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ABSTRACT

Statistical shape models (SSMs) are well-established tools for medical
image segmentation and interpretation due to their ability to con-
strain the image analysis result within allowable limits as defined

by a representative set of training examples. However, the construction of
SSMs that are rich, i.e., that represent well the natural and complex vari-
ability of anatomical structures, is a difficult task, as this is often limited by
the available delineated training shapes, which rarely exceed a few dozen.
As a consequence, such models often generalize poorly to new groups of in-
dividuals, particularly given the increasing amounts of data nowadays rou-
tinely acquired for clinical practice and biomedical research. Computational
methods are thus required to enrich these SSMs and increase the quality of
the representation of the variability between individuals, with no additional
datasets. This requirement is important as the delineation of new training
shapes is always laborious, particularly for building SSMs of complex 3D
shapes.

This thesis presents three original and complementary approaches to
enhance the quality of the SSMs, that improve the accuracy of medical im-
age segmentation in challenging applications. First, we enhance the statis-
tical richness of SSMs by developing a technique capable of merging the
shape representations and statistical properties of several pre-existing mod-
els with no original or additional raw data. Second, we enhance the geo-
metrical quality of SSMs by developing a framework for modeling simul-
taneously both global and local characteristics of highly complex and/or
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multi-part anatomical shapes. Last, we improve the specificity of SSMs for
each dataset by integrating individual-specific non-imaging metadata such
as demographic, clinical and behavioural variables into the SSM construc-
tion and image segmentation tasks. These techniques are demonstrated and
validated by considering various imaging modalities such as magnetic reso-
nance imaging (MRI) and computed tomography (CT), and different complex
anatomies, including the human heart, brain and spine.
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RESUMEN

Los modelos estadísticos de forma son herramientas bien estable-
cidas para la segmentación e interpretación de imágenes médi-
cas debido a su habilidad para restringir el resultado de la

segmentación dentro de los límites permitidos usando como referencia
un grupo representativo de ejemplos usados para entrenar el modelo.
La construcción de modelos estadísticos de formas que son detalladas,
porque representan bien la variabilidad compleja y natural de las
estructuras anatómicas es una tarea dificil, frecuentemente limitada
por la escasez de las delineaciones de formas disponibles para el en-
trenamiento del modelo. Estas raramente superan las pocas docenas.
Como consecuencia, estos modelos a menudo no tienen un buen de-
sempeÒo cuando se aplican a nuevos individuos, en particular dada
la cantidad de datos que en la actualidad se obtienen para prácticas
clínicas e investigación biomédica. Métodos computacionales son en-
tonces requeridos para enriquecer estos modelos estadísticos de formas
e incrementar la calidad de la representación de la variabilidad en-
tre individuos y sin la disponibilidad de bases de datos adicionales
para entrenamiento del modelo. Este requisito es importante ya que
la delineación de nuevas formas de entrenamiento es siempre labo-
riosa en particular para construir modelos de formas complejas de tres
dimensiones.

Esta tesis presenta tres propuestas originales y complementarias
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para mejorar la calidad de los modelos estadísticos de formas que
mejoran la precisión de la segmentación de la imagen médica en apli-
caciones difíciles. Primero, proponemos mejorar la riqueza estadística
de los modelos de formas por medio del desarrollo de una técnica capaz
de unir la representación de forma y las propiedades estadísticas de
muchos modelos pre-existentes sin datos originales adicionales. Se-
gundo, proponemos mejorar la calidad geométrica de los modelos de
formas estadísticas por medio de la creación de un marco de referencia
para modelar simultáneamente las características globales y locales de
alta complejidad y/o que constan de multiples partes anatomicas. Por
último, proponemos mejorar la especificidad de los modelos estadísticos
de formas para cada paciente mediante la integración de metadatos
específicos al paciente y que no se derivan de la imagen, como por
ejemplo, variables demográficas, conductuales y de entorno clínico, en
la construcción de los modelos. Estas técnicas son demostradas y vali-
dadas mediante el uso de varias modalidades de imágenes tales como
imágenes de resonancia magnética (MRI) y tomografía computarizada
(CT); así como diversas formas anatómicas, incluyendo el corazón, el
cerebro y la espina dorsal humanos.
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1
GENERAL INTRODUCTION

1.1 Medical Image Segmentation in the
Era of Personalized Medicine

Tomorrow’s healthcare lies in early diagnosis and individually
tailored treatments, i.e. delivering the right treatment to the
right patient at the right time [1]. This revolutionary approach

to medicine, the so-called personalized medicine, has been embraced
as a vital societal challenge worldwide, with the active participation
of researchers, care providers, industries, and policy makers [2]. The
fundamental goal is to develop novel technological solutions for early
patient diagnosis and prognosis, and personalized treatment and mon-
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1.1. MEDICAL IMAGE SEGMENTATION IN THE ERA OF
PERSONALIZED MEDICINE

itoring.

Medical imaging plays an important role in this personalized
medicine revolution because of its unique capability to capture in
vivo the most subtle morphological and functional changes in dis-
eased organs [3]. Recently, there has been an increasing interest in
quantifying such changes through the development of quantitative
imaging biomarkers and computational models of anatomy. On the one
hand, compared to biochemical and histological biomarkers, imaging
biomarkers have the advantage of remaining non-invasive and being
spatially and temporally resolved [4]. Image-based models of anatomy
constitute valuable tools for computer simulation of patient response
to intervention [5].

One important pre-requisite to the estimation of imaging biomark-
ers and computational models is the segmentation of the boundaries
of the organs and tissues of interest. There have been significant ad-
vances in medical image segmentation over the years and various
approaches to the problem have been developed. However, in the era
of personalized medicine, existing segmentation techniques are now
faced with a significant increase in the medical images available in
clinical practice. These statistics illustrate the growth and volume of
data available today: In the UK alone, the total number of radiology
tests performed between 2012-2013 was 41.1 million as reported by
the National Health Service [6]. In the last 10 years, the volume of
magnetic resonance imaging (MRI) and computed tomography (CT)
scans has increased by 211%, and 167%, respectively. There is a need
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1.2. MEDICAL IMAGE SEGMENTATION USING STATISTICAL
SHAPE MODELS

for new scalable, reliable, and automatic methods for image segmen-
tation and quantification that can address the much larger biological
variability and complexity faced with in today’s clinical practice and
medical research.

1.2 Medical Image Segmentation using
Statistical Shape Models

One natural approach to deal with the extraordinary increase in image
data volumes is with statistical shape models (SSMs) [7]. With these
methods, statistical models of anatomical shape can be constructed
to encode the anatomical variability from a representative training
sample of manually segmented organs. The image segmentation is
then carried through specific algorithms designed to constrain the seg-
mentation result within an allowable domain defined by the statistical
model. One such algorithm is the Active Shape Models (ASMs) [8, 9],
which comprises two steps; the training of a point distribution model
(PDM), and the model-constrained image segmentation. These two
stages can be summarized:

Training

1. Shape Representation: Given a set of manually delineated image
volumes, define a set of points, x= {x1, y1, z1, . . . , xP , yP , zP } that
adequately describe the surface of the organ.

3



1.2. MEDICAL IMAGE SEGMENTATION USING STATISTICAL
SHAPE MODELS

2. Correspondence Generation: Propagate the aforementioned point
configuration to all manually delineated samples, and construct
a shape matrix by concatenating all shapes, X= {x1, . . . ,xN }.

3. Shape Alignment: Since the objective is to model the shape of
the organs, attributes that do not constitute shape are removed
from samples, i.e., translations, rotations, and scaling depending
on the application.

4. Linear Decomposition: Having the set of aligned shapes, one
can then use matrix factorization techniques, such as, principal
component analysis (PCA) [10], to extract the main modes of
variation from the data. The resulting model is the mean x̄,
and variance C = VDVT , where, V and D, are the principal
components, and associated variance, respectively. With this
model, new shapes are generated from the distribution by adding
a linear combination of modes of variation to the mean shape,
x̃= x̄+Vb, bi ∑±3

p
Di,i , see Fig. 1.1

Image Segmentation

1. Shape Initialization: The first step in the image segmentation
process is positioning an initial estimate of the shape, its location
and orientation. Methods exist that localize [11], and adjust the
pose [12] of the object of interest providing an initial estimation
of the segmentation.
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1.2. MEDICAL IMAGE SEGMENTATION USING STATISTICAL
SHAPE MODELS

+3σ-3σ μ

m2

m1

Figure 1.1: Bi-ventricular cardiac shapes generated by a SSM. Rows
showing the first 2 modes of variation from the model. The center
column showing the mean µ, and ±3æ left and right, respectively.

2. Feature Point Search: Parting from the initial shape, the next
step is the search of relevant features on the image. This is done
for every point, by locally searching image patches that minimize
the distance to a pre-trained model of image appearance, and
updating the location of the points.

3. Projection onto PDM: Due to the noisy nature of the image, and
false positive image feature detections, some points from the
previous step will be incorrectly localized, and therefore, the
resulting shape will not be a valid instance as defined by the
model. To correct this, the resulting shape is projected onto the
model space, and constrained to be within n standard deviations

5



1.3. STATISTICAL SHAPE MODELING: CURRENT CHALLENGES

from the mean. The resulting valid instance is then projected
back to the image space.

4. Iterate: ASMs are an iterative procedure where step 2) is initial-
ized with the current estimate of the shape from step 3). This
procedure is repeated until no significant changes in shape are
measured. The resulting shape is the output of the algorithm.

1.3 Statistical Shape Modeling: Current
Challenges

Despite their many advantages and potential applications, SSMs are
associated with limitations that reduce their quality and render them
less robust when applied to large and variable databases, i.e.:

1. Their construction is tedious and time consuming: The construc-
tion of SSMs, is not a trivial task. It requires the collection
of a sufficiently large and representative training sample, and
landmark annotation with point correspondence of all training
shapes. This is true with anatomical shapes, which cannot be
easily annotated manually, such as for the heart.

2. They do not generalize well for highly variable shapes: The dimen-
sionality of the data is typically much higher than the number
of samples. As a result, the available number of modes of vari-
ation is inevitably low compared to the number of landmarks

6



1.3. STATISTICAL SHAPE MODELING: CURRENT CHALLENGES

that represent the shape. This means that a sub-space spanned
by a permissive number of eigenvectors cannot always general-
ize well to unseen shapes. The statistical model over-constrains
the image segmentation process, which can lead to incorrect
segmentations. See Fig. 1.2.

3. They do not handle well complex multi-part structures: SSMs
rely on the assumption that after removing non-shape related at-
tributes such as pose and scale from shapes, the resulting points
follow a Gaussian distribution. Such assumption becomes largely
invalid when dealing with articulated or highly complex geome-
tries. An example is the complex variability found in the spine
due to potential differences in forward/lateral flexion, extension,
and rotation [13]. Here, the relative location of parts/components
can vary in non-Gaussian manner, making the image segmenta-
tion task even more challenging than for single object organs.

4. They are biased towards global shape variability: Standard SSMs
built using eigendecomposition encode well the overall global
geometry of the anatomical shape, but give less weight to the
variation of finer geometrical patterns. In some applications, this
could lead to unsatisfactory segmentation of fine anatomical de-
tails (see Fig. 1.2), affecting later analysis, such as biomechanical
simulations. In spine modeling, for instance, the global geometry
of the vertebral bodies can be well represented with SSMs, but
more complex regions such as the processes, which interact with
the ligaments and muscles [14], are more problematic.

7



1.3. STATISTICAL SHAPE MODELING: CURRENT CHALLENGES

Figure 1.2: An example of an automatic ASM segmentation of the
lumbar spine (L1-L5). Blue arrows on both figures show areas where
the low generalization ability of the underling PDM fails to capture
local details such as on the spinous process. The red arrows show
the inability of the PDM to correctly capture the shape of a fractured
vertebra (L3 vertebra).

There is a need for new methods to complement the standard
construction of SSMs to enhance their quality and richness, and to
enable handling anatomical shapes with high geometrical complexity
and biological variability, such as for the heart, spine, or brain. Sev-
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1.4. OBJECTIVES AND CONTRIBUTIONS OF THE THESIS

eral studies have attempted to enhance the quality of SSMs through
different strategies. For instance, Lötjönen et al. [15] have proposed
enlarging model variability by creating "new" training instances arti-
ficially from known shapes, by deforming the real shapes non-rigidly.
However, it is difficult to know the extent to which creating artificial
data is contributing meaningful statistical and anatomical information
to the model. Another strategy consisted of combining statistical and
physical models [16, 17], but these physical models are only fine-tuned
approximations to a particular population and tissue, and cannot be
extended trivially in a more general context. For the modeling of multi-
part object ensembles, different strategies have been proposed such as
through hierarchical representations [18, 19, 20, 21, 22], but they have
not been applied to complex articulated systems such as the spine.

1.4 Objectives and Contributions of the
Thesis

In this thesis, we aim to present novel solutions to the aforementioned
problems, which will enable the construction of higher quality and
richer SSMs for 3D medical image segmentation. This thesis is cen-
tered on these objectives:

1. To build SSMs that encode higher variability without new train-
ing samples (Addressed in Chapter 2).
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1.4. OBJECTIVES AND CONTRIBUTIONS OF THE THESIS

2. To develop methods for modeling and segmenting geometrically
complex structures (Addressed in Chapters 2 and 3).

3. To develop methods for modeling and segmenting multi-part
articulated shapes (Addressed in Chapter 3).

4. To build SSMs that generalize well to the individual under
scrutiny (Addressed in Chapters 2 and 4).

To achieve these objectives, this thesis proposes the following con-
tributions:

Chapter 2 To increase the variability encoded by the model without
additional training samples, by directly fusing pre-existing SSMs into a
single one. A normalization technique is used to transform pre-existing
SSMs into a common landmark representation. An eigenspace fusion
technique is then employed to combine the mean and eigenvectors
of the individual models without the original data. Such technique
enables to merge models constructed in different research or clinical
centers, with the ability to address multiple shape representations,
image modalities, and anatomical populations. This increases the
generalization ability of the resulting model while avoiding the very
time-consuming annotation of new examples. This technique is vali-
dated with several anatomical structures including the human heart,
brain and spine, and two imaging modalities, CT and MRI.
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1.4. OBJECTIVES AND CONTRIBUTIONS OF THE THESIS

Chapter 3 To improve the statistical shape modeling of geometri-
cally complex and articulated anatomical shapes, such as the spine.
With this method, we decompose the individual vertebrae into statis-
tically meaningful parts in order to improve the modeling of regions
associated with fine details and geometrical complexity. The high-level
inter-relationships between the vertebrae and the different regions
are encoded using conditional models to ensure global consistency.
The aim of such representation is to obtain a model that reduces the
over-constraining problem of SSMs by replacing the global model with
multi-part constraints that adapt better to the geometrical complexity
of the articulated spine.

Chapter 4 To improve the specificity of the SSM for each individual
by integrating individual-specific non-imaging information into the
modeling and segmentation tasks. Specifically, we use demographic
(e.g. age, sex), behavioral (e.g. smoking) and clinical indicators (e.g.
weight, hypertension), which we call metadata, to constrain, and per-
sonalize the shape space of a specific subject based on conditional
distributions relating the population’s shape and metadata. In this
manner, a SSM is created that is more representative of the sub-
population to which a specific subject belongs. We demonstrate these
metadata-customized SSMs with cardiac segmentation in MRI.

In summary, we present in this thesis three complementary ap-
proaches to enhance the quality of the SSMs and to improve the accu-
racy of medical image segmentation in challenging applications, i.e. 1)
by fusing pre-existing models, 2) by building multi-part models, 3) and

11
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by customizing the models based on individual-specific metadata. We
use different anatomical structures to demonstrate the value of these
techniques, namely the human heart, brain and spine, based on two
distinct imaging modalities, i.e, MRI and CT.

12
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A FRAMEWORK FOR THE MERGING OF

PRE-EXISTING AND

CORRESPONDENCELESS 3D STATISTICAL

SHAPE MODELS

2.1 Motivation

The construction of statistical shape models (SSMs) that are
rich, i.e., that represent well the natural and complex variabil-
ity of anatomical structures, is an important research topic

in medical imaging. To this end, existing works have addressed the
limited availability of training data by decomposing the shape vari-
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ability hierarchically or by combining statistical and synthetic models
built using artificially created modes of variation. In this paper, we
present instead a method that merges multiple statistical models of
3D shapes into a single integrated model, effectively encoding extra
variability anatomically meaningful, without the need for the original
or new real datasets. The proposed framework has great flexibility
due to its ability to merge multiple statistical models with unknown
point correspondences. The approach is beneficial in order to re-use
and complement pre-existing SSMs when the original raw data cannot
be exchanged due to ethical, legal, or practical reasons. This paper
describes two main stages, i.e., 1) statistical model normalization and
2) statistical model integration. The normalization algorithm uses
surface-based registration to bring the input models into a common
shape parameterization with point correspondence established across
eigenspaces. This allows the model fusion algorithm to be applied in a
coherent manner across models, with the aim to obtain a single unified
statistical model of shape with improved generalization ability. The
framework is validated with statistical models of the left and right car-
diac ventricles, the L1 vertebra, and the caudate nucleus, constructed
at distinct research centers based on different imaging modalities (CT
and MRI) and point correspondences. The results demonstrate that
the model integration is statistically and anatomically meaningful,
with potential value for merging pre-existing multi-modality statistical
models of 3D shapes.

14
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2.2 Introduction

Constructing comprehensive statistical models of 3D shapes (SSMs)
is a well-studied yet still challenging problem in medical image com-
puting. One of the main difficulties remains the construction of shape
models that are rich, i.e., that represent well the natural and complex
variability of anatomical structures. However, this is often limited
by the available delineated training shapes, which rarely exceed a
few dozens. Consequently, such models often generalize poorly to new
subjects due to over-fitting. Computational methods are required to
enrich these SSMs and increase the quality of the representation of
the variability between individuals and groups of individuals, with-
out additional datasets. The latter requirement is important as the
delineation of new training shapes is always laborious, particularly
for building multi-modality SSMs from various imaging sources (e.g.,
MRI and CT).

Two main approaches have been proposed to improve the quality
of SSMs without new datasets. First, several techniques reduce the
gap between dimensionality and training size by considering object
ensembles and/or object hierarchies and decomposing the shape models
([20, 22, 21, 18, 19, 23]). On a similar note, promoting sparsity in the
statistical decomposition can provide shape models that are easier
to manipulate as its modes of variation are local rather than global
([24, 25, 26, 27]). Perhaps these techniques do not explicitly enrich
the models with extra anatomical variability but merely employs a
shape decomposition that relaxes the shape constraints to give more
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flexibility to the SSM during image interpretation.

To explicitly add shape variability to the models, a second popular
approach consists of combining the statistical models with synthetic
modes of variations ([15, 28, 29]). The deformation can be chosen
to reflect expected variations, either through finite element analysis
([9, 17]) or heuristically ([30, 31]). However, despite the desired effect
this approach appears to have, it remains a surrogate for having more
artificial training data and its success depends on the parametrization
of the method and its relative weight regarding the real data [20].

We present an alternative approach that considers the combination
of different pre-existing shape models of the same shape class, without
the assumption of point correspondence between the models. The
training database is effectively increased, without the actual training
data of either of the models used in the combination. When combining
models from different clinical/research centers, it may be impossible to
obtain the original training data for ethical, legal or practical reasons.
However, the complementary richness of these models due to either
the training population or the underlying imaging modality, may make
it attractive to combine them.

The proposed workflow addresses two key technical issues. First,
as these individual models are constructed at different centers with
distinct delineation tools and protocols, the integration procedure must
be able to handle differences in shape representations. While estab-
lishing point correspondence has been extensively investigated for
training shapes ([32, 33, 34, 35, 36, 37, 38, 35, 39, 40, 41, 42, 43, 44,
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45, 46]), this work addresses the problem of establishing correspon-
dence across eigenspaces using a surface-based approach. Second, once
the eigenspaces are normalized into a common representation, a fu-
sion of the individual models into an integrated SSM is necessary so
the relative importance of each individual model considered based on
statistical criteria ([47, 48]).

The contributions of this work are: 1) From the point of view of the
approach, to the best of our knowledge, this is the first work proposing
to merge existing PDMs that have no point correspondence. This has
a great impact in terms of re-usability of already constructed PDMs
and allows to build enriched and more comprehensive models without
new data. 2) From the technical point of view, we introduce a novel
workflow using non-rigid registration of surfaces from [49], and PDM
fusion method from [48]). We introduce a method to transform an
eigenspace into a new shape representation by using the barycentric
mapping in section 2.3.1, which allows us to obtain normalized PDMs
that can be adequately merged. 3) From an application point of view,
this paper is the first demonstration of the fusion of PDMs in the
medical image analysis community. We show the performance of the
technique with various experiments on cardiac, bone and brain data.

This chapter is organized as follows. In section 2.3.1 we introduce
the algorithm used to establish point correspondence across the indi-
vidual eigenspaces. Section 2.3.2 describes the method used to merge
the transformed eigenspaces into a unique integrated SSM. In sec-
tion 2.4 we evaluate the method with applications to cardiac statistical
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shape modeling though the combination of existing MRI- and CT-based
models, and to the brain’s caudate nucleus, and vertebrae. We conclude
in section 2.5 with a discussion of the SSM combination approach and
conclusions.

2.3 Method

The proposed framework consists of two main stages: 1) the model
normalization, and 2) the model merging. In section 2.3.1 we present
the algorithm used to bring the input models into a unique shape
parameterization with point correspondence established across mean
shapes and eigenspaces. Then in section 2.3.2 we present the algorithm
to merge the transformed input models into a single model that retains
all the properties and characteristics of its constituent models.

2.3.1 Normalization algorithm

The first step in unifying a set of correspondenceless models is the
creation of surface correspondence between the different PDMs. This
is followed by the calculation of a barycentric mapping, which is used
to transform the eigenspaces into the common shape space where they
can be compared and unified into a single PDM.

Let ≠i = (x̄i,©i,§i,Ki,Vi), for i = 1, . . . , N be the set of pre-built
models of the same object with different landmark placement strategy.
Here x̄i is a vector of concatenated vertex coordinates representing the
mean shape, ©i and §i are the eigenvector and eigenvalue matrices,
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correspondingly, and Ki and Vi are the number of observations used to
build the model, and their triangulation. Now, let Mi = (x̄i,Vi) be the
model mean surfaces defined by the vertices x̄i and triangulations Vi.
In these steps we detail the process of finding point correspondence
across the means of all models, and finding a suitable transformation
for the normalization of all eigenvector spaces so we can perform fusion.
Algorithm 1 summarizes the process described in the these sections.

Algorithm 1 Model normalization algorithm
1: Let: ≠i = (x̄i,©i,§i,Ki,Vi) and Mi = (x̄i,Vi)
2: Let: Mre f be a reference mean surface from the models ≠i . See Sec.

2.3.1.1

3: Input: ≠i, for i = 1, ..., N

4: for i = 1 ! N
5: M

icp
i = icp(Mi,Mre f ) . Rigid registration. See Sec. 2.3.1.2

6: M curr
i = currents(M icp

i ,Mre f ) . Non-rigid registration. See Sec. 2.3.1.2

7:
8: for j = 1! numberOfVertices . in reference mesh Mre f

9: T(i, j) = getBarycentricWeights(M(re f , j),M curr
i )

10: end for

11: x̄0
i =Tix̄i . Transform the mean. See Sec. 2.3.1.3

12: ©0
i =Ti©i . Transform the eigenvectors. See Sec. 2.3.1.3

13: end for

14: Output: ≠0
i = (x̄0

i,©
0
i,§i,Ki,Vref )
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2.3.1.1 Selecting a reference mean surface mesh

The first step of the normalization is the selection of a reference mesh
from among the existing models. The most obvious criterion to choose
the reference model is mesh resolution. Choosing the model with the
highest mesh resolution will retain maximal information from all mod-
els. However, if retaining maximal information is not paramount, but
rather preserving the same shape representation that is already being
used in a given application, or to speed up a process, then choosing
a more sparse shape representation may be more appropriate. The
effects of mesh resolution of the reference mesh are detailed in section
2.4.5.

2.3.1.2 Computing surface correspondence

We wish to establish surface correspondence between the reference
model and all other models in the set. To achieve, this we use a two-
step registration approach. We perform an initial rigid registration
using the iterative closest point (ICP) algorithm [50], and then perform
diffeomorphic free-form registration on the shapes [49] to refine the
matching. We estimate a combined transformation 'i : Mi ! Mre f

that takes points from a surface Mi to Mre f . This combined step
provides meaningful morphological correspondence across the set of
the different models’ mean shapes.

We use ICP because, unlike methods that require point correspon-
dence, such as Procrustes analysis, ICP iteratively associates points
by the nearest neighbor criteria minimizing a cost function. Since we
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want to register meshes with different numbers of landmarks, ICP
is appropriate and computationally efficient. Applying ICP is an im-
portant step because although the mean shapes are translation and
scale independent, different models may differ in pose. This initial
alignment also saves considerable computational time for the non-rigid
registration.

The registration [49] uses the definition of currents to represent
surfaces. It defines a surface as the change in flux of a current, or
integration of a varying set of vector fields w 2 W, where the vector
field space W is generated by a Gaussian kernel of the form exp(°||x°
y||2/∏2

W ). The subset of linear functionals, or dual space of currents
W§, is the dense span of basis elements ±a

x, called Dirac delta currents,
defined at the spatial position x and with direction a. The method
approximates the current of a triangulated surface Mi, by the sum of
the Dirac delta currents defined at the triangle barycenters xi, and
oriented along the triangle normals ai

k,

(2.1) Mi =
X

k
±

ai
k

xi
k
.

With this representation, and noting that the Gaussian kernel
provides the space W§ with an inner product, the currents space has a
norm, allowing for the definition of a distance measure between two
surfaces. The distance between two surfaces being the norm of their
difference,

(2.2) d(Mi,M j)= kMi °M jkW§ = k
X

k
±

ai
k

xi
k
°

X

l
±

b j
l

y j
l
kW§ .
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Registration is performed using the Large Deformation Diffeomor-
phic Metric Mapping (LDDMM) method described in ([51]), where a
deformation ¡v

t is estimated by integrating the time-varying transport
equation @¡v

t (x)/@t = vt(¡v
t (x)) where geodesic flows vt, t 2 [0,1], are

families of elements of a Hilbert space V for which an inner product is
defined. More concretely, ¡v

t is found by minimizing:

(2.3) FMi ,M j (v)=
Z1

0
kvtk2

Vdt+k(¡1)Mi °M jk2
W§ ,

where the first term is called the regularizing term and is associ-
ated with the rigidity of the diffeomorphism. The second term called
the matching term contains ¡, which is responsible for the geometrical
transport of one surface to another. Within the currents space, the
space V is produced by an isotropic Gaussian kernel with standard
deviation ∏V which controls the extent of the diffeomorphism’s spatial
consistency. Finally, an alternate two-step process defines the template
Mi and diffeomorphisms ¡ where the initial surface is approximated
by the mean initial current, and the transformations are updated as
the distance between currents is minimized.

Based on the above definition of the LDDMM framework, and
within the currents definition of surfaces, there are two parameters
we manipulated during the registration step of our method. The first
parameter is the standard deviation ∏V of the velocity fields v. This
parameter controls the rigidity of the deformation of the surface at
any given barycenter. Large values of ∏V will propagate the transfor-
mation of the current barycenter onto a proportionally large radial
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neighborhood following a symmetric Gaussian bell shape. Small val-
ues of lambda depending on the mesh resolution will tend to limit
the influence of the transformation down to a single barycenter. The
second parameter is the standard deviation of vector fields w, ∏W . This
parameter defines a search radius for a matching surface and fine
detail matching during registration. Large ∏W values will be more
likely to find a matching structure, however at the cost of loosing high
frequency accuracy of the final registration. ∏W defines a limit beyond
which variations are discarded as noise.

For our purposes, we experimentally found that setting ∏V = 10mm
is appropriate for the typical size of the objects in this study. Finding
a value for ∏W that can be applied across the board however is more
difficult. Depending on the sample size from which the mean surface
was extracted, the nature of the data (diseased population), or the
acquisition method, relatively large geometrical differences can be
found between mean surfaces. These potential differences make it
difficult to ensure that a given ∏W will be large enough to find the
correct matching surface, and small enough to ensure matching of the
fine variations. For this reason, we follow a refining strategy of ∏W

during matching. We found that geometrical differences between any
two means did not exceed 20mm. Based on this knowledge we followed
an iterative approach setting the initial value of ∏W = 20mm, ensuring
that all regions of the surface are within the radius of influence. Then
we reduced ∏W proportionally to the decrease in error between the
surfaces and stopped when either no significant improvement was
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found or the distance between surfaces fell below 1mm. Figure 2.1
illustrates the final result of the currents registration after the initial
alignment obtained with the ICP matching.

MR CT ICP Currents

LV

RV

Figure 2.1: MR (Col. 1) and CT (Col. 2) mean shapes after ICP align-
ment. Their superposition before (Col. 3), and after (Col. 4) non-rigid
currents registration. Top: LV; bottom: RV.

2.3.1.3 Computing inter-model landmark mapping

Once surface correspondence has been obtained, we find a suitable
transformation that enables to achieve point correspondence between
the input models with respect to the reference model. To achieve this,
we introduce a barycentric mapping, which expresses every point on
a reference mesh Mre f = (x̄re f ,Vref ), as a linear combination of the
vertices on the previously registered mean meshes Mi = ('i(x̄i),Vi).
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One key property of this mapping is that it preserves the linear nature
of PCA-based point distribution models [9]. In other words, the merging
of PDMs must produce a PDM.

A barycentric coordinate system describes a point as the center of
mass of vertices of a simplex, which in our case are triangles (see Fig.
2.2). Barycentric transformations are often used in computer graphics
to achieve linear interpolation of shapes [52, 53, 54].

Reference mesh
Target mesh

Figure 2.2: Barycentric mapping. Left: two registered meshes (refer-
ence and target). Middle: detail of the normal projection of a point in
the reference mesh onto a target shape simplex. Right: The point at the
plane-line intersection can then be expressed as the linear combination
of coefficients ci,1, ci,2, ci,3.

Let 'i(x̄i) for i = 1, . . . , N be the previously aligned points (using
currents registration) of the ith mean shape on the reference surface
Mre f . Let Ti be a linear transformation matrix so x̄re f ºTi'i(x̄i). Tix̄i

will change the parametrization of the surface Mi to match that of
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Mre f and therefore it will be transformed into M 0
i = (Tix̄i,Vref ) with

established point correspondence.
A good candidate for Ti are the barycentric coordinates of the points

x̄re f expressed in terms of points 'i(x̄i) and triangulation Vi. We com-
pute Ti as follows. For every point in the reference shape we compute
the normal to its mesh surface, and the point of intersection with a
plane described by a triangle on the target mesh. We then compute
barycentric coefficients ci,1, ci,2, ci,3 for each point in the triangle, and
add them to a point transformation matrix P j that transforms the jth

point

P j =

2

664

c j,1 0 0 0 0 c j,2 0 0 0 0 c j,3 0 0
· · · 0 c j,1 0 0 · · · 0 0 c j,2 0 0 · · · 0 0 c j,3 0 · · ·

0 0 c j,1 0 0 0 0 c j,2 0 0 0 0 c j,3

3

775

3£3m

.

The column-wise position of every 3£3 diagonal matrix c j, encodes the
indexing of a simplex on the target mesh, thus preserving point corre-
spondence between the reference and target meshes. m is the number
of points in the target mesh, and the ith mean shape vector is rep-
resented as x̄i = (xi,1, yi,1, zi,1, xi,2, yi,2, zi,2, . . . , xi,m, yi,m, zi,m)T . Finally,
the complete transformation matrix Ti is a row-wise concatenation of
point transformation matrices P j,

Ti =
h

PT
j,1 . . . PT

j,n

iT

3m£3n
,

where n is the number of points in the reference mesh. The transfor-
mations Ti are linear and therefore any shape xi º x̄i +©ibi can also
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be re-parametrized as

(2.4) Tixi ºTix̄i +Ti©ibi.

Having propagated the parametrization of Mre f to all the input
models, we can also use its triangulation Vref to obtain the resulting
re-parametrized models as

(2.5) ≠0
i = (Tix̄i,Ti©i,§i,Ki,Vref ), i = 1, . . . , N,

which can now be merged using the fusion algorithm presented in the
next section.

2.3.2 Model merging algorithm

Now that all eigenspaces have been transformed to having a common
shape parametrization, we can detail the steps to merge them. To
simplify notation, we denote the newly transformed mean shapes, and
eigenvector matrices as x̄0

i =Tix̄i, and ©0
i =Ti©i correspondingly.

The goal of fusion is to compute such an eigenspace ≠= (x̄,©,§,K),
using the information only from ≠0

i = (x̄0
i,©

0
i,§i,Ki), for i = 1, ..., N,

where x̄0
i are the mean shapes, ©0

i are the eigenvectors, §i are the
eigenvalues, and Ki is the number of shapes in the ith training set.
This equals building a model from the full set of original observations,
to which it is assumed we have no access. Algorithm 2 outlines the
steps, following [48].
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Algorithm 2 Model merging algorithm
1: Input: ≠0

i = (x̄0
i,©

0
i,§i,Ki), for i = 1, ..., N

2: and Di =©0
i§i©

0T
i

3: [x̄00
i ,ROTi]= procrustes(x̄0

i) . section 2.3.3

4: x̄= computeWeightedMean(x̄00
i ) . section 2.3.3

5: ©00
i = rotateEigenvectors(©0

i,ROTi) . section 2.3.4

6: °= buildOrthonormalAllSpanningBasis(©00
i) . section 2.3.5

7: D= computeWeightedCovarianceMatrix(Di) . section 2.3.5

8: [R,§]= eig(°D°T) . section 2.3.5

9: ©=°R

10: Output: ≠= (x̄,©,§,K)

2.3.3 Compute combined model mean

Since every PDM has a different mean shape, the first step is to
align the means x̄0

i of all PDMs using Procrustes Analysis [55]. After
Procrustes Analysis, the aligned means x̄0

i are used to estimate the
combined weighted mean x̄:

(2.6) x̄=
√

NX

i=1
wi

!°1

·
NX

i=1
wix̄0

i,

28



2.3. METHOD

with

(2.7) wi = Ki ·
√

NX

j=1
K j

!°1

,

where wi are the fusion weights and
P

wi = 1.

2.3.4 Eigenvector rotation

During the alignment, the shapes are centered and rescaled to unit
size and then a rotation matrix is estimated. Let Si be the 3£3 rotation
matrix from the transformation that aligns the shape x̄0

i to the mean
x̄. Let •i be a 3n£3n block-diagonal matrix with repeating Si along
its diagonal:

•i =

2

664

Si 0
. . .

0 Si

3

775 .

We then use transformations •i to reorient eigenvectors •i©i,
so we work with eigenspaces ≠00

i =
°
•ix̄0

i,•i©
0
i,§i,Ki

¢
, assuming the

mean shapes are already translation, and scale-independent.

2.3.5 Combined eigenspace basis

We want to compute the eigenvalues and eigenvectors that satisfy
D = ©§©T , where D is a combined covariance matrix that can be
obtained solely from information in models ≠0

i, and where each co-
variance matrix Di =©i§i©

T
i is weighted according to the number of

contributed shapes of each model. A complete mathematical derivation
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of D is provided in Sec. 2.3.6. Other derivations can be found in [47]
and [48]. The following is a concise description of the steps involved:

1. Find an eigenspace that spans all models’ eigenspaces: Construct
an orthonormal basis set °, that spans all the eigenspaces •i©

0
i

by creating a matrix H that concatenates all eigenvectors •i©
0
i,

and all possible combinations of differences between the different
model’s mean vectors (•ix̄0

i °• jx̄0
j), for i, j = 1, ..., N, and j > i:

H= [•1©
0
1, ...,•N©

0
N , (•1x̄0

1 °•2x̄0
2), ..., (•N°1x̄0

N°1 °•N x̄0
N)]

and orthonormalize:
°=Orth(H)

2. Determine an intermediate eigenproblem: Use ° to derive an
intermediate eigenproblem:

°D°T =R§RT

whose solution provides the combined model eigenvalues § and
eigenvectors R needed to correctly orient the all-spanning basis
°.

3. Compute the combined eigenvector matrix: Finally, the eigenvec-
tors of the combined model © are obtained by:

©=°R

With x̄ from Sec. 2.3.3, © from Eq. (2.8), § from Eq. (2.8), and
K =PN

i=1 Ki, we obtain the fused model

≠= (x̄,©,§,K) .
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2.3.6 Covariance matrix derivation

We have shown procedurally how to obtain the merged mean, eigen-
values and eigenvectors of a model we claim to be equivalent to one
constructed directly from a single set of shapes. In this section, we
provide theoretical proof of their equivalence as follows.

Assume we have M models: ≠ j = (x̄ j,D j,K j), for j = 1,2, . . . ,K j

where D j =© j§ j©
T
j and

P
K j = K . Then the fused mean is

(2.8) x̄=
MX

j=1
K j p j

°
• jx̄ j

¢

where • j is the transformation matrix from x̄ j to x̄ (Procrustes
alignment), and p j = wj(

PM
j=1 wjK j)°1 is the weight assigned to any

shape in the jth model.
Now let ™i j be the transformation matrix from the unaligned

original observation xi j, (from the set of observations j, j = 1,2, . . . ,K j),
to the corresponding mean x̄ j defined as

(2.9) x̄=
MX

j=1
K j p j

°
• jx̄ j

¢
=

MX

j=1
p j

√ K jX

i=1
• j™i jxi j

!

.

Let x̃ be the mean of all the shapes xi j estimated by Procrustes
Analysis. Let ®i j be a transformation from xi j to x̃. If, ®i j = • j™i j

then, x̃= x̄. Assuming this is true, the covariance constructed from all
the observations is

(2.10) D= 1
A

MX

j=1

K jX

i=1

°
®i jxi j ° x̃

¢°
®i jxi j ° x̃

¢T p j,
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where A = 1°P
K j p2

j is the unbiased normalizing factor of the variance.
Then, using ®i j =• j™i j we obtain

(2.11) D= 1
A

MX

j=1

K jX

i=1

°
• j™i jxi j °• jx̄ j

¢°
• j™i jxi j °• jx̄ j

¢T p j.

Factoring out • j and •T
j we obtain:

(2.12) D= 1
A

MX

j=1
• j

√ K jX

i=1

°
™i jxi j ° x̄ j

¢°
™i jxi j ° x̄ j

¢T
!

•T
j p j,

where the expression in parenthesis is in fact the jth unnormalized
covariance matrix (K j °1)D j.

(2.13) D= 1
A

MX

j=1

°
K j °1

¢
• jD j•

T
j p j,

(2.14) D= 1
A

MX

j=1

°
K j °1

¢°
• j© j

¢
§ j

°
• j© j

¢T p j

Equation (2.14) is the expression for the covariance matrix of the
fused model estimated through the fusion algorithm. It was derived
from the set of all unaligned observations. By demonstrating that
it is exactly the linear combination of the transformed component
covariance matrices D j we demonstrated that the fusion algorithm
gives exactly the same result as a batch construction of one single
model from all the shapes.
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2.4 Experiments and Results

2.4.1 Data

The proposed technique is validated using two sets of data for both
the left ventricle (LV) and the right ventricle (RV), obtained from
distinct clinical centers and using different imaging modalities. The
first sample consists of 42 MRI datasets from the Sunnybrook cardiac
MRI database [56]. These were acquired using a Steady State Free
Precession (SSFP) sequence on a GE Signa CVi-HDx 1.5T scanner
(General Electric, Milwaukee, USA). The resulting images consisted
of short-axis slices with in-slice resolution = 1.56£1.56mm and thick-
ness = 8mm.

The second sample consists of 134 CT datasets acquired using a
Toshiba Aquilion 64 multi-slice CT scanner (Toshiba Medical Systems,
Tochigi, Japan). The in-slice resolution in these images was 0.4£0.4mm
with slice spacing of 2.0mm. The image volumes were segmented using
an atlas-based approach [46].

The landmark distributions differ between the two sets; the LV is
described by 880 landmarks in the MR dataset, and by 1347 landmarks
in the CT dataset. For the RV these numbers are 1200 and 1748,
respectively.

The vertebra spine images consist of 60 cross-sectional CT datasets
of the lumbar spine collected at the CETIR Medical Center (Barcelona,
Spain). The CT scans were performed using the Philips Gemini GXL
16 system (Philips Healthcare, Best, The Netherlands). The images
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have a pixel resolution ranging between 0.47 and 1.04mm and a slice
thickness of 0.5mm.

The caudate data were obtained from a total of 66 brain MR images
through the Caudate Segmentation Evaluation MICCAI Challenge
website1 [57].

2.4.2 Evaluation Metrics

To quantitatively assess the performance of the proposed technique,
we compare the quality of the original and the fused models using
the well established measures of generalization ability, specificity, and
compactness ([34]).

The generalization ability G(M) is defined as

(2.15) G(M)= 1
ns

nsX

i=1
D(x0

i(M),xi)

where ns is the number of shapes in the dataset. x0
i(M) is the re-

construction of shape xi using a model that excludes the instance
being evaluated. M is the number of modes of variation used in the
reconstruction, and D(·, ·) indicates the distance computed between
the shapes. In our case, we use the Root Mean Squared Error measure
(RMSE) throughout the paper. Note that the generalization ability for
a given number of modes of variation M is equivalent to the shape
reconstruction error.

1
http://cause07.comicframework.org
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The specificity S(M) measures the distance between a model-based
synthetic population and the training set, and is defined as

(2.16) S(M)= 1
N

NX

j=1
D(x j(M),x j)

where N is the size of the synthetic population, set here to N = 10,000.
x j(M) are each of the synthetic instances created, and x j is the closest
element from the training set. The random instances were generated
within 3æ from the mean. The compactness C(M) is defined as

(2.17) C(M)=
MX

m=1
∏m,

the summation of the first M eigenvalues in the model.

2.4.3 Merging two models

We evaluate numerically whether the proposed normalization and
fusion framework translates in any loss in the generalization ability,
specificity or compactness of the fused model. We perform a set of
experiments through which we subdivide the available shapes for all
anatomical structures into two randomly selected and non-intersecting
subsets. The shape representation of one of the two sub-models is
modified, before the application of the proposed fusion framework and
comparison to the model obtained directly using all the training shapes
with point correspondence.

Here we define ≠S as the PDM constructed from all the original
shapes S with point correspondence. The two sub-models are ≠SA , and
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≠S0
B
, where SA [SB = S and SA \SB =?. The prime in ≠S0

B
indicates

a change in mesh connectivity and point density of shapes SB.
The experiment comprises these steps:

1. Define a ground truth PDM ≠OM (original model) constructed
from Sall.

2. Partition SOM into randomly selected subsets SA, SB so SA \
SB =;, SA [SB = SOM (repeated 100 times).

3. Without loss of generality, choose subset SB and re-sample all
shapes to obtain S0

B so point correspondence between sets SA

and SB is lost.

4. Construct the models≠SA and≠S0
B

from SA and S0
B, respectively.

5. Apply the normalization and merging algorithm to the PDMs
≠SA and ≠S0

B
to obtain normalized and merged model ≠NM .

6. Compare the generalization, specificity, and compactness of≠NM

versus ≠OM .

All models were built preserving 98% of total variance.
Elimination of point correspondence in the experiment (step 3) was

achieved by using two iterations of the Loop subdivision algorithm
[58] to the original meshes. Then, we decimated the meshes using
a centroidal Voronoi diagram decimation algorithm as described in
[59]. Since this algorithm computes vertices as the centroid of Voronoi-
like regions comprising existing faces, the new vertices bear no linear
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relationship to the original vertices. Additionally, this approach gives
us full control over the number of vertices, which in this experiment
was set to match the original number of landmarks.

Figs. 2.3, 2.4, and 2.5 plot the G(M), S(M) and C(M) metrics for
all anatomical structures and modes of variation. It can be seen that
the curves are almost identical for all measures and modes, which
indicates that the obtained models after normalization and merging
are equivalent independently of the complexity of the shapes.

2.4.4 Convergence of fusing single-shape models

To further demonstrate the convergence properties of the merging
algorithm, we evaluate in this section the limit case in which every
individual shape is treated as a single model. In this case each PDM
has a mean shape equal to the individual shape and a covariance
matrix equal to zero. The proposed framework is then applied to this
limit case and the result is compared to the model obtained directly
by principal component analysis of all the training shapes. Table 2.1
summarizes the differences in generalization ability, specificity and
compactness between the fused model of all the single-shape PDMs,
and the ground truth model. It is evident from the results that the
merging framework converges well to the original model even in the
case of multiple input PDMs. We also see that despite having the
covariance associated to each individual model be equal to zero, the
method is able to accurately compute the covariance of the set.
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Figure 2.3: Generalization ability and standard deviation of the merged
model (red) vs. the original shapes’ model (blue) for the first M modes
of variation.
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Figure 2.4: Specificity and standard deviation of the merged model
(red) vs. the original shapes’ model (blue) for the first M modes of
variation.
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Figure 2.5: Compactness and standard deviation of the merged model
(red) vs. the original shapes’ model (blue) for the first M modes of
variation.
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Table 2.1: Unsigned difference between the ≠OM and ≠NM models’
evaluation metrics preserving 98% of total variation. Compactness is
expressed as a percentage of the total variance obtained for the ≠OM .

Structure |¢G| (mm) |¢S| (mm) |¢C|
COM

100%

Left ventricle 0.002 0.448 2.281

Right ventricle 0.001 0.324 1.025

L-1 vertebra 0.000 0.040 0.407

Caudate nucleus 0.018 0.081 0.601

2.4.5 Choice of the reference model

We evaluate the effect of the choice of the reference model, both with
respect to its mesh resolution and the number of training samples it
is derived from. First, in order to test the effect of mesh resolution,
we apply the proposed framework to two randomly generated subsets,
while fixing the mesh resolution of the second PDM and varying the
shape representation of the reference model. We re-sample the refer-
ence mesh for all structures to 9 different resolutions well below and
above the fixed resolution of the second model.

Figure 2.6 displays the difference in shape reconstruction errors
between the fused and original models. It can be seen that the dif-
ferences are negligible for all four structures, with the largest error
obtained for the RV of about 0.25mm.

Second, we evaluate the effect of choosing the reference model as
the one with the highest or lowest number of training samples. We
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Figure 2.6: Sensitivity to mesh resolution of the reference shape. Show-
ing the distance between reconstructions with the ≠OM , and the ≠NM
resampling the reference mesh to nine resolutions. The horizontal con-
tinuous line indicates the mean distance obtained for equal reference-
target mesh resolution.
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varied the proportion of shapes in the reference model from 10 to 90
percent with respect to the second model. The flat curves in Figure 2.7
demonstrate that the proposed technique has the same performance
independently of the relative number of training shapes in the input
PDMs.
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Figure 2.7: Sensitivity to proportion of data samples in the reference
model. Showing the distance between reconstructions with the ≠OM ,
and the ≠NM .
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2.4.6 Examples

Examples of the model fusion for all structures are displayed in
Figs. 2.8, 2.9, 2.10, 2.11 for the LV, RV, L1-vertebra and caudate nu-
cleus, respectively. Rows 1 and 3 show the first mode of variation
(±1.5æ, and 3.0æ) for two distinct models obtained through random
partition of the original dataset. Subsequently, the normalization pro-
cedure is applied and the resulting first mode for model 1 can be seen
(row 2) to be very similar to the original variability (row 1). Finally,
the two transformed PDMs are merged using the proposed algorithm,
resulting in a unified model (row 4), which is virtually identical to the
PDM obtained with the original datasets (row 5). This is also evident
from the sets of eigenvalues of the original and merged models as
shown below corresponding Figs. 2.8, 2.9, 2.10, and 2.11.

2.4.7 Segmentation using a merged MR-CT model

To illustrate the benefits and the applicability of PDM fusion in medi-
cal image analysis, we apply the proposed technique in the context of
image segmentation, which is an important yet challenging application
for statistical models of anatomical shape. We would like to automati-
cally segment the 42 cardiac MRI images used in the previous sections
by using two distinct PDMs. The first PDM is built directly from the
MRI data and is referred to as the MR model. The second model is
constructed using the proposed framework by fusing the MR model
with a publicly available PDM constructed from a population of CT
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Figure 2.8: (a) shows the first mode of variation of two differently
sampled sub-models of the LV. Rows 1 and 2 show model 1 before and
after normalization. Row 3 shows model 2, and rows 4 and 5 their
integration and the original shapes model. (b) shows the eigenvalues
of the merged (≠NM) and original models (≠OM).
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Figure 2.9: (top) shows the first mode of variation of two differently
sampled sub-models of the RV. Rows 1 and 2 show model 1 before
and after normalization. Row 3 shows model 2, and rows 4 and 5
their integration and the original shapes model. (bottom) shows the
eigenvalues of the merged (≠NM) and the original models (≠OM).
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Figure 2.10: (top) shows the first mode of variation of two differently
sampled sub-models of the L1-vertebra. Rows 1 and 2 show model 1
before and after normalization. Row 3 shows model 2, and rows 4 and
5 their integration and the original shapes model. (bottom) shows the
eigenvalues of the merged (≠NM) and original models (≠OM).
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Figure 2.11: (top) shows the first mode of variation of two differently
sampled sub-models of the caudate nucleus. Rows 1 and 2 show model
1 before and after normalization. Row 3 shows model 2, and rows 4
and 5 their integration and the original shapes model. (bottom) shows
the eigenvalues of the merged (≠NM) and original models (≠OM).
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datasets2 [46]. We refer to the fused model as the MR-CT model.
First, we illustrate visually the benefits of the fusion approach

in encoding extra variability in Fig. 2.12. The first mode of variation
of the MR and CT models is shown in rows 1 and 3 respectively, for
the LV (top), and the RV (bottom). It can be seen that the variability
captured by the MR and CT models differ since they were constructed
from different populations. In particular, more localized variation is
encoded by the CT models for both the LV and the RV.

The result of the integration scheme is displayed in Fig. 2.12 row
4 for the LV (top), and the RV (bottom). Visually, it is evident that
features of variation found in both the MR and CT models are incorpo-
rated into the unified model. In particular, for both the LV and RV, the
first mode of variation for the merged model incorporates a pattern
describing a transition from the high resolution (higher detail) CT
model to the smoother representation found in MRI. The unified model
integrates detailed, as well as smoother surface representations, and
inter-model differences in resolution can be encoded as patterns of
shape variability into the unified model. In the case of the RV, the
regional variation at the valvular level is mostly related to the MR
model, while the CT model contributes with the global variation in
morphology.

We then performed image segmentation on the 42 MRI datasets. We
segmented the left and right ventricles (LV-endo, LV-epi and RV) using
the Sparse-ASM (SPASM) algorithm in ([60]). The segmentation errors

2
https://sites.google.com/site/cornehoogendoorn2013/home/

publications/downloads
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Figure 2.12: First mode of variation for the LV (top) and the RV (bot-
tom), of two models computed from two different image modalities (MR,
CT), (rows 2, 3). Their integration (row 4), and the pre-transformed
MR model (row 1) i.e. before establishing correspondence.
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for all cases are displayed in Fig. 2.13 and summarized in Table 2.2. It
is evident from the results that the fused model improves significantly
the segmentation results, from an average error of 3.4 mm for the
MR-model to 2.3 mm with the merged model, which is equivalent to
an improvement of 32%. Such improvement can be obtained simply
by downloading an online statistical model such as the one used in
this section and without the need for additional raw data that would
require costly and tedious collection and processing.
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Figure 2.13: Segmentation error and standard deviation, on a per
subject basis, of the MR image dataset of a MR-only model (red), and a
MR-CT model (dark gray), for the LV epi/endo, and the RV.

Figures 2.14 and 2.15 show two examples of the improvement in
generalization ability that results from merging the variability of the
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Table 2.2: Segmentation errors (mm) for the MR dataset (LV-endo,
LV-epi, RV) comparing the performance of a MR-only model ≠MR , and
a ≠NM (MR-CT) model.

model mean ± stdev (mm) max (mm)

MR model 3.4±1.7 4.9

MR-CT model 2.3±1.2 3.4

MR and CT models using our method. Figure 2.14 (left) shows the
inability of the MR model to accurately represent the right ventricular
wall at the regions indicated by the arrows. In contrast, the MR-CT
model is able to correctly represent the contour. Figure 2.15 shows a
3D view example of the segmentation obtained with the MR (left) and
MR-CT model (right). Again, the MR model fails to properly adapt to
the image, showing the largest errors on the right ventricular surface.
For the same areas, the MR-CT model is able to better adapt to the
surface.

2.5 Discussion and conclusions

Statistical models of anatomical shapes are routinely built in clini-
cal/research centers in medical imaging. Such models generally encode
various types of anatomical variability due to the differences in the
imaging modalities and/or clinical populations (e.g., healthy or abnor-
mal subjects). In this chapter we presented a workflow that reuses
pre-existing SSMs in a complementary fashion, with the aim to de-
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Figure 2.14: Example of the improvement in segmentation accuracy
obtained with the combined model. The left image shows the MR-model
segmentation, and the arrows indicate the most prominent areas of
error. The right image is the MR-CT model.

rive a single integrated model with better coverage of the anatomical
variability. This is achieved without the original raw data or for an
additional labor-intensive data collection. The framework provides
great flexibility due to its ability to handle models with distinct shape
representations and resolutions.

The proposed framework can also play an important role in collab-
orative research. Often, research centers will share or make public
their statistical models or atlases but not the original raw data (due to
various ethical, legal or practical reasons). With the increasing number
of integrated projects and initiatives where information, knowledge,
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Figure 2.15: Color-coded example of the over-constrained generaliza-
tion ability of the MR model (left), compared to the combined MR-CT
model (right). The arrows indicate two of the areas with highest error.

and models must be merged into unified representations [5], the pro-
posed framework can contribute in promoting such exchanges and
build more comprehensive models of anatomy.

As demonstrated in the integrated MRI/CT cardiac shape modeling
example, the proposed workflow can be useful to build multi-modality
and multi-population SSMs. The generalization ability of the inte-
grated model is effectively increased by adding anatomically plausible
variability, without the original or any new training data. As a future
work, one can also extend the method to merge spatially resolved mod-
els (e.g. from MRI or CT) with temporally resolved models (e.g. 3D US).
The proposed work is only the first step in this direction but one that
breaks the need for correspondences across eigenspaces.
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ACCURATE SEGMENTATION OF VERTEBRAL

BODIES AND PROCESSES USING

STATISTICAL SHAPE DECOMPOSITION AND

CONDITIONAL MODELS

3.1 Motivation

Detailed segmentation of the vertebrae is an important pre-
requisite in various applications of image-based spine assess-
ment, surgery and biomechanical modeling. Accurate segmen-

tation of the processes is required for image-guided interventions, for
example for optimal placement of bone grafts between the transverse
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processes. Furthermore, the geometry of the processes is now required
in musculoskeletal models due to their interaction with the muscles
and ligaments. In this chapter, we present a new method for detailed
segmentation of both the vertebral bodies and processes based on sta-
tistical shape decomposition and conditional models. The proposed
technique is specifically developed with the aim to handle the complex
geometry of the processes and the large variability between individ-
uals. The key technical novelty in this work is the introduction of
a part-based statistical decomposition of the vertebrae, so the com-
plexity of the subparts is effectively reduced, and model specificity is
increased. Then, to maintain the statistical and anatomic coherence
of the ensemble, conditional models are used to model the statistical
inter-relationships between the different subparts. For shape recon-
struction and segmentation, a robust model fitting procedure is used
to exclude improbable inter-part relationships in the estimation of
the shape parameters. Segmentation results based on a dataset of
30 healthy CT scans and a dataset of 10 pathological scans show a
point-to-surface error improvement of 20% and 17% respectively, and
the potential of the proposed technique for detailed vertebral modeling.

3.2 Introduction

Segmentation of the vertebrae is an important pre-requisite for several
clinical applications, ranging from the assessment of spinal disorders
and image-guided surgery [61], [62] to biomechanical modeling for
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patient-specific planning of interventions [63], [64]. For such applica-
tions, in addition to the segmentation of the vertebral bodies, accu-
rate and detailed knowledge of the vertebral processes is necessary
(Fig. 3.1). For spinal fusion surgery, for example, precise delineation
of the processes can lead to an improved placement of the bone graft
between the transverse processes of the affected vertebrae [65]. In
biomechanical modeling of the spine, accurate definition of the spinous
process is also critical due its interaction with the ligaments and the
muscles [66].

Vertebral
body

Transverse
process Inferior articular

process

Superior articular
process

Spinous
process

Figure 3.1: A lumbar vertebra and its main regions.

However, automatic and detailed segmentation of vertebrae, and
in particular of its processes and pathological cases, has proven to
be a difficult task due to the complexity of the shapes and the high
variability between individuals. As shown in Figs. 3.1 and 3.2, the

57



3.2. INTRODUCTION

vertebral processes consist of various areas of distinct geometrical but
equally complex characteristics, with several convex/concave struc-
tures, and thin lobe-like elongated regions. As shown in Fig. 3.2 (bot-
tom), trauma patients with fractured vertebrae present statistically
anomalous shapes that present a challenge for straightforward shape
modeling. The precise modeling and segmentation of the vertebral
processes remains a challenging research topic within spine imaging.

There exists a wide range of approaches in the existing literature
for spine and vertebral segmentation [67], [68], [69], [70], [71], [72],
[73], [74], [75], [76], [77], [78], [79], [80]. Table 3.1 lists the main papers
and reported segmentation results on spine segmentation in the liter-
ature. Of these, methods based on the SSM paradigm [67], [68], [70],
[79], [78] provide the image segmentation a shape prior to increase the
robustness to image inhomogeneities. For example, Kadoury et al. [79]
recently developed a method combining global shape appearance and
local statistical shape models for each vertebra. Rasoulian et al. [78]
combined all the vertebrae into a single shape model, with a statistical
pose model. In both cases, these methods consider at best a whole
vertebra as the smallest unit to construct the SSM. Due to the large
variability of the vertebrae in particular for pathological instances and
at the processes, and the generally small number of samples available
for training, the obtained models are typically too constraining and not
flexible enough to localize the fine details and areas of high curvatures
and complexity within the vertebral body and processes, as illustrated
in Fig. 3.2.
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Figure 3.2: Examples of suboptimal segmentations in areas of complex
geometry and high curvature (top), and fractured vertebrae (bottom).
These segmentations (in blue) were obtained using the image search
method [81] described in section 3.3.3.1 and constrained with a whole-
vertebra PDM.
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We present a new method for detailed modeling and segmentation
of the vertebrae based on statistical shape decomposition. Multi-part
shape models have been proposed in the literature with the aim to
relax the shape constraints in the presence of a few training samples,
or extract additional information in the relationship between objects
to aid the segmentation process [20], [22], [21], [82]. Other methods
have proposed subdivision of the parametric shape-space rather than
the shapes themselves in order to better approximate the actual shape
distribution of the object class [83], [84]. But such methods have not
been applied to the vertebrae as the subdivision of such a complex
shape is a non-trivial problem.

We propose an algorithm for statistical decomposition of the ver-
tebra, and for modeling the relationship between the parts. The pro-
posed shape decomposition effectively reduces the complexity of each
constituent model, while increasing their specificity. The proposed
approach is useful to model difficult regions of the vertebra such as
the processes and pathological cases such as fractured vertebrae im-
proving segmentation accuracy. Then to maintain the coherence of
the ensemble, conditional models are used to model the statistical
inter-relationships between the different subparts. For spine image
segmentation, a robust model fitting procedure is then introduced to
exclude inconsistent inter-part relationships during the estimation of
the shape parameters.

The segmentation accuracy of the proposed technique was tested
on two CT scan datasets. One dataset of 30 healthy, and a dataset of 10
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3.2. INTRODUCTION

pathological cases. Training was performed on the healthy population
following a leave-one-out scheme (29 training, 1 testing) to test the
healthy cases, and the complete healthy dataset was used to test the
pathological cases.

This work is based on a conference paper [85], which we extend
by developing a new statistical decomposition of the vertebrae, with
more detailed evaluation of the properties of the algorithm and testing
segmentation results on both healthy and pathological patients.
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3.3. METHOD

3.3 Method

The proposed framework consists of three main stages. First, in section
3.3.1, a subdivision of each vertebra into several subparts is proposed
based on a statistically driven region decomposition. Then the condi-
tional models describing the statistical inter relationships between
the subparts are presented in section 3.3.2. Finally, a model fitting
approach based on all pairwise conditional models is introduced in
section 3.3.3.2, with the aim to estimate the shape parameters for
each subpart robustly during image segmentation. Figure 3.3 shows a
schematic of the method’s workflow.

3.3.1 Statistical Vertebral Decomposition

A common problem in the representation of complex and highly vari-
able anatomical objects using SSMs is that usually there are too few
available examples from which to obtain a sufficiently detailed rep-
resentation of the population and its natural variability. With the
vertebra, few samples will obtain a gross approximation of the global
shape distribution of a given population, but this is often not enough
to encode the finer details of the vertebral processes (Fig. 3.2) or to
represent instances that deviate far from the mean of the population.
In this chapter, we address these issues by developing a statistical
part-based decomposition to better encode the statistical variability of
each region of the vertebra, and to better generalize to instances not
present in the training set. However, such subdivision is not trivial as
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Figure 3.3: The proposed method consists of two training steps (top):
1) vertebral shape subdivision (See Sec. 3.3.1), and 2) construction of
conditional models (See Sec. 3.3.2). The segmentation process also has
two steps (bottom): 1) initial boundary detection (See Sec. 3.3.3.1), and
2) Multiple model fittings given all conditioning subshapes (See Sec.
3.3.3.2). These model fittings are shown in dotted lines (bottom right).
The final segmentation is computed as the median estimation of all
model fittings (continuous red line).

the statistical variability and geometrical complexity in the vertebra
is uneven.

In this work, the proposed shape subdivision considers the sta-
tistical properties of the parts, and therefore provides a statistically
coherent subdivision that minimizes bias towards any of its parts.
The proposed method ensures that the variability of the whole shape
is equitably distributed into a specified number of regions so Point
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Distribution Models (PDMs) constructed from these regions encode
similar variability.

The algorithm has three parts: 1) seed placement, 2) initial region
labeling, 3) statistical region optimization.

3.3.1.1 Seed Placement

To subdivide the shape into the desired number of regions, the user
must specify the number of regions K . Let us denote xi = (x1 . . .xr)T ,
i = 1. . . N the landmark-based shape representation of each vertebra,
where r is the number of landmarks, N is the number of shapes, and x̄
is the mean shape computed from all shapes xi. The aim is to subdivide
x̄ into K sub-parts x̄k. We use the mean shape x̄ so that the result is
not biased toward any one sample. After K is specified an initial seed
point is randomly selected from the vector x̄. Then, the remaining K°1
points are selected so the Euclidean distance between the kth point and
all previously selected seed points is maximized. This strategy ensures
that the initial region seeds are uniformly distributed throughout the
shape, and helps to minimize computational time during the statistical
region optimization (step 3) of the algorithm. See Algorithm 3.

3.3.1.2 Initial Region Labeling

Based on the K seed points, a partition into K regions Rk is obtained.
Initially, each region Rk contains only its corresponding seed point,
and all points not assigned to any region are said to belong to the
null region R0. We then iterate through the newly initialized regions,
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Algorithm 3 Seed placement
1: Input: Number of regions: K
2: Input: Mean shape: x̄

3: . Randomly determine initial region seed.
4: [point, pointIndex] = getRandomPoint(x̄)
5: seeds(1)=point
6: x̄(pointIndex)= [] . Delete seed point from x̄.

7: for k = 2! K . For all regions.
8: maxDist = 0
9: nPoints =getNumberOfPoints(x̄)

10: nSeeds =getNumberOfPoints(seeds)

11: for p = 1! nPoints . For all points in the shape.

12: for s = 1! nSeeds . For all seed points.
13: Comment: Get distance from point p to all seeds.
14: dists(s) = getDist(x̄(p),seeds(s))
15: end for

16: distsSum = sum(dists) . Sum dists to all seeds.

17: . If current point is further from all seeds than previous point,
store index.

18: if distsSum > maxDist
19: maxDist = distsSum
20: nextSeed = p
21: end if

22: end for

23:
24: seeds(k)= x̄(nextSeed) . Store next seed.
25: x̄(nextSeed)= [] . Delete seed point from x.
26: end for

27: Output: seeds
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and for each region we find all points at its boundary using its mesh
triangulation. If these boundary points belong to the null region R0,
they are removed from R0 and assigned to the region Rk. We repeat
this process until the null region is empty, and all points in the mesh
have been added to some region Rk.

Based on the obtained regions Rk we can now subdivide shapes
xi into subparts xi,k. From the initialization and initial region label
assignment these regions have approximately the same number of
points, however, they may vary greatly in terms of their variance across
the population, particularly regions at the processes will contain a
variance higher than regions on the vertebral body. An optimization
is required in order to equalize the variability of all regions so that
modeling of the vertebra is not biased by any region.

3.3.1.3 Statistical Region Optimization

The aim of the optimization is to modify the obtained region subdivision
so all regions have approximately the same variance across all samples.
Note that all computation in the previous two steps was performed
on a single shape (the mean shape x̄), however, now we consider the
variation across the population. For this purpose we first align all
shapes by performing Procrustes analysis [86]. We then define the
global covariance matrix

(3.1) C= 1
N °1

NX

i=1
(xi ° x̄)(xi ° x̄)T ,

67



3.3. METHOD

and the total population variance as

(3.2) Vartotal = tr(C).

Similarly we define the regional covariance matrices as

(3.3) Ck =
1

N °1

NX

i=1
(xi,k ° x̄k)(xi,k ° x̄k)T ,

and the regional variances as

(3.4) Vark = tr(Ck).

The algorithm first determines the target variance for each region as

(3.5) Vartarget =
Vartotal

K
.

Then, the algorithm iterates through the regions and computes the
variance of the current region. If the variance of the current region
Vark is less than the target variance Vartarget, we reassign all adja-
cent points to the perimeter of the current region Rk from adjacent
regions Rl , k 6= l. In Algorithm 4, line 14, we denote this operation
expandPerimeter. Similarly, If the variance of the current region Vark

is greater than the target variance Vartarget we reassign all points
at the perimeter of the current region to those regions adjacent to it.
In Algorithm 4, line 20, we denote this point reassignment with the
function name shrinkPerimeter.

The algorithm iterates until the standard deviation of all region
variances falls below 5% of the target variance, i.e., std(Vark)< 0.05 ·
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Vartarget (see Algorithm 4), or no further changes in region variances
occur. Once the optimization converges the vertebral shape is effec-
tively subdivided into regions of similar variability. For all experimen-
tal results reported in the results section (Sec. 3.4) of this chapter, the
shape xi being tested was removed from the training set, i.e, leave-
one-out scheme.

Figure 3.4 shows examples of the convergence of the algorithm
for three different shape subdivisions (2, 3 and 4 regions). The figure
shows how region variances at iteration 1 are unevenly distributed
across the shape and how they converge for an even distribution of
the variance. Figure 3.5 shows two examples of the final vertebral
decomposition for 2 and 5 regions. Note that the region/s describing the
vertebral processes comprise fewer points indicating higher variability,
whereas the regions at the vertebral body are larger. Also in the 5-
region case more regions are necessary to represent the variability at
the processes, whereas only 2 larger regions represent the vertebral
body.
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Algorithm 4 Statistical region optimization
1: Input: Region point matrices: X(1) . . .X(K)
2: Input: Region point connectivity: V(1) . . .X(K)
3: Input: Number of regions: K

4: for k = 1! K . For all regions.
5: Ck = cov(X(k)) . Covariance of region k.
6: regV ar(i)= trace(Ck) . Get region variance.
7: end for

8: varTotal = sum(regV ar) . Sum all region variances.
9: varTarget = varTotal/K . Get target variance.

10: allowedDispersion = 0.05§varTarget . 5% of target variance
11: dispersion = std(regV ar) . Get region variances’ dispersion.

12: while dispersion > allowedDispersion

13: for i = 1! K . For all regions.

14: if regV ar(i)< varTarget . If Var is below target.
15: X(i)= expandPerimeter(X(i), V(i)) . Enlarge region.

16: for j = 1! K . Update region variances.
17: Ck = cov(X( j))
18: regV ar( j)= trace(Ck)
19: end for

20: else . If region variance is above target.
21: X(i)= shrinkPerimeter(X(i), V(i)) . Contract region.

22: for j = 1! K . Update region variances.
23: Ck = cov(X( j))
24: regV ar( j)= trace(Ck)
25: end for

26: end if

27: end for

28: dispersion = std(regV ar) . Update variance dispersion.
29: end while

30: Output: Region matrices X(1) . . .X(K) . Modified regions.
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Figure 3.5: Examples of the obtained statistical decomposition with
2 regions (top), and 5 regions (bottom). The left and right columns
show a latero-posterior and latero-anterior views. In the 5-region case
more regions are necessary to represent the processes due to their high
variability.
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3.3.2 Conditional Model Parametrization

In the previous section we subdivided the shape of all vertebrae into
K subparts xi,k, k = 1, . . . ,K . The aim of this section is to describe
the statistical modeling of the inter-part probability distributions, i.e.
P(xi,k|xi,l), where k, l = 1, . . . ,K and k 6= l. We would like to compute
a PDM for each part xi,k based on its conditional relationship with
xi,l , a mean x̄k|l and covariance matrix ßk|l . In this work, we model
P(xi,k|xi,l) using a normal probability distribution. The conditional
mean and covariance estimates that relate shapes xi,k, and xi,l are
calculated as

(3.6) x̄k|l = x̄k +ßklß
°1
ll (xi,l ° x̄l)

(3.7) ßk|l =ßkk °ßklß
°1
ll ßlk,

where the covariance matrices in Eqs. 3.6 and 3.7 are obtained from a
block covariance matrix

(3.8) ß=
"
ßkk ßkl

ßT
kl ßll

#

.

Through eigendecomposition of Eq. 3.7 we obtain Eq. 3.9, which pro-
vides the eigenvalues §k|l , and eigenvectors ©k|l that represent the
conditional variability between shapes xi,k and xi,l .

ßk|l =©k|l§k|l©
T
k|l ,(3.9)

Putting Eqs. 3.6 and 3.9 together we obtain the new conditional models

≠k|l = (x̄k|l ,©k|l ,§k|l)(3.10)
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that we will use to constrain the image segmentation process.
To compute the conditional mean x̄k|l and covariance matrix ßk|l

we must compute the inverse of the covariance matrix of the predictor
shape ß°1

ll . However, as the dimensionality of the shapes is much larger
than the number of training samples available, the sample covariance
matrix becomes singular, and cannot be inverted. A solution to this
is using ridge regression [87], where a small constant is added to the
diagonal of the covariance matrix ß̂ll = ßll +≤I, where I is the identity
matrix.

The computational burden of inverting matrices representing sev-
eral thousands of points can be considerable, especially given that we
need to compute a conditional PDM for each pair-wise relationship
between the shape subdivisions, and so the number of matrix inver-
sions to compute Eqs. 3.6 and 3.7 grows linearly with K . We address
this issue by reducing the dimensionality of the problem using PCA on
the sub-shapes xi,k prior to computation of the mean and covariance
matrix as follows [88]. Given subshapes xi,k represented as,

(3.11) xi,k = xk +©kbi,k,

then their parametric representation is

(3.12) bi,k =©T
k (xi,k ° x̄k).

Now let us denote Bk the column-wise concatenation of parametric
shape vectors bi,k from equation 3.12. With this new representation
of the shapes, the cross-covariance matrix ßkl on Eqs. 3.6, 3.7 and 3.8
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becomes

(3.13) ß(b)
kl = 1

N °1
BkBT

l ,

where the superscript (b) in Eq. 3.13 indicates that the covariance
matrix is computed from parametric shape vectors bi,k. The block
covariance matrix of Eq. 3.8 can now be replaced by

(3.14) ß(b) =
"
§k ß(b)

kl

ß(b)
kl

T
§l

#

,

where §k and §l are diagonal eigenvalue matrices obtained through
eigendecomposition of the original sub-shapes xi,k and xi,l .

With this new representation Eqs. 3.6 and 3.7 can be rewritten as

(3.15) x̄k|l = x̄k +©k(ß(b)
kl §

°1
l bi,l)

(3.16) ßk|l =©k(§k °ß(b)
kl §

°1
l ß

(b)
kl

T
)©T

k ,

where the expression in parenthesis on Eq. 3.15 is the regressed para-
metric shape estimate b̄k|l , i.e.,

b̄k|l =ß(b)
kl §

°1
l bi,l ,(3.17)

and the expression in parenthesis on Eq. 3.16 is the conditional model
variance

§k|l =§k °ß(b)
kl §

°1
l ß

(b)
kl

T
(3.18)

required to obtain the desired model ≠k|l = (x̄k|l ,©k,§k|l).
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The proposed shape subdivision and conditional model param-
eterization have two important goals. First, it decreases the over-
constraining nature of the global model caused by the dimensionality
disparity between the available samples and dimensionality of the
shapes. Second, the inter-part conditioning is a mechanism to find the
optimal domain of valid subregions and exclude incorrect localized
segmentations due to insufficient image information.

3.3.3 Image Segmentation

3.3.3.1 Boundary Detection

To detect the vertebral boundary in the image we followed the feature
training method introduced in [81]. Training was performed on the
database of 30 healthy patients detailed in section 3.4.1 leaving the
test instance out at each trial. The features tested were:

1. Directional derivative along the normal profile pointing out-
wards.

2. Directional derivative along the normal profile pointing inwards.

3. Maximum intensity profile value.

4. Minimum intensity profile value.

5. Distance to the previous point location at each iteration.

6. Mahalanobis distance to the mean intensity profile.
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Each of the previous features was optimized independently within a
standard ASM segmentation framework. A greedy optimization heuris-
tic was used where at each iteration a set of uniformly distributed
weights w = [0,1] was used for segmentation and the best performing
weight was selected based on segmentation accuracy. At the next itera-
tion a new set of weights was uniformly chosen within a neighborhood
of the best weight from the previous iteration. This procedure was
repeated until no significant improvements in segmentation accuracy
were obtained. For more details on the optimization procedure please
refer to [81].

After individual optimization of the features, the best-performing
three features were chosen and normalized. The selected features were:
1) the directional derivative along the outward-pointing normal, 2)
the image intensity, and 3) the distance between the current point
candidate and its previous location. The corresponding feature weights
were: w1 = 0.55, w2 = 0.25, and w3 = 0.20.

E = w1(n̂(pr) ·rI(p0
r))+w2I(p0

r)+w3kp0
r °prk2.(3.19)

Eq. 3.19 shows the energy function maximized during image search,
where I is the intensity image, pr is the current position of the land-
mark r, p0

r is a vector of candidate landmark positions normally and
outwardly oriented regarding the surface mesh at pr, and n̂ is the
normal direction at pr.

The segmentation process was initialized by rigidly aligning the
mean vertebral shape, for the structure (L1-L5), with a manually se-
lected point placed roughly at the center of mass of the vertebral body
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on a sagittal view of the image. Then the algorithm determined the op-
timal placement of each landmark in the mesh based on minimization
of Eq. 3.19.

Let us denote the resulting feature points x0. At this point x0 can
be subdivided into K statistically optimized regions x0

k, k = 1. . .K , as
described in Sec. 3.3.1. The following section describes the process
through which information from all other K °1 subregions inform the
optimal shape parameters bk of x0

k to maintain anatomical coherence
of the ensemble of parts.

3.3.3.2 Probabilistic Model Fitting

To preserve the anatomic validity of the segmentation despite the
shape decomposition, the estimation of the shape parameters must
be carried out by considering all pairwise conditional probabilities
P(xi,k|xi,l). We first calculate the initial shape parameters bi,k by pro-
jecting the boundary feature points (obtained during image search)
onto the standard PDM of xi,k. Then we calculate K °1 shape param-
eters bi,k|l by considering the K °1 shape constraints formed by the
conditional mean parameter b̄k|l and its corresponding bounds ∏k|l

obtained from the diagonal of matrix §k|l , i.e.,

bi,k|l =

8
>><

>>:

b0
i,k if |b0

i,k ° b̄k|l |∑ 3
p
∏k|l

b̄k|l +3
p
∏k|l if b0

i,k > b̄k|l +3
p
∏k|l

b̄k|l °3
p
∏k|l if b0

i,k < b̄k|l °3
p
∏k|l

(3.20)

Equation 3.20 is applied to each shape pair {xi,k,xi,l}:
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1. For each subpart xi,k we have a prediction subregion defined
by all the points bi,k defined at less than 3 standard deviations
from the conditional mean b̄k|l . Let us denote this subregion the
conditional prediction interval Tk|l (Algorithm 5, line 15).

2. If b0
i,k is inside the conditional prediction interval, b0

i,k 2 Tk|l , we
consider the conditional prediction bi,k|l as the same as b0

i,k. No
extra information is provided by the conditional model.

3. In case b0
i,k is outside Tk|l , then it is projected to obtain the clos-

est point inside Ti,k|l . This point is then considered the prediction
bi,k|l .

The difficulty with this approach is that at the segmentation stage, all
subparts are being segmented and therefore uncertainty surrounds the
correctness of the different conditioning shapes xi,l in P(xi,k|xi,l). This
can lead to inaccurate constraining and parameter estimation of xi,k|l if
some of the xi,l , l = 1. . .K , k 6= l are erroneous during the segmentation
procedure. To exclude these values and obtain a consensual and robust
estimation of the shape parameters, we use the marginal median
(component-wise median) as the final estimation of bi,k|l , i.e.,

(3.21) b f inal
i,k|l =median(bi,k|l).

Algorithm 5 presents the step by step model fitting procedure described
in this section.
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Algorithm 5 Model fitting procedure
1: Input: Image: I
2: Input: Mean shape manually initialized: x̄
3: Input: ≠k|l = (x̄k|l ,©k,§k|l )
4: Input: Region indexes: regIds

5: for r = 1! nLandmarks
6: x0r = displaceLandmark(I, x̄r) . Minimize Eq. 3.19
7: end for

. Subdivide feature-point shape into K regions.
8: x0

k = subdivideShapeByRegions(x0,regIds)

9: for k = 1! K . For each region being predicted k

10: . Project onto self-PDM.
11: b00

k = constrain(x0
k, x̄k|l ,§k|l ) . k = l. See Eq. 3.12.

12: for l = 1! K . For each predictor region l.

13: b0
l =©T

l (x0
l ° x̄l ) . Parametric shape estimate b0

l .

14: b̄k|l =ß(b)
kl §

°1
l b0

l . Conditional mean. See Eq. 3.17.

15: Tk|l = ComputeValidShapeInterval(b̄k|l ,§k|l )

16: if b00
k is within interval Tk|l

17: bk|l (l)=b00
k . No conditional information.

18: else

19: b0
k = constrain(b00

k, b̄k|l ,§k|l ) . k 6= l. See Eq. 3.12.

20: bk|l (l)=b0
k

21: end if

22: end for

23: b f inal
k|l (k)=median(bk|l )

24: x f inal
k|l (k)= xk +©kb f inal

k|l

25: end for

26: Output: x f inal
k|l
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3.4 Results

3.4.1 Data

We first trained and validated our method using a database of lumbar
spine (L1-L5) CT images of 30 healthy patients reporting lower back
pain. The images were collected at the National Center for Spinal
Disorders (Budapest, Hungary). The data were acquired with a Hitachi
Presto CT scanner. No contrast agent was administered to the patients.
The volumes have an in-plane resolution of 0.608£ 0.608mm and
slice spacing of 0.62mm. Patients were 13 males and 17 females with a
mean age of 40 (age interval: 27-62 years). Those patients were selected
for participating in the European Commission funded MySpine project
(FP7-ICT-2009-6-269909) [89].

To assess the strength of the proposed technique in the presence
of abnormalities, a second set of 10 scans were obtained to evaluate
segmentation. The images were obtained from a publicly available
database [90] of CT scans of adult patients with varying types of
pathologies including pathological curvature (scoliotic and kyphotic),
and fractured vertebrae. The data were acquired at the Department of
Radiology, University of Washington, Seattle, USA. The images were
acquired with General Electric multidetector CT scanners and a stan-
dard bone algorithm. For our purposes, 10 image volumes containing
full lumbar spines (L1-L5) were randomly selected and manually seg-
mented. The images have varying in-plane resolution between 0.31mm
and 0.41mm, and a slice spacing of 2.5mm. Patients were 5 males and
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5 females with a mean age of 41 (age interval: 16-61 years).
All computer processes were run on a 2.8 GHz Intel i7 processor

on 6 GB DDR memory running a single-threaded CPU bound pro-
cess. All PDMs were trained on the healthy patient database. For the
segmentation of healthy patients we followed a leave-one-out scheme.
To segment pathological patients we used all 30 healthy patients for
training. All segmentations were performed by preserving 98% of the
model’s total variance, and allowing ±3 standard deviations from the
mean. The volumes were manually segmented by an image expert
using open source software (ITK-SNAP). Accuracy was measured as
the RMS point-to-surface distance between manual segmentations and
reconstructions.

3.4.2 Optimal Number of Subparts

The choice of the number of shape subdivisions using the proposed sta-
tistical decomposition is important to obtain the best possible segmen-
tations of the spine. A few of subparts might not allow to decompose
sufficiently the shape constraints and to adapt to all the regions of
the vertebrae. The model fitting stage as introduced in section 3.3.3.2
requires enough subparts to allow a suitable probabilistic weighting of
the multiple conditional models and to eliminate potentially incorrect
local segmentations.

Many subparts (the extreme case being the modeling of each sin-
gle landmark as one subpart) might lead to constraints too weak to
adequately guide the image segmentation process, i.e., so it achieves
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robustness to image inhomogeneities.
In this section, we perform a sensitivity experiment on the healthy

datasets, through which we apply the proposed statistical decomposi-
tion with a varying number of subparts (from 2 to 20). We then apply
the segmentation technique based on the derived conditional models
and we estimate the segmentation accuracy for each subdivision. The
obtained results in Fig. 3.6 show that the segmentation errors decrease
after two subparts, then stabilize between k = 5 through 17 subparts,
and then rise again after 17 subparts, indicating that the number
of subparts becomes too high to allow adequate constraining of the
segmentation procedure.

The optimal results are obtained for k = 15 and we use this decom-
position for the remainder of the validation.
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Figure 3.6: point-to-surface segmentation error as a function of number
of regions in the decomposition.
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3.4.3 Segmentation Accuracy - Healthy Population

We evaluated the performance of our algorithm on the healthy datasets
described in section 3.4.1. We performed segmentation on the 30 sub-
jects leaving-one-out both using a whole-vertebra PDM, and our tech-
nique.

Fig. 3.7 shows the segmentation errors for all 30 scans using both
ASM methods. The proposed technique outperforms the whole-vertebra
model ASMs in all cases. The median improvement is of 20% and
sometimes the improvement is over 30% due to the ability of the
proposed technique to better encode the fine details of the vertebrae.
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Figure 3.7: Normal population: point-to-surface segmentation error
comparison between the proposed method and the whole-vertebra
ASM.
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Table 3.2 summarizes the segmentation results for the whole-
vertebra ASM, and the proposed technique for the different lumbar
vertebrae (L1 to L5). It can be seen that performing the proposed tech-
nique is consistently better for the entire lumbar spine. Particularly,
the right-most column of the table shows an average improvement of
47% in the dispersion of the error.
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Figure 3.8 compares the average segmentation error distribution
for the whole-vertebra PDM segmentation, and the proposed technique.
It can be seen that the errors introduced locally by using a whole-
vertebra model are corrected by the proposed approach. In both views
our errors are consistently low in all regions of the vertebra. Also
the major improvements in accuracy stem from improved fitting of
high curvature regions at all processes i.e., spinous, transverse and
articular.
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Some examples are given in Fig. 3.9 to visually illustrate the
strength of the proposed technique. The axial views in columns (a) and
(b) show how the segmentation using a whole-vertebra PDM (column
(a)) can be typically affected in various areas due to the geometrical
complexity and high variability involved, as shown by the arrows.
The proposed technique (column (b)), due to its use of decomposed
statistical constraints adapts better to the areas of high geometrical
complexity.

Columns (c) and (d) show a sagittal view of the segmentations.
It can be seen that both the whole-vertebra PDM and the proposed
technique have a similar performance for the main body of the ver-
tebrae, as it is geometrically less complex. The whole-vertebra PDM
introduces significant errors in the regions of the processes due their
more complex nature as indicated by the arrows. These errors are
corrected by the proposed technique.

3.4.4 Segmentation Accuracy - Pathological
Population

In this section we test whether the technique also improves the seg-
mentation of pathological cases. We train the statistical models on
the population of healthy patients as it is the larger sample providing
more class specific variability. Fig. 3.10 shows the segmentation errors
for the 10 pathological scans using both the whole-vertebra ASM and
our method. The plot shows that the proposed technique outperforms
the whole-vertebra model ASM for all cases. The average improvement
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(a) Whole-vertebra PDM (b) Proposed technique (c) Whole-vertebra PDM (d) Proposed technique
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Figure 3.9: Normal population: Four examples (rows) of the improve-
ment in segmentation accuracy obtained with the proposed technique
(columns (b) and (d) in yellow), compared against the results obtained
with a whole-vertebra PDM (columns (a) and (c) in blue). Showing
axial and sagittal views from left to right of vertebrae L3, L5, L5 and
L3 (from top to bottom) of 4 patients.
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is of 17% with the largest improvement at 32% for patient 2, and least
improvement at 8% for patient 4.
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Figure 3.10: Abnormal population: point-to-surface segmentation error
comparison between the proposed method and the whole-vertebra
ASM.

It is apparent from the magnitude of the errors that both the
whole-vertebra ASM and our technique perform worse on pathological
cases as compared to the healthy patients. The error is increased
by an average of 36% compared to the healthy patient population.
But it can be seen that the relative improvement of the proposed
algorithm remains constant. All of the pathological images have a
lower resolution along the z-axis which may account for the increased

91



3.4. RESULTS

errors, nonetheless, these images also have higher in-plane resolution
compared to the healthy images.

Table 3.3 summarizes the segmentation results for the whole-
vertebra ASM, and the proposed technique for all lumbar vertebrae
(L1 to L5). It can be seen that performing the proposed technique is
consistently better for the entire lumbar spine and particularly for the
L3 at 19%. On average, the maximum error was also reduced by 19%,
with the highest error reduction for the L2 and L3 at 20%.
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Two examples are shown in Fig. 3.11 comparing the performance of
the two techniques. Both examples are of patients with at least one frac-
tured vertebra, and both display a coronal view (columns (a) and (b)),
and a sagittal view (columns (c) and (d)) of the same patient. In Exam-
ple 1 (top), two vertebrae (L2 and L3) are fractured (see white arrows),
and it can be seen that the proposed algorithm (columns (b) and (d))
has the flexibility to represent the fracture for both L2 and L3, whereas
the whole-vertebra PDM fails to adapt to the contour.

Similarly, Fig. 3.11 Example 2 shows a fractured L3 vertebra (see
white arrows). Columns (a) and (c) show how the whole-vertebra PDM
does not have the flexibility to adapt to the pathological contour while
our method (columns (b) and (d)) is able to represent the pathology.

Figure 3.12 compares the average segmentation error distribution
for the whole-vertebra PDM segmentation, and the proposed technique.
It can be seen that local errors introduced by the whole-vertebra model
on high curvature regions of the transverse and spinous processes are
corrected by the proposed approach. In both sagittal and coronal views
errors are consistently lower using our method. Major improvements
are observed on the L2 and L3 vertebrae where some pathological
cases present fractures. In this cases, our method is able to represent
the abnormal anatomies.
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(a) Whole-vertebra PDM (b) Proposed technique (c) Whole-vertebra PDM (d) Proposed technique
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Figure 3.11: Abnormal population: Two examples (top and bottom) of
the improvement in segmentation accuracy obtained with the proposed
technique (columns (b) and (d) in red), compared against the results
obtained with a whole-vertebra PDM (columns (a) and (c) in blue).
Showing coronal and sagittal views from left to right.
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3.5 Conclusion

Detailed segmentation of the spine is challenged by the geometrical
complexity and the high variability of the vertebrae particularly at
the processes and in pathological cases. To address this issue, in this
chapter we presented a novel solution based on a statistical part-based
decomposition of the vertebral shape, so the total variance of the sam-
ple population is evenly distributed among the different subregions.
Conditional inter-part models are then constructed to maintain the
statistical coherence of the ensemble of shapes during the model fitting
procedure at the time of image segmentation. In addition, a probabilis-
tic model fitting approach is introduced to robustly select the most
likely shape parameters of each subregion.

The obtained segmentation results indicate that our approach
can provide highly accurate and consistent segmentations throughout
different individuals and regions of the vertebra. The segmentation
adapts well to areas geometrically complex or highly curved such as the
vertebral processes, and to abnormalities such as fractured vertebrae.
We also show that the proposed method outperforms the segmentation
accuracy obtained with a whole-vertebra PDM.

Finally, the proposed approach, while validated with vertebral
segmentation, is generic and can be applied for image segmentation of
other complex or multi-part structures, such as, multi-chamber heart,
simultaneous segmentation of multiple brain structures, and complex
vascular structures among others.
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3.5.1 Limitations

One limitation of the proposed technique is related to the computa-
tional costs it requires. At training, the statistical decomposition due to
its iterative nature is computationally demanding. For 15 subdivisions,
for example, the algorithm converges after 6.8 minutes. However, this
stage is performed once offline and the conditional models are then
saved for image segmentation. At the segmentation stage, the proposed
technique is more expensive than the whole-vertebra model segmenta-
tion, taking 32 seconds on average per patient (L1 through L5), due
to using multiple conditional shape models, while the whole-vertebra
model segmentation takes 18 seconds to complete the same patient.

A potential challenge of the decomposition approach is that it can
theoretically produce discontinuities between two adjacent subparts of
the vertebrae. This is because we only use implicit constraints based on
the conditional models to obtain a statistical coherence of the ensemble,
but this does not guarantee explicitly smoothness between adjacent
subregions. In our experimental results, however, we found these
implicit constraints, with the probabilistic model fitting approach, have
a good performance at maintaining the smoothness of the vertebrae,
as illustrated in the examples of Figs. 3.9, and 3.11. One could consider
adding an extra step after the segmentation, where discontinuous
transitions between subregions are identified and corrected using
smoothing.
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3.5.2 Future Work

One interesting avenue for future work would be the simultaneous seg-
mentation of the complete lumbar structure, or larger vertebral groups
that include thoracic and/or cervical vertebrae. As it is presented, our
algorithm is sequential i.e., it is applied to one vertebra at a time, and
all the statistical constraints are within-vertebra constraints. How-
ever, we would like to extend the probabilistic framework to include
interaction between adjacent vertebral structures assuming shape
correlations between them. Considering inter-vertebral relationships
would not only account for a more holistic model, but it would also aid
in the automatic initialization of most vertebrae reducing the human
interaction for segmentation.

A natural consequence of considering interactions between neigh-
boring structures is then the development of a system of weights to
balance the influence of the inter vs. the intra probabilistic relation-
ships between the different objects and their constituent subparts.
These weights can be shape correlation-driven or image-driven. We
expect to continue work in this direction.
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PATIENT METADATA-CONSTRAINED SHAPE

MODELS FOR CARDIAC IMAGE

SEGMENTATION

4.1 Motivation

Patient metadata such as demographic information and cardio-
vascular disease (CVD) risk factors, genetics and other indica-
tors are valuable data readily available about subjects partici-

pating in population imaging studies. This information can inform the
construction of customized SSMs fitting the patient’s unique character-
istics. However, to the best of our knowledge, no studies have reported
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using these types of metadata in constructing shape models for image
segmentation. In this thesis, we propose the use of a conditional model
framework to include these patient metadata in constructing a per-
sonalized shape model and evaluate its effect on image segmentation.
Our validation on a dataset of 250 asymptomatic cardiac MR images
shows an average segmentation improvement of 7% and sometimes up
to 30% over a conventional PCA-based framework. These results show
the potential of our technique for improved shape analysis.

4.2 Introduction

Cardiac segmentation is a prerequisite for several important clinical
applications ranging from the relatively simple computation of ejection
fraction (EF), to understanding disease progression through shape
analysis in longitudinal studies, to more complex tasks, such as, sim-
ulating cardiovascular function and electrophysiology for treatment
planning and intervention. These tasks require accurate segmentation
of the cardiac structure in order to obtain reliable and meaningful
outputs.

Segmentation of cardiac structures, however, remains a challeng-
ing task due to the high geometric complexity of the organ, and image
inhomogeneities. To overcome these problems, statistical shape model-
based methods have been widely adopted due to their ability to simplify
shape complexity and overcome noisy image information through the
model fitting process. But these model-based techniques have tradi-
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tionally only focused on the use of shape information for constructing
models and do not include other potentially useful non-image derived
information typically found on a patient’s clinical chart.

In our review of the literature we found a study by Wolz et al. [91]
that reports using both patient and image metadata to enhance their
manifold learning technique for brain image classification. In another
study, Blanc et al. [92] use what they call surrogate variables of the
femur bone i.e., different anatomical lengths and angles within the
bone and patient information, to further constrain the shape space of a
PCA derived model and study their influence. Grbić et al. [93] use land-
mark derived features to build a patient specific model with a reduced
set of shapes for image segmentation. Finally, Medrano-Gracia et al.
[94] quantify and show significant morphological differences in asymp-
tomatic cardiac shape between different demographic and risk factor
sub-groups. They do this by performing PCA on the sub-groups, and
evaluating the statistical significance of differences between their prin-
cipal modes of variation. Although these works address including other
non-image data in the analysis of shape, none use patient-metadata
for cardiac segmentation, which is the focus of this chapter.

In this chapter, we propose the use of a conditional shape model
framework [95] for the definition of a shape distribution constrained
by demographic data and CVD indicators and apply it to cardiac image
segmentation. We validate our framework by comparing the segmen-
tation accuracy of our method with that of a standard PCA-based
model.
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The remainder of this chapter is organized as follows. In section 4.3,
we describe the details regarding model construction and segmentation.
In section 4.4, we present the obtained segmentation results and
comparison to the standard PCA-based model. Finally, conclusions
are drawn in section 4.5.

4.3 Method

This section describes the statistical modeling of the probability distri-
bution of shape conditioned on metadata, i.e. P(x|m j). We would like to
compute a PDM for shapes xi based on their conditional relationship
with each metadata field m j, a mean x̄m j , and covariance matrix ßx|m j .
Then we combine these conditional PDMs into one unified PDM that
accounts for all shape-metadata relationships. Last, we describe the
image feature search and model fitting process.

Our method consists of four main steps:

1. Metadata-constrained allowable domain: Given a dataset
of shape vectors xi, i = 1, ..., N obtained from segmented images,
and their corresponding metadata fields mi, j, j = 1, ..., M, we com-
pute a set of eigenspaces E j = {©,§ j} that describe the allowable
shape space for shapes xi conditioned on metadata mi, j. To train
these models, we use the definitions of multivariate conditional
distributions described in section 4.3.1.

2. Metadata-constrained mean shape: Based on a new pa-
tient’s metadata mnew

j , we compute M new mean shape esti-
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mates x̄m j , and combine them to obtain the final model estimate
x̄c. (see sec. 4.3.2).

3. Metadata constraints combination: The final allowable do-
main §c is computed as the intersecting space from the different
metadata-constrained variances as estimated in step 1, centered
on their corresponding mean estimates x̄m j computed on step 2.
(see sec. 4.3.3).

4. Application to image search: We use the obtained metadata
constrained PDM to guide the image segmentation of a new pa-
tient’s image volume. We use the Sparse Active Shape Models
(SPASM) framework [96] to perform the cardiac image segmen-
tations reported in this chapter. (see sec. 4.3.4).

4.3.1 Metadata-Constrained Allowable Domain

Let us define an augmented shape data matrix D by appending meta-
data values mi, j to the last index of shape vectors xi (Eq. 4.1).

(4.1) D=
"(

x1

m1, j

)

, . . . ,

(
xN

mN, j

)#

Using D we compute the block covariance matrix ßDD as shown on
Eq 4.2.

(4.2) ßDD =
"
ßxx ßxm j

ßT
xm j

ßm jm j

#

.
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The conditional covariance estimates that relate shape in xi, and
metadata m j are calculated using Eq. 4.3.

(4.3) ßx|m j =ßxx°ßxm jß
°1
m jm j

ßT
xm j

.

The covariance matrices in Eq. 4.3 are obtained from the block co-
variance matrix in Eq. 4.2. ßxm jß

°1
m jm j

are the regression coefficients
that model the relationship between shape and the metadata fields.
These coefficients are stored and used to compute the final mean shape
estimate of the model in the next section.

Since for N models perform N eigendecompositions on relatively
large covariance matrices ßx|m j , we reduce the dimensionality of the
problem by working with parametric shape vectors bi = ©T(xi ° x̄)
through eigendecomposition of ßxx, rather than 3D shape vectors xi.
We retained 98% of variance after eigendecomposition, which, depend-
ing on the size of the training set is accounted for by 20 to 30 modes of
variation. With this new representation, Eq. 4.2 is replaced by Eq. 4.4,

(4.4) ß(b)
DD =

"
§bb ßbm j

ßT
bm j

ßm jm j

#

where §bb are the eigenvalues of ßxx, and subindex b indicates para-
metric shape.

Similarly, equation 4.3 is replaced by equation 4.5,

(4.5) §m j =§bb°ßbm jß
°1
m jm j

ßT
bm j

,

where §m j is a subset of the variance in §bb, and has the same
coordinate system © that represents parametric shapes bi.
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Using equations 4.4 and 4.5 we obtain M eigenvalue matrices §m j

that represent the conditional shape variability of xi regarding each
metadata field m j.

We have a coordinate system © and M conditional variance ma-
trices §b|m j . However, we still must compute M corresponding condi-
tional mean vectors b̄m j , to which §b|m j are centered, and combine
these models into a unique PDM that encodes all conditional relation-
ships between shape and metadata.

4.3.2 Metadata-Constrained Mean Shape

To compute the final model’s mean shape, we first must compute
M mean estimates b̄m j using the regression coefficients ßbm jß

°1
m jm j

obtained in section 4.3.1. Using these coefficients, and the definitions of
multivariate conditional normal distributions, we obtain M conditional
mean estimates based on each metadata field (Equation 4.6).

(4.6) b̄m j =ßbm jß
°1
m jm j

(mnew
j °m̄ j)

Notice that in Eq. 4.6, mnew
j is the jth metadata field of a new subject

for whom shape is unknown.
The question then becomes how to combine these mean shape

estimates into the final mean. Given that not all metadata are good
predictors of shape, we weigh each mean estimate proportionally to the
correlation between shape and the different metadata fields (Eq. 4.7),

wj =
Ωbim jP
Ωbim j

(4.7)
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where Ωxim j is the correlation coefficient between shape and each
metadata field.

The final parametric mean estimate b̄ is a weighted average of the
obtained mean estimates b̄m j (Eq. 4.8). The final mean shape in 3D
space is recovered using Eq. 4.9. We denote the final conditional model
parameters with subindex c.

b̄=
MX

j=1
b̄m j wj(4.8)

x̄c = x̄+©b̄(4.9)

4.3.3 Metadata Constraints Combination

The variance associated to the final mean, x̄c, is computed by centering
the obtained eigenvalue matrices §m j at their corresponding mean
estimates b̄m j , and calculating the overlapping space between all
eigenspaces E j = {©,§m j }. Eq. 4.10 describes the intersecting space,
where ∏m j are the diagonal entries of eigenvalue matices §m j .

∏c =
1
2

Ω
min

j
(b̄m j +∏m j )+|max

j
(b̄m j °∏m j )|

æ
(4.10)

By assembling a diagonal matrix with the entries of ∏c, we obtain
the final eigenvalue matrix §c describing the conditional variability
of shapes xi given metadata m j. The final PDM described in Eq. 4.11
will constrain image segmentation in the next section.

≠x|m = (x̄c,©,§c)(4.11)
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4.3.4 Application to Image Search

4.3.4.1 Boundary Detection

Image boundaries were detected by minimizing the Mahalanobis dis-
tance between a profile of grey levels g sampled from each landmark
of the current shape estimate, and the mean profile from the train-
ing set ḡ. The appearance model for each landmark is trained by
computing the mean ḡ, and covariance matrix ßgg, for the profiles of
corresponding landmarks across the training set. Landmark profiles
g are sampled by projecting a normal vector to the shape’s surface
onto the image slice closest to that landmark. Then the Mahalanobis
distance between every point in the model and the profile is computed.
Finally, the landmark is displaced to the location that minimizes the
distance on Eq. 4.12.

D(g)=
q

(g° ḡ)Tß°1
gg(g° ḡ)(4.12)

4.3.4.2 Shape Model Fitting

After the landmark displacement procedure described in the previous
section, the new feature points must be constrained to ensure they
constitute a valid shape (described by our PDM). We do this following
a standard procedure [97] to find the pose and shape parameters that
best fit the new feature points. Let us assume we wish to fit a new
model instance x̃ to feature points x0.

1. Initialize parameter vector b to zero.
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2. Generate new conditional model instance x̃= x̄c +©b.

3. Align feature points x0 to model x̃.

4. Update model parameters to match the feature points, b =
©T(x0 ° x̄c).

5. Constrain b to be within ±3
p
∏c .

6. Recover current 3D shape x̃= x̄c +©b.

7. Using the current shape perform landmark displacement and
iterate from Step 1.

Alignment of points is performed using Procrustes analysis [98] to
eliminate rotation and translation effects. However, scale is preserved
as it is an important feature in cardiac image segmentation.

4.4 Results

The goal of this chapter is to show the potential in using commonly
available patient information to construct personalized shape models
that improve the accuracy of image segmentation. To test the extent of
this improvement, we compare the segmentation accuracy obtained
with a standard shape-only PDM to the accuracy obtained with the
proposed metadata-constrained PDM. Both PDMs were trained using
150 datasets, and tested on the remaining 100 cases.
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4.4.1 Data

4.4.1.1 Image

We used 250 cardiac magnetic resonance imaging (CMR) datasets ob-
tained from the Cardiac Atlas Project (CAP). CAP is a web-accessible
resource1, comprising a population atlas of asymptomatic and patho-
logical hearts [99]. For this study we use 250 asymptomatic cases from
the Multi Ethnic Study of Atherosclerosis (MESA) study [100]. The
MESA protocol used fast gradient-recalled echo (GRE) imaging with
10-12 short axis slices with typical parameters 6 mm thickness, 4 mm
gap, field of view 360-400mm, 256x160 matrix, and pixel size from
1.4-2.5mm/pixel depending on patient size.

4.4.1.2 Shape

Contours were manually drawn as a series of points by the MESA
CMR core lab on short-axis slices for all cases at end-diastole (ED).
These contours were fitted by a finite element model by linear least
squares as described in [94]. The resulting models are 250 triangular
meshes with point correspondence. The meshes comprise 1570 points,
of which 785 describe the endocardial surface at ED. In this chapter
we focus on the shape analysis of the LV endocardial surface at ED.

1
www.cardiacatlas.org
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4.4.1.3 Metadata

In this study we include these metadata fields provided with the image
data: age, gender, race, height, weight, systolic/diastolic blood pressure,
heart rate, hypertension, smoker, alcohol. Some fields are continuous
variables and others are categorical. All categorical variables were re-
placed by binary codes of length n, where n is the number of categories
for the variables.

4.4.2 Standard vs. Metadata-Constrained
Segmentation

All image volumes were initialized by artificially aligning an instance
of the PDM’s mean shape with the ground truth. The dimension of
image profiles for feature extraction was set to 7x1 voxels (3 on each
side) projected inwardly and outwardly from the landmark point. The
stopping criterion for the ASM was set at 30 iterations.

Table 4.1 shows the summary statistics for the segmentation. The
RMS point-to-surface segmentation error across all cases for the stan-
dard PDM was 2.18mm, whereas the error for the proposed technique
was 2.03mm. This represents an accuracy improvement of 7% over the
standard PDM. Also, the standard deviation of the error was improved
by 13% over the standard PDM.

Figure 4.1 shows the percentage of improvement obtained for each
individual subject plotted from lowest to highest improvement. From
the figure we can see that using metadata improves the segmentation
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Table 4.1: Summary statistics comparing point-to-surface RMS seg-
mentation errors of the standard PDM vs. our proposed metadata-
constrained PDM.

Mean ± æ (mm) Min. Max.

Standard PDM 2.18 ± 0.62 1.41 4.33

Conditional PDM 2.03 ± 0.54 1.38 4.16

Improvement (%) 7% ± 13% -7.5% 30.4%

of nearly 80% of the subjects. And in more than 20% of subjects the
segmentation accuracy was improved by a significant 15% to 30%.
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Figure 4.1: Percentage of improvement provided by our metadata-
constrained models. Improvements are shown in ascending order for
all subjects.
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Table 4.2 shows the distribution of the errors in the test sample for
both the conditional- and standard-PDM segmentations. It can be seen
how the use of the metadata reduces the number of cases with large
errors. For example, by using the standard shape models, 59% of the
datasets are segmented with over 2mm errors. This number is reduced
to 39% when adding the metadata during segmentation. Similarly,
with the standard shape models, only 3% are segmented with less
than 1.5mm errors, while this number increases to 14% by using the
proposed metadata constrained segmentation framework. Table 4.2
illustrates the positive effect of considering the patient metadata,
besides shape and image information, during cardiac segmentation.

Table 4.2: Distribution of cases by error range between the standard
PDM and our proposed metadata-constrained PDM.

Error < x mm (% of Cases)

< 1.5mm < 2mm < 2.5mm < 3mm

Standard PDM 3% 41% 76% 94%

Conditional PDM 14% 61% 88% 97%

4.4.3 Examples

Figure 4.2 shows two typical examples where our technique outper-
forms the standard PDM. Both panels, left and right, show the seg-
mentation obtained with the standard PDM (left), and our technique
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(right) superimposed on the ground truth shape. On Example 1 (left
panel), the standard PDM (left) fails to correctly match lateral wall
of the LV, whereas our method (right) better approximates the region.
Some arrows are placed on the figure to show the regions where these
differences are most significant. Similarly, example 2 (right panel)
shows large errors, on the basal, apical and lateral wall regions for the
standard PDM (left), while our method (right) can match those same
regions with smaller errors.

Example 1 Example 2

Standard PDM Standard PDMConditional PDM Conditional PDM

Figure 4.2: Segmentation examples. The blue and red shapes (left and
right on each example) are segmentations obtained with the standard
PDM, and our conditional PDM respectively. The ground truth shape
is overlaid in gray color for comparison.
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4.5 Conclusion

We presented a method to construct statistical shape models that
incorporate non-image information from the patient. The proposed
models reduce the shape domain to custom fit the patient’s unique
characteristics. We achieved this by using multivariate conditional
distributions to regress a model that represents the most likely shape
variation given the patient’s metadata. We validated our method by
comparing the segmentation accuracy obtained with a standard PCA-
based method with the accuracy obtained with our technique. Results
showed a 7% average segmentation improvement and often improve-
ments of up to 30% over the standard PCA model. As future work, we
would like to identify the metadata that best predicts shape and a
methodology to optimally combine them so segmentation accuracy is
maximally improved.
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5
GENERAL CONCLUSIONS

5.1 Overview

The aim of this thesis has been the development of new meth-
ods capable to build enhanced statistical models of anatomical
shape from medical image data. We have presented three inde-

pendent, yet, complementary methods, to independently address the
shortcomings of traditional SSMs, in particular their limited quality
when dealing highly variable and complex anatomies. We have shown
on multiple applications including the analysis of cardiac, spine, and
brain structures that the methods presented can improve the general-
ization and specificity of the representation of these structures, and as
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a consequence, the accuracy and reliability of medical image segmen-
tation. In these paragraphs, we summarize the specific contributions
of this dissertation.

First, we presented a method for integrating multiple SSMs by
solving the correspondence problem across two or more models with
distinct shape representation, and applying existing fusion techniques
for the aggregation of the individual model’s statistical properties.
Having the ability to merge multiple SSMs allows the construction
of models statistically richer, without the need to generate or gain
access to the original observations. Such utility can facilitate research
collaboration, and encourage reusability of statistical data. The ability
to merge SSMs also allows for integrating shape statistics from mul-
tiple image modalities, such as CT and MRI, and the integration of
different statistical populations, such as, normal and pathological sam-
ples. A natural application of our technique would be the integration
of statistical models emerging from multiple large scale population
imaging studies being undertaken all over the world including, the
MESA project with N > 6,500 subjects, the DETERMINE project with
N > 10,000, the UK Biobank aiming to image over 100,000 subjects,
and at least 30 other European projects that have emerged in the last
10 years [101].

Second, we developed a framework for the modeling and segmenta-
tion of highly complex multi-part anatomies. Our method proposes, 1)
an iterative approach to finding an optimal subdivision of the anatomy
of the training samples, based on the equalization of the variance
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within each part of the complete anatomy, 2) the independent mod-
eling of each of the resulting anatomies to capture more local and
subtle geometrical details, 3) the use of conditional probabilities to
model the statistical relationships between all constituent sub-parts
so their combination yield geometrically valid shapes, and 4) a seg-
mentation mechanism that finds the boundary of each sub-part by
considering its conditional relationships to all other parts, and updates
said probabilities online as it iterates through the target shape. Our
approach is ideal because it allows to maintain the simplicity of lin-
ear models, while at the same time handling the complexity of highly
non-linear structures. Our technique is well suited for anatomies com-
prising multiple components. As future work, this technique could
model the complete spine including thoracic, and cervical vertebrae,
and intervertebral discs. Our method would also be well suited for the
modeling and segmentation of the 4-chamber heart, as the complex
interactions between the different structures can be easily decomposed
and modeled using our approach.

Third, we proposed a method that extends and fine-tunes the SSMs
beyond considering the shape statistics that can be found on image
data, by including other relevant non-imaging information about the
subject into constructing shape models. We suggested the use of multi-
variate Gaussian conditional probabilities to model the relationship
between shape data extracted from the image, and demographic and/or
clinical indicators that can typically be found on a patient’s clinical
chart. By modeling the relationship between shape and metadata, we
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can narrow down the uncertainty surrounding a given subject’s shape
during the image segmentation process. By modeling the conditional
probabilities between shape and the metadata independently, we can
obtain multiple independent predictions from each of the metadata
and combine them into a more robust majority agreement segmenta-
tion. In line with this approach, our future objective is to study the
impact that a more extensive set of metadata can have on increasing
the specificity of SSMs and to what degree this information can lead to
personalized models that deliver on the promise of precision imaging
and medicine.

5.2 Future Perspectives

We are in the early years of personalized medicine. The term personal-
ized, or precision medicine, refers to the identification of subpopula-
tions, or groups of patients, to whom specifically tailored treatments
and practices are provided. The personalized medicine revolution be-
gan with developing genomics, and the possibility of stratifying the
population according to genetic biomarkers. Today the tenets of per-
sonalized medicine can, and are being applied to all areas of medicine
and healthcare, including medical imaging and radiology. Increasingly,
clinicians and researchers have access to larger and more complex pop-
ulation studies, which opens the door for statistically driven patient
stratification. One example of this is the UK Biobank imaging study
[102], which aims to conduct detailed MRI imaging scans of the vital
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organs of over 100,000 participants, making it the largest study of its
kind in the world. The quantitative assessment of large populations
is essential to determine baseline reference values against which to
compare new observations, which supports true population stratifica-
tion. In this context, enhanced SSMs such as those described in this
thesis, i.e., models with increased generalization ability, accuracy and
specificity, will play an important role in many areas as detailed in
these sections.

5.2.1 Enhanced SSMs and Large-Scale Image
Analysis

To obtain clinically relevant results from large cohorts such as the UK
Biobank, robust and scalable full data analysis pipelines are needed
that can manage every step of data processing, from data scrubbing,
to image segmentation, to the computation of morphological and func-
tional cardiovascular parameters. The large variability in studies of
this magnitude requires the use of model-based segmentation tech-
niques that can handle large inter-subject and intra-subject variability.
It is our belief that a method that can combine the generalization
ability of rich models [103] (Chapter 2), the potential to integrate be-
havioural, phenotypic, and demographic factors into a personalized
model [104] (Chapter 4), and can simultaneously segment multiple
structures such as adjacent organs or multi-part complex objects, such
as the spine and heart [105] (Chapter 3), is one important step towards
providing highly reliable and accurate segmentations. Such models
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would be fundamental for the extraction of accurate and relevant
biomarkers for biomedical research and clinical practice.

5.2.2 Enhanced SSMs and Content-Based Image
Retrieval

SSMs have the potential to play a critical role in content-based medical
image retrieval (CBIR) systems. CBIR is an image search technique
that complements the conventional text-based retrieval of images by
using visual features, such as texture, and shape, as search criteria.
Large image repositories such as those in hospitals, and research repos-
itories such as the UK Biobank, offer the opportunity to develop more
sophisticated tools for clinicians that allow querying large databases
for images that match the shape characteristics of a particular case
of interest [106]. In the medical context, shape information is one of
the strongest factors in detecting certain diseases/lesions, and in un-
derstanding their evolution. Shape-based descriptors are likely to be
critical to characterize the detail required for medical image retrieval
[107]. Today, however, most of the medical CBIR systems do not exploit
the full potential of the shape information as they either use indirect
correlates of the shape such as texture measurements or employ very
global and simple shape description schemes incapable of capturing
the required classification granularity. Accurate and reliable model-
based segmentation techniques such as those presented in this thesis
become essential to capture the required level of detail for successful
CBIR systems.
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5.2.3 Enhanced SSMs and Computer-Aided
Diagnosis

A clinical application for which enhanced SSMs can play an important
role is computer-aided diagnosis, in particular for the automatic lo-
calization and classification of abnormalities. For example, vertebral
fractures generally occur earlier in life than hip fractures and can
be important early indicators of poor skeletal health [108]. They are
predictors of future spine and hip fractures, so accurate diagnosis
and clear reporting of these fractures is essential, yet only about a
third of vertebral fractures come to clinical attention [109]. There is
considerable evidence that vertebral fractures are under-reported, and
when reported, appropriate intervention is often not initiated. Studies
show that vertebral fractures are often not diagnosed so, only about
30% of vertebral fractures come to medical attention [110], as they
are hard to detect despite training; they can easily be misdiagnosed;
they are reported in ambiguous language, or they are not mentioned
in radiology reports. This under-reporting problem could be reduced
by statistical model-based approaches. A pipeline that includes the
training of high-quality SSMs to detect abnormally shaped vertebrae
and points out the location and abnormality to the physician could be
an invaluable tool in routine clinical practice. Such approach to frac-
ture detection has the potential of increasing detection rates, reducing
medical care costs, and most important increasing the patient’s quality
of life.

In summary, fueled by unprecedented access to large image datasets
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and technological innovations, a new era of personalized medicine is
expected to revolutionize health care, and with it, new challenges and
opportunities to improve biomedical research and patient care are
emerging. We will see the rapid, and widespread implementation of big
data analytics across health-care systems, and with them, the ability
to provide focalized treatments, and prevention strategies for specific
patients based on large population statistics. The development of tools
for the proper analysis of image data, such as those presented in this
thesis, is a crucial step toward realizing the promise of personalized
medicine.
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