized doping level, which leads
to a rippling band gap narrowing effect. These variations are also present at the energy barrier
in the channel region of the MOSFET. Since the energy barrier is the current limiting parameter
for the MOSFET (and its threshold voltage), a variation at the barrier directly leads to a
varying current. This connection is the reason for the rdf dependency.
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8.5.2 RDF in TFETs

The TFET simulation analysis in this section should give a deeper insight on the variability
problems with this new device, since the alternative current transport mechanism shows com-
pletely different weaknesses regarding doping discretization and fabrication tolerances. The
simulations are done using randomized profiles with the FEM-Simulator TCAD Sentaurus.

Figure 8.12 shows the current transfer characteristics for N = 20 samples with σ = 1.5 nm. In
comparison to the homogeneous doping profile, the threshold voltage of all samples is smaller
and the S is worsening.

Figure 8.12: TFET drain current Id for N = 20 randomized samples in comparison to a
homogeneous doping profile. Standard deviation of the gate Voltage σVg

on the right. Green
triangle = 60 mV/dec slope.

In order to understand these effects, two samples are further analyzed. One with the best
subthreshold slope Smin, and one with the worst Smax. Figure 8.13 shows the current transfer
characteristics of these two devices.
A deeper insight on why the current characteristics are so different for the same device parame-
ters, gives the band structure. In figure 8.14 the band structure at the source/channel interface
at characteristic gate voltages Vg = 0.25, 0.5, 0.65, 1 V is shown. The results are extracted at a
position directly below the gate oxide where the maximum current of the device is flowing. At
Vg = 0.25 V current flow starts in the Smax device, whereas in the Smin device this happens
for a higher gate bias of Vg = 0.5 V . At Vg = 0.65 V the current reaches the same level in both
devices, and at Vg = 1 V the current in the Smin device is higher.

The results in figure 8.14 show that the threshold voltage of randomized devices is lower due to
different distinctive band-gap narrowing effects near the channel junction. This greatly affects
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Figure 8.13: Drain current of two devices with Smin and Smax.

the gate voltage needed to get an overlap of the valence band in the source region with the
conduction band in the channel.

Figure 8.14: Band structure of two TFET devices with Smin and Smax at maximum current
and characteristic gate voltages.

The subthreshold slope is decisively depending on the tunneling distance reduction rate for
increasing Vg. For Vg = 1V the tunneling distance of the Smin device gets shorter than for the
Smax device at the same bias. This explains the reduced on-state current of the Smax device.
Therefore, a discrete dopant located in the channel region near the junction is also negatively
affecting the subthreshold slope of the device.

A direct influence of the doping profiles standard deviation on σVg
is suspected. Meaning that,
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the fewer dopants are in the channel region, where charges are tunneling to, the less deviation of
the current is to be expected. Figure 8.15 is supporting this suspicion and it shows a decreasing
σVg

for less standard deviation of the doping profile.

Figure 8.15: Comparison of the gate voltage deviation σVg
for different doping profile stan-

dard deviations σ = 1, 1.5, 2, 3 nm at N = 20 and Vd = 1 V .

The results of this simulation analysis provide an alternative explanation and understanding of
the commonly known effects of threshold voltage shifting, subthreshold slope degradation and
drain current variability in fabricated TFET devices. Due to band-gap narrowing caused by
discrete dopants at the channel junctions, the band overlap position is affected, resulting in a
threshold voltage shift. Within the channel region, discrete dopants influence the tunneling
distance reduction rate, which leads to a subthreshold slope degradation.

After analyzing rdf in MOSFETs and TFETs, fundamental differences have been discovered in
the band structure comparison. The MOSFET is less predisposed than the TFET regarding
rdf effects. A deeper look into the band structure of both devices shows different dependencies.
Due to doping dependent band-gap narrowing at the channel junctions the energy barrier is
directly influenced by rdf in the MOSFET, which leads to the current variation. In the TFET,
this same energy variation leads to a comparatively higher variation in the tunneling distance,
which is decisive for the TFET current. Therefore, rdf has a higher influence on the TFET.

8.6 RDF Model Results

The general model introduced in section 8.3 is applied to estimate the standard deviation of
the gate voltage σVg

in TFET devices. Since the basic model is not gate voltage dependent, in
contrast to σVg

in TFETs, it is fitted for Vg = 0.9 V . Device paramters listed in table 7.1. The
simulations are done using randomized profiles with N = 20 samples for each doping profile.
The results show that the basic model is able to correctly predict the gate voltage standard
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Figure 8.16: Model comparison of the gate voltage deviation σVg
for different doping profile

standard deviations σ = 1, 1.5, 2, 3 nm at N = 20, Qfit = 0.25 and Vd = 1 V .

deviation for various doping profiles. The focus of this section, however, lays on the MOSFET-
adjusted model for which a variety of simulations are carried out.

In the following the MOSFET-adjusted model is compared to TCAD simulation data for various
lch, Nch and σ in order to demonstrate its accuracy. A short channel standard Si n-MOSFET is
chosen with the following parameters: lch = 10 nm, tch = 5 nm, tin = 2 nm, Ns/d = 1020

cm
−3,

Nch = 1018
cm

−3, σ = 1 nm. The gate voltage variation is extracted at a constant current level
Id = 10−8

A and the barrier position is set to be in the channel mid xm =
lch

2 due to the low
drain voltage of Vd = 50 mV . Since the shift of the current transfer characteristic can be seen
as a shift in threshold voltage stands:

σVth
≈ σVg

. (8.35)

For each TCAD data point N = 40 randomized profiles are simulated and analyzed. The first
results in figure 8.17 show the deviation of the gate voltage σVg

for different channel lengths
lch = 10, 20, 40 nm. The model is able to predict the simulation results and shows an increasing
rdf influence below lch = 20 nm. This behavior is further investigated later in this section.
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Figure 8.17: Rdf influence on the gate voltage deviation σVg
for different channel lengths

lch = 10, 20, 40 nm at Vd = 50 mV .

The deviation of the gate voltage in dependency of the channel doping is shown in figure 8.18.
For an increasing channel doping concentration Nch = 1016

, 1017
, 1018

cm
−3 the rdf influence is

rising as well, which results in a higher standard deviation.

Figure 8.18: Rdf influence on the gate voltage deviation σVg
for different channel doping

concentrations Nch = 1016
, 1017

, 1018
cm

−3 at Vd = 50 mV .

Figure 8.19 shows the results for a varying standard deviation of the doping profile σ =

0.5, 1, 1.5 nm. The expected σVg
increase for larger doping profiles is correctly reproduced with

the model. For this plot the channel doping is kept low at Nch = 1015
cm

−3 to better capture
the influence of the doping profiles.
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Figure 8.19: Rdf influence on the gate voltage deviation σVg
for different doping profile devia-

tions σN = 0.5, 1, 1.5 nm at Vd = 50 mV .

A deeper insight into this results is given with ∂D(z)
m from equation (8.32). By investigating this

parameter, specific regions within the channel area show a higher influence on the potential
barrier than others. The first device which is investigated has a small channel length lch = 10 nm,
a high channel doping concentration Nch = 1018

cm
−3 and a doping profile standard deviation

of σN = 1 nm. The model results in figure 8.20 show the regions with high rdf influence. For
this short channel length the doping profiles near the channel junctions have an influence on the
potential barrier in the channel mid as well. The maximum of this influence is not located at
the maximum doping profile concentration directly at the channel junction nor at the shortest
distance to the potential barrier directly at the gate oxide. The optimum region is where still
a high doping profile concentration is present but not too far away from the barrier. The
decreasing influence near the gate oxide can be explained by the preferential direction of the
−→
D-field lines directly to the gate and not the detour over the potential barrier. The additional
high channel doping leads to an increased influence directly below the oxide at the potential
barrier position in the channel mid.
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Figure 8.20: Rdf influential channel regions analyzed with ∂D(z)
m for lch = 10 nm, Nch =

1018
cm

−3 and σ = 1 nm.

In figure 8.21 the channel doping is reduced and with that the influence of that doping disappears.
Now only the doping profiles at the channel junctions contribute to the standard deviation of
the gate voltage.

Figure 8.21: Rdf influential channel regions analyzed with ∂D(z)
m for lch = 10 nm, Nch =

1015
cm

−3 and σ = 1 nm.

In the last results of this section in figure 8.22 the channel length is altered to show, that for
long channel devices the doping profiles do not contribute to the standard deviation of the gate
voltage. Instead, only the channel doping is relevant. This explains the swift increase of σVg

for shorter channel lengths.
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Figure 8.22: Rdf influential channel regions analyzed with ∂D(z)
m for lch = 40 nm, Nch =

1018
cm

−3 and σ = 1 nm.

The results show that the improved analytical MOSFET rdf model is able to predict the
rdf-based gate voltage standard deviation (or threshold voltage variation) in dependency on the
channel length, channel doping concentration and standard deviation of the Gaussian doping
profiles at the channel junctions. By considering short channel effects, accurate model results
are achieved, which allow a deeper insight in rdf-sensitive regions within the channel area.
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CHAPTER 9

Conclusion

This work introduces an analytic tool for a realistic two-dimensional calculation of the double-
gate TFET device current in all operating regimes. All important physical effects occurring in
these kind of devices are implemented in the model.

The potential is solved for each region of the device. In the channel region parabolic boundaries
at the source- and drain-channel junction are taken into account, as well as constant boundaries
at the gate electrodes. With the help of structural decomposition and the conformal mapping
technique, the calculations lead to a two-dimensional potential solution within the channel
region. Adjacent to this solution, parabolic potential extensions in source and drain region
are introduced. Gaussian-shaped doping profiles at the channel junctions are considered by
implementing a doping profile based potential extension, which completes the two-dimensional
device potential solution. The electric field is needed within the channel region of the device,
which is obtained with the help of conformal mapping and the single-vertex approach. The
potential solution together with the electric field form the basic electrostatic solution of this work.

By considering band-gap narrowing and hetero-structures, the band-structure of the TFET is
calculated. It forms the basis for the determination of the band-to-band tunneling distance,
occurring at the channel junctions. Combining the electric field solution within the channel
region with the determined tunneling distance a quasi two-dimensional WKB approach is
introduced, which enables an estimation of the band-to-band tunneling probability individually
for each point within the channel region, where band-to-band tunneling is possible. Based
on the same wkb approach, an expression for the trap-assisted-tunneling probability is found.
Carriers tunnel from mid-gap traps, located at the channel junctions, to the bands in the
channel region.

In the last step of the model, the device current is calculated based on Landauer’s transmission
theory. Therefore, the carrier concentrations are calculated using Fermi statistics for each
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region. An integration over the current density in the channel region leads to the overall device
current. This last calculation step completes the analytical two-dimensional double-gate TFET
model, including all important physical effects occurring in these devices.

The different important solution steps of the developed model are firstly compared against
TCAD Sentaurus simulation data. The dimensions of the simulated device are chosen to
be similar to commonly used transistor technology. While considering short-channel effects,
the two-dimensional electrostatic solutions are predicted well with the model. Versatile pa-
rameter changes are analyzed by comparing the resulting device current with the simulation
data. Not only is the model able to predict changes in the devices geometry like channel
length, channel thickness or insulator thickness but also changes in the doping profiles stan-
dard deviation and trap concentration. With the consideration of hetero-junctions, the model
is able to capture even technologically advanced transistors with enhanced performance abilities.

Although the TFET is a promising candidate to be the successor of the current MOSFET
technology, some performance challenges still have to be met. One of the major problems
is the trade-off between a sufficient on-state current and a steep subthreshold slope, which
requires a low off-state current. This work shows, that a combination of doping profiles and
mid-gap traps at the channel junctions are the main performance determining effects within
the TFET. The device can be optimized by realizing steep doping profiles with a low trap
concentration. Further improvement can be achieved by introducing hetero-junction devices
with a three-dimensional nanowire geometry.

The vast improvement of general transistor performance the last few years is mainly due to
device miniaturization. Recently fabricated devices already reach channel lengths down to 14
nm. In these dimensions discretization effects gain influence on the device performance. In this
thesis the random dopant fluctuation influence on the device threshold voltage is investigated
and modeled. The general rdf model is able to capture the rdf influence on the gate voltage in
TFET devices for a specific operating regime. A for MOSFET devices optimized rdf model is
able to predict the rdf-based threshold voltage variation on the potential barrier for various
channel lengths, channel doping concentrations and doping profile standard deviations at the
channel junctions. By further investigating the rdf dependencies in both devices, the MOSFET
current varies less compared to a TFET device. In the MOSFET rdf only has a direct influence
on the potential barrier, which limits the device current. In TFETs, however, a variation of the
potential near the channel junctions leads to more complex variations in tunneling distance
and band-overlap position, and with that, a higher variation in device current. Optimization
possibilities are steep doping profiles at the channel junctions, as well as low channel doping
concentrations regardless of the device type.

The analytical models introduced in this work, although accurate end efficient, can not be
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implemented in a circuit simulator. In order to utilize the model, compact expressions for
the introduced mathematical equations have to be found and implemented into a compact
model. This can subsequently be implemented in a circuit simulator for first TFET-based
circuit simulations. A first transition of the band-to-band current model into a compact form
in Verilog-A was done in [73]. In order to demonstrate the numerical stability of the model, a
basic circuit in form of a single stage inverter is simulated using complementary TFET logic,
which stays in good agreement with the measurement data.
Since the geometric development aims for new performance enhancing three-dimensional
structures like the nanowire, an adaption of this structure for the model is a high priority for
future work.
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