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The development of the peripheral nervous system involves an initially 

exuberant production of neurons and a subsequent activity-dependent reduction 

in the number of synapses at the neuromuscular junctions (NMJ). This process is 

called synaptic elimination. At the end of the second postnatal week, each muscle 

fiber is innervated by a single motoneuron. Muscarinic acetylcholine receptors 

(mAChR), adenosine receptors (AR) and the tropomyosin-related kinase B (TrkB) 

receptor may allow the direct competition between nerve endings during synapse 

elimination through the modulation of acetylcholine release. Here, it has been 

investigated by confocal microscopy and quantitative morphological analysis the 

involvement of the individual and synergic or oclusive effect of M1-, M2- and M4-

subtypes of mAChRs, A1 and A2A of ARs and TrkB in the control of the axonal 

elimination in developing NMJ. 

The results show that mAChRs, ARs and TrkB promote axonal disconnection 

at the beginning of the second postnatal week without affecting the postsynaptic 

maturation of the nicotinic receptor cluster. In summary, mAChRs, ARs and TrkB 

delay axonal loss at P7 but accelerate it at P9. In terms of receptor cooperation, 

M2 modulates by accelerating the axonal loss the other receptors mainly M4 and 

A1 at P7. The cooperation between M1, A1 and A2A receptors promotes axonal loss 

at P9, whereas the effect of M2 is independent of the other receptors. M1 and TrkB 

receptors work together to increase axonal loss rate at P9 but the effect of M2 is 

largely independent of the TrkB receptor.  

In conclusion, postnatal synapse elimination is a regulated multireceptor 

mechanism involving the cooperation of several muscarinic, adenosine subtypes 

and TrkB receptor that guarantees the monoinnervation of the neuromuscular 

synapses in the end of the process. 
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CATALÀ 

El desenvolupament del sistema nerviós perifèric implica una inicial 

exuberant producció de neurones i una posterior reducció dependent de 

l'activitat del nombre de sinapsis de les unions neuromusculars (NMJ). Aquest 

procés s’anomena eliminació sinàptica. Al final de la segona setmana postnatal, 

cada fibra muscular està innervada per una sola motoneurona. Els receptors 

muscarínics d’acetilcolina (mAChR), els receptors d’adenosina (AR) i el receptor 

cinasa de tropomiosina B (TrkB) podrien permetre la competició entre terminals 

nerviosos durant el procés d’eliminació sinàptica mitjançant la modulació de 

l’alliberament d’acetilcolina. En aquesta tesi s’ha investigat, mitjançant 

microscòpia confocal i un anàlisi morfològic quantitatiu, el paper dels receptors 

mAChRs (M1, M2 i M4), dels ARs (A1 i A2A) i del receptor TrkB en el procés 

d’eliminació en el desenvolupament de la NMJ.  

Els resultats mostren que els receptors mAChRs, ARs i el receptor TrkB 

promouen una desconnexió axonal al principi de la segona setmana postnatal 

independentment de la maduració dels receptors d’acetilcolina postsinàptics. En 

resum, els receptors mAChRs, ARs i el receptor TrkB endarrereixen el procés 

d’eliminació sinàptica a P7 però l’acceleren a P9. Pel que fa la cooperació entre 

aquests receptors, M2 modula, accelerant el procés d’eliminació sinàptica, els 

altres receptors, sobretot l’acció de M4 i A1 a P7. La cooperació entre els receptors 

M1, A1 i A2A promou la pèrdua axonal a P9, mentre que, l’efecte de M2 és 

independent dels altres receptors. M1 i TrkB cooperen per incrementar la pèrdua 

axonal a P9 però l’efecte de M2 és independent del receptor TrkB. 

En conclusió, l’eliminació sinàptica postnatal és regulada per un 

mecanisme que depèn de varis receptors, involucrant la cooperació dels diferents 

subtipus de receptors muscarínics, d’adenosina i el receptor TrkB, els quals 

garanteixen la monoinnervació de les sinapsis neuromusculars al final del procés. 
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CASTELLANO 

El desarrollo del sistema nervioso periférico implica una inicial exuberante 

producción de neuronas y, una posterior reducción dependiente de actividad del 

número de sinapsis en las uniones neuromusculares (NMJ). Este proceso se 

denomina eliminación sináptica. Al final de la segunda semana postnatal, cada 

fibra muscular está inervada por una sola motoneurona. Los receptores 

muscarínicos de acetilcolina (mAChR), los receptores de adenosina (AR) y el 

receptor quinasa de tropomiosina B (TrkB) podrían permitir la competición entre los 

terminales nerviosos durante el proceso de eliminación sináptica mediante la 

modulación en la liberación de acetilcolina. En esta tesis se ha investigado, 

mediante microscopía confocal y un análisis morfológico cuantitativo, el papel de 

los receptores mAChRs (M1, M2 y M4), de los ARs (A1 y A2A) y del receptor TrkB en 

el del proceso de eliminación en el desarrollo de la NMJ.  

Los resultados muestran que los receptores mAChRs, ARs y el receptor TrkB 

promueven una desconexión axonal al inicio de la segunda semana postnatal 

independientemente de la maduración de los receptores de acetilcolina 

postsinápticos. En resumen, los receptores mAChRs, ARs y el receptor TrkB retrasan 

el proceso de eliminación sináptica en P7 pero lo aceleran en P9. En la 

cooperación entre estos receptores, M2 modula, accelerando el proceso de 

eliminación sináptica, los otros receptores, sobretodo la acción de M4 y A1 en P7.  

La cooperación entre M1, A1 y A2A promueve la pérdida axonal en P9, mientras 

que M2 es independiente de los otros receptores. M1 y TrkB cooperan para 

incrementar la pérdida axonal en P9 mientras que el efecto de M2 independiente 

de TrkB. 

En conclusión, la eliminación sináptica postnatal está regulada por un 

mecanismo que depende de varios receptores, involucrando la cooperación de 

diferentes subtipos de receptores muscarínicos, de adenosina y el receptor TrkB, 

los cuales garantizan la monoinnervación de las sinapsis neuromusculares al final 

del proceso. 
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 The neuromuscular junction (NMJ) is a specialized synapse in the 

peripheral nervous system (PNS) between a motor nerve terminal (NT) and a 

skeletal muscle cell (MC). This NMJ is a chemical synapses whose function is to 

transmit signals from the motoneuron (MN) to the skeletal muscle fiber quickly and 

reliably, to ensure precise control of skeletal muscle contraction and therefore the 

movement (Duclert and Changeux, 1995).  

 The NMJs of all vertebrates display the same basic features: (1) an axon 

terminal containing the neurotransmitter, acetylcholine (ACh), (2) an overlying 

Schwann cell (SC) that covers the axon terminal except at the interface of the 

presynaptic and postsynaptic membranes; (3) an area of synaptic cleft which is 

lined with the basement membrane (BM) and (4) an invaginated postsynaptic 

membrane with nicotinic acetylcholine receptors (nAChR) which bind to ACh 

(Ogata, 1988; Deschenes et al., 1994; Sanes and Lichtman, 1999).  

The NMJ is a good synapse model due to its large size and the ease of 

access experimentally. In concrete, it has contributed greatly to the understanding 

of the general principles of synaptogenesis and to the development of potential 

therapeutic strategies for muscular disorders. Aided by the use of suitable animal 

models, including rodents, zebrafish, Drosophila melanogaster and Caenorhabditis 

elegans, studies in the past decade have brought significant progress, not only in 

identifying components present in pre- and postsynaptic membranes, but also in 

understanding the mechanisms that underpin NMJ assembly (Keshishian et al., 

1996; Schwarz, 2006; Je et al., 2012; Plomp et al., 2015).  

Moreover, the NMJ has long been used as a model system for studying the 

general principles of synapse development (Dennis, 1981; Sanes and Lichtman, 

1999, 2001). The development of the NMJ requires an initial guidance of the motor 

axons toward the specific muscles to be innervated and then the stabilization of 

the contact. At the end of the NMJ maturation, a muscle becomes innervated by 

a single axon and persists throughout postnatal life (Sanes and Lichtman, 1999, 

2001; Eaton et al., 2002; Pielage et al., 2005). 

1. THE NEUROMUSCULAR JUNCTION: STRUCTURE, FUNCTION AND 

DEVELOPMENT 
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     1.1. STRUCTURE OF NEUROMUSCULAR JUNCTION 

The NMJ is composed of three cells or components (Courteaux, 1973; 

Ogata, 1988; Engel, 1994a; Sanes and Lichtman, 1999) (figure 1):  

(1) The presynaptic component – the motor nerve terminal of the 

motoneuron – which is responsible for the synthesis, storage and release of the 

acetylcholine.  

(2) The postsynaptic component – the muscle cell – which contains a high 

density of nAChRs and other molecules important for the establishment and 

maintenance of the NMJ. 

(3) The glial component – the Schwann cell – which can be teloglia or 

myelinating Schwann cells according its position along the axon. 

In the middle of the presynaptic and postsynaptic component there is the 

intrasynaptic part – the synaptic basement membrane – which constitutes a 

structural and functional extracellular matrix and facilitates adhesion between 

synaptic membranes.  

 

Figure 1. Neuromuscular junction (NMJ) structure: junction between a single-branch 

axon terminal and the muscle fiber membrane. In purple, the nerve terminal (NT) where 

active zones (AZ) in purple and synaptic vesicles (SV) with the acetylcholine (ACh) in 

green are located. Moreover, there are P/Q type voltage-dependent calcium channels 

(VDCC) to help the fusion of ACh with the NT membrane. In yellow, the myelinating 

Schwann cell (mSC) and in grey the terminal Schwann cell (tSC) or teloglia. The synaptic 

cleft contains the basement membrane (BM) in orange. In the muscle cell (MC), there 

are the nicotinic acetylcholine receptors (nAChR) in black and the voltage-dependent 

sodium channels (VDSC) in blue.   
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1.1.1. PRESYNAPTIC COMPONENT 

The presynaptic component comprises the motor nerve terminal of a 

motoneuron. The motoneuron is composed by a cellular body located at the 

ventral horn of the spinal cord and in cranial nerve nuclei of the brainstem. MNs 

send their axons to muscles via the ventral roots and cranial nerves. The axon 

ramifies intramuscularly in collateral axons, each of which ends forming the nerve 

terminal that contacts a unique muscle fiber. The final branches of NT are thin 

(about 2 µm) and unmyelinated. Every MN contacting a group of muscle fibers is 

called motor unit (Hirsch, 2007). To innervate a muscle, several motor units work 

together. The size of motor units and MNs can differ from one muscle to another. In 

concrete, the MNs can be small, intermediate or large. Small MNs innervate fewer 

muscle fibers and generate small contractile forces while larger ones innervate 

more muscular fibers and generate more powerful forces. 

The role of the NT is to release the neurotransmitter that activates the 

postsynaptic muscle fibers. Neuromuscular synapses in mature vertebrates use the 

excitatory transmitter ACh, which triggers muscle contraction. ACh is synthesized in 

motor nerve terminals from the chemical precursor choline and acetyl coenzyme 

A, facilitated by the acetylcholinesterase (AChE). Most ACh at the NMJ is released 

in discrete packets of thousands of ACh molecules, called quanta (Fatt and Katz, 

1952; Del Castillo and Katz, 1954). Each quantum of transmitter is packaged within 

a small (50-60 nm diameter), clear, spherical lipid bilayer structure called synaptic 

vesicle (SV). These vesicles are not present in a random array; instead, there are 

electron-dense guiding structures which lead vesicles towards membrane sites at 

which their contents can be released by exocytosis. Synaptic vesicles also contain 

other compounds, such as adenosine triphosphate (ATP), which are co-released 

with ACh and are thought to play a particularly important signaling role during 

development. Slow leakage of unpackaged ACh from motor nerve terminals can 

also be detected in skeletal muscle cells (called nonvesicular or nonquantal ACh 

release). However, vesicular release at the NMJ, as at most other synapses, is the 

dominant mode of transmitter release. 

ACh is transferred into synaptic vesicles by the vesicular acetylcholine 

transporter. This protein exchanges ACh for hydrogen ions, which are concentrated 

within synaptic vesicles by proton pumps on the vesicular membrane. Both ACh 

production and loading of ACh into synaptic vesicles depend indirectly on active 

transport processes that require energy. To provide this energy, motor nerve 
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terminals contain large numbers of mitochondria (Engel and Franzini-Armstrong, 

2004), located near the upper regions of the terminal, away from the muscle-facing 

surface. Synaptic vesicles within motor nerve terminals can be categorized into 

three different synaptic vesicle ‘pools’, based on their release properties. 

Approximately 1% of vesicles are known as the readily releasable pool (or the 

release ready pool) because they are primed for immediate release upon firing of 

a nerve action potential (Richards et al., 2003; Rizzoli and Betz, 2004). A second 

pool of synaptic vesicles, termed the recycling pool, contains between 5–20% of 

the total vesicle population. Vesicles from this pool enter the exocytosis-

endocytosis cycle under high-frequency physiological conditions (De Lange et al., 

2003), so that they can be used repeatedly during sustained activity (Südhof, 2004). 

The third pool of synaptic vesicles is the reserve/resting pool which represents about 

80-90% of all vesicles in the presynaptic terminal (Heuser and Reese, 1973; Delgado 

et al., 2000). The currently accepted dogma suggests that the vesicles of the 

reserve pool are only seldomly, if ever, recruited during physiological activity, and 

are only released by intensive stimulation or when the recycling pool is depleted 

(Kuromi and Kidokoro, 2000; Ikeda and Bekkers, 2009). Interestingly, a substantial 

proportion of the vesicles remain unused, even during strong nonphysiological 

stimulation (Rizzoli and Betz, 2005). A study shows that in central nervous system 

(CNS) synapses and the NMJ, only 1-5% of all vesicles are recycled (Denker et al., 

2011). Hence, the proportion of the reserve pool vesicles that participate in 

synaptic transmission is still a matter of debate and await further investigations.  

Vesicles in the readily releasable pool tend to appear ‘docked’ at areas 

on the presynaptic membrane that are highly specialized for the vesicular release 

of transmitter, called active zones (AZ). Vesicles in the recycling pool are generally 

located close to, but not docked at, an active zone. In particular, active zones 

contains high levels of voltage-dependent calcium channels (VDCC) and proteins 

involved in the fusion of synaptic vesicles with the terminal plasma membrane (Zhai 

and Bellen, 2004). When an action potential reaches the nerve terminal, VDCC of 

the P/Q type (N-type channels may also localize to the presynaptic membrane) 

are activated, calcium enters the presynaptic terminal, and the local calcium 

concentration rises significantly, triggering the fusion of the synaptic vesicle 

membrane with the plasma membrane of the nerve terminal (Robitaille et al., 1993; 

Sugiura et al., 1995; Day et al., 1997; Rizo and Rosenmund, 2008). Moreover, the 

presynaptic terminal contains muscarinic acetylcholine receptors (mAChR) which 

have functions in the maintenance and synaptic efficacy (Ganguly and Das, 1979; 
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Abbs and Joseph, 1981; Wessler et al., 1987; Arenson, 1989; Caulfield and Birdsall, 

1998; Nathanson, 2000; Parnas et al., 2000; Garcia et al., 2005), adenosine receptors 

(AR) (Garcia et al., 2013; Oliveira et al., 2015) and neurotrophin receptors (NTR) 

such as tropomyosin-related kinase B (TrkB) receptor (Gonzalez et al., 1999; Garcia 

et al., 2010e).  

 

1.1.2. SYNAPTIC CLEFT AND BASEMENT MEMBRANE 

The synaptic cleft is the space between the nerve terminal and the 

postsynaptic membrane, of approximately 50 nm wide in the NMJ.  

The basement membrane, also called basal lamina, is a complex structure 

which can be further subdivided into an internal basal lamina layer connecting to 

the sarcolemma and an external reticular lamina layer (Patton, 2003; Sanes, 2003). 

The BM envelops the entire muscle fiber including the synaptic cleft between the 

nerve terminal and endplate, but the reticular lamina is excluded from the synaptic 

cleft of NMJs (Sanes, 2003). The BM is made up largely of collagen IV molecules, 

laminins, and other non-collagenous proteins including entactin/nidogen, 

perlecan, and fibronectin (Timpl et al., 1979; Timpl and Brown, 1996; Patton, 2003; 

Sanes, 2003). Also, agrin, neuregulin and ACh-receptor inducing activity which are 

involved in the formation of the NMJ, and neurotrophin substances like fibroblast 

growth factor (FGF) (Wood and Slater, 2001; Mis et al., 2013). BM have three main 

roles in the NMJ (Patton, 2003). First, BM contribute to keep the structural integrity. 

Second, BM promote cell migration during development, and cellular polarity, 

stability, and intercellular interactions in adults. Third, BM possess potent signaling 

components, which variously promote proliferation, survival, and differentiation. 

The basement membrane contains an important enzyme, the AChE 

(Salpeter, 1987; Rotundo, 2003), which is a type-B carboxylesterase needed for the 

rapid breakdown and inactivation of released ACh. The enzyme is secreted from 

the muscle but remains attached to it by thin stalks of collagen fastened to the BM. 

When ACh is released from the active zone by an action potential, approximately 

10% of released ACh will bind to AChE, whereas the remaining 90% will diffuse 

through the basal lamina to the muscle membrane to bind to nAChRs. When ACh 

molecules dissociate from nAChR, they diffuse into the synaptic cleft and bind to 

AChE, which will once more be available to hydrolyze free ACh, affer having 

hydrolyzed the ACh that was bound to it earlier. The rapid action of AChE prevents 
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ACh from binding more than once to nAChRs. The breakdown of ACh by AChE at 

the NMJ is a more efficient means of stopping transmission than what occurs at 

most central nervous system synapses, where the termination of transmission is most 

often achieved by the reuptake of transmitter into the presynaptic terminal. The 

efficiency of AChE ensures that transmission is restricted to a short time window 

within an area near the site of transmitter release, thus contributing to the temporal 

and spatial precision of skeletal muscle control.  

 

1.1.3. POSTSYNAPTIC COMPONENT 

A muscle fiber or myocyte is a long and cylindrical multinucleated cell 

where the nerve terminal forms the synaptic contact in the middle of it. Muscle cells 

are red due to the large number of mitochondria and myoglobin that they have, 

which provide the energy and oxygen requirements of contraction.  

The muscle fiber is enveloped by a basal lamina and a special muscle cell 

membrane called the sarcolemma. The sarcolemma acts as a physical barrier 

against the external environment and facilitates signaling to the fiber. The 

cytoplasm of a muscle fiber is called sarcoplasm. Most of the sarcoplasm is filled 

with myofibrils. Myofibrils are composed of actin, myosin and other proteins that 

keep them together. These proteins are arranged in thin and thick filaments, the 

myofilaments, which are repeated throughout the myofibrils into sections called 

sarcomeres – the smallest functional unit of muscle fiber. Thick filaments are 

composed of myosin and thin filaments are composed of actin. The striated 

appearance of the myofibril is achieved by the combination of actin filaments that 

form the light band (I band) and myosin filaments that form the dark band (A 

band). The sarcomeres are separated by Z-line (also known as the Z-disc or Z-band), 

which are aligned between myofibrils of the same cell. At the junction overlap 

between the A and I bands of the sarcomere are located the T-tubules, which 

together with a pair of terminal cisternae (bulbous enlarged areas of the 

sarcoplasmic reticulum) form an arrangement called a triad (Padykula and 

Gauthier, 1970). 

Another important part in the postsynaptic component are nAChRs which 

are located on a specialized region of skeletal muscle fibers called the motor 

endplate. This structure is recognizable by invaginations in the postsynaptic plasma 

membrane, known as junctional folds. These are positioned under the active zones 
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of presynaptic nerve terminals. In the area where the contact takes place, the 

membrane forms a concavity named primary fold. To increase further the contact 

surface, there are invaginations of the membrane in the primary fold of the fiber 

which receive the name of synaptic secondary folds (Salpeter, 1987). At the 

bottom of the secondary folds, there are voltage-dependent sodium channels 

(VDSC), together with the cytoskeleton fibers, microtubules and microfilaments 

which maintain the structure of the primary and secondary folds and also keep the 

nAChRs anchored to the membrane on the top of the secondary folds (Flucher 

and Daniels, 1989). The crests of the folds are very defensibly packed with nAChRs 

at a density of about 10.000 per µm2 (Salpeter and Loring, 1985).  

The nicotinic receptors are considered cholinergic receptors, since they 

respond to acetylcholine when is released from the presynaptic terminal. Each 

nAChR has two binding sites for ACh. The function of the endplate nAChR depends 

on five subunit proteins (development: α2βδγ; adult: α2βδε) that combine to form the 

pentameric unit. Each subunit of this receptor has a characteristic cys-loop, which 

is composed of a cysteine residue followed by 13 amino acid residues and another 

cysteine residue. The two cysteine residues form a disulfide linkage which results in 

the cys-loop receptor that is capable of binding ACh (Engel, 1994b, 1994c). When 

ACh binds, this receptor undergoes a conformational change that allows ions to 

pass (influx of sodium ions (Na+) into the muscle and output of postassium ions (K+)) 

during roughly 1-2 ms. The ion pass triggers a depolarization of the postsynaptic 

membrane which, if it exceeds the threshold, ends up evoking contractile activity.  

 

1.1.4. GLIAL COMPONENT 

Glial cells are widely distributed throughout the nervous system and all 

peripheral axons which, whether myelinated or not, are covered with Schwann 

cells (SC). There are two types of SCs: myelinating and nonmyelinating. SCs play an 

important role in synaptic function and formation (Corfas et al., 2004; Kettenmann 

and Ransom, 2005). Recent findings are forcing that glial cells play multiple active 

roles at synapses. It is important the concept of the ‘tripartite’ synapse, which 

includes synapse-associated glial cells as active participants in the formation, 

function, maintenance and plasticity of pre- and postsynaptic components 

(Araque et al., 1999).  
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Preterminal or myelinating Schwann cells (mSC) wrap around axons of 

motor and sensory neurons to form the myelin sheath. The myelin sheath is 

composed of compacted layers of the SC membrane, which is predominantly lipid, 

but contains several proteins that take on key roles in maintaining the structure and 

compaction of the myelin and adhesion of the sheath to the axon. One SC 

myelinates one axon. The axons with a diameter exceeding 1-2 µm release 

myelination signals, which stimulates myelin production. The myelin enwraps the 

axon in segments that are separated by nodes of Ranvier. Nodes of Ranvier are 

unmyelinated, critical to the functioning of myelin and highly enriched in ion 

channels, allowing them to participate in the exchange of ions required to 

regenerate the AP (Black et al., 1990; Rasband and Trimmer, 2001). SCs act as an 

electrically insulating sheath, thus, signals are propogated along the axon in a 

series of jumps from node to node, in a process called saltatory conduction. In this 

manner, the need for action potential regeneration at every point of axonal 

membrane is eliminated, thereby reducing metabolic requirements for neural 

activity.  

The second group, called terminal Schwann cells (tSC) or teloglia, send 

out processes that cover unmyelinated nerve terminals on the nonsynaptic facing 

side. tSCs play a significant role in the development, function, maintenance, and 

regeneration of NMJs (Auld and Robitaille, 2003; Auld et al., 2003; Kang et al., 2003; 

Corfas et al., 2004; Rousse et al., 2010; Ko and Robitaille, 2015). For example, during 

development, tSCs have been shown to promote synapse formation and the 

clustering of nAChRs. Furthermore, tSCs are very closely opposed to motor nerve 

terminals and there is mounting evidence for bidirectional signaling between nerve 

terminal and tSC. ACh released from motor nerve terminals can induce calcium 

waves in tSCs (Robitaille et al., 1996; Day et al., 1997), and conversely, tSCs can 

affect transmitter release from MNs, suggesting that tSCs play an important role in 

modulating synaptic function (Auld and Robitaille, 2003). Moreover, tSCs contain 

mAChRs that binds the ACh released from the nerve terminal (Robitaille et al., 1997; 

Georgiou et al., 1999; Rochon et al., 2001; Todd et al., 2007), purinergic receptors 

(Robitaille, 1995) and L-type VDCCs (Robitaille et al., 1996). Recent research has 

identified a fourth specialized cell type at the NMJ, named the kranocyte. 

Kranocytes form a cap over motor nerve terminals and proliferate extremely 

rapidly after nerve injury, suggesting that they may perform as yet undescribed 

functions at damaged NMJs (Court et al., 2008). 
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      1.2. FUNCTION OF NEUROMUSCULAR JUNCTION 

1.2.1. NEUROMUSCULAR TRANSMISSION 

The NMJ is a chemical synapse, meaning that the motoneuron and 

skeletal muscle cell are not physically connected to one another. Instead, action 

potential firing in MN causes the release of chemical messengers that diffuse across 

the basement membrane to initiate contraction (Ivan HK and Etherington, 2011).  

From a broad perspective, neuromuscular transmission occurs by a fairly 

simple and straightforward mechanism (figure 2). An action potential is conducted 

down the somatic MN and arrived at NT (figure 2A). The reversal in electrical 

polarity at the synaptic cleft causes an opening of VDCC with a subsequent abrupt 

increase in intracellular calcium concentration (figure 2B) (Cohen-Cory, 2002). This 

increased calcium concentration triggers a cascade of intracellular signaling 

events leading neurotransmitter-containing vesicles to migrate to the surface of the 

nerve, rupture and discharge ACh into the cleft separating nerve from muscle 

(figure 2C). To enable the neurotransmission, apart from calcium ions (Ca2+) influx 

induced by depolarization, is also necessary the SNARE (Soluble NSF Attachment 

Protein Receptor) complex assembly which implies a number of proteins found in 

the membranes and the cytoplasm of the MN (Rizo and Xu, 2015). The proteins that 

integrate the SNARE complex are divided in two groups: the first formed by 

Synaptobrevin-2, a protein that is found in the membrane of synaptic vesicles and 

the second group composed of proteins that are associated with the membrane 

of the nerve terminal, Synaptosomal-Associated Protein 25 (SNAP-25) and Syntaxin-

1 (Bajjalieh and Scheller, 1995; Südhof, 1995, 2004). Nevertheless, after many 

studies, it has been confirmed that the SNARE itself is not enough for the fusion to 

take place; instead, some more proteins are needed to allow the synaptic 

membrane fusion. The best known of this ‘complementary proteins’ are 

Synaptotagmin, Complexin, Munc13 and Munc18-1 (Jahn and Fasshauer, 2012).  

Once the exocytose of the neurotransmitter ACh has taken place, it 

spreads through the synaptic cleft and binds the nAChRs in the postsynaptic 

membrane (figure 2D). nAChRs respond by opening their channels for influx of Na+ 

into the muscle to depolarize the muscle. Then, the potassium channels impulse the 

K+ out of the cell and generate, this way, the repolarization (figure 2E). This 

procedure generates a change in the polarity among inside and outside the 

neuron that starts at the soma and travels by the axon until it reaches the nervous 

terminal. The result is a modified end-plate potential (EPP) which corresponds to a 

UNIVERSITAT ROVIRA I VIRGILI 
Muscarinic, adenosine and tropomyosin-related kinase B receptor modulate the neuromuscular 
developmental synapse elimination process 
Laura Nadal Magriñà 



local membrane depolarization of the muscle fiber. This local depolaritzation, 

activate the postsynaptic VDSCs which are located in the deeper part of the 

secondary folds (Flucher and Daniels, 1989). If enough of these sodium ions enter 

the muscle fiber to raise it from its resting potential of -95 mV to about -50 mV, they 

trigger an action potential that spreads throughout the fiber (figure 2F). This 

potential travels first along the surface of the sarcolemma and then arrived to 

myofibrils. To reach the myofibrils, some of which are located deep in the muscle 

fiber, the muscular action potential travels through the T-tubule system. The action 

potential activates VDCCs in the T tubule membrane. Calcium channels in the T 

tubules lie in close apposition to calcium release proteins in the sarcoplasmic 

reticulum. Conformational changes in T tubule calcium channels induced by 

depolarization are transmitted by a direct protein-protein interaction to the 

sarcoplasmic reticulum calcium release protein, triggering the release of calcium 

from the sarcoplasmic reticulum into the muscle cytoplasm. The rise in intracellular 

calcium activates contractive protein. The muscle contraction is a complex 

procedure that implicates actin filaments, also known as thin filaments and myosin. 

When the impulse reaches the muscle fibers, it stimulates a reaction between actin 

and myosin in the sarcomere. The electric pulse stimulates the heads of myosin 

fibers to attach the actin filaments, which then pulls towards the center of the 

sarcomere. As this process takes place in all the sarcomeres, all get shortened at 

the same time. The relaxation of the muscle fiber is associated with the return of the 

calcium ions to the sarcoplasmic reticulum. 

After the depolarization of the muscle membrane, ACh immediately 

detaches from the receptor and is destroyed by the nearby AChE located in the 

synaptic cleft (Slater, 2008). This enzyme serves two purposes, namely it (1) permits 

only a small proportion of ACh released to stimulate receptors and their channels 

on the sarcolemma of the endplate and (2) creates breakdown products, acetyl 

and choline, which are taken up by the nerve terminals and utilized in the 

resynthesis of ACh. 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
Muscarinic, adenosine and tropomyosin-related kinase B receptor modulate the neuromuscular 
developmental synapse elimination process 
Laura Nadal Magriñà 



IN
TR

O
D

U
C

TI
O

N
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Synaptic transmission at the neuromuscular junction. A. An Action Potential (AP) 

is conducted down the somatic motoneuron (MN) down to the presynaptic terminal. B. 

The electrical polarity at the presynaptic terminal causes an opening of voltage-

dependent calcium channels (VDCC). C. The entry of Ca2+ into the presynaptic terminal 

causes the exocytosis of the neurotransmitter acetylcholine (ACh). D. The ACh diffuses 

across the synaptic cleft and binds to nicotinic acetylcholine receptors (nAChR) on the 

membrane of the skeletal muscle. E. Activation of the nAChRs causes an opening of 

‘ligand-gated’ Na2+ ion channels and K+ ion channels. F. As sodium ions flow into the 

skeletal muscle, it depolarizes to the threshold potential, triggering an AP. As the AP 

spreads along the cell, it causes the muscle cell to contract. 

 

     1.3. DEVELOPMENT IN NEUROMUSCULAR JUNCTION 

The mechanisms that govern synapse formation and elimination are 

fundamental to understand the neural development and plasticity. The NMJ 

development comprises the formation and organization of the three NMJ cells –

motoneuron, muscle fiber, and Schwann cell. Neuromuscular transmission requires 

that pre- and postsynaptic components develop in tight register with one another, 

implying reciprocal interactions between them. Schwann cells are also an 

indispensable structural and functional component of the synapse. They modulate 

synaptic transmission and also play important roles in synapse formation and 

maintenance. 

A B C 

D E F 
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There are two main stages in the development of the NMJ: embryonic 

stage and postnatal stage, the latter involving the synapse elimination process. 

 

1.3.1. EMBRYONIC STAGE 

All three cells of the NMJ travel long distances to meet at the synapse. In 

the presynaptic site, axons of the MNs proliferate in the ventricular zone of the 

neural tube and become postmitotic. Motor axons exit the central nervous system 

through ventral roots or cranial nerves, then run long distances through peripheral 

nerves to muscles (Leber et al., 1990). As motor axons extend toward developing 

muscle, muscle cells are themselves undergoing differentiation. Muscle fibers 

develop from progenitor cells in the paraxial mesoderm (reviewed in Brand-Saberi 

et al., 1996). In the trunk, paraxial mesoderm is segmented into somites that lie on 

either side of the neural tube. Myogenesis involves two waves of precursor 

proliferation: the first wave (embryonic day 9.5 to E14.5 in mice) involves muscle 

progenitors that proliferate in the somites and migrate to their final location where 

most of them differentiate and fuse to form immature embryonic muscle fibers, 

called primary myotubes. In this stage, the presence of calcium ions is critical. A 

fraction of these progenitors, however, do not fuse and give rise to fetal myoblasts 

that continue to proliferate and either fuse with primary myotubes or, using them 

as a scaffold, begin to fuse among each other to form a new population of 

secondary myotubes (second wave) between E15 and E17 (Cossu and Biressi, 

2005). Once the myotubes are developed, they start to synthetize the contractile 

apparatus. Initially, the actin and myosin proteins arrange their skeleton randomly 

but quickly they polarize and aggregate longitudinally along the myotube. This 

process is called myofibrillogenesis. Although myotubes may have a functional 

contractile apparatus, they are not considered myocytes until they are innervated 

by a MN. This is because although the postsynaptic component is almost entirely 

developed, it does not work without innervation. After the muscle is innervated, 

angiogenesis oxygenates the muscle to stand contraction.  

Schwann cells, the third component, are derivatives of the neural crest, 

which arises from the dorsal margin of the neural tube. Both SCs and motor axons 

traverse the rostral halves of the somites, from which they derive their segmental 

arrangement. It is probably within or near the somites that SCs become associated 

with motor axons. Thereafter, SCs follow motor axons through the periphery and 

into muscles. During this journey, the axons provide both migratory guidance and 
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mitogenic stimulation for the SCs (reviewed in (Mirsky and Jessen, 1996) at the same 

time as SCs might guide motoneuron growth cones (Reddy et al., 2003). 

Once the motor axon's growth cone contacts a newly formed myotube, 

synaptic transmission commences quickly. Initially, however, the efficacy of 

transmission is extremely low, reflecting the absence of both pre- and postsynaptic 

specializations. Over a period of about a week, a fully functional synapse forms in 

which both nerve and muscle are differentiated (figure 3A). 

On the presynaptic differentiation, growth cones can release 

neurotransmitter in response to electrical stimulation even before they make 

contact with muscle fibers (Hume et al., 1983; Young and Poo, 1983). Moreover, 

spontaneous and evoked neuromuscular transmission begin within minutes after 

nerve contacts muscle (Kidokoro and Yeh, 1982; Chow and Poo, 1985; Xie and Poo, 

1986; Evers et al., 1989). However, synapses are initially very weak, not only because 

nAChRs density is low, but also because very little transmitter is released (Kullberg 

et al., 1977; Nakajima et al., 1980). Over the subsequent days, as the postsynaptic 

membrane matures, the presynaptic terminal also differentiates dramatically. 

Nerve terminals at newly formed synapses are simple bulbous 

enlargements (Linden et al., 1988). They bear few synaptic vesicles and no 

ultrastructurally recognizable active zones. Subsequently, synaptic vesicles 

increase in number, and cytoskeletal elements characteristic of the axon are lost. 

Active zones appear, vesicles become clustered at the active zones, and the 

nerve terminal becomes polarized. These changes, accompanied by a parallel 

increase in synaptic volume and area, underlie large increases in the frequency of 

spontaneous exocytosis and the number of vesicles that release neurotransmitter 

in response to stimulation (Dennis, 1981). 

At the same time as presynaptic component is differentiating, nAChRs 

form few clusters in the primary myotubes (Feng et al., 1999; Lin et al., 2008). Days 

after, neuromuscular contacts form in the center of the muscle, as indicated by the 

close apposition of nerve terminals with clusters of nAChRs and AChE (Lin et al., 

2001, 2008; Yang et al., 2001). However, this central band (∼200 μm wide) contains 

many nAChR clusters that are not contacted by any nerve. Together with the fact 

that nAChR clusters also form in mouse mutants lacking phrenic nerves (Lin et al., 

2001; Yang et al., 2001), this suggest that receptor clusters are formed by a nerve-

independent patterning mechanism. Hence, these aneural nAChR clusters have 

been termed ‘prepatterned’. Between E13.5 and E15.5, the fraction of nAChR 
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clusters contacted by the nerve increases from <10% to close to 50% (Lin et al., 

2008). By E18.5, only innervated nAChR clusters remain and have grown in size, 

while aneural clusters have disappeared (Lin et al., 2001; Yang et al., 2001). In this 

early phase, a single postsynaptic nAChR cluster may be contacted by up to 10 

motor axons at birth (Tapia et al., 2012). Importantly, the majority of nAChRs at 

these stages have a distinguished arrangement known as the ‘fetal’ subtype, in 

which this ion channels are composed of four different subunits, termed α, β, γ, and 

δ in the stoichiometry α2βδγ. Also they are characterized by an open burst duration 

of ∼4–5 ms (Mishina et al., 1986). 

In summary, motoneurons, muscle cells, and Schwann cells acquire their 

identities before synapses form and then they meet to form an efficient synapse. 

 

1.3.2. POSTNATAL STAGE 

The NMJ undergoes dramatic changes in structure and function during the 

first few postnatal weeks. At birth, each muscle fiber is innervated by multiple 

motoneurons (figure 3B) and all but one motoneuron input are gradually 

eliminated over the course of several weeks (figure 3C). This process is called 

synapse elimination (see in more detail in section 2) (Redfern, 1970; Brown et al., 

1976; Slater, 2008; Tapia et al., 2012). Initially, all of the axons that innervate each 

muscle fiber are intertwined atop an elliptical, uniform plaque of nAChRs. Then, as 

inputs are eliminated, spots of low nAChR density appear as perforations within the 

plaque. Sculpting continues until the postsynaptic apparatus acquires a pretzel-like 

form (Nyström, 1968; Steinbach, 1981; Slater, 1982a; Balice-Gordon and Lichtman, 

1993). First, the membrane becomes depressed into shallow gutters beneath the 

nerve terminals. Subsequently, gutters invaginate to form junctional folds, which 

invariably lie directly across from the active zones in the nerve terminal.  

Schwann cells also mature postnatally. At birth, tSCs form a loose cap over 

groups of axonal boutons at each synaptic site, whereas each terminal bouton is 

separately capped in adults (Hirata et al., 1997). Perhaps more importantly, mSCs 

are present in embryos, but do not form myelin until postnatally. In addition, both 

mSCs and tSCs are acutely dependent on axonal contact for their survival in 

neonates, but become relatively nerve-independent postnatally (Trachtenberg 

and Thompson, 1996). 
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To sum up the development of the NMJ, synaptic transmission begins soon 

after contact; indeed, growth cones release small amounts of transmitter even 

before the contact has been made. The efficacy of this transmission is low due to 

the absence of pre- and postsynaptic specializations. Growth cones of other motor 

axons soon converge at the same site formed by the initial contact and begin 

forming new synapses, resulting in the polyneuronal innervation of muscle fibers. 

The maturation of the NMJ involves different changes in pre- and postsynaptic 

component. At the presynaptic component motor axons become myelinated and 

some of them are eliminated through synapse elimination process. At the 

postsynaptic component, the most important change is in nAChRs (see in section 

2). Coordinate expansion of the nerve terminal and muscle fiber lead to growth of 

the NMJ without major change in synaptic geometry. The structural maturation of 

the NMJ is largely completed 3-4 weeks after birth (Slater, 1982a), being considered 

mature around P30 (figure 3D). Mature NMJs persist for the life of the animal. This 

maintenance include different molecular mechanisms and imply the three cells of 

the NMJ.  

 

Figure 3. Development of neuromuscular junction: overview of the different stages of 

development. A: at embryonic stage the three neuromuscular junction (NMJ) cells 

(motoneurons, muscle cells, and Schwann cells) acquire their identities before synapses 

form and then they meet to constitute an efficient synapse. B: after birth, the NMJ 

undergoes dramatic changes in structure and function during the first few postnatal 

weeks. Terminals from competing inputs become segregated and the plaque acquires 

perforations. C: during the postnatal stage, the synapse elimination process occurs 

where only one motoneuron remains in the synaptic site whereas the other contacts are 

eliminated forming a retraction bulb. D: in the mature muscle, each muscle fiber is 

innervated by one motoneuron. 
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In the development of both central and peripheral nervous systems, 

synapse formation generates some connections that exist only transiently. It is 

difficult to do such detailed analyses in the CNS, because the small size of synapses, 

heterogeneity and abundance of synaptic inputs to each neuron, and the 

complexity of synaptic organization (Lohof et al., 1996; Kano and Hashimoto, 2009). 

In this respect, in the visual system, thalamocortical axons disconnect from cortical 

layer IV cells (Hubel et al., 1977); in the cerebellum, climbing fibers disconnect from 

Purkinje cells (Daniel et al., 1992; Hashimoto and Kano, 2005); in autonomic ganglia, 

preganglionic inputs disconnect from ganglion cells (Lichtman, 1977); and at the 

neuromuscular junction, motor axons disconnect from muscle fibers (Benoit and 

Changeux, 1975; O’Brien et al., 1978). In each of these areas, elaboration of 

synapses by the remaining axon or axons also occurs. Thus, while some inputs are 

being eliminated, others are becoming stronger.  

Synapse elimination at the skeletal neuromuscular junction is currently the 

best studied model. In the NMJ, synapses are large and can be visualized by 

labeling axons and/or postsynaptic structures, which allow us to monitor the 

changes over days and weeks.  

 

     2.1. PRESYNAPTIC COMPONENT: FROM POLY- TO MONONEURONAL MUSCLE 

FIBER INNERVATION 

Most vertebrate muscle fibers are innervated by more than one motor 

axon during developmental period. All inputs but one are withdrawn during early 

postnatal life in a process called synapse elimination (figure 4). Nevertheless, the 

size of the endplate and the numbers of nAChRs, junctional folds, and active zones 

all increase during this period.  

Although neuromuscular synapses are established before birth (in rodents 

about a week before), the transition from multiple to single axonal innervation 

typically does not occur until the first several postnatal weeks, perhaps indicating 

a role for normal function in the elimination process. At birth each muscle fiber 

possesses a single well-circumscribed oval- or plaque-shaped site where multiple 

axons converge (terminal segregation) (figure 4, step 1). At this time, the strengths 

of the competing axons are often quite similar and do not suggest which input will 

2. SYNAPSE ELIMINATION PROCESS 
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eventually be removed. Possibly the winners and losers are not yet determined at 

birth, requiring competition in early postnatal life for the outcome to emerge. Over 

the first several postnatal weeks, the number of junctions that are occupied by 

more than one axon gradually declines. In some muscles, the rate of loss is 

sigmoidal, starting slowly and reaching a peak of ~10% per day before trailing off 

once nearly all of the junctions are innervated by one axon (reviewed by Jansen 

and Fladby, 1990). Thus, there is gradual loss of multiple innervation, so that some 

neuromuscular junctions remain multiply innervated for nearly two postnatal weeks, 

whereas other junctions lose their multiple innervation in several days. This variation 

in the time to completion is probably closely related to the fact that the loss of 

multiple innervation is also gradual in another sense: each individual junction 

gradually loses multiple innervation (figure 4, step 2).  

Koirala and Ko, 2004 using time-lapse imaging of fluorescently labeled 

axons and serial electron microscopy showed that axons at neuromuscular 

junctions are removed by an unusual cellular mechanism. As axons disappear, they 

shed numerous membrane bound remnants. These ‘axosomes’ contain a high 

density of synaptic organelles and are formed by engulfment of axon tips by 

Schwann cells. Moreover, Turney and Lichtman, 2012 showed that laser removal of 

one axonal input to a multiply innervated neuromuscular junction invariably leads 

to takeover of the synaptic site by the remaining input. So, the axons grew to 

occupy vacant sites even when they appeared to be in the process of withdrawing 

at the time the sites were vacated. The axons were stimulated to grow even in 

situations when the muscle fiber was still active. This combination of synaptic 

vacancy and the axonal takeover it induces allows to explain a range of complex 

phenomena associated with synapse elimination.  

During this period, a progressive strengthening of some inputs and 

weakening of others is evident functionally as well as structurally within individual 

junctions (Walsh and Lichtman, 2003; Bloch-Gallego, 2015). Quantal content 

becomes increasingly disparate among competing inputs (Colman et al., 1997), 

and the density of nAChRs beneath some inputs is sharply reduced (Balice-Gordon 

and Lichtman, 1993), leading to a reduction in their quantal efficacy. The 

progressive loss of presynaptic terminals (Balice-Gordon and Lichtman, 1993; Gan 

and Lichtman, 1998) decreases the effective area for neurotransmitter release by 

weakened inputs. Cycles of functional weakening and structural loss continue until 

all of the sites innervated by weakened inputs are eliminated, and the losing axons 

permanently withdraw from the junction presenting a retraction bulb and atrophy 
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of the nerve terminal (Riley, 1977, 1981; Balice-Gordon and Lichtman, 1993; Gan 

and Lichtman, 1998). The loss of territory by an axon is contemporaneous with and 

may be related to the transformation from an oval, nAChR-rich plaque to a pretzel-

shaped structure (Balice-Gordon and Lichtman, 1993). It is not known, however, 

what properties of an axonal branch or its environment determine its destiny in 

these competitions. 

An important consequence of the process of synapse elimination is that 

each MN ends up innervating muscle fibers with similar properties. Clear signs of 

functional homogeneity of the muscle fibers within motor units are seen in mice two 

weeks after birth, as synapse elimination nears completion but before the 

distinctive patterns of activity of different motor units are clearly developed (Fladby 

and Jansen, 1988). It therefore seems unlikely that differences in activity patterns 

between MNs play a decisive role in either survival selection or in matching the 

properties of MNs to the muscle fibers they innervate.  

 

Figure 4. Critical periods of neuromuscular junction development focus on the synapse 

elimination. At birth (P0), each muscle fiber is innervated by several axons of 

motoneurons (MN). Postnatally, a critical step with the elimination of about half multi-

innervation occurs between P0 to P7. The process of synapse elimination is achieved 

when all muscle fibers are singly innervated (P30). 

 

It is not known, what are the factors which determine the synaptic 

elimination process. Indeed, several different local mechanisms have been 

proposed to explain what drives this process forward. One idea is an activity-based 

model requiring a cascade of anterograde, intersynaptic and retrograde signals 

(Jennings, 1994). It has been demonstrated that asynchronous activity leads to 

synapse elimination whereas synchronous activation of the postsynaptic cell is 
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unable to cause synapse loss. This idea was tested by replacing the normal activity 

patterns with synchronous volleys of stimulation to the nerve regenerating to a 

muscle (Busetto et al., 2000). The result was clear: pure synchronous axonal 

activation prevented synapse elimination during the reinnervation process. Thus, 

the mechanism of synapse elimination appears to depend less on the presence of 

activity per se and more on the relative activity patterns of the competing inputs. 

Moreover, it is known that the initial matching of nerve and muscle cells is achieved 

by a molecular recognition system that involves activity-dependent expression of 

surface and/or diffusible molecules that interact to promote survival of the most 

compatible pairs at each developing NMJ (Nguyen et al., 1998; Gonzalez et al., 

1999). Such a mechanism could depend on activity and other molecules that 

could promote survival and the outcome of the competition.  

In laboratory in which this thesis has been performed, the process of 

synaptic elimination has been extensively studied by immunohistochemistry (e.g. 

Lanuza et al., 2002, 2003 as well as this thesis) and by intracellular electrophysiology 

(e.g. Santafé et al., 2003, 2004, 2009). The second technique, allows the recording 

of depolarizations across the myocyte plasmalemma in the shape of EPP or 

miniature end-plate potentials (mEPP). EPPs are caused by the increase in 

acetylcholine in the synaptic cleft due to the coordinated exocytosis of multiple 

vesicles, hence their denomination ‘evoked’. In contrast, mEPPs correspond to the 

spontaneous release of ACh vesicles in the absence of an action potential, 

therefore being the smallest depolarization which can be induced in a muscle. 

Multiply innervated synapses present multiple EPPs that can be distinguished. 

Consequently, electrophysiology is useful when it comes to determine the 

functional changes that undergo the different terminals during synapse elimination 

and how different molecules can modulate the neurotransmitter release of two 

motor nerve terminals competing on a dually innervated endplate. 

During neonatal synaptic competition, dual junctions can provide a 

simple model for studying the structural, molecular and functional differences 

between the two axons. Whereas one axon wins the competition and 

consolidates, the other one is eliminated (this is generally the small ending because 

of a progressive reduction in synaptic area occupation; (Kopp et al., 2000; Santafé 

et al., 2001, 2002). In dually innervated fibers, a second EPP can appear after the 

first one when the intensity of the electrical stimulus is increased. This compound 

EPP is built by recruiting two axons. The EPP amplitude of the second axon response 

is calculated by subtracting the first EPP amplitude from the compound EPP. The 
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lowest and highest amplitudes are known as ‘the small EPP’ and ‘the large EPP’, 

respectively. In previous studies, the nerve terminals that produce these synaptic 

potentials have been refered as the ‘weak’ and ‘strong’ endings (Santafé et al., 

2003, 2004, 2009a). 

 

      2.2. POSTSYNAPTIC COMPONENT 

At the same time axons are gradually losing their synaptic hold on 

postsynaptic cells, there is a change in the postsynaptic component. It has been 

described that the ability of the postsynaptic cell to change at locations where 

nerve terminals will later be removed raises the possibility that alterations in the 

postsynaptic cell may be the cause of nerve terminal removal (Lichtman and 

Colman, 2000).  

The well-known important change in the structure of the postsynaptic 

apparatus occurs in the nAChRs. An important conversion of nAChRs from an 

embryonic to an adult form happens: fetal nAChRs (α2βδγ) at the NMJ are 

gradually replaced by the adult subtype of nAChRs (α2βδε) over a period of ∼10 

days and are further concentrated to high density (Brenner and Sakmann, 1978; 

Matthews-Bellinger and Salpeter, 1983; Jaramillo et al., 1988). The adult nAChRs 

contain the nAChR ε-subunit instead of the γ-subunit, which results in shorter open 

burst durations (∼1 ms) but increased conductance for Na+, K+, and Ca2+ (Mishina 

et al., 1986).  

Other postnatal changes include the metabolic stabilization of synaptic 

nAChRs: nAChRs and VDCCs segregate into discrete domains, the formation of 

subsynaptic infoldings of the membrane (Matthews-Bellinger and Salpeter, 1983; 

Marques et al., 2000); the recruitment of muscle nuclei, called fundamental 

myonuclei (up to 6 in adult mouse muscle; Kues et al., 1995), to the cytoplasmic 

region below the synaptic membrane; and an increase in size and density of 

synaptic nAChR clusters (10- fold from approximately 1000/µm2 to more than 

10000/ µm2) accompanied by changes of their shape from plaques to pretzels 

(Steinbach, 1981; Slater, 1982a; Sanes and Lichtman, 1999; Jessen and Mirsky, 2005). 

The breaking up of a plaque-shaped synaptic nAChR cluster into a pretzel of the 

same area may be important for lowering the distance for which the synaptic 

current needs to flow across the high electrical resistance along the synaptic cleft, 

thus maintaining high driving force for the synaptic inward current. Finally, as the 
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synaptic folds mature, nAChRs become concentrated at their crests (Fertuck and 

Salpeter, 1974) and Nav1.4 in their troughs (Flucher and Daniels, 1989; Stocksley et 

al., 2005).  

The gradual transition from multiple to single innervation seems to be related 

to local differences in the postsynaptic area. The postsynaptic receptor density 

shows signs of disassembly as receptors are removed from the synaptic sites. 

Postsynaptic sites continue to lose nAChR density until they disappear entirely. By 

two postnatal weeks, an adult pretzel-like shape is obtained at each 

neuromuscular junction. In some muscles at least, the junction continues to grow 

by intercalary enlargement pre- and postsynaptically for many months (Balice-

Gordon and Lichtman, 1990; Lichtman and Colman, 2000). In this thesis, the 

postsynaptic changes of nAChRs at NMJs have been divided into six stages based 

on criteria from previous studies of developing mammalian NMJs (Steinbach, 1981; 

Slater, 1982a; Bewick et al., 1996; Lanuza et al., 2002). The following maturation 

stages (MS1 to MS6) were defined (figure 5):  

- MS1. Uniform nAChR organized in an oval or round plaque with blurry 

boundaries seen at the majority of NMJs at birth. The reconstructions 

indicate that these plaques are slightly concave relative to the nearby 

muscle fiber membrane, typically in the shape of a spoon. Within the 

plaque the receptors were arranged in patches that resembled 

cobblestones (2–3 μm in diameter) that were separated by well-defined 

dark bands, presumably because of nascent folding of the postsynaptic 

membrane. 

- MS2. nAChR elongated oval plaque and topographical areas of the 

postsynaptic membrane become segregated into two well defined 

categories; some parts of the receptor pattern show organized folding, 

whereas other regions have more disorganized and less intensely 

reflecting receptor labeling. 

- MS3. Oval nAChR plaque with one or more fluorescence-free ‘holes’. 

These holes are not innervated. As the holes enlarge, they connect to the 

outside of the junction by extended regions lacking receptor staining. 

- MS4. Oval nAChR areas have been transformed into a more mature 

branched pattern, with a moderately convoluted external border and 

high- and low- receptor-density areas. The edge of the holes usually has a 

high receptor density.  
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- MS5. nAChR areas with a totally mature branched pattern with regions of 

high and very low or absent receptor density. The high-density regions are 

overlain by terminal branches and the other regions are not innervated.  

- MS6. Discontinuous pattern of postsynaptic gutters resulting from the 

intercalary growth of the axon terminal. 

                  

 

 

 

 

 

Figure 5. Synaptic nicotinic acetylcholine receptors (nAChR) cluster morphologies in the 

neuromuscular junctions of the mouse Levator auris longus (LAL) muscle from birth to 

adulthood. nAChRs were stained with rhodamine-conjugated α-bungarotoxin (α-BTX). 

Postsynaptic nAChR clusters are classified from MS1 to MS6 types according their 

morphologic maturation. Scale bar = 10 μm.  

 

     2.3. GLIAL COMPONENT 

Schwann cells promote the growth and maintenance of the developing 

NMJ (Auld and Robitaille, 2003; Feng and Ko, 2008). SCs are shown to have two 

activities during synapse elimination: their processes separate nerve terminals from 

each other and from the muscle fiber; they contact the plaque of nAChR, 

apposing this surface as closely as the nerve, limiting the area where synaptic 

transmission occurs.  

Terminal Schwann cells or teloglia, are present at the neonatal junction 

(Brill et al., 2011) and have been considered to play a role in synaptic competition 

(Smith et al., 2013). However, tSCs do play a major role in the consumption of the 

losing axons once they have been eliminated from the muscle surface (Bishop et 

al., 2004). As losing axons withdraw from the synapse, forming the previously 

mentioned retraction bulbs (Riley, 1977), tSCs phagocytose pieces of them (i.e., 

‘axosomes’) (Bishop et al., 2004). tSCs also are important for the maintenance of 

axon terminals as their ablation in frog tadpoles reduces the growth of NMJs (Reddy 

et al., 2003). SCs deletion in mice (Wolpowitz et al., 2000) results in loss of muscle 

MS1 MS2 MS3 

MS4 MS5 MS6 
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innervation and MNs death. Interestingly, microglia in the CNS has been recently 

proposed to play a role in the postnatal elimination of retinal ganglion cell inputs 

to the lateral geniculate nucleus (Schafer et al., 2012) as well as synapse elimination 

in the hippocampus (Paolicelli et al., 2011). 

Recently, it has been found that myelinating Schwann cells also have an 

important role in regulating synapse elimination at the mouse NMJ. In concrete, the 

loss of a single glial cell protein, the glial isoform of neurofascin (Nfasc155), was 

sufficient to disrupt postnatal remodeling of synaptic circuitry. Neuromuscular 

synapses were formed normally in mice lacking Nfasc155, including the 

establishment of robust neuromuscular synaptic transmission. However, loss of 

Nfasc155 was sufficient to cause a robust delay in postnatal synapse elimination at 

the NMJ (Roche et al., 2014). 

 

     2.4. MOLECULES INVOLVED IN SYNAPTIC ELIMINATION PROCESS    

Several molecules contribute the development and stabilization of NMJs 

and are able to modify the function of the three cells of the NMJ (figure 6). Some 

of the most relevant ones are described below. 

Neuregulin is a key molecule implicated in NMJ development. There are 

six closely related neuregulin genes, denoted Nrg1 to Nrg6 (Mei and Nave, 2014). 

Isoforms of Nrg1 and Nrg2 are expressed by MNs, MCs, and/or tSCs and are 

recruited to the postsynaptic muscle membrane (Moscoso et al., 1995; Rimer et al., 

1997, 2004; Meier et al., 1998). Nrg1 in early postnatal development promotes 

plasticity of NMJs via its actions on tSCs (Lee et al., 2016). Specifically, during early 

stages, Nrg1 induce nAChR cluster density. Once nerve muscle contact is made, 

Nrg1 supports the differentiation of the pre- and postsynaptic components of the 

NMJ leading to the proper alignment. In late stage of NMJ development, Nrg1 

promotes the engulfment of the NMJ by tSCs (Wang et al., 2017). Nrgs activate the 

receptor ErbB, which is a family of tyrosine kinase receptors comprising ErbB2, ErbB3, 

and ErbB4 isoforms, which are encoded by distinct genes. ErbB are stimulated by 

Nrgs through dimerization. Dimerization leads to auto- and transphosphorylation of 

tyrosine residues in their intracellular domains, which serve as docking sites for 

adaptor proteins and enzymes initiating downstream signaling cascades, including 

the Raf-MEK-ERK and JNK pathways. ErbB2, -3, and -4 are also expressed in the 

postsynaptic muscle membrane (Trinidad et al., 2000). 
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Another key molecule is agrin, a heparan sulfate proteoglycan 

synthesized and released by neurons, muscle fibers and Schwann cells (Ruegg et 

al., 1992). It is transported anterogradely to nerve terminals and released into 

synaptic clefts (Nitkin et al., 1987; Campagna et al., 1995). Neural agrin has been 

described as 1000-fold more effective in stimulating nAChR clustering than that 

synthesized by other cells (Reist et al., 1992; Zhang et al., 2016). Agrin can be 

considered both an inducer of nAChR clustering and a stabilizer of the postsynaptic 

membrane (Witzemann, 2006). An agrin coreceptor is the low-density lipoprotein 

receptor-related protein 4 (LRP4; Weatherbee et al., 2006; Kim et al., 2008; Zhang 

et al., 2008). LRP4 is concentrated at the NMJs and is necessary for agrin-stimulated 

muscle-specific tyrosine kinase receptor (MuSK) phosphorylation and nAChR 

clustering through the cytoplasmic linker protein rapsyn. Indeed, the knockout 

mouse models for either agrin or MuSK similarly cause dramatic reduction and 

alterations of nAChRs, leading to perinatal death (DeChiara et al., 1996; Gautam 

et al., 1996; Lin et al., 2001; Yang et al., 2001; Jing et al., 2009). MuSK is a single 

transmembrane tyrosine kinase receptor that is involved in all aspects of NMJ 

development (Hubbard and Gnanasambandan, 2013). As it has been described 

above, MuSK is the signaling component in the LRP4-MuSK receptor complex 

necessary for triggering postsynaptic differentiation upon binding to neural agrin 

(Kim et al., 2008; Ye and Rape, 2009). Moreover, it can, at least in part, induce a 

retrograde differentiation signal to the presynaptic motor axon (Kim and Burden, 

2008). 

Similar to the discovery of LRP4 being the coreceptor of MuSK, the 

identification of downstream of tyrosine kinases-7 (Dok-7) as an adapter necessary 

for the full activation of MuSK was based on the observation that mice deficient for 

Dok-7 die perinatally because of respiratory failure due to the lack of NMJs (Okada 

et al., 2006). A phosphorylation at the tyrosine residue of Dok-7 is needed for the 

binding of this to the cytoplasmic region of MuSK (Herbst and Burden, 2000; Herbst 

et al., 2002). Dok-7 belongs to a family of seven adaptor-like proteins (Dok-1 to Dok-

7) that are characterized by NH2-terminal pleckstrin homology and 

phosphotyrosine-binding domains followed by Src homology 2 domain-containing 

(SHC) target motifs (Mashima et al., 2009). Several lines of evidence indicate that 

the Dok family members act as promiscuous cytosolic adapter molecules for 

tyrosine kinases. In some cases, binding of the Dok protein inhibits tyrosine kinase 

activation, whereas in others (as is the case for Dok-7), binding strongly enhances 

tyrosine kinase activity (Mashima et al., 2009). 
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Wnt proteins (from the portmanteau Wingless-related integration site) are 

secreted glycoproteins expressed as 15 isoforms in zebrafish and as 19 isoforms in 

mouse and humans. They are involved in multiple aspects of development (He et 

al., 2004; Van Amerongen and Nusse, 2009), including axon pathfinding and 

synaptogenesis. For instance, Wnts regulate nAChR clustering at vertebrate 

neuromuscular junctions (Luo et al., 2002; Wang et al., 2003) by interacting with 

MuSK or nAChR respectively (Jing et al., 2009; Zhang et al., 2012). Recently, it has 

been found that actin regulator cortactin levels increase at stimulated synaptic 

terminals and this increase requires neuronal activity, de novo transcription and 

depends on Wg/Wnt expression. Cortactin is necessary for the full range of activity-

dependent plasticity, and probably it plays a direct role in the regulation of this 

process (Alicea et al., 2017). 

Rapsyn is a cytoplasmic scaffolding protein expressed constitutively in 

myotubes; it is present at the NMJ from the earliest stages of development, and in 

adult, expression is largely restricted to the synaptic region. Rapsyn binds tightly to 

nAChRs to form a high-density network of the two proteins (Zuber and Unwin, 2013). 

Rapsyn also binds to dystroglycan (DG) (Bartoli et al., 2001) and is thus thought to 

link nAChRs to the postsynaptic actin cytoskeleton. The molecular signaling 

pathways that lead from MuSK activation to the clustering of the nAChR-rapsyn 

network are not well understood. 

The structural specializations of the postsynaptic membrane involve, in 

addition to MuSK and rapsyn, the dystrophin-glycoprotein complex (DGC). The 

DGC is a transmembrane complex of proteins linking the actin cytoskeleton of the 

muscle fiber to the basal lamina. It includes (1) dystrophin or its homolog at the 

synapse, (2) utrophin, linked to cytoskeletal actin, (3) three groups of 

transmembrane proteins dystroglycan, (4) sarcoglycans and sarcospan, (5) and 

two groups of cytoplasmic proteins, the dystrobrevins and syntrophins (Singhal and 

Martin, 2011). In nonsynaptic muscle regions, the DGC is required to prevent muscle 

fiber damage caused by contraction, as shown in muscular dystrophies, which 

often result from mutations in components of the DGC (Davies and Nowak, 2006). 

Dystroglycan is posttranslationally cleaved into the transmembrane α-dystroglycan 

and the extracellular, sarcolemma-associated α-dystroglycan (Ibraghimov-

Beskrovnaya et al., 1992). α-Dystroglycan is heavily glycosylated, and this 

glycosylation is essential for the binding to its ligands agrin, laminins, perlecan, 

neurexin, and pikachurin (Ervasti and Campbell, 1993; Bowe et al., 1994; Talts et al., 
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1999; Sugita et al., 2001; Masiero et al., 2009). Accordingly, mutations of the 

enzymes that are involved in the glycosylation of these unusual sugar side chains 

cause underglycosylation of dystroglycan and can result in very severe, early-onset 

congenital muscular dystrophies (Moore and Winder, 2012). 

Another protein involved in the development and stabilization of the NMJ 

is AChE. AChE is anchored in the extracellular matrix through the collagen protein 

ColQ (Krejci et al., 1997), which in turn forms complexes with different acceptor 

molecules like perlecan (Rotundo, 2003; Rotundo et al., 2005). This protein itself 

binds to dystroglycan to interact with laminin and agrin as well as with the 

cytoskeleton (Peng et al., 1998). 

 

Figure 6. Some key molecules involved in neuromuscular junction development. 

Neuregulin is released and activates the receptor tyrosine kinases ErbB which are 

situated in the postsynaptic component and in Schwann cell. On the other hand, neural 

agrin binds to lipoprotein receptor-related protein 4 (LRP4). LRP4 is necessary for agrin-

stimulated muscle-specific tyrosine kinase receptor (MuSK) phosphorylation. 

Downstream of tyrosine kinases-7 (Dok-7) is an adapter necessary for the full activation 

of MuSK. Several Wnts appear to act together with agrin to activate the LRP4-MuSK 

receptor. Acetylcholinesterase (AChE) is localized to the synaptic basal lamina and is 

essential to inactivate acetylcholine (ACh). The homotetrameric subunits encoded by 

the Ache gene, coassemble with the triple helical collagen tail, termed CoIQ, which 

tethers the entire enzyme to synaptic basal lamina. The dystrophin-glycoprotein 

complex (DGC) contains dystroglycan (DG), which is posttranslationally cleaved into α-

dystroglycan (αDG) and the transmembrane component β-dystroglycan (βDG). DG 

associates with rapsyn to link AChRs to the DGC and connects to α-dystrobrevin (αDB), 

to syntrophins (syn) and to utrophin. Utrophin links the entire complex to the F-actin 

cytoskeleton.   
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There are other proteins that are implicated in this process. Some of them 

have been extensively studied in our laboratory such as VDCCs, protein kinase C 

(PKC), mAChRs, NTRs, and ARs too (see extensively in section 3). All these molecules 

are related with ACh release in the nerve terminals during synaptic competition. It 

is known that the probability of ACh release is different during synaptic competition 

(Kopp et al., 2000). This neurotransmission switch could be preceded by withdrawal 

of the axons.  

VDCCs (N, L and P/Q types) control the ACh release of the strong terminal 

ensuring the maximum entrance of Ca2+ and promoting their survival (Santafé et 

al., 2001, 2002). In contrast, in the weak terminal the entrance of Ca2+ by the same 

channels, activates a repressive mechanism of neurotransmission, which is 

controlled by PKC activity (Jia et al., 1999; Lanuza et al., 2002) causing the 

disconnection of the weak terminal (Santafé et al., 2001, 2002, 2007b). PKC 

involvement in the synaptic elimination process can be observed if their activity is 

blocked by Calphostin C (CaC). In concrete, CaC increases the number of 

polyinnervated axons, causing a delay in the synaptic elimination process when it 

is present (Lanuza et al., 2002). 

mAChRs can directly modulate the synaptic efficacy of nerve terminals in 

polyinnervated NMJs during developmental synaptic elimination (Santafé et al., 

2003, 2004). For example, weak endings were strongly potentiated by muscarinic 1 

(M1) receptor-selective antagonists (Santafé et al., 2009a). M1 and muscarinic 4 

(M4) receptor subtypes of mAChRs are present in the weak nerve terminals and are 

individually coupled to inhibit ACh release (Santafé et al., 2004). Fully blocking all 

mAChRs in the weak ending with the unselective blocker atropine (the muscarinic 

2 (M2) receptor-subtype coupled to potentiation and the M1- and M4-subtype 

receptors both coupled to inhibition) potentiates release, which indicates that the 

end result of the compound mAChR-mediated modulation of ACh release in the 

weak synapses is to depress release strongly. Interestingly, the individual block of 

only M1 or M4 does not result in the recovery of silent synapses, although recovery 

was effective after all mAChRs had been blocked with atropine. 

Neurotrophins and their receptors are also implicated in the synaptic 

elimination process. One example is the glial cell line–derived neurotrophic factor 

(GDNF). In transgenic mice that overexpress GDNF in muscle fibers, synapse 

elimination is delayed for several weeks (Nguyen et al., 1998), and in mice that are 

given large doses of GDNF daily by injection, the multiple innervation seems to 
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persist as long as the GDNF is given (Keller-Peck et al., 2001). Brain-derived 

neurotrophic factor (BDNF) is another well-known candidate involved in this 

process. In vivo (Je et al., 2013) and in vitro data (Yang et al., 2009; Je et al., 2012), 

suggest a new model in which a single molecule, BDNF, can be either the 

punishment or the reward signal, depending on proteolytic conversion. Thus, 

proBDNF from postsynaptic muscle cells serves as a ‘punishment signal’ that 

induces retraction of nerve terminals through p75NTR. In parallel, neuronal activity 

drives secretion and/or activation of metalloproteases to convert proBDNF to 

mBDNF, a reward signal for which all terminals compete. In our laboratory, it has 

been studied the involvement of NTs in the synaptic elimination process. For 

example, the incubation of neurotrophin 3 (NT3) strongly potentiates evoked ACh 

release from the weak and the strong axonal inputs on dually innervated postnatal 

endplates (P6) but not in the most developed postnatal singly innervated synapses 

at P6. These results indicate that NT3 has a role in the developmental mechanism 

that eliminates redundant synapses though it cannot modulate synaptic 

transmission locally as the NMJ matures (Garcia et al., 2010c). Moreover, 

exogenously applied BDNF increases ACh release from singly and dually 

innervated synapses. This effect may be specific for BDNF because the 

neurotrophin 4 (NT4) (Garcia et al., 2010b) does not modulate release at P6-P7. 

Blocking the receptors TrkB and p75NTR completely abolishes the potentiating 

effect of exogenous BDNF (Garcia et al., 2011). These results suggest that a BDNF-

induced p75NTR
-mediated ACh release potentiating mechanism and a BDNF-

induced TrkB-mediated release inhibitory mechanism may contribute to 

developmental synapse disconnection (Garcia et al., 2010d). Finally, GDNF does 

not change the size of the evoked ACh release from the weak and the strong 

axonal inputs on dually innervated postnatal endplates nor in the most developed 

singly-innervated synapses at P6. These findings indicate that GDNF (unlike 

neurotrophins) does not acutely modulate transmitter release during the 

developmental process of synapse elimination (Garcia et al., 2010a). 

 

      2.5. SYNAPTIC ACTIVITY  

Activity-dependent synaptic competition plays a critical role in shaping 

patterns of synaptic connections in the nervous system. The most active terminal 

gets stabilized, whereas the less active ones withdraw (Benoit and Changeux, 1975; 

O’Brien et al., 1978; Nguyen and Lichtman, 1996). This drastic reduction in 
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polyneuronal innervation that occurs during the first postnatal weeks is produced 

by an activity-dependent competitive withdrawal of supernumerary axons (Benoit 

and Changeux, 1975; O’Brien et al., 1978; Jansen and Fladby, 1990; Ribchester and 

Barry, 1994). 

The first hypothesis of the regulation of synapse elimination in relation with 

activity was that inactive synapses were permanently removed by the activity 

elicited by more active inputs innervating the same target cells. This is, in essence, 

the obverse of Hebb's well-known learning rule which enunciates that when an 

axon innervating a cell repeatedly or persistently does not take part in firing it, some 

growth process or metabolic change takes place on one or both cells, so that its 

efficiency as one of the cells firing the postsynaptic cell is decreased (Hebb, 1949). 

However, as with Hebb's rule, this mechanism maintains synchronously active 

inputs. Thus, active synapses prosper by punishing their inactive neighbors 

(Thompson, 1985). Axons may compete by generating activity-mediated signals to 

destabilize directly synaptic sites associated with other inputs. The withdrawal 

process is spatially regulated so the branches of an axon that are nearest (<50 µm) 

to the competitor’s territory are removed before the more distant branches 

undergo retraction (Gan and Lichtman, 1998). This short distance is compatible 

with a local diffusion of ACh within the common synaptic gutter between 

competing endings. The different axonal inputs to a given NMJ in the Levator auris 

longus (LAL) muscle are generally intermingled (indeed, they share the same 

postsynaptic gutter of <10 µm) in the same endplate site, especially at the 

beginning and in the first half of the elimination process. However, although one 

neuron propagates the same activity pattern and level to all its axonal branches, 

the competitive success of these branches can vary greatly in different 

polyinnervated junctions (Keller-Peck et al., 2001).  

Several studies have explored the effect of changes in neuromuscular 

activity on both the timing and the outcome of synapse elimination, either in 

development or during reinnervation of adult muscle (Ribchester, 1988; Favero et 

al., 2015). The activity is strongly influential but not strictly decisive in determining 

the outcome of the synapse elimination. Other variables likely to mitigate 

competitiveness include intrinsic limits on the numbers of peripheral connections 

any MN can support, sensitivity to neurotrophic factors, and selective recognition 

or adhesion of MN to specific muscle fibers based on either topographic or 

histochemical markers.  
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It is well established that the synaptic connections between motor axons 

and muscle are shaped by activity. Impaired postsynaptic activity at 

neuromuscular synapses delays the withdrawal of presynaptic terminals and 

synapse elimination (Bernstein and Lichtman, 1999). This has been demonstrated 

extensively for processes occurring late during synaptogenesis in which activity 

regulates synaptic maturation and refinement (Sanes and Lichtman, 1999). In the 

absence of activity, NMJs form an aberrant morphology with a reduction of 

postsynaptic specializations, as demonstrated in rat, Drosophila melanogaster and 

mouse (Duxson, 1982). The blockade of neural transmission leads to the loss of 

synapse elimination, causing aberrant branching of motor axons and multiple 

innervation of muscle fibers, altogether with modifications of MNs survival during 

normal cell death (Misgeld et al., 2002). It has been demonstrated that increasing 

activity accelerates the transition to monoinnervation. The synchronous activity of 

MNs first favors polyneuronal innervation, whereas asynchronous activity 

subsequently promotes synapse elimination (Buffelli et al., 2002). Interestingly, the 

blockade of AP generation in muscle can inhibit synapse elimination through local 

signaling (Favero et al., 2009). Moreover, activity-dependent mechanism based on 

timing, seems to assure that at the end of the competitive process all polyneuronal 

innervation is eliminated and a single motor terminal invariably remains on each 

myofiber (Favero et al., 2012). 

Adaptive changes in the output of neural circuits underlying rhythmic 

behaviors are relayed to muscles via motor neuron activity. Pre- and postsynaptic 

properties of neuromuscular junctions can impact the transformation from motor 

neuron activity to muscle response. Further, synaptic plasticity occurring on the 

time scale of inter-spike intervals can differ between multiple muscles innervated 

by the same motor neuron. In rhythmic behaviors, MN bursts can elicit additional 

synaptic plasticity. However, it is unknown if plasticity regulated by the longer time 

scale of inter-burst intervals also differs between synapses from the same neuron, 

and whether any such distinctions occur across a physiological activity range (Blitz 

et al., 2017). 
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     3.1. MUSCARINIC RECEPTORS 

ACh activates two structurally and functionally distinct types of receptors: 

nicotinic acetylcholine receptors (nAChR) and muscarinic acetylcholine receptors 

(mAChR). nAChRs function as ionotropic receptors, whereas mAChRs are 

metabotropic receptors signaling through G-proteins. The five mammalian mAChR 

subtypes, M1–M5, comprise two functionally distinct groups: odd-numbered 

mAChRs (M1, M3, M5) preferentially activate Gq/G11-type G-proteins, while even-

numbered mAChRs (M2, M4) activate Gi/G0-type G-proteins (Kurowski et al., 2015). 

Through their linkage to Gq/G11, M1, M3 and M5 receptors predominantly 

activate phospholipase C (PLCγ) via the α-subunit (figure 7). The activation of PLCγ 

results in production of diacylglycerol (DAG), which is generated together with 

inositol trisphosphate (IP3) upon the hydrolysis of phosphatidylinositol 4,5-

bisphosphate (PIP2) by PLCγ. This path facilitates the mobilization of intracellular 

Ca2+, activate the PKC and subsequently, mitogen-activated protein kinase 

(MAPK). On the other hand, M2 and M4 receptors mainly inhibit the adenylyl 

cyclase (AC) through their corresponding G proteins, leading to a decrease in 

cyclic adenosine monophosphate (cAMP) levels. The reduction of cAMP 

production results in a decrease in the activity of protein kinase A (PKA). 

 

Figure 7. Muscarinic acetylcholine receptors (mAChR) can be subdivided based upon 

their G-protein-coupling characteristics and effector mechanisms. M1, M3 and M5 

mAChRs preferentially couple to G-proteins of the Gq/G11 family, whereas M2 and M4 

receptors activate G-proteins of the Gi/G0 family. M1, M3 and M5 receptors stimulate 

phospholipase C (PLCγ) which increase inositol trisphosphate (IP3) and facilitate the 

mobilization of intracellular Ca2+. M2 and M4 receptors inhibit adenylyl cyclase (AC) and, 

therefore, decrease the cyclic adenosine monophosphate (cAMP) levels. 

3. MUSCARINIC, ADENOSINE AND NEUROTROPHIN RECEPTORS IN SYNAPTIC            

ELIMINATION PROCESS 
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Most tissues and cell types express two or more mAChR subtypes that exert 

diverse physiological actions, depending on the cellular location and identity of 

the receptor subtypes (Wess et al., 2007; Nathanson, 2008). In the nervous system, 

mAChRs act primarily as modulators of synaptic transmission, regulating cognitive, 

sensory, motor, and autonomic functions, and are implicated in the 

pathophysiology of illnesses such as Alzheimer’s disease, Parkinson’s disease, 

depression, and schizophrenia (Wess, 2004; Langmead et al., 2008). It remains 

unknown, however, whether muscarinic signaling plays a structural role at the 

synapse. 

 

3.1.1. mAChRS IN THE NMJ 

The role of presynaptic mAChRs is well-documented in the CNS but is less 

clear at the NMJ. mAChRs exhibit both facilitating and inhibitory actions on 

transmitter release, based on the effects of selective agonists and antagonists (Van 

der Kloot and Molgó, 1994). All mAChRs subtypes are present in rat and mouse 

skeletal NMJ in both newborn and adult stages (Garcia et al., 2005) and the 

presence of these receptor subtypes in the mammalian motor endplates has been 

functionally tested (Santafé et al., 2003, 2004). Moreover, it is known that mAChRs 

are involved in both the inhibition and enhancement of ACh release in cholinergic 

synapses (Ganguly and Das, 1979; Abbs and Joseph, 1981; Wessler et al., 1987; 

Arenson, 1989; Caulfield MP, 1993; Caulfield and Birdsall, 1998; Nathanson, 2000; 

Parnas et al., 2000). However, the subtypes of mAChRs related to the modulation 

of neurotransmitter release in the various central and peripheral cholinergic circuits 

during development and in the adult are not fully resolved (Allen et al., 1999; 

Arellano et al., 1999; Slutsky et al., 1999; Minic et al., 2002; Santafé et al., 2003, 2004). 

A dual M1/M2 (enhancement/inhibition) pattern of mAChRs functional expression 

has been found at the adult skeletal NMJs (Slutsky et al., 1999; Minic et al., 2002; 

Santafé et al., 2003). It has also been observed that M1, M2 and M4 muscarinic 

autoreceptors are differentially expressed in nerve endings on the dually- and 

monoinnervated synapses of the newborn mammals. In concrete, these receptors 

are differentially linked to the L-, N- and P/Q-type VDCC, and may directly 

modulate both synaptic consolidation (transmitter release potentiation in the most 

active ending) and elimination (depression in certain less active endings) during 

axonal competition and neural connectivity maturation (Santafé et al., 2004). 
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Our group found that M3 receptors are not coupled to release modulation 

in neither newborn nor adult NMJs. However, M3 has been found previously in 

Western blots from innervated areas of the mouse diaphragm (Minic et al., 2002). 

 

3.1.2. mAChRS AND SYNAPSE ELIMINATION  

There are some evidences which show that mAChRs are involved in the 

synaptic elimination process. Previous studies by our group and others observed 

that presynaptic mAChRs can directly modulate the synaptic efficacy of nerve 

terminals in polyinnervated NMJs during developmental synaptic elimination 

(Santafé et al., 2003, 2004, 2007b, 2009a, 2009b; Tomàs et al., 2011). Specifically, it 

was found that in polyinnervated synapses, the general action of all selective M1 

and M2 blockers tested is to reduce the release. Noteworthy, this mAChR action is 

different for each terminal of dual junctions still in competition. In concrete, both 

M1 and M2 blockers reduce the release in the strongest ending but in the weakest 

nerve terminal in dual junctions, only M2 blockers reduce release. 

Moreover, it was observed a graded change from a multichannel 

involvement (P/Q- N- and L-type voltage-dependent calcium channels) of all 

muscarinic responses (M1-, M2- and M4-mediated) in the small-EPP to the single 

channel (P/Q-type) involvement of the M1 and M2 responses in the singly 

innervated endplates. This indicates that muscarinic autoreceptors can directly 

modulate large-EPP generating ending potentiation, and small-EPP generating 

ending depression through their association with the calcium channels during 

development. Thus, the involvement of presynaptic mAChRs in the elimination 

process may allow direct interaction between nerve endings through differential 

activity-dependent ACh release (Santafé et al., 2009a).  

 

3.1.3. MUSCARINIC AGONISTS AND ANTAGONISTS  

3.1.3.1. Muscarinic agonists 

All muscarinic agonists are similar to acetylcholine in structure. Muscarinic 

agonists contain the positively charged quaternary ammonium group and a 

partially negatively charged ester group. Most of the agonists bind the receptors 

at the orthosteric site, i.e. the same site of ACh binding (Gregory et al., 2007). The 

site of agonist binding is a circular pocket formed by the upper portions of the 
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seven membrane-spanning regions. Muscarinic agonists decrease the heart rate, 

cause vasodilation (Harvey, 2012), smooth muscle contraction, lacrimation, 

sweating, salivation, bronchial secretion and contraction of ciliary muscle (Rang et 

al., 2007; Goodman et al., 2011; Clark et al., 2012). M1-mAChR agonists lack 

specificity and have low bioavailability, characteristics that reduce their 

therapeutic window and limit their clinical uses as agonists. However, the 

muscarinic agonist pilocarpine is used clinically to treat glaucoma (Fisher et al., 

2002; Rang et al., 2007; Goodman et al., 2011; Clark et al., 2012). Of the muscarinic 

agonists, oxotremorine M is the most potent muscarinic agonist. 

Oxotremorine M 

Oxotremorine is a potent centrally and peripherally acting muscarinic 

cholinergic agonist (Bebbington et al., 1966), which has been shown to be active 

in isolated tissue preparations as well as in vivo (Ringdahl and Jenden, 1983). 

Moreover, oxotremorine M (oxo-M) a quaternary nitrogen analog of 

oxotremorine, is a full agonist for the phosphatidyl-inositol response, while 

oxotremorine is a partial agonist (Fisher et al., 1984). Both oxotremorine and oxo-M 

are full agonists for inhibition of adenylate cyclase (Olianas et al., 1983; Brown and 

Brown, 1984).  

 

3.1.3.2. Muscarinic antagonists 

Muscarinic antagonists contain the quaternary/tertiary ammonium group 

with a big aromatic group and an ester group. They are lipid soluble. Muscarinic 

antagonists bind to the orthosteric site of the receptors to block the active site of 

receptor. Their effect on heart causes tachycardia, stops the secretions like saliva, 

tears, dilation of pupil, bronchial dilation and, on central nervous system, excitation. 

The muscarinic antagonists are clinically used to treat peptic ulcer, asthma, 

bronchitis, urinary incontinence (Rang et al., 2007; Goodman et al., 2011; Clark et 

al., 2012). Classical muscarinic antagonists include atropine, tiotropium, pirenzipine, 

darifenacine, ipratropium bromide and scopolamine (Martos et al., 1987; Rang et 

al., 2007; Goodman et al., 2011; Baysinger et al., 2012). M1-mAChRs have high 

affinity for pirenzepine and also for biperiden (Klinkenberg et al., 2013). Gallamine 

is suggested to decrease cardiac rate and force of contraction because it blocks 

M2-mAChRs (Dai et al., 2012). Other selective muscarinic antagonists for this 
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receptor include tripitramine (Gamberini et al., 2012) and methoctramine (Angeli 

et al., 1995; Giglio et al., 2007). 

In our laboratory, mAChRs antagonists have been extensively used for 

many studies. For instance, to evaluate whether mAChRs can directly modulate 

the synaptic efficacy of nerve terminals in polyinnervated NMJs during 

developmental synaptic elimination (Santafé et al., 2003, 2004). Additionally, 

antagonists of these receptors were used to study the action of mAChRs on PKC 

activity in the adult NMJ (Obis et al., 2015b). 

Atropine 

Atropine (AT) is a tropane alkaloid extracted from Atropa belladonna. AT 

is a non-selective muscarinic receptor antagonist and blocks the acetylcholine 

vascular relaxation selectively. Anticholinergics have potential psychoactive 

properties. For instance, AT affects the synthesis of serotonin in the serotonergic 

pathways (Kumari et al., 2007). AT is an important tool to understand the 

neurobiology of the cholinergic system, because of its anticholinergic property at 

postganglionic parasympathetic muscarinic sites. Muscarinic receptors antagonists 

are important tools for physiological, behavioural and neurological studies and the 

characterization of AT and other anticholinergics are very important to improve 

research studies. 

Pirenzepine 

Pirenzepine (PIR) is a selective antagonist for the M1-mAChR and is 

reported to block presynaptic M1-mAChR as well as some reported inverse agonist 

activity. Pirenzepine displays higher affinity for M1 than M2 receptors. This inhibitor is 

used to treat gastric ulcers, as it reduces gastric acid secretion and muscle spasms. 

Methoctramine 

Methoctramine (MET) is a selective antagonist of M2-mAChR (Wess et al., 

1988) which interacts with both the orthosteric and the allosteric binding sites 

located between the second and third extracellular loops (Jakubík and El-

Fakahany, 2010). It shows allosteric properties at high concentrations. However, 

methoctramine may also act as an antagonist on nicotinic receptors in the airways 

(Watson et al., 1992). This blocker is the major tool for the functional studies on 

muscarinic receptor subtype M2 because of its relative specificity. It may, however, 

show some cytotoxicity effects at high concentrations (Zini et al., 2009).  
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Muscarinic toxin 3 

Muscarinic toxin 3 (MT3) was isolated from the venom of the African snake 

Dendroaspis angusticeps (green mamba) and its amino acid sequence has been 

determined. Its ability to inhibit the binding of [3H]N-methylscopolamine ([3H]NMS) 

to Chinese hamster ovary cells stably expressing subtypes of muscarinic receptors 

was studied. MT3 displayed high affinity for the M4-mAChR (pKi = 8.7 ± 0.06), 40-fold 

lower affinity at M1-mAChR (pKi = 7.11 ± 0.17) whereas no inhibition of [3H]NMS 

binding to M2,M3,M5-mAChR, was observed at concentrations up to 1 μM. This 

makes MT3 the most selective M4-mAChR ligand known to date (Jolkkonen et al., 

1994). 

 

     3.2. ADENOSINE RECEPTORS 

Activation of adenosine receptors (ARs), also known as a P1 purinergic 

receptors or P1Rs, is dependent on the presence of extracellular adenosine which 

can bind to a family of four receptors, termed adenosine A1 receptor (A1), 

adenosine A2A receptor (A2A), adenosine A2B receptor (A2B), and adenosine A3 

receptor (A3). All four receptors are G-protein coupled, either Gs or Gi and signal 

primarily through the activation (A2A and A2B) or inhibition (A1 and A3) of cAMP 

(figure 8). The four receptors have also been reported to activate PLCγ and MAPK 

(Fredholm et al., 2001). There is strong homology between specific ARs in different 

species and all are asparagine-linked glycoproteins with seven transmembrane 

sequences. The A1 receptor comprises six exons (two of which are coding) and the 

other ARs have two coding exons (Olah and Stiles, 2000; Fredholm et al., 2001; 

Haskó et al., 2005). A1 and A2A, in particular, can heterodimerize with D1 and D2 

dopamine receptors (Kudlacek et al., 2003; Fuxe et al., 2007; Kim and Palmiter, 

2008) and Group 1 and 2 metabotropic glutamate receptors (Ferré et al., 1999) 

providing another level of functional control. There is also evidence to suggest that 

adenosine can interact or activate ion channels such as L- and N-type calcium 

channels (Mei et al., 1996), VDCC (Chieng and Bekkers, 2001; McCool and Farroni, 

2001) and K+ channels (Paisansathan et al., 2010). ARs are widely expressed, and 

have different affinities for adenosine – A1 and A2A are to a certain extent high 

affinity receptors (Km< 30 nM) whereas the A3 and particularly the A2B receptor are 

low affinity receptors (Km 1–20 μM). The A2B and A3 receptors are thus only likely to 

be activated under high metabolic and stressful cellular conditions (Fredholm et 

al., 2001; Pedata et al., 2007). 
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In terms of structure, adenosine receptors are polypeptides of 36-45 kDa with 

an extracellular N-terminal and an intracellular C-terminal and seven 

transmembrane segments which are connected by three extracellular and three 

cytoplasmic hydrophilic loops (Ralevic and Burnstock, 1998; Fredholm et al., 2001; 

Burnstock, 2007). The N-terminal domain has N-glucosilation sites while the C-

terminal domain contain serine and threonine residues, which are phosphorylation 

sites for protein kinases and allow the desensitization (Baldwin et al., 1994). The 

ligand binding to the receptor, takes place in transmembrane segments in the 

extracellular domain. ARs differ in their length and the function of their extracellular 

N-terminal domain, their intracellular C-terminal domain and the loops intra-, 

extracellular (De Lera Ruiz et al., 2014).  

 

 

Figure 8. Classification of adenosine receptors (AR) according its signaling pathway. 

Adenosine mediates its action via four G-protein coupled receptors, A1, A2A, A2B and A3 

that are coupled primarily to the activation and inhibition of cyclic adenosine 

monophosphate (cAMP). 

 

Moreover, adenosine receptors are implicated in different diseases such as 

Parkinson, inflammation and ischemia (Federico and Spalluto, 2012; Villar-

Menéndez et al., 2014). A2A has emerged as an attractive non-dopaminergic 

target in the pursuit of improved therapy for Parkinson's disease, based in part on 

its unique CNS distribution. It is highly enriched in striatopallidal neurons and can 

form functional heteromeric complexes with other G-protein-coupled receptors. 

Blockade of the adenosine A2A in striatopallidal neurons reduces postsynaptic 

effects of dopamine depletion, and in turn lessens the motor deficits of Parkinson 

disease (Schwarzschild et al., 2006). 
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3.2.1. ARs IN THE NMJ  

Since the pioneering studies of Ribeiro and Walker, 1975, it is now known 

that adenosine and ATP released by nerve endings modulate the presynaptic 

metabolism through purinergic autoreceptors (Correia-de-Sá et al., 1991). It has 

been reported that micromolar concentrations of the AR endogenous agonist 

adenosine reduced evoked quantal content and/or spontaneous ACh release in 

frog neuromuscular junctions (Searl and Silinsky, 2005; Shakiryanova et al., 2006; 

Adámek et al., 2010) and rat (De Lorenzo et al., 2006; Pousinha et al., 2010). In other 

studies in mice, only very high adenosine concentrations reduce perineural 

calcium currents and affect neurotransmission (Silinsky, 2004). 

Our group confirmed that the four subtypes of adenosine receptors are 

present in the motor endings. A1 localizes in the terminal Schwann cell and nerve 

terminal, whereas A2A localizes in the postsynaptic muscle and in the nerve terminal 

(Garcia et al., 2013). A1 is more abundant in the adult whereas A2A is more 

abundant in the newborn. This suggests some differential involvement of A2A in the 

postnatal synapse elimination process. Furthermore, A2B and A3 receptors are 

present in the nerve terminal and muscle cells at the NMJs. Neither A2B nor A3 

receptors are localized in the Schwann cells (Garcia et al., 2014). 

The presence of these receptors in the neuromuscular synapse allows the 

receptors to be involved in the modulation of transmitter release. The role of the AR 

can conserve resources by limiting spontaneous quantal leak of ACh and protect 

the synapse function by decreasing the magnitude of depression during synaptic 

activity (Garcia et al., 2013). 

 

3.2.2. ARs AND SYNAPSE ELIMINATION 

Since adenosine is an endogenous purine with an important role in the 

regulation of neuronal excitability and low-frequency synaptic transmission, 

adenosine could modulate phenomena of synaptic plasticity. Through A1 and A2A 

receptor activation, adenosine modulates neuronal homeostasis and tunes the 

ability of synapses to undergo and/or sustain plasticity (Dias et al., 2013).  

There are several findings that involve adenosine receptors as important 

molecules in synaptic plasticity. However, no information on the role of these 

receptors in the synaptic elimination process is published. It is known that selective 
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A1 antagonists facilitate, whereas selective adenosine A2A receptor antagonists 

attenuate, long term potentiation (LTP) in the hippocampus. Although caffeine is a 

non-selective antagonist of adenosine receptors, it attenuates frequency-induced 

LTP in hippocampal slices in a manner similar to selective adenosine A2A receptor 

antagonists (Costenla et al., 2010). Also it was found that the selective A1 

antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) could increase the 

magnitude of long-term depression (LTD) normally elicited in neonatal rats (De 

Mendonça et al., 1997) and allow the emergence of LTD in young adult rats that 

usually do not express it (Kemp and Bashir, 1997). This suggest a tonic inhibitory 

effect of endogenous adenosine, acting through A1 receptors, on LTD. 

Recently, it has been found that ATP may activate neuronal P2Y1 

receptors to promote synapse elimination (Yang et al., 2016). This hypothesis is 

supported by a previous study showing that activation of neuronal P2Y1 receptors 

is required for astrocytes derived ATP mediated LTD in hippocampus (Chen et al., 

2013). Due to a close linkage proposed between LTD and synapse elimination 

(Wiegert and Oertner, 2013), one possible model is that ATP and downstream 

purinergic signaling could recognize unwanted synapses. Both this findings and the 

localization of the adenosine receptors makes them a great candidates in the 

involvement of synaptic elimination process.  

 

3.2.3. ADENOSINE AGONISTS AND ANTAGONISTS 

3.2.3.1. Adenosine agonists 

Although adenosine is the endogenous agonist of the adenosine 

receptors, it is metabolically unstable, subjected to absorption by glial and 

neuronal cells, and to enzymatic inactivation because it can be the substrate of 

several enzymes (Wu and Phillis, 1982). The use of selective agonists, being more 

stable than the natural ligand (adenosine) has facilitated the functional study of 

these receptors (Fredholm et al., 2001). However, the structural basis of all known 

ARs agonists is related to adenosine with some small changes (at the position 5 of 

ribose, the position N6- and C2- of purine adenine ring) to increase the affinity for 

receptor subtypes without destroying the activity of the agonist (Burnstock, 2007; 

Della Latta et al., 2013). One example of unselective agonist used in this thesis for 

synapse elimination studies is adenosine 5′-triphosphate disodium salt hydrate. 
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Adenosine 

Adenosine 5′-triphosphate disodium salt hydrate (Adenosine, ADO) is a 

central component of energy storage and metabolism in vivo. ATP is used in many 

cellular processes like respiration, biosynthetic reactions, motility, and cell division. 

ATP is a substrate of many kinases involved in cell signaling and of adenylate 

cyclase that produce the second messenger cAMP. ATP provides the metabolic 

energy to drive metabolic pumps. ATP serves as a coenzyme in a wide array of 

enzymatic reactions. 

In general, adenosine has an inhibitory effect in the central nervous 

system. Caffeine's stimulatory effects are credited primarily (although not entirely) 

to its capacity to block adenosine receptors, thereby reducing the inhibitory tonus 

of adenosine in the CNS. This reduction in adenosine activity leads to increased 

activity of the neurotransmitters dopamine and glutamate. Experimental evidence 

suggests that adenosine and adenosine agonists can activate Trk receptor 

phosphorylation through a mechanism that requires the A2A receptor (Lee and 

Chao, 2001). 

The endogenous agonist adenosine is being used in hospitals as treatment 

for severe tachycardia, (Peart and Headrick, 2007) and acting directly to slow the 

heart through action on all four adenosine receptors in heart tissue (Cohen and 

Downey, 2008) as well as producing a sedative effect through action on A1 and 

A2A receptors in the brain. 

Moreover, in our laboratory has been extensively used to study the 

function of adenosine receptors in the neuromuscular junction. For instance, to 

investigate the relation between adenosine receptors pathway and PKC signaling 

(Obis et al., 2015b) and to know the relation between adenosine and muscarinic 

receptors in acetylcholine release modulation (Santafé et al., 2015). 

 

3.2.3.2. Adenosine antagonists 

Adenosine receptor antagonists can be divided into two groups: 

xanthines and derivatives of xanthines and the non-xanthines. Most antagonists are 

derived from xanthines, which are based on the introduction of a hydrophobic 

substituent (phenyl or cicloalquil) at position 8 of the xanthine ring (Fredholm et al., 

2001; Della Latta et al., 2013). Examples of the derivatives of xanthines are caffeine 

and theophylline, which are no-specific antagonists of natural adenosine (Della 
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Latta et al., 2013). The triazoloquinazoline CGS 15943 has been used for some years 

as a selective A2A receptor antagonist. However, the compound also has high 

affinity for A1, A2B, and human A3 receptors. An important step forward has been 

made with the discovery that xanthines, upon appropriate chemical manipulation, 

can become A2A receptor antagonists (Baraldi et al., 2004). These compounds 

have, however, some limitations which prevent their wide use as pharmacological 

tools. For example, they undergo rapid photoisomerization, their affinity and 

selectivity are good but not very high, and the only radioligand available, [3H]-

KF17837, has an elevated nonspecific binding (Ongini and Fredholm, 1996). 

Nevertheless, these compounds are of great interest in their potential for treatment 

of Parkinson’s disease (Richardson et al., 1997). Specifically, for the study of synaptic 

elimination process of this thesis, it has been used a xanthine derivative called 

DPCPX (A1 receptor) and non-xanthine derivative called SCH-58261 (A2A receptor). 

These antagonists also were used to study the implication of ARs in the modulation 

of ACh release (Garcia et al., 2013; Santafé et al., 2015). 

8-SPT  

8-(p-sulfophenyl)theophylline (8-SPT) is an adenosine receptor antagonist. 

A sulfonate group was introduced at the p-position of the 8-phenyl ring, which 

greatly increased the water solubility (Daly et al., 1985; Shamim et al., 1989). Thus, 

8-SPT is useful in pharmacological experiments where a blockade of all AR subtypes 

is required. It has to be kept in mind that these compounds do not block rat A3 

receptors but are active at other species like human and sheep. 8-SPT was shown 

not to penetrate into the brain due to its high polarity (Baumgold et al., 1992). 

DPCPX  

8-cyclopentyl-1,3-dipropylxanthine (DPCPX) competitively antagonized 

both the inhibition of adenylate cyclase activity via A1 receptors and the 

stimulation via A2 receptors (Lohse et al., 1987; Martinson et al., 1987). It has high 

selectivity for A1 over other adenosine receptor subtypes, but as with other xanthine 

derivatives DPCPX also acts as a phosphodiesterase inhibitor, and is almost as 

potent as rolipram at inhibiting phosphodiesterase-4 (Ukena et al., 1993). It has 

been used to study the function of the A1 receptor in animals, (Coates et al., 1994; 

Moro et al., 2006) which has been found to be involved in several important 

functions such as regulation of breathing (VanDam et al., 2008) and activity in 

various regions of the brain (Migita et al., 2008; Wu et al., 2009). DPCPX has also 

been shown to produce behavioural effects such as increasing the hallucinogen-
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appropriate responding produced by the serotonin 2A receptor (Marek, 2009) and 

the dopamine release induced by 3-4-methylenedioxymethamphetamine, 

(Vanattou-Saïfoudine et al., 2011) as well as having interactions with a range of 

anticonvulsant drugs (De Sarro et al., 1996; Chwalczuk et al., 2008). 

SCH-58261 

2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrim 

idin-5-amine (SCH-58261) is a highly potent and selective antagonist of A2A 

receptor. SCH-58261 has emerged as a very interesting tool. The compound has 

high affinity and is selective for A2A receptors located on a variety of cell types from 

different animal species, including humans. SCH-58261 behaves as a competitive 

A2A receptor antagonist and is effective in vivo, where it blocks the effects of A2A 

receptor agonists. Ongoing efforts will allow researchers to better understand the 

specific function of A2A receptor in physiological or altered conditions. Blockade of 

A2A receptor is also of interest for drug development as 8-styrylxanthines and SCH-

58261 have been found to be effective in animal models of Parkinson’s disease 

and stroke (Monopoli et al., 1998; El Yacoubi et al., 2001).  

 

     3.3. NEUROTROPHIN RECEPTORS 

Neurotrophins (NT) and their receptors (NTR) were identified as promoters 

of neuronal survival, but they also regulate many aspects of neuronal development 

and function, including synapse formation and synaptic plasticity (Bibel and Barde, 

2000; Kaplan and Miller, 2000; Huang and Reichardt, 2001, 2003; Poo, 2001; 

Sofroniew et al., 2001; Dechant and Barde, 2002; Chao, 2003).   

There are different neurotrophins and neurotrophin receptors. One of the 

most well-known receptor is tropomyosin receptor kinase (Trk), a family of three 

receptor tyrosine kinases (TrkA, TrkB and TrkC), each of which can be activated by 

one or more of four neurotrophins —nerve growth factor (NGF), brain-derived 

neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 (NT3 and NT4/5). The other 

receptor is p75NTR which is able to bind all neurotrophins with the same affinity.  

Specifically, TrkB receptor binds the neurotrophins BDNF as well as NT3 and 

NT4/5 and has three main parts: extracellular, transmembrane and intracellular 

domains (figure 9). At the extracellular side, they have a cysteine-rich cluster, three 

leucine-rich repeats, another cysteine-rich cluster and two immunoglobulin-like 

domains (binding sites for BDNF and NT4). The transmembrane region passes the 
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membrane once and is followed by the cytoplasmic tyrosine kinase domain (Segal, 

2003). 

 

Figure 9. Tropomyosin-related kinase B (TrkB) receptor signaling pathway. TrkB receptor 

consists of two cysteine-rich domains, a cluster of three leucine-rich motifs, and two 

immunoglobulin-like domains in the extracellular moiety. Upon binding to brain-derived 

neurotrophic factor (BDNF) or neurotrophin 4 (NT4), a series of tyrosine phosphorylation 

events occur within TrkB tyrosine kinase domain. These phosphotyrosine residues form 

unique binding sites for intracellular adaptor proteins, Y516 and Y817 recruiting 

specifically Src homology 2 domain-containing (SHC) and phospholipase C (PLCγ), 

respectively. The typical wave of second messengers involves, PLCγ, which raises 

intracellular calcium and diacylglycerol (DAG). 

 

Activation of TrkB upon BDNF binding leads to receptor dimerization and 

phosphorylation, thereby creating docking sites for effector proteins that initiate 

the activation of intracellular signaling pathways (Cunha et al., 2010). The 

phosphorylated tyrosine residues Y516 and Y817 in human TrkB receptor serve as 

the main docking sites to initiate downstream signaling pathways, such as Src 

homology 2 domain-containing (SHC), Akt, mitogen-activated protein kinase 

(MAPK)/ extracellular signal-regulated kinase (Erk) 1/2 and PLCγ (figure 9) (Poo, 

2001; Chao, 2003; Huang and Reichardt, 2003; Arevalo et al., 2006; Woo and Lu, 

2006; Castrén and Rantamäki, 2010; Cunha et al., 2010). This in turn leads to the 

activation of various pathways involved in cellular functions that range from 

initiation of gene transcription and protein synthesis to decisions involved in cell 

growth and survival. The residues Y702, Y706 and Y707, located within the tyrosine 
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kinase domain, can also recruit adaptor proteins when phosphorylated, including 

Grb2 and SH2B. At the same time as inducing multiple protein tyrosine, serine and 

threonine phosphorylation events in diverse proteins, BDNF stimulation may cause 

a reduction in the phosphorylation of other proteins, such as focal adhesion kinase 

(Spellman et al., 2008), thereby reducing their activity.  

 

3.3.1. TrkB IN THE NMJ 

Activation of the TrkB by its ligands, BDNF, NT3 and NT4/5, is decisively 

important for the development, survival and plasticity of the nervous system (Bibel 

and Barde, 2000; Huang and Reichardt, 2003; Lu, 2003). 
TrkB is expressed in muscle and colocalizes with postsynaptic nAChRs and 

with the nerve terminal and Schwann cell (Gonzalez et al., 1999; Garcia et al., 

2010e). Accordingly, both BDNF and NT4 have been shown to be expressed in MN 

cell bodies and axons (Pitts et al., 2006; Garcia et al., 2010f) in the muscle targets 

(Oppenheim et al., 1992; Sendtner et al., 1992; Funakoshi et al., 1993; Garcia et al., 

2010f) and in Schwann cells (Garcia et al., 2010f; Wilhelm et al., 2012). 

Signaling via TrkB receptors modulates neurotransmitter release by 

interacting with presynaptic muscarinic receptors (Garcia et al., 2010e). In 

addition, BDNF-induced TrkB signaling contributes to the stabilization of 

polyinnervated NMJs during the postnatal period of synaptic elimination (Garcia 

et al., 2010d).  

Genetic knockdown models lacking TrkB receptors or BDNF die during 

embryonic or early postnatal development (Snider, 1994), and heterozygous 

models with reduced expression do not avoid possible developmental effects on 

NMJ function and structure. This means that other receptors are involved in 

postnatal development.   

 

3.3.2. TrkB AND SYNAPSE ELIMINATION 

Neurotrophins also modulate the synaptic activity of NMJs (Wang and 

Poo, 1997). In fact, electrical activity regulates the synthesis (Gall and Isackson, 

1989; Funakoshi et al., 1995) and secretion (Blöchl and Thoenen, 1995; Wang and 

Poo, 1997) of neurotrophins and the expression of their receptors during 

development and thus modulate synapse elimination.  
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In a previous study, our group found that exogenously applied BDNF during 

development (10 nM for 3h) also increases ACh release from singly and dually 

innervated synapses at P6–P7 with the involvement of TrkB and p75NTR receptors 

(Garcia et al., 2010d). This effect may be specific to BDNF because NT4 does not 

modulate release at P6–P7 (Garcia et al., 2010b). However, it has been reported 

that low doses of BDNF rapidly induce (within minutes) a TrkB-dependent 

potentiation of both spontaneous and evoked synaptic activity at developing 

neuromuscular junctions in Xenopus laevis studied in culture (Stoop and Poo, 1996; 

Poo and Boulanger, 1999; Poo, 2001). In addition to possible species difference, the 

lack of a short-term effect of neurotrophins on static EPP amplitude in our NMJ 

model may misrepresent dynamic neuroplasticity effects. Another study shows that 

exogenous application of mBDNF triggers synaptic potentiation and maturation of 

developing NMJs through TrkB, whereas application of proBDNF suppresses 

synaptic transmission and causes axonal retraction by activating presynaptic 

p75NTR (Yang et al., 2009). 

Moreover, the blockade of p75NTR signaling attenuated synapse 

elimination, whereas the blockade of TrkB signaling, or inhibition of proBDNF 

cleavage by metalloproteases, promoted synaptic retraction of both innervated 

axon terminals in triplets. Taken together, these findings suggest a model for 

synapse elimination in which the activity-dependent conversion of proBDNF to 

mBDNF selectively stabilized active terminals, whereas inactive terminals were 

eliminated in response to proBDNF and subsequent activation of p75NTR signaling 

(Je et al., 2012). 

 

3.3.3. TrkB ANTAGONIST 

TrkB-Fc chimera 

TrkB-Fc chimera is a fusion protein combining the extracellular binding 

domain of TrkB and the histidine-tagged Fc region of human IgG in order to block 

TrkB ligand signaling. TrkB-Fc is a tool for studying the biological actions of BDNF.  

A large number of in vitro studies support the notion that TrkB-Fc inhibits 

BDNF activity (Shelton et al., 1995; Mantilla et al., 2013; Obis et al., 2015a). Addition 

of TrkB-Fc to hippocampal and cortical slices and cultured cortical, striatal, and 

dentate granule cells either abolishes or opposes the effect of BDNF. In addition, 

administration of TrkB-Fc in vivo has consequences that are in accordance with 
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decreased BDNF activity. Systemic nerve growth factor treatment, which leads to 

a condition resembling peripheral inflammation, raises BDNF levels in sensory 

neurons and increases nociceptive spinal reflex excitability. This increased central 

excitability is reduced by TrkB-Fc (Gustafsson et al., 2003). Moreover, intraventricular 

delivery of TrkB-Fc suppresses epileptogenesis, similar to what has been observed 

in heterozygous BDNF knockout mice and in transgenic mice overexpressing 

truncated TrkB receptors and with decreased endogenous BDNF levels (Lähteinen 

et al., 2002). In contrast to these data, TrkB/Fc chimera inhibits BDNF-induced cell 

proliferation of the BaF-TrkB-BD mouse pro-B cell line transfected with TrkB. The ED50 

for this effect is typically 0.1-0.4 μg/mL in the presence of 16 ng/mL of recombinant 

human BDNF (Croll et al., 1998). 
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III. HYPOTHESIS AND 

OBJECTIVES 
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Several signaling pathways coordinate the pre- and postsynaptic sites in 

the neuromuscular junction. This include that various presynaptic receptors seem 

to play an important role in the axonal competition leading to synapse loss. The 

final functional outcome of a synaptic contact can be built by the confluence of 

these receptor-mediated signaling on intracellular protein.  

In previous results obtained by Histology and Neurobiology Unit at URV 

indicated that there is a release inhibition mechanism based on a mAChR-PKC-

VDCC intracellular cascade. When it is fully active in certain weak motor axons, it 

can depress ACh release and even disconnect synapses. This mechanism plays a 

central role in the elimination of redundant neonatal synapses because functional 

axonal withdrawal can indeed be reversed by mAChR, PKC or VDCC block. This 

seems to indicate the involvement of these molecules in the process of synapse 

elimination. According with the previous results, it has been formulated the 

following hypothesis: 

     1.1. GENERAL HYPHOTHESIS 

During the development an activity-dependent molecular mechanism of 

stabilization/unstabilization of the neuromuscular connections can operate by 

means of the convergence of multiple signaling pathways between the synaptic 

cells. This molecular mechanism includes the coordinated involvement of signaling 

through TrkB, mAChRs and ARs.  

 

     1.2. SPECIFIC HYPHOTHESIS 

1. Individual presynaptic mAChR subtypes (M1, M2 and M4), AR (A1 and A2A) 

and TrkB receptors are involved in the control of synapse elimination in the 

mouse NMJ. 

 

2. The postnatal axonal elimination is regulated by the cooperation of 

several muscarinic and adenosine receptor subtypes.  

 

3. The postnatal axonal elimination is regulated by the cooperation of 

several muscarinic receptor subtypes and TrkB receptor.  

 

1. HYPHOTHESIS 
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     2.1. GENERAL OBJECTIVE 

The main objective of this thesis was to investigate the involvement of 

mAChRs, ARs and TrkB signaling in developmental synapse elimination and 

propose the coordinated molecular mechanism of participation and action at 

neuromuscular junction of mouse Levator auris longus muscle. 

 

     2.2. SPECIFIC OBJECTIVES 

1. To know the effect of the individual mAChRs (M1, M2 and M4), ARs (A1 and 

A2A) and TrkB signaling in the control of the synapse elimination during 

development. Identify how the modulation of these pathways modifies 

the number of motor nerve terminals per synapse at P7 and P9. 

 

2. To know the effect of the individual mAChRs (M1 and M2), ARs and TrkB 

receptor signaling on the evolution of the number of motor nerve terminals 

per synapse at P15. 

 

3. To determinate the involvement of mAChRs (M1, M2 and M4), ARs (A1 and 

A2A) and TrkB receptor on maturation rate of nAChRs postsynaptic cluster 

at P7, P9 and P15. 

 

4. To know the interaction between mAChRs (M1, M2 and M4) and ARs (A1 

and A2A) signaling in the modulation of the synapse elimination during 

development. To identify the number of motor nerve terminals per 

synapse at P7 and P9. 

 

5. To know the interaction between mAChRs (M1, M2 and M4) and TrkB 

signaling in the modulation of the synapse elimination during 

development. To identify the number of motor nerve terminals per 

synapse at P9.

2. OBJECTIVES 
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III. MATERIAL AND 

METHODS 
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To perform this thesis, a transgenic B6.Cg-Tg(Thy1-YFP)16Jrs/J mouse has 

been used (https://www.jax.org/strain/003709, The Jackson Laboratory; retrieved 

Sep 2016). This specific transgenic mouse contains a gene reporter and a 

regulatory sequence that directs its expression in neurons (figure 10).  

The gene reporter used in this mouse is the yellow fluorescent protein (YFP), 

developed on the basis of GFP-like protein from jellyfish Aequorea macrodactyla 

(Xia et al., 2002). YFP possesses single excitation maximum at 508 nm, and emission 

maximum at 524 nm. Its use is mainly intended for protein labelling, which allows 

cell localization studies.  

To direct the label of the YFP in neurons, the transgene construct contains 

the 5′ portion of the Thy1 gene, extending from the promoter to the intron following 

exon 4. Thy1 is an immunoglobulin superfamily member that is expressed by 

projection neurons in many parts of the nervous system, as well as by several 

nonneuronal cell types, including thymocytes (Morris, 1985; Gordon et al., 1987). 

 

Figure 10. Transgene construct of B6.Cg-Tg(Thy1-YFP)16Jrs/J mouse. In blue, the 

regulatory element derived of Thy1 gene which direct the expression in neurons. In 

yellow, the yellow fluorescent protein (YFP) as a gene reporter provided the labelled in 

neurons.  

 

The neural specificity of this promoter can be used to express YFP and label 

exclusively neurons. Vidal et al., 1990 demonstrated that neural and nonneural 

expression depend on distinct genomic elements. In concrete, a deletion of exon 

3 and its flanking introns limits the expression in neural cells. Indeed, a construct 

lacking this intron has been successfully used to overexpress β-galactosidase and 

growth-promoting molecules in neurons with minimal nonneural expression (Kelley 

et al., 1994; Caroni, 1997) 

B6.Cg-Tg(Thy1-YFP)16Jrs/J mouse has a wide range of neuron types 

labelled. Since motoneurons are the only neuron type in neuromusuclar junction, 

this mouse becomes an excellent model for studying the neuromuscular synapse. 

1. ANIMALS 
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There are three features of YFP transgene expression that may be 

generally useful. First, multiple spectral variants express well in transgenic mouse. 

Second, long-term expression and repeated excitation of YFP are minimally toxic. 

Third, lines generated from identical or nearly identical transgenes exhibit distinct 

patterns of expression. Together, these features make it possible to label multiple 

neuronal subsets in vivo and to image them over protracted periods. These abilities, 

in turn facilitate studies of neuronal structure, function, and development in 

mammals (Feng et al., 2000). 

B6.Cg-Tg(Thy1-YFP)16Jrs/J mouse has the advantages of YFP mouse 

described above. In concrete, this model has been widely used to study neuronal 

development and regeneration (Feng et al., 2000; Keller-Peck et al., 2001; Nguyen 

et al., 2002; Porrero et al., 2010). Thy1 levels in neurons increase markedly during 

early postnatal life, and thy1-derived transgenes have been reported to exhibit 

corresponding developmental regulation (Morris, 1985; Kollias et al., 1987; Caroni, 

1997). As expected, levels of YFP increased postnatally in Thy1-YFP mouse. 

Nonetheless, in some lines, YFP expression was readily detectable in motor axons 

by embryonic day (E13), the stage at which neuromuscular junctions are just 

beginning to form (Noakes et al., 1993). This has made it possible to view the initial 

stages of synaptogenesis.  

All experiments were conducted on Thy1-YFP-expressing mice. In some 

cases, the results have been check with wild-type C57BL/6J mice 

(https://www.jax.org/strain/000664, The Jackson Laboratory; retrieved Sep 2016). 

C57BL/6J is the most widely used inbred strain and the first to have its genome 

sequenced. Although this strain is refractory to many tumours, it is a permissive 

background for maximal expression of most mutations. 

All mice were maintained on the animal facility in a standard cage of 

MakrolonR (23x46x14 cm3) and under standards conditions: constant temperature 

(22 ± 2ºC), relative humidity (50 ± 10%) and a 12-hour light/dark schedule. The 

feeding and the hydration of the animals has been ad libitum, with maintenance 

feed for mice VRF-1 by Charles River and chloride water. The use and treatment of 

animals has been made in accordance with Llei 5/1995 and Decret 214/1997 de la 

Generalitat de Catalunya, under the approval of Comitè Ètic d’Experimentació 

Animal de la Facultat de Medicina i Ciències de la Salut de la Universitat Rovira i 

Virgil. 
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Neonatal pups of either sex (4-30 days) were obtained and the date of 

birth was designated postnatal day 0 (P0). To minimize the variability in the 

measurements, the timing of conception has been monitored. Also, the weights of 

the individuals were within 5% of the mean for a given day after conception. The 

mice were cared for in accordance with the guidelines of the European 

Community’s Council Directive of 24 November 1986 (86/609/EEC) for the humane 

treatment of laboratory animals. After postnatal day 5 (P5), agonists and 

antagonists of the interested receptors were administrated (see in section 3 of 

material and methods). When the treatment finished in postnatal day (P7), 

postnatal day (P9) or postnatal day (P15), the mice were sacrificed. The first step of 

this procedure was the induction of anesthesia with 2% tribromoethanol (TBE; 0.15 

ml/10 g body weight, I.P.). Once mice were deeply anesthetized (lacking the 

reflexes), proceeded to the handling and their sacrifice by making a cut in the 

jugular vein. Dissection procedures to obtain the tissue of interest (see below) were 

performed as soon as possible to avoid possible degradation processes. 

 

 

 

 

 

 

 

 

 

Figure 11. B6.Cg-Tg(Thy1-YFP)16Jrs/J mice at different ages. A. Mouse postnatal day 9 

(P9). B. Mouse postnatal day 15 (P15). C. Mouse postnatal day 30 (P30). 

 

 

 

 

 

A 

B 

C 
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Skeletal neuromuscular junctions have been used for many years to study 

neurotransmission, synaptic plasticity and competitiveness. It is an ideal model for 

some reasons: they are highly accessible, relatively simple, functionally uniform, 

and so much larger than central synapses that their size and shape can be 

assessed light microscopically (Sanes and Lichtman, 1999). Moreover, several 

studies have noted differences in neuromuscular structure between young adult 

and aged rodents and humans (Oda, 1984). 

Synapse development and the regeneration can be modulated in vivo 

easily (Garcia et al., 2011; Andlauer and Sigrist, 2012). In addition, synapses 

between motoneurons and muscle cells can be studied and visualized by 

immunolabeling techniques using antibodies (Garcia et al., 2010f). Finally, gene 

expression could be altered and studied in detail by transgenic mice (Burden, 

1977). 

The NMJ is very useful in functional studies; unlike the central nervous 

system, it has a single neurotransmitter system, the cholinergic. This feature has 

made it a model widely used in electrophysiological studies (Keshishian et al., 1996; 

Santafé et al., 2003, 2009a; Zhang and Stewart, 2010). 

In this thesis, the Levator auris longus muscle has been used as a model to 

study the neuromuscular junction. This muscle was described by Denise Angaut-

Petit et al. (1987). It is located under the dorsal skin in the area of the head and 

neck and it is used to wiggle the ear. It has a cranial and caudal part. The fibers in 

the cranial region originate in the spines of the fourth cervical vertebrae and go 

towards anterior part of the pinna base, where they insert. The fibers in the caudal 

region extend from the fourth and fifth cervical vertebrae to the back of the pinna 

base. It consists of fast-twitch muscle fibers (Erzen et al., 2000) which are arranged 

in five or six layers of cells in the cranial portion (5.25 ± 0.78, Lanuza et al., 2003), 

while in the caudal part could be more (Angaut-Petit et al., 1987). 

 

 

 

2. STUDY MODEL: NEUROMUSCULAR JUNCTION 

 

UNIVERSITAT ROVIRA I VIRGILI 
Muscarinic, adenosine and tropomyosin-related kinase B receptor modulate the neuromuscular 
developmental synapse elimination process 
Laura Nadal Magriñà 



LAL muscle is subcutaneous, this peculiarity allows injected drugs in vivo to 

directly act on the surface muscle and, therefore, in the nerve endings. Due to the 

technical features, thin and few layers, makes it possible the effect and spread of 

the agents directly on muscle cells so inside the NMJ. It has a flat shape that allows 

a good visibility of the nerve endings of the auricular branches posterior of the 

facial nerve, which innervate the muscle that allows observing the motor plates 

without having to make sections (Tomàs et al., 2000; Lanuza et al., 2001). 

The mouse LAL muscle is located in the back part of the neck and consists 

in two parts (figure 12): the left muscle (LAL 1) and the right muscle (LAL 2) 

separated by a midline. To minimize the number of animals sacrificed, both LAL 

muscles per mouse were used. 

                      

Figure 12. Levator auris longus (LAL) muscle structure. The LAL muscle is located under 

the dorsal skin in the area of the head and neck and consists in two parts: LAL 1 and LAL 

2 separated by a midline. 

 

The LAL muscle is an excellent model to study the NMJ morphology 

through immunohistochemistry experiments (see below). This is because it is a very 

thin muscle, and, therefore, the antibodies can penetrate and immunolabel the 

target proteins allowing the visualization of the nerve terminal and the nAChRs. 

Moreover, the LAL muscle is very superficial allowing that drugs in the process of 

drug treatment penetrated in the muscle surface easily without causing any stress 

to the animal.  

 

Midline 

LAL 2 LAL 1 
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To study the effect of mAChRs, ARs and TrkB receptors in the synaptic 

elimination process, agonists and antagonists of these three types of receptors 

were used. Therefore, non-selective and selective agonists and antagonists were 

used to perform the inhibition or potentiation of the receptors. In the tables bellow, 

is shown the information about the name of the drug, the manufacturer, the 

function and finally the stock and work solution of each agonist and antagonist 

used.  

 

      3.1. MUSCARINIC RECEPTOR AGONISTS AND ANTAGONISTS 

A non-selective muscarinic receptor agonist and antagonist were used. 

Moreover, three specific antagonists of muscarinic receptors M1, M2 and M4 were 

used to perform more detail experiments.  

 

     

 

Drug Manufacturer Function 
Stock 

solution 

Work 

solution 

Oxotremorine 

M 

Sigma 

O100 

Non-selective agonist of 

muscarinic receptors 
50 mM 1 μM 

Atropine 
Sigma 

A0132 

Antagonist of 

muscarinic receptors 
200 μM 2 μM 

Pirenzepine 
Tocris 

1071 

Selective antagonist of 

M1 receptor 
10 mM 10 μM 

Methoctramine 
Sigma 

M105 

Selective antagonist of 

M2 receptor 
1 mM 1 μM 

MT3 
Alomone Labs 

M140 

Selective antagonist of 

M4 receptor 
50 μM 100 nM 

Table 1. Information of mAChR agonists and antagonists.   

3. RECEPTOR AGONISTS AND ANTAGONISTS 
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      3.2. ADENOSINE RECEPTOR AGONISTS AND ANTAGONISTS 

A non-selective adenosine receptor antagonist was used. The same way 

as muscarinic receptors, two selective antagonists of A1 and A2A receptors were 

used to specific inhibitions.  

 

  

       3.3. NEUROTROPHIN RECEPTOR ANTAGONIST 

A selective neurotrophin receptor (TrkB) antagonist was used to block the 

TrkB-BDNF signaling pathway. 

 

The stock solutions were made up with deionized water. Some stock 

solutions of these agonists and antagonists (DPCPX and SCH-58261) have to be 

diluted with dimethyl sulfoxide (DMSO). The final concentration of DMSO in control 

and drug-treated preparations was 0.1% (v/v). In control experiments, this 

concentration of DMSO did not affect any of the parameters studied (see in 

results). The working solutions were diluted with phosphate buffer saline (PBS). 

 

 

Drug Manufacturer Function 
Stock 

solution 

Work 

solution 

Adenosine 
Sigma 

A9251 

Non-selective agonist of 

adenosine receptors 
100 mM 25 μM 

8-SPT 
Sigma 

A013 

Antagonist  of adenosine 

receptors 
100 mM 100 μM 

DPCPX  
Sigma 

C101 
 Selective antagonist of A1 50 mM 100 nM 

SCH-58261 
Tocris  

2270 

Selective antagonist of 

A2A 
100 mM 50 nM 

Drug Manufacturer Function 
Stock 

solution 

Work 

solution 

TrkB Fc 

chimera 

R&D Systems 

688-TK-100 

Inhibition of BDNF 

and NT4 
100 μg/ml 5 μg/ml 

Table 3. Information of TrkB receptor antagonist.   

Table 2. Information of AR agonists and antagonists.   
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     4.1. INJECTION PROCEDURE 

The different solutions containing the different agents affecting synaptic 

elimination process were administered by subcutaneous injection over the LAL 

muscle surface.  

All solutions completely covered the LAL surface and remained in place a 

minimum of 2 hours before vascular reabsorption. Moreover, none inflammatory 

response could be detected. This was determined by recovering the LAL muscle 

with methylene blue.  

The newborn mice were anesthetized with 2% tribromoethanol (0.15 ml/10 

g body weight, I.P.) to obtain adequate immobilization and to reduce stress and 

pain. Under aseptic conditions, 50 μl of sterile physiological saline or DMSO and 

various solutions (antagonists and agonists of the considered receptors) were 

administered by subcutaneous injection over the LAL external surface as described 

above (Lanuza et al., 2001). To assist the injection of the drug it is useful the use of 

a forcep (figure 13). The solutions were administered at a concentration in 

accordance with the previously reported biological action of each substance 

(Santafé et al., 2004, 2015; Garcia et al., 2010d) 

 

Figure 13. Injection procedure in Levator auris longus (LAL) muscle. With forcep helps, 

administrate 50 μl of phosphate-buffered saline (PBS) or drug agonist/antagonist by 

subcutaneous injection creating a small delimited bubble over the LAL muscle surface.   

 

4. METHODOLOGIES 
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     4.2. DRUG TREATMENT 

Three types of postnatal stages were studied to evaluate the synaptic 

elimination process during the development of NMJ: P7, P9 and P15 (figure 14). 

The animals received 2, 4 or 10 injections from postnatal day 5, and the 

LAL muscles were studied on days 7, 9 and 15. Pup mice were in a housing period 

between postnatal day 0 to day 5. After day 5 to days 7, 9 or 15 the animals were 

injected with agonists or antagonists of mAChRs, ARs and TrkB receptor. At day 7, 

9 or 15 the mice were sacrificed for obtaining the LAL muscle in order to perform 

the morphological analysis. 

In P7 experiments, mice received two injections on postnatal day 5 and 6 

(one per day) and they were sacrificed at postnatal day 7. In P9 experiments, mice 

received four injections on postnatal day 5, 6, 7 and 8 (one per day) and they are 

sacrificed at postnatal day 9. Finally, in P15 experiments, mice received ten 

injections from postnatal day 5 to day 14 (one per day) and they are sacrificed at 

postnatal day 15. 

 

Figure 14. Timetable of drug treatment in mice. Three types of postnatal stages were 

studied: P7, P9 and P15. In purple, the housing period, in orange the drug administration 

and in green the day of the LAL dissection.   

 

       4.3. LEVATOR AURIS LONGUS MUSCLE DISSECTION 

The mouse LAL is a thin and flat sheet of muscle located superficially on 

the dorsum of the neck. It is a fast-twitch muscle that functions to move the pinna. 

It contains rostral and caudal portions that originate from the midline of the 

cranium and extend laterally to the cartilaginous portion of each pinna. The muscle 

is supplied by a branch of the facial nerve that projects caudally as it exits the 

stylomastoid foramen. LAL muscle offers advantages for the investigation of in vivo 

effects of drugs on NMJs and muscles. First, its superficial location facilitates multiple 
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local applications of drugs. Second, its thinness (2-3 layers of muscle fibers) permits 

visualization and analysis of almost all the NMJs within the muscle. Third, the ease 

of dissecting permits the maintenance of the physiological conditions as long as 

possible. Last, and perhaps most importantly, a small applied volume easily covers 

the entire muscle surface, provides a uniform and prolonged exposure of all its 

NMJs to the drug and eliminates the need for a systemic approach. 

For the muscle dissection, it is required a stereoscopic microscope and 

surgical equipment. Firstly, mice were anesthetized with an overdose of 2% 

tribromoethanol (0.15 ml/10 g body weight, I.P.). Death was assured by assessing 

lack of heartbeat. The second step was to pin down the mouse in a support, dorsal 

side up with one pin in each paw and one pin through the nose. The first incision 

was made through the skin only, using small spring scissors to cut from the beginning 

of the neck to reach the eyes obtaining T shape (step 1 figure 15). Carefully, the 

skin in this region was removed, but avoid cutting too close to the ears as this is one 

of the points of attachment for the LAL muscle. After, the head was excised in order 

to fix the whole sample (step 2 figure 15). The head containing the LAL was 

submerged in a solution with 4% paraformaldehyde during 90 min (step 3 figure 15). 

Using small spring scissors, 1cm to the right of the fat tissue (toward the left ear) was 

cut from the proximal edge of the left muscles until reaching the shoulder. The same 

procedure to the other side was performed. Once the incision was made, it has 

been peeled back the muscles connected with small forceps to expose the ventral 

side of the muscle. It has been trimmed the connective tissue and fascia while 

carefully pulling up on the muscles with forceps. It has been cut around the caudal 

end of the right muscles at the base of the ear. Continue cutting, moving towards 

the rostral end of the right ear, keeping the right muscle turned over. The same 

movements for the left part of the muscles were done. It was better to include more 

tissue at this step than risk damaging the LAL itself (step 4 figure 15). If the muscle 

began to dry out, pipette 1X PBS over the muscle. The dissected muscles was 

placed in a Petri dish with Sylgard containing 1X PBS, dorsal side up. Down four 

corners of muscle were pinned with small insect pins. Using small forceps and spring 

scissors, connective tissue from dorsal and ventral surfaces of the muscles was 

cleaned. It was important to locate the midline where the right and left LAL muscles 

converged. The muscle was fixed a second time with 4% paraformaldehyde during 

45 min (step 5 figure 15). Afterwards, it has been done three washes of 5 minutes 

each and the muscle was turned over and re-pinned in order to clean off ventral 
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surface. The undesirable muscles were removed until it has been got deeper 

muscle which is the LAL (step 6 figure 15). 

 

Figure 15. Dissection procedure in Levator auris longus (LAL) muscle. 1. Cut the skin 

obtaining a T shape. 2. Cut the whole head. 3. Fix whole head with 4% 

paraformaldehyde (90 min). 4. Bind the tips of the T shape. 5. Fix whole muscles with 4% 

paraformaldehyde (45 min). 6. Make three PBS washes of 5 min each one and removed 

the undesirable muscles and extra tissue until LAL muscle is isolated. 

 

      4.4. IMMUNOHISTOCHEMISTRY 

4.4.1. BASIS OF THE TECHNIQUE 

Fluorescent immunohistochemistry (IHC) is a technique of monoclonal as 

well as polyclonal antibodies to determine the tissue distribution of an antigen of 

interest with high precision. The classical IHC assay involves detection of epitopes 

expressed by a single protein-target within a tissue sample using a ‘primary 

antibody’ capable of binding those epitopes with high specificity. After the 

epitope-antibody binding event, a ‘secondary antibody’ capable of binding the 

primary antibody with high specificity is added. The secondary antibody is coupled 

to a fluorophore, a molecule which has the ability to absorb light energy of a 

specific wavelength and re-emits light at a longer wavelength. There are a lot of 

number of fluorophores which have different properties of excitation and emission. 

For this reason, it was possible to label different proteins in different colors and 

display them together. 
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4.4.2. BUFFERS AND SOLUTIONS USED IN IMMUNOHISTOCHEMISTRY 

- Phosphate Buffered Saline (PBS). Composed by NaCl 140 mM, KCl 2.7 mM, 

KH2PO4 1.5 mM and Na2HPO4 8.1 mM with adjusted pH at 7.4. 

- Blocking and permeability buffer. Composed by 4% of Bovine Serum 

Albumin (BSA) and 0.1% of Triton X-100. 

- Paraformaldehyde. Working solution: 4% dissolved in saline solution. 

- Mowiol. Mixed with glycerol and 0.2M Tris-HCL pH 8.5.  

- p-phenylenediamine. 0.1% (0.001 g/ml Mowiol).  

All the salts used to prepare the PBS solution were from Sigma. Also the BSA, Triton 

X-100, paraformaldehyde and p-phenylenediamine were from Sigma. Mowiol was 

from Calbiochem. 

 

4.4.3. ANTIBODIES AND TOXINS IN INMMUNOHISTOCHEMISTRY 

For immunolabeling the muscles, primary antibodies were used with their 

corresponding secondary antibodies and a widely used toxin to label 

acetylcholine receptors, α-bungarotoxin (α-BTX). The information of each antibody 

and toxin is described in the table below (table 4-6). 

   

 

Antibody Manufacturer Source Dilution 

Neurofilament N4142; Sigma Rabbit 1:1000 

Neurofilament N0142; Sigma Mouse 1:1000 

Syntaxin S0664; Sigma Mouse 1:1000 

S-100 Z0311; Dako Cytomation Rabbit 1:1000 

Antibody Manufacturer Source Dilution 

Alexa-fluor 488 A21206; Molecular Probes Donkey α-rabbit 1:300 

Alexa-fluor 488 A21202; Molecular Probes Donkey α-mouse 1:300 

Alexa-fluor 647 A31573; Molecular Probes Donkey α-rabbit 1:300 

Fluorochrome Manufacturer Source Dilution 

TRICT T1175; Molecular Probes α-BTX 1:800 

Table 5. Secondary antibodies used in immunohistochemistry technique.   

Table 6. Neurotoxin used in immunohistochemistry technique.   

Table 4. Primary antibodies used in immunohistochemistry technique.   
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4.4.4. TISSUE PREPARATION 

The tissue preparation in order to perform the quantification analysis was 

different depend on the mouse strain that it has been used. For C57BL/6J mice, 

after removing the LAL muscle and washing it in PBS, the muscles were incubated 

with a blocking and permeability buffer. This buffer was composed by 4% of BSA 

and 0.1% of Triton X-100. Afterwards, the muscle could be labelled with some 

antibodies or toxins to detect the proteins of interested. In this case, it was needed 

to perform the immunohistochemistry technique to label the nerves terminal and 

nAChRs. For transgenic B6.Cg-Tg(Thy1-YFP)16Jrs/J mice was only necessary to label 

the nAChRs (see bellow). 

  

4.4.5. LABELING OF NMJ 

In order to study the neuromuscular junction, it is possible to label each of 

its cells or components (nerve terminal, nAChRs and Schwann cell) by 

immunohistochemistry. For the morphological studies of this thesis, it was only 

needed to detect the pre- and the postsynaptic components. Figure 16 shows a 

confocal image of the three components distribution. The nerve terminal was 

detected by neurofilament or syntaxin labeling protein in green. Syntaxin is a 

protein exclusively located in ACh vesicles membrane which is ready to be release 

when the action potential arrives at the nerve terminal. Whereas neurofilaments 

are intermediate filaments specific of MNs. The Schwann cell was labelled by S-100 

in blue which is a protein which belongs to a superfamily of calcium-binding 

proteins that are involved in regulation of protein phosphorylation, transcription 

factors, Ca2+ homeostasis, the dynamics of cytoskeleton constituents, enzyme 

activities, cell growth and differentiation, and the inflammatory response (Donato 

et al., 2003). In figure 16, it has been used the primary antibodies anti-neurofilament 

or anti-syntaxin and anti-S100. The primary antibodies dilutions were shown in table 

4.   

The secondary antibodies are against the specie which were obtained the 

primary antibodies. In figure 16, Alexa fluor 488 donkey anti-mouse was used to 

detect neurofilament or syntaxin protein while Alexa fluor 647 donkey anti-rabbit to 

detect S-100. The secondary antibodies dilutions were shown in table 5.   

The postsynaptic component was labelled in red by a toxin, α-

bungarotoxin conjugated with tetramethyl rhodamine iso-thiocyanate (TRICT) 
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which was joined irreversibly to nAChRs and therefore allows us to identify the 

synaptic area. The dilution of neurotoxin was shown in table 6.   

 

 

 

 

 

 

 

 

Figure 16. Examples of adult neuromuscular junctions (NMJ) labelled by conventional 

immunohistochemistry. A. Nerve terminal labelled with neurofilament. A1. The merge of 

the three labelled proteins: neurofilament, S-100 and nAChRs. A2. In green, the nerve 

terminal labelled with neuroflament. A3. In blue, the Schwann cell labelled with S-100 

and A4 in red, the nAChRs labelled with α-BTX-TRICT. B. Nerve terminal labelled with 

syntaxin. B1. The merge of the three labelled proteins: syntaxin, S-100 and nAChRs. B2. In 

green, the nerve terminal labelled with syntaxin. B3. In blue, the Schwann cell labelled 

with S-100 and B4 in red, the nAChRs labelled with α-BTX-TRICT. Scale bar = 10 μm. 

 

In this thesis, we used two strains (Thy1-YFP and C57BL/6J) in order to study 

the synaptic elimination process at the NMJ. The specific approaches used for 

each strain is detailed below. In Thy1-YFP LAL muscles only the label with α-BTX-TRICT 

is needed because they contain the YFP transgene expression whereas in C57BL/6J 

muscles two proteins have to be labelled: the nerve terminal and the nAChRs. 

  

4.4.5.1. PROCEDURE IN B6.Cg-Tg(Thy1-YFP)16Jrs/J MICE 

After LAL isolation, Thy1-YFP LAL muscles were incubated in PBS containing 

a 1/800 dilution of 1µg/ml TRICT conjugated α-BTX (Molecular Probes) for 2h at room 

temperature. After that, three washes of PBS were needed for remove the excess 

of α-BTX. Finally, the muscles were mounted in Mowiol (Calbiochem) with 0.1% of p-

phenylenediamine (Sigma) to extend the labelling. Figure 17 shows a schematic 

diagram of the experimental procedure in Thy1-YFP mice.         

A A1 A2 A3 A4 

B 

B4 B3 B2 B1 
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Figure 17. Procedure in Thy1-YFP mice. In Thy1-YFP mice whose nerve terminal was 

already labelled, it was only necessary to incubate LAL muscles with α-bungarotoxin-

TRICT during 2 hours at room temperature, to label nAChRs. Three washes of PBS were 

needed to remove the excess of α-BTX-TRICT. The last step is mounted the LAL muscle 

with Mowiol and 0,1% of p-phenylenediamine.  

 

When the procedure in Thy1-YFP muscles were done and LALs were 

mounted with Mowiol solution, the preparation was ready to be analyzed. It is 

important to wait until the preparation was dried in order to not lose the sample 

when it is placed in inverted fluorescence microscopy. The figure 18 shows some 

confocal images from Thy1-YFP LAL muscle.   

 

 

 

 

 

Figure 18. Confocal images from Thy1-YFP mice labelled with nicotinic acetylcholine 

receptors (nAChR). Nerve terminal and nAChR labelled. A. Example of multiinervated 

synapses at P7. B. Example of monoinnervated and multiinervated synapses at P9. C. 

Example of single innervated synapse at P15. Scale bar = 10 μm. 

 

Protein Primary antibody Neurotoxin  Fluorochrome 

nAChR - α-BTX TRICT 

A B C 
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4.4.5.2. IMMUNOHISTOCHEMISTRY PROCEDURE IN C57BL/6J MICE 

In this type of mouse, an immunofluorescence was performed on the LAL 

muscles. Figure 19 shows a schematic diagram of the experimental procedure in 

C57BL/6J mice. As shows figure 19, after LAL fixation, the muscles were incubated 

overnight (O/N) at 4ºC with a permeation solution of 4% of BSA and 0.1% of Triton 

X-100 to block the unspecific bindings. Whole mounts of LAL were processed to 

detect the axons with an antibody against 200-kD neurofilament protein (1:1000; 

Sigma) and postsynaptic nAChRs with α-BTX-TRITC (1:800; Molecular Probes). 

Muscles were incubated O/N at 4ºC only with the rabbit antibody against 200-kD 

neurofilament (1:1000; Sigma) in 4% BSA and 0.1% Triton-X. The antibody against 

200-kD neurofilament was widely used in our experiments because is a specific 

antibody for the immunocytochemical localization of neurofilaments with 

molecular weights of 200 kD in cultered cells or tissue preparations (Besalduch et 

al., 2010; Bowerman et al., 2010). Before adding the secondary antibody, it is 

important to make 3 washes of 5 minutes each one with PBS and shaking at room 

temperature. The appropriate secondary antibody (conjugated with Alexa-fluor 

488) donkey anti-rabbit (1:300; Molecular Probes) was incubated for 4h at room 

temperature. The postsynaptic nAChRs were detected by α-BTX conjugated with 

TRICT. After the antibody incubation, the excess of the antibody was removed by 

washing the muscles with PBS. Whole muscles were mounted in Mowiol 

(Calbiochem) with 0.1% of p-phenylenediamine (Sigma).  

 

Figure 19. Immunohistochemistry procedure in C57BL/6J mice. The first step was to make 

a permeation with 4% of BSA and 0.1% of Triton X-100 (O/N at 4ºC). The follow day, it has 

been started the label of the nerve terminal with a dilution of 1/1000 of neurofilament 

(O/N at 4ºC). To eliminate the excess of the antibody, three washes with PBS (5 minutes 

per each wash) were done. The secondary antibody, Alexa 488 (1/300) and the α-

bungarotoxin-TRICT is added (4h at room temperature). Three more washes with PBS 

were needed before mounted the LALs. As Thy1-YFP procedure, the last step is mounted 

the LALs muscle with Mowiol and 0.1% of p-phenylenediamine.  
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As Thy1-YFP LAL muscles, after the whole procedure, muscles could be 

studied by morphological analysis. The result is a NMJ labelled in green showing the 

neurofilament and in red showing the nAChRs. It is possible to merge the two colors 

to see the whole immunolabelled muscle. The figure 20 shows some confocal 

images from C57BL/6J LAL muscle.   

 

 

 

 

 

 

Figure 20. Confocal images by conventional immunohistochemistry (neurofilament and 

nAChR label) from C57BL/6J mice. A. NMJs at P7 where the majority of the synapses are 

multiinnervated. B. NMJs at P9 where some of the synapses remain multiinnervated and 

some of them are monoinnervated. C. NMJs at P15, most of the axons are single 

innervated. Scale bar = 10 μm. 

 

The secondary antibody specificity was tested by an incubation in the 

absence of primary antibody. At least three muscles were used as negative 

controls (see in figure 21). 

      

Figure 21. Negative control by immunohistochemistry in neonatal muscles. In the 

absence of primary antibody, Alexa 488 donkey anti-rabbit does not show any 

unspecific label. Scale bar = 10 μm. 

Protein Primary antibody Secondary antibody Fluorochrome 

Neurofilament Rabbit α-neurofilament Donkey α-rabbit Alexa 488 

Protein Primary antibody Neurotoxin  Fluorochrome 

nAChR - α-BTX TRICT 

A B C 
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     4.5. VISUALIZATION BY FLUORESCENCE MICROSCOPY 

Once the immunohistochemistry was done, NMJs were analyzed using an 

inverted Nikon TE-2000 fluorescence microscope (Nikon, Tokyo, Japan) connected 

to a personal computer running image analysis software (ACT-1, Nikon).  

This fluorescence microscope allowed us to see the different proteins of 

NMJ which were previously labelled by immunohistochemistry or by YFP. When the 

NMJs were studied by fluorescent microscopy each protein could be identified in 

a specific color: nerve terminal in green (figure 22B) and nAChRs in red (figure 22C). 

To see the colocalization of two proteins both images were merged (figure 22A). 

The images obtained were very clear, allowing the counting of the 

number of axons that innervated a muscle fiber as well as the changes on the 

maturation stage of these nAChRs. For illustration, figure 22 shows two 

polyinnervated synapses in developing process. Figure 22B shows the feasibility of 

counting axons and figure 22C, the feasibility of determining the maturation stage 

of the postsynaptic plaque.  

 

 

 

 

 

 

Figure 22. Fluorescence microscopy images of neuromuscular junctions (NMJ) from Thy1-

YFP mice. A. The merge of the two NMJ components: the nerve terminal labelled with 

YFP and the nAChRs labelled with α-BTX-TRICT. B. YFP label shows several synapses: two 

of them with two axons and the other one with one axon. C. nAChRs labelled with α-

BTX-TRICT show two types of maturation stages: on the left the nAChRs are in maturation 

stage 3 (MS3) and on the right the nAChRs are in maturation stage 2 (MS2).  

 

 

 

 

 

A B C 
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     4.6. CONFOCAL MICROSCOPY 

For capturing images of NMJs, were used an inverted Nikon TE-2000 

confocal fluorescence microscope (Nikon, Tokyo, Japan) connected to a personal 

computer running image analysis software (EZ-C1, Nikon).  

High-resolution confocal images were obtained with a 63x oil objective 

(1.4 numerical aperture). Z stacks were obtained at 0.5-μm step size for depths of 

20-40 μm, and additional optical sections above and below each junction were 

collected to ensure that the entire synapse was included.  

By scanning many thin sections through the sample, confocal three-

dimensional reconstructions of labelled axons in these mice permitted visualization 

of the complete arbor of individual motor axons. Using this method, representative 

images were captured in order to demonstrate the morphology of the 

neuromuscular synapses in Thy1-YFP and C57BL/6J mice. Figure 23 shows confocal 

images from P9 C57BL/6J. 

     
 

 

Figure 23. Confocal microscopy images from P9 C57BL/6J mice. A. The merge of the two 

labelled proteins: neurofilament and nAChRs. B. Neurofilament labelled. C. nAChRs 

labelled with α-BTX-TRICT. Scale bar = 10 μm. 

 

 

 

 

 

A B C 
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     4.7. MORPHOLOGICAL ANALYSIS 

In both strains (Thy1-YFP and C57BL/6J), each muscle was analyzed by 

recounting the number of axons which innervate an endplate and by the 

maturation morphology of the nAChRs. The recounting was made randomly and 

blindly. For each muscle was counted a minimum of 100 synapses.  

4.7.1. RECOUNT OF AXON NUMBER  

The number of axons per each endplate was counted. Because of the 

difficulty in determining the exact number of axonal inputs for each nAChR cluster 

when more than two axons converge at the same synaptic site, the NMJs were 

classified into three groups: monoinnervated junctions, doubly innervated 

junctions, and triply or more innervated junctions (figure 24). This classification 

enabled us to calculate two parameters.  

- Axonal input percentage: dividing the number of synapses of 

each group (1 axon, 2 axons and ≥3 axons) by the total number 

of synapses in the preparation and multiplying that result by one 

hundred.  

- Average number of axonal inputs: the display of the three 

percentages of axonal input.  

 

 

Figure 24. Classification of the number of axons in the study of synaptic elimination 

process. A. Represents a motor endplate innervated for one axon. B. Two axons 

innervated the same cluster of nAChRs. C. Three or more axons, in this case, three axons 

innervated the endplate.  Scale bar = 10 μm. 

 

 

A B C 
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4.7.2. MORPHOLOGIC MATURATION OF nAChRs 

During development there is a redistribution of nAChRs that allow us to 

classify the nAChRs in different maturation stages. To determine the effect of 

different treatments on the maturity of nAChR clusters at the NMJ during the period 

in which polyneuronal innervation is being eliminated, the maturation of the clusters 

was divided into four morphological maturation stages (MS1–MS4) on the basis of 

criteria from previous studies of developing mammalian NMJs (Steinbach, 1981; 

Slater, 1982b; Lanuza et al., 2002) (figure 25).  

- MS1: Uniform nAChR oval plaque with an indistinct boundary 

seen in the majority of NMJs at birth. A uniformly distributed 

porosity can be observed within this plaque.  

- MS2: nAChR elongated oval plaque with a few hints of 

inhomogeneities in receptor density. The nAChRs are denser on a 

few narrow ridges within the plaque. 

-  MS3: An oval nAChR plaque with one or more fluorescence-free 

‘holes’. These holes are not innervated.  

- MS4: The oval nAChR areas have been transformed into a more 

mature branched pattern with a moderately convoluted external 

border and high and low receptor density areas. The edge of the 

holes usually has a high density of receptors. 

 

 

 

 

 

Figure 25. Classification of morphological maturation stages (MS1-MS4) of nicotinic 

acetylcholine receptors (nAChR) in the study of synaptic elimination process. MS1. 

Represents a uniform nAChR plaque. MS2. Is characterized for having a few hints of 

inhomogeneities in receptor density. MS3. The emergence of holes is present. MS4. The 

edge of the holes usually has a high density of receptors. Scale bar = 10 μm. 

 

 

MS1 MS2 MS3 MS4 
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All this information was collected in a template (figure 26): basic 

information of the preparations which it has been analyzed, number of axons and 

the stage of maturation of nAChR. Finally, the total number of synapses and the 

percentage of multinnvertation (mentioned above) were noted.   

 
Figure 26. Recount template. Template used to count presynaptic component (1 axon, 

2 axons or 3 or more axons) and postsynaptic component (MS1, MS2, MS3 or MS4). On 

the top of the page fill basic details of the preparation (code, day, age…) and finally, 

fill the total number of synapses and the % of multinnervation.   

  

        4.8. STATISTICS ANALYSIS 

All NMJs visible in their entirety were scored. A minimum of 100 NMJs per 

muscle were analyzed. At least six muscles were studied for each age and 

condition examined. Fisher’s test was applied to compare percentages. The 

criterion for statistical significance was P < 0.05. The significance has been 

represented as following: *, §, ‡ for P < 0.05; **, §§, ‡‡ for P < 0.01 and ***, §§§, ‡‡‡ 

for P < 0.005. The categories were scored and the counting was performed with no 

knowledge of the age or treatment of the animals. The data are presented as 

mean ± SD.  
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IV. RESULTS 
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The results of this thesis have been structured in three chapters. The first 

chapter shows the involvement of individual mAChR subtypes (M1, M2 and M4), AR 

subtypes (A1 and A2A) and TrkB receptor in the control of synapse elimination using 

agonists and antagonists of these receptors. The second chapter refers to the study 

of additive or occlusive effects of the inhibitors of two of these receptor sets, 

mAChR and AR and thus the existence of real cooperation between them in 

synapse elimination at the NMJ. Finally, the third chapter concerns whether the 

mAChR subtypes and the TrkB receptor work together and whether the respective 

pathway inhibitors have any additive or occlusive effects that reflect if there is any 

real cooperation between them in synapse elimination at the NMJ. 

The following table shows the relation between the chapters and the 

content.  

 

 

 

CHAPTER 

 

 

 

CONTENT 

 

 

 

 

 

CHAPTER 1 

 

Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and 

M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-

related kinase B receptor (TrkB) modulate in the developmental 

synapse elimination process at the neuromuscular junction. 
 

 

 

 

 

 

CHAPTER 2 

 

Synergistic action of presynaptic muscarinic acetylcholine 

receptors and adenosine receptors in developmental axonal 

competition at the neuromuscular junction. 
 

 

 

 

 

 

CHAPTER 3 

 

Presynaptic muscarinic acetylcholine receptors and TrkB receptor 

cooperate in the elimination of redundant motor nerve terminals 

during development. 
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This chapter corresponds to the published article (see Appendix I):  

Laura Nadal, Neus Garcia, Erica Hurtado, Anna Simó, Marta Tomàs, Maria 

A. Lanuza, Manel M. Santafe, Josep Tomàs. (2016). Presynaptic muscarinic 

acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 

and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate in the 

developmental synapse elimination process at the neuromuscular junction. 

Molecular Brain 9:67. DOI: 10.1186/s13041-016-0248-9. 

 

1.1. BRIEF INTRODUCTION AND SCOPE 

As described in the introduction, in newborn animals, the skeletal muscle 

fibers are polyinnervated by several motor axons (Ribchester and Barry, 1994) but 

at the end of the axonal competition, the endplates are innervated by a single 

axon. The NMJ has long been used as a model for studying the general principles 

of synapse development in an attempt to understand the synapse elimination 

process (Liu et al., 1994; Nguyen and Lichtman, 1996; Chang and Balice-Gordon, 

1997; Sanes and Lichtman, 1999; Herrera and Zeng, 2003; Nelson et al., 2003; Wyatt 

and Balice-Gordon, 2003; Buffelli et al., 2004). 

Various presynaptic receptors seem to play an important role in the axonal 

competition leading to synapse loss in the NMJ. The involvement of mAChRs in the 

elimination process may allow direct competitive interaction between nerve 

endings through a differential activity-dependent ACh release. It has been 

suggested that this mechanism plays a central role in the elimination of redundant 

neonatal synapses because functional axonal withdrawal can indeed be reversed 

by mAChR, PKC or VDCC block (Santafé et al., 2009a; Tomàs et al., 2011). However, 

local differential effectiveness and differential activity will determine eventual 

success, since an axon that fails at one synapse may be successful at another 

(Keller-Peck et al., 2001), which suggests complex regulation involving other 

receptors and postsynaptic- (and glial cell) derived factors. Both NTR and AR 

belong to leading presynaptic signaling pathways. In the adult NMJ, the activity of 

CHAPTER 1. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 

and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-

related kinase B receptor (TrkB) modulate in the developmental synapse 

elimination process at the neuromuscular junction. 
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one of these receptors can modulate a given combination of spontaneous, 

evoked and activity-dependent release conditions and a close dependence 

between them exist (Tomàs et al., 2014). These receptors and their intracellular 

signaling may help to refine the molecular and structural organization of the 

newborn synapses so that they can acquire their mature form. In this chapter, it has 

been shown the involvement of individual mAChR subtypes (M1, M2 and M4), AR 

subtypes (A1 and A2A) and TrkB receptor in the control of synapse elimination using 

agonists and antagonists of these receptors.  

 

1.2. RESULTS 

1.2.1. POSTNATAL ELIMINATION OF NERVE TERMINALS 

1.2.1.1. Normal evolution of postnatal polyneuronal innervation in 

the NMJ 

Over the first several weeks of postnatal life, rodent motor axons remove 

branches. Each neuromuscular junction undergoes a transition from innervation by 

multiple converging axons to innervation by only one axon. The number of muscle 

fibers innervated by an axon decreases substantially and all but one input is 

eliminated from each fiber.  

The figure 27 shows the average axonal connections in the first 30 

postnatal days (P). The average were counted in LAL muscle preparations from 

B6.Cg-Tg(Thy1-YFP) –from now YFP- and C57BL/6J mice. It has been represented 

also in this figure previous data (Lanuza et al., 2001, 2002; Santafé et al., 2001; 

Nelson et al., 2003) from Sprague-Dawley (SD) rats to emphasize similarities in 

rodents.  

The results show that at P0, the average number of axonal connections in 

the three different models is 3, whereas at P7 is around 2 in mice and slightly less in 

rats. At P9, the average of the three animal models is almost the same (around 1,5-

1,75) and matches at P30 when the average reach 1.  
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Figure 27. Postnatal evolution of polyneuronal innervation. Comparison of the results of 

axon counts in confocal immunohistochemistry LAL preparations of YFP and C57BL/6J 

mice and Sprague-Dawley (SD) rats. 

 

In order to know the effect of the subcutaneous injection procedure on 

neuromuscular junction innervation, the results between YFP mice injected with PBS 

and YFP control mice (not injected) were compared. The histogram in figure 28 

shows the percentage of singly-, dually- and triply (or more)-innervated synapses in 

YFP animals at the considered postnatal days without any experimental 

manipulation (control), and also at P7, P9 and P15 after two (days 5, 6), four (days 

5-8) and ten (days 5-14) subcutaneous PBS applications respectively (control PBS).  

The values were shown that neither any significant difference between PBS 

and non-PBS preparations is observed (p>0.05) nor the drugs diluted with DMSO did 

not affect any of the parameters studied. About half of NMJs become 

monoinnervated at the end of the first postnatal week and almost all of them at 

P30.  
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Figure 28. Injection effect in % neuromuscular junction (NMJ). Control: percentage of 

singly-, dually- and triply- (or more) innervated synapses in YFP animals on the postnatal 

days studied (P5, P7, P9, P10, P15 and P30) without any experimental manipulation (no 

injected). Control PBS:  percentage of singly-, dually- and triply- (or more) innervated 

synapses in YFP animals at P7, P9 and P15 after two, four and ten daily subcutaneous 

PBS applications respectively. No differences are observed between PBS and non-PBS 

preparations (P>0.05). 
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 Moreover, all the terminal branches of individual labelled motor axons 

were studied by montaging confocal image stacks. Figure 29 shows a fragment of 

the terminal innervation by confocal immunofluorescence on the LAL muscle with 

mono - and polyinnervated NMJ from YFP and C57BL/6J mice at P9.  In all cases, 

motor axons projected to a circumscribed subregion of the endplate band. 

YFP mice express axons in green and nAChRs were labelled with α-BTX-

TRICT whereas in C57BL/6J mice were labelled with neurofilament in order to label 

the nerve terminal and with α-BTX-TRICT to detect the nAChRs. Both mice allowed 

us to study nerve terminals and nAChRs to perform the recounting procedure.  

At P9, the process of synaptic elimination is ongoing, thus the progressive 

transition from multiple to single innervation was shown. Thus, there was gradual loss 

of multiple innervation, so that some neuromuscular junctions remain multiply 

innervated for nearly two postnatal weeks, while other junctions lose their multiple 

innervation in several days. This variation in the time to completion was probably 

because the loss of multiple innervation was also gradual in another sense: each 

individual junction gradually loses multiple innervation. 

            

Figure 29. Confocal reconstruction of neuromuscular junctions in a Levator auris longus 

muscle from YFP and C57BL/6J mice at P9. Note that the YFP containing axons (green) 

project to all junctions and completely occupy the high-density nAChR clusters (red, 

labeled with rhodamine α-bungarotoxin), indicating that all the motor axons express YFP. 

The same label could be seen in C57BL/6J immunohistochemistry. Scale bar: 10 μm. 
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 The figure 30 shows some representative confocal 

immunofluorescence images of singly- and polyinnervated NMJ from YFP 

(autofluorescent axons) and C57BL/6J mice (axons stained with anti-neurofilament 

fluorescent antibody). The pictures show the feasibility of counting with precision 

the axon number in both preparations. Neuromuscular junctions innervated by one 

axon at different stages of development are shown in figure 30A, by two axons in 

figure 30B and by three or more axons in figure 30C.  

 

Figure 30. Confocal immunofluorescence images. The picture shows some 

representative confocal immunofluorescence images of one axon (A), two axons (B) 

and three or more (C) from YFP and C57BL/6J mice. Scale bar: 10 μm. 
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1.2.1.2. Stimulation of the mAChRs. Effect of oxotremorine  

Figure 31 shows the percentage of singly-, doubly- and triply (or more) 

innervated NMJs in the untreated YFP control mice and after 2 (P7), 4 (P9) and in 

some cases 10 (P15) applications (one application every day after P5) of the 

mAChR agonist oxotremorine (OXO) and the antagonists atropine (AT), 

pirenzepine (PIR), methoctramine (MET) and muscarinic toxin 3 (MT3). The potent 

and well characterized unselective agonist OXO was used. Two subcutaneous 

applications (at P5 and P6) on the YFP LAL muscle surface results in a significant 

acceleration at P7 of the axonal elimination process (figure 31A; n=820 NMJs, N= 4 

mice), because of the increase in monoinnervated NMJs (p<0.005) and the 

reduction in dual (p<0.05) synapses. It seems that the muscarinic mechanism, when 

stimulated, accelerates the axonal elimination rate and transition to the 

monoinnervation state.  

However, four applications (P5-P8) of OXO (figure 31B; n=865 NMJs, N= 4 

mice) do not lead to any significant change at P9 (p>0,05). This indicates that the 

effect of muscarinic stimulation diminishes and tends to peak close to the normal 

values of axonal elimination around four days after stimulation has begun. 

Therefore, there is a window around P5-P6 in which mAChR can be forced to 

accelerate synapse elimination. However, exogenous stimulation with the agonist 

only reveals that muscarinic signaling has the potential to accelerate postnatal 

axonal disconnection but does not explain what the tonic muscarinic control is like 

in a normal situation. Therefore, it has been investigated how blocking the M1, M2 

and M4 mAChR subtypes in toto or selectively (those subtypes) observed in 

functional developing NMJ, (Santafé et al., 2003, 2004, 2008; Garcia et al., 2005) 

can affect synapse elimination. 

 

1.2.1.3. Unselective inhibition of mAChRs. Effect of atropine  

Figure 31A shows that two subcutaneous applications of AT (at P5 and P6) 

in the YFP LAL muscles analyzed at P7 significantly reduce the percentage of triple 

junctions, increase the percentage of dual junctions and have no effect on the 

percentage of single junctions (Control PBS (n=1533 NMJs, N= 6 mice): 1 axon: 

22.69% ± 1.04%; 2 axons: 50.20% ± 2.75%; 3 or more axons: 27.11% ± 3.18%. AT 

application (n=1343 NMJs, N= 3 mice): 1 axon: 23.53% ± 3.18% (p>0,05); 2 axons: 

60.78% ± 2.36% (p<0,01); 3 or more axons: 15.69% ± 0.79% (p<0,05)). 
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Thus, the rate of transition from three to two speeds up but the overall 

elimination process does not continue to the point of significantly increasing 

monoinnervation. This indicates that AT has a dual effect: namely, it increases axon 

loss in triple junctions and reduces loss in double NMJs. It seems that NMJs or nerve 

terminals of different levels of maturity have different sensitivities and respond 

differently to this potent muscarinic pan-inhibitor.  

Daily AT applications between P5 and P8 lead to a significant retardation 

of axonal elimination at P9 (figure 31B; n=1032 NMJs, N= 4 mice) with persistent 

polyinnervation due to the higher percentage of dual junctions (p<0,005) the 

corresponding decrease in monoinnervated synapses (p<0,005) and an almost 

normal number of triple junctions (p>0,05). This clearly indicates that blocking the 

mAChR can persistently obstruct the two-to-one transition of the elimination 

process. However, unlike the OXO effect (which tends to disappear at P9 after 

accelerating elimination at P7), the effect of AT seems to be maintained 

throughout the period P5-P9 at least in relation to the two-to-one transition. It seems, 

then, that in normal conditions, the presynaptic muscarinic mechanism increases 

the rate of axonal loss at least in dual junctions in the period P5-P9 and that this 

effect can be increased at P7 by using an exogenous agonist. 

 

1.2.1.4. Selective block of the mAChRs 

Previously, it has been shown that unselective inhibition of mAChRs studied 

by AT induced an acceleration of the transition three-to-two axons at P7 and a 

retardation of axonal elimination at P9. How are the various mAChR subtypes that 

operate in the postnatal NMJ (M1, M2 and M4) involved individually in axonal 

elimination? It has been selectively blocked M1 (PIR), M2 (MET) and M4 (MT3) and 

observed the NMJ at P7 (daily applications on the LAL surface at P5 and P6, figure 

31A) and P9 (applications between P5-P8, figure 31B). At P7 two subcutaneous PIR 

applications significantly reduced the percentage of triple (p<0,005) and dual 

junctions (p<0,05) and greatly increased the percentage of single junctions 

(p<0,005, n=915 NMJs, N= 4 mice) . Thus, both the three-to-two and the two-to-one 

rates of transition accelerated considerably and the overall elimination process 

speeded up. This may indicate that in the normal situation the role of M1 is to slow 

elimination down because when it is uncoupled from PIR, the elimination process 

accelerates. Interestingly, the M4 blocker MT3 has almost exactly the same effect 

as the M1 blocker PIR (n=895 NMJs, N= 4 mice), whereas the M2 blocker MET does 
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not have a significant effect at P7 after the two subcutaneous applications (p>0,05, 

n=1012 NMJs, N= 4 mice). As an additional control, in P7 C57BL/6J animals treated 

with MET the same result was found (Control PBS (n=1533 NMJs, N= 6 mice): 1 axon: 

22.69% ± 1.04%; 2 axons: 50.20% ± 2.75%; 3 or more axons: 27.11% ± 3.18%. MET 

application (n=911 NMJs, N= 3 mice): 1 axon: 22.22% ± 2.56% (p>0,05); 2 axons: 

50.00% ± 2.74% (p>0,05); 3 or more axons: 27.78% ± 2.38% (p>0,05)). Thus, at P7 the 

ensemble M1/M4 seems to be involved in a mechanism that delays elimination 

because when it is blocked the percentage of monoinnervated junctions 

increased and caused a fast three-to-one transition. 

Nevertheless, how can it be explained that at this time (P7) the two-to-one 

transition is accelerated by the selective blockers PIR and MT3 (and not affected 

by MET), but that when all mAChR subtypes were blocked with AT this transition was 

partially delayed? Blocking the whole ensemble of subtypes with AT has a 

somehow different effect than the individual effects of mAChR subtypes. This 

apparent contradiction observed with the effects of selective and unselective 

pharmacological muscarinic inhibitory substances at P7 seems to suggest the 

existence of other confluent signaling pathways that take part in the process (see 

below). 

However, daily applications of these substances for four days (P5-P8) lead 

to a much more clearly defined situation at P9 (figure 31B). As stated above, four 

AT applications delay elimination, maintain the number of dual junctions and 

decrease the number of singly-innervated NMJ, which indicates that the two-to-

one transition is slowing down. The same effect (even greater because of the 

considerable delay in the three-to-two transition) is obtained by blocking M1 (PIR, 

p<0,005, n=1293 NMJs, N= 3 mice) and M2 (MET, p<0,005, n=976 NMJs, N= 4 mice) 

but not in this case with the M4 blocker MT3 (p>0,05, n=1177 NMJs, N= 4 mice). As 

an additional control, in P9 C57BL/6J animals treated with MT3 the same result was 

demonstrated (Control PBS (n=1352 NMJs, N= 5 mice): 1 axon: 48.17% ± 4.54%; 2 

axons: 36.73% ± 2.76%; 3 or more axons: 15.10% ± 4.97%. MT3 applications (n=906 

NMJs, N= 4 mice): 1 axon: 51.2% ± 5.77% (p>0.05); 2 axons: 39.32% ± 2.53% (p>0.05); 

3 or more axons: 9.48% ± 2.32% (p>0.05)). These data indicate that at this point in 

the elimination process, both M1 and M2 subtypes cooperate in favoring the full 

sequence of synapse elimination. 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
Muscarinic, adenosine and tropomyosin-related kinase B receptor modulate the neuromuscular 
developmental synapse elimination process 
Laura Nadal Magriñà 



 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 31. Changes in polyneuronal innervation of the neuromuscular junction after 

stimulation and inhibition of the mAChRs. The figure shows the percentage of singly-, 

dually- and triply- (or more) innervated NMJs in the untreated YFP control mice (exposed 

to PBS applications) and after 2 (P7 in A), 4 (P9, in B) and in some cases 10 (P15, in C) 

applications (one application every day after P5) of the mAChR agonist oxotremorine 

(OXO) and such antagonists as atropine (AT), pirenzepine (PIR), methoctramine (MET) 

and muscarinic toxin 3 (MT3). * p<0.001, ** p<0.01, *** p<0.05. 
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To investigate the possible persistence of the mAChR effect throughout 

the period of synapse elimination, daily applications of PIR and MET (the M1 and 

M2 selective antagonists that are effective at modulating axonal elimination at P9) 

between P5 and P15 (in normal conditions almost 90% of NMJs were 

monoinnervated at P15) were injected. In spite of the continued presence of 

selective inhibitors, it has been found that the elimination process came to its 

normal conclusion by the end of the second postnatal week (figure 31C; (p>0,05, 

PIR: n=924 NMJs, N= 3 mice; MET: n=870 NMJs, N= 3 mice)).  

This reinforces the suggestion that several signaling mechanisms between 

the endings in competition cooperate (and substitute each other) to resolve the 

correct synaptic connection in a multifactorial process. 

 

1.2.1.5. Other signaling mechanisms involved in axonal loss 

Several signaling pathways connect the cells that make synapses thus 

involving of different types molecules and receptors could be presented in the 

axonal loss process. Previously, the existence of a mechanism based on mAChR 

coupled to PKC and VDCC was indicated. However, there were other types of 

receptors that could be implicated. Here, it has been studied the possible 

involvement of adenosine receptors and neurotrophin receptors (here the 

representative TrkB receptor for BDNF and NT4) in the complex period of axonal 

elimination around P7-P9 (figure 32).  

To the LAL muscle, it has been subcutaneously applied the AR inhibitor 

8SPT, the AR agonist ADO and the TrkB blocking pathway agent TrkB-Fc to sequester 

endogenous BDNF/NT4 neurotrophins. With the 8SPT (n=920 NMJs, N= 4 mice) and 

TrkB-Fc (n=1113 NMJs, N= 4 mice) blockers at P7 it has been observed a clear 

acceleration in the three-to-two rate (8SPT: p<0,005; TrkB-Fc: p<0,05) that was very 

similar to the acceleration in the two-to-one rate. These substances accelerate 

axonal elimination on the NMJ and, therefore, the physiological role in normal 

conditions of the AR and TrkB pathways at P7 seems to delay the axonal loss 

process. This is confirmed for the AR because exposure to the physiological agonist 

ADO results in a significantly higher number of triple junctions and a significant 

reduction in the number of dual junctions (p<0,005, n=923 NMJs, N= 4 mice).  
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This indicates an ADO-induced retardation of axonal elimination. Which 

AR subtypes are involved in the ADO effect? It has been analyzed axonal 

elimination after selectively blocking A1 with DPCPX (n=1160 NMJs, N= 4 mice) or 

A2A inhibition with SCH-58261(n=963 NMJs, N= 4 mice) (figure 32A). The data show 

that axonal loss (the full three-to-one transition) is accelerated by both inhibitors 

(p<0,005), which indicates that in normal conditions without inhibition both A1 and 

A2A are associated with delaying loss. 

Interestingly, at P9, neurotrophin signaling seems to reverse their coupling 

to the axonal loss process because TrkB-Fc (acting between P5-P8) considerably 

delays elimination (resulting in more dual and fewer monoinnervated NMJ; 

p<0,005, n=863 NMJs, N= 4 mice), which indicates that in a normal situation 

BDNF/NT4 mediators change their role and accelerate elimination, as has been 

described above for the muscarinic mechanism.  

At P9, the purinergic mechanism also seems to tonically accelerate axonal 

elimination to the maximum rate because the AR pan-inhibitor 8SPT delays the 

process (an effect of the A1 and A2A, figure 32B; n>900 NMJs, N= 4 mice in each 

case) with no effect of the agonist ADO (p>0,05, n=908 NMJs, N= 4 mice).  

Therefore, it seems that AR may behave biphasically in the critical period 

between 5-9 postnatal days. An initial delay in axonal loss at P7 (an A1 and A2A 

mediated effect which can be reinforced by exogenously added ADO) is followed 

by an A1 and A2A mediated tonic acceleration at P9. To sum up, the two receptor 

sets (TrkB and AR) initially delay (P7) axonal loss but promote axonal disconnection 

at the beginning of the second postnatal week (P9) as mAChRs do.  
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Figure 32. Involvement of ARs and TrkB receptor in axonal elimination. The figure shows 

the percentage of the singly-, dually- and triply- (or more) innervated NMJs in the YFP 

control mice exposed to PBS, and after 2 (P7 in A) and 4 (P9, in B) applications (one 

application every day after P5) of the TrkB blocking pathway agent TrkB-Fc to sequester 

endogenous BDNF/NT4 neurotrophins and the AR pan-inhibitor 8SPT and the AR agonist 

ADO. It has been also studied axonal elimination after selectively blocking A1 with 

DPCPX and inhibiting A2A with SCH-58261. The control for these selective inhibitors was 

PBS + DMSO (not shown in the figure) which shows no differences from PBS used as a 

control by itself. * p<0.001, ** p<0.01, *** p<0.05. 
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1.2.2. POSTSYNAPTIC RECEPTORS CLUSTER DURING POSTNATAL 

MATURATION 

It has been analyzed the morphological maturation of the postsynaptic 

apparatus in the same experimental conditions as those in the previous study on 

axon loss. The axonal elimination process was accompanied by changes in the 

morphology of the nAChR clusters in the postsynaptic component. On the basis of 

criteria from previous studies on developing mammalian NMJs (Steinbach, 1981; 

Slater, 1982a, 1982b; Bewick et al., 1996; Lanuza et al., 2002; Garcia et al., 2011), 

the following maturation stages (MS1–MS4) were defined (figure 33). As normal 

maturation takes place, changes in the nAChR distribution transform the uniform 

nAChR oval plaque with an indistinct boundary seen at birth (MS1) into an 

elongated plaque with a few hints of heterogeneities in receptor density (MS2). This 

then changes into clusters with small areas of low nAChR density appearing as 

holes (MS3) that were not innervated. The oval nAChR areas have been 

transformed into a more mature branched pattern with a moderately convoluted 

external border and high and low receptor density areas (MS4). The edge of the 

holes usually has a high density of receptors. 

 

 

 

 

 

Figure 33. Morphological maturation changes of nicotinic acetylcholine receptors 

(nAChR). The axonal elimination process is accompanied by changes in the morphology 

of the nAChR clusters in the postsynaptic membrane. The following maturation stages 

(MS1–MS4) were defined. MS1: Uniform nAChR oval plaque with an indistinct boundary 

seen in the majority of NMJs at birth. A uniformly distributed porosity can be observed 

within this plaque. MS2: nAChR elongated oval plaque with a few hints of 

inhomogeneities in receptor density. The nAChRs are denser on a few narrow ridges that 

occur within the plaque. MS3: An oval nAChR plaque with one or more fluorescence-

free ‘holes’. These holes are not innervated. MS4: The oval nAChR areas have been 

transformed into a more mature branched pattern with a moderately convoluted 

external border and high and low receptor density areas. The edge of the holes usually 

has a high density of receptors. Scale bar: 10 μm. 
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In figure 34, it has represented the percentages of the MS1-MS4 nAChR 

clusters plotted at days P5-P15 according to the nAChRs morphology described in 

figure 33. At P5, most of the receptors (78,18%) were in MS1 while 20,52% were in 

MS2 and only 1,30% were in MS3. At P7, as the maturation advance, the number of 

MS1 receptors decrease significantly and the largest number of the receptors 

(87,40%) were in MS2. At P9, the number of MS2 decrease (74,36%) in order to 

increase the number of receptors in MS3 (20,34%). At P10, the values were quite 

similar as P9 since it was only one day later. At P15, the major number of receptors 

were in MS4 (77,55%) and few receptors in MS3 (19%).  

 

 

 

 

 

 

 

 

 

 

Figure 34. Postnatal morphological maturation of the postsynaptic apparatus. The graph 

shows the percentages of the MS1-MS4 nAChRs clusters plotted in the interval P5-P15 

days. At P5, the majority of the nAChRs clusters are in maturation stage 1 (MS1). At P7 

and P9, as the maturation advance, the number of nAChRs in MS1 decrease while the 

number of nAChRs in maturation stage 2 (MS2) and maturation stage 3 (MS3) increase. 

At P15, the larger part of nAChRs are in maturation stage 4 (MS4).  

 

1.2.2.1. mAChRs influence on the postsynaptic maturation 

On the other hand, it has been studied the agonism and antagonism of 

mAChRs on the postsynaptic component and the receptors were classified 

following the four maturation stages (MS1, MS2, MS3 and MS4) describe above.  
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 Figure 35 shows the percentage of MS1-MS4 clusters in the NMJ of the 

untreated YFP control mice (PBS) and after 2 (P7, figure 35A), 4 (P9, figure 35B) and 

10 (P15, figure 35C) applications of the muscarinic substances considered. After 

the mAChR antagonists AT, PIR and MET (MT3 does not unambiguously modify the 

postsynaptic clusters) had been applied for two days, at P7 it has been found 

changes in the morphological maturation of the postsynaptic apparatus. 

Generally there was a high percentage of differentiated MS3 clusters (p<0,005) and 

fewer MS1 and MS2 (p<0,005; figure 35A). The fact that postsynaptic maturation 

accelerates after muscarinic inhibition supports the notion that in normal conditions 

(without inhibition) the M1 and M2 subtypes have a tonic role and delay maturation. 

Because OXO does not have a definite significant effect (p>0,05; figure 35A), the 

tonic muscarinic effect may operate at close to its maximum rate. 

At P9, the selective muscarinic drugs PIR, MET and MT3 accelerated cluster 

maturation, and produced fewer MS1 and more MS3 clusters (for MS3: PIR 

(p<0,005); MET i MT3 (p<0,05); even MS4 for MT3; see figure 35B). This also indicates 

that at P9 the M1, M2 and M4 subtypes are involved in delaying the normal 

maturation process in normal conditions. However, AT does not change the normal 

percentage of the cluster subtypes (though the MS3 subtype is also innervated by 

2–3 axons, p>0,05) and OXO moderately accelerates maturation (by reducing MS1 

(p<0,005) and increasing the MS2 subtype, p<0,01). Thus, the use of the 

subtypeunselective drugs AT and OXO reveal the complex involvement of the 

mAChRs in the morphological maturation process of the postsynaptic receptor 

clusters. The coincident contribution of other signaling will be considered below.  

At P15, the selective M1 and M2 muscarinic inhibitors, and especially with 

PIR, it has been observed that postsynaptic maturation seems to be slower and 

partially retained at the MS3 subtype (p<0,005; figure 35C). 

Thus, as far as postsynaptic clusters are concerned, in normal conditions 

mAChRs tend to produce some delay in maturation throughout the P5-P9 period 

and this effect is extended at P15 when axonal elimination is almost complete 

whether muscarinic modulators are used or not. 
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Figure 35. Maturation of postsynaptic nicotinic acetylcholine receptor (nAChR) clusters 

after stimulation and inhibition of mAChRs. Percentage of MS1-MS4 clusters in the NMJ 

of untreated YFP control mice (exposed to PBS), and after 2 (P7, in A), 4 (P9, in B) and 10 

(P15 in C) applications of the muscarinic substances considered: OXO, AT, PIR, MET and 

MT3. * p<0.05, ** p<0.01, *** p<0.005. 
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Figures 36A, B and C also show the percentage of MS3 clusters 

(postsynaptic clusters in advanced morpholocical maturation) with one, two or 

three (or more) axons for each day. This percentage can be taken as an indication 

of the correspondence between pre- and postsynaptic maturation. 

At P7, (figure 36A) AT, PIR and MET increased significantly the number of 

MS3 multiinnervated. For instance, AT increase two times the MS3 innervated by 

two axons respect PBS (p<0,005). The number of NMJs innervated by one axon in 

MS3 clusters decreased in AT (p<0,005), PIR (p<0,05) and MET (p<0,005) 

experiments.  

At P9, (figure 36B) many MS3 (for AT, PIR and MET experiments) were 

innervated by 3 axons. PIR and MET antagonists (p<0,005) and AT antagonist 

(p<0,05) induced that a large number of NMJs still innervated by three axons while 

the postsynaptic apparatus was maturating and becoming in MS3. Moreover, AT, 

PIR and MET experiments decrease the number of MS3 innvervated by one axon 

(p<0,005). However, in MT3 experiments the number of MS3 clusters does not have 

a definite significant effect (p>0,05).  

At P15 (figure 36C), most MS3 are already monoinnervated in the 

presence of PIR (p<0,01) and MET and AT whereas some of these MS3 are dually- 

inntervated in the presence of PIR (p<0,01) and MET (p<0,05). 
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Figure 36. Correspondence of pre- and postsynaptic maturation in the MS3 clusters after 

stimulation and inhibition of the mAChRs. For each day considered (P7 in A, P9 in B and 

P15 in C) the figure shows the percentage of MS3 clusters (the oval nAChR plaques with 

fluorescence-free holes that mature at a faster rate) with one, two and three or more 

axons as an indication of the appropriate correspondence of the pre- and postsynaptic 

maturation. * p<0.05, ** p<0.01, *** p<0.005. 
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As is shown in figure 36, many MS3 (for AT, PIR and MET experiments) are 

innervated by 2-3 axons as they were at P7. Thus, a disconnection between the 

maturation of the presynaptic and postsynaptic component is appreciated. In LAL 

muscle which were injected with MET (M2 antagonist), it has been observed that 

many of MS3 clusters were still innervated by 2-3 axons (figure 37). Thus, 

polyinnervated axons are in MS3, meaning an acceleration of the postsynaptic 

maturation. This phenomenon could indicated that there is some imbalance in the 

appropriate pre- and postsynaptic maturation. The figure 37 shows two examples 

of a still polyinnervated almost mature MS3 cluster from an YFP P7 muscle.  

 

 

 

 

 

 

 

 

 

 

Figure 37. Examples of polyinnervation in MS3 clusters from an YFP P7 muscle. The pictures 

show two examples of a still polyinnervated almost mature cluster. A. The merge of the 

YFP and α-BTX-TRICT. B. The YFP label. C. α-BTX-TRICT label exhibits the disposition of 

nicotinic acetylcholine receptors (nAChRs). The flashes indicate the presence of holes 

indicating that the receptors are in maturation stage 3 (MS3). Scale bar: 10 μm. 
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1.2.2.2. Other signaling mechanisms involved in postsynaptic 

maturation 

Figure 38A is shown that after two days of using TrkB-Fc to sequester 

endogenous BDNF/NT4, nAChR maturation was delayed at P7 because of the 

persistence of many MS1 clusters (p<0,005). This indicates that the normal 

stimulation of the TrkB pathway promoted postsynaptic maturation at around P7. 

This tendency was reversed at P9 after four days of exposure to TrkB-Fc because of 

the clear increase in the MS3 subtype with respect to the untreated control (p<0,05; 

figure 38B).  

With regard to the AR pathway, at P7 it has been found that the 

unselective antagonist 8SPT had no effect on the maturation of postsynaptic 

clusters (p>0,05; figure 38A) although when 8SPT was applied in the period P5-P8 

(observation at P9, figure 38B) MS2 clusters increased and MS1 and MS3 clusters 

decreased, which indicates some delay in the transition from MS2 to MS3. Thus, AR 

in normal conditions without inhibition can accelerate maturation somewhat 

during the P7-P9 period. Interestingly, exposure of the LAL muscle to the agonist 

ADO does not unambiguously change the normal distribution of the clusters at P7 

(although it decreases MS3 slightly and a number of these clusters are innervated 

by three or more axons [p<0,01; figures 38A and 39A] and P9 (although there is a 

slight decrease in MS1; p<0,01). This indicates that the tonic effect of the AR 

manifested by using 8SPT can not be clearly changed with exogenously added 

agonist. Which AR subtypes are involved in the tonic effect of endogenous ADO? 

It has been analysed the maturation of nAChR clusters after selective block of A1 

with DPCPX or A2A block with SCH-58261. Our data indicate that blocking A1 at P7 

and both A1 and A2A at P9 delays the maturation of normal clusters meaning that 

both receptor subtypes can accelerate postsynaptic maturation in normal 

conditions. 

Ten applications (one application every day after P5) of TrkB-Fc reveal 

some delay of the postsynaptic maturation at P15 (increased MS3 and less MS4 

clusters, figure 38C). Thus, the TrkB pathway seems to have a complex effect on 

postsynaptic maturation (accelerated at P7, delayed at P9 and accelerated once 

again thereafter). 
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Figure 38. Involvement of the ARs and TrkB receptor in the morphological maturation of 

the postsynaptic apparatus. The figure shows the percentage of the MS1-MS4 clusters in 

the NMJ of the untreated YFP control mice (exposed to PBS), and after 2 (P7 in A) and 4 

(P9, in B) applications (one application every day after P5) of the TrkB blocking chimera 

TrkB-Fc, the AR pan-inhibitor 8SPT and the AR agonist ADO. Axonal elimination after 

selectively blocking A1 with DPCPX and inhibiting A2A with SCH-58261 were studied. * 

p<0.05, ** p<0.01, *** p<0.005. 
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Figures 39A, B and C is also shown the percentage of MS3 clusters 

(postsynaptic clusters in advanced morpholocical maturation) with one, two or 

three (or more) axons for each day. This percentage can be taken as an indication 

of the correspondence between pre- and postsynaptic maturation. 

Figures 39 shows the percentage of MS3 clusters after stimulation and 

inhibition of the ARs by 8SPT and ADO and the selective antagonists of adenosine 

subtypes receptors: DPCPX and SCH-58261. On the other hand, the percentage of 

MS3 clusters were tested after inhibition of TrkB pathway by the antagonist TrkB-Fc 

chimera.  

Concerning AR, many of these MS3 clusters are polyinnervated at P7 

(figure 39A). For instance, DPCPX experiment was shown a large number of MS3 

clusters innervated by two axons (p<0,005). However, only 8SPT experiments remain 

polyinnervated with two or three axons at P9 (p<0,005; figure 39B). At P15, 

muscarinic 8SPT antagonist had no effect on the maturation of postsynaptic 

clusters (p>0,05; figure 39C). 

TrkB-Fc chimera had not shown any effect in MS3 clusters at P7 (figure 39A). 

At P9, the number of MS3 clusters innervated by three or more axons increased 

significantly (p<0,005) whereas the number of MS3 clusters innervated by one axon 

decreased (p<0,005). As happened in AR, TrkB-Fc chimera could not modulate the 

number of MS3 clusters at P15 (p>0,05; figure 39C). 
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Figure 39. Correspondence of pre- and postsynaptic maturation in the MS3 clusters after 

stimulation and inhibition of the AR and inhibition of the TrkB receptor pathway. For each 

day considered (P7 in A, P9 in B) the figure shows the percentage of MS3 clusters with 

one, two and three or more axons as an indication of the appropiate correspondence 

of the pre- and postsynaptic maturation. * p<0.05, ** p<0.01, *** p<0.005. 
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The diagram in figure 40 is a graphic representation for sum up the 

influence of the mAChRs, and the AR and TrkB receptors on postnatal axonal 

elimination and postsynaptic maturation.  

At P7, mAChRs accelerate the process of synaptic elimination, in 

concrete, the transition of two axons to one axon. On the postsynaptic site, M1 and 

M2 receptors delay the maturation of the nAChRs. Both adenosine receptors inhibit 

the synaptic elimination process, for instance, the transition of three axons to one 

axon. Moreover, A1 accelerate the potsynaptic maturation. TrkB seems to 

accelerate the process of the postsynaptic element and delay the process of the 

presynaptic site (three axons to one). 

At P9, M1 and M2 accelerate the process otherwise M1, M2 and M4 delay 

the process of the postsynaptic site. A1 and A2A accelerate the presynaptic and 

postsynaptic maturation. Finally, TrkB accelerate the presynaptic monoinnervation 

and delay the postsynaptic nAChRs maturation.  

In summary, TrkB and AR delay axonal elimination at P7 and promote 

axonal disconnection at the beginning of the second postnatal week (P9) as 

mAChRs do. 

 

Figure 40. Graphic representation of the influence of the mAChRs, ARs and TrkB receptor 

on postnatal axonal elimination and synaptic maturation. On the left of the image there 

are the summary of the results at P7 and on the right of the image at P9. The thin line 

indicates the presynaptic effect whereas the thick line the postsynaptic effect. Green 

means a hasten in the synaptic elimination process and red a delay on it.  
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1.3. DISCUSSION 

1.3.1. mAChRs IN THE POSTNATAL ELIMINATION OF NERVE TERMINALS 

 Although there is not agreement about whether all mAChR 

subtypes are present in the NMJ (Garcia et al., 2005; Wright et al., 2009), some of 

these receptors play a role in ACh release both during development (Santafé et 

al., 2001, 2007a, 2009a) and in the adult (Santafé et al., 2004, 2005). In P6-P7 mice, 

it has been observed that M1 and M4 subtypes are involved in a mechanism that 

delays axonal elimination. However, the action of all muscarinic receptors as a 

whole indicates that the muscarinic mechanism increases the rate of axonal loss in 

dual junctions and, therefore, the final transition to the monoinnervation. It seems 

that NMJs with different maturation levels have different sensitivities to muscarinic 

regulation. The relative levels of these receptors or differences in turnover rate may 

contribute to the different effects observed. Using Western blotting, it has been 

observed that in the adult, M1, M2, M3 and M4 receptors are more abundant than 

in the newborn (Garcia et al., 2005). In fact, changes in the expression of muscarinic 

receptors during development have been described in embryonic chick heart and 

retina (McKinnon and Nathanson, 1995), in carotid body, petrosal and superior 

cervical ganglion of the cat (Bairam et al., 2006) and in rat brain (Tice et al., 1996). 

In addition, there are differences in the internalization and turnover of the mAChR 

family members (Reiner and Nathanson, 2012; Ockenga and Tikkanen, 2015) and 

endocytosis may favor the coupling of the receptors to different signal transduction 

cascades (Pierce et al., 2001). 

However, the M1-M2 subtype pair (in substitution of the M1-M4 pair) 

cooperate to favor the full sequence of synapse elimination at P9 (the three-to-

one axon transition). The delayed two-to-one transition induced by AT at P7 (which 

reveals accelerated axonal elimination in normal conditions without the inhibitor) 

may be interpreted as an early manifestation of the consistent mAChR-modulated 

axonal loss that is fully manifested at P9. The muscarinic mechanism appears to 

operate at close to maximum capacity and, therefore, may not be able to 

increase its efficacy beyond P7 with agonists like OXO. Interestingly, in spite of the 

continued presence of the M1 and M2 inhibitors, the elimination process comes to 

its normal conclusion at the end of the second postnatal week (P15). This suggests 

that other signaling mechanisms help to resolve the correct synaptic connectivity. 

Alternatively, M1 and M2 signaling may be not required at all for the final step of 

axonal elimination because the receptor inhibitors produce only transient 
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perturbations in elimination but axon loss is completed normally around P15. Our 

interpretation is that all considered receptors (see later) intervene in modulating 

the conditions of the competition between nerve endings, possibly helping to 

determine the winner or the losers but, thereafter, the time and conditions of the 

final elimination would occur with some autonomy. In summary, the results show 

that a tonic muscarinic mechanism initially delays axonal elimination (a selective 

M1-M4 effect). However, the overall mAChR effect may accelerate the last phase 

of axonal disconnection, the two-to-one transition. Thereafter, the muscarinic 

effect at around P9 clearly promotes elimination of all supernumerary nerve 

terminals (an M1-M2 effect). 

Which mAChR subtypes couple to regulate ACh release? In the mature 

NMJ, M1 and M2 mAChRs modulate evoked transmitter release by positive and 

negative feedbacks, respectively (Santafé et al., 2003, 2006). M2 is more prevalent 

(Wright et al., 2009; Tomàs et al., 2014). During synaptogenesis, (Santafé et al., 2002, 

2003, 2004), in the monoinnervated junctions and the strong terminal in dually 

innervated junctions both M1 and M2 are coupled to potentiate ACh release. 

However, in the weakest nerve terminal in dual junctions only M2 potentiates 

release whereas M1 and M4 couple to inhibit ACh secretion. A mAChR-PKC-VDCC 

cascade is involved in controlling ACh release in the weak ending. Blocking PKC, 

VDCCs (P/Q-, N- or L-type or Ca2+ influx) or mAChRs (M1- and/or M4-subtypes) can 

lead to similar percentage increases in the size of the synaptic potentials evoked 

by weak axons (Santafé et al., 2007b, 2009a; Tomàs et al., 2011).  

How are related the release capacity of the strong and weak endings and 

the loss of axons described here? At P7, the release capacity of the weakest 

endings was increased by the inhibitors PIR and MT3, whereas ACh release from the 

strong ending was reduced or unaffected (Santafé et al., 2009a). Thus, the 

difference in ACh release between the strong and weak nerve endings is reduced, 

and this fact may change the competitive conditions of the nerve terminals. How 

is the ACh release capacity of the weak and strong endings in the LAL muscle at 

P9 were not exactly known. However, between P7 and P9, the percentage of 

polyinnervated junctions changes only by about 10%. The configuration of mAChR 

in the monoinnervated synapses is not mature until P15 (Santafé et al., 2003), which 

suggests that the competitive interactions between axons peak at around P9 and 

their release capacity is probably not very different from what it is at P7. If this is so, 

the reduction of the competitive advantage and disadvantage linked to ACh 

release of the strong and weak endings produced by PIR and the reduction of the 
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strength of the different axons produced by MET (MT3 does not play at P9) may 

considerably delay axonal loss.  

 

1.3.2. CONTRIBUTION OF ARs AND TrkB RECEPTOR PATHWAYS  

Several data suggest the involvement of other receptors. The mAChR 

agents alter the time course of the synapse elimination but not its final chronology. 

Experimental manipulations of the PKC/PKA pathways can also change the time 

course but not the final conclusion of synapse elimination (Jia et al., 1999; Lanuza 

et al., 2002; Nelson, 2005; Santafé et al., 2007a). This indicates that different 

receptors with their intracellular mechanisms can be used in the process of synapse 

elimination. 

ARs are present in the motor terminals of the newborn and adult NMJs 

(Garcia et al., 2013, 2014). These receptors can collaborate with mAChR to reduce 

depression during repetitive activity (Correia-de-Sá et al., 1991; Garcia et al., 2013; 

Santafé et al., 2014). During development, low extracellular concentrations of ADO 

may activate both A1 and A2A and have a facilitatory action on ACh release 

(Pousinha et al., 2010). Our results show that mAChR and AR delay axonal loss at P7 

(although mAChR accelerate the last phase of axonal disconnection) but 

accelerate it at P9. The results showing an additive effect between M1 and A1 or 

A2A are an indication of the cooperation between at least these receptors. 

The BDNF/TrkB pathway also plays a biphasic role. Judging from the effect 

of the TrkB-Fc chimera, BDNF initially delays elimination and subsequently 

accelerates it. Neurotrophins and their receptors in muscle and nerve are 

expressed in both development and adulthood (Funakoshi et al., 1995; Gonzalez 

et al., 1999; Ip et al., 2001; Nagano and Suzuki, 2003; Pitts et al., 2006; Garcia et al., 

2010f). Low doses of BDNF rapidly induce a TrkB-dependent potentiation at 

developing NMJs in culture (Poo, 2001). In developing muscles, BDNF increases ACh 

release in both the weak and strong endings at P6-P7 (Garcia et al., 2010d). In 

addition, exogenous BDNF increases the percentage of functional polyinnervated 

junctions (Tomàs et al., 2011). Interestingly, exogenous BDNF infusion delayed 

synapse elimination in the mouse LAL muscle (Je et al., 2013). The delaying effect 

of the TrkB pathway on axonal elimination at P7 described here may be related 

with the BDNF potentiation of the weakest endings about to be eliminated. 

However, blocking the TrkB receptor or neutralizing endogenous BDNF with the TrkB-
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Fc chimera at P7 does not affect the quantal content of the weak endings but 

increases release in the strong ending, which suggests that endogenous BDNF, in 

this developmental period, may surprisingly reduce release in the strongest ending 

(Garcia et al., 2010d). The delaying effect of the TrkB pathway on axonal 

elimination at P7 may be related to the BDNF-mediated lesser release and 

presumed lesser competitive force of the strong axon. The TrkB pathway 

accelerates elimination at P9. The progressive maturation of the NMJ at P9 may 

change the operation conditions of the BDNF/TrkB pathway in the strongest 

endings resulting in more efficient competition and axonal elimination (Mantilla et 

al., 2004; Garcia et al., 2010d). 

 

1.3.3. INVOLVEMENT OF THE mAChRs, ARs AND TrkB RECEPTOR IN THE 

MATURATION OF nAChR CLUSTERS 

mAChRs (Garcia et al., 2005), ARs (Garcia et al., 2013) and TrkB receptors 

(Garcia et al., 2010e) are present in the postsynaptic site of NMJs and are involved 

in organizing them (Gonzalez et al., 1999; Belluardo et al., 2001; Loeb et al., 2002; 

Peng et al., 2003). The changes that it has been observed may be caused by the 

pharmacological tools directly acting on these receptors, as a side-effect of a 

primary effect on the axonal elimination rate or a combination of the two 

mechanisms. The first change in synapse elimination may be a reduction in the 

quantal efficacy because of a local decrease in nAChR density (Colman et al., 

1997). This postsynaptic change may begin before the overlying axon withdraws 

(Balice-Gordon and Lichtman, 1993). However, polyneuronal innervation 

decreases considerably at a time when relatively few postsynaptic nAChRs are lost 

(Lanuza et al., 2002; Nelson et al., 2003). It has been found that several situations of 

increased axonal loss or retention did not coincide with the maturation of the 

nAChR clusters, which suggests independent regulation. Interestingly, prolonged 

M1 and M2 inhibition results in a defect in postsynaptic maturation at P15. Especially, 

M1 perturbation had a strong effect. This finding suggests a requirement for M1 and 

M2 signaling in postsynaptic maturation and occurs when axon loss has been 

completed. In addition, AR block with 8SPT and TrkB pathway block with the TrkB-

Fc chimera, similarly delay postsynaptic maturation at P15 (in all cases less MS4 

mature nAChR clusters) indicating also the need of these signaling pathways in 

postsynaptic maturation. Selective nAChR-phosphorylation by PKC and PKA is one 

of the causes of nAChR dispersion and stability, respectively (Nishizaki and 
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Sumikawa, 1994; Li et al., 2004; Lanuza et al., 2010). An activity-dependent 

coordinated mAChR-AR-TrkB effect on these postsynaptic kinases could be a key 

mechanism in NMJ maturation. 

In summary, the main observation of the present study is that the 

coordinated action of the mAChRs (M1, M2 and M4), ARs (A1 and A2A) and TrkB 

signaling modulates the conditions of axonal competition and promotes (around 

P7-P9) the disconnection of supernumerary nerve endings. 
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Laura Nadal, Neus Garcia, Erica Hurtado, Anna Simó, Marta Tomàs, Maria 

A. Lanuza, Victor Cilleros, Josep Tomàs. (2017). Synergistic action of presynaptic 

muscarinic acetylcholine receptors and adenosine receptors in developmental 

axonal competition at the neuromuscular junction. Developmental Neuroscience  

DOI: 10.1159/000458437. 

 

2.1. BRIEF INTRODUCTION AND SCOPE 

In the previous chapter (Chapter 1), it has been demonstrated that 

presynaptic mAChRs (M1, M2 and M4 subtypes), ARs (A1 and A2A) and TrkB can 

cooperate in the developmental synapse elimination process at this synapse. 

Signaling through these receptors seems to be involved in reducing the initial 

chance (around P7) of eliminating certain weak endings but subsequently 

increasing (around P9) axonal competition and elimination. However, in spite of 

the continued presence of the inhibitors of these receptors, monoinnervation is 

normally achieved at P15. It has been concluded that the three receptor sets 

intervene in modulating the conditions of the competition between nerve endings, 

possibly helping to determine the winner or the losers although a given axon would 

finally be eliminated with some autonomy and independently of postsynaptic 

maturation. 

In chapter 1, it has been analyzed the role of individual receptors. In this 

chapter, it has been investigated the additive or occlusive effects of the inhibitors 

of two of these receptor sets, mAChRs and ARs (the autoreceptors of ACh and 

adenosine released by nerve endings), and thus the existence of real cooperation 

between them in synapse elimination at the NMJ. 

 

 

 

CHAPTER 2. Synergistic action of presynaptic muscarinic acetylcholine 

receptors and adenosine receptors in developmental axonal competition 

at the neuromuscular junction. 
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2.2. RESULTS 

2.2.1. INDIVIDUAL ROLE OF PRESYNAPTIC mAChRs AND ARs IN AXON 

LOSS CONTROL AT P7 

The role of these presynaptic mAChRs at P7 was analyzed by using 

selective inhibitors. The inhibitor action reveals the tonic effect of the receptors in 

normal conditions. As it has been demonstrated in chapter 1, most of the inhibitors 

used accelerated transition to monoinnervation in the NMJ and thus accelerated 

the axonal loss rate.  

Figure 41 shows that the inhibitor substances (one application each day 

between P5-P6) ranged in their ability to promote monoinnervation and reduce 

the percentage of synapses that were polyinnervated by three or more axons 

[DPCPX (A1 subtype inhibitor) < MT3 (M4 inhibitor) < PIR (M1 inhibitor) < SCH (SCH-

58261 an A2A subtype inhibitor)].  

 

 

 

A 

 

 

 

 

Figure 41. Individual effect of mAChR and AR inhibitors on axon loss at P7. The figure 

shows the effect of the inhibitors (one application each day between P5-P7) in order of 

their ability to promote monoinnervation and reduce the percentage of synapses 

polyinnervated by three or more axons.  Only the M2 blocker MET is unable to significantly 

change the percentage of monoinnervation. The continuous line represents the 

monoinnervated junctions; the discontinuous line represents the NMJs innervated by 

three or more axons. The horizontal lines mark the control values in muscles injected with 

PBS. *** indicate p<0.05. 

 

%
 N

M
J 

0

10

20

30

40

50

60

MET DPCPX MT3 PIR SCH

*** 

*** 
*** 

*** 

*** 
*** 

*** 
*** 

Monoinnervated junctions at P7 Three or more axons at P7 

UNIVERSITAT ROVIRA I VIRGILI 
Muscarinic, adenosine and tropomyosin-related kinase B receptor modulate the neuromuscular 
developmental synapse elimination process 
Laura Nadal Magriñà 



R
E
S
U

LT
S
 

Only the M2 blocker MET was unable to significantly change the 

percentage of monoinnervation, thus showing that it had no apparent effect on 

axonal loss. The absolute potency of these various receptors in modulating synapse 

loss cannot be directly assessed and compared because of the difference in the 

blocking efficacy of the respective selective inhibitors. However, the relative 

potency of these substances in accelerating axonal elimination suggests that the 

corresponding inhibited receptor pathway plays a relatively important role in 

delaying axonal loss. 

 

2.2.2. COOPERATION BETWEEN mAChRs AND ARs AT P7 

To determine the possible confluence of these muscarinic and purinergic 

pathways in the control of axonal loss, it has been investigated here the effect of 

simultaneous incubation with two inhibitors (two antagonists of two different 

receptor subtypes, muscarinic, purinergic or both) as a pharmacological tool for 

revealing the possible occlusive or additive crosstalk effects between the 

corresponding receptors. 

To facilitate comparisons of simultaneously incubations, we represented in 

the same figures previous data of the individual effect of differents agonists and 

antagonists. Also figure 42a and figure 43a show the percentage of innervated 

NMJs in the untreated YFP P7 control mice (two applications of PBS). Figure 42 (b-

g) shows also the percentage of singly-, doubly- and triply- (or more) innervated 

NMJs after simultaneous inhibition of two mAChR, a mAChR together with an AR 

and the two AR together.  

For the sake of clarity we have represented in the figure 42 only the 

associations between the inhibitors proven (see figure 41) to have an individual 

effect on axon loss (all but MET). The associations of MET with the other substances 

are represented in figure 43 (b-e) and it can be seen that there is an unexpected 

involvement of the M2 receptors.  

In figure 42, a superficial interpretation of the complex data suggests that 

blocking two different receptors simultaneously (dual associations between PIR, 

MT3, DPCPX and SCH) has roughly the same effect on axonal elimination (on the 

percentatge of monoinnervation attained at this time) as blocking only one of 

them. This is true for the associations PIR-SCH, PIR-DPCPX and MT3-SCH. In these 
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cases, there is no sign that any of these associations have a significantly greater or 

smaller effect on promoting monoinnervation than the individual effect of the two 

inhibitors. In fact, the final effect is close to the mean value of the two substances 

(for instance, see figure 42e, when MT3 and SCH act independently the mean 

percentage of monoinnervated junctions is 47.6% ± 1.25 and when they act 

simultaneously it is 49.32% ± 4.4, n=1218 NMJs, N= 4 mice p>0.05). Thus, for these 

associations, there is no additive or occlusive effect and the intracellular pathways 

of the two receptors seem to converge in a common mechanism fully activated 

by the action of only one receptor and cannot be increased further or altered by 

the other receptor.  

Interestingly however, when the M4 blocker MT3 is used in association with 

the M1 blocker PIR (figure 42b) or the A1 blocker DPCPX (figure 42f), the end result 

is not significantly different from the individual MT3 effect but differs significantly 

from the individual effect of PIR (which is greater) and DPCPX (which is smaller). To 

illustrate this, when PIR act independently the percentage of monoinnervated 

junctions is 47.56% ± 3.1 and when they act simultaneously with MT3 it is 37.63% ± 

1.4, p<0.005, n=1342 NMJs, N= 4 mice, indeed the results are more similar to MT3 

applications (39.43% ± 1.6).  

In DPCPX happened something similar, when DPCPX act independently 

the percentage of monoinnervated junctions is  35.46% ± 2.1 and when they act 

simultaneously with MT3 the percentatge of monoinnervation is 44.43% ± 2.4, 

p<0.005, n=1497 NMJs, N= 4 mice, indeed the results are more similar to MT3 

applications (39.43% ± 1.6). This may mean that M4 receptors are more prevalent 

than M1 and A1 receptors.  

Similarly, when the AR inhibitors DPCPX and SCH act together (figure 42g), 

the result is no different from when DPCPX acts by itself. However, it is significantly 

different from the individual effect of SCH (p<0.005), which suggests that A1 has 

some sort of permissive effect on the A2A pathway. 
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Figure 42. Cooperation between mAChRs and ARs at P7. The figure shows the 

percentage of singly-, doubly- and triply- (or more) innervated NMJs after simultaneous 

inhibition of two mAChRs, a mAChR together with an AR and the two ARs together. In 

this figure, for the sake of clarity, it has been represented only associations between the 

inhibitors proven to have an individual effect on axon loss (all but MET). The symbols 

indicate: * p<0.05, ** p<0.01, *** p<0.005 when the correspondent antagonist or 

combinations of two substances is compared with control PBS.  § p<0.05, §§ p<0.01, §§§ 

p<0.005 when the combination of two substances is compared with the first substance.  

‡ p<0.05, ‡‡ p<0.01, ‡‡‡ p<0.005 when the combination of two substances is compared 

with the second. 

 

As observed in figure 41, the M2 mAChR selective blocker MET does not in 

itself produce any change in the axonal elimination rate during the period 

considered. Interestingly, however, when the other inhibitors are applied 

simultaneously with MET, their individual effects are partially or totally occluded 
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(figure 43). First, a partial occlusion of the SCH and PIR effects is observed (figure 

43b and d). The percentage of the monoinnervated NMJ dropped to roughly the 

mean value between the MET and the substance considered though this value is 

still different – higher – than that of the untreated control). Second, the presence 

of MET totally occludes the MT3 and DPCPX effects (figure 43c and e). Therefore, 

MET cancels out the effect of the blockers used to prevent the action of M4 and A1 

(which are the two receptors that contribute least to delaying axonal loss). 

However, the powerful effect of SCH and PIR on axon loss cannot be fully 

prevented, only lessened, by MET.  

 

 

 

 

 

 

 

 

 

 

 

Figure 43. Cooperation between mAChRs and ARs at P7 (only MET with other 

substances). The shows the percentage of singly-, doubly- and triply- (or more) 

innervated NMJs after simultaneous inhibition of two mAChRs, a mAChR together with 

an AR and the two ARs together. In this figure, it has been represented only associations 

of MET with the other substances. The symbols indicate: * p<0.05, ** p<0.01, *** p<0.005 

when the correspondent antagonist or combinations of two substances is  compared 

with control PBS.  § p<0.05, §§ p<0.01, §§§ p<0.005 when the combination of two 

substances is compared with the first substance. ‡ p<0.05, ‡‡ p<0.01, ‡‡‡ p<0.005 when 

the combination of two substances is compared with the second. 
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2.2.3. INDIVIDUAL ROLE OF PRESYNAPTIC mAChRs AND ARs IN AXON 

LOSS CONTROL AT P9 

As shown in chapter 1, the effect of the receptor inhibitors (one 

application each day between P5-P8) delay transition to monoinnervation in the 

P9 NMJ. However, it is also interesting to remark the effect of the selective inhibitors 

in order of their ability to finally delay monoinnervation. Figure 44 shows a high 

percentage of synapses innervated by three or more axons (MET > PIR = DPCPX > 

SCH). In this case, only the M4 blocker MT3 is unable to significantly change the 

percentage of monoinnervation, which shows that there is no apparent effect on 

axonal loss at this time. Therefore, the two receptor sets (mAChRs and ARs) finally 

promote the conditions of axonal disconnection at the beginning of the second 

postnatal week (P9) (see also in chapter 1).  

 

 

 

 

 

 

 

 

 

Figure 44. Individual effect of mAChR and AR inhibitors on axon loss at P9. The figure 

shows the effect of the selective inhibitors (one application each day between P5-P8) 

in order of their ability to finally delay monoinnervation and keep a high percentage of 

synapses innervated by three or more axons (MET > PIR = DPCPX > SCH-58261). The M4 

blocker MT3 is unable to significantly change the percentage of monoinnervation in this 

case. The continuous line represents the monoinnervated junctions; the discontinuous 

line represents the NMJ innervated by three or more axons. *** p<0.05. 
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2.2.4. COOPERATION BETWEEN mAChRs AND ARs AT P9 

As it has been perfomed at P7, figure 45 and figure 46 shows the effect of 

the drug associations applied between P5 and P8 and observed at P9.  

The histogram in figure 45 (a-g) shows the percentage of singly-, doubly- 

and triply- (or more) innervated NMJs in the untreated YFP P9 control mice (four 

applications of PBS) and after four applications of the mAChR and AR selective 

antagonists and after that the percentage of NMJs after simultaneous inhibition of 

the two receptors that individually affect axon loss (all the inhibitors but MT3, see 

figure 44).  

The associations of MT3 with the other substances are represented in figure 

46 (a-e) so that the results are more readily understandable.  

The data in figure 45b show that the association of the mAChR blockers 

PIR and MET is not the sum of their individual effects and the final result is no different 

from the individual effect of PIR. Interestingly, however, both AR inhibitors, SCH 

(figure 45c) and DPCPX (figure 45d) add their own delaying effect on axonal loss 

to the delaying effect of PIR for an approximate increase of 58% and 36%, 

respectively (p<0.005).  

However, the effect of the two AR blockers is not added to the effect of 

MET and the result of the dual drug incubation is no different from the MET effect 

(figure 45e and f).  

When DPCPX and SCH act together (figure 45g), the end result is a 

percentage of monoinnervation that is no different from that given by the control 

PBS (p>0.05), which indicates that both pathways are fully occluded. 
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Figure 45. Cooperation between mAChRs and ARs at P9. The data are plotted and 

shows the percentage of singly-, doubly- and triply- (or more) innervated NMJs in controls 

(PBS) and after exposure to one inhibitor, after simultaneous inhibition of two receptors 

that individually affect axon loss (all the inhibitors but MT3). The symbols indicate: * 

p<0.05, ** p<0.01, *** p<0.005 when the correspondent antagonist or combinations of 

two substances is compared with control PBS.  § p<0.05, §§ p<0.01, §§§ p<0.005 when 

the combination of two substances is compared with the first substance.  ‡ p<0.05, ‡‡ 

p<0.01, ‡‡‡ p<0.005 when the combination of two substances is compared with the 

second. 

In chapter 1, it has been shown that the M4 blocker MT3 by itself has no 

effect on axonal loss at P9. However, figure 46 shows that the simultaneous 

application of MT3 with the other muscarinic blockers does not change the effect 

of PIR (figure 46b) though it partly occludes the effect of MET which, however, 

0 

10 

20 
30 

40 

50 

60 

SCH  

%
 N

M
J
 

*** 

PIR+SCH   

§§§ 

c *** 

PIR  

*** 

*** 

*** *** 

*** 

§§§ 

‡‡‡ 

‡‡ 

d 

DPCPX  PIR+DPCPX   PIR  
0 

10 

20 

30 
40 

50 

60 

%
 N

M
J
 

*** *** 

*** 
*** 

*** 

*** 
*** 

§§§ 
‡‡‡ 

§ 
‡‡‡ 

*** 

‡ 

*** 
§§§ 

‡‡‡ 

0 

10 
20 

30 

40 

50 
60 

MET  SCH  

%
 N

M
J
 

MET+SCH   

*** 

*** 
e 

‡‡‡ 

*** 

*** 
*** 

*** 

*** 

§ 

0 

10 

20 

30 
40 

50 

60 

MET  DPCPX  

%
 N

M
J
 

MET+DPCPX   

f 
*** 

*** *** 

*** 
*** 

*** 
*** 

*** 
*** 
‡‡‡ 

‡‡ 

0 

10 
20 

30 

40 

50 
60 

SCH  DPCPX  

%
 N

M
J
 

SCH+DPCPX   

g 

*** 

*** 

*** *** 

*** 

‡‡‡ 

‡‡‡ 

0 

10 

20 
30 

40 

50 

60 

PBS  

%
 N

M
J
 

a 

PIR  MET  PIR+MET   
0 

10 

20 

30 

40 

50 
60 

%
 N

M
J
 

*** 

*** 

*** 

* 

b 

*** 

*** 
*** 

*** 
*** 

‡‡‡ 

One axon Two axons Three or more axons 

UNIVERSITAT ROVIRA I VIRGILI 
Muscarinic, adenosine and tropomyosin-related kinase B receptor modulate the neuromuscular 
developmental synapse elimination process 
Laura Nadal Magriñà 



continues to significantly delay axon loss (figure 46c). Interestingly, MT3 potentiates 

the delaying effect on axonal loss of both DPCPX and SCH by roughly 33% and 32%, 

respectively (figure 46d and e). A representation of these data is shown and 

discussed in figure 48. In some cases, the results with C57BL/6J mice were checked. 

As an exemple, in P9 C57BL/6J animals treated with MT3 plus MET, it has been found 

the same result than in YFP animals (C57BL/6J (n=1075 NMJs, N= 3 mice): 1 axon: 

42.36 % ± 3.54%, 2 axons: 38.71 % ± 4.97%, 3 or more axons: 18.93% ± 2.18; YFP 

animals: 1 axon: 48.07 % ± 3.54%, 2 axons: 35.91% ± 4.97%, 3 or more axons: 16.02% 

± 2.18. p>0.05).  No significant diferences are observed between YFP and C57BL/6J 

mices treated with PBS. 

 

 

 

 

 

 

 

 

 

 

 

Figure 46. Cooperation between mAChRs and ARs (only MT3 with other substances). The 

graphic shows the percentage of singly-, doubly- and triply- (or more) innervated NMJs 

after simultaneous inhibition of two mAChRs, a mAChR together with an AR and the two 

ARs together. In this figure, it has been represented only associations of MT3 with the 

other substances. The symbols indicate: * p<0.05, ** p<0.01, *** p<0.005 when the 

correspondent antagonist or combinations of two substances is compared with control 

PBS.  § p<0.05, §§ p<0.01, §§§ p<0.005 when the combination of two substances is 

compared with the first substance.  ‡ p<0.05, ‡‡ p<0.01, ‡‡‡ p<0.005 when the 

combination of two substances is compared with the second. 
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2.3. DISCUSSION 

In addition to the main presynaptic neurotransmitter-postsynaptic 

receptor interaction within a synapse, several signaling pathways coordinate the 

pre- and post-synaptic cells and associated glia. In the NMJ, the final functional 

outcome of a synaptic contact is the result of metabotropic receptor-mediated 

signaling acting on the nerve terminal intracellular protein kinases and modulating 

voltage-dependent channels and the ready releasable pool of synaptic vesicles, 

which are the instruments of transmitter release (Takamori, 2012; Tomàs et al., 2014). 

The ability to release ACh is a decisive factor in the stabilization or loss of motor 

nerve terminals that are in competition to make synapses during development 

(Colman et al., 1997; Santafé et al., 2002, 2004, 2007b, 2009a; Buffelli et al., 2003). 

Postsynaptic-derived trophic substances and glial cells (Lee et al., 2016; Yang et 

al., 2016) also play a decisive role. 

 The main finding of the present study (which extends a previous finding in 

chapter 1) is that the coordinated action and cooperation of mAChRs (M1, M2 and 

M4 subtypes) and ARs (A1 and A2A) signaling modulates developmental axonal 

competition and affects the axonal loss rate. It has been used the term 

cooperation to define the collaboration between muscarinic and adenosine 

receptor pathways in developmental axonal loss control, which requires the 

receptors to work together and act in conjunction. In the present experiments, it 

has been simultaneously applied two inhibitors (two antagonists of two different 

receptors) to reveal the possible occlusive or additive crosstalk effects between 

the corresponding pathways. In previous experiments (chapter 1) two, well 

defined, developmental periods were observed: P5-P9 and P9-P15. In the first 

period, it has been noticed the complex involvement of these receptors, which 

finally resulted in promoting axon loss and accelerating monoinnervation of the 

NMJ. However, in spite of the continued presence of the inhibitors used, the 

elimination process finished normally at the end of the second week (P15). Our 

interpretation is that all the receptors intervene initially in modulating the conditions 

of the competition between nerve endings, possibly helping to determine the 

winner or the losers but, thereafter, the time and conditions of the final elimination 

occur with some autonomy. Therefore, in the present experiments it has been 

focused on the P5-P9 period of clear receptor involvement in axonal competition.  

As previous data described, mAChR subtypes are present in the NMJ 

(Garcia et al., 2005; Wright et al., 2009) and some of these receptors play an 
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important regulatory role in ACh release during development (Santafé et al., 2001, 

2003, 2007b, 2009a) and in the adult (Santafé et al., 2005, 2006, 2007b). During NMJ 

synaptogenesis, the functional significance of the subtypes is different. M2 

receptors promote release in all nerve endings independently of their ACh release 

level or maturation state whereas an M1- and M4-mediated reduction in release is 

observed in the weakest endings on polyinnervated dual junctions (Santafé et al., 

2001, 2002, 2003, 2004, 2007b, 2009a). Similarly, ARs are present in the motor 

terminals of the newborn and adult NMJs (Garcia et al., 2013, 2014). In the adult, 

the extent to which inhibitory A1 and excitatory A2A modulate the evoked release 

of ACh (Correia-de-Sá et al., 1991) seems to depend on the extracellular 

concentration of adenosine. During development, low concentrations of ADO 

may activate both A1 and A2A and have a facilitatory action on ACh release 

(Pousinha et al., 2010). Therefore, mAChRs and ARs (the autoreceptors of the 

transmitter ACh and the cotransmitter adenosine – derived from ATP hydrolysis – 

released by the active nerve endings themselves) are good candidates to be 

involved in postnatal axonal competition and synapse elimination. The 

involvement of these receptors may allow direct competitive interaction between 

nerve endings through a differential activity-dependent ACh and ADO release. So, 

the more active endings may directly punish the less active endings or reward 

themselves if the suitable mAChR and AR subtypes are present in the competing 

axons.  

 

2.3.1. COOPERATION BETWEEN mAChRs AND ARs AT P7 

At P7, about half of the axons are lost from the multiinnervated newborn 

NMJ (Lanuza et al., 2001). The selective inhibitors of the presynaptic mAChRs (M1 

and M4 subtypes) and ARs (A1 and A2A) accelerated axonal elimination when 

applied on the LAL muscle surface between P5-P6. This means that the receptors 

slowed transition to monoinnervation in the untreated NMJ and thus reduced 

axonal loss (promoted axonal stabilization) when acting individually at least 

between P5-P6 (red arrows in figure 47). Slowing axonal elimination means the 

temporal retention of some – probably the weakest – axons by increasing their 

competitive force. By blocking only one of these receptors axonal loss increases 

(the 3-to-1 transition accelerates). Thus, all four receptors are necessary (though 

with some difference in potency) and if only one is blocked, axon loss will 

accelerate. At least partly for the purpose of synapse elimination, the four 
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operators may operate through the same intracellular mechanism. However, the 

sum of the individual effects of these receptors does not increase axonal retention 

(simultaneously blocking two receptors does not accelerate elimination more than 

blocking just one of them). Interestingly, the effect of blocking M4 together with M1 

or A1 is no different from the effect of blocking M4 by itself but is significantly 

different from the individual effects of M1 and A1. This may mean that M4 receptors 

are more prevalent than M1 and A1 receptors, which suggests that they may 

cooperate. Similarly, when AR inhibitors act together, the result is no different from 

when DPCPX acts by itself. However, it is significantly different from the individual 

effect of SCH, which suggests that the A2A receptor needs the cooperation of the 

A1 pathway for its potent effect. These cooperative relations between receptors 

are represented with blue links in figure 47. 

Figure 47 shows an overall representation of the data. The thickness of the 

red arrows shows the relative individual ability of the mAChRs and ARs to delay 

axonal loss (the thicker they are, the greater their effect; the inhibitor used is noted 

in brackets under the receptor name). The links between the corresponding 

intracellular pathways may determine the delay in axon loss. It seems that all the 

receptors but M2 (which does not directly affect axonal elimination because of the 

lack of effect of MET (black arrow in figure 47)) are involved in axonal competition.  

As stated, our results show that all receptors use a common mechanism. 

These receptors are coupled to intracellular pathways that converge on a limited 

repertoire of effector kinases to phosphorylate protein targets and materialize 

structural and functional changes. M1 and A1 operate by respectively stimulating 

and inhibiting the PLCγ and PKC pathway whereas M2-M4 and A2A operate by 

respectively inhibiting and stimulating the adenyl cyclase and PKA pathway 

(Caulfield MP, 1993; Felder, 1995; Caulfield and Birdsall, 1998; Nathanson, 2000). In 

all cases, however, common final changes such as intracellular calcium oscillations 

are observed (Santafé et al., 2006; Amaral and Pozzo-Miller, 2012). Interestingly, 

blocking all PKC isoforms, or the VDCCs (P/Q-, N- or L-type or Ca2+ influx) or mAChRs 

(M1- and/or M4-subtypes with PIR and MT3, respectively) results in an increase on 

the size of the synaptic potentials evoked by the weak axons in dual junctions 

whereas EPPs evoked by the strongest endings are reduced or unaffected (Santafé 

et al., 2003, 2004, 2007b, 2009a, 2009b; Tomàs et al., 2011). Thus, the difference in 

ACh release between competing endings is reduced by these muscarinic blockers, 

and this difference may change the competitive balance of the nerve terminals 

(at least in a muscarinic-dependent manner). However, as shown here, both PIR 
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and MT3 simultaneously accelerate axon loss at P7 and it is not clear how this 

acceleration is related to the changes in ACh release (increase in weak endings, 

decrease in strongest endings) and the presumed decrease in activity-related 

competition. The peculiar effect of the mAChR on the weakest endings may be 

related to the specific presence of the M4 receptor subtype linked to P-, L- and N-

type channels and an inhibitory PKC coupling to ACh release in these contacts 

(Santafé et al., 2009a). 

The M2 subtype is also present in the weak and strong axons in dual 

junctions (Santafé et al., 2003). This receptor links only with P- and N-channels and 

potentiates ACh release in both nerve endings but it has been shown that it does 

not directly affect axonal elimination at P7. However, figure 47 shows a possible 

involvement of the M2 receptors (because the M2 inhibitor MET, in association with 

the other blockers, partially or totally occludes their individual effects). A simple 

explanation is that M2 receptors modulate by a permissive action the other 

mAChRs and ARs (green arrows in figure 47; their thick indicate the relative 

modulatory potency in each case).  

An alternative explanation is that the M2 receptors at P7 have a more 

direct and active role in concordance with their active role at P9 (see later). The 

elimination-promoting effect of M2 (dotted green arrow in figure 47), however, 

would be lower than the combined elimination-preventing cooperative effect of 

A2A, M1, M4 and A1. Therefore, M2 by itself cannot accelerate elimination and 

blocking it with MET does not change axon loss. Blocking only one elimination-

preventing receptor would release the axonal retention effect and allow M2 to 

accelerate elimination. In this context, the observation that blocking A2A or M1 

strongly accelerates axon loss suggests that these two receptors neutralize M2. 

Because blocking M2 with MET does not increase axonal retention by itself, the A2A, 

M1, M4 and A1 ensemble seems to operate at maximum capacity.  
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Figure 47. Diagram showing an overall representation of the cooperation between 

mAChRs and ARs at P7. Green and red arrows with different thickness indicate the 

relative individual potency of these receptors to accelerate or delay axonal elimination. 

The black arrow indicates that M2 receptor does not affect the axonal loss. A blue bond 

indicates the association between these receptors. Dotted green arrow indicates that 

M2 seems to accelerate the axonal loss process.  

 

2.3.2. COOPERATION BETWEEN mAChRs AND ARs AT P9 

The continued action of these receptors (including the M2 mAChR subtype 

but not M4) between P5-P9 finally promotes axonal loss and accelerates the 

monoinnervation of the NMJ (green arrows in figure 48). This means that the 

receptors accelerate the transition to monoinnervation and thus promote the 

unstabilization of some axons. All four receptors (M2, M1, A1 and A2A) are necessary 

(though with some variation in potency, which is indicated by the thickness of the 

green arrows in figure 48) and if only one is blocked, then axon loss is delayed. Also 

in this period, all receptors converge on a common mechanism.  

The question at the end of the first postnatal week is why the blockers have 

such different effects on axon loss between P7 and P9. The receptors action may 

shift from delay axonal loss by favouring the competitive capacities in some nerve 

endings, to promote loss between P7-P9. In fact, one consequence of favouring 

initial competition around P7 would be an increase in axonal loss at P9.  A 

developmental shift in the functional coupling of some molecules is not such a rare 

occurrence. Previous studies have shown changes in the role of the mAChRs 

themselves, the VDCCs (P, N and L) and the PKC during develoment depending 

on the maturation level of the NMJ. For instance, PKC couples to potentiate ACh 

release in the adult NMJ, in the strong ending of dual junctions and in the solitary 
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ending in the junctions monoinnervated during maturation. However, as discussed 

above, their coupling reduces release in the weakest axons in dual junctions and, 

therefore, any change in the functional expression of PKC may determine the 

regulation of axonal loss (Santafé et al., 2007a, 2009b). 

The experiments clearly show real cooperation between M1, A1 and A2A 

receptors. It has been associated one AR blocker (DPCPX or SCH-58261) with the 

M1 blocker PIR. It has been found that both DPCPX and SCH-58261 add their delay 

on axonal loss to the delaying effect of PIR, two increases of roughly 58% and 36%, 

respectively. These results show an additive effect and indicate that at least these 

receptors cooperate (blue bonds in figure 48). However, the effect of the M2 

blocker MET is not modified by the presence of the M1, A1 or A2A blockers, which 

indicates that the potent M2 effect is independent of the other receptors (though, 

as stated, it seems to be partly modulated by M4). When DPCPX and SCH act 

together (blue bond in the figure), the result is a percentage of monoinnervation 

that is no different from the control PBS, which indicates that both AR pathways are 

fully dependent on each other and need to cooperate if they are to regulate axon 

loss. 

Whereas at P7, M2 receptors seem to modulate the action of the other 

mAChR and AR, the M4 receptor (which does not affect synaptic elimination at P9 

by itself, black arrow in figure 48) can modulate other receptors at this time except 

M1 (black dotted line in figure 48). Specifically, M4 can cooperate positively with 

M2 (dotted green arrow in this figure, because MT3 partly occludes the effect of 

MET). Also, the delaying effect on axonal loss of both DPCPX and SCH-58261 is 

potentiated (by about 30%) by MT3, which suggests a negative influence of M4 on 

A1 and A2A receptor effects in normal conditions without any inhibitor present (red 

arrows in the figure). 
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Figure 48. Diagram showing an overall representation of the cooperation between 

mAChRs and ARs at P9. Green and red arrows with different thickness indicate the 

relative individual potency of these receptors to accelerate or delay axonal elimination. 

The black arrow indicates that M4 receptor does not affect the axonal loss. A blue bond 

indicates the association between these receptors. Dotted black arrow indicates that 

M4 does not make any cooperation with M1. 

 

2.3.3. RELATION BETWEEN mAChRs AND ARs  

In the adult, ARs and mAChRs heavily depend on each other to modulate 

ACh release by sharing the PKC and PKA pathways (Garcia et al., 2013; Santafé et 

al., 2015). The influx of external Ca2+ required for Ca2+-triggered exocytosis and the 

fast mode of endocytosis seems to be promoted with the involvement of the 

presynaptic mAChRs (Santafé et al., 2006), and interaction with the ARs (Oliveira et 

al., 2009) but also with the BDNF/TrkB receptor pathway (Garcia et al., 2010e; 

Amaral and Pozzo-Miller, 2012). The mAChR and AR pathways (M1 and A1 

receptors) share a link mediated by the set PLCγ-PIP2-DAG-PKC, which modulates 

P/Q-type VDCC (Santafé et al., 2006; Amaral and Pozzo-Miller, 2012). The PLCγ-

generated DAG also regulates the vesicle priming protein Munc13–1 and recruits 

ACh-containing vesicles for the immediately releasable pool (Bauer et al., 2007). 

M2-M4 and A2A receptors share the PKA pathway. Previous findings show the 

influence of PKA activity on the coupling of PKC to ACh release and the 

coordinated involvement of PKC and PKA in the intracellular cascades that 

modulate neuromuscular transmission (Santafé et al., 2008). The action of the two 

kinases may be in the same molecules or in different molecules in the release 

machinery. A protein can be phosphorylated by at least two protein kinases, 

stimulated by different second-messenger systems, which exhibit both overlapping 
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and unique specificities for the phosphorylation of multiple sites in the molecule 

(Chambers et al., 1994). The complementary function of these receptors and 

kinases in the adult reinforces the suggestion that they may have a complementary 

function in developmental synaptic elimination. It has been shown here that 

postnatal axonal stabilisation or loss is a regulated multireceptor mechanism 

involving the cooperation of muscarinic (M1, M2 and M4) and adenosine 

autoreceptor (A1 and A2A) subtypes in the motor nerve endings. New experiments 

can be performed to evaluate the downstream mechanism that couples receptors 

and kinases to the molecular targets responsible of axonal destabilization and 

retraction. 
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     4.1. COOPERATION BETWEEN mAChR AND TrkB AT P9 

 

 

This chapter corresponds to the published article (see Appendix III): 

Laura Nadal, Neus Garcia, Erica Hurtado, Anna Simó, Marta Tomàs, Maria 

A. Lanuza, Victor Cilleros, Josep Tomàs. (2017). Presynaptic muscarinic 

acetylcholine receptors and TrkB receptor cooperate in the elimination of 

redundant motor nerve terminals during development. Frontiers in Aging 

Neuroscience 9:24. DOI:10.3389/fnmol.2017.00132 

 

3.1. BRIEF INTRODUCTION AND SCOPE 

Chapter 1 has been shown how individual mAChR subtypes (M1, M2 and 

M4), AR subtypes (A1 and A2A) and TrkB receptors are involved in the control of 

synapse elimination in the mouse NMJ. Moreover, in chapter 2, it has been 

investigated the additive or occlusive effects of the inhibitors of mAChRs and ARs, 

and thus the existence of real cooperation between them in synapse elimination 

at the NMJ. For instance, real cooperation between M1, A1 and A2A receptors 

promotes axonal loss at P9, whereas the potent axonal loss-promoting effect of M2 

is largely independent of the other receptors. But, which is the relation between 

mAChR and TrkB receptor? 

In this study, it has investigate whether the mAChR subtypes and the TrkB 

receptor also work together and whether the respective pathway inhibitors have 

any additive or occlusive effects and, therefore, whether there is any real 

cooperation between them in synapse elimination at the NMJ.  

 

3.2. RESULTS 

3.2.1. COOPERATION BETWEEN mAChRs AND TrkB RECEPTOR AT P9 

In chapter 1 and 2, it has been observed that the mAChR subtype-

selective inhibitors and TrkB blocker play a role in the synaptic competition process. 

But, it could be cooperation with these receptors? In chapter 1, it has been shown 

that pirenzepine (PIR, M1 blocker) and methoctramine (MET, M2 blocker) and the 

CHAPTER 3. Presynaptic muscarinic acetylcholine receptors and TrkB 

receptor cooperate in the elimination of redundant motor nerve terminals 

during development. 
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TrkB pathway blocker used (a TrkB-Fc chimera), when applied one time each day 

between P5-P8 on the LAL muscle surface, results in a notable delay of the transition 

to monoinnervation on the NMJ observed at P9. However, the M4 subtype blocker 

muscarinic toxin-3 (MT3) shows any effect on axonal loss at this time. However, the 

absolute potency of these blockers in modulating synapse loss cannot directly 

compared because the difference in the blocking efficacy of the respective 

selective inhibitors. Therefore, in normal conditions without inhibitors, the two 

receptor sets (mAChR and TrkB) will contribute to promoting the conditions of 

axonal disconnection at the beginning of the second postnatal week (see also in 

chaper 1). 

Experiments were performed to investigate the effect on axonal loss of 

simultaneous incubation with two inhibitors (two antagonists of two different 

receptors) to reveal the possible occlusive or additive crosstalk effects between 

the corresponding pathways. Figures 49 and figure 50 show the effect of the drugs 

association applied between P5 and P8 and observed at P9. The figure 49 shows 

the percentage of NMJs (the percentage of singly-, doubly- and triply -or more- 

innervated endplates) after the simultaneous inhibition of two receptors that, 

individually, clearly modulate axon loss (all except M4). The associations of the M4 

blocker MT3 (that does not affect axonal elimination by itself) with the other 

substances has been represented in figure 50 to make more understandable the 

data which reveal a complementary role for the M4 subtype. 

Figure 49 shows that the association of the mAChR blockers PIR and MET 

(figure 49b) does not show any additive effect or mutual occlusion in relation with 

axonal loss (p>0.05). However, the association of the M1 and TrkB pathways 

inhibitors (PIR plus TrkB-Fc) results in a clear addition of their respective delaying 

effects on axonal loss (figure 49c). The percentage of the monoinnervated NMJ 

after the simultaneous exposition to both inhibitors is significatively less (25% of single 

junctions) than after exposition to PIR only (39%; p<0.005) or TrkB-Fc only (43%; 

p<0.005). Interestingly however, the individual effect of the TrkB-Fc, does not add 

to the effect of MET being the result of this dual drug incubation not different of the 

MET effect (figure 49d). The delaying effect of MET on axon loss is the most potent 

observed in the present experiments and is produced independently of the state 

of TrkB. 
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Figure 49. Cooperation between mAChRs and TrkB receptor at P9. The graphic shows 

the percentage of singly-, doubly- and triply- (or more) innervated NMJs after 

simultaneous inhibition of two receptors that individually affect axon loss (all the inhibitors 

but MT3). The symbols indicate: * p<0.05, ** p<0.01, *** p<0.005 when the correspondent 

antagonist or combinations of two substances is compared with control PBS. § p<0.05, 

§§ p<0.01, §§§ p<0.005 when the combination of two substances is compared with the 

first substance.  ‡ p<0.05, ‡‡ p<0.01, ‡‡‡ p<0.005 when the combination of two 

substances is compared with the second. 

 

M4 blocker MT3 by itself does no produce any effect on axonal loss at P9. 

Figure 50 shows that the simultaneous application of MT3 with the other blockers 

reveals some regulatory or complementary role of M4 on the other receptors. The 

presence of MT3 does not change the effect of PIR (figure 50b) though some 

occlusion of the potent effect of MET (figure 50c) is observed which, however, 
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continues delaying significatively axon loss (the three-to-one transition). 

Interestingly, the presence of MT3 potentiates the delaying effect of TrkB-Fc (figure 

50d) on axonal loss indicating the cooperation of the respective receptor path 

ways (M4 and TrkB). MT3 with the presence of TrkB-Fc decrease the number of 

monoinnervated junctions (p<0.005) and increase the number of juctions 

innervated by three or more axons (p<0.005). 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50. Cooperation between mAChRs and TrkB receptor at P9 (only MT3 with other 

substances). The graphic shows the percentage of singly-, doubly- and triply- (or more) 

innervated NMJs after simultaneous inhibition of two receptors that individually affect 

axon loss. It has been represented only associations of MT3 with the other substances. 

The symbols indicate: * p<0.05, ** p<0.01, *** p<0.005 when the correspondent 

antagonist or combinations of two substances is compared with control PBS. § p<0.05, 

§§ p<0.01, §§§ p<0.005 when the combination of two substances is compared with the 

first substance.  ‡ p<0.05, ‡‡ p<0.01, ‡‡‡ p<0.005 when the combination of two 

substances is compared with the second. 
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3.3. DISCUSSION 

The present experiments show evidence of the cooperation between the 

presynaptic M1, M2 and M4 mAChR subtypes and the TrkB signaling to modulate 

the conditions of the developmental axonal competition and loss. In a previous 

study, it has been found that these receptors (as well as presynaptic adenosine 

receptors –AR-, A1 and A2A subtypes) separately contribute to accelerate synapse 

elimination around P9 in the mouse NMJ. It was thought that the muscarinic 

autoreceptors of the transmitter ACh may allow direct competitive interaction 

between nerve endings through a differential activity-dependent ACh release. The 

more active axons may directly punish the less active ones or reward themselves 

(Santafé et al., 2009a). However, an axon that is eliminated at one NMJ may be 

successful at another (Tomàs et al., 2011), which suggests that other receptors and 

local postsynaptic- (and glial cell) derived factors are involved. The involvement of 

the TrkB signaling described may allow a postsynaptic-derived trophic substance 

such as BDNF or NT4 to make a contribution (Yoshii and Constantine-Paton, 2010). 

Interestingly, it has been observed that both the presynaptic-derived 

signal (ACh acting on axonal M1 and M2 mAChRs) and the TrkB-mediated signal 

(which may be originated by a postsynaptic-derived neurotrophin) have the same 

effect: namely, the acceleration of supernumerary nerve ending elimination. It 

seems that the outstanding regulatory resources in the NMJ synaptogenesis are 

committed to achieving monoinnervation. These presynaptic receptors converge 

in a common intracellular mechanism and a limited repertoire of effector kinases 

to phosphorylate protein targets and bring about structural and functional 

changes leading to axon loss. It is well known that in most cells M1 and TrkB operate 

by stimulating the PLCγ and therefore the PKC pathway along with the IP3 

pathway, whereas M2-M4 inhibit the AC and PKA pathway (Caulfield MP, 1993; 

Felder, 1995; Caulfield and Birdsall, 1998; Nathanson, 2000). In all cases, however, 

common final changes such as intracellular calcium oscillations can occur 

(Santafé et al., 2006; Amaral and Pozzo-Miller, 2012). Both PKA and PKC activity 

changes have been shown to affect pre- and postsynaptic maturation (Lanuza et 

al., 2001, 2002). Our present data can be related with the intracellular coupling of 

the receptors to these serine kinases. Though the blocking efficacy of the selective 

inhibitors of the muscarinic receptors is not assessed here, M2 increases the axonal 

loss rate most with a slight involvement of the M4 receptor but independently of the 

M1 and TrkB receptors. This suggests that downregulation of PKA activity through 
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the couple M2-M4 is a key factor in synapse elimination. Concurrently, M1 and TrkB 

also contribute separately to axonal loss, but their combined action has a potent 

summed effect similar to the effect of the M2 receptor. This suggest that activation 

of the PLCγ-PKC pathway through the couple M1-TrkB may be the other key factor 

in this process. Thus, a displacement of the PKA/PKC activity ratio to lower values 

(inhibition of PKA and/or stimulation of PKC) in some nerve endings may have a 

leading role in synapse elimination. In this context, blockade of PKC in the newborn 

LAL muscle produces an initial blockade of synapse elimination and a subsequent 

delay (Lanuza et al., 2002). 

In fact, these changes in the kinase activity leading to synapse elimination 

must occur at least (but not only) in the weakest axons during the competitive 

interactions. The neurotransmitter release capacity is an important factor in the 

competing capacity of the various nerve terminals in a NMJ.  During development, 

in the polyinnervated NMJ several nerve endings with different levels of maturation 

and ACh release capacity get together and compete. The coupling to 

neurotransmitter release of the considered receptors and kinases is not the same in 

each of these various endings themselves and in the mature synapses in the adult 

(Tomàs et al., 2014). So, how does the specific coupling to ACh release of receptors 

and kinases in the weak and strong axons in competition contribute to axonal loss? 

As far as serine kinases are concerned, in the adult motor nerve endings both PKA 

and PKC potentiate ACh release when coupled to neurotransmission (Santafé et 

al., 2009b). Similarly, the same potentiation is observed in most neuromuscular 

synapses during development as, for instance, in those formed by the strongest 

axons (those that evoke the large end-plate potential, EPP) in the polyinnervated 

junctions (Santafé et al., 2006). However, in the weakest endings the inhibition of 

PKC increases the evoked EPP size indicating that, in normal conditions without any 

inhibition, this kinase tonically couples to ACh release reduction in these low 

releasing synapses. Therefore, an M1-TrkB-mediated increase in PKC activity in the 

weakest endings would debilitate further their ACh release capacity and 

competitive force and facilitate their elimination. In addition, an M2-mediated PKA 

downregulation in all nerve endings in competition may differentially affect their 

ACh release and contribute to elimination. Thus, at this point, there is a significant 

agreement between the known involvement of these molecules in 

neurotransmission and axon loss. 
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However, when considering the real postnatal coupling to ACh release of 

the mAChRs and the TrkB receptor in the different nerve endings (the strongest and 

the weakest) on developing synapses (Santafé et al., 2004, 2009a), additional 

interpretative keys are need. In the mature NMJ, M1 and M2 subtypes modulate 

evoked transmitter release by positive and negative feedbacks, respectively 

(Santafé et al., 2003, 2006). However, during NMJ synaptogenesis, the functional 

significance of the subtypes is different from in the adult. M2 receptors promote 

release in all nerve endings independently of their ACh release level or maturation 

state whereas an M1- and M4-mediated reduction in release is observed in the 

weakest endings on dual junctions (Santafé et al., 2001, 2002, 2003, 2004, 2007b, 

2009a). Similarly, the BDNF/TrkB pathway contributes to potentiate ACh release in 

different neuromuscular adult models but the potentiation is not observed in the 

weakest nerve endings during development and even some ACh release inhibition 

was observed in the strongest endings (Garcia et al., 2010d). Therefore, interpreting 

the links and molecular relations between transmitter release and elimination of 

nerve terminals seems more complex than it seemed at first. The involvement of 

other signaling such as AR can contribute to this complexity (Todd and Robitaille, 

2006). 

 

Figure 51. Diagram showing an overall representation of the cooperation between 

mAChRs and TrkB receptor at P9. Green arrows with different thickness indicate the 

relative individual potency of these receptors to accelerate axonal elimination. The 

black arrow indicates that M4 receptor does not affect the axonal loss. A blue bond 

indicates the association between these receptors. Dotted black arrow indicates that 

M4 does not make any cooperation with M1. 
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However, some conclusions can be drawed taken in consideration all the 

aforesaid data. First, it seems outstanding that, contrary to what happens in the 

adult, M1 (and M4) and PKC activity reduce ACh release in the weakest endings in 

coincidence with the promotion of axonal loss. In fact, blocking mAChRs (M1- 

and/or M4-subtypes) or PKC or VDCCs (P/Q-, N- or L-type or Ca2+ influx) can lead 

to similar percentage increases in the size of the synaptic potentials evoked by 

weak axons (Santafé et al., 2003, 2004, 2007b, 2009a, 2009b; Tomàs et al., 2011). 

Therefore, the M1-PKC pathway may debilitate the ACh release capacity and 

competitive force of these synaptic contacts and facilitate their elimination. The 

final target molecules involved may be the VDCC, specially the L-type which is 

exclusively coupled to ACh release in these endings (Santafé et al., 2001) and may 

contribute to carry high calcium near molecular mechanism relevant to axon loss. 

Second, the BDNF/TrkB signaling contributes to accelerate axon loss similarly to M1 

signaling. However, its involvement in the modulation of ACh release in the nerve 

endings that are in competition is less clear because does not affect release in the 

weak axons. Because PKC effectively reduces release in these endings, the TrkB 

pathway may operate through the IP3 pathway to increase intracellular calcium 

and modulate the loss of axons. Third, M2 has a strongest effect promoting axonal 

elimination. However, contrary to the adult, this muscarinic subtype promotes ACh 

release in all endings that are playing in competition, including the weakest 

endings and the solitary ending that finally wins the competition. Therefore, there is 

a shift of the M2 coupling during development but how this affect their relation with 

PKA and how this relates with axonal loss is not known. 
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In this thesis, it has been demonstrated by quantitative morphological 

studies the role of presynaptics mAChRs, ARs and TrkB receptor in the axonal loss at 

the neuromuscular junction of neonatal rodents. It is known that several signaling 

molecules and presynaptic receptors play a role in the axonal competition, which 

means that the various nerve endings influence one another (Santafé et al., 2009a; 

Garcia et al., 2011). This process is closely related to ACh release mechanism, which 

can be studied by electrophysiology. At the end of the first postnatal week, these 

receptors modulate transmitter release in the various nerve terminals on 

polyinnervated NMJ and contribute to axonal competition and synapse 

elimination. Is for this reason that in the following discussion has been deemed 

appropriate to link the morphological analysis with the functional studies on the 

neuromuscular junction. The following discussion is divided in two main parts. The 

first one concerns how individually presynaptic mAChRs, ARs and TrkB receptors are 

involved in ACh release and in the synaptic elimination process. The second part 

relates to cooperation of these receptors in the process of axonal loss, which is 

strongly associated with their signaling pathways. In addition, it has been proposed 

a molecular background for developmental axonal competition. 

mAChRs M1-, M2- and M4-subtypes in axonal loss  

M1, M2 and M4 mAChR subtypes are present in the NMJ (Garcia et al., 

2005; Wright et al., 2009), regulate ACh release and play a role in the synapse 

elimination process during the development (Santafé et al., 2003, 2004, 2009a). In 

concrete, M1 and M4 subtypes are involved in a mechanism that delays axonal 

elimination at P7 whereas M2 subtype has no effect on it (Axonal loss, figure 52). 

Nevertheless, the action of all muscarinic receptors as a whole indicates that the 

muscarinic mechanism increases the rate of axonal loss in dual junctions and, 

therefore, the final transition to the monoinnervation. It seems that NMJs with 

different maturation levels have different sensitivities to muscarinic regulation. An 

example of this is that M1 and M2 antagonists delay the transition two-to-one when 

applied between P5-P6 but, when applied at P9, they accelerate axonal 

elimination. The muscarinic mechanism appears to operate at close to maximum 

capacity and, therefore, may not be able to increase its efficacy beyond P7 with 

agonists like OXO. The levels of these receptors or differences in turnover rate could 

contribute to the different effects observed at P7 and P9. For instance, differences 

in the internalization and the turnover of the mAChR family members have been 

described (Reiner and Nathanson, 2012; Ockenga and Tikkanen, 2015) and 
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endocytosis may favor the coupling of the receptors to different signal transduction 

cascades (Pierce et al., 2001). The elimination process comes to its normal range 

at the end of the second postnatal week (P15). This suggests that other signaling 

mechanisms help to resolve the correct synaptic connectivity (Yang et al., 2009; Je 

et al., 2012, 2013). 

In summary, a tonic muscarinic mechanism initially delays axonal 

elimination (a selective M1-M4 effect). However, the overall mAChR effect may 

accelerate the last phase of axonal disconnection, the two-to-one transition. 

Thereafter the muscarinic effect at around P9 clearly promotes elimination of all 

supernumerary nerve terminals (an M1-M2 effect).  

Role of mAChRs in ACh release and recovery of silent synapses 

The role of ACh release and recovery of silent synapses have been studied 

by the Histology and Neurobiology Unit through intracellular electrophysiological 

experiments. The procedure involved in detecting the function of polyinnervated 

synapses is complex. Is for this purpose that a short explanation of how they are 

studied is needed. It has been extensively described the characterization of the 

funcional capacity of the various motor axons that are in competition at the 

polyinnervated NMJ (Santafé et al., 2003, 2004, 2009a; Tomàs et al., 2011) using 

electrophysological experiments  in ex vivo LAL muscles from P6-P7 mice or rat. 

Briefly, after preventing contractions, the nerve is stimulated with an increasing 

intensity from zero until an EPP is observed. If the size and latency of the EPP remains 

constant as the stimulus is increased, it can be concluded that the endplate is 

monoinnervated (M endings). In endplates with polyneuronal innervation, 

increasing the stimulus amplitude causes one or more axons to be recruited, which 

produces a stepwise increment in the EPP (Redfern, 1970). Specifically, with dually 

innervated fibers (the most affordable polyinnervation condition), a second EPP 

can appear after the first one when the intensity of the electrical stimulus is 

increased. This compound EPP is built by recruiting two axons. The EPP amplitude 

of the second axon response can be calculated by subtracting the first EPP 

amplitude from the compound EPP. Usually, these EPPs have different amplitudes 

because their size is not related to the threshold of the axon that produces it. It has 

been referred to the axon terminals that produce these synaptic potentials as the 

weak (W, smallest EPP) and strong (S, largest EPP) nerve endings. In addition, it has 

been observed (Santafé et al., 2009a; Tomàs et al., 2011) that some nerve terminals 

go silent (do not evoke EPP on stimulation) before they completely retract and 
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before the end of the functional elimination period, but retain certain capabilities 

for evoked release that can be pharmacologically recovered (R, recovered 

endings). Also, intracellular recordings of the evoked synaptic potentials have 

been used to observe the number of functional inputs for a large number of NMJs. 

The mean value was defined as the polyinnervation index of the muscle studied (PI 

in control P6-P7 rodent muscles was 1.63 ± 0.14 with a 47.92% ± 2.08 of 

monoinnervated junctions; Lanuza et al., 2001; Santafé et al., 2001). Finally, the PI 

was used to study how several key molecules involved in ACh release can be 

related to synapse elimination by blocking or activating them. A rapid increase in 

the PI can indicate the recruitment of some silent nerve endings that transitorily 

recover transmission (R endings). 

Using this procedure it was observed that, in the adult NMJ (A, figure 52), 

M1 and M2 receptors modulate evoked transmitter release by a positive and 

negative feedback, respectively (Slutsky et al., 1999; Minic et al., 2002; Santafé et 

al., 2003, 2006). Thus, in the mature NMJ the whole outcome of the mAChR signaling 

seems to save the synapse function by decreasing the extent of evoked release in 

basal conditions. However, during development, the involvement of mAChR in 

ACh release is different. At P6-P7 roughly half NMJ have become monoinnervated 

because one nerve terminal wins the axonal competition process (Lanuza et al., 

2002; Santafé et al., 2002). In these axons (M, figure 52), all selective M1 and M2 

blockers tested reduce release and noteworthy the same occurs in the strongest 

endings in dual junctions still in competition (S, figure 52). This suggests that a 

positive value of the winner axons can be that all functional mAChR are committed 

to enhance ACh release (in M and S contacts, the M3 and M4 blockers, do not 

affect release). Using this autocrine mechanism, the strongest endings may 

reinforce themselves. However, in the weakest nerve terminal in dual junctions (W, 

figure 52), only M2 blockers reduce release whereas M1 and M4 blockers can lead 

to similar percentage increases in the size of the synaptic potentials evoked by 

weak axons (Santafé et al., 2003, 2004, 2007b, 2009a, 2009b; Tomàs et al., 2011). 

In electrophysiological experiments, an increase in PI indicates a quickly 

recruitment of some silent synaptic contacts that transitorily recover transmission (R 

in figure 52). In P6-P7 muscles, it has been observed that stimulation of all mAChR 

with OXO does not change the mean PI but the percentage of functional 

monoinnervated NMJ increases dramatically (Tomàs et al., 2011). On the other 

hand, the blockade of all mAChR with AT increases the NMJ with 3-4 inputs and 

increases PI. This effect can be almost exactly reproduced by selectively blocking 
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M2 with MET but not with MT7 (M1 blocker) or MT3 (M4 blocker). Thus, M2 has a role 

on the recovery of silent synapses and would be involved in promoting the last step 

of the functional axonal disconnection. Whereas M2 could stimulate release in M, 

S and W axons, this receptor subtype seem to reduce it in silent endings because 

the block of M2 (MET) increases release in these endings just to be functionally 

recovered. 

 

Figure 52. Effect of several subtype-selective and unselective muscarinic substances. 

The M2 receptor is selectively blocked with methoctramine (MET) or AFX-116. The M1 

receptor is selectively blocked with pirenzepine (PIR) or muscarinic toxin 7 (MT7). The M3 

subtype is blocked with 4-DAMP and the M4 subtype is blocked with tropicamide (TRO) 

or muscarinic toxin 3 (MT3). EPP size is represented with circles; increase –green–, 

decrease –red– and no change –black–. In developing (P7) single axons on 

monoinnervated junctions –M–, the strong –S– and weak –W– synaptic contacts on dual 

junctions and in adult (P30) nerve endings –A–. Silent synaptic contacts –R– can be 

observed in some NMJs of treated muscles after recovering ACh release. Here, R shows 

the effect of some substances in the polyinnervation index (PI, the mean number of 

axons per synapse) of these treated muscles. Axonal loss rate (represented with squares) 

is quantified by direct axonal counts in confocal LAL preparations from B6.Cg-Tg (Thy1-

YFP)16 Jrs/J mice. Delayed axon loss, in red squares, accelerated loss in green and no 

change in black squares. 

 

Relation between mAChR-mediated changes in axonal loss and ACh 

release 

A relation between ACh release modulation and the delay in axon 

elimination may be hypothetically expected by mAChRs. At P7, the release 

capacity of the weakest endings is increased by the inhibitors PIR and MT3, whereas 

ACh release from the strong ending is reduced (by PIR) or unaffected (by MT3) 
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(Santafé et al., 2009a). Thus, the difference in ACh release between competing 

endings (S and W) is reduced, which may change the competitive balance of the 

nerve terminals. It has not been known exactly what the release capacity of the 

weak and strong endings is in the LAL muscle at P9. However, both PIR and MT3 

accelerate axon loss at P7 and how this is related to the presumed lesser activity-

related competition is not clear. A plausible interpretation is that in this 

developmental stage (P7), mAChR-mediated competition is fully operative in the 

NMJ of untreated muscles, and some axons, engaged in competition, have not 

been fully lost. If competition is reduced or unbalanced by, for instance, blocking 

M1 or M4 the loss of these axons accelerates. Also, in dual junctions ACh release is 

reduced by the M2 blocker MET in both the weak and strong endings suggesting 

that the axonal difference in release is the same but axons are not as strong or 

have less competitive force. In this case, as may be expected, MET does not affect 

axonal elimination at P7. Thus, the relation between the ACh release capacity of 

the endings in competition and the rate of axonal loss in multiinnervated junctions 

seems to be best observed at P9 when, judging by the effects of PIR and MET, the 

receptors M1 and M2 play a role in accelerating axonal loss. The functional effect 

on ACh release of these receptors may reinforce the strongest endings and be 

detrimental to the weak endings in dual junctions. 

 

ARs A1-, A2A-subtypes in axonal loss  

ARs are present in the motor terminals of the newborn and adult NMJs 

(Garcia et al., 2013, 2014). A1 has been localized in the terminal teloglial Schwann 

cell and in the nerve terminal, whereas A2A has been found in the postsynaptic 

muscle, the axon and the nerve terminal (Garcia et al., 2013). However, there is not 

any information about the effect of agonists or antagonists of these receptors in 

describing the funcional capacity of the various motor axons that are in 

competition at the polyinnervated NMJ. Nevertheless, it is known that through A1 

and A2A receptor activation, adenosine modulates neuronal homeostasis and 

plays a key role in synapse plasticity (Dias et al., 2013). These receptors can 

collaborate with mAChR to reduce depression during repetitive activity (Correia-

de-Sá et al., 1991; Garcia et al., 2013; Santafé et al., 2014). In 3–4-week-old rats, low 

extracellular concentrations of ADO may activate both A1 and A2A and have a 

facilitatory action on ACh release. Also, blockade of A1 receptors prevents both 

excitatory and inhibitory effects, whereas blockade of A2A receptors prevents only 
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the excitatory effects (Pousinha et al., 2010). In the Histology and Neurobiology Unit, 

it has been found that in the adult NMJ the non-selective block of adenosine 

receptors with 8-SPT and the non-selective physiological agonist adenosine does 

not change evoked ACh release (Garcia et al., 2013). It has also been investigated 

the selective involvement of the A1 and A2A subtypes. Neither the selective block 

of A1 with DPCPX nor A2A with SCH-58261 have results in a significant change in 

evoked ACh released (Garcia et al., 2013). These findings confirm the previous 

observation that in resting conditions ARs are not tonically or constitutively coupled 

to any immediate modulation of stimulus-induced neurotransmission. In addition, 

the imbalance per se of the A1 and A2A mechanisms using the selective blockers 

and stimulators does not reveal any involvement of the endogenous adenosine in 

resting conditions. Moreover, a collaborative action between different AR subtypes 

reduced synaptic depression at a moderate activity level (40 Hz). Moreover, at high 

activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was 

sufficient to reduce depression through A1 and A2A. When the non-metabolizable 

2-chloroadenosine (CADO) agonist was used, both the quantal content and 

depression were reduced and the protective effect of CADO on depression was 

mediated by A1, whereas A2A seemed to modulate A1 (Santafé et al., 2015). 

In this thesis, we found that mAChRs and ARs delay axonal loss at P7 

(although mAChR accelerate the last phase of axonal disconnection) but 

accelerate it at P9. There is an additive effect between M1 and A1 or A2A which is 

an indication of the cooperation between at least these receptors. At P7, specific 

antagonists of ARs (DPCPX and SCH-58261) accelerate axonal elimination on the 

NMJ. Moreover, ADO, an agonist of AR induced retardation of axonal elimination. 

Therefore, the physiological role in normal conditions of the AR seems to delay the 

axonal loss process. However, at P9, the purinergic mechanism also seems to 

tonically accelerate axonal elimination to the maximum rate because the AR 

inhibitors delay the process. Therefore, it seems that AR may behave biphasically in 

the critical period between 5-9 postnatal days. An initial delay in axonal loss at P7 

(an A1- and A2A-mediated effect which can be reinforced by exogenously added 

ADO) is followed by an A1- and A2A-mediated tonic acceleration at P9. 

 

TrkB receptor in axonal loss 

BDNF and its receptors have been shown to be expressed in muscle and 

nerve tissues both during development and adulthood (Garcia et al., 2010f). In 
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order to study the effect of TrkB receptor in axonal loss, TrkB-Fc has been used to 

sequester endogenous BDNF/NT4 neurotrophins. In the morphological analysis, it 

has been observed a clear acceleration of the three-to-two rate well matched by 

an acceleration of the two-to-one rate at P7 (Axonal loss, figure 53). Therefore, the 

physiologic role in normal conditions of the BDNF/TrkB pathway at P7 seems to 

produce a retardation of the axonal loss process though endogenous BDNF does 

not affect the ACh release in the W endings as stated above. This result agrees with 

a proposed model in which proBDNF and mature BDNF (mBDNF) serve as potencial 

‘punishment’ and ‘reward’ signals for inactive and active terminals, respectively in 

vivo (Je et al., 2012). Exogenous proBDNF promoted synapse elimination via 

activation of p75NTR receptors, whereas mBDNF infusion substantially delayed 

synapse elimination in the mouse LAL muscle (Je et al., 2013). Also, the block of the 

p75NTR receptors in the LAL muscle of the mouse results in a delay of axonal loss 

and even some regrowth of nerve terminals (Garcia et al., 2011). However, at P9, 

neurotrophin signaling seems to reverse their coupling to the axonal loss process 

because TrkB-Fc strongly retard elimination (resulting in more dual and less 

monoinnervated NMJ). This indicates that, in the normal situation, the role of 

BDNF/NT4 mediators shift at P9 to accelerate elimination, similarly to the muscarinic 

mechanism described above.  

Thus, also in this case, it seems that the BDNF/TrkB pathway may play a 

biphasic role during the critical period of synapse loss. The progressive maturation 

of the NMJ at P9 may change the operation conditions of the BDNF/TrkB pathway 

to a more mature endogenous BDNF production and release-promoting effect in 

certain endings resulting in more efficient competition and axonal elimination. 

 

Role of TrkB-BDNF in ACh release and recovery of silent synapses 

As mAChRs, the role of TrkB receptor in ACh release has been studied in 

newborn and adult junctions. In the adult NMJ (A, figure 53) of rodents, 

exogenously added BDNF (or NT-4) increases evoked ACh release after 3 hours 

(Mantilla et al., 2004; Garcia et al., 2010d). This presynaptic effect is prevented by 

preincubation with TrkB-Fc chimera or by pharmacological block of TrkB signaling 

(k252-a or the antibody blocker 47/TrkB). However, low doses of BDNF rapidly 

induce (within minutes) a TrkB-dependent potentiation at developing 

neuromuscular junctions in Xenopus laevis in culture (Stoop and Poo, 1996; Poo and 

Boulanger, 1999; Poo, 2001). In P7 developing muscles ex vivo (M, figure 53), 
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exogenous BDNF (10 nM for 3 hours or 50 nM for 1 hour) potentiates release in all 

endings also with the involvement of TrkB (Garcia et al., 2010d). 

Thus, exogenous BDNF acts on a section of the release mechanism that is 

operative and potentiates neurotransmission in all nerve endings that are in 

developmental competition (regardless of their particular maturation state). 

However, when analysing the effect of the endogenous BDNF during synaptic 

maturation, blocking TrkB (K-252a) or neutralizing endogenous BDNF (TrkB-Fc), does 

not change the quantal content of the W endings though, surprisingly, increases 

release in the S endings (Garcia et al., 2010d) (S and W, figure 53). Therefore, 

though the BDNF/TrkB pathway seems ready to be stimulated by exogenous BDNF 

to potentiate release in all nerve terminals during development, endogenous BDNF 

does not affect the weak ending at P7 but, at this developmental period, may 

contribute to reduce release in the strongest ending (Garcia et al., 2010d). The 

effect of endogenous BDNF in S endings may be related with the relative 

involvement of truncated and full-length TrkB receptors, p75NTR receptors, and 

proBDNF and mature BDNF in the postnatal multiinnervated synapses. 

Blocking TrkB or preventing endogenous BDNF action by using TrkB-Fc does 

not change the mean PI. However, stimulation with exogenous BDNF (one hour in 

the bath) transitorily increases PI with an important reduction of monoinnervated 

junctions and an increase of the 2-3 functional input junctions (Tomàs et al., 2011; 

R, figure 53). This suggests the presence of a number of silent inputs in the boundary 

to be recovered (to produce an EPP) by BDNF application. In fact, BDNF transiently 

stabilizes silent synapses at developing mice NMJ (Kwon and Gurney, 1996; Garcia 

et al., 2010d). It may be hypothesised that, because the low activity in the weakest 

endings, the production of BDNF is scarce and does not work locally on them. 

However, exogenous BDNF may reach the weak endings close to elimination and 

induce some release recovery. As previously stated, the downregulation of M2 

(MET) produces the same effect that TrkB stimulation with BDNF, that is to say an 

increase in PI by the recovery of certain transmitter release capacity in silent 

endings. ACh from the strong and more active terminals may reach M2 in the silent 

endings thus punishing them. 
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Figure 53. Effect of neurotrophins (BDNF and NT4) and related substances (TrkB-Fc 

chimera and K-252a). EPP size is represented with circles; increase –green–, decrease –

red– and no change –black–. In developing (P7) single axons on monoinnervated 

junctions –M–, the strong –S– and weak –W– synaptic contacts on dual junctions and in 

adult (P30) nerve endings –A–. Silent synaptic contacts –R– can be observed in some 

NMJs of treated muscles after recovering ACh release. Here, R shows the effect of some 

substances in the polyinnervation index (PI, the mean number of axons per synapse) of 

these treated muscles. Axonal loss rate (represented with squares) is quantified by direct 

axonal counts in confocal LAL preparations from B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice. 

Delayed axon, loss in red squares, accelerated loss in green and no change in black 

squares. 

 

Relation between TrkB-mediated changes in axonal loss and ACh release 

Electrophysiological recordings have determined that BDNF increases 

ACh release in both the weak and strong endings at P6-P7 (Garcia et al., 2010d). 

In addition, exogenous BDNF increases the percentage of functional 

polyinnervated junctions (Tomàs et al., 2011). Interestingly, exogenous BDNF 

infusion delays synapse elimination in the mouse LAL muscle (Je et al., 2013). The 

delaying effect of the TrkB pathway on axonal elimination at P7 described here 

may be related with the BDNF potentiation of the weakest endings about to be 

eliminated. However, blocking the TrkB receptor or neutralizing endogenous BDNF 

with the TrkB-Fc chimera at P7 does not affect the quantal content of the weak 

endings but increases the release in the strong ending, which suggests that 

endogenous BDNF, in this developmental period, may surprisingly reduce the 

release in the strongest ending (Garcia et al., 2010d). The delaying effect of the 

TrkB pathway on axonal elimination at P7 may be related to the BDNF-mediated 

lesser release and presumed lesser competitive force of the strong axon. The TrkB 
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pathway accelerates elimination at P9. The progressive maturation of the NMJ at 

P9 may change the operation conditions of the BDNF/TrkB pathway in the strongest 

endings resulting in more efficient competition and axonal elimination (Mantilla et 

al., 2004; Garcia et al., 2010d). 

 

Relation between mAChR and AR signaling  

It has been shown that postnatal axonal stabilization or loss is a regulated 

multireceptor mechanism involving the cooperation of muscarinic (M1, M2 and M4) 

and adenosine autoreceptor (A1 and A2A) subtypes in the motor nerve endings. 

Once having seen the role of these three sets of receptors individually, we proceed 

to unveil the possible cooperation between these receptors, that could share 

signaling pathways to modulate the ACh release and, indeed, the axonal loss. In 

this thesis it has been demostrated that at P7, the effect of blocking M4 together 

with M1 or A1 is not different from the effect of blocking M4 by itself but is significantly 

different from the individual effects of M1 and A1. This may mean that M4 receptors 

are more prevalent than M1 and A1 receptors, which suggests that they may 

cooperate. Similarly, A2A receptor needs the cooperation of the A1 pathway for its 

potent effect. Moreover, M2 receptor modulates by a permissive action the other 

mAChR and AR. M2 receptor induces an elimination-promoting effect which would 

be lower than the combined elimination-preventing cooperative effect of A2A, M1, 

M4 and A1. At P9 exists a cooperation between M1, A1 and A2A receptors. However, 

the effect of the M2 blocker is not modified by the presence of the M1, A1 or A2A 

blockers, which indicates that the potent M2 effect is independent of the other 

receptors. Both AR pathways are fully dependent on each other and need to 

cooperate if they are to regulate axon loss. M4 can cooperate positively with M2 

and delay axonal loss when cooperates with A1 and A2A, which suggests a 

negative influence of M4 on A1 and A2A receptors. However, new experiments 

should be performed to clarify the downstream mechanism that couples mAChRs 

and ARs with kinases to the molecular targets responsible of axonal competition.  

mAChR and AR receptors are coupled to intracellular pathways that 

converge on a limited repertoire of effector kinases to phosphorylate protein 

targets and materialize structural and functional changes. These receptors 

signaling pathways share PKC and PKA pathways to modulate ACh release 

(Garcia et al., 2013; Santafé et al., 2015). Nowadays, there are not any data of 

specific studies which show the interaction between muscarinic and adenosine 
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receptors and the common signaling pathways during the period of synapse 

elimination. However, it is known that membrane receptors converge in a limited 

repertoire of effector kinases (mainly PKA and PKC) to phosphorylate protein 

targets and bring about structural and functional changes leading to axon loss. The 

nerve endings that lose the competitive process progressively weaken by 

diminishing the quantal content of the evoked ACh release in parallel with the 

progressive loss of nAChR from the postsynaptic muscle cell. In addition, serine 

kinases in the nerve terminals could be directly involved in modulating calcium-

depending ACh release at the NMJ (Lanuza et al., 2014) and, specifically, reducing 

ACh release capacity of the weak axons in developing polyinnervated synapses 

(Santafé et al., 2003, 2006, 2007b, 2009a, 2009b; Tomàs et al., 2011). However, more 

study is needed to fully assess the effect of these receptors in the signaling 

pathways. Nevertheless, a displacement of the PKA/PKC activity ratio to lower 

values (inhibition of PKA and/or stimulation of PKC) in some nerve endings may 

have a leading role in promoting synapse elimination. Thus, mAChRs (Santafé et 

al., 2006) and ARs (Oliveira et al., 2009) promote the influx of external Ca2+ in order 

to trigger exocytosis. It has been demonstrated that in the adult skeletal NMJ, 

mAChR and AR pathways (M1 and A1 receptors) share a link mediated by the set 

PLCγ-PIP2-DAG-PKC, which modulates P/Q-type VDCC (Santafé et al., 2006; 

Amaral and Pozzo-Miller, 2012). On the other hand, M2-M4 and A2A receptors share 

the PKA pathway which modulates neuromuscular transmission (Santafé et al., 

2009b). Thus, the result could be through at least two protein kinases, stimulated by 

different second-messenger systems, which exhibit both overlapping and unique 

specificities for the phosphorylation of multiple sites in their substrates (Chambers et 

al., 1994). 

To sum up, we suggest that M1 and A1 receptors can operate by 

stimulating PLCγ and, therefore, the PKC pathway whereas A2A, M2 and M4 along 

the PKA pathway. 

 

Relation between mAChR and TrkB signaling 

It can also be interesting to study the interaction between mAChR and 

TrkB receptor pathways because it has been already proven the role of these 

receptors individually in the axonal loss. M2 increases the axonal loss rate the most 

with a slight involvement of the M4 receptor but independently of the M1 and TrkB 

receptors. This suggests that downregulation of PKA activity through the couple M2-
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M4 is a key factor in synapse elimination. Concurrently, M1 and TrkB also contribute 

separately to axonal loss and their combined action has a potent summed effect 

similar to the effect of the M2 receptor. This suggests that activation of the PLCγ-

PKC pathway through the couple M1-TrkB may be the other key factor in this 

process. Thus, a displacement of the PKA/PKC activity ratio to lower values in some 

nerve endings may have a leading role in synapse elimination. Moreover, it has 

been observed that M4 regulate negatively the TrkB receptor whereas M4 does not 

change M1 effect on axonal loss. 

Previously, it has been demonstrated that the global outcome of the 

mAChR seems to protect the synapse function by decreasing the extent of evoked 

release (mainly an M2 action) and reducing depression (Santafé et al., 2003). A 

main role of TrkB can be to maintain a low level of spontaneous quantal leak of 

ACh and potentiate evoked release (Garcia et al., 2010e). Thus, some functions in 

the adult can be balanced by the opposed action of different receptors. Changes 

in the operation of any of these pathways and their receptors affect the normal 

coupling of the other complementary molecules to transmitter release. 

Consecutive incubations with two substances (for instance a muscarinic blocker 

followed by a TrkB blocker) have been used as a pharmacological tool to 

investigate the possible occlusive or additive crosstalk effects between two 

receptors. A close dependence has been found between mAChR and TrkB 

receptor pathways because the normal function of the mAChR mechanism is a 

permissive prerequisite for the TrkB pathway to couple to ACh release and 

reciprocally (Garcia et al., 2010e; Santafé et al., 2014). mAChR and TrkB pathways 

share a link mediated by PLCγ-PIP2-DAG-PKC, which leads to the modulation of 

P/Q-type VDCC (figure 54; Santafé et al., 2006; Amaral and Pozzo-Miller, 2012). Also, 

the PLCγ-generated DAG regulates the vesicle priming protein Munc13–1 and 

recruits ACh-containing vesicles for the immediately releasable pool (Bauer et al., 

2007). Thus, the relations between these signaling pathways modulate VDCC and 

the ready releasable pool of synaptic vesicles, which are the instruments of 

neurotransmission (Takamori, 2012). The influx of external Ca2+ required for 

exocytosis seems to be promoted by the activation of presynaptic M1 mAChR 

(Santafé et al., 2006) and interaction with the BDNF/TrkB receptor (Amaral and 

Pozzo-Miller, 2012). In the adult skeletal NMJ, the M1 mAChR balances the M2 

mAChR, which functions as a PKA-mediated inhibitor of ACh release under 

physiological conditions (Santafé et al., 2006). This balance is modulated by 

adenosine coreleased with ACh at the NMJ (Oliveira et al., 2009; Garcia et al., 
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2013; Santafé et al., 2015) and BDNF (Garcia et al., 2010e). However, when 

neuromuscular transmission is low (as during synaptic development) or defective, 

the balance between them shifts in favor of the M1 mAChR, partly caused by an 

M2 mAChR-mediated switch from PKA to PKC activation (Santafé et al., 2009b). 

The complementary function of these receptors in the adult NMJ 

neurotransmission reinforces the indication of their coordinated involvement in 

developmental synaptic elimination. It has been suggested that this mechanism 

plays a central role in the elimination of redundant neonatal synapses. However, 

at P7, the coperation of M1, M4 and TrkB receptors delays axon loss at the same 

time that M1 and M4 reduce ACh release in the weakest axon terminals suggesting 

some independence between transmitter release and elimination. It has been 

interpreted that at this developmental point, the activity-dependent competitive 

interactions in most junctions are at its peak and this could result in delayed axon 

loss. The effect of these receptors in finally accelerating axon loss is more clearly 

manifested at P9.  

 

Figure 54. Plausible interpretation of the role of mAChRs and the BDNF/TrkB pathways in 

the process of elimination of the weakest endings around P7. M1, M4 and TrkB operate 

by stimulating the phospholipase C (PLCγ) and therefore the protein kinase C (PKC) 

pathway along with the inositol trisphosphate (IP3) pathway, whereas M2 inhibit the 

adenylyl cyclase (AC) and protein kinase A (PKA) pathway. Finally, these receptors 

caused changes in axonal maintenance and acetylcholine (ACh) release. 
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OBJECTIVE 1. To know the effect of the individual mAChRs (M1, M2 and M4), ARs (A1 

and A2A) and TrkB signaling in the control of the synapse elimination during 

development. Identify how the modulation of these pathways modifies the number 

of motor nerve terminals per synapse at P7 and P9. 

mAChRs, ARs and TrkB modulate the elimination process and promote axonal 

disconnection at the beginning of the second postnatal week. 

- mAChRs, ARs and TrkB signaling are implicated in i) reducing the initial 

chance of elimination at P7 but ii) increasing thereafter axonal 

competition and elimination at P9. 

- M1 and M4 mAChRs subtypes are involved in a selective 

mechanism that delays axonal elimination at P7 whereas M1 and 

M2 subtypes cooperate to favour synapse elimination at P9. 

- ARs (A1 and A2A) and TrkB pathways at P7 produce a delay of the 

axonal loss process and accelerate it at P9.  

OBJECTIVE 2. To know the effect of the individual mAChRs (M1 and M2), ARs and 

TrkB receptor signaling on the evolution of the number of motor nerve terminals per 

synapse at P15. 

M1, M2, AR and TrkB inhibitors did not affect the synapse elimination process at the 

end of the second postnatal week (P15). 

OBJECTIVE 3. To determine the involvement of mAChRs (M1, M2 and M4), ARs (A1 

and A2A) and TrkB receptor on maturation rate of nAChRs postsynaptic cluster at 

P7, P9 and P15. 

The axonal elimination process is in some cases independent of the postsynaptic 

maturation of the nicotinic receptor cluster. 

- M1 and M2 mAChRs delay the maturation of nAChRs at P7 while M1, M2 

and M4 at P9.  

- M1 and M2 mAChRs produce a delay in the maturation of nAChRs at P15.  

- A dual effect of the TrkB pathway (hasten at P7, delay at P9) and AR-

mediated hastens maturation of nAChRs during the P7-P9 period.  

- ARs and TrkB signaling pathways are necessary in the maturation of 

nAChRs during the second postnatal week.   

- ARs accelerate the postsynaptic maturation of nAChRs at P15 

when they are blocked with non- selectitive antagonist (8STP). 

- TrkB accelerates the postsynaptic maturation of nAChRs at P15. 
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OBJECTIVE 4. To know the interaction between mAChRs (M1, M2 and M4) and ARs 

(A1 and A2A) signaling in the modulation of the synapse elimination during 

development. To identify the number of motor nerve terminals per synapse at P7 

and P9. 

Postnatal axonal elimination is a regulated multireceptor mechanism involving the 

cooperation of several muscarinic and adenosine receptor subtypes during P7 and 

P9. 

- A1 by itself has the same effect in delaying the process as A1 and A2A have 

together at P7. 

- The blockade of M4 together with an M1 or A1 blockade is not different 

from the effect of blocking M4 alone, hastening the process, but is 

significantly different from the individual effect of M1 and A1 at P7. 

- M2 receptor may modulate (by allowing a permissive action) the other 

receptors, mainly M4 and A1 at P7.   

- M1, A1 and A2A receptors cooperate to promote axonal loss at P9, 

whereas the potent axonal loss-promoting effect of M2 is largely 

independent of the other receptors. 

- There is a full mutual dependence between A1 and A2A receptors in 

regulating axon loss at P9. 

- M4 receptor (which in itself does not affect axon loss) modulates A1, A2A 

and M2 receptors at P9 accelerating or hastening the process. 

OBJECTIVE 5. To know the interaction between mAChRs (M1, M2 and M4) and TrkB 

signaling in the modulation of the synapse elimination during development. To 

identify the number of motor nerve terminals per synapse at P9. 

Postnatal axonal elimination is a regulated multireceptor mechanism involving the 

cooperation of several muscarinic subtypes and TrkB receptor during P9. 

- M1 and TrkB also contribute separately to axonal loss, but their combined 

action has a potent summed effect in accelerating the process similar to 

the effect of the M2 receptor. 

- M2 has the strongest effect promoting axonal elimination and increases 

the axonal loss rate most with a slight involvement of the M4 receptor but 

independently of the M1 and TrkB receptors.  

- M4 regulates TrkB receptor producing a delay in the process whereas M4 

does not change M1 effect on axonal loss.  
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RESEARCH Open Access

Presynaptic muscarinic acetylcholine
autoreceptors (M1, M2 and M4 subtypes),
adenosine receptors (A1 and A2A) and
tropomyosin-related kinase B receptor
(TrkB) modulate the developmental
synapse elimination process at the
neuromuscular junction
Laura Nadal, Neus Garcia*†, Erica Hurtado, Anna Simó, Marta Tomàs, Maria A. Lanuza†, Manel Santafé
and Josep Tomàs*†

Abstract

Background: The development of the nervous system involves an initially exuberant production of neurons that
make an excessive number of synaptic contacts. The initial overproduction of synapses promotes connectivity.
Hebbian competition between axons with different activities (the least active are punished) leads to the loss
of roughly half of the overproduced elements and this refines connectivity and increases specificity. The
neuromuscular junction is innervated by a single axon at the end of the synapse elimination process and,
because of its relative simplicity, has long been used as a model for studying the general principles of
synapse development. The involvement of the presynaptic muscarinic ACh autoreceptors may allow for the
direct competitive interaction between nerve endings through differential activity-dependent acetylcholine
release in the synaptic cleft. Then, the most active ending may directly punish the less active ones. Our
previous results indicate the existence in the weakest axons on the polyinnervated neonatal NMJ of an ACh
release inhibition mechanism based on mAChR coupled to protein kinase C and voltage-dependent calcium
channels. We suggest that this mechanism plays a role in the elimination of redundant neonatal synapses.

Results: Here we used confocal microscopy and quantitative morphological analysis to count the number of
brightly fluorescent axons per endplate in P7, P9 and P15 transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice. We
investigate the involvement of individual mAChR M1-, M2- and M4-subtypes in the control of axonal
elimination after the Levator auris longus muscle had been exposed to agonist and antagonist in vivo. We also
analysed the role of adenosine receptor subtypes (A1 and A2A) and the tropomyosin-related kinase B receptor.
The data show that postnatal axonal elimination is a regulated multireceptor mechanism that guaranteed the
monoinnervation of the neuromuscular synapses.
(Continued on next page)
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(Continued from previous page)

Conclusion: The three receptor sets considered (mAChR, AR and TrkB receptors) intervene in modulating the
conditions of the competition between nerve endings, possibly helping to determine the winner or the
lossers but, thereafter, the final elimination would occur with some autonomy and independently of
postsynaptic maturation.

Keywords: Motor end-plate, Motor nerve terminal, Cholinergic synapses, Neuromuscular junction

Background
The development of the nervous system involves the
initial overproduction of synapses, which promotes
connectivity, and a subsequent activity-dependent reduc-
tion in the number of synapses. This refines connectivity
and increases specificity. Hebbian competition between
axons with different activities (the least active are elimi-
nated) seems to be a characteristic of the process and
leads to the loss of roughly half of the overproduced
elements and the functional consolidation of the
remaining synapses in the adult [1, 2]. Synaptic con-
tacts are lost throughout the nervous system during
histogenesis [3, 4]. In newborn animals, the skeletal
muscle fibers are polyinnervated by several motor
axons [5] but at the end of the axonal competition, the
endplates are innervated by a single axon. Because of
its relative simplicity, the neuromuscular junction (NMJ)
has long been used as a model for studying the general
principles of synapse development in an attempt to under-
stand the synapse elimination process [2, 6–12].
Various presynaptic receptors seem to play an import-

ant role in the axonal competition leading to synapse
loss in the NMJ. The involvement of muscarinic acetyl-
choline autoreceptors (mAChRs) in the elimination
process may allow direct competitive interaction between
nerve endings through a differential activity-dependent
acetylcholine (ACh) release. Then, the more active ending
may directly punish those that are less active or reward
themselves if the suitable mAChR subtypes are present in
the competing axons. Our previous results indicate that,
in postnatal muscles, there is an ACh release inhibition
mechanism based on mAChR coupled to a PKC-VDCC
intracellular cascade. In certain weak motor axons, this
mechanism can depress ACh release and even disconnect
synapses [13–17]. We suggest that this mechanism
plays a central role in the elimination of redundant
neonatal synapses because functional axonal withdrawal
can indeed be reversed by mAChR, protein kinase C
(PKC) or voltage-dependent calcium channels (VDCC)
block [17, 18]. However, local differential effectiveness
and differential activity will determine eventual success,
since an axon that fails at one synapse (muscle cell) may
be successful at another [19], which suggests complex
regulation involving other receptors and postsynaptic-

(and glial cell) derived factors. Both neurotrophin recep-
tors (NTR) and adenosine receptors (AR) belong to lead-
ing presynaptic signalling pathways. In the adult NMJ, the
activity of one of these receptors can modulate a
given combination of spontaneous, evoked and activity-
dependent release conditions and a close dependence
between them exist [20]. These receptors and their intra-
cellular signalling may help to refine the molecular and
structural organization of the newborn synapses so that
they can acquire their mature form.
Here we investigate the involvement of individual

mAChR subtypes in the control of synapse elimination.
We also analyse the role of AR (A1 and A2A) and
trompomyosin-related kinase B receptor (TrkB). The
data show that the three receptor sets considered co-
operate in the elimination process and promote axonal
disconnection at the beginning of the second postnatal
week independently of the postsynaptic maturation of
the nicotinic receptor cluster.

Results
Postnatal elimination of nerve terminals
Normal evolution of postnatal polyneuronal innervation in
the NMJ
Figure 1 shows some representative confocal immuno-
fluorescence images of singly- and polyinnervated NMJs
from YFP (autofluorescent axons) and C57BL/J6 (axons
stained with anti neurofilament fluorescent antibody)
mice. The images show that it is feasible to accurately
count the number of axons in both preparations. Firstly,
we investigated in our experimental model the normal
postnatal elimination of the excess synaptic contacts.
Figure 2a shows axonal counts in fluorescent immuno-
histochemistry LAL preparations (average number of
axonal connections per NMJ) from B6.Cg-Tg (Thy1-YFP)
– hereafter YFP – and C57BL/J6 mice. The figure also
shows previous data [10, 21–23] from Sprague-Dawley
(SD) rats to show similarities between rodents. The histo-
gram in Fig. 2b shows the percentage of singly-, dually-
and triply- (or more) innervated synapses in YFP for the
postnatal days (P) considered without any experimental
manipulation (control, non-PBS). Because the present
work is based in subcutaneous injection procedure, we
also wanted to control that subcutaneous injection by
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itself does not affect the elimination process in the
control animals. Figure 2b also shows the percentage
of singly-, dually- and triply- (or more) innervated
synapses at P7 (n = 2315 NMJs, N= 10 mice), P9 (n = 2647
NMJs, N= 10 mice) and P15 (n = 1056 NMJs, N= 4 mice)
after two (days 5, 6), four (days 5–8) and ten (days 5–14)
subcutaneous PBS injections, respectively (control PBS).
No significant differences are observed between PBS
(the control for subcutaneous injections) and non-PBS
(without subcutaneous injection) preparations ( p >
0,05, Fisher’s test).

Stimulation of the mAChR. Effect of oxotremorine
Figure 3 shows the percentage of singly-, doubly- and
triply (or more) innervated NMJs in the untreated YFP
control mice and after 2 (P7), 4 (P9) and in some cases
10 (P15) applications (one application every day after
P5) of the mAChR agonist oxotremorine (OXO) and
such antagonists as atropine (AT), pirenzepine (PIR),
methoctramine (MET) and muscarinic toxin 3 (MT3).
We first used the potent and well characterized unselect-
ive agonist OXO. A subcutaneous application on the
YFP LAL muscle surface every day (at P5 and P6) results
in a significant acceleration at P7 of the axonal elimin-
ation process (Fig. 3a; Fisher’s test; n = 820 NMJs, N= 4
mice), because of the increase in monoinnervated NMJs
(p < 0,005) and the reduction in dual (p < 0,05) synapses.
It seems that the muscarinic mechanism, when stimu-
lated, accelerates the axonal elimination rate and transi-
tion to the monoinnervation state.

However, four applications (P5-P8) of OXO (Fig. 3b;
Fisher’s test; n = 865 NMJs, N = 4 mice) do not lead to
any significant change at P9 (p > 0,05) in monoin-
nervated and dual junctions though a small increase of
the fraction of synapses with three or more axons is
observed (p < 0,05). This indicates that the effect of
muscarinic stimulation diminishes and tends to peak
close to the normal values of axonal elimination around
four days after stimulation has begun. Therefore, there is
a window around P5-P6 in which mAChR can be forced
to accelerate synapse elimination. However, exogenous
stimulation with the agonist reveals only that muscarinic
signalling has the potential to accelerate postnatal axonal
disconnection but does not explain what the tonic
muscarinic control is like in a normal situation. There-
fore, we investigate how blocking the M1, M2 and M4

mAChR subtypes in toto or selectively (those subtypes
observed in functional developing NMJ, [13, 14, 24, 25])
can affect synapse elimination.

Unselective inhibition of mAChRs. Effect of atropine
Figure 3a shows that two subcutaneous applications of
AT (at P5 and P6) in the YFP LAL muscles analysed
at P7 significantly reduce the percentage of triple
junctions (p < 0,05), increase the percentage of dual
junctions (p < 0,01), and have no effect on the per-
centage of single junctions (Fisher’s test; n = 1343
NMJs, N = 3 mice). Thus, the rate of transition from
three to two speeds up but the overall process does
not continue to the point of significantly increasing

Fig. 1 The picture shows some representative confocal immunofluorescence images of the singly- and polyinnervated NMJ from YFP and
C57BL/J6 mice. Scale bar: 10 μm
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monoinnervation. This indicates that AT has a dual effect:
namely, it increases axon loss in triple junctions and re-
duces loss in double NMJs. It seems that NMJs or nerve
terminals of different levels of maturity have different

sensitivities and respond differently to this potent muscar-
inic pan-inhibitor.
Daily AT applications between P5 and P8 lead to a

significant retardation of axonal elimination at P9 (Fig. 3b;

Fig. 2 Postnatal evolution of polyneuronal innervation. In a, comparison of the results of axon counts in fluorencence immunohistochemistry LAL
preparations of YFP and C57BL/J6 mice. The histogram in b shows the percentage of singly-, dually- and triply- (or more) innervated synapses in
YFP animals on the postnatal days studied without any experimental manipulation (control non-PBS, without subcutaneous injection), and also at
P7, P9 and P15 after two (days 5–6), four (days 5–8) and ten (days 5–14) daily subcutaneous PBS applications respectively (control PBS). No
differences are observed between PBS and non-PBS preparations (Fisher’s test: p > 0,05)
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Fig. 3 Changes in polyneuronal innervation of the NMJ after stimulation and inhibition of the mAChR. The figure shows the percentage of
singly-, dually- and triply- (or more) innervated NMJs in the untreated YFP control mice (exposed to PBS applications) and after 2 (P7 in a), 4 (P9,
in b) and in some cases 10 (P15, in c) applications (one application every day after P5) of the mAChR agonist (ago.) oxotremorine (OXO) and such
antagonists (ant.) as atropine (AT), pirenzepine (PIR), methoctramine (MET) and muscarinic toxin 3 (MT3). Fisher’s test: * p< 0,05, ** p< 0,01, *** p< 0,005
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Fisher’s test; n = 1032 NMJs, N= 4 mice) with persistent
polyinnervation due to the higher percentage of dual junc-
tions (p < 0,005) the corresponding decrease in monoin-
nervated synapses (p < 0,005) and an almost normal
number of triple junctions (p > 0,05). This clearly indicates
that blocking the mAChR can persistently obstruct the
two-to-one transition of the elimination processs. How-
ever, unlike the OXO effect (which tends to disappear at
P9 after accelerating elimination at P7), the effect of AT
seems to be maintained throughout the period P5-P9 at
least in relation to the two-to-one transition. It seems,
then, that in normal conditions, the presynaptic muscar-
inic mechanism increases the rate of axonal loss at least in
dual junctions in the period P5-P9 and that this effect can
be increased at P7 by using an exogenous agonist.

Selective block of the mAChRs
How are the various mAChR subtypes that operate in
the postnatal NMJ (M1, M2 and M4; [16]) involved in
axonal elimination? We selectively blocked M1 (PIR), M2

(MET) and M4 (MT3) and observed the NMJ at P7
(daily applications on the LAL surface at P5 and P6,
Fig. 3a) and P9 (applications between P5-P8, Fig. 3b). At
P7 two subcutaneous PIR applications significantly re-
duced the percentage of triple (p < 0,005) and dual junc-
tions (p < 0,05) and greatly increased the percentage of
single junctions (p < 0,005, Fisher’s test; n = 915 NMJs,
N = 4 mice). Thus, both the three-to-two and the two-
to-one rates of transition accelerated considerably and
the overall elimination process speeded up. This may
indicate that in the normal situation the role of M1 is to
slow elimination down because when it is uncoupled
from PIR, the elimination process accelerates. Interest-
ingly, the M4 blocker MT3 has almost exactly the same
effect as the M1 blocker PIR (Fisher’s test; n = 895 NMJs,
N = 4 mice), whereas the M2 blocker MET does not have
a significant effect at P7 after the two subcutaneous
applications (p > 0,05, Fisher’s test; n = 1012 NMJs, N= 4
mice). As an additional control, in P7 C57BL/J6 animals
treated with MET we found the same result (Fisher’s
test; Control PBS (n = 1533 NMJs, N= 6 mice): 1 axon:
22.69 % ± 1,04 % ; 2 axons: 50.20 % ± 2.75 % ; 3 or more
axons: 27.11 % ± 3.18 %. MET application (n = 911 NMJs,
N = 3 mice): 1 axon: 22.22 % ± 2.56 % (p > 0,05); 2 axons:
50.00 % ± 2.74 % (p > 0,05); 3 or more axons: 27.78 % ± 2.38
(p > 0,05)). Thus, at P7 the ensemble M1/M4 seems to be
involved in a mechanism that delays elimination because
when it is blocked the percentage of monoinnervated junc-
tions increased and caused a fast three-to-one transition.
Nevertheless, how can it be explained that at this time

(P7) the two-to-one transition is accelerated by the
selective blockers PIR and MT3 (and not affected by
MET), but that when all mAChR subtypes were blocked
with AT this transition was partially delayed? Blocking

the whole ensemble of subtypes with AT has a somehow
diferent effect than the individual effects of mAChR
subtypes. This apparent contradiction observed with the
effects of selective and unselective pharmacological mus-
carinic inhibitory substances at P7 seems to suggest the
existence of other confluent signalling pathways that
take part in the process (see below).
However, daily applications of these substances for

four days (P5-P8) lead to a much more clearly defined
situation at P9 (Fig. 3b). As stated above, four AT appli-
cations delay elimination, maintain the number of dual
junctions and decrease the number of singly-innervated
NMJ, which indicates that the two-to-one transition is
slowing down. The same effect (even greater because of
the considerable delay in the three-to-two transition) is
obtained by blocking M1 (PIR, p < 0,005, Fisher’s test;
n = 1293 NMJs, N = 3 mice) and M2 (MET, p < 0,005,
n = 976 NMJs, N = 4 mice) but not in this case with
the M4 blocker MT3 (p > 0,05, n = 1177 NMJs, N = 4
mice). As an additional control, in P9 C57BL/J6
animals treated with MT3 we found the same result
(Fisher’s test; Control PBS (n = 1352 NMJs, N= 5 mice): 1
axon: 48.17 % ± 4.54 % ; 2 axons: 36.73 % ± 2.76 % ; 3 or
more axons: 15.10 % ± 4.97 %.MT3 aplications (n = 906
NMJs, N= 4 mice): 1 axon: 51.2 % ± 5.77 % (p > 0.05); 2
axons: 39.32 % ± 2.53 % (p > 0.05); 3 or more axons:
9.48 % ± 2.32 (p > 0.05)). These data indicate that at
this point in the elimination process, both M1 and
M2 subtypes cooperate in favouring the full sequence
of synapse elimination.
To investigate the possible persistence of the mAChR

effect throughout the period of synapse elimination, we
made daily applications of AT (the unselective mAChR
antagonist), PIR and MET (the M1 and M2 selective
antagonists that are effective at modulating axonal
elimination at P9) between P5 and P15 (in normal con-
ditions almost 90% of NMJs were monoinnervated at
P15). In spite of the continued presence of unselective
and selective inhibitors, we found that the elimination
process came to its normal conclusion by the end of the
second postnatal week (Fig. 3c; (p > 0,05, Fisher’s test;
AT: n = 720 NMJs, N = 3 mice; PIR: n = 924 NMJs, N= 3
mice; MET: n = 870 NMJs, N= 3 mice)). This reinforces
the suggestion that several signalling mechanisms between
the endings in competition cooperate (and substitute each
other) to resolve the correct synaptic connection in a
multifactorial process.

Other signalling mechanisms involved in axonal loss
Several signalling pathways connect the cells that make
synapses. Here, we studied the possible involvement of
adenosine receptors and neurotrophin receptors (here
the representative TrkB receptor for brain-derived neuro-
trophic factor (BDNF) and neurotrophin-4 (NT-4) in the
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complex period of axonal elimination around P7-P9
(Fig. 4). To the LAL muscle, we subcutaneously applied
the AR inhibitor 8SPT, the AR agonist ADO and the TrkB

blocking pathway agent TrkB-Fc to sequester endogenous
BDNF/NT-4 neurotrophins. With the 8SPT (n = 920
NMJs, N= 4 mice) and TrkB-Fc (n = 1113 NMJs, N= 4

Fig. 4 Involvement of adenosine receptors (AR) and TrkB receptors in axonal elimination. The figure shows the percentage of the singly-,
dually- and triply- (or more) innervated NMJs in the YFP control mice exposed to PBS, and after 2 (P7 in a), 4 (P9, in b) and in some cases 10
(P15, in c) applications (one application every day after P5) of the BDNF-TrkB blocking pathway agent TrkB-Fc to sequester endogenous BDNF/
NT-4 neurotrophins and the AR pan-inhibitor 8SPT and the AR agonist (ago.) ADO. We also studied axonal elimination after selectively blocking
A1R with the antagonist (ant.) DPCPX and inhibiting A2AR with SCH-58261. The control for these selective inhibitors was PBS + DMSO (not shown
in the figure) which shows no differences from PBS used as a control by itself. Fisher’s test * p < 0,05, ** p < 0,01, *** p < 0,005
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mice) blockers at P7 we observed a clear acceleration in
the three-to-two rate (Fisher’s test; 8SPT: p < 0,005; TrkB-
Fc: p < 0,05) that was very similar to the acceleration in
the two-to-one rate. These substances accelerate axonal
elimination on the NMJ and, therefore, the physiological
role in normal conditions of the AR and TrkB pathways
at P7 seems to delay the axonal loss process. This is
confirmed for the AR because exposure to the physio-
logical agonist ADO results in a significantly higher
number of triple junctions and a significant reduction
in the number of dual junctions (p < 0,005, Fisher’s
test; n = 923 NMJs, N= 4 mice). This indicates an ADO-
induced retardation of axonal elimination. Which AR
subtypes are involved in the ADO effect? We analysed
axonal elimination after selectively blocking A1R with
DPCPX (n = 1160 NMJs, N= 4 mice) or A2AR inhibition
with SCH-58261(n = 963 NMJs, N= 4 mice) (Fig. 4a). The
data show that axonal loss (the full three-to-one transi-
tion) is accelerated by both inhibitors (p < 0,005), which
indicates that in normal conditions without inhibition
both A1R and A2AR are associated with delaying loss.
Interestingly, at P9, neurotrophin signalling seems to

reverse their coupling to the axonal loss process because
TrkB-Fc (acting between P5-P8) considerably delays
elimination (resulting in more dual and fewer monoinner-
vated NMJ; p < 0,005, Fisher’s test; n = 863 NMJs, N= 4
mice), which indicates that in a normal situation BDNF/
NT-4 mediators change their role and accelerate elimin-
ation, as has been described above for the muscarinic
mechanism. At P9, the purinergic mechanism also seems
to tonically accelerate axonal elimination to the maximum
rate because the AR pan-inhibitor 8SPT delays the process
(an effect of the A1R and A2AR, Fig. 4b; Fisher’s test;
n > 900 NMJs, N = 4 mice in each case) with no effect
of the agonist ADO (p > 0,05, n = 908 NMJs, N= 4 mice).
Therefore, it seems that AR may behave biphasically in

the critical period between 5-9 postnatal days. An initial
delay in axonal loss at P7 (an A1R- and A2AR-mediated
effect which can be reinforced by exogenously added
ADO) is followed by an A1R- and A2AR-mediated tonic
acceleration at P9.
To sum up, the two receptor sets (TrkB and AR)

initially delay (P7) axonal loss but promote axonal dis-
connection at the beginning of the second postnatal
week (P9) as mAChRs do. Figure 10 shows a graphic
representation of these actions.
However, the experimental groups also differ with re-

spect to the duration of receptor perturbation (two, four,
and ten injections at P7, P9, and P15, respectively). Some
effects may therefore be due to different durations of
receptor inhibition. For instance, compensatory mecha-
nisms may have more or less time to counteract receptor
blockade. Thus, it is interesting to evaluate synapse devel-
opment at different time points after inhibiting receptors

for the same time. For the action of some blockers (MET,
DPCPX and TrkB-Fc), we probe synapse development at
P9 after inhibiting receptors for only two days (from P7-
P9). The results show that the three blockers studied
significantly reduce the percentatge of the monoinner-
vated junctions (with respect to the untreated control at
P9) independently of their application during four or only
two days before the observation at P9. This data reinforce
the idea that the receptors role, in normal conditions
without the inhibitors, can be to accelerate axonal loss.
Interestingly, there are some differences between the
blockers. The M2 blocker MET produces the same effect
after four or two days (25.6 ± 1.04 % and 27.2 ± 1.1 %
monoinnervated synapses respectively, Fisher’s test,
p > 0,05). However, the A1 blocker DPCPX and the
TrkB pathway blocker TrkB-Fc, significantly reduce
the monoinnervated synapses even more after two
days than after four days of application over the LAL
muscle surface (DPCPX: two days 33.7 ± 1.16 %, four days
39.8 ± 1.09 %, p < 0,05; TrkB-Fc: two days 30.9 ± 1.12 %,
four days 42.75 ± 1.07 %, Fisher’s test, p < 0,05). These data
reinforce our interpretation that the M2 receptors start to
accelerate axonal elimination around P7 whereas A1 and
TrkB are involved in the initial delay (P5-P7) of axonal
loss before shifting to promote axonal disconnection at
the beginning of the second postnatal week (P9). The
absence of the A1 and TrkB inhibition between P5-P7
results in a strong effect of the inhibitors when applied
between P7-P9.
To assess the overall capacity of the considered sig-

naling on axonal elimination, we investigate the overall
effect of prolonged global receptor perturbation on axon
number at P15. We studied axon number after more
prolonged general block of mAChRs (AT, see above
Fig. 3c), ARs (8SPT) and TrkBRs (TrkB-Fc) and found
that in all cases, in spite of the continued presence of
the inhibitors, monoinnervation is achieved in about 90 %
of NMJ at P15 (Fig. 4c; (p > 0,05, Fisher’s test; TrkB-Fc:
n = 825 NMJs, N = 3 mice; 8SPT: n = 720 NMJs, N = 3
mice)). We conclude that the modulation of axonal
competition and the final process of axonal disconnection
and loss seems differentially regulated.
Finally, we made some preliminary experiments to

show a real cooperation between the receptors. For this
purpose we selected receptors which perturbation produces
a strong effect on axonal loss at P9 and applied simultan-
eously their inhibitors in a LAL muscle in four animals. We
associated one AR blocker (DPCPX or SCH-58261) with
the M1 blocker PIR. We found that both DPCPX
and SCH-58261 add their individual delaying effect
on axonal loss to the delaying effect of PIR resulting
in 58 % and 36 % respectively less monoinnervated
junctions that with PIR only (monoinnervated NMJ
after PIR, 39 ± 1.1 %; after PIR + DPCPX, 16.4 ± 1.08 %;
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after PIR + SCH-58261, 24.8 ± 0.8 %. The two inhibitor
associations differ significatively from the PIR only
effect, p < 0,005).

Postsynaptic receptors cluster during postnatal
maturation
mAChR influence on the postsynaptic maturation
We analysed the morphological maturation of the post-
synaptic apparatus in the same experimental conditions
as those in the previous study on axon loss. The axonal
elimination process is accompanied by changes in the
morphology of the nicotinic ACh receptor (nAChR)
clusters in the postsynaptic component. On the basis of
criteria from previous studies on developing mammalian
NMJs [23, 26–30], the following maturation stages
(MS1–MS4) were defined (Fig. 5a). As normal matur-
ation takes place, changes in the nAChR distribution
transform the uniform nAChR oval plaque with an
indistinct boundary seen at birth (MS1) into an elon-
gated plaque with a few hints of heterogeneities in
receptor density (MS2). This then changes into clusters
with small areas of low nAChR density appearing as
holes (MS3) that are not innervated. This morphology
leads to an increasingly structured pattern of fluores-
cently labelled independent primary gutters (MS4) below

the nerve terminals. Figure 5b shows the percentages of
the MS1-MS4 nAChR clusters plotted at days P5-P15.

Stimulation and inhibition of the mAChRs
Figure 6 shows the percentage of MS1-MS4 clusters in
the NMJ of the untreated YFP control mice (PBS) and
after 2 (P7, Fig. 6a), 4 (P9, Fig. 6b) and 10 (P15, Fig. 6c)
applications of the muscarinic substances considered.
Figure 7a, b and c also show the percentage of MS3
clusters (postsynaptic clusters in advanced morpho-
logical maturation) with one, two or three (or more)
axons for each day. This percentage can be taken as an
indication of the correspondence between pre- and post-
synaptic maturation. After the mAChR antagonists AT,
PIR and MET (MT3 does not unambiguously modify
the postsynaptic clusters) had been applied for two days,
at P7 we found changes in the morphological maturation
of the postsynaptic apparatus. Generally there was a high
percentage of differentiated MS3 clusters (p < 0,005,
Fisher’s test) and fewer MS1 and MS2 (p < 0,005)
(Fig. 6a). Interestingly, many of these MS3 clusters are
still innervated by 2–3 axons (Fig. 7a), which indicates
some imbalance in the appropiate pre- and postsynaptic
correspondence. The fact that postsynaptic maturation
accelerates after muscarinic inhibition supports the notion

Fig. 5 Postnatal morphological maturation of the postsynaptic apparatus. The axonal elimination process is accompanied by changes in the
morphology of the nAChR clusters in the postsynaptic membrane. a, the following maturation stages (MS1–MS4) were defined. MS1: Uniform
nAChR oval plaque with an indistinct boundary seen in the majority of NMJs at birth. A uniformly distributed porosity can be observed within
this plaque. MS2: nAChR elongated oval plaque with a few hints of inhomogeneities in receptor density. The nAChRs are denser on a few narrow
ridges that occur within the plaque. MS3: An oval nAChR plaque with one or more fluorescence-free “holes.” These holes are not innervated. MS4:
The oval nAChR areas have been transformed into a more mature branched pattern with a moderately convoluted external border and high and
low receptor density areas. The edge of the holes usually has a high density of receptors. Scale bar: 10 μm. b, shows the percentages of the
MS1-MS4 nAChR clusters plotted in the interval P5-P15 days
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that in normal conditions (without inhibition) the M1 and
M2 subtypes have a tonic role and delay maturation.
Because OXO does not have a definite significant effect
(p > 0,05) (Fig. 6a), the tonic muscarinic effect may operate
at close to its maximum rate.
At P9, the selective muscarinic drugs PIR, MET

and MT3 accelerated cluster maturation, and pro-
duced fewer MS1 and more MS3 clusters (Fisher’s
test; for MS3: PIR (p < 0,005); MET i MT3 (p < 0,05);
even MS4 for MT3; see Fig. 6b), many of which (for
AT, PIR and MET experiments) were innervated by
2–3 axons as they were at P7 (Fig. 7b). This also
indicates that at P9 the M1, M2 and M4 subtypes are
involved in delaying the normal maturation process
in normal conditions. However, AT does not change

the normal percentage of the cluster subtypes
(though the MS3 subtype is also innervated by 2–3
axons, p > 0,05) and OXO moderately accelerates
maturation (by reducing MS1 (p < 0,005) and increasing
the MS2 subtype, p < 0,01). Thus, the use of the subtype-
unselective drugs AT and OXO reveal the complex
involvement of the mAChRs in the morphological
maturation process of the postsynaptic receptor clus-
ters. The coincident contribution of other signalling
will be considered below.
With the unselective mAChR antagonist AT and the

selective M1 and M2 muscarinic inhibitors, and spe-
cially with PIR, we observed at P15 that postsynaptic
maturation seems to be slower and partially retained
at the MS3 subtype (Fig. 6c) though most MS3 are

Fig. 6 Maturation of postsynaptic nAChR clusters after stimulation and inhibition of mAChRs. Percentage of MS1-MS4 clusters in the NMJ of
untreated YFP control mice (exposed to PBS), and after 2 (P7, in a), 4 (P9, in b) and in some cases 10 (P15 in c) applications of the muscarinic
substances considered: OXO, AT, PIR, MET and MT3. Fisher’s test * p < 0,05, ** p < 0,01, *** p < 0,005
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already monoinnervated in the presence of AT, PIR
and MET (Fig. 7c).
Thus, as far as postsynaptic clusters are concerned,

in normal conditions mAChRs tend to produce some

delay in maturation throughout the P5-P9 period
and this effect is extended at P15 when axonal
elimination is almost complete whether muscarinic
modulators are used or not.

Fig. 7 Pre- and postsynaptic maturation in the MS3 clusters after stimulation and inhibition of the mAChRs. For each day considered (P7 in a, P9
in b and P15 in c) the figure shows the percentage of MS3 clusters (the oval nAChR plaques with fluorescence-free holes that mature at a faster
rate) with one, two and three or more axons as an indication of the appropiate correspondence of the pre- and postsynaptic maturation. Fisher’s
test * p < 0,05, ** p < 0,01, *** p < 0,005
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Other signalling mechanisms involved in postsynaptic
maturation
Figure 8a shows that after two days of using TrkB-Fc to
sequester endogenous BDNF/NT-4, nAChR maturation
is delayed at P7 because of the persistence of many
MS1 clusters (p < 0,005, Fisher’s test). This indicates
that the normal stimulation of the TrkB pathway

promotes postsynaptic maturation at around P7. This
tendency is reversed at P9 after four days of exposure
to TrkB-Fc because of the clear increase in the MS3
subtype with respect to the untreated control (p < 0,05,
Fig. 8b). In addition, many of these MS3 clusters are poly-
innervated (with three or more axons, p < 0,005, Fig. 9b).
Ten applications (one application every day after P5) of

Fig. 8 Involvement of the AR and TrkB receptors in the morphological maturation of the postsynaptic apparatus. The figure shows the
percentage of the MS1-MS4 clusters in the NMJ of the untreated YFP control mice (exposed to PBS), and after 2 (P7 in a), 4 (P9, in b) and in some
cases 10 (P15, in c) applications (one application every day after P5) of the TrkB blocking chimera TrkB-Fc, the AR pan-inhibitor 8SPT and the AR
agonist ADO. We also studied axonal elimination after selectively blocking A1R with DPCPX and inhibiting A2AR with SCH-58261. Fisher’s test:
* p < 0,05, ** p < 0,01, *** p < 0,005
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TrkB-Fc reveal some delay of the postsynaptic mat-
uration at P15 (increased MS3 and less MS4 clus-
ters, Fig. 8c). Thus, the TrkB pathway seems to have
a complex effect on postsynaptic maturation (accel-
erated at P7, delayed at P9 and accelerated once
again thereafter).

With regard to the AR pathway, at P7 we found that the
unselective antagonist 8SPT had no effect on the matur-
ation of postsynaptic clusters (p > 0,05, Fisher’s test Fig. 8a)
although when 8SPT was applied in the period P5-P8 (ob-
servation at P9, Fig. 8b) MS2 clusters increased and MS1
and MS3 clusters decreased (p < 0,005), which indicates

Fig. 9 Pre- and postsynaptic maturation in the MS3 clusters. AR and TrkB pathways modification. For each day considered (P7 in a, P9 in b and
P15 in c), the figure shows the percentage of MS3 clusters with one, two and three or more axons as an indication of the appropiate
correspondence of the pre- and postsynaptic maturation. Fisher’s test: * p < 0,05, ** p < 0,01, *** p < 0,005
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some delay in the transition from MS2 to MS3. Also, many
of the few MS3 clusters remain polyinnervated with two or
three axons (p < 0,005, Fig. 9b). Interestingly, we observed
that after daily applications of 8SPT between P5 and P15
the postsynaptic maturation seems to be partially retained
at the MS3 subtype (Fig. 8c). Thus, AR in normal condi-
tions without inhibition can accelerate maturation some-
what during the P7-P9 period. Interestingly, exposure of
the LAL muscle to the agonist ADO does not unambigu-
ously change the normal distribution of the clusters at P7
(although it decreases MS3 slightly and a number of these
clusters are innervated by three or more axons [p < 0,01,
Figs. 8a and 9a]) and P9 (although there is a slight decrease
in MS1, p < 0,01). This indicates that the tonic effect of the
AR manifested by using 8SPT can not be clearly changed
with exogenously added agonist. Which AR subtypes are
involved in the tonic effect of endogenous ADO? We
analysed the maturation of nAChR clusters after selective
block of A1R with DPCPX or A2AR block with SCH-58261.
Our data indicate that blocking A1R at P7 and both A1R
and A2AR at P9 delays the maturation of normal clusters
meaning that both receptor subtypes can accelerate post-
synaptic maturation in normal conditions.
The diagram in Fig. 10 is a graphic representation of

the influence of the mAChRs, and the AR and TrkB
receptors on postnatal axonal elimination and postsyn-
aptic maturation.

Discussion
The main observation of the present study is that the
coordinated action of the mAChRs (M1, M2 and M4), AR
(A1R and A2AR) and TrkB signalling modulates the condi-
tions of axonal competition and promotes (around P7-P9)
the disconnection of supernumerary nerve endings.

Presynaptic mAChRs M1-, M2- and M4-subtypes modulate
axonal loss
Although there is not agreement about whether all
mAChR subtypes are present in the NMJ [25, 31], some

of these receptors play a role in ACh release both during
development [18, 21, 32] and in the adult [32, 33]. In
P6-P7 mice, we observed that M1 and M4 subtypes are
involved in a mechanism that delays axonal elimination.
However, the action of all muscarinic receptors as a whole
indicates that the muscarinic mechanism increases the
rate of axonal loss in dual junctions and, therefore, the
final transition to the monoinnervation. It seems that
NMJs with different maturation levels have different sensi-
tivities to muscarinic regulation. The relative levels of these
receptors or differences in turnover rate may contribute to
the different effects observed. Using Western blotting we
observed that in the adult, M1, M2, M3 and M4 receptors
are more abundant than in the newborn [25]. In fact,
changes in the expression of muscarinic receptors during
development have been described in embryonic chick heart
and retina [34], in carotid body, petrosal and superior cer-
vical ganglion of the cat [35] and in rat brain [36]. In
addition there are differences in the internalization and
turnover of the mAChR family members [37, 38] and endo-
cytosis may favour the coupling of the receptors to differ-
ent signal transduction cascades [39].
However, the M1-M2 subtype pair (in substitution of

the M1-M4 pair) cooperates to favour the full sequence
of synapse elimination at P9 (the three-to-one axon
transition). The delayed two-to-one transition induced
by AT at P7 (which reveals accelerated axonal elimin-
ation in normal conditions without the inhibitor) may be
interpreted as an early manifestation of the consistent
mAChR-modulated axonal loss that is fully manifested
at P9. The muscarinic mechanism appears to operate at
close to maximum capacity and, therefore, may not be
able to increase its efficacy beyond P7 with agonists like
OXO. Interestingly, in spite of the continued presence of
the M1 and M2 inhibitors, the elimination process comes
to its normal conclusion at the end of the second postna-
tal week (P15). This suggests that other signaling mecha-
nisms help to resolve the correct synaptic connectivity.
Alternatively, M1 and M2 signaling may be not required at

Fig. 10 Influence of the mAChR, AR and TrkB receptors on postnatal axonal elimination and synaptic maturation
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all for the final step of axonal elimination because the
receptor inhibitors produce only transient perturbations
in elimination but axon los is completed normally around
P15. Our interpretation is that all considered receptors
(see later) intervene in modulating the conditions of the
competition between nerve endings, possibly helping to
determine the winner or the lossers but, thereafter, the
time and conditions of the final elimination would occur
with some autonomy.
In summary, the results show that a tonic muscarinic

mechanism initially delays axonal elimination (a selective
M1-M4 effect). However, the overall mAChR effect may
accelerate the last phase of axonal disconnection, the
two-to-one transition. Thereafter the muscarinic effect
at around P9 clearly promotes elimination of all super-
numerary nerve terminals (an M1-M2 effect).
Which mAChR subtypes couple to regulate ACh release?

In the mature NMJ, M1 and M2 mAChRs modulate evoked
transmitter release by positive and negative feedbacks, re-
spectively [13, 40]. M2 is more prevalent [20, 31]. During
synaptogenesis, [13, 14, 41], in the monoinnervated junc-
tions and the strong terminal in dually innervated junctions
both M1 and M2 are coupled to potentiate ACh release.
However, in the weakest nerve terminal in dual junctions
only M2 potentiates release whereas M1 and M4 couple to
inhibit ACh secretion. A mAChR-PKC-VDCC cascade is
involved in controlling ACh release in the weak ending.
Blocking PKC, VDCCs (P/Q-, N- or L-type or Ca2+ influx)
or mAChRs (M1- and/or M4-subtypes) can lead to similar
percentage increases in the size of the synaptic potentials
evoked by weak axons [15–17].
How are related the release capacity of the strong and

weak endings and the loss of axons described here? At
P7, the release capacity of the weakest endings was
increased by the inhibitors PIR and MT3, whereas ACh
release from the strong ending was reduced or un-
affected [16]. Thus, the difference in ACh release be-
tween the strong and weak nerve endings is reduced,
and this fact may change the competitive conditions of
the nerve terminals. We do not know exactly how is the
ACh release capacity of the weak and strong endings in
the LAL muscle at P9. However, between P7 and P9, the
percentage of polyinnervated junctions changes only by
about 10%. The configuration of mAChR in the monoin-
nervated synapses is not mature until P15 [13], which
suggests that the competitive interactions between axons
peak at around P9 and their release capacity is probably
not very different from what it is at P7. If this is so, the
reduction of the competitive advantage and disadvantage
linked to ACh release of the strong and weak endings
produced by PIR and the reduccion of the strength of
the different axons produced by MET (MT3 does not
play at P9) may considerably delay axonal loss. We
found here that this is the case.

Contribution of AR and TrkB receptor pathways
Several data suggest the involvement of other receptors.
The mAChR agents alter the time course of the synapse
elimination but not its final chronology. Experimental
manipulations of the PKC/PKA pathways can also
change the time course but not the final conclusion of
synapse elimination [23, 32, 42, 43]. This indicates that
different receptors with their intracellular mechanisms
can be used in the process of synapse elimination.
AR are present in the motor terminals of the newborn

and adult NMJs [44, 45]. These receptors can collaborate
with mAChR to reduce depression during repetitive activity
[44, 46, 47]. During development, low extracellular concen-
trations of ADO may activate both A1R and A2AR and have
a facilitatory action on ACh release [48]. Our results show
that mAChR and AR delay axonal loss at P7 (although
mAChR accelerate the last phase of axonal disconnection)
but accelerate it at P9. The results showing an additive
effect between M1 and A1 or A2A are an indication of the
cooperation between at least these receptors.
The BDNF-TrkB pathway also plays a biphasic role. Judg-

ing from the effect of the TrkB-IgG chimera, BDNF initially
delays elimination and subsequently accelerates it. Neuro-
trophins and their receptors in muscle and nerve are
expressed in both development and adulthood [49–54].
Low doses of BDNF rapidly induce a TrkB-dependent po-
tentiation at developing NMJs in culture. In developing
muscles, BDNF increases ACh release in both the weak
and strong endings at P6-P7 [55]. In addition, exogenous
BDNF increases the percentage of functional polyinner-
vated junctions [17]. Interestingly, exogenous BDNF infu-
sion delayed synapse elimination in the mouse LAL muscle
[56] The delaying effect of the TrkB pathway on axonal
elimination at P7 described here may be releated with the
BDNF potentiation of the weakest endings about to be
eliminated. However, blocking the TrkB receptor or neu-
tralizing endogenous BDNF with the TrkB-IgG chimera at
P7 does not affect the quantal content of the weak endings
but increases release in the strong ending, which suggests
that endogenous BDNF, in this developmental period, may
surprisingly reduce release in the strongest ending [55].
The delaying effect of the TrkB pathway on axonal elimin-
ation at P7 may be related to the BDNF-mediated lesser re-
lease and presumed lesser competitive force of the strong
axon. The TrkB pathway accelerate elimination at P9. The
progressive maturation of the NMJ at P9 may change the
operation conditions of the BDNF-TrkB pathway in the
strongest endings resulting in more efficient competition
and axonal elimination [55, 57].

Relation between mAChR, AR and TrkB pathways
The mAChR, AR and TrkB pathways share a link mediated
by the set phospholipase C (PLC)-phosphatidylinositol 4,5-
bisphosphate (PIP2)-diacylglycerol (DAG)-protein kinase C

Nadal et al. Molecular Brain  (2016) 9:67 Page 15 of 19

UNIVERSITAT ROVIRA I VIRGILI 
Muscarinic, adenosine and tropomyosin-related kinase B receptor modulate the neuromuscular 
developmental synapse elimination process 
Laura Nadal Magriñà 



(PKC), which modulates P/Q-type VDCC [40, 58]. Interest-
ingly, PKC couples to potentiate ACh release in the adult
monoinnervated NMJ, in the strong ending in developing
dual junctions and in the solitary ending of the recently
monoinnervated junctions at the end of developmental
maturation. However, reduces release in the weakest axons
in dual junctions and, therefore, PKC may be determinant
in the regulation of axonal loss [18].

Involvement of the mAChR, AR and TrkB in the
maturation of nAChR clusters
mAChR [25], AR [44] and TrkB receptors [55] are
present in the postsynaptic site of NMJs and are in-
volved in organizing them [50, 59–61]. The changes we
observed may be caused by the pharmacological tools
directly acting on these receptors, as a side-effect of a
primary effect on the axonal elimination rate or a
combination of the two mechanisms. The first change in
synapse elimination may be a reduction in the quantal
efficacy because of a local decrease in nAChR density
[62]. This postsynaptic change may begin before the
overlying axon withdraws [63]. However, polyneuronal
innervation decreases considerably at a time when rela-
tively few postsynaptic nAChR are lost [10, 23]. We
found here that several situations of increased axon loss
or retention do not coincide with the maturation of the
nAChR clústers, which suggests independent regulation.
Interestingly, prolonged M1 and M2 inhibition results in
a defect in postsynaptic maturation at P15. Especially,
M1 perturbation had a strong effect. This finding sug-
gests a requirement for M1 and M2 signaling in postsyn-
aptic maturation and occurs when axon loss has been
completed. In addition, AR block with 8SPT and TrkB
pathway block with the TrkB-Fc chimera, similarly delay
postsynaptic maturation at P15 (in all cases less MS4
mature nAChR clusters) indicating also the need of
these signalling pathways in postsynaptic maturation.
Selective nAChR-phosphorylation by PKC and PKA is
one of the causes of nAChR dispersion and stability,
respectively [64–66]. An activity-dependent coordinated
mAChR-AR-TrkB effect on these postsynaptic kinases
could be a key mechanism in NMJ maturation.

Conclusion
Synaptic contacts are lost throughout the nervous system
during both histogenesis and ageing and experience-
dependent neuronal plasticity requires maintenance of
newly formed synapses, while others are eliminated. We
investigate the involvement of muscarinic, purinergic and
neurotrophin receptor signaling in developmental synapse
elimination. The three receptor sets intervene in modulat-
ing the conditions of the competition between nerve
endings, possibly helping to determine the winner or the
lossers but, thereafter, the final elimination would occur

with some autonomy and independently of postsynaptic
maturation.

Methods
Animals
Transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice were used
(The Jackson Laboratory). Transgenic mice express
spectral variants of GFP (yellow-YFP) at high levels in
motor and sensory neurons, as well as in subsets of
central neurons. Axons are brightly fluorescent all the
way to the terminals. No expression is detectable in
nonneural cells. All experiments were conducted on Thy1-
YFP-expressing mice. In some cases, we check our results
with C57BL/6J mice (The Jackson Laboratory).
Experiments were performed on the Levator auris longus

(LAL). Neonatal pups of either sex (4–30 days) were ob-
tained and the date of birth was designated postnatal day 0
(P0). We minimized the variability in our measurements by
carefully monitoring the timing of conception. Also, the
weights of the individuals were within 5 % of the mean for
a given day after conception. The mice were cared for in ac-
cordance with the guidelines of the European Community’s
Council Directive of 24 November 1986 (86/609/EEC) for
the humane treatment of laboratory animals. All experi-
ments on animals have been reviewed and approved by the
Animal Research Committee of the Universitat Rovira i
Virgili (Reference number: 0233).

Injection procedure
The newborn mice were anesthetized with 2 % tribro-
moethanol (0.15 ml/10 g body weight, i.p.). Under aseptic
conditions, various solutions (antagonists and agonists of
the considered receptors) were administered in 50 μl of
sterile physiological saline or dimethyl sulfoxide (DMSO)
by subcutaneous injection over the LAL external surface as
described elsewhere [22]. The animals received 2, 4 or 10
injections from postnatal day 5, and the LAL muscles were
studied on days 7, 9 and 15. The solutions were adminis-
tered at a concentration in accordance with the previously
reported biological action of the substance [14, 55, 67].

Tissue preparation and histochemistry
Neonatal pups were given a lethal dose of 2 % tribro-
moethanol. Their heads were removed and fixed in 4 %
paraformaldehyde for 1.5 h. After washing in phosphate-
buffered saline (PBS), LAL muscles were removed and
post-fixed for 45 minutes. After washing in PBS, Thy1-
YFP LAL muscles were incubated in PBS containing a 1/
800 dilution of 1μg/ml tetramethylrhodamine conjugated
α-bungarotoxin (Molecular Probes, Eugene, OR) for 1h at
room temperature.
Double immunofluorescence and confocal analysis

were performed on the C57BL/6J LAL muscle. Whole
mounts of LAL were processed to detect the axons with
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an antibody against 200-kD neurofilamentprotein and
postsynaptic nicotinic acetylcholine receptors (nAChRs)
with TRITC-α- BTX (Molecular Probes, Eugene, OR).
Muscles were incubated overnight only with the rabbit
antibody against 200-kD neurofilament (1:1,000; Sigma)
in 1 % bovine serum albumin (BSA). The appropriate
secondary antibody (conjugated with Alexa-fluor 488)
donkey anti-rabbit (Molecular Probes) was added and
incubated for 4 h. The antibody specificity was tested by
incubation in the absence of primary antibody. At least
three muscles were used as negative controls (not
shown). Whole muscles were mounted in Mowiol with
p-phenylenediamide (Sigma).

Morphological analysis and Confocal microscopy
NMJs were analyzed using an inverted Nikon TE-2000
fluorescent microscope (Nikon, Tokyo, Japan) connected
to a personal computer running image analysis software
(ACT-1, Nikon). The number of axons per endplate was
counted. Because of the difficulty in determining the
exact number of axonal inputs for each nAChR cluster
when more than two axons converged at the same
synaptic site, we classified the NMJs into three groups
only: junctions that were monoinnervated, doubly inner-
vated, or innervated by three or more terminal axons.
These data enabled us to calculate the “average number
of axonal inputs” and the “percentage of polyneuronal
innervation” for all fibers receiving two or more axons.
In PBS, DMSO control experiments or untreated ani-

mals, we determined the number of axons per endplate
between days 5 to 30 and the postsynaptic nAChR
cluster morphology on days 5, 7, 9, 10 and 15. Animals
were injected with PBS or DMSO over the LAL muscle.
The injections were performed from day 5 and the
animals sacrificed on days 7, 9, and 15. No differences
were found between the muscles injected or not with
PBS, either in the nAChR cluster morphology or the
number of axons per endplate, thus indicating that the
injection procedure did not in itself induce changes in
the overall morphology of the motor endplate and nerve
terminals. The final concentration of DMSO in control
and drug-treated preparations was 0.1% (v/v). In control
experiments, this concentration of DMSO did not affect
any of the parameters studied (data not shown).
To determine the effect of different treatments on the

maturity of nAChR clusters at the NMJ during the
period in which polyneuronal innervation is being elimi-
nated, the maturation of the clusters was divided into
four morphological stages (MS1–MS4) on the basis of
criteria from previous studies of developing mammalian
NMJs [23, 26, 27, 29] (Fig. 5). MS1: Uniform nAChR
oval plaque with an indistinct boundary seen in the
majority of NMJs at birth. A uniformly distributed por-
osity can be observed within this plaque. MS2: nAChR

elongated oval plaque with a few hints of inhomogenei-
ties in receptor density. The nAChRs are denser on a
few narrow ridges within the plaque. MS3: An oval
nAChR plaque with one or more fluorescence-free
“holes.” These holes are not innervated. MS4: The oval
nAChR areas have been transformed into a more mature
branched pattern with a moderately convoluted external
border and high and low receptor density areas. The
edge of the holes usually has a high density of receptors.
High-resolution confocal images were obtained with a
63x oil objective (1.4 numerical aperture) on a Nikon
TE-2000 confocal microscope. Z stacks were obtained at
0.5-μm step size for depths of 20–40 μm, and additional
optical sections above and below each junction were
collected to ensure that the entire synapse was included.

Statistical analysis
All NMJs visible in their entirety were scored, with a
minimum of 100 per muscle. At least six muscles were
studied for each age and condition examined. Fisher’s
test was applied to compare percentages. The criterion
for statistical significance was p < 0.05. The categories
were scored and the counting was performed by a
person with no knowledge of the age or treatment of the
animals. The data are presented as mean ± SD.

Drugs
Purinergic agents

Non-selective AR agonists and antagonists The stock
solution of adenosine 5′-triphosphate disodium salt hy-
drate (ADO; A9251, Sigma-Aldrich, St. Louis, MO) was
made up as a 100 mM solution in deionized water. The
stock solution of 8-(p-sulfophenyl)theophylline (8-SPT;
A013, Sigma-Aldrich, St. Louis, MO) was made up as a
100 μM solution also in deionized water. The working
solutions were adenosine (25μM) and 8-SPT (100 μM).

Selective A1 R and A2A R antagonists The stock solu-
tions were 8-cyclopentyl-1,3-dipropylxanthine (DPCPX;
C101, Sigma-Aldrich) 50 mM, and 2-(2-furanyl)-7-(2-
phenylethyl)-7H-pyrazolo[4,3-e] [1, 2, 4] triazolo[1,5-
c]pyrimidin-5-amine (SCH-58261; 2270, Tocris, Bristol,
UK) 100 mM, both dissolved in DMSO. Working solu-
tions were DPCPX (100 nM) and SCH-58261 (50 nM).

Muscarinic agents

Non-selective mAChR agonists and antagonists The
stock solutions were oxotremorine M (OXO; O100,
Sigma - Aldrich, St. Louis, MO) 50 mM; atropine (AT;
A0132, Sigma - Aldrich, St. Louis, MO) 200 μM both
dissolved in deionized water. Working solutions were
oxotremorine M (1μM) and atropine (2μM).
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Selective M1, M2 and M4 mAChR antagonists The
stock solutions were pirenzepine dihydrochloride (PIR;
1071, Tocris Bioscience) 10 mM; methoctramine (MET;
M105, Sigma – Aldrich, St. Louis, MO) 1 mM; muscarinic
toxin 3 (MT-3; M-140, Alomone Labs) 50 μM. The
working solutions used were pirenzepine (10 μM), meth-
octramine (1μM), and muscarinic toxin 3 (100 nM).

TrkB receptor-related agent
The following stock solutions was used: recombinant
human trkB/Fc Chimera (trkB-Fc; 688-TK;R&D Systems),
100μg/ml. Working solution was trkB-Fc 5μg/ml.
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the receptors. The main results show that the A 2A , M 1 , M 4 , 
and A 1  receptors (in this order of ability) delayed axonal elim-
ination at P7. M 4  produces some occlusion of the M 1  path-
way and some addition to the A 1  pathway, which suggests 
that they cooperate. M 2  receptors may modulate (by allow-
ing a permissive action) the other receptors, mainly M 4  and 
A 1 . The continued action of these receptors (now including 
M 2  but not M 4 ) finally promotes axonal loss at P9. All 4 recep-
tors (M 2 , M 1 , A 1 , and A 2A , in this order of ability) are necessary. 
The M 4  receptor (which in itself does not affect axon loss) 
seems to modulate the other receptors. We found a syner-
gistic action between the M 1 , A 1 , and A 2A  receptors, which 
show an additive effect, whereas the potent M 2  effect is 
largely independent of the other receptors (though can be 
modulated by M 4 ). At P9, there is a full mutual dependence 
between the A 1  and A 2A  receptors in regulating axon loss. In 
summary, postnatal axonal elimination is a regulated multi-
receptor mechanism that involves the cooperation of sev-
eral muscarinic and adenosine receptor subtypes. 
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 Abstract 
 The development of the nervous system involves the initial 
overproduction of synapses, which promotes connectivity. 
Hebbian competition between axons with different activi-
ties leads to the loss of roughly half of the overproduced ele-
ments and this refines connectivity. We used quantitative 
immunohistochemistry to investigate, in the postnatal day 7 
(P7) to P9 neuromuscular junctions, the involvement of mus-
carinic receptors (muscarinic acetylcholine autoreceptors 
and the M 1 , M 2 , and M 4  subtypes) and adenosine receptors 
(A 1  and A 2A  subtypes) in the control of axonal elimination 
after the mouse levator auris longus muscle had been ex-
posed to selective antagonists in vivo. In a previous study we 
analyzed the role of each of the individual receptors. Here we 
investigate the additive or occlusive effects of their inhibi-
tors and thus the existence of synergistic activity between 
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 Introduction 

 During the development of the nervous system, an ini-
tial overproduction of synapses favors connectivity and is 
followed by an activity-dependent reduction in the num-
ber of contacts, which refines and increases the specific-
ity of the neural circuits. Hebbian competition between 
axons seems to determine this process  [1–4] . In newborn 
animals, skeletal muscle fibers are polyinnervated by sev-
eral motor axons, but at the end of the axonal competition 
the end plates are innervated by a single axon  [2, 5–12] . 
Various signaling molecules and presynaptic receptors 
can play a role in axonal competition by allowing the var-
ious nerve endings to have a mutual influence on one an-
other and on the postsynaptic muscle cell and the termi-
nal Schwann cell. 

  In the neuromuscular junctions (NMJs), several re-
ceptors modulate the presynaptic function  [13] . Previ-
ous results in postnatal muscles indicate the existence
of an acetylcholine (ACh)   release inhibition mecha-
nism based on muscarinic acetylcholine autoreceptors 
(mAChRs) coupled to a protein kinase C (PKC) and a 
voltage-dependent calcium channel (VDCC) intracellu-
lar cascade. In some weak motor axons, this mechanism 
can depress ACh release and even help to disconnect 
synapses  [14–19] .

  Recently we found that presynaptic mAChRs (M 1 , M 2 , 
and M 4  subtypes), adenosine receptors (ARs; A 1  and A 2A ) 
and the tropomyosin-related kinase B receptor (TrkB) 
can cooperate in the developmental synapse elimination 
process at this synapse  [20] . Signaling through these re-
ceptors seems to be involved in reducing the initial chance 
(around postnatal day P7) of eliminating certain weak 
endings but subsequently increasing (around P9) axonal 
competition and elimination. However, in spite of the 
continued presence of the inhibitors of these receptors, 
monoinnervation is normally achieved at P15. We con-
clude that the 3 receptor sets intervene in modulating the 
conditions of the competition between nerve endings, 
possibly helping to determine the winner or the losers, 
although a given axon would finally be eliminated with 
some autonomy and independently of postsynaptic mat-
uration  [20] . 

  In the previous study we analyzed the role of individ-
ual receptors. Here we investigate the additive or occlu-
sive effects of the inhibitors of 2 of these receptor sets, 
mAChRs and ARs (the autoreceptors of ACh and adenos-
ine released by nerve endings), and thus the existence of 
synergistic activity between them in synapse elimination 
at the NMJ.

  The results indicate that postnatal axonal elimination 
is a regulated multireceptor mechanism involving the co-
operation of several muscarinic and adenosine receptor 
subtypes. For instance, a synergistic action between M 1 , 
A 1 , and A 2A  receptors promotes axonal loss at P9, where-
as the potent axonal loss-promoting effect of M 2  is large-
ly independent of the other receptors.

  Material and Methods 

 Animals 
 Transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice were used (The 

Jackson Laboratory). The mice express spectral variants of GFP 
(yellow-YFP) at high levels in motor and sensory neurons, and ax-
ons are brightly fluorescent all the way to the terminals. All ex-
periments were conducted on Thy1-YFP-expressing mice. In 
some cases, we checked our results with C57BL/6J mice (The Jack-
son Laboratory).

  Experiments were performed on the levator auris longus (LAL) 
muscle. Neonatal pups of either sex (7 and 9 days) were obtained 
and the date of birth was designated P0. We minimized the vari-
ability in our measurements by carefully monitoring the timing of 
conception. Also, the weights of the individuals were within 5% of 
the mean for a given day after conception. The mice were cared for 
in accordance with the guidelines of the European Community’s 
Council Directive of November 24, 1986 (86/609/EEC) for the hu-
mane treatment of laboratory animals. All experiments on animals 
were reviewed and approved by the Animal Research Committee 
of the University Rovira i Virgili (reference No. 0233). 

  Injection Procedure 
 The newborn mice were anesthetized with 2% tribromoethanol 

(0.15 mL/10 g body weight, i.p.). Mice pups received daily subcu-
taneous injections in the back of the neck beginning on P5 of one 
or two substances (combinations of 2 selective mAChR antago-
nists, 2 selective AR antagonists and different combinations of 1 
mAChR antagonist plus 1 AR antagonist). Under aseptic condi-
tions, solutions were administered in 50 μL of sterile physiological 
saline by subcutaneous injection over the LAL external surface as 
described elsewhere  [21] . The animals received 2 or 4 injections 
from P5, and the LAL muscles were studied on days 7 or 9. Control 
injections were done in exactly the same way as experimental in-
jections, using phosphate-buffered saline (PBS) by itself. No dif-
ferences were found between the muscles injected with PBS and 
those that were not, which suggests that the injection procedure 
did not in itself induce changes in the overall morphology of the 
motor end plate and nerve terminals. The solutions were admin-
istered at a concentration in accordance with the previously re-
ported biological action of the substance  [15, 22, 23] . The final 
concentration of dimethyl sulfoxide (DMSO) in control and drug-
treated preparations was 0.1% (v/v). In specific control experi-
ments, this concentration of DMSO did not affect any of the pa-
rameters studied  [20] .

  Tissue Preparation and Histochemistry  
 Neonatal pups were given a lethal dose of 2% tribromoethanol. 

Their heads were removed and fixed in 4% paraformaldehyde for 
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1.5 h. After washing in PBS, the LAL muscles were removed and 
postfixed for 45 min. After washing in PBS, Thy1-YFP LAL mus-
cles were incubated in PBS containing a 1/800 dilution of 1 µg/mL 
tetramethylrhodamine-conjugated α-bungarotoxin (TRITC-α- 
BTX, Molecular Probes, Eugene, OR, USA) for 1 h at room tem-
perature. 

  Double immunofluorescence and confocal analysis were per-
formed on the C57BL/6J LAL muscle. Whole mounts of LAL were 
processed to detect the axons with an antibody against a 200-kDa 
neurofilament protein (rabbit antibody against a 200-kDa neuro-
filament, 1:   1,000; Sigma) and postsynaptic nicotinic ACh recep-
tors with TRITC-α-BTX (Molecular Probes). The appropriate sec-
ondary antibody (conjugated with Alexa Fluor 488) donkey anti-
rabbit (Molecular Probes) was added and incubated for 4 h. The 
antibody specificity was tested by incubation in the absence of pri-
mary antibody. At least 3 muscles were used as negative controls 
(not shown). Whole muscles were mounted in Mowiol with p-
phenylenediamide (Sigma). 

  Morphological Analysis and Confocal Microscopy  
 NMJs were analyzed using an inverted Nikon TE-2000 fluores-

cent microscope (Nikon, Tokyo, Japan) connected to a personal 
computer running image analysis software (ACT-1, Nikon). The 
number of axons per end plate was counted.

  Statistical Analysis 
 All NMJs visible in their entirety were scored, with a minimum 

of 100 per muscle. At least 6 muscles were studied for each age and 
condition examined. A Fisher test was applied to compare percent-
ages. The criterion for statistical significance was  p  < 0.05. The 
categories were scored and the counting was performed by a per-
son with no knowledge of the age or treatment of the animals. The 
data are presented as means ± SD.

  Drugs 
 Selective A 1 R and A 2A R Antagonists 
 The stock solutions were 8-cyclopentyl-1,3-dipropylxanthine 

(50 m M;  DPCPX; C101, Sigma-Aldrich), and 2-(2-furanyl)-7-(2-
phenylethyl)-7H-pyrazolo(4, 3-e)(1, 2, 4) triazolo(1, 5-c)pyrimi-

din-5-amine (100 m M;  SCH-58261; 2270, Tocris, Bristol, UK), 
both dissolved in DMSO. Working solutions were DPCPX (100 
n M ) and SCH-58261 (50 n M ).

  Selective M 1 , M 2 , and M 4  mAChR Antagonists 
 The stock solutions were pirenzepine (PIR) dihydrochloride 

(10 m M ; 1071, Tocris Bioscience), methoctramine (MET) (1 m M ; 
M105; Sigma-Aldrich, St. Louis, MO, USA), muscarinic toxin 3 
(MT3) (50 µ M ; M-140; Alomone Labs). The working solutions 
used were PIR (10 µ M ), MET (1 µ M ), and MT3 (100 n M ).
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  Fig. 1.  Confocal fluorescence images. The pictures show singly, dually, and polyinnervated NMJs from P9 YFP mice. Scale bars, 10 μm. 

  Fig. 2.  Individual effect of mAChR and AR inhibitors on axon loss 
at P7. The figure shows the effect of the inhibitors (1 application 
each day between P5 and P7) in order of their ability to promote 
monoinnervation and reduce the percentage of synapses polyin-
nervated by 2 or more axons. Only the M 2  blocker MET is unable 
to significantly change the percentage of monoinnervation. The 
horizontal dotted line marks the control value in muscles injected 
with PBS.  �  �  �   p  < 0.05. 
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(For legend see next page.)
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  Results 

 Individual Role of Presynaptic mAChRs and ARs in 
Axon Loss Control at P7 
  Figure 1  shows representative confocal images of the 

autofluorescent axons in singly, dually, and polyinner-
vated LAL P9 NMJs from B6.Cg-Tg (Thy1-YFP) mice 
(hereafter YFP). The role of these presynaptic receptors 
at P7 was analyzed by using selective inhibitors. The in-
hibitor action reveals the tonic effect of the receptors in 
normal conditions. Most of the inhibitors used acceler-
ated transition to monoinnervation in the NMJ and thus 
accelerated the axonal loss rate.  Figure 2  shows that the 
inhibitor substances (1 application each day between P5 
and P7) ranged in their ability to promote monoinnerva-
tion and reduce the percentage of synapses that were 
polyinnervated by 2 or more axons (DPCPX [A 1  subtype 
inhibitor] < MT3 [M 4  inhibitor] < PIR [M 1  inhibitor] < 
SCH [SCH-58261 an A 2A  subtype inhibitor]). Only the 
M 2  blocker MET was unable to significantly change the 
percentage of monoinnervation, thus showing that it had 
no apparent effect on axonal loss. The absolute potency 
of these various receptors in modulating synapse loss can-
not be directly assessed and compared because of the dif-
ference in the blocking efficacy of the respective selective 
inhibitors. However, the relative potency of these sub-
stances in accelerating axonal elimination suggests that 
the corresponding inhibited receptor pathway plays a rel-
atively important role in delaying axonal loss. 

  Cooperation between mAChRs and ARs at P7 
 To determine the possible confluence of these musca-

rinic and purinergic pathways in the control of axonal 

loss, we investigated the effect of simultaneous incuba-
tion with 2 inhibitors (2 antagonists of 2 different recep-
tor subtypes, muscarinic, purinergic, or both) as a phar-
macological tool for revealing the possible occlusive or 
additive crosstalk effects between the corresponding re-
ceptors.

  To facilitate comparisons, we presented in  Figure 3 A 
and B newly reproduced data of some previously pub-
lished results  [20] . The histograms show (dotted line) the 
percentage of singly innervated NMJs (more single inner-
vation automatically means less multiple innervation) in 
the untreated B6.Cg-Tg (Thy1-YFP)16 Jrs/J, P7 control 
mice (2 applications of PBS) and (the bars) after 2 appli-
cations (1 application every day after P5) of the mAChR 
selective antagonists PIR, MET, and MT3, and the selec-
tive AR antagonists 8-cyclopentyl-1,3-dipropylxanthine 
(DPCPX) and 2-(2-furanyl)-7-(2-phenylethyl)-7H-pyr-
azolo(4, 3-e)(1, 2, 4) triazolo(1, 5-c)pyrimidin-5-amine 
(SCH-58261, abbreviated here as SCH).  Figure 3 A (a–f) 
also shows the percentage of singly innervated NMJs after 
simultaneous inhibition of 2 mAChRs, a mAChR togeth-
er with an AR and the 2 ARs together. For the sake of clar-
ity,  Figure 3 A only shows the associations between the 
inhibitors that have been proven ( Fig. 2 ) to have an indi-
vidual effect on axon loss (all but MET). The associations 
of MET with the other substances are represented in  Fig-
ure 3 B (a–d) and it can be seen that there is an unexpect-
ed involvement of the M 2  receptors. 

  A superficial interpretation of the complex data sug-
gests that blocking 2 different receptors simultaneously 
(dual associations between PIR, MT3, DPCPX, and SCH) 
has roughly the same effect on axonal elimination (on the 
percentage of monoinnervation attained at this time) as 
blocking only 1 of them. This is true for the associations 
PIR-SCH, PIR-DPCPX, and MT3-SCH. In these cases, 
there is no sign that any of these associations have a sig-
nificantly greater or smaller effect on promoting monoin-
nervation than the individual effect of the 2 inhibitors. In 
fact, the final effect is close to the mean value of the 2 sub-
stances (e.g.,  Fig. 3 Ad; when MT3 and SCH act indepen-
dently the mean percentage of monoinnervated junctions 
is 47.6% ± 1.25 and when they act simultaneously it is 
49.32% ± 4.4, Fishers test;  n  = 1,218 NMJs,  n  = 4 mice,
 p  > 0.05). Thus, for these associations, there is no additive 
or occlusive effect and the intracellular pathways of the 2 
receptors seem to converge in a common mechanism ful-
ly activated by the action of only 1 receptor and cannot be 
increased further or altered by the other receptor. Inter-
estingly, however, when the M 4  blocker MT3 is used in 
association with the M 1  blocker PIR ( Fig. 3 Aa) or the A 1  

  Fig. 3.  Cooperation between mAChRs and ARs.  A  Histograms 
showing the percentage of singly innervated NMJs in the untreat-
ed YFP P7 control mice (dotted lines) and after 2 applications (1 
application every day after P5) of the mAChR antagonists PIR, 
MET, and MT3, and the AR antagonist DPCPX and SCH-58261 
(SCH). The figure shows also the percentage of singly innervated 
NMJs after simultaneous inhibition of 2 mAChRs, an mAChR to-
gether with an AR and the 2 ARs together. In this figure, for the 
sake of clarity, we have represented ( a–f ) only associations be-
tween the inhibitors proven to have an individual effect on axon 
loss (all but MET). The associations of MET with the other sub-
stances are represented in  B  ( a–d ).    �       p  < 0.05,  �  �   p  < 0.01,  �  �  �   p  < 
0.005 when the correspondent antagonist or combinations of 2 
substances is compared with control PBS.  §   p  < 0.05,  §§   p  < 0.01, 
 §§§   p  < 0.005 when the combination of 2 substances is compared 
with the first substance.  ‡   p  < 0.05,  ‡‡   p  < 0.01,  ‡‡‡   p  < 0.005 when 
the combination of 2 substances is compared with the second.  

D
ow

nl
oa

de
d 

by
: 

C
ol

um
bi

a 
U

ni
ve

rs
it y

15
6.

11
1.

22
.1

30
 - 

4/
27

/2
01

7 
3:

39
:4

9 
P

M

UNIVERSITAT ROVIRA I VIRGILI 
Muscarinic, adenosine and tropomyosin-related kinase B receptor modulate the neuromuscular 
developmental synapse elimination process 
Laura Nadal Magriñà 



 Nadal/Garcia/Hurtado/Simó/Tomàs/
Lanuza/Cilleros/Tomàs

 

Dev Neurosci
DOI: 10.1159/000458437

6

blocker DPCPX ( Fig. 3 Ae), the end result is not signifi-
cantly different from the individual MT3 effect, but dif-
fers significantly from the individual effect of PIR (which 
is greater) and DPCPX (which is smaller). This may mean 
that M 4  receptors are more prevalent than M 1  and A 1  re-
ceptors. Similarly, when the AR inhibitors DPCPX and 
SCH act together ( Fig. 3 Af), the result is no different from 
when DPCPX acts by itself. However, it is significantly 
different from the individual effect of SCH, which sug-
gests that A 1  has some sort of permissive effect on the A 2A  
pathway.

  As observed in  Figure 2 , the M 2  mAChR selective 
blocker MET does not in itself produce any change in the 
axonal elimination rate during the period considered. In-
terestingly, however, when the other inhibitors are ap-
plied simultaneously with MET, their individual effects 
are partially or totally occluded ( Fig. 3 B). First, a partial 
occlusion of the PIR and SCH effects is observed ( Fig. 3 Ba 
and c): the percentage of the monoinnervated NMJ 
dropped to roughly the mean value between the MET and 
the substance considered though this value is still differ-
ent – higher – than that of the untreated control. Second, 
the presence of MET totally occludes the MT3 and DP-
CPX effects ( Fig. 3 Bb and d). Therefore, MET cancels out 
the effect of the blockers used to prevent the action of M 4  
and A 1  (which are the 2 receptors that contribute least to 

delaying axonal loss). However, the powerful effect of 
SCH and PIR on axon loss cannot be fully prevented, only 
lessened, by MET. These data and considerations are rep-
resented in Figure 6A in the discussion. 

  Individual Role of Presynaptic mAChRs and ARs in 
Axon Loss Control at P9 
 The receptor inhibitors (1 application each day be-

tween P5 and P8) delay transition to monoinnervation in 
the P9 NMJ.  Figure 4  shows the effect of the selective in-
hibitors in order of their ability to finally delay monoin-
nervation and keep a high percentage of synapses inner-
vated by 2 or more axons (MET > PIR = DPCPX > SCH). 
In this case, only the M 4  blocker MT3 is unable to sig-
nificantly change the percentage of monoinnervation, 
which shows that there is no apparent effect on axonal 
loss at this time. Therefore, the 2 receptor sets (mAChRs 
and ARs) finally promote the conditions of axonal dis-
connection at the beginning of the second postnatal week 
(P9) (see also  [20] ).

  Cooperation between mAChRs and ARs at P9 
  Figure 5  shows the effect of the drug associations ap-

plied between P5 and P8 and observed at P9. The data are 
plotted as they are in  Figure 3 . The histograms in  Figure 5  
show the percentage of singly innervated NMJs in the un-
treated YFP P9 control mice (4 applications of PBS) as a 
dotted line.  Figure 5 A (a–f) shows the percentage of NMJs 
after 4 applications of the mAChR and AR selective an-
tagonists alone and after simultaneous inhibition of the 2 
receptors that individually affect axon loss (all the inhibi-
tors but MT3, see  Fig. 4 ). The associations of MT3 with 
the other substances are represented in  Figure 5 B (a–d), 
so that the results are more readily understandable. The 
data in  Figure 5 Aa show that the association of the mA-
ChR blockers PIR and MET is not the sum of their indi-
vidual effects, and the final result is no different from the 
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  Fig. 4.  Individual effect of mAChR and AR inhibitors on axon loss 
at P9. The figure                   shows the effect of the selective inhibitors (1 ap-
plication each day between P5 and P8) in order of their ability to 
finally delay monoinnervation and keep a high percentage of syn-
apses innervated by 3 or more axons (MET > PIR = DPCPX > SCH-
58261). The M 4  blocker MT3 is unable to significantly change the 
percentage of monoinnervation in this case. The dotted line repre-
sents the control value in muscles injected with PBS.  �  �  �   p  < 0.05.                                 

  Fig. 5.  Cooperation between mAChRs and ARs at P9. The data are 
plotted as they are in Figure 3.  A  Percentage of singly innervated 
NMJs in controls (PBS, dotted lines) and after exposure (4 applica-
tions, 1 application every day after P5) to 1 inhibitor or after simul-
taneous inhibition of 2 receptors that individually affect axon loss 
(all inhibitors but MT3, see Fig. 4). The associations of MT3 with 
the other substances are represented in  B .        �       p  < 0.05,    �  �     p  < 0.01, 
 �  �  �   p  < 0.005 when the correspondent antagonist or combinations 
of 2 substances is compared with control PBS.  §   p  < 0.05,  §§   p  < 0.01, 
 §§§   p  < 0.005 when the combination of 2 substances is compared 
with the first substance.  ‡   p  < 0.05,  ‡‡   p  < 0.01,  ‡‡‡   p  < 0.005 when 
the combination of 2 substances is compared with the second. 

(For figure see next page.)
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individual effect of PIR. Interestingly, however, both AR 
inhibitors, DPCPX ( Fig. 5 Ac) and SCH ( Fig. 5 Ab), add 
their own delaying effect on axonal loss to the delaying ef-
fect of PIR for an approximate increase of 58 and 36%, 
respectively. However, the effect of the 2 AR blockers is 
not added to the effect of MET and the result of the dual 
drug incubation is no different from the MET effect 
( Fig.  5 Ad and e). When DPCPX and SCH act together 
( Fig. 5 Af), the end result is a percentage of monoinnerva-
tion that is no different from that given by the control PBS, 
which indicates that both pathways are fully occluded.

   Figures 4  and  5 B show that the M 4  blocker MT3 by it-
self has no effect on axonal loss at P9. However,  Figure 5 B 
shows that the simultaneous application of MT3 with the 
other muscarinic blockers does not change the effect of 
PIR ( Fig. 5 Ba), though it partly occludes the effect of MET 
which, however, continues to significantly delay axon loss 
( Fig. 5 Bb). Interestingly, MT3 potentiates the delaying ef-

fect on axonal loss of both SCH and DPCPX by roughly 
32 and 33%, respectively ( Fig. 5 Bc and d). A representa-
tion of these data is shown and discussed in  Figure 6 B. In 
some cases, we checked our results with C57BL/6J mice. 
As an example, in P9 C57BL/J6 animals treated with MT3 
plus MET, we found the same result as in YFP animals (In 
C57BL/J6 animals, [ n  = 1,075 NMJs,  n  = 3 mice]: monoin-
nervated junctions were 42.36 ± 3.54% and in YFP ani-
mals they were 48.07 ± 3.54% (Fisher test,  p  > 0.05). No 
significant differences were observed between YFP and 
C57BL/6J mice treated with PBS.

  Discussion 

 In addition to the main presynaptic neurotransmitter-
postsynaptic receptor interaction within a synapse, sev-
eral signaling pathways coordinate the pre- and postsyn-

A2A
(SCH58261)

M1
(PIR)

M4
(MT3)

M2 (MET)
modulate

A1
(DPCPX)

Axonal loss at P7

A

M2
(MET)

M1
(PIR)

A1
(DPCPX)

M4 (MT3)
modulate

A2A
(SCH58261)

Axonal loss at P9

B

More effect

Less effect

Delay

Acceleration

  Fig. 6.  Diagrams showing an overall representation of the data.
 A  P7 muscles; the thickness of the red arrows shows the relative 
individual ability of the mAChRs and ARs to delay axonal loss at 
P7 (the thicker they are, the greater their effect; the inhibitor used 
is noted in brackets near the receptor name). All 4 receptors (A       2A , 
M 1 , M 4 , and A 1 ) need to be involved to produce the effect of axonal 
retention because if any one of them is blocked, then there is no 
effect and elimination increases. Interestingly, M 4  produces some 
occlusion of the M 1  and A 1  pathways, which indicates that there is 
some cooperation between them. Similarly, when the inhibitors of 
the AR, DPCPX, and SCH act together, the result is no different 
from the individual DPCPX action. It is, however, significantly dif-
ferent from the individual effect of SCH, which suggests that A 1  
has a permissive effect on the A 2A  pathway. The M 2  receptor does 
not directly affect axonal elimination because of the lack of effect 
of MET. However (because MET, in association with the other 
blockers, partially or totally occludes their individual effects), the 
M 2  receptors may modulate the other mAChRs and ARs. An alter-
native explanation is that the M 2  receptors have a more direct and 
active role and have an axonal elimination-promoting effect. This 
effect, however, must be lower than the combined elimination pre-
venting-cooperative effect of the A 2A , M 1 , M 4 , and A 1 . Therefore, 
M 2  by itself does not seem to be able to accelerate axon loss, but by 
blocking only one of the elimination preventing receptors, the ax-
onal retention may be released, thus allowing M 2  to accelerate 
elimination.  B  P9 muscles; the green arrows with different thick-
nesses show the relative individual abilities of the mAChR and AR 
to accelerate axonal loss at P9. The M         1 , A 1 , and A 2A  receptors have 
synergistic effects. Also, A 1  and A 2A  have a mutual dependence in 
regulating axon loss at P9. However, the potent effect of the M 2  is 
not modified by the presence of the M 1 , A 1 , or A 2A  blockers. 
Whereas M 2  modulates the effect of the other receptors at P7, the 
M 4  receptor (which by itself does not affect axonal elimination) 
modulates the other receptors at P9. M 4  cooperates positively with 
M 2  and seems to have a negative influence on A 1  and A 2A .                                         
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aptic cells and associated glia. In the NMJ, the final func-
tional outcome of a synaptic contact is the result of 
metabotropic receptor-mediated signaling acting on the 
nerve terminal intracellular protein kinases and modulat-
ing voltage-dependent channels and the ready releasable 
pool of synaptic vesicles, which are the instruments of 
transmitter release  [13, 24] . The ability to release ACh is 
a decisive factor in the stabilization or loss of motor nerve 
terminals that are in competition to make synapses dur-
ing development  [15, 16, 18, 25–27] . Postsynaptic-de-
rived trophic substances  [20]  and glial cells  [28, 29]  also 
play a decisive role.

  The main finding of the present study (which extends 
a previous finding  [20] ) is that the coordinated action and 
cooperation of mAChR (M 1 , M 2 , and M 4  subtypes) and 
AR (A 1 R and A 2A R) signaling modulates developmental 
axonal competition and affects the axonal loss rate. We 
used the term “cooperation” to define the collaboration 
between muscarinic and adenosine receptor pathways in 
developmental axonal loss control, which requires the re-
ceptors to work together and act in conjunction to show 
an additive or synergistic action or alternatively that their 
effects are not additive (each receptor can do the job in-
dependently of the others). In the present experiments, 
we simultaneously applied 2 inhibitors (2 antagonists of 
2 different receptors) to reveal the possible occlusive or 
additive crosstalk effects between the corresponding 
pathways. In our previous experiments  [20] , we observed 
2 well-defined developmental periods: P5–P9 and P9–
P15. In the first period, we noticed the complex involve-
ment of these receptors, which finally resulted in promot-
ing axon loss and accelerating monoinnervation of the 
NMJ. However, in spite of the continued presence of the 
inhibitors used, the elimination process finished normal-
ly at the end of the second week (P15). Our interpretation 
is that all the receptors intervene initially in modulating 
the conditions of the competition between nerve endings, 
possibly helping to determine the winner or the losers, 
but thereafter the time and conditions of the final elimi-
nation occur with some autonomy. Therefore, in the 
present experiments we focused on the P5–P9 period of 
clear receptor involvement in axonal competition. 

  Although it is not clear whether all mAChR subtypes 
are present in the NMJ  [30, 31] , some of these receptors 
play an important regulatory role in ACh release during 
development  [14, 16, 18, 32]  and in the adult  [16, 33, 34] . 
In the adult NMJ, M 1  and M 2  mAChRs modulate evoked 
transmitter release by positive and negative feedback, re-
spectively  [14, 31, 34] . However, during NMJ synapto-
genesis, the functional significance of the subtypes is dif-

ferent. M 2  receptors promote release in all nerve endings 
independently of their ACh release level or maturation 
state, whereas an M 1 - and M 4 -mediated reduction in re-
lease is observed in the weakest endings on polyinner-
vated dual junctions  [14–16, 18, 27, 32] . Similarly, ARs 
are present in the motor terminals of the newborn and 
adult NMJs  [35, 36] . In the adult, the extent to which in-
hibitory A 1 R and excitatory A 2A R modulate the evoked 
release of ACh  [37]  seems to depend on the extracellular 
concentration of adenosine. During development, low 
concentrations of adenosine may activate both A 1 R and 
A 2A R and have a facilitatory action on ACh release  [38] . 
Therefore, mAChRs and ARs (the autoreceptors of the 
transmitter ACh and the cotransmitter adenosine – de-
rived from ATP hydrolysis – released by the active nerve 
endings themselves) are good candidates to be involved 
in postnatal axonal competition and synapse elimination. 
The involvement of these receptors may allow direct 
competitive interaction between nerve endings through a 
differential activity-dependent ACh and adenosine re-
lease. So, the more active endings may directly punish the 
less active endings or reward themselves if the suitable 
mAChR and AR subtypes are present in the competing 
axons.

  Cooperation between mAChRs and ARs at P7 
 At P7, about half of the axons are lost from the multi-

innervated newborn NMJ  [21] . The selective inhibitors of 
the presynaptic mAChRs (M 1  and M 4  subtypes) and ARs 
(A 1  and A 2A ) accelerated axonal elimination when ap-
plied on the LAL muscle surface between P5 and P7. This 
means that the receptors slowed transition to monoin-
nervation in the untreated NMJ and thus reduced axonal 
loss (promoted axonal stabilization) when acting individ-
ually, at least between P5 and P7 (red arrows in  Fig. 6 A). 
Slowing axonal elimination means the temporal reten-
tion of some – probably the weakest – axons by increasing 
their competitive force  [20] . By blocking only 1 of these 
receptors, axonal loss increases (e.g., the 3-to-1 axon tran-
sition accelerates). Thus, all 4 receptors are necessary 
(though with some difference in potency), and axon loss 
will accelerate if only one is blocked. At least partly for the 
purpose of synapse elimination, the 4 operators may op-
erate through the same intracellular mechanism. How-
ever, the sum of the individual effects of these receptors 
does not increase axonal retention (simultaneously block-
ing 2 receptors does not accelerate elimination more than 
blocking just 1 of them). Interestingly, the effect of block-
ing M 4  together with M 1  or A 1  is no different from the 
effect of blocking M 4  by itself, but is significantly different 
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from the individual effects of M 1  and A 1 . This may mean 
that M 4  receptors are more prevalent than M 1  and A 1  re-
ceptors, which suggests that they may cooperate. Simi-
larly, when AR inhibitors act together, the result is no 
different than when DPCPX acts by itself. However, it is 
significantly different from the individual effect of SCH, 
which suggests that the A 2A  receptor needs the coopera-
tion of the A 1  pathway for its potent effect.  Figure 6 A 
shows an overall representation of the data. The thickness 
of the red arrows shows the relative individual ability of 
the mAChRs and ARs to delay axonal loss (the thicker 
they are, the greater their effect). The links between the 
corresponding intracellular pathways may determine the 
delay in axon loss. It seems that all the receptors but M 2  
(which does not directly affect axonal elimination be-
cause of the lack of effect of MET) are involved in axonal 
competition. As stated, our results show that all receptors 
use a common mechanism. These receptors are coupled 
to intracellular pathways that converge on a limited rep-
ertoire of effector kinases to phosphorylate protein tar-
gets and materialize structural and functional changes. 
M 1  and A 1  operate by respectively stimulating and inhib-
iting the phospholipase C gamma and PKC pathway 
whereas M 2 –M 4  and A 2A  operate by respectively inhibit-
ing and stimulating the adenyl cyclase (AC) and protein 
kinase A (PKA) pathway  [39–42] . In all cases, however, 
common final changes such as intracellular calcium oscil-
lations are observed  [34, 43] . Interestingly, blocking all 
PKC isoforms, or the voltage-dependent calcium chan-
nels (P/Q-, N- or L-type, or Ca 2+  influx) or mAChRs (M 1  
and/or M 4  subtypes with PIR and MT3, respectively) re-
sults in an increase on the size of the synaptic potentials 
evoked by the weak axons in dual junctions, whereas 
EPPs evoked by the strongest endings are reduced or un-
affected  [14–19] . Thus, the difference in ACh release be-
tween competing endings is reduced by these muscarinic 
blockers, and this difference may change the competitive 
balance of the nerve terminals (at least in a muscarinic-
dependent manner). However, as shown here, both PIR 
and MT3 simultaneously accelerate axon loss at P7, and 
it is not clear how this acceleration is related to the chang-
es in ACh release (increase in weak endings, decrease in 
strongest endings) and the presumed decrease in activity-
related competition. The peculiar effect of the mAChR on 
the weakest endings may be related to the specific pres-
ence of the M 4  receptor subtype linked to P-, L-, and N-
type channels and an inhibitory PKC coupling to ACh 
release in these contacts  [17] .

  The M 2  subtype is also present in the weak and strong 
axons in dual junctions  [14] . While this receptor links 

only with P- and N-channels and potentiates ACh release 
in both nerve endings, we show here that it does not di-
rectly affect axonal elimination at P7. However,  Figure 6 A 
shows a possible involvement of the M 2  receptors (be-
cause the M 2  inhibitor MET, in association with the oth-
er blockers, partially or totally occludes their individual 
effects). A simple explanation is that M 2  receptors modu-
late by a permissive action the other mAChRs and ARs. 
An alternative explanation is that the M 2  receptors at P7 
have a more direct and active role in concordance with 
their active role at P9 (see later). This presumed elimina-
tion-promoting effect of M 2 , however, would be lower 
than the combined elimination-preventing cooperative 
effect of A 2A , M 1 , M 4 , and A 1 . Therefore, M 2  by itself can-
not accelerate elimination, and blocking it with MET 
does not change axon loss. Blocking only 1 elimination-
preventing receptor would release the axonal retention 
effect and allow M 2  to accelerate elimination. In this con-
text, the observation that blocking A 2A  or M 1  strongly ac-
celerates axon loss suggests that these 2 receptors neutral-
ize M 2 . Because blocking M 2  with MET does not increase 
axonal retention by itself, the A 2A , M 1 , M 4 , and A 1  en-
semble seems to operate at maximum capacity. 

  Cooperation between mAChRs and ARs at P9 
 The continued action of these receptors (including the 

M 2  mAChR subtype but not M 4 ) between P5 and P9 fi-
nally promotes axonal loss and accelerates the monoin-
nervation of the NMJ (green arrows in  Fig. 6 B;  [20] ). This 
means that the receptors accelerate the transition to 
monoinnervation and thus promote the destabilization of 
some axons. All 4 receptors (M 2 , M 1 , A 1 , and A 2A ) are 
necessary (though with some variation in potency, which 
is indicated by the thickness of the green arrows in  Fig. 6 B) 
and if only one is blocked, then axon loss is delayed. Also 
in this period, all receptors converge on a common mech-
anism. The question at the end of the first postnatal week 
is why the blockers have such different effects on axon 
loss between P7 and P9. The receptors’ action may shift 
from delaying axonal loss by favoring the competitive ca-
pacities in some nerve endings, to promoting loss be-
tween P7 and P9. In fact, one consequence of favoring 
initial competition around P7 would be an increase in 
axonal loss at P9. A developmental shift in the functional 
coupling of some molecules is not such a rare occurrence. 
Previous studies have shown changes in the role of the 
mAChRs themselves, the voltage-operated calcium chan-
nels (P, N, and L), and PKC during development depend-
ing on the maturation level of the NMJ. For instance, PKC 
couples to potentiate ACh release in the adult NMJ, in the 

D
ow

nl
oa

de
d 

by
: 

C
ol

um
bi

a 
U

ni
ve

rs
it y

15
6.

11
1.

22
.1

30
 - 

4/
27

/2
01

7 
3:

39
:4

9 
P

M

UNIVERSITAT ROVIRA I VIRGILI 
Muscarinic, adenosine and tropomyosin-related kinase B receptor modulate the neuromuscular 
developmental synapse elimination process 
Laura Nadal Magriñà 



 Presynaptic Receptors in Developmental 
Axonal Competition 

Dev Neurosci
DOI: 10.1159/000458437

11

strong ending of dual junctions and in the solitary ending 
in the junctions monoinnervated during maturation. 
However, as discussed above, their coupling reduces re-
lease in the weakest axons in dual junctions and, there-
fore, any change in the functional expression of PKC may 
determine the regulation of axonal loss  [16, 18] .

  The experiments clearly show real cooperation be-
tween the M 1 , A 1 , and A 2A  receptors. We associate one AR 
blocker (DPCPX or SCH-58261) with the M 1  blocker 
PIR. We found that both DPCPX and SCH-58261 add 
their delay on axonal loss to the delaying effect of PIR, 2 
increases of roughly 58 and 36%, respectively. These re-
sults show an additive or synergistic effect and indicate 
that at least these receptors cooperate. However, the effect 
of the M 2  blocker MET is not modified by the presence of 
the M 1 , A 1 , or A 2A  blockers, which indicates that the po-
tent M 2  effect is independent of the other receptors 
(though, as stated, it seems to be partly modulated by M 4 ). 
When DPCPX and SCH act together, the result is a per-
centage of monoinnervation that is no different from the 
control PBS, which indicates that both AR pathways are 
fully dependent on each other and need to cooperate if 
they are to regulate axon loss.

  Whereas M 2  receptors seem to modulate the action of 
the other mAChRs and ARs at P7, the M 4  receptor (which 
does not affect synaptic elimination at P9 by itself) can 
modulate other receptors at this time ( Fig. 6 B). Specifi-
cally, M 4  can cooperate positively with M 2  because MT3 
partly occludes the effect of MET. Also, the delaying effect 
on axonal loss of both DPCPX and SCH-58261 is potenti-
ated (by about 30%) by MT3, which suggests a negative 
influence of M 4  on A 1  and A 2A  receptor effects in normal 
conditions without any inhibitor present.

  Relation between mAChRs and ARs 
 In the adult, ARs and mAChRs heavily depend on 

each other to modulate ACh release by sharing the PKC 
and PKA pathways  [35, 22] . The influx of external Ca 2+  
required for Ca 2+ -triggered exocytosis and the fast mode 
of endocytosis seems to be promoted with the involve-
ment of the presynaptic mAChR  [34] , and interaction 
with the AR  [44]  but also with the BDNF-TrkB receptor 
pathway  [23, 43] . The mAChR and AR pathways (M 1  and 
A 1  receptors) share a link mediated by the set phospho-
lipase C-phosphatidylinositol 4,5-bisphosphate (PIP2)-
diacylglycerol (DAG)-PKC, which modulates P/Q-type 
voltage-dependent calcium channels  [34, 43] . The phos-
pholipase C-generated DAG also regulates the vesicle 
priming protein Munc13–1 and recruits ACh-contain-
ing vesicles for the immediately releasable pool  [45] . M 2 –

M 4  and A 2A  receptors share the PKA pathway. Previous 
findings have shown the influence of PKA activity on the 
coupling of PKC to ACh release and the coordinated in-
volvement of PKC and PKA in the intracellular cascades 
that modulate neuromuscular transmission  [17] . The ac-
tion of the 2 kinases may be in the same molecules or in 
different molecules in the release machinery. A protein 
can be phosphorylated by at least 2 protein kinases, stim-
ulated by different second-messenger systems, which ex-
hibit both overlapping and unique specificities for the 
phosphorylation of multiple sites in the molecule  [46] . 
The complementary function of these receptors and ki-
nases in the adult reinforces the suggestion that they may 
have a complementary function in developmental synap-
tic elimination. We show here that postnatal axonal sta-
bilization or loss is a regulated multireceptor mechanism 
involving the cooperation of muscarinic (M 1 , M 2 , and 
M 4 ) and adenosine autoreceptor (A 1  and A 2A ) subtypes 
in the motor nerve endings. Glia may be implicated as an 
active participant in these changes. In adults, terminal 
Schwann cells sense the release of ACh and ATP from the 
nerve (M 1  and A 1  subtype receptors are present in termi-
nal Schwann cells) and in turn influence transmitter re-
lease  [47, 48] . In fact, neuregulin 1 signaling between ter-
minal axons and glia during development influences gli-
al cell activation and interposition between the terminal 
and muscle  [29]  affecting axon loss. New experiments 
can be performed to evaluate the downstream mecha-
nism that couples receptors and kinases to the molecular 
targets responsible of axonal destabilization and retrac-
tion.
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The development of the nervous system involves the overproduction of synapses but
connectivity is refined by Hebbian activity-dependent axonal competition. The newborn
skeletal muscle fibers are polyinnervated but, at the end of the competition process,
some days later, become innervated by a single axon. We used quantitative confocal
imaging of the autofluorescent axons from transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J
mice to investigate the possible cooperation of the muscarinic autoreceptors (mAChR,
M1-, M2- and M4-subtypes) and the tyrosine kinase B (TrkB) receptor in the control of
axonal elimination after the mice Levator auris longus (LAL) muscle had been exposed
to several selective antagonist of the corresponding receptor pathways in vivo. Our
previous results show that M1, M2 and TrkB signaling individually increase axonal loss
rate around P9. Here we show that although the M1 and TrkB receptors cooperate and
add their respective individual effects to increase axonal elimination rate even more,
the effect of the M2 receptor is largely independent of both M1 and TrkB receptors.
Thus both, cooperative and non-cooperative signaling mechanisms contribute to
developmental synapse elimination.

Keywords: motor nerve terminal, cholinergic synapses, neuromuscular junction, presynaptic muscarinic
acetylcholine receptors, TrkB receptor, synapse elimination

INTRODUCTION

During the development of the nervous system, synapses are eliminated on a broad scale
(Thompson, 1985; Bourgeois and Rakic, 1993). This allows connectivity to be refined on the basis
of Hebbian activity-dependent axonal competition (Jansen and Fladby, 1990; Sanes and Lichtman,
1999). In newborn animals, the skeletal muscle fibers are polyinnervated in the neuromuscular

Abbreviations: AC, adenyl cyclase; ACh, acetylcholine; AR, adenosine receptors; BDNF, Brain-derived neurotrophic

factor; EPP, evoke endplate potentials; IP3, inositol triphosphate; LAL, Levator auris longus muscle; mAChR,

muscarinic acetylcholine receptor; M1, M1-type muscarinic acetylcholine receptor; M2, M2-type muscarinic

acetylcholine receptor; M4, M4-type muscarinic acetylcholine receptor; MET, methoctramine; MT-3, muscarinic

toxin 3; nAChR, nicotinic acetylcholine receptor; NMJ, neuromuscular junction; NT-4, neurotrophin-4; PBS,

phosphate buffered saline; PIR, pirenzepine; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C;

TrkB, tropomyosin-related kinase B receptor; VDCC, voltage-dependent calcium channels.
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junction area (NMJ; Redfern, 1970; Brown et al., 1976; Ribchester
and Barry, 1994), but at the end of the axonal competition,
endplates are innervated by a single axon (Benoit and Changeux,
1975; O’Brien et al., 1978; Jansen and Fladby, 1990; Sanes
and Lichtman, 1999). This peripheral synapse has been studied
extensively as a model for synapse development (Liu et al., 1994;
Nguyen and Lichtman, 1996; Chang and Balice-Gordon, 1997;
Sanes and Lichtman, 1999; Lanuza et al., 2001; Santafé et al., 2001;
Herrera and Zeng, 2003;Wyatt and Balice-Gordon, 2003; Buffelli
et al., 2004; Garcia et al., 2010). Several signaling molecules
and presynaptic receptors play a role in the axonal competition,
which means that the various nerve endings influence one
another (Santafé et al., 2009a; Garcia et al., 2010; Nadal et al.,
2016). Postsynaptic-derived trophic substances (Nadal et al.,
2016) and the participation of glial cells (Lee et al., 2016; Yang
et al., 2016) also make a decisive contribution.

In a previous study, we investigated how individual
muscarinic acetylcholine receptor (mAChR) subtypes (M1,
M2 and M4), adenosine receptors (AR; A1 and A2A) and
tropomyosin-related tyrosine kinase B (TrkB) receptors are
involved in the control of synapse elimination in the mouse
NMJ (Nadal et al., 2016). The data show that mAChR, AR and
TrkB signaling lessen the initial chance of axonal elimination
(around P5–P7) by extending the period of axonal competition
but then increase (around P9) axonal loss rate (Nadal et al.,
2016). The three receptor sets promote axonal disconnection at
the beginning of the second postnatal week largely independently
of the postsynaptic nicotinic acetylcholine receptor (nAChR)
cluster maturation. In addition, a real cooperation between some
of the mAChR and AR subtypes is observed. More specifically,
preliminary results show that both AR subtypes (A1 and A2A)
can add their independent effect on axonal loss to the effect of
the M1 muscarinic receptor, which leads to greater elimination
because of the additive effect of the pathways (Nadal et al.,
2016).

In this study, we investigate whether the mAChR subtypes
and the TrkB receptor also work together, and whether the
respective pathway inhibitors have any additive or occlusive
effects and, therefore, whether there is any real cooperation
between them in synapse elimination at the NMJ. The main
result shows that, like the mAChR and AR relations, the effect
of M1 and TrkB receptors can be added to increase axonal
loss rate at P9 but that the effect of M2 is largely independent
of the TrkB receptors. Thus, cooperative and non-cooperative
signaling contribute to synapse elimination, which highlights the
importance of axonal competition and loss in the development of
neural connectivity.

MATERIALS AND METHODS

Animals
Transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice were used (The
Jackson Laboratory,Bar Harbor, ME, USA). The mice express
spectral variants of GFP (yellow-YFP) at high levels in motor and
sensory neurons, and axons are brightly fluorescent all the way to
the terminals.

Experiments were performed on the Levator auris longus
(LAL) muscle. Neonatal pups of either sex (9 days) were
obtained and the date of birth was designated postnatal day
0 (P0). We minimized the variability in our measurements by
carefully monitoring the timing of conception. Also, the weights
of the individuals were within 5% of the mean for a given
day after conception. The mice were cared for in accordance
with the guidelines of the European Community’s Council
Directive of 24 November 1986 (86/609/EEC) for the humane
treatment of laboratory animals. All experiments on animals
have been reviewed and approved by the Animal Research
Committee of the Universitat Rovira i Virgili (Reference number:
0233).

Injection Procedure
The newborn mice were anesthetized with 2% tribromoethanol
(0.15 ml/10 g body weight, i.p.). Mice pups received daily
subcutaneous injections in the back of the neck beginning on
postnatal day 5 of one or two substances (combinations of two
selective mAChR antagonists or of one mAChR antagonist plus
the TrkB signaling agent TrkB-Fc). Under aseptic conditions,
solutions were administered in 50 µl of sterile physiological
saline by subcutaneous injection over the LAL external surface
as described elsewhere (Lanuza et al., 2001). The animals
received four injections from postnatal day 5, and the LAL
muscles were studied on day 9. Control injections were given in
exactly the same way as experimental injections, using phosphate
buffered saline (PBS) alone. No differences were found between
the muscles injected or not with PBS, thus indicating that
the injection procedure did not in itself induce changes in
the overall morphology of the motor endplate and nerve
terminals. The solutions were administered at a concentration
in accordance with the previously reported biological action
of the substance (Santafé et al., 2004, 2015; Garcia et al.,
2010).

Tissue Preparation and Histochemistry
Neonatal pups were given a lethal dose of 2% tribromoethanol.
Their heads were removed and fixed in 4% paraformaldehyde
for 1.5 h. After washing in PBS, LAL muscles were removed
and post-fixed for 45 min. After washing in PBS, Thy1-YFP
LAL muscles were incubated in PBS containing a 1/800 dilution
of 1 µg/ml tetramethylrhodamine conjugated α-bungarotoxin
(α-BTX-TRITC; T1175, Molecular Probes, Eugene, OR, USA)
for 1 h at room temperature. Whole muscles were mounted in
Mowiol with p-phenylenediamide (Sigma).

Confocal Microscopy and Morphological
Analysis
NMJs were analyzed using an inverted Nikon TE-2000
fluorescent microscope (Nikon, Tokyo, Japan) connected to a
standard personal computer that was running image analysis
software (ACT-1, Nikon). The number of axons per endplate
was counted. Because of the difficulty of determining the
exact number of axonal inputs for each nAChR cluster, when
more than two axons converged at the same synaptic site we
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classified the NMJs into three groups only: junctions that were
monoinnervated, doubly innervated, or innervated by three or
more terminal axons. These data enabled us to calculate the
‘‘average number of axonal inputs’’ and the ‘‘percentage of
polyneuronal innervation’’ for all fibers receiving two or more
axons.

Statistical Analysis
All NMJs visible in their entirety were scored, with a minimum
of 100 per muscle. At least six muscles were studied for
each age and condition examined. Fisher’s test was applied to
compare percentages. The criterion for statistical significance
was P < 0.05. The categories were scored and the counting was
performed by a person with no knowledge of the age or treatment
of the animals. The data are presented as mean ± SD.

Drugs
Selective M1, M2 and M4 mAChR Antagonists
The stock solutions were pirenzepine (PIR) dihydrochloride
(1071, Tocris Bioscience) 10 mM; methoctramine (MET; M105,
Sigma—Aldrich, St. Louis, MO, USA) 1 mM; muscarinic toxin
3 (MT3; M-140, Alomone Labs) 50 µM. The working solutions
used were PIR (10 µM), MET (1 µM) and MT3 (100 nM).

TrkB Receptor-Related Agent
The following stock solutions were used: recombinant human
trkB/Fc Chimera (trkB-Fc; 688-TK; R&D Systems), 100 µg/ml.
Working solutions were trkB-Fc 5 µg/ml.

RESULTS

mAChR and TrkB Receptors in Axon Loss
Control
Figure 1A shows representative confocal immunofluorescence
images of the autofluorescent axons in singly- and
polyinnervated LAL P9 NMJs from B6.Cg-Tg (Thy1-YFP)
mice (hereafter YFP). When the mAChR subtype-selective
inhibitors PIR (M1 blocker) and MET (M2 blocker), and the
TrkB pathway blocker (a TrkB-Fc chimera) were applied once
a day between P5-P8 on the LAL muscle surface, there was
a notable delay in the transition to monoinnervation on the
NMJ observed at P9 (Nadal et al., 2016). However, the M4

subtype blocker MT3 shows no effect on axonal loss at this
time. Figure 1B shows the effect of these selective blockers in
increasing order of their relative ability to delaymonoinnervation
and maintain a high percentage of synapses innervated by three
or more axons (PBS-P9 = MT3 < TrkB-Fc < PIR < MET).
MET and PIR delayed the three-to-one axon transition whereas
TrkB-Fc delayed the two-to-one transition. Therefore, in normal
conditions without inhibitors, the two receptor sets (mAChR
and TrkB) will contribute to promoting axonal disconnection
at the beginning of the second postnatal week (see also Nadal
et al., 2016). However, the absolute potency of these receptors in
modulating synapse loss cannot be directly compared because
the blocking efficacy of the respective selective inhibitors is not
the same.

Cooperation Between mAChR and TrkB
Receptors
Our experiments were designed to investigate the effect on
axonal loss of simultaneous incubation with two inhibitors (two
antagonists of two different receptors) and reveal the possible
occlusive or additive crosstalk effects between the corresponding
pathways. Figures 1C,D show the effect of the association of the
drugs applied between P5 and P8 and observed at P9. Figure 1C
shows the percentage of NMJs—of singly-, doubly- and triply- (or
more) innervated endplates—after the simultaneous inhibition of
two receptors that, individually, clearly modulate axon loss (see
Figure 1B; all except M4). The associations of the M4 blocker
MT3 (which does not affect axonal elimination by itself) with the
other substances has been represented separately in Figure 1D so
that the data is more understandable. The M4 subtype is shown
to have a complementary role.

The association of the mAChR blockers PIR and MET shows
no additive effect or mutual occlusion in relation to axonal
loss (Figure 1C). However, the association of the M1 and TrkB
pathway inhibitors (PIR plus TrkB-Fc) results in a clear addition
of their respective delaying effects on axonal loss. The percentage
of the monoinnervated NMJ after simultaneous exposure to both
inhibitors is significantly less (25% of single junctions) than after
exposure to only PIR (39%) or only TrkB-Fc (43%). Interestingly,
however, the individual effect of the TrkB-Fc does not add to
the effect of MET and the result of this dual drug incubation
is no different from the effect of MET by itself. The delaying
effect of MET on axon loss is the most potent observed in the
present experiments and is produced independently of the state
of TrkB.

Figure 1B shows that the M4 blocker MT3 by itself has
no effect on axonal loss at P9. Figure 1D shows that if
MT3 is simultaneously applied with the other blockers it reveal
some regulatory or complementary role of M4 on the other
receptors. The presence of MT3 does not change the effect of
PIR although some occlusion of the potent effect of MET is
observed. MET still continues to significantly delay axon loss (the
three-to-one transition), however. Interestingly, the presence of
MT3 potentiates the delaying effect of TrkB-Fc on axonal loss,
which indicates that the respective receptor pathways (M4 and
TrkB) are cooperating.

These data are represented in Figure 1E. The green arrows
of different thicknesses show how effective these receptors are at
accelerating axonal elimination (the thicker they are, the greater
their effect; the inhibitor used is in brackets under the name of
the receptor). The M4 receptor by itself does not affect axonal
elimination at P9 (black arrow). Interestingly, the association of
theM1 and TrkB pathway blockers results in the addition of their
respective delaying effects on axonal loss, which indicates that
the corresponding receptors are cooperating (blue bond between
these receptor pathways). However, the potent effect of the M2

cannot be modified with the simultaneous presence of the M1

or TrkB blockers. It seems that the M4 receptor, which does
not by itself affect axonal elimination, cooperates positively with
M2 (dotted green arrow). Also, M4 produces some occlusion of
the TrkB pathway (red arrow) but does not cooperate with M1

(dotted black arrow).
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FIGURE 1 | The picture in (A) shows representative confocal immunofluorescence images of singly-, dually- and polyinnervated neuromuscular junction area (NMJ)
from P9 YFP mice. Scale bar: 10 µm. The histograms in (B) show the percentage of singly-, doubly- and triply- (or more) innervated NMJs in control (phosphate
buffered saline, PBS treated) and levator auris longus (LAL) muscles treated with the inhibitors considered. We show newly reproduced data of previous results to
facilitate comparison (Nadal et al., 2016). (C) shows the percentage of NMJs after the simultaneous inhibition of two receptors clearly involved in axonal elimination
(those that affect axon loss rate when they are individually blocked (all except M4). The associations of the M4 blocker muscarinic toxin 3 (MT3) with the other
inhibitors are represented in (D). An overall representation of the data illustrating the individual role and cooperation of the muscarinic acetylcholine receptor (mAChR)
and tyrosine kinase B (TrkB) receptors in developmental axonal loss modulation is shown in the diagram in (E). The green arrows show how effective these receptors
are at accelerating axonal elimination (the thicker they are, the greater their effect). The association of the M1 and TrkB blockers results in the addition of their
respective effects (blue bond between these receptors). The M4 receptor, which does not by itself affect axonal elimination (black arrow), cooperates positively with
M2 (dotted green arrow) and produces some occlusion of the TrkB pathway (red arrow) but does not cooperate with M1 (dotted black arrow). All NMJs visible in their
entirety were scored, with a minimum of 100 synapses per muscle. At least six muscles were studied for each age and condition examined. Fisher’s test was applied
to compare percentages. When the corresponding antagonist or combinations of two substances were compared with control PBS, significance symbols are:
∗P < 0.05, ∗∗∗P < 0.005. §P < 0.05, §§P < 0.01, §§§P < 0.005 when the combination of two substances were compared with the first. ‡P < 0.05,
‡‡‡P < 0.005 when the combination of two substances were compared with the second.
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DISCUSSION

The present experiments show evidence of the cooperation
between the presynaptic M1, M2 and M4 mAChR subtypes
and the TrkB signaling to modulate the conditions of the
developmental axonal competition and loss. In a previous study
we found that these receptors (as well as presynaptic AR, A1

and A2A subtypes) separately contribute to accelerate synapse
elimination around P9 in the mouse NMJ (Nadal et al., 2016). It
was thought that the muscarinic autoreceptors of the transmitter
acetylcholine (ACh) may allow direct competitive interaction
between nerve endings through a differential activity-dependent
ACh release. The more active axons may directly punish the less
active ones or reward themselves (Santafé et al., 2009a). However,
an axon that is eliminated at one NMJ may be successful at
another (Tomàs et al., 2011), which suggests that other receptors
and local postsynaptic- (and glial cell) derived factors are
involved. The involvement of the TrkB signaling described may
allow a postsynaptic-derived trophic substance such as Brain-
derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4)
to make a contribution (Yoshii and Constantine-Paton, 2010).

Interestingly, we observed that both the presynaptic-derived
signal (ACh acting on axonal M1 and M2 mAChRs) and
the TrkB-mediated signal (which may be originated by a
postsynaptic-derived NT) have the same effect: namely, the
acceleration of supernumerary nerve ending elimination. It
seems that the outstanding regulatory resources in the NMJ
synaptogenesis are committed to achieving monoinnervation.
These presynaptic receptors converge in a common intracellular
mechanism and a limited repertoire of effector kinases to
phosphorylate protein targets and bring about structural and
functional changes leading to axon loss. It is well known
that in most cells M1 and TrkB operate by stimulating the
phospholipase C gamma (PLC gamma) and therefore the protein
kinase C (PKC) pathway along with the inositol triphosphate
(IP3) pathway, whereas M2–M4 inhibit the adenyl cyclase (AC)
and protein kinase A (PKA) pathway (Caulfield, 1993; Felder,
1995; Caulfield and Birdsall, 1998; Nathanson, 2000). In all
cases, however, common final changes such as intracellular
calcium oscillations can occur (Santafé et al., 2006; Amaral
and Pozzo-Miller, 2012). Both PKA and PKC activity changes
have been shown to affect pre- and postsynaptic maturation
(Lanuza et al., 2001, 2002). Our present data can be related
with the intracellular coupling of the receptors to these serine
kinases. Though the blocking efficacy of the selective inhibitors
of the muscarinic receptors is not assessed here, M2 increases
the axonal loss rate most with a slight involvement of the M4

receptor but independently of the M1 and TrkB receptors. This
suggests that downregulation of PKA activity through the couple
M2–M4 is a key factor in synapse elimination. Concurrently,
M1 and TrkB also contribute separately to axonal loss, but their
combined action has a potent summed effect similar to the
effect of the M2 receptor. This suggest that activation of the
PLC gamma-PKC pathway through the couple M1-TrkB may
be the other key factor in this process. Thus, a displacement of
the PKA/PKC activity ratio to lower values (inhibition of PKA
and/or stimulation of PKC) in some nerve endings may have a

leading role in synapse elimination. In this context, blockade of
PKC in the newborn LAL muscle produces an initial blockade
of synapse elimination and a subsequent delay (Lanuza et al.,
2002).

In fact, these changes in the kinase activity leading to synapse
elimination must occur at least (but not only) in the weakest
axons during the competitive interactions. The neurotransmitter
release capacity is an important factor in the competing capacity
of the various nerve terminals in a NMJ. During development,
in the polyinnervated NMJ several nerve endings with different
levels of maturation and ACh release capacity get together
and compete. The coupling to neurotransmitter release of the
considered receptors and kinases is not the same in each of
these various endings themselves and in the mature synapses
in the adult (Tomàs et al., 2014). So, how does the specific
coupling to ACh release of receptors and kinases in the weak and
strong axons in competition contribute to axonal loss? As far as
serine kinases are concerned, in the adult motor nerve endings
both PKA and PKC potentiate ACh release when coupled
to neurotransmission (Santafé et al., 2009b). Similarly, the
same potentiation is observed in most neuromuscular synapses
during development as, for instance, in those formed by the
strongest axons (those that evoke the large endplate potential,
EPP) in the polyinnervated junctions (Santafé et al., 2004).
However, in the weakest endings the inhibition of PKC increases
the evoked EPP size indicating that, in normal conditions
without any inhibition, this kinase tonically couples to ACh
release reduction in these low releasing synapses. Therefore,
an M1-TrkB-mediated increase in PKC activity in the weakest
endings would debilitate further their ACh release capacity and
competitive force and facilitate their elimination. In addition,
an M2-mediated PKA downregulation in all nerve endings in
competition may differentially affect their ACh release and
contribute to elimination. Thus, at this point, there is a significant
agreement between the known involvement of these molecules in
neurotransmission and axon loss.

However, when considering the real postnatal coupling to
ACh release of the mAChR and the TrkB receptor in the
different nerve endings (the strongest and the weakest) on
developing synapses (Santafé et al., 2004; Garcia et al., 2010),
additional interpretative keys are needed. In the mature NMJ,
M1 and M2 subtypes modulate evoked transmitter release by
positive and negative feedbacks, respectively (Santafé et al., 2003,
2006). However, during NMJ synaptogenesis, the functional
significance of the subtypes is different from in the adult. M2

receptors promote release in all nerve endings independently
of their ACh release level or maturation state whereas an M1-
and M4-mediated reduction in release is observed in the weakest
endings on dual junctions (Santafé et al., 2001, 2002, 2003, 2004,
2007, 2009a). Similarly, the BDNF-TrkB pathway contributes
to potentiate ACh release in different neuromuscular adult
models but the potentiation is not observed in the weakest
nerve endings during development and even some ACh release
inhibition was observed in the strongest endings (Garcia et al.,
2010). Therefore, interpreting the links and molecular relations
between transmitter release and elimination of nerve terminals
seems more complex than it seemed at first. The involvement
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of other signaling such as AR can contribute to this complexity
(Todd and Robitaille, 2006; Nadal et al., 2016). However, some
conclusions can be drawn on the basis of all the above data.
First, it should be pointed out that, contrary to what happens
in the adult, M1 (and M4) and PKC activity reduces ACh
release in the weakest endings and promotes axonal loss. In fact,
blocking mAChRs (M1- and/or M4-subtypes) or PKC or voltage-
dependent calcium channels (VDCCs; P/Q-, N- or L-type or
Ca2+ influx) can lead to similar percentage increases in the
size of the synaptic potentials evoked by weak axons (Santafé
et al., 2003, 2004, 2007, 2009a,b; Tomàs et al., 2011). Therefore,
the M1-PKC pathway may debilitate the ACh release capacity
and competitive force of these synaptic contacts and facilitate
their elimination. The final target molecules involved may be
the VDCC, specially the L-type which is exclusively coupled
to ACh release in these weak endings (Santafé et al., 2001)
and may contribute to carry high calcium near the molecular
mechanism directly involved in axon loss. Second, like M1

signaling, BDNF-TrkB signaling accelerates axon loss. However,
it is not so clear whether it is involved in the modulation
of ACh release in the nerve endings that are in competition
because it does not affect release in the weak axons. Because PKC
effectively reduces release in these endings, the TrkB pathway
may operate through the IP3 pathway to increase intracellular

calcium and modulate the loss of axons. Third, M2 promotes
axonal elimination the most. However, unlike the adult, this
muscarinic subtype promotes ACh release in all the endings
that are in competition, including the weakest endings and the
solitary ending that finally wins the competition. Therefore, there
is a shift in the M2 coupling during development but how this
affects its relation with PKA and how this relates with axonal loss
is not known.
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