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1. Introduction 

1.1. Thesis abstract 

 
During the three year doctoral course (XXIX cycle, 2014–2016), in the 

Nanochemistry department at the Italian Institute of Technology (Genoa, 

Italy), my research was focused on the development of new nanosystems 

based on iron oxide cubic-shaped nanoparticles for magnetic hyperthermia 

application in cancer treatment. Three main projects were conducted under 

the supervision of Dr. Teresa Pellegrino. The goals of each project and the 

main results obtained are summarized below. 

 
The novel use of magnetic hyperthermia set-up for the mild oxidization 

of Fe1-xO/Fe3-δO4 core-shell nanocubes to single Fe3O4 phase was 

demonstrated. The wüstite/magnetite core-shell nanocubes after synthesis via 

decomposition of iron pentacarbonyl Fe(CO)5, resulting in non-interacting 

particles with moderate magnetization, were easily transferred into water by 

exchanging the short organic surfactant with a poly(ethylene glycol) based 

water soluble polymer. The water transferred samples had their specific 

absorption rate (SAR) values determined. Given that these values were lower 

compared to fully magnetite iron oxide nanocubes of similar cube edge length, 

the unstable FeO core was oxidized in two different ways: a “harsh” one, after 

which the SAR values increased alongside the loss of stability and a “mild” one 

that preserved sample stability. The latter was called magnetic hyperthermia 

(MH) stimulation. After a handful of MH treatments, the SAR values increased 

up to two times, while colloidal stability, size distribution and shape remained 

unaffected. The magnetically stimulated iron oxide nanocubes (IONCs) showed 

a significantly higher saturation magnetization MS than the initial core-shell 
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ones, reflecting structural and compositional changes as confirmed by high 

resolution transmission electron microscopy/scanning transmission electron 

microscopy and superconductive quantum interference device studies. The 

MH treatment also opened up the possibility of attaching biologically relevant 

molecules to the surface of core-shell nanocubes and preserving their activity 

while improving the IONCs heat performance. On biotin-tagged nanoparticles, 

the affinity of biotin towards streptavidin ligands was preserved even after 25 

hours of magnetic oxidation treatment. The method here described enabled a 

mild magnetic transformation of nanocubes resulting in more efficient heat 

mediators while preserving both the colloidal stability and molecular targeting 

of the heating nano-probes. These are all crucial features for optimal 

preparation of heat mediators for in vivo hyperthermia. 

 
In continuity with the previous work, the SAR values of core-shell iron 

oxide nanocubes could be enhanced not only by oxidizing the FeO core, but by 

controlled clustering of nanocubes in chain like structures driven by 

anisotropic interactions. Initially the controlled clustering of the IONCs during 

their water transfer was developed, enabling the formation of soft colloidal 

clusters with average hydrodynamic sizes that could be tuned between ca. 30 

and 100 nm. The size tuning could be achieved both by varying the ratio of the 

amphiphilic random copolymer, poly(styrene-co-maleic anhydride), cumene 

terminated (Mn = 1 600 g/mol), to the particle surface or by varying the initial 

iron concentration. With this versatile method, magnetic nanoparticles of 

different shapes—spherical, cubic, cubic with rounded edges—and sizes—in 

the range 15 to 22 nm— alongside gold nanoparticles, could be clustered in a 

controlled manner. By increasing the ratio of amphiphilic polymer per nm2 of 

particle surface or the Fe concentration bigger nanoclusters were obtained.  

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



3 
 

The hyperthermia response of individually coated nanocubes vs. soft 

colloidal nanoclusters of different sizes, with hydrodynamic diameters below 

100 nm was evaluated. These results were correlated with their magnetic 

properties as determined by various magnetic characterization techniques. 

The so called “dimers” and “trimers”, 1D and 2D structures formed with two 

and respectively three iron oxide nanocubes, showed higher SAR values 

compared both to individual IONCs or more-centro symmetrical clusters with 

the number of cubes per cluster higher than 4. Lastly, by implementing 

previous findings, the clusters could be formed with freshly synthesized core-

shell nanocubes, followed by their annealing in aqueous solutions at 80 °C, 

that resulted in stable nanosystems with higher specific absorption rate values.    

 

 Drug loading on two nanosystems designed for heat-triggered 

chemotherapeutic drug release was achieved. Both systems were based on 

magnetite 19 nm iron oxide nanocubes coated with thermo-responsive 

polymers grown from the surface of the IONCs by living radical polymerization, 

one being reversible addition-fragmentation chain transfer (RAFT) 

polymerization. Doxorubicin hydrochloride (doxo) loading conditions as a 

function of initial doxo concentration, incubation time, cleaning method, and 

loading volume were studied. The two thermo-responsive polymers of choice 

were poly(N-isopropylacrylamide)-co-poly(ethylene glycol) methyl ether 

acrylate (PNIPAM-co-PEGA) and poly(diethylene glycol methyl ether 

methacrylate-co-oligo ethylene glycol methyl ether methacrylate) 

(P(DEGMEMA-co-OEGMEMA)) due to their biocompatibility and ease of lower 

critical solution temperatures (LCST) tuning in the range from 39 to 41 °C, by 

varying the polymer composition. The goal was to have stable nanocarriers at 
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body temperature that would release the cargo (the chemotherapeutic drug) 

exclusively upon the application of an alternating magnetic field, generating an 

increase in temperature that would be accompanied by the shrinking of the 

polymeric shell and release of the entrapped drug. Once individually thermo-

responsive polymer coated iron oxide nanocubes with high specific absorption 

values were obtained, solutions of these IONCs were characterized in terms of 

specific absorption rate and maximum temperature reached during 3 cycles of 

30 minutes of hyperthermia treatment, carried out in small volumes of 50 µL 

at Fe concentrations ranging from 2.5 to 4 g/L in preparation for in vivo 

studies. The heat-triggered doxorubicin release under alternating magnetic 

field, at biologically relevant frequency (105 kHz) and field amplitude (25 mT), 

was qualitatively, but not quantitatively proven.             

 
During my ten-month mobility stay (2015–2016), in the group of 

Professor Miquel A. Pericàs at the Institute of Chemical Research of Catalonia 

(Tarragona, Spain), the selective oxidation of benzyl alcohol into benzaldehyde 

under mild reaction conditions, using caffeic acid coated iron oxide 

nanoparticles (spherical and cubic) as catalysts was investigated. The oxidation 

process was studied as a function of reaction time, amount, and type of 

catalyst. Recyclability studies were carried out once the best reaction  

conditions had been identified. The results are summarized in the Annex.                   

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



5 
 

1.2. Overall aims and research objectives 

 The aim of my research stay at the Italian Institute of Technology is to 

study colloidal magnetic nanoparticles, specifically iron oxide core-shell 

nanocubes with edge length in the range from 16 to 21 nm, as nano-platforms 

for magnetic hyperthermia in cancer treatment.  

The above aim will be accomplished by fulfilling the following research 

objectives:  

1. Estimation of specific absorption rate values from heating profile for 

nanocubes of various edge lengths.  

2. Improvement of specific absorption rate values of core-shell iron oxide 

nanocubes by oxidizing the paramagnetic core in mild conditions—at 

temperatures below 37 °C—by magnetic stimulation under alternating 

magnetic field. 

3. Controlled clustering of core-shell iron oxide nanocubes in soft colloidal 

nanoclusters with hydrodynamic sizes below 100 nm.   

4. Correlation of specific absorption rate values of soft colloidal nanoclusters of 

different sizes with their magnetic behavior as determined by superconducting 

quantum interference device measurements;     

5. Chemotherapeutic drug loading on iron oxide nanocubes coated with 

thermo-responsive polymers having a lower critical solution temperature a 

few degrees above body temperature. 

6. Controlled heat-triggered drug release from drug-loaded iron oxide 

nanocubes by applying an alternating magnetic field.   

The focus of the research will shift towards catalysis applications of 

similar nanosystems during the ten-month mobility stay at the Institute of 

Chemical Research of Catalonia. 
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2. Monodisperse core-shell iron oxide nanocubes for 

magnetic hyperthermia 

 

Parts of this chapter have been published in: 

Lak, A.; Niculaes, D.; Anyfantis, G. C.; Bertoni, G.; Barthel, M. J.; Marras, S.; 

Cassani, M.; Nitti, S.; Athanassiou, A.; Giannini, C.; Pellegrino, T.; Facile 

transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic 

stimulation, Sci. Rep. 2016, 6, 33295 

 

Adapted with permission from Lak, A.; Niculaes, D.; Anyfantis, G. C.; Bertoni, 

G.; Barthel, M. J.; Marras, S.; Cassani, M.; Nitti, S.; Athanassiou, A.; Giannini, C.; 

Pellegrino, T.; Facile transformation of FeO/Fe3O4 core-shell nanocubes to 

Fe3O4 via magnetic stimulation, Sci. Rep. 2016, 6, 33295 
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2.1. Introduction 

Iron oxide nanoparticles are an indispensable candidate for varieties of 

nanoparticle-based therapeutics and diagnostics owing to their switchable 

magnetization, biocompatibility and biodegradation.1,2 Magnetic hyperthermia 

(MH) is a novel non-invasive therapy, now under clinical trial on patients with 

brain or prostate tumors, that exploits magnetic nanoparticles as heat 

mediators to burn cancer mass.3–5 The heat dissipation strongly depends on 

physico-chemical features of the particles. Up to now, there have been many 

studies aiming at the design of optimal heat mediators.6–8 Recently, it was 

reported that anisotropic cubic-shaped particles revealed a superior heating 

performance with respect to spherical ones, yet tightly relying on their 

structural and compositional properties.9,10 

The synthesis of monodisperse iron oxide nanocubes is a great 

challenge and hardly attainable by any other method other than high 

temperature colloidal syntheses. The iron pentacarbonyl and iron oleate are 

among the most frequently used precursors for the synthesis of iron oxide 

nanoparticles due to their particular decomposition profile that allows a 

distinctive separation between nucleation and growth steps, a vital criterion 

for obtaining uniform nanocrystals.11–16 Some of the developed synthetic 

procedures that make use of these precursors result in the formation of initial 

paramagnetic FeO (wüstite structure) particles because of the reductive nature 

of the decomposition reaction.17 After being exposed to ambient conditions, 

the outer particle surface transforms into Fe3O4 phase (inverse spinel 

structure) and eventually core-shell structures, having an antiferromagnetic 

core (below Néel temperature TN of 198 K) and a ferri(o)magnetic shell (AFM-

FiM), are formed.18 The core-shell particles, depending on the composition of 
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the core and the shell, exhibit intriguing features such as exchange coupling 

between hard and soft magnets and exchange bias coupling, which have raised 

lots of scientific interest.19
  

The idea behind the research presented in this chapter was to work 

with iron oxide nanoparticles that were cubic-shaped, with a paramagnetic 

core and a ferri(o)magnetic shell, thus non-interacting at RT. These types of 

nanoparticles can be easily manipulated and thus functionalized with targeting 

molecules while by post-treating them in mild oxidation conditions under 

magnetic hyperthermia set-up (Figure 1a) their magnetic properties could be 

improved thus resulting in better targeted hyperthermia agents. In this 

chapter, the research carried out on metastable core-shell iron oxide 

nanocubes20,21 under different conditions—in order to evaluate their heating 

performances in magnetic hyperthermia—is reported.  

The research is divided into several parts: after the colloidal synthesis 

and water transfer of 2 batches of core-shell IONCs of different sizes, their 

specific absorption rate (SAR) values were measured at different frequencies 

and field amplitudes in section 2.3. As the SAR values were considerably 

smaller compared to SAR values of magnetite IONCs with a 19 nm cube edge 

length22, we attempted to improve their heating performance by oxidizing the 

wüstite core in two ways: at elevated temperatures in organic solvents (harsh 

treatment) or by magnetic stimulation under hyperthermia at temperatures 

below body temperature (mild treatment, Figure 1a). Both methods provided 

an increase in SAR values: the mild one from 50 up to 100 % increase in SAR 

values and the harsh one up to a 6 fold increase (section 2.4.). Next, on a 

freshly synthesized sample, 25 cycles of mild treatment under MH stimulation 

were carried out (Figure 1b) and the sample was fully characterized from a 
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structural and magnetic point of view before the treatment and after 10 and 

25 cycles of MH (section 2.5). Lastly, the nanocubes were functionalized with 

biotin and the activity of biotin was assessed prior and after exposure to 25 

MH cycles. The biotin activity was preserved as streptavidin could bind to 

biotin molecules both before and after 25 MH cycles (section 2.6.).               

 

 
Figure 1: (a) Schematic representation of core oxidation under mild treatment by 

magnetic hyperthermia (MH) stimulation, (b) heating profiles of poly(ethylene glycol) 

coated nanocubes vs. MH cycle number, particles concentration fixed at 8 g/L of Fe, 

(c) scheme of a gallic-PEG coated core-shell nanocube.23  

 

2.2. Iron oxide nanocubes synthesis and water transfer 

 Initially, the goal was to study two batches of core-shell iron oxide 

nanocubes of different sizes: 15.8 ± 1.4 nm and 21.1 nm ± 1.8 nm cube edge 

length, that will be referred to as 16 and 21 nm IONCs, respectively. We were 

curious to measure their SAR values and find out how they compared between 

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



12 
 

each other. A typical synthesis of the 16 nm core-shell iron oxide nanocubes 

can be found below.  

To a 50 mL three-necked flask connected to a reflux cooler and pumped 

to vacuum for 30 minutes at 120 °C, oleic acid (1.6 g, 5.7 mmol), sodium oleate 

(0.939 g, 3 mmol) and 1-octadecene (4 mL) were added. Afterwards the 

solution was cooled down to room temperature (RT) and put under N2 flux. 

Then the iron precursor solution, Fe(CO)5 (0.597 g, 3 mmol) dissolved in 2 mL 

of 1-ODE, was injected and the mixture was heated from RT to 320 °C, at the 

heating rate of 20 °C/min. The solution reaction was stirred vigorously at 320 

°C for 1.5 hours, then cooled down and exposed to air for 30 minutes at 130 

°C. Lastly, it was left to cool down to RT. The nanoparticles (NPs) were 

collected by centrifugation and washed in a mixture of 2-propanol and acetone 

(1:2 v%). The purification process was carried out three times and the NPs 

were stored in chloroform.  

The IONCs were characterized by dynamic light scattering (DLS) and 

transmission electron microscopy (TEM). The DLS results are summarized in 

Table 1 and the corresponding TEM micrographs are presented in Figure 2. The 

average hydrodynamic size by volume in CHCl3 was 47 ± 7 (PDI 0.21) and 57 ± 

15 (PDI 0.16) for the 16 and the 21 nm sample, respectively (Table 1). Such low 

PDI values indicated a stable sample and lack of aggregates, as confirmed by 

TEM analysis.  A well dispersed monolayer of core-shell IONCs can be seen on 

the TEM grid (Figure 2). It is worth mentioning that for the hyperthermia study 

the synthesis of the nanocubes was done 9 months prior to the water transfer 

and thus the initial core-shell structure might have been different after 9 

months storage with respect to the freshly synthesized sample. Given that the 

wüstite core is unstable and tends to oxidize in air over very long periods of 
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time (year timescale) the core-shell structure could be better visualized for the 

21 nm sample (Figure 2b), compared to the 16 nm sample (Figure 2a), on the 

latter indeed the oxidation proceeded at a faster speed due to its higher area 

to volume ratio.    

 

Table 1: DLS data* for iron oxide nanocubes dispersed in CHCl3 

Sample Z-Ave PdI 
Number 

mean 
Intensity 

mean 
Volume 
mean 

  [nm] 
 

[nm] [nm] [nm] 

16 nm IONCs  72 ± 1 0.21 ± 0.01 27 ± 10 89 ± 7 47 ± 7 

21 nm IONCs 138 ± 1 0.16 ± 0.02 26 ± 12 168 ± 5 57 ± 15 

 
 

 
Figure 2: Representative transmission electron microscopy (TEM) micrographs of 

core-shell iron oxide nanocubes, dispersed in chloroform, for cube edge lengths of (a) 

16 nm and (b) 21 nm (insets: corresponding size histograms (a) 15.8 ± 1.4 nm and (b) 

21.1 ± 1.8 nm).  

 
 
 

                                                           
* For DLS measurements at least 3 measurements were carried out. The mean value 

with its standard deviation is reported. 
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After the synthesis, the IONPs had to be transferred into aqueous 

media. We decided to focus our attention on one of the two main strategies 

that have been developed for the water transfer of magnetic nanoparticles 

(MNPs) after their colloidal synthesis by thermal decomposition methods. This 

strategy, called ligand exchange, is based on stripping the initial stabilizing 

agents and replacing them with water soluble and biocompatible ligands.24–27 

The latter has to be composed of an anchoring unit—gallic acid in this study—

with high affinity for the MNP’s surface and a hydrophilic polymeric 

backbone—poly(ethylene glycol) (PEG)—which ensures water stabilization 

(Figure 1c). A typical water transfer procedure, by ligand exchange, with a PEG 

based polymer with a gallic acid anchor, is described in section 2.8. 

The second strategy for achieving surface functionalization, called 

encapsulation, consists of enveloping the inorganic nanoparticle inside an 

amphiphilic copolymer28–31. The hydrophobic chains of the copolymer can 

interdigitate with the hydrophobic stabilizing agents on the particle surface 

and the hydrophilic blocks would provide colloidal stability in aqueous media. 

The water transfer by encapsulation inside the poly(maleic anhydride-alt-1-

octadecene) polymer was also tried. The results are not reported here, as we 

realized that during the polymer coating with the amphiphilic polymer, there 

was a step involving the evaporation of solvent which would heat the sample 

(during polymer coating the samples were left overnight inside the oven at 65 

°C)—thus the metastable core was affected by this step as the metastable 

phase underwent oxidation in a non-controlled way. This was a side effect that 

we wanted to avoid, as the oxidation had to be carried out only under 

controlled conditions.  
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When using gallic-PEG polymer, the successful exchange was confirmed 

by the aqueous stability of the IONCs@PEG. DLS data is summarized in Table 2. 

For example, for sample 16 nm IONCs the average hydrodynamic diameter dH 

by number increased from 27 ± 10 nm to 37 ± 18 nm, which confirmed the 

successful exchange of the organic capping agents with the hydrophilic 

polymer that had a higher molecular mass and a larger gyration radius. TEM 

micrographs of the two samples in water are presented in Figure 3.  

 
Table 2: DLS data for iron oxide nanocubes, coated with gallic-PEG, in H2O 

Sample Z-Ave PdI 
Number 

mean 
Intensity 

mean 
Volume 
mean 

  [nm] 

 

[nm] [nm] [nm] 

16 nm IONCs@PEG 111 ± 1  0.23 ± 0.01 37 ± 18 145 ± 2 97 ± 27 

21 nm IONCs@PEG 77 ± 1 0.26 ± 0.01 33 ± 1 210 ± 25 98 ± 14 

 
 

 
Figure 3: Representative TEM micrographs† of iron oxide nanocubes coated with the 

hydrophilic polymer poly(ethylene glycol), for cube edge lengths of (a) 16 nm and (b) 

21 nm. A thin polymer shell could be observed around the IONCs and sometimes in 

between the nanocubes. 

                                                           
†
 Different scale bars on TEM micrographs 
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A very thin light grey shell of 1-2 nm surrounding each nanocube could 

be seen on the TEM micrographs that was ascribable to the polymeric PEG 

layer. In solution however the polymer shell was in its extended state, thus  

increasing the overall hydrodynamic size as confirmed by DLS data. For 

example the 21 nm IONCs@PEG nanocubes as seen by TEM, dispersed in H2O, 

had a mean hydrodynamic diameter by number of 33 ± 1 nm.  

 

2.3. Magnetic hyperthermia  

 Once both samples were transferred into water, at sufficient amount 

for running hyperthermia experiments, the heating capacities of the 16 and 21 

nm cube edge length IONCs were determined. Typical nanocube solution had 

to be at ca. 5 g/L Fe concentrations in order to be suitable for hyperthermia 

measurements. For the SAR measurements, under alternating magnetic field 

(AMF), frequencies and magnetic field amplitudes ranging from 105 to 302 kHz 

and from 15 to 40 mT were chosen.    

The heating capacity of magnetic nanoparticles is expressed by their 

specific absorption rate. SAR was calculated based on the following equation: 

𝑆𝐴𝑅 (
𝑊

𝑔
) =  

𝐶

𝑚
×

𝑑𝑇

𝑑𝑡
 

where 𝐶 was the specific heat capacity of water per unit volume and 𝑚 was 

the concentration (g/L of Fe) of magnetic material in solution. The calorimetric 

measurements were carried out in quasi-adiabatic conditions and the slope of 

the curve 
𝑑𝑇

𝑑𝑡
 was measured by taking into account only the first 20-25 seconds. 

The measured SAR values are summarized in Table 3 and plotted in Figure 4, as 

a function of the amplitude and frequency of the alternating magnetic field 

applied for both PEG coated samples.  
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Table 3: SAR values obtained at various magnetic field frequencies and 

amplitudes for (a) 16 nm and (b) 21 nm core-shell iron oxide nanocubes 
 

a. Sample 16 nm 
IONCs@PEG 

Frequency [kHz] 

105 220 302 

B [mT] SAR [W/gFe] SAR [W/gFe] SAR [W/gFe] 

15  -  27 ± 2  37 ± 2 

22 16 ± 2  38 ± 1 62 ± 1 

30 22 ± 3  59 ± 2  94 ± 5 

40 29 ± 3   -  - 

 

b. Sample 21 nm 
IONCs@PEG 

Frequency [kHz] 

105 220 302 

B [mT] SAR [W/gFe] SAR [W/gFe] SAR [W/gFe] 

15  - 14 ± 1 22 ± 1 

22 21 ± 1 36 ± 1 44 ± 1 

30 36 ± 1  70 ± 1 88 ± 3  

40 71 ± 1  - - 
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Figure 4: Specific absorption rate (SAR) values as a function of amplitude of the 

applied magnetic field at frequencies of 105 kHz (blue diamonds), 220 kHz (red 

diamonds), and 302 kHz (green diamonds) for (a) 16 nm and (c) 21 nm IONCs@PEG. 

(b,d) SAR values as a function of frequency at magnetic field amplitudes of 15 mT 

(blue diamonds), 22 mT (red diamonds), and 30 mT (green diamonds) for (b) 16 nm 

and (d) 21 nm IONCs. For both samples an increase in SAR values was observed by 

increasing the magnetic field amplitude or/and the frequency. The solid lines are 

guides for the eye. 

 

 
Figure 5: SAR values as a function of the applied magnetic field at frequencies of 105 

kHz (blue diamonds—16 nm, red diamonds—21 nm), 220 kHz (blue triangles—16 nm, 

red triangles—21 nm), and 302 kHz (blue squares—16 nm, red squares—21 nm) for 

16 nm and 21 nm IONCs@PEG. The solid black lines are guides for the eye. 
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The comparison between SAR values for 16 nm and 21 nm IONCs@PEG, 

as a function of the amplitude of the magnetic field applied and frequency, can 

be found in Figure 5 and Figure 6, respectively.  

Interestingly, at lower frequency of 105 kHz the SAR values of the 16 

nm IONCs@PEG were smaller than the SAR values of the 21 nm IONCs@PEG, 

with that trend being inversed for higher frequencies of 302 kHz (Figure 6). A 

possible explanation would be the switch between Brownian and Néel 

relaxation for the superparamagnetic 16 nm IONCs at higher frequencies (only 

AC Susceptibility measurements could have confirmed that fact, 

measurements that were, unfortunately, not carried out on these samples).   

 

 
Figure 6: SAR values as a function of frequency at magnetic field amplitudes of 15 mT 

(blue diamonds—16 nm, red diamonds—21 nm), 22 mT (blue triangles—16 nm, red 
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triangles—21 nm), and 30 mT (blue squares—16 nm, red squares—21 nm). The solid 

lines are guides for the eye.  

 
As mentioned earlier, our group has already synthesized fully 

magnetite cubic-shaped IONPs with high SAR values.22 For 19 nm IONCs, the 

SAR value at f = 219 kHz and B = 25 mT (H = 20 kA/m), was ca. 350 W/gFe. In 

the case of core-shell IONCs the SAR values were in the range of 50 W/gFe at 

same magnetic field amplitude and frequency. The heat performance of the 

latter was an order of magnitude lower, but the main advantage of the core-

shell nanocubes used in this work over the cubes synthesized previously by our 

group was the fact that at RT they were superparamagnetic and that 

characteristic made them easy to functionalize with any type of polymer. 

Instead, for the 19 nm magnetite nanocubes, being at the interface between 

superparamagnetic and ferri(o)magnetic regime, it was not possible to 

functionalize their surface with small ligand/antibody fragments because of 

severe precipitation of the nanocubes during functionalization (data not 

shown). We therefore opted here for the core-shell nanocubes. We first 

wondered if the low SAR values of the nanocubes employed in this study were 

due to their paramagnetic core and whether an annealing process would have 

improved their properties. To this aim we set and compared two oxidation 

protocols. 
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2.4. Oxidation of wüstite core 

2.4.1. Harsh conditions 

The next step was to oxidize the paramagnetic wüstite core in order to 

obtain a homogenous magnetite phase21, as schematically presented in Figure 

7, and supported by XRD patterns presented in Figure 9. In a first instance we 

thought of employing a direct approach using high temperatures in the 

presence of oxygen. We named this approach the “harsh” oxidation protocol. 

A fresh sample of core-shell iron oxide nanocubes was synthesized with cube 

edge length of 20.2 ± 1.8 nm (Figure 8a). The initial oxidation attempts were 

done on these IONCs dispersed in organic solutions (1-octadecene).  

 

 

Figure 7: Schematic representation of the gradual FeO core elimination under “harsh” 

oxidation conditions—high temperatures for several hours, in the presence of 

oxygen.21 

 

Several oxidation combinations by changing process temperature and 

time were tried. In a first attempt, at temperature of 180 °C for an oxidation 

time of 5 hours—the IONCs lost their cubic shape, becoming truncated 

octahedra as can be seen in the inset in Figure 8b. Instead, the optimal 

oxidation procedure, that preserved both the size and the shape of the IONCs 

required a lower temperature of 130 °C, and longer oxidation time of 7 hours 

(section 2.8).  
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The characteristics of the freshly synthesized 20 nm IONCs in 

chloroform, before and after oxidation, alongside the sample coated with 

gallic-PEG after oxidation in organic solvents at 130 °C for 7 hours, are 

presented in Table 4 and in Figure 8.  

 
Table 4: DLS data for iron oxide nanocubes of 20.2 ± 1.8 nm cube edge length 

Sample Z-Ave PdI 
Number 

mean 
Intensity 

mean 
Volume 
mean 

  [nm] 
 

[nm] [nm] [nm] 

20 nm IONCs in CHCl3 335 ± 26 0.30 ± 0.03 26 ± 1 168 ± 16 57 ± 4  

20 nm IONCs_ox in CHCl3 158 ± 3 0.46 ± 0.02 28 ± 1 213 ± 8 118 ± 16 

20 nm IONCS_ox@PEG in H2O 207 ± 4 0.19 ± 0.02 154 ± 30 231 ± 17 262 ± 28 
 

 

 
After the oxidation of the core following the harsh protocol, the DLS 

results of nanocubes in chloroform showed a slight increase in average 

hydrodynamic diameter by number from 26 ± 1 nm (PDI 0.3) to 28 ± 1 nm (PDI 

0.46) corespponding to the core-shell nanocubes and the oxidized NPs in 

CHCl3, respectively (Table 4). Once again after the particles were coated with 

gallic-PEG, the size of the NPs increased even further, due to an exchange of a 

short capping organic molecule (oleic acid) with a polymer of higher molecular 

weight.  

TEM characterization cofirmed the core-shell structure before 

oxidation (Figure 8a). After oxidation, the wüstite core could no longer be 

observed (Figure 8b-d, some contrast on the cubes could be due to the 

presence of defects). Stability of the particles was maintained after oxidation 

process as no aggregation of particles could be observed on the TEM grid 

(Figure 8b). Alongside stability, the IONCs preserved their cubic shape (Figure 8 

b-d).   

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



23 
 

 
Figure 8: Representative TEM micrographs of 20 nm IONCs in CHCl3 (a) before and (b) 

after 7 h@130 °C oxidation (inset: 5 h@180 °C); (c,d) 20 nm IONCs_ox@PEG in H2O. 

Before oxidation the core-shell structure was clearly visible (a).  After oxidation, the 

core could no longer be observed, neither in chloroform (b) nor in water (c,d).  

 
Both the initial 20 nm core-shell sample and the oxidized sample 

(oxidation in organic solvents at 130 °C for 7 hours) were coated with gallic-

PEG and dispersed in H2O. The XRD data of these two samples (IONCs@PEG 

and IONCs_ox@PEG), before and after the harsh oxidation treatment, 

confirmed the oxidation and thus the disappearance of the paramagnetic core 

that had a wüstite crystallographic structure (Figure 9). Before oxidation, the 

reflections related to wüstite was clearly evident. After oxidation, the 

characteristic reflections of wüstite disappeared and only the reflections of 

magnetite were present.  
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After transfer to physiological media of the oxidized sample, 

hyperthermia measurements were carried out in order to determine the SAR 

values of the 20 nm IONCs_ox@PEG. When comparing the SAR values of core-

shell IONCs with that of oxidized IONCs, the results were encouraging as up to 

a six fold increase of SAR value was observed, as summarized in Table 5. For 

instance, the SAR value of 20 nm core-shell sample before oxidation was 39 ± 4 

W/gFe, at magnetic field amplitude of 25 mT (20 kA/m) and frequency of 220 

kHz (Table 5). After oxidation in harsh conditions, at same frequency and 

magnetic field amplitude, the sample had a SAR of 238 ± 1 W/gFe (Table 5). The 

SAR values after oxidation are plotted in Figure 10.  

 

 
Figure 9: Crystallographic X-Ray diffraction (XRD) data for sample 20 nm IONCs@PEG 

(a) before and (b) after oxidation at 130 °C for 7 hours (harsh conditions). Before 

oxidation both wüstite and magnetite reflections were present, while after oxidation 

only magnetite phase was detected. The broad peak present at 22 ° (a) was due to the 

gallic-PEG polymer.   
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Figure 10: SAR values of 20 nm IONCs oxidized in harsh conditions, after water 

transfer, as a function of (a) the applied magnetic field at frequencies of 105 kHz (blue 

squares), 220 kHz (red squares), and 302 kHz (green squares). (b) SAR values of 20 nm 

IONCs oxidized in harsh conditions as a function of frequency at magnetic field 

amplitudes of 15 mT (blue diamonds), 20 mT (red diamonds), 25 mT (violet 

diamonds), and 30 mT (green diamonds) for 20 nm IONCs_ox@PEG. The solid lines 

are guides for the eye.  
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Table 5: SAR values for 20 nm iron oxide nanocubes, before and after oxidation 

under harsh conditions (7 hours @130 °C)   

Sample 20 
nm IONCs 

Frequency 105 kHz Frequency 220 kHz Frequency 302 kHz 

SAR 
[W/gFe] 
before 

oxidation 

SAR 
[W/gFe] 

after harsh 
oxidation 

SAR 
[W/gFe] 
before 

oxidation 

SAR 
[W/gFe] 

after harsh 
oxidation 

SAR 
[W/gFe] 
before 

oxidation 

SAR 
[W/gFe] 

after harsh 
oxidation 

B [mT] 

15 - 49 ± 4 - 99 ± 3 - 134 ± 4 

20 - 74 ± 1 27 ± 2 174 ± 2 35 ± 1 253 ± 2 

25 22 ± 2 99 ± 1 39 ± 4  238 ± 1 57 ± 4 329 ± 3 

30 38 ± 2 118 ± 3 60 ± 3  245 ± 2 79 ± 1  368 ± 3 

35 53 ± 1 124 ± 4 - - - - 

 
When oxidizing the paramagnetic core, the SAR value increased 

significantly. However the stability of the nanoparticles decreased as assessed 

by DLS. The average dH by number increased from 28 ± 1 nm (IONCs_ox in 

CHCl3) to 154 ± 30 nm (IONCs_ox@PEG in H2O)  (Table 4), one of the plausible 

reasons being the increase in dipole-dipole interactions. Therefore, these data 

suggested that the phase transformation of the core-shell was a good strategy 

to improve the SAR however stability issues needed to be solved. This has 

prompted us to look for an alternative strategy to high temperature oxidation.    

  

2.4.2. Mild conditions 

 This alternative was envisioned by oxidation of the FeO core under so 

called “mild” conditions. Under an alternative magnetic field (AMF), the 

nanoparticles still converted magnetic energy into thermal energy, and the 

local heat drove the oxidation of the core. The frequency and field of the AMF 

were chosen in order to reach macroscopic solution temperatures that 

remained below body temperature. In the case of harsh oxidation conditions, 

the IONCs were coated with gallic-PEG after oxidation, the oxidation being 
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carried out in organic solvents. In the case of mild conditions, the curing 

occurred in aqueous media directly on water soluble and stable IONCs@PEG 

nanocubes (Figure 1a).  

 In a typical oxidation under AMF the sample was subjected to several 

cycles of hyperthermia each of one-hour long. The frequency was set to 331 

kHz and the magnetic field to 17 mT (13.6 kA/m). Between each hyperthermia 

treatment, the vial was opened (as the amount of oxygen inside the vial was 

limited) and left on the bench for 30 min (Figure 1a). A typical temperature 

profile as a function of time recorded during the treatment is presented in 

Figure 11 for sample 21 nm IONCs@PEG. 

 

 

Figure 11: Oxidation of 21 nm IONCs@PEG under alternating magnetic field  

(f = 330.9 kHz, B = 17 mT) 

 
 After every AMF exposure, the SAR values were measured. It was 

noticed that no change in the temperature profile was measured for the first 8 

trials. While continuing the oxidation under mild conditions for several more 
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trials, an increase in SAR values was obtained at that particular frequency and 

magnetic field amplitude. For sample 21 nm IONCs@PEG, the total amount of 

AMF exposure was 12 hours and 30 minutes. The macroscopic maximum 

temperature reached during the experiments was 36 °C. The increase in SAR 

values measured was up to 100% of the SAR value of the initial untreated 

sample.   

 
Table 6: SAR values at various frequencies and magnetic field amplitudes for 

(a) 21 nm and (b) 20 nm iron oxide nanocubes, before and after (a) 12 h 30 

min and (b) 15 h 30 min of MH stimulation   
 

a. Sample 
21 nm 
IONCs 

Frequency 105 kHz Frequency 220 kHz Frequency 302 kHz 

SAR 
[W/gFe] 

before MH 

SAR 
[W/gFe] 

after MH 

SAR 
[W/gFe] 

before MH 

SAR  
[W/gFe]  

after MH 

SAR 
[W/gFe] 

before MH 

SAR 
[W/gFe] 

after MH B [mT] 

15 - - 14 ± 1 -  22 ± 1 44 ± 2 

22 21 ± 1 - 36 ± 1 73 ± 2 44 ± 1  97 ± 1 

30 36 ± 1  54 ± 2 70 ±1 123 ± 3 88 ± 3  165 ± 3 
 

b. Sample 
20 nm 
IONCs 

Frequency 105 kHz Frequency 220 kHz Frequency 302 kHz 

SAR  
[W/gFe] 

before MH 

SAR 
[W/gFe] 

after MH 

SAR 
[W/gFe] 

before MH 

SAR 
[W/gFe] 

after MH 

SAR 
[W/gFe] 

before MH 

SAR 
[W/gFe] 

after MH B [mT] 

20 - - 27 ± 2  -  35 ± 1 43 ± 1 

25 22 ± 2 - 39 ± 4   - 57 ± 4 81 ± 2  

30 38 ± 2 46 ± 2 60 ± 3  92 ±1  79 ± 1  116 ± 1  

35 53 ± 1 71 ± 1 - - - - 

40 73 ± 2 94 ± 1 - - - - 
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Figure 12: SAR values comparison, for 21 nm IONCs@PEG, as a function of (a) the 

applied magnetic field at the frequency of 302 kHz: untreated core-shell IONCs—blue 

diamonds, IONCs after 12 h 30 min of MH stimulation—green diamonds; (b) SAR 

values as a function of frequency at magnetic field amplitude of 30 mT: untreated 

core-shell IONCs—blue diamonds, IONCs after 12 h 30 min of MH stimulation—green 

diamonds. SAR values comparison, for 20 nm IONCs, as a function of (c) the applied 

magnetic field at the frequency of 105 kHz (untreated core-shell IONCs—blue 

diamonds, IONCs after 15 h 30 min of MH stimulation—green diamonds) and 302 kHz 

(untreated core-shell IONCs—blue squares, IONCs after 15 h 30 min of MH 

stimulation—green squares); (d) SAR values as a function of frequency at magnetic 

field amplitude of 30 mT: untreated core-shell IONCs—blue diamonds, IONCs after 15 

h 30 min of MH stimulation—green diamonds. The solid black lines are guides for the 

eye. 
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For sample 20 nm IONCs@PEG, the macroscopic maximum 

temperature did not exceed 30 °C, therefore the MH stimulation was carried 

out for a longer time. After 15 hours and 30 minutes similar improvements in 

SAR values were obtained (up to 50% of initial SAR value). These results are 

plotted in Figure 12 and the data is summarized in Table 6 for both 20 and 21 

nm cube edge length IONCs. 

Similar to oxidation in harsh conditions, an improvement in SAR values 

was obtained, though more modest values were recorded. A comparison of 

SAR values after mild and harsh oxidation conditions vs. the initial SAR values 

for sample 21 nm IONCs@PEG is presented in Figure 13. 
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Figure 13: SAR values comparison, for 20 nm IONCs, as a function of (a) the applied 

magnetic field at the frequency of 302 kHz: untreated core-shell IONCs—blue 

diamonds, IONCs after 15 h 30 min of MH stimulation—green diamonds, and IONCs 

after 7 h @130 °C oxidation—red squares. (b) SAR values as a function of frequency at 

magnetic field amplitude of 30 mT: untreated core-shell IONCs—blue diamonds, 

IONCs after 15 h 30 min of MH stimulation—green diamonds, and IONCs after 7 h 

@130 °C oxidation—red squares. The solid black lines are guides for the eye. When 

curing by MH stimulation (for 15 h 30 min/15.5 MH cycles) a two fold increase in SAR 

values occurred, while maintaining the stability of the IONCs in water. Oxidation in 
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organic solvents at high temperatures increased the SAR values 4 fold, but after 

transfer in aqueous media the stability of the IONCs was lost, due to an increase in 

dipole-dipole interaction, similar to ‘classical’ 19 nm IONCs synthesized by our group22 

that were at the interface between superparamagnetic and ferromagnetic regimes at 

room temperature.     

 

The highest SAR results were obtained by oxidation of the 

paramagnetic core in harsh conditions, but the results after mild oxidation 

were encouraging as well as it showed the possibility of improving the SAR 

values after functionalization with biologically relevant molecules. From 

research carried out previously by our group32 we knew that at the surface of 

the IONCs the temperature was much higher compared to the macroscopic 

temperature measured in solution. This ΔT vanished within 4 nm from the 

surface. Therefore we believed that even if the mild curing was occurring 

without macroscopically changing the temperature, the temperature at the 

surface of the NP was higher, promoting a faster diffusion of oxygen and thus 

oxidation of the core.  

To summarize, with these preliminary data (sections 2.2.-2.4.), new 

systems made up of iron oxide nanocubes (IONCs) with a core-shell 

structure—wüstite core/magnetite shell were characterized. The IONCs were 

transferred into physiological media by ligand exchange with a poly(ethylene 

glycol) based hydrophilic polymer. The suitability of these nanosystems for 

magnetic hyperthermia was tested. The specific absorption rate values were 

lower than the ‘classical’ Fe3O4 IONCs of similar size and shape, due to the 

paramagnetic core that did not contribute to the magnetic behavior of the 

IONCs. The gradual oxidation of wüstite core was studied by following the 

evolution of SAR values. The two distinct oxidations were: (i) the first 
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comprised a harsh environment of high temperatures for prolonged times and 

(ii) a second approach—a milder one—in which the increase in temperature 

was generated by the IONCs themselves when magnetically stimulated by 

hyperthermia. In both cases an increase in SAR values was observed. But the 

main difference was the stability of the IONCs in physiological media—after 

oxidation by magnetic stimulation the IONCs were stable in water, while the 

IONCs oxidized in harsh conditions showed stronger dipole-dipole interactions.    

To this aim a new sample of 17 ± 2 nm cube edge length was prepared 

and a complete study  of the SAR evolution over 25 cycles of magnetic 

hyperthermia stimulation was carried out. For two frequency (105 and 302 

kHz), SAR values were recorded as a function of magnetic field amplitudes on 

the sample of untreated nanocubes and after a certain number of cycles, 

usually 10 and 25 MH cycles (Figure 14). Notably, at all field values, higher SAR 

values were recorded for the samples that underwent magnetic stimulation, 

consistent with previous results. By increasing the frequency from 105 to 302 

kHz, as expected, the SAR values raised. For example, the SAR value at 302 KHz 

and 25 mT increased from 47 W/gFe to 106 W/gFe after 25 MH treatment 

cycles, indicating a change in structural and magnetic properties of the 

particles. Although the highest temperature recorded during the treatment 

never exceeded 34 °C, a gradual increase of the initial slope of the 

temperature vs. time curve and the maximum temperature reached at the end 

of the cycle was always registered as more treatment cycles were applied 

(Figure 1b). 
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To furthermore support the magnetically stimulated phase 

transformation hypothesis, rather than a bulk temperature effect per se, in a 

control experiment, the initial core-shell nanocubes were heated in a water 

bath for 25 hours (i.e. corresponding to 25 MH treatment cycles) applying the 

same heating profile as recorded in the MH treatment. For the sample heated 

in the water bath for 25 hours, the SAR value measured at 302 kHz and 25 mT 

was only 49 W/gFe, showing a marginal increase compared to the SAR of the 

initial sample (47 W/gFe).  

Upon applying alternating magnetic fields, the particles went through 

multiple magnetization-demagnetization hysteresis loops, resulting in the 

conversion of magnetic to heat energy. It is known from previous studies that 

the temperature at the surface proximity of nanoparticles is substantially 

higher than the macroscopic temperature detected by the optic fiber sensor in 

the solution. Apparently, these hot spots could accelerate the oxidation and 

structural change in the core-shell nanocubes and consequently improved 

their heat performance.32,33 It is also worth mentioning that the final SAR 

values recorded on the nanocubes after 25 cycles of MH treatment were 

higher than SAR values, measured in a comparable magnetic field amplitude 

and frequency, reported for iron oxide nanoparticles and nanoclusters 

obtained from other direct synthesis methods.34,35 
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Figure 14: Temporal evolution of SAR values over 25 MH treatment cycles as a 

function of magnetic fields measured at two fixed frequencies of (a) 302 and (b) 105 

kHz, respectively.23  

 
 On this 17 ± 2 nm sample a full structural and magnetic 

characterization was carried out: an in depth HRTEM/STEM, geometric phase 

analysis (GPA) and SQUID characterization to confirm the gradual core 

oxidation under MH stimulation (section 2.5). Finally, as a proof of concept, 

the attachment of biotin (able to recognize streptavidin) to the surface of the 

nanoparticles was carried out, followed by 25 cycles of MH treatments (section 

2.6.). After magnetic stimulation by hyperthermia, the biological activity of 

biotin was checked by attaching streptavidin. If the proof of concept worked, 

biotin could potentially be replaced by any other molecular targeting moieties, 

making use of pairs like antibody-antigen or receptor-ligand for tumor 

targeting.   
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2.5. Structural and magnetic characterization  

As previously mentioned, the in-depth structural and magnetic 

characterization of the core-shell structure and its gradual evolution under MH 

treatment was carried out on the Fe1-xO/ Fe3-δO4 sample with an average cube 

edge length of 17 ± 2 nm (SAR values plotted in Figure 14). A representative 

TEM image is shown in Figure 15a, with the corresponding particle size 

histogram in Figure 15b. The nanocubes were transferred into water by the 

classical ligand exchange procedure with gallic-PEG. The water transfer 

approach allowed attaining single-core particles as shown previously from DLS 

and TEM studies.  

 

 

Figure 15: Representative TEM micrographs of (a) core-shell iron oxide nanocubes, 

dispersed in chloroform, for cube edge length of 17 nm ± 2 nm with (b) the 

corresponding size histogram.23 

 

As briefly stated earlier, in a typical magnetic hyperthermia (MH) 

treatment cycle, the PEGylated nanocubes in water were sequentially exposed 

to 1 hour alternating magnetic fields at frequency of 331 kHz and field 

amplitude of 17 mT, followed by 30 minutes rest time at ambient conditions 
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and this cycle was repeated for a certain number of times (Figure 1a). For the 

structural and magnetic characterization, the gradual oxidation of the wüstite 

core was followed by comparison of the untreated core-shell nanocubes 

sample with the 10 and 25 MH cycles treated samples.  

 

2.5.1. High resolution electron microscopy characterization  

The core-shell structure of the initial nanocubes could easily be 

discerned by looking at HRTEM (Figure 16a), and it was even more evident in 

the STEM images (Figure 16c). On the same nanocube treated for 25 MH 

cycles, a more homogenous and ordered crystal structure was detected with 

no trace of the initial core-shell structure (Figure 16b and 16d).  

To gain more information about the phase structure of the nanocubes, 

geometric phase analysis36 was performed (see section 2.8.). The amplitude 

map of {220}S, a fringe only ascribable to the Fe3-δO4 (Figure 16e) showed a 

significantly higher magnitude in the outer layers than in the core of the initial 

nanocubes. In the amplitude map, the higher intensity corresponds to a higher 

occurrence of the selected plane. Instead, the amplitude map of {220}S fringe 

of 25 MH cycles treated nanocubes revealed high magnitude on both the shell 

and the core of the particles, thus implying the growth of the Fe3-δO4 phase 

towards the core (Figure 16f). Based on the discontinuities observed in the 

amplitude map of the {220}S fringe, it appears that the Fe3-δO4 phase nucleates 

as small subdomains on the shell of nanocubes which grow larger during the 

oxidation. This island-like nucleation and growth has previously been observed 

in iron oxide core-shell nanoparticles.18,21 Compared to the amplitude map of 

{400}S-{200}RS of the initial nanocubes which is mainly brighter in the center 

(Figure 17a), the amplitude map of {400}S fringe after the MH treatment, 

showed a high magnitude throughout the whole nanocube (Figure 17b). 
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Figure 16: High resolution electron microscopy characterization. (a,b) HRTEM, (c,d) 

STEM micrographs of initial core-shell nanocubes and 25 MH cycles treated IONCs, 

and (e,f) amplitude maps of relative intensity of {220}S spinel-only fringe of initial 

core-shell and 25 MH cycles treated nanocubes, respectively, obtained from the GPA 

analysis. The {220}S  fringe corresponds to the Fe3O4 phase. The [001] zone-axis lied 

parallel to the electron beam.23 
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Figure 17: Amplitude map of {400}S/{200}RS and {400}S fringe of (a) initial core-shell 

and (b) 25 MH cycles treated nanocubes respectively, acquired from the GPA 

analysis.23 

 
2.5.2. Field and temperature dependence of magnetization 

 Since a change in the structural features of the nanocubes is reflected 

in their magnetic properties, the magnetization hysteresis loops were 

compared before and after the MH treatment. Interestingly, the 

superparamagnetic behavior of the initial core-shell nanocubes was not 

affected by the MH treatment, and samples after 10 and 25 MH cycles 

revealed zero coercive fields at 298 K as the initial core-shell nanocubes did. As 

an indicator of the change in the structure, it is important to trace the 

saturation magnetization (Ms). At 298 K, Ms increased from 53 emu/gFe for the 

initial nanocubes to 69 emu/gFe and eventually to 72 emu/gFe after 10 and 25 

MH treatment cycles, respectively (Figure 18a). At 5 K, Ms value of 25 MH 

treated nanocubes was 94 emu/gFe—corresponding to 73 emu/gFe3O4—

deviating from the bulk magnetite value37 (Table 7). This deviation is mainly 
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due to the presence of a tiny fraction of FeO after full MH treatment (data not 

shown).  

 

 

Figure 18: Field and temperature dependent magnetization. (a) M-H magnetization 

loops measured at room temperature (symbols) and the best fits (solid lines), (b) 

Temperature dependent zero-field-cooled (ZFC) and field-cooled (FC) magnetizations 

measured at 10 mT, (c) FC and (d) ZFC hysteresis loops of immobile particles cooled in 

5 T and recorded at 5 K for the initial core-shell nanocubes (red circles), 10 (blue 

triangles) and 25 (green squares) MH cycles treated nanocubes.23
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Table 7: Magnetic properties. Ms, HC, HEB, and Tb
‡ obtained from the analysis of    

the magnetization curves.   

Sample 
Ms

298K/ Ms
5K 

[emu/gFe] 
HC [mT] HEB

 [mT] TB
10mT [K] 

Initial IONCs@PEG 53 / 60  272 158 244 

after 10 MH cycles 69 / 89 210 112 235 

after 25 MH cycles 72 / 94   57 23 232 

TA-130 79 / 92 20 5 226 

 

By looking at the temperature dependent zero-field-cooled (ZFC) and 

field-cooled (FC) magnetizations (Figure 18b) it could be seen that the 

magnetization of initial core-shell and that of 10 cycles treated nanocubes rose 

slightly up to the Néel temperature (TN) of FeO of 198 K. This huge rise around 

TN was due to the transition from antiferromagnetic to paramagnetic spin 

configuration in FeO. Differently, on the nanocubes exposed to a full 25 MH 

treatment cycles, a clear kink at 110 K in the ZFC curve was seen which can be 

attributed to the Verwey transition in magnetite.18,38 A long-range crystal 

structure ordering in 25 cycles treated nanocubes could be accounted for this 

observation. Prominently, the Verwey transition has not been observed in 

core-shell nanocubes which were annealed at 150 °C21, analogous to the here 

studied nanocubes after thermal annealing at 130 °C (Figure 19b). This 

suggests that in the present Fe1-xO/Fe3-δO4 nanocubes the magnetic heating 

triggered the phase transformation via different pathways than plain high 

temperature annealing. The superparamagnetic blocking temperatures (Tb) 

were estimated from the maximum peak in the ZFC curve (Table 7). As the 

particles undergo more cycles of MH treatment, Tb
 decreases.  

                                                           
‡
 Ms (emu/gFe); Tb (K); HC and HEB (mT); TA-130: thermally annealed nanocubes for 7 h 

@130 °C. 
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The spin configuration in Fe1-xO was paramagnetic at room 

temperature and upon cooling below its TN, the spins oriented 

antiferromagnetically. However, part of the spins at the Fe1-xO/Fe3-δO4 

interface remained uncompensated which pinned the Fe3-δO4 spins towards 

the cooling field. These antiferromagnetic-ferrimagnetic (AFM-FiM) interfaces 

generated large exchange bias fields HEB, identified by shifted hysteresis loops 

in the opposite direction of the applied fields.39 The measured FC 

magnetization curves performed on particles cooled to 5 K in 5 T, showed that 

as the particles were progressively oxidized, both horizontal and vertical shifts 

in the FC loops were reduced (Figure 18c). This is an indication of the shrinkage 

of Fe1-xO core and AFM-FiM interfacial spins. HEB lowered significantly after 25 

MH treatment cycles, not yet entirely vanished (Table 7). A similar trend was 

observed in Fe3O4 films and was linked to the presence of antiphase 

boundaries (APBs) at the interface of growing magnetic domains.40–42 The ever 

existing HEB field was detected in iron oxide nanocubes oxidized post synthesis 

up to 48 h as well as in single-phase Fe3O4 and γ-Fe2O3 nanocrystals.34,37,43,44 It 

appears that on the nanocubes here studied, the exchange coupling plausibly 

had a structural origin. ZFC hysteresis loops revealed no asymmetric behavior. 

Also Hc reduced as the spinel domains grew larger. 
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Figure 19: Structural and magnetic characterization of nanocubes thermally annealed 

at 130 °C (TA-130).  (a) ZFC and FC temperature dependent magnetizations recorded 

in 10 mT, (b) magnetization hysteresis loops recorded at 298 K, (c) FC hysteresis loops 

of particles cooled to 5 K in 5 T.23 

 

2.6. Bio-activity and colloidal stability 

The main distinctive feature of the here proposed magnetically 

triggered oxidation compared to typical thermal annealing processes21,38 is 

that the oxidation of the core-shell Fe1-xO/ Fe3-δO4 nanocubes to Fe3-δO4 occurs 

under mild conditions—below 37°C as opposed to 130 °C for thermal 

annealing in harsh conditions. The MH treatment, being a process that is 

performed on core-shell nanocubes transferred in water when the inter-

particle interactions are virtually absent—due to the antiferromagnetic-
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ferrimagnetic structure—enables quantitative water transfer of well soluble 

and single core-shell particles with excellent colloidal stability. The shape and 

single-core nature of the nanocubes indeed remain well preserved after 25 MH 

treatment cycles (Figure 20). 

 

 

Figure 20: Representative TEM micrograph of 25 MH cycles treated PEGylated 

nanocubes. It can be clearly seen that the shape and single-core nature of the 

nanocubes remained intact after applying 25 cycles of MH treatment.23 

 
Moreover, the mild temperature of the MH treatment also implies that 

biomolecules attached to the nanocube surface may preserve their 

functionality (i.e. targeting properties). To prove this point, the amino 

terminated moieties of PEG molecules on the nanocube surface were reacted 

with NHS carboxyl-activated biotin molecules (Figure 21). After biotin 

functionalization, the hydrodynamic diameter of the nanocubes increased 

from 30 nm to 40 nm (Figure 21d). Given the mono-modal size distribution and 

the absence of other peaks, the single-core nature of the biotin functionalized 

nanocubes was retained. In addition, the particle surface potential drops from 
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15 mV to 8 mV after biotin functionalization, indicating a change in the particle 

surface chemistry after biotin attachment. 

The colloidal stability of biotin modified nanocubes after exposure to 

25 MH treatment cycles obviously remained unaffected (Figure 21d). The dot 

blot assay was performed to evaluate the binding affinity of the biotin on the 

particle surface towards the FITC-streptavidin (Figure 21a-c). The nanocubes, 

prior and after having been exposed to the MH treatment, were spotted on 

the nitrocellulose membrane. After addition of the FITC-streptavidin solution, 

the fluorescence signals were detected on the spots, indicating that surface 

biotin was still able to bind streptavidin even if the nanocubes were previously 

exposed to the MH treatment. The spots emitted a fluorescence signal even at 

low nanocubes concentration of 1.8 nM which indicated a high density of 

biotin molecules attached per nanocube. On the contrary, the PEGylated 

nanocubes bearing no biotin molecules did not emit any fluorescence signal. 
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Figure 21: Functional and colloidal stability assays of biotin-modified nanocubes. 

Optical images taken at excitation wavelength of 488 nm from the dot blot 

nitrocellulose membrane of (a) PEGylated core-shell nanocubes, biotin-functionalized 

nanocubes (b) prior and (c) after 25 MH treatment cycles spotted at three different 

particle concentrations after being treated with FITC-streptavidin. The fluorescence 

signal indicated the presence of streptavidin bound to the biotin on the nanocubes 

before and after the MH treatment. (d) Hydrodynamic size distribution (number 

weighted) of PEG coated (red line) and biotin-tagged nanocubes prior (blue line) and 

after (green line) 25 MH treatment cycles. On biotin-nanocubes no change in 

hydrodynamic size was observed before and after the MH treatment.23 
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2.7. Conclusions  

In the first chapter a nanosystem made up of core-shell iron oxide 

nanocubes Fe1-xO/Fe3-δO4 coated with a poly(ethylene glycol) based polymer 

was investigated, with the main focus being the study of IONCs@PEG 

suitability as heating agents for magnetic hyperthermia. Afterwards, by 

modifying the core by different means of oxidation—either in air, at high 

temperatures or by magnetic stimulation under alternating magnetic fields—

we could engineer IONCs with higher SAR values as compared to the initial 

IONCs. 

The novelty of this approach is the self-oxidation of the paramagnetic 

wüstite core: the heat dissipated by the particles via hysteresis and relaxation 

processes was exploited to transform the Fe1-xO/Fe3-δO4 core-shell nanocubes 

to a major Fe3-δO4 phase. The structural and magnetic characterizations 

confirmed the occurrence of magnetically triggered phase transformation, 

being responsible for the doubling of SAR values. Moreover, since this process 

occurred in mild conditions, we have demonstrated the possibility of 

conducting this treatment on nanocubes functionalized with biotin molecules 

without altering their binding affinity towards streptavidin and concomitantly 

preserving the colloidal stability of the MH treated nanocubes. The 

magnetically self-oxidized nanocubes possess all crucial physico-chemical 

features for being efficient heat mediators for in vivo cancer treatment by 

magnetic hyperthermia. These highly monodisperse and non-interacting core-

shell nanocubes are potentially useful as heat mediators that upon magnetic 

hyperthermia stimulation at the tumor site may gradually improve their 

heating performance in a self-regulatory manner. 

 

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



48 
 

2.8. Experimental part 

CHEMICALS 

All reagents were obtained from commercial suppliers and used without 

further purification. Iron pentacarbonyl Fe(CO)5 (98%), 1-octadecene (1-ODE, 

99%), oleic acid (OA, 90%), triethylamine (99%), chloroform (CHCl3), ethanol 

(EtOH), dichloromethane (DCM), dimethyl sulfoxide (DMSO), α,ω-

aminopropyl-poly(ethylene glycol) (Mn = 1 500 g/mol), gallic acid, N-

hydroxysuccinimide (NHS), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC), 2-(N-morpholino) ethanesulfonic acid hydrate (MES), 

phosphate buffered saline (PBS) (150 mM NaCl, pH 7.4), sodium chloride, 

sodium sulfate, sodium hydroxide, Tween20, NHS-activated biotin and 

fluorescein isothiocyanate (FITC) conjugated Streptavidin were purchased from 

Sigma-Aldrich. Sodium oleate (97%) was obtained from TCI. α-gallic-ω-amino-

poly(ethylene glycol) (gallic-PEG) was synthesized as previously published.23 

CHARACTERIZATION 

Dynamic Light scattering (DLS) 

Particle size measurements were carried out using a Malvern Zetasizer Nano 

series instrument, operated in the 173° backscattered mode on diluted 

aqueous solutions of nanoclusters. The measurements were performed at 25 

°C. An equilibration time of 2 minutes was allowed before each measurement 

and at least three measurements were performed for each sample. 

Transmission electron microscopy (TEM) 

Conventional TEM images were obtained using JEOL JEM 1011 electron 

microscope, working with an acceleration voltage of 100 kV and equipped with 

a W thermionic electron source and a 11Mp Orius CCD Camera (Gatan 
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company, USA). Samples were prepared by placing a drop of sample onto a 

carbon coated copper grid which was then left to dry before imaging.  

SAR measurements 

The calorimetric measurements to determine the specific absorption rate 

value of the iron oxide nanocubes were carried out using the Nanoscale 

Biomagnetics instrument (DM100) operating over the range of frequencies 

from 105 to 302 kHz and fields up to 40 and 30 mT, for 105 and 302 kHz 

respectively. The SAR value was calculated using the formula:  

𝑆𝐴𝑅 (
𝑊

𝑔
) =  

𝐶

𝑚
×

𝑑𝑇

𝑑𝑡
 

where C is the specific heat capacity of dispersing medium (H2O in most cases) 

per unit volume (J/K) and 𝑚 is the concentration (g/L of Fe) of magnetic 

material in solution. The calorimetric measurements were carried out in quasi-

adiabatic conditions and the slope of the curve 
𝑑𝑇

𝑑𝑡
 was measured by taking into 

account only the first 20-25 seconds of measurement. 

Elemental analysis  

Elemental analysis was carried out via Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP-AES) on a ThermoFisher iCAP 6000 series 

instrument. The samples were prepared by digesting 2.5-10 µL sample in 1 mL 

of aqua regia in a 10 mL volumetric flask, overnight. The next day, the flask 

was filled up to the graduation mark with milli-Q water and filtered through a 

0.45 µm membrane prior to the measurement.  

Magnetic characterization  

Field dependent static magnetic measurements were carried out employing an 

ever cooled Magnetic Property Measurement System (MPMS-XL, Quantum 

Design) on immobile nanocubes. The samples were prepared by mixing 50 µL 
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of nanocubes dispersed in milli-Q water, at an iron concentration of 1-2 g/L, 

with 60 mg gypsum in the designated polycarbonate capsules and drying them 

thoroughly. The zero-field-cooled (ZFC) and field-cooled (FC) temperature 

dependent magnetization measurements were performed on samples 

prepared in the same way in the cooling field of 10 mT. The FC M-H hysteresis 

loops were recorded after cooling the samples from RT to 5 K in 5 T magnetic 

fields. The residual magnetic field in the SQUID magnets was nulled using the 

designated low field Hall sensor prior to ZFC measurements. All the presented 

magnetization data are corrected with respect to the diamagnetic and 

paramagnetic contributions of water and gypsum using the automatic 

background subtraction routine. The curves were normalized to the iron 

concentration as obtained from the elemental analysis. 

Powder X-ray diffraction 

Powder X-ray diffraction (XRD) analysis was conducted on a Rigaku SmartLab 

diffractometer machine operating at 150 mA and 40 kV. The patterns were 

acquired in Bragg-Brentano configuration using D-tex Ultra 1D detector in the 

reflection mode. The samples were prepared by drop casting concentrated 

particle suspensions on a zero diffraction silicon wafer. 

Dot Blot assay 

Dot Blot assay was carried out on pre-activated nitrocellulose membrane. 

Typically, 5 µL particle suspension was spotted on the membrane and left to 

dry thoroughly. Next, the membrane was gently shaken in 40 mL suspension of 

PBS-T20-dried milk powder (100:4 w/w%) for 30 minutes to block non-specific 

binding sites. Afterwards, the membrane was washed twice with PBS-T20 and 

finally soaked in 30 mL PBS-T20 containing 30 µL FITC-streptavidin. The 

mixture was gently shaken for 2 h in darkness and then the membrane was 
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rinsed 3 times with 30 mL PBS-T20 to remove unbound streptavidin 

counterparts. The membrane was imaged using Bio-Rad ChemiDoc MR 

imaging system at 488 nm wavelength. 

Geometric phase analysis of high resolution TEM images 

The geometric phase analysis (GPA)36 has been performed employing the 

FRWRtools plugin for DigitalMicrograph (TM) (Gatan, Inc.). In summary, GPA 

measures the relative displacement of lattice fringes compared to a reference 

area from a HRTEM image to calculate the strain tensor (εij) and the rotation 

(ωxy). In GPA analysis, the Fourier component g of a particular set of fringes are 

selected. The intensity of these fringes is given by: 

𝐼𝑔(𝒓) = 𝐴𝑔(𝒓)exp (𝑖𝑃𝑔(𝒓)) 

with Ag(r) the amplitude and Pg(r) the phase. 

The relative phase shift induced by a small displacement of the fringes u(r) 

with respect to the selected reference region is given by: 

𝑃𝑔(𝒓) = −2𝜋𝒈. 𝒖(𝒓) 

By taking two non-collinear g components into analysis, the two-dimensional 

displacement field holds: 

𝒖(𝒓) =
−1

2𝜋
(𝑃𝑔1(𝒓)𝒂𝟏 + 𝑃𝑔2(𝒓)𝒂𝟐) 

with a1 and a2 lattice vectors corresponding to g1 and g2 in the real space. The 

strain tensor and rotation are defined by:45 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

𝜔𝑥𝑦 =
1

2
(
𝜕𝑢𝑦

𝜕𝑥
+

𝜕𝑢𝑥

𝜕𝑦
) 

Here, in a typical GPA analysis, a Fourier filtered power spectrum of an HRTEM 

image is used to generate amplitude and phase shift images. The phase shift of 
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the lattice fringes relative to a reference region (with phase fluctuations < ± 

0.2) is employed to build the corresponding strain (εij) and rotation (ωxy) maps.  

METHODS 

Water transfer procedure by ligand exchange with gallic-PEG 

Two mL of sample of IONCs ([Fe] = 6.744 g/L, 0.28 µM) were added to a 40 mL 

vial. Next 18 mL (50 mM) of gallic-PEG ligand were added to the vial (the 

amount of ligand was calculated in order to have 500 molecules ligand/nm2) 

together with 1.8 mL triethylamine (TEA) (12.9 mM). The vial was closed with a 

cap, sealed with parafilm and left to stir overnight (ca.17 h) at a speed of 1 500 

rotations per minute (rpm). The following morning the sample was transferred 

into a 500 mL separating funnel and was extracted with a mix of toluene, 

water and acetone (1:6:2 v%) (3x). After evaporation of the solvents (toluene, 

acetone, water) under reduced pressure, the sample was left under dialysis 

against water for at least 72 hours (50 kDa membrane). In the end, the sample 

was concentrated by centrifugation using Amicon 100 kDa tubes, at 1 500 rpm 

for 10 minutes. The final iron concentration was determined by ICP-AES. 

Oxidation procedure of the IONCs in ‘harsh’ conditions 

In a 50 mL three-neck round-bottom flask 20 mL of 1-ODE were slowly heated 

to 130 °C. When the temperature reached 70 °C the solution of IONCs (mFe = 

10 mg) in CHCl3 was added dropwise. Once all the solvent evaporated—when 

no more boiling of the solution was observed—the solution was kept at 130 °C 

for 7 hours. Afterwards the solution was left to cool to room temperature. The 

oxidized IONCs were collected by centrifugation and washed in a mixture of 

chloroform, acetone and ethanol (1:2:3 v%). The purification process was 

carried out three times and the NPs were stored in chloroform. 
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Oxidation procedure of the IONCs in ‘mild’ conditions 

In a typical magnetic hyperthermia (MH) treatment cycle (Figure 1a), the 

PEGylated nanocubes in water (300 µL suspension having iron concentrations 

in the range between 4 to 10 g/L of Fe) were sequentially exposed to 1 h 

alternating magnetic fields at 331 kHz frequency and 17 mT field amplitude, 

followed by 30 min rest time at ambient conditions (with the lid of the vial off) 

and this cycle was repeated for a certain number of times. For a given 

frequency, SAR values were recorded as a function of magnetic fields on the 

sample of the untreated iron oxide nanocubes and after a certain number of 

cycles, usually 10 and 25 MH cycles.    

Biotin functionalization of nanocubes 

The EDC-NHS coupling chemistry was utilized to bind biotin to the surface of 

the nanocubes. First, the amino-PEG coated nanocubes were dispersed in MES 

buffer (0.01 M, pH 5.5) at a final particle concentration of 0.18 µM. A 180 μM 

solution of NHS-biotin was prepared by dissolving 0.001 g NHS-activated biotin 

firstly in 200 μL DMSO and then 29.8 mL MES buffer. To 1 mL nanocube MES 

buffer solution, 1 mL biotin solution (180 μM) was added such that the molar 

ratio of biotin/NC is 1 000. Subsequently, 1 mL EDC MES buffer solution (0.45 

M) was poured into the mixture such that the molar ratio of EDC/NC is 250 

000. The mixture was stirred vigorously at RT overnight. Afterwards, unbound 

and excessive biotin molecules were removed by filtering the suspension 

through Amicon 100 kDa filter tubes. The cleaning process was repeated five 

times. At the last filtering step, the particle suspension was concentrated to 

the desired iron concentration for further analysis and magnetic hyperthermia 

treatment. 
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3. Soft colloidal nanoclusters  

3.1. Introduction 

Iron oxide nanoparticles (IONPs) provide a valuable platform for a wide 

range of applications in biomedicine.46 IONPs have been used for magnetic 

guidance in drug delivery, as contrast agents in magnetic resonance imaging 

and as heat mediators in magnetically induced hyperthermia47. The group of 

Dr. Teresa Pellegrino, to whom I belonged, is one of the few groups to have 

synthesized iron oxide nanocubes (IONCs) with high values of specific 

absorbance rate (SAR).22 These 19 nm IONCs are very efficient heat mediators 

in hyperthermia, being at the interface between superparamagnetic and 

ferro(i)magnetic at room temperature (RT) and having high saturation 

magnetization, which accounts for their exceptional heat-ability, but on the 

other hand, they tend to strongly interact. This makes the coating of these 

nanocubes with biocompatible polymers like poly(ethylene glycol) (PEG) or 

thermo-responsive block copolymers more challenging than when working 

with smaller superparamagnetic nanoparticles. The functionalization of 

superparamagnetic nanoparticles, due to their non-interacting magnetic 

nature, is much easier to handle as achieved by many other groups, e.g. Prof. 

Wolfgang Parak48,49, and also our group on different sizes of spherical iron 

oxide nanoparticles. As an alternative strategy, the idea behind the work 

presented in this chapter and the research presented in the previous chapter, 

was to work with nanoparticles that are still cubic-shape iron oxides, but they 

had a core-shell structure with a paramagnetic core at RT (antiferromagnetic 

below 198 K) and a ferri(o)magnetic shell, thus non-interacting at RT. These 

types of nanoparticles could be easily manipulated and thus transferred into 

water by different types of coatings including ligand exchange with PEG 
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molecules. At the same time we found that by post-treating them either by 

exposing them to an annealing process or to mild oxidation conditions under 

magnetic hyperthermia, their magnetic properties could be significantly 

improved thus resulting in much better post-treated hyperthermia agents. 

Therefore, initially, I focused my research on iron oxide core-shell 

nanocubes20,21 and studied whether they were good heat mediators for 

magnetic hyperthermia after exposure to different oxidation processes. The 

results showed that we obtained IONCs with higher SAR values, as compared 

to the initial core-shell IONCs, by reducing the paramagnetic core by different 

means of oxidation: either in air, at high temperatures, or by long term 

exposure to an alternating magnetic field (AMF), the latter treatment in much 

milder conditions that meant at temperatures not surpassing body 

temperature.   

The next objective of this part of the work was to investigate the 

possibility of increasing SAR value by clustering the nanoparticles in a 

controlled manner. Controlled or uncontrolled aggregation in centro-

symmetrical 3D configuration—a beads like assembly—was expected to lower 

SAR values35,50–52. For example, Guibert et al.35 studied the coupling between 

dynamic light scattering (DLS) and SAR measurements. They reported a 

correlation between the aggregation state and the heating properties of 12 ± 4 

nm IONPs. Indeed, the formation of large and dense aggregates observed by 

DLS—when varying the ionic strength or solution pH—lead to a significant 

decrease of SAR values. Further information about the aggregates structure 

was obtained by carrying out small angle X-ray scattering (SAXS) experiments. 

They concluded that the compactness of aggregates played a crucial role, with 
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closer nanoparticles leading to a more important decrease of heating 

efficiency.  

On the contrary, controlled aggregation in a chain like structures driven 

by anisotropic interactions of magnetic nanoparticles was supposed to 

increase SAR values. In this respect, as shown by the group of Martinez-

Boubeta53, by means of Monte Carlo simulations, they investigated the 

influence of dipolar interactions on the hysteresis loops in magnetic nano-

assemblies. Their inspiration came from nature as indeed bacterial 

magnetosomes are cubic shaped iron oxide nanocubes individually coated with 

a lipid shell and naturally aligned in chain-like morphologies on protein 

filaments presenting state of the art hyperthermia performance. The 

computational modeling predicted an increase in the area of the hysteresis 

loop by increasing the chain length, though after 8 particles in a row, no 

noticeable heating performance gain was forecast. Alongside computational 

modelling, their experimental calorimetrical measurements on 44 nm 

magnetite nanoparticles forming µm long chains by applying a 0.12 T magnetic 

field, demonstrated the important role of chain alignment on the heating 

efficiency.53 

As briefly mentioned before, in addition to their therapeutic effect, 

IONPs can act as diagnostic/imaging tools, by their use as contrast agents (CA) 

in magnetic resonance imaging (MRI). This imaging technique allows the 

investigation of diseased tissues and the blood flow around it; therefore the 

magnetic carriers can be tracked inside the body and imaged in vivo.54 

Xiong Fei and co-workers55 reported an assembly procedure of rubik-

like structures by solvent-exchange using 10 nm oleic acid coated IONCs and 

dioleate-modified polyethylene glycol. The rubik-like nano-assemblies were 
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used for the delivery of the highly hydrophobic chemotherapeutic drug 

paclitaxel and their suitability as in vivo MRI contrast agents was assessed. The 

results suggested an increase in the therapeutic effect of paclitaxel delivered 

by the magnetic carriers in comparison with the same dose of free paclitaxel. 

The authors envisioned the rubik-like structures as potential multifunctional 

theranostic nanodevices capable to detect, diagnose, treat and monitor 

tumors. However, in their case, the heat efficiencies of the magnetic 

nanoparticles as assembled or as single nanoparticles were not compared. 

Inspired by this work, we explored a procedure that allowed with a similar 

amphiphilic polymer and playing with the reaction parameters to obtain both 

controlled assemblies of nanocubes and single coated nanocubes thus allowing 

a direct comparison of their magnetic properties and their magnetic 

hyperthermia performance. 

Dioleate-modified polyethylene glycol55 is one of many amphiphilic 

polymers used to form micellar clusters of magnetic nanoparticles. Among 

other diblock copolymers, poly(ϵ-caprolactone)-b-poly(ethylene glycol) (PCL-b-

PEG)56, poly(trimethylammonium ethylacrylate methyl sulfate)-b-

poly(acrylamide)57, poly(ethylene oxide-b-acrylate) (H2N-PEO-b-PAA)58, 

poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG)59 and even 

triblock copolymers like poly(ethylene imine)-b-poly(ε-caprolactone)-b-

poly(ethylene glycol) (PEI-b-PCL-b-PEG)60, have been used to form soft colloidal 

nanocrystal clusters (term introduced by the group of Bakandritsos et al.61) as 

contrast agents for MRI. The reason behind the assembly of 

superparamagnetic nanoparticles was the enhancement of T2 relaxation 

process, leading to higher r2 relaxivity, alongside an increase in magnetic 

response while maintaining the superparamagnetic characteristics. 

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



59 
 

To date, these clusters have mainly been exploited for magnetic 

resonance imaging55–60 and few studies have been dedicated to studying their 

performance for magnetic hyperthermia. The research presented in this 

chapter aims to  deepen the knowledge on controlled clustering of iron oxide 

nanocubes with the specific goal of studying hyperthermia response of 

individual nanocubes vs. soft colloidal nanoclusters of different sizes, with 

hydrodynamic diameters below 100 nm.     

 

3.2. Controlled clustering of various types of nanoparticles 

 Herein the controlled clustering of IONPs during their aqueous phase 

transfer is being reported. Briefly, the method consists of the following steps 

(Figure 1):  

i) dispersion of oleic acid coated nanoparticles in THF in which the amphiphilic 

polymer, namely poly(styrene-co-maleic anhydryde) cumene terminated (Mn = 

1 600 g/mol), was previously dissolved;  

ii) controlled dropwise addition of water, by syringe pump, under sonication in 

an ice bath,  

iii) slow evaporation of the organic solvent overnight, thus transfer of MNPs 

into aqueous phase, 

iv) fast addition of CHCl3 in order to induce aggregation.  

To set this main protocol different parameters were investigated by 

changing them one by one, including the rate of THF evaporation, the ratio of 

water to THF, the total solution volume, and the amount of polymer. However 

the main parameter that actually controlled the tuning of the size and 

configuration of the nanoclusters, as reported in detail in section 3.2., is the 

ratio of amphiphilic polymer, poly(styrene-co-maleic anhydride) to the particle 
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surface (Figure 2). The method proved to be versatile as magnetic 

nanoparticles of different shapes (spherical, cubic, and cubic with rounded 

edges) and sizes (in the range from 15 to 22 nm), and even gold nanoparticles, 

were clustered in a controlled manner, and without the use of an external 

magnetic field—in the case of MNPs. The magnetic properties of the clusters 

were characterized by AC susceptibility measurements, which confirmed the 

DLS and TEM results in terms of cluster size. By increasing the ratio of 

molecules of polymer per nm2 of particle surface bigger nanoclusters were 

obtained. The soft colloidal nanoclusters were studied as nanoheaters for 

magnetically induced hyperthermia in section 3.3. 

 

 

Figure 1: Schematic representation of the formation of soft colloidal nanoclusters 
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Figure 2: Schematic representation of fine-tuning the size of soft colloidal 

nanoclusters by varying the amount of amphiphilic polymer added during the water 

transfer  

 

In an attempt to reproduce the work of Xiong and co-workers55, 35 L 

of iron oxide nanocubes solution ([Fe] = 6.09 g/L), with a core-shell structure 

and a cube edge length of 20.2 ± 1.5 nm (Figure 3a), were dispersed in 10 mL 

THF alongside the amphiphilic polymer poly(styrene-co-maleic anhydride) 

(PScMA), cumene terminated (Mn = 1 600 g/mol), in a ratio of 66 polymer 

chains/nm2 of nanoparticle surface. The choice of the core-shell nanocubes, 

made of FeO core and FexOy shell, was due to their non-interacting magnetic 

nature and their stability in THF—a full solubility of such nanoparticles as 

shown by the transparent THF solution was observed. Both parameters were 

considered a prerequisite for a successful clustering procedure—attempts 

done with non-completely soluble nanoparticles were never successful (data 

not shown). Afterwards, 1 mL H2O was added dropwise by syringe pump at the 
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speed of 0.5 mL per minute, while sonicating the solution in an ice bath. The 

solution had to remain clear, if it became turbid during the addition of water 

that was an indication that the water transfer would not proceed as expected. 

To remove THF, several evaporation methods were tried for transferring the 

IONCs from the organic into the aqueous phase, and among them: i) 

evaporation under reduced pressure (for roughly one hour), ii) atmospheric 

pressure evaporation of THF, while stirring the solution with a magnetic stirrer 

in an open beaker under the fume hood (for several hours), and iii) nitrogen 

bubbling of the solution (for a couple of hours) were considered.  

 

 

Figure 3: Impact of CHCl3 addition as the last step in cluster formation process. TEM 

micrographs of clusters made of 19 nm core-shell IONCs (a) in H2O/THF mixture 

before CHCl3 addition, (b) in H2O, after CHCl3 addition. Before addition of CHCl3 a 

polymer layer was observed on the TEM grid. After addition of CHCl3 the excess of 

polymer was removed and it was no longer present in aqueous phase.   

 
Though the first results were encouraging as the clusters were 

obtained, when using evaporation under reduced pressure and nitrogen 

bubbling, the reproducibility of the experiments was not good. This suggested 

that cluster formation in a controlled manner depended on the rate of THF 

evaporation, that could not be so easily controlled by the aforementioned 
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conditions. Therefore, a new evaporation condition was tried: slow 

evaporation of THF over 24 hours, when placing the 20 mL vial (without the 

lid) on a horizontal shaker at a speed of 125 rotations per minute (rpm). 

Unlikely previous evaporation conditions, in this case, the solution was usually 

clear after the evaporation of THF. Lastly, CHCl3 was added to discard the 

excess of polymer. Two layers were formed, with the top layer being the 

aqueous phase that contained the nanoclusters. 

Schematically, the  overall clustering process is shown in Figure 1. The 

as-synthesized oleic acid coated magnetic nanoparticles after being in contact 

with the polymer solution in the mixture THF/water were transferred into the 

water phase by slowly evaporating the THF and intercalation of the 

amphiphilic polymer—poly(styrene-co-maleic anhydride)—with the surfactant 

shell. In a H2O/THF mixture, the nanoparticles were already clustered (Figure 

3a) and a layer of polymer was observed on the TEM grid in between clusters. 

After addition of CHCl3 the excess of polymer was discarded by migrating to 

the interface between organic and aqueous phase, with only clusters 

remaining in aqueous phase as seen in Figure 3b.  

 
 

3.2.1. Clusters of iron oxide nanocubes of different sizes 

Three samples of IONCs in the range from 16 to 21 nm were used for 

the first clustering experiment. As seen from the DLS results in Table 1 and the 

TEM micrographs in Figure 4, with an increase in size of the cube edge length, 

while keeping the amount of polymer constant at ca. 70 molecules of 

polymer/nm2, bigger clusters were formed—both in size and in number of 

particles per cluster.  
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The average hydrodynamic diameters dH varied from 38 nm to 190 nm, 

by intensity, for clusters formed with 16, 20 and 21 nm cube edge length, 

respectively. The corresponding transmission electron microscopy micrographs 

are shown in Figure 4. As expected, the diameters as seen by TEM were 

smaller than the corresponding DLS values, as by TEM only the inorganic 

particle volume was observed, while in solution the distribution of particle 

hydrodynamic size was measured. 

 
Table 1: DLS results of 16, 20 and 21 nm IONCs@PScMA in H2O 

Sample 
Z-Ave 

[nm] 
PdI 

Number 

Mean 

[nm] 

Intensity 

Mean 

[nm] 

Volume 

Mean 

[nm] 

16 nm IONCs@PScMA 33 ± 1 0.16 ± 0.02 21 ± 1 37 ± 1  27 ± 5 

20 nm IONCs@PScMA 93 ± 1  0.08 ± 0.01 67 ± 1 102 ± 1 86 ± 1 

21 nm IONCs@PScMA 178 ± 1 0.05 ± 0.02 154 ± 4 190 ± 4 192 ± 5 

  

 
Figure 4: Soft colloidal clusters formed using IONCs with a cube edge length of 16, 20 

and 21 nm. (a,b,c) TEM micrographs of as-synthesized (a) 16 nm, (b) 20 nm, and (c) 21 

nm IONCs in CHCl3. (d,e,f) TEM micrographs of soft colloidal clusters (IONCs@PScMA) 

dispersed in H2O, formed starting from: (d) 16 nm (Z-average 33 ± 1, PDI 0.16 ), (e) 20 

nm (Z-average 93 ± 1, PDI 0.08), and (f) 21 nm IONCs (Z-average 178 ± 1, PDI 0.05).  
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3.2.2. Cluster size tuning by changing the amount of polymer 

The further studies involved the 20.2 ± 1.5 nm IONCs (Figure 4b) that 

formed raspberry like clusters at a ratio of 66 molecules polymer/nm2 of 

particle surface (Figure 4e). As described by Pöselt and co-workers60 by 

changing the molar excess of the triblock copolymer PEI-b-PCL-b-PEG, from 5 

to 1 000 fold the amount of IONPs, the size of centro-symmetrical clusters 

formed could be adjusted between 51 and 141 nm, starting from ca. 10 nm 

superparamagnetic IONPs. The authors reported that a high ratio favored the 

formation of discretely encapsulated MNPs, whereas at low ratio particle 

clusterization was enforced by the relative depletion of polymer. In our case, 

the ratio was calculated as the number of molecules of polymer per nm2 of the 

surface of the nanocubes (66 molecules/nm2 corresponding to a weight ratio 

1:11 MNPs to diblock copolymer and roughly to a stoichiometric molarity). 

Given that the average dH of the starting clusters was 102 ± 1 nm, by intensity, 

the amount of polymer was decreased in order to form smaller clusters. 

Contrary to the results reported by Pöselt et al.60, in our case with an 

increase of the polymer amount the degree of clustering increased as seen 

from the TEM micrographs in Figure 5 and the DLS results plotted in Figure 6. If 

we are to compare the two procedures, in both cases the solvents used were 

THF and H2O. In their case the THF was removed by nitrogen bubbling, while 

we opted for the slow THF evaporation for a higher reproducibility of cluster 

formation. Most likely the major difference between the two procedures was 

the amphiphilic polymer itself: a triblock polymer poly(ethylene imine)-b-

poly(ε-caprolactone)-b-poly(ethylene glycol) with an average Mn between 6 

500 - 9 400 g/mol was used by the group in Hamburg, while we used the 

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



66 
 

copolymer poly(styrene-co-maleic anhydride) with an average Mn of 1 600 

g/mol.       

As judged from the inter-particle distance (Figure 5a), for the ratio of 

16.5 molecules of polymer/nm2, the majority of the nanocubes were 

individually coated, while by doubling the amount of polymer dimers and 

trimers were formed (Figure 5b). In this specific case, the dimers and trimers 

arrangement was even more evident when looking at a collection of TEM 

pictures in which clearly isolated groups of two or three nanocubes were seen 

(Figure 5E-H). The corresponding DLS volume distributions are plotted in 

Figure 6. The volume weighted hydrodynamic diameters were 38, 51, 68 and 

99 nm for 16.5, 33, 50 and 66 PScMA/nm2, respectively. The increase of the 

cluster size with the increase of the polymer was probably due to a 

preferential interaction of the hydrophobic part of the copolymer, the 

poly(styrene), with sides of different nanocubes, instead of the surface of only 

one cube, thus decreasing the strain on the polymer chain, while preserving 

the hydrophobic interactions and increasing its overall gyration radius.  
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Figure 5: Clusters formed using 20 nm core-shell iron oxide nanocubes. 

Representative TEM micrographs of IONCs@PScMA in H2O for a ratio of (a) 16.5,  (b) 

33, (c) 50 and (d) 66 polymer chains/nm2. (E-H) a collection of close ups of dimers and 

trimers formed for a ratio of 33 molecules PScMA/nm2.  
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Figure 6: Tuning the mean hydrodynamic diameter of clusters by varying the polymer 

amount. DLS volume distributions of soft colloidal clusters in H2O starting from 20 nm 

IONCs. The dH was adjusted between 38 and 99 nm, by volume. No aggregation of 

clusters was detected as PDI values were between 0.07 and 0.14 (see inset).  

 

3.2.3. Clusters of iron oxide nanoparticles of different shapes 

 Taking into consideration that most of the literature on controlled 

clustering of iron oxide nanoparticles dealt with spherical IONPs, the next step 

was to test the versatility of our method by changing the shape of the 

nanoparticles. Two shapes were tested: spherical and cubic with rounded 

edges. Though most of the investigations report clustering of 

superparamagnetic nanoparticles with sizes below 10 nm (e.g.: 6.3 nm57, 6.6 

and 9.5 nm58, 8 nm59, 4, 7.5, 8.7, 9.8, 11.8 and 13.1 nm60), we were inquisitive 

to find out whether 22 nm spherical IONPs (Figure 7a) would present the same 

clustering trend as the cubic IONCs with a similar size. 
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Figure 7: Soft colloidal clusters formed using spherical iron oxide nanoparticles. TEM 

micrographs of (a)  as-synthesized 22 nm spherical IONPs in CHCl3 and nanoclusters 

formed for a ratio of (b) 18, (c) 36 and (d) 53 PScMA molecules/nm2 particle surface, 

dispersed in H2O.  

 

The TEM micrographs presented in Figure 7 suggest that the trend of 

forming bigger clusters for bigger amounts of polymer persisted for spherical 

nanoparticles as well. For 18 molecules of polymer/nm2, Figure 7b, one can 

see both individual nanoparticles and dimers, but by considering the 

hydrodynamic diameter distributions plotted in Figure 8, in solution dH by 

volume mean was equal to 52 nm therefore we supposed that the majority of 

nanoparticles formed dimers. 

By doubling and tripling the amount of copolymer, from 18 to 36 and 

53 PScMA/nm2, the cluster size increased to 70 and 86 nm by volume mean. As 
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seen from TEM micrographs in Figure 7c and 7d, with spherical particles more 

centro-symmetrical clusters were observed. 

Lastly, a sample of 19 nm core-shell iron oxide nanocubes with rounded 

edges was transferred into aqueous phase by the solvent-exchange method 

described above. The previously used core-shell nanocubes had a FeO 

paramagnetic core representing 40% v./v., while this new batch had a bigger 

FeO core, occupying 80% of the volume (data not shown here). The controlled 

clustering was once again achieved and the size of the clusters was tuned by 

changing the amount of polymer used. The average hydrodynamic diameters 

by volume were 30, 72 and 106 nm for 17, 35 and 71 PScMA molecules/nm2, 

respectively, as plotted in Figure 9. The corresponding TEM micrographs can 

be seen in Figure 10. 

 

 
Figure 8: Tuning the mean hydrodynamic diameter of clusters by changing the 

polymer amount. DLS volume distributions of soft colloidal clusters in H2O starting 

from 22 nm spherical IONPs. The dH was adjusted between 52 and 86 nm, by volume.  
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Figure 9: Tuning the mean hydrodynamic diameter of clusters by changing the 

polymer amount. DLS volume distributions of soft colloidal clusters in H2O starting 

from 19 nm cubic IONPs with rounded edges. The dH was adjusted between 30 and 

106 nm, by volume.  

 

For 17 molecules of polymer/nm2 the IONCs were discretely 

encapsulated inside a polymeric shell (Figure 10a) as confirmed by DLS results 

(Figure 9—blue curve), with dH equal to 30 nm by volume mean (24 nm by 

number mean). When quadrupling the amount of amphiphilic polymer the 

hydrodynamic diameter increased to 106 nm (Figure 9—green curve) by 

volume mean (91 nm by number mean). Higher amounts of polymer would 

have led to clusters with dH bigger than 100 nm, but that was outside of the 

scope of this research, as we wanted to investigate the behavior of clusters 

made of few nanoparticles with sizes below 100 nm.       
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Figure 10: Soft colloidal clusters formed using 19 nm nanocubes with rounded edges. 

TEM micrographs of clusters for a ratio of (a) 17, (b) 35 and (c) 71 PScMA 

molecules/nm2, dispersed in H2O.  

 

3.2.4. Clusters of gold nanoparticles 

The versatility of the clustering method was briefly tested on 

nanoparticles other than iron oxide based MNPs. The idea behind this study 

was to find out whether the water transfer process was specific for iron oxide 

nanomaterials, or whether other types of NPs could be passed into aqueous 

media. The test was carried out on 8 nm gold nanoparticles (Figure 11a) 

coated with oleylamine and dispersed in hexane.  

The controlled clustering was successful with Au NPs as well. The 

average hydrodynamic diameter, by number, increased from 53 to 96 nm, by 

doubling the amount of amphiphilic polymer from 75 to 150 molecules/nm2 

particle surface, respectively (corresponding TEM images—Figure 11b and 

Figure 11c). These results strongly supported the fact that the polystyrene 

branches of the copolymer were intercalated with the surfactant shell of the 

nanoparticle—as the water transfer worked both with oleic acid and 

oleylamine—while the maleic anhydride moiety provided stability in aqueous 

media.  

 By further decreasing the polymer amount, we would expect to have 

obtained dimers, trimers and individually coated gold NPs. But this idea was 
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not pursued any further, as it was just a quick test to check the versatility of 

our approach.   

 

 
Figure 11: Soft colloidal clusters formed using 8 nm gold nanoparticles. TEM 

micrographs of (a) as-synthesized Au NPs in hexane, Au NPs@PScMA for a ratio of (b) 

75 and (c) 150 PScMA molecules/nm2, dispersed in H2O.  

 

3.2.5. Stability of nanoclusters in basic and acidic pH 

 Next, the stability of the nanoclusters was investigated. If the clusters 

are to be used for biomedical applications stability is of great importance. 

When stored at room temperature in neutral pH (milliQ H2O), the clusters 

were stable for months (> 12 months). Over time the clusters tended to 

precipitate, but gently shaking the vial by hand was enough to disperse the 

clusters back in solution—no sonication was required.  

In addition to colloidal stability over time, two extreme cases were 

studied: basic pH (8-9) and acidic pH (2-3). Upon addition of 1 μL of 

triethylamine (TEA) to 50 μL of nanoclusters solution the clusters broke down, 

and instead of nano-assemblies, individually coated nanocubes were present. 

In water the hydrolysis of maleic anhydride moieties occurred, the hydroxyl 

groups being negatively charged at basic pH, therefore the amphiphilic 

polymer coated nanocubes started repelling each other and disintegrating the 

clusters. For example, for the soft colloidal nanoclusters formed with the 19 

nm core-shell IONCs at a ratio of 71 molecules polymer/nm2 (Figure 10c), dH by 
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volume mean decreased from 96 ± 1 nm, PDI 0.02 ± 0.01 (Figure 12—blue 

line), to 26 ± 1 nm, PDI 0.09 ± 0.02 (Figure 12—green line), upon addition of 

the base, the insets representing the corresponding TEM micrographs.  

As the pH was lowered below the pka of the carboxylic acid groups 

found on the polymer backbone (pka1 = 1.9, pka2 = 6.07), they became 

protonated, and the polymer became positively charged. This led to an 

attraction between the neutral moieties of the copolymer and the positively 

charged ones, resulting in aggregation of the soft colloidal nanoclusters. The 

DLS results showed a steep increase in hydrodynamic diameter of the clusters 

from 99 nm to 649 nm by volume mean, from 76 to 397 nm by number mean 

and from 119 to 546 nm by intensity mean.  

 

 
Figure 12: Stability of clusters at basic pH. DLS volume distributions of 19 nm 

IONCs@PScMA in H2O at neutral pH (blue line, dH 96 ± 1 nm) and basic pH (green line, 

dH 26 ± 1 nm). Upon addition of the base the negatively charged hydroxyl groups of 

the polymer backbone started repelling each other, thus ‘breaking’ the clusters.    
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Figure 13: Stability of clusters at acidic pH. TEM micrographs of 20 nm IONCs@PScMA 

(ratio of 66 molecules/nm2) in H2O at pH 2. Upon addition of the acid, the clusters 

started aggregating and having overlapping polymeric coronas.  

 

A long ´polymeric-like´ chain could be seen on the TEM micrograph 

(Figure 13). The clusters were no longer individual and an overlap between the 

polymeric coronas of different clusters could be clearly observed. This feature 

can be potentially exploited in vivo as once the clusters reach the tumor 

microenvironment that is more acidic than the rest of the body, they will 

further cluster and stop circulating. But there are many more trials to be 

carried out before fully grasping the applicability of such systems for in vivo 

applications.  

 
3.2.6 Cluster size determination by AC susceptibility measurements 

AC magnetic susceptibility is the technique that allows a visualization of 

the magnetization relaxation of suspensions of nanoparticles. When measuring 

the complex AC susceptibility two terms are plotted as a function of frequency: 
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the in-phase susceptibility component χ´ and the out-of-phase susceptibility 

component χ´´. The alternating magnetic field frequency at which optimum 

phase lag occurs for a given particle type can be seen as a peak in the out-of-

phase susceptibility component.62 For magnetically blocked nanoparticles that 

are freely moving in solvents, the peak position—that happens at ω*𝜏𝐵 = 1 

(with ω the angular frequency)—reveals the Brownian relaxation time (the 

Néel relaxation time would be visible if measured up to MHz regime) and can 

be used to calculate the hydrodynamic size of the particles according to the 

following equation:  

𝜏𝐵 =
3𝜂𝑣𝐻

𝑘𝐵𝑇
  (Eq. 1) 

with 𝑣𝐻 the hydrodynamic volume of the particle, η the dynamic viscosity of 

the fluid, kB the Boltzmann's constant and T the temperature.  

 

 
Figure 14: Hydrodynamic size determination by AC Susceptibility measurements. AC 

susceptibility curves for the 19 nm IONCs@PScMA clusters in H2O for a ratio of (a) 17, 

(b) 35 and (c) 71 PScMA molecules/nm2.  

 
The AC susceptibility provides a direct method for determining the 

effect of the micro-environment on the magnetization relaxation of 

nanoparticles, and conversely, an indirect method for probing the micro-

environment of the particles.  
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The nanoclusters formed starting with 19 nm core-shell nanocubes with 

rounded edges were subjected to AC susceptibility measurements. Our 

colleague at Keele University, Dalibor Soukup-Croy, carried out these 

experiments. The results that interested us were determining hydrodynamic 

sizes of clusters in solution, dH being calculated based on the equation for the 

Brownian relaxation (Eq. 1) from the AC susceptibility Brownian peaks. The AC 

susceptibility curves are plotted in Figure 13 and the corresponding calculated 

hydrodynamic diameters are 26 (Figure 14a), 39 (Figure 14b) and 94 nm 

(Figure 14c) for 17, 35 and 71 PScMA polymer molecules/nm2, respectively. 

These results are summarized in Table 2. They were in agreement with the 

sizes obtained by DLS (Figure 9) and observed by transmission electron 

microscopy (Figure 10).  

 
Table 2: Volume comparison between DLS and AC susceptibility results for 19 

nm IONCs@PScMA (in H2O) at various ratios of polymer/nm2 of particle 

surface 

Sample 
Volume mean by 

DLS [nm] 

Volume by  

AC susceptibility [nm] 

17 PScMA molecules/nm2 30 ± 1 26 

35 PScMA molecules/nm2 61 ± 2 39 

71 PScMA molecules/nm2 96 ± 1 94 

  
To summarize, in section 3.2., a nanosystems made up of iron oxide 

nanoparticles coated with the amphiphilic polymer poly(styrene-co-maleic 

anhydride), cumene terminated, was investigated. The main focus was the 

formation of soft colloidal nanoclusters that could be used as nanoheaters for 

magnetically induced hyperthermia. Nanoclusters of different sizes were 

obtained by changing the polymer to nanoparticle surface ratio. When 

increasing the ratio bigger clusters were obtained, with sizes up to 100 nm. 
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The method proved to be versatile as nanoparticles of different shapes, sizes, 

and types could be clustered in a controlled manner. The cluster size was 

confirmed by DLS and TEM (for all samples), and AC susceptibility 

measurements (for the sample of 19 nm IONCs with rounded edges).  

 Regarding the study of soft colloidal nanoclusters, the steps that were 

subsequently taken and that are presented in the section 3.3. were:  

i) scaling-up of the cluster formation in order to obtain a concentrated sample 

for hyperthermia,  

ii) comparing the SAR values between individually coated nanocubes and soft 

colloidal nanoclusters. 

   

3.3. Specific absorption rate value comparison of the 

nanoclusters 

 The research presented in this section deals with the characterization 

of nanoclusters made of iron oxide nanocubes having a core-shell structure 

(wüstite core/magnetite shell). The main focus was to correlate SAR values of 

these nanoclusters to their size, composition and magnetic features. This was 

achieved by exploiting a variety of characterization techniques like X-ray 

diffraction (XRD), SQUID magnetometer, as well as high frequency alternating 

magnetic field magnetometer. 

Three IONCs samples with an identical edge size, (i) sample A: Lc = 20.2 

± 1.5 nm (Figure 4b), (ii) sample B: Lc = 20.2 ± 1.8 nm (Figure 21), and (iii) 

sample C: Lc = 20 ± 2 nm (Figure 30), were investigated. For sample A and B, 

though both samples were core-shell initially, the main difference between 

them was the ratio wüstite to magnetite when the clusters were formed. Both 

samples were synthesized at the same time (first half of 2014), soft colloidal 

nanoclusters were formed from sample A in the spring of 2015 when the 
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wüstite core was still present and the clusters were stored in aqueous media 

afterwards for 12 months before performing the various characterizations 

(XRD confirms a 5-10% wüstite core after storage in aqueous media for 12 

months, data not shown). Nanoclusters formed starting from sample B 

(synthesis done in the first half of 2014, Figure 21a) were prepared in summer 

2016, when the wüstite core was already fully oxidized to magnetite during the 

storage at RT—Figure 21b (no wüstite detected by XRD, data not shown).  

Given the different nature of the nanocubes at the starting point prior 

to the cluster formation, the cluster samples obtained behaved differently 

under an alternating magnetic field, with the main difference reflected on the 

SAR values and on the trend observed when forming clusters. For sample A 

and C, the trend was an increase in SAR values for dimers and trimers, while a 

decrease was observed for sample B.      

 

3.3.1. Core-shell iron oxide nanocubes. Sample A 

As mentioned at the end of section 3.2., the nanoclusters synthesis 

protocol had to be scaled up in order to carry out hyperthermia experiments 

to measure SAR values. But in the meantime, as several samples of soft 

colloidal nanoclusters, formed starting from sample A (Figure 4b, a = 20.2 ± 1.5 

nm), were already available, they were used for the initial hyperthermia study. 

The nanoclusters were formed one year before and stored in milli-Q water 

over that period of time, thus their stability had to be firstly checked. Also, the 

nanocluster samples belonged to different batches that were later combined 

only if their hydrodynamic diameters were within a 5% range.     
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3.3.1.1. Hyperthermia  

For the sample formed with a ratio of molecules of polymer/nm2 of 

16.5, only one sample was available (Figure 5a). The sample was concentrated 

at the magnet and redispersed to a volume of 175 µL, at a concentration of 

[Fe] = 0.65 g/L, that was still suitable for magnetic hyperthermia 

measurements. The stability before and after magnet exposure was checked 

by DLS. The intensity weighted mean hydrodynamic size (Z-average) before 

bringing the sample at the magnet was 55.4 ± 0.3 nm (PDI 0.2) and after 3 

hours at the magnet it was 48.6 ± 0.3 nm (PDI 0.12). A part of the sample was 

certainly left in solution as the color of the supernatant was slightly yellow. 

The surprising fact was a decrease both of Z-average and PDI, assuming that 

the first nanocubes that would migrate towards the 0.3 T magnet would be the 

bigger NPs and not the smaller ones. But if we take into consideration the fact 

that for smaller core-shell nanocubes the oxidation of the core occurs faster, 

then the results can be explained by the faster migration of smaller IONCs with 

a higher content of magnetite compared to bigger IONCs with a higher content 

of paramagnetic wüstite core. The SAR value, measured at magnetic field and 

frequency of 30 mT and 302 kHz, was 213 ± 9 W/gFe.  

 There were two samples formed with a ratio of 33 molecules of 

polymer/nm2 of particle surface (Figure 5b,E-H). One sample had a dH of 59.5 ± 

0.4 nm (PDI 0.21) and the other one 62 ± 1 nm (PDI 0.07). Besides similar 

hydrodynamic diameters the samples formed the same type of structures as 

seen under TEM (data not shown), thus the two samples were merged. The 

two samples combined had a Z-average of 61.5 ± 0.4 nm (PDI 0.14) before 

bringing the sample at the magnet and 63.0 ± 0.3 nm (PDI 0.14) after 4 h 

concentration at the magnet, with a final volume of 150 µL and a 
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concentration 0.78 g/L of Fe. The SAR value measured at magnetic field 

amplitude and frequency of 30 mT and 302 kHz was 253 ± 10 W/gFe. 

 A total of 4 samples were available for a ratio of 66 molecules of 

polymer/nm2 of particle surface (Figure 5d). Two of them were combined and 

used to determine SAR, one sample was used to study the stability of 

nanoclusters under external stimuli like sonication, and a forth one was 

utilized to study the improvement of SAR value with the oxidation of the 

wüstite core (see later). The two samples that were combined and 

concentrated at the magnet had the following characteristics: sample 1—Z-

average of 105 ± 2 nm (PDI 0.11), and sample 2—Z-average of 104 ± 1 nm (PDI 

0.08). Before magnet exposure, dH was 101 ± 1 nm (PDI 0.09) and after 45 min 

at the magnet, Z-average was 105 ± 1 nm (PDI 0.07), for a final volume of 150 

µL and a concentration of 0.95 g/L of Fe. The SAR value was 184 ± 8 W/gFe at 

magnetic field and frequency of 30 mT and 302 kHz.  

 The SAR values were measured at the highest frequency and magnetic 

field of the instrument (nB Nanoscale Biomagnetics DM100 series) as the Fe 

concentration of the samples were in the range 0.65 - 0.95 g/L, lower than 

usual concentrations employed for hyperthermia studies (2 - 4 g/L) that is 

needed for the macroscopic increase of the temperature of the media. By 

plotting (Figure 15) the trend observed for the different samples, we saw an 

increase in SAR for dimers and trimers (33 molecules polymer/nm2—Figure 5b) 

compared to both individually coated nanoparticles (16.5 molecules 

polymer/nm2—Figure 5a) and soft colloidal clusters with n≥4 (66 molecules 

polymer/nm2—Figure 5d), with ‘n’ being the number of particles per cluster. 

This SAR trend was also nicely reflected by the saturation magnetization Ms 

values obtained from SQUID measurements (Figure 19, Table 4). Indeed, the 
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increase in Ms for the dimers and trimers might also explain why such cluster 

arrangements produced higher heat dissipation (Figure 15) than the 

corresponding single and more centro-symmetrical clusters.  

This observation revealed the fact that by forming anisotropic 

structures, the so-called ‘dimers’ (n = 2, two nanocubes side by side) and 

‘trimers’ (n = 3, two nanocubes side by side and a third nanocube close to the 

side at which the nanocubes are connected) the response to the magnetic field 

was increased and the SAR value increased too. Indeed, when placing the 

sample at the magnet only 3 hours were needed for the accumulation of the 

dimers and trimers compared to 4 hours for the individually coated IONCs—4 

hours were not even sufficient as part of the sample was still in solution, as 

mentioned before.    

Meanwhile, in soft colloidal nanoclusters (n ≥ 4) the particle magnetic 

moments tended to arrange in a so-called demagnetizing configuration as in 

such centro-symmetrical configuration the overall magnetic moments might 

have degraded their interaction. More in depth explanations on magnetic 

characterization of the nanoclusters is given in the next section. 
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Figure 15: SAR values§ for soft colloidal nanoclusters formed with ratios of 16.5, 33 

and 66 molecules PScMA/nm2 of particle surface. A higher SAR value was recorder for 

dimers and trimers compared both to individual IONCs and clusters with n ≥ 4. 

Clustering the IONCs in centro-symmetrical bead like structures decreased their 

heating performance.   

 
In the previous chapter it was shown that by oxidizing the 

paramagnetic wüstite core (antiferromagnetic below Néel temperature TN of 

198 K), the SAR values were increased, as the whole nanoparticle responded to 

the alternating magnetic field and not only its magnetite shell. A sample of 

nanoclusters (n ≥ 4) with a Z-average of 117 ± 1 nm (PDI 0.04) was 

concentrated at the magnet for 10 min. After magnet exposure the sample 

preserved its hydrodynamic diameter constant as the Z-average was 116 ± 1 

                                                           
§ Each experimental data point was calculated as the mean value of at least three 

measurements, with error bars indicating the mean deviation. 
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nm (PDI 0.05). The annealing—the oxidation of the wüstite core—was done 

overnight, not by magnetic stimulation under alternating magnetic field, but in 

an oven at 80 °C, in order to speed up the process. The SAR value measured 

before annealing was 174 ± 9 W/gFe (frequency = 302 kHz, magnetic field = 30 

mT), similar to the value obtained for the previous sample of clusters (n ≥ 4), 

i.e. 184 ± 8 W/gFe. After annealing overnight, the SAR value increased slightly 

up to 188 ± 6 W/gFe. This could be attributed to an ever existing wüstite core in 

the sample. The XRD pattern (data not shown) showed a value around 5-10 

w% wüstite, with magnetite the main crystalline phase. It is important to 

underline that the sample was stable during the overnight annealing process 

even when applying for 17 h the annealing treatment, as the Z-average value 

stayed at 116 ± 1 nm (PDI 0.05). Stability is of utmost importance, as sample 

aggregation plays a crucial role on hyperthermia experiments—by decreasing 

the SAR value—this being the reason why sample stability was always checked 

by DLS and TEM.          

 Next, the same sample was transferred into glycerol and SAR was 

measured. By increasing the viscosity of the solution, eventually, the Brownian 

relaxation process is ‘blocked’ and hence only the Néel relaxation of atomic 

moments contribute to magnetization dynamics.62 The SAR value of 125 ± 3 

W/gFe, saw a drop of 33.5% compared to the initial value of 188 ± 6 W/gFe 

measured in milli-Q water. Nevertheless, the drop was not as significant as 

similar nanosystems reported in literature50, in which a 80% SAR drop was 

measured in PEG 400, a solvent that has a viscosity ten times lower—90 mPa·s 

(at 20 °C)—compared to glycerol—1069 mPa·s (at 20 °C). In our case, even if 

the system was made up of closely bound magnetite 20 nm iron oxide 
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nanocubes, both Néel and Brownian relaxation processes contributed to 

magnetization dynamics. 

 Lastly, one more experiment was carried out to check the stability of 

the nanoclusters under external stimuli other than temperature or magnetic 

field. A sample formed with 66 molecules polymer/nm2, with the following 

characteristics: Z-average 96 ± 1 nm (PDI 0.08) was subjected to 10 minutes of 

sonication. The idea behind the experiment was to determine whether the 

nanoclusters formed were indeed 3D constructs, or if what was observed on 

TEM grids was a mere drying effect. After sonication, the soft colloidal clusters 

maintained their size—Z-average 97 ± 1 nm (PDI 0.08)—and shape, as can be 

seen in the TEM micrographs shown in Figure 16.   

The data from the experiments described previously can be found in 

Table 3, that gives an overview of stability experiments carried out on 

nanoclusters prepared starting from 20.2 ± 1.5 nm iron oxide nanocubes 

shown in Figure 4b.  

 

 
Figure 16: Sonication effect on cluster stability. TEM micrographs of soft colloidal 

nanoclusters (n ≥ 4) (a) before and (b) after sonication for 10 minutes. No change 

occurred after sonication indicating a stable polymer-cluster assembly.   
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Table 3: DLS data and SAR values for the different types of nanoclusters 

formed with 16.5, 33 or 66 molecules polymer/nm2 of particle surface 

Sample 

Z-average  
[nm] 

SAR  
[W/gFe] 

Z-average 
[nm] 

before 
magnet 

after 
magnet 

 after 
annealing 

after 
annealing 

16.5 
molecules/nm2 

55 ± 1  
(PDI 0.2) 

49 ± 1  
(PDI 0.12) 

213 ± 9 - - 

33 
molecules/nm2 

62 ± 1  
(PDI 0.14) 

63 ± 1 
(PDI 0.14) 

253 ± 10 - - 

a. 66 
molecules/nm2 

101 ± 1  
(PDI 0.09) 

105 ± 1 
(PDI 0.07) 

184 ± 8 - - 

b. 66 
molecules/nm2 

117 ± 1  
(PDI 0.04) 

116 ± 1  
(PDI 0.05) 

174 ± 9 188 ± 6 
116 ± 1 

(PDI 0.05) 

 before 
sonication 

after 
sonication 

   

c. 66 
molecules/nm2 

96 ± 1  
(PDI 0.08) 

97 ± 1 
 (PDI 0.08) 

- - - 

 

3.3.1.2. Statistics  

The size of the soft colloidal nanoclusters was tuned by changing the 

ratio of amphiphilic polymer to particle surface of the IONCs. Given that the 

hydrodynamic diameter obtained was an average value, in an attempt to 

quantify the percentage of individually coated nanoparticles when using the 

lower ratio of polymer, for example, we applied a statistical image analysis—

using ImageJ software. Numerous TEM micrographs were analyzed in order to 

get a statistical distribution of individually coated nanocubes vs. 1D and 2D 

constructs (dimers and trimers) vs. 3D constructs (bigger colloidal 

nanoclusters, n ≥ 4) for the 3 available samples—samples that were used to 

calculate SAR values and on which SQUID experiments were carried out.        

 At least 250 objects were analyzed for each sample (Figure 17). Starting 

from now on the samples will be called 16.5PScMA, 33PScMA and 66PScMA 
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corresponding to ratios of 16.5, 33 and 66 molecules of poly(styrene-co-maleic 

anhydride) used for the formation of the clusters. For sample 16.5 PScMA, 255 

objects were studied, corresponding to a total of 342 nanocubes, out of which 

66% were individually coated, 28% were dimers, 4% were trimers and 2% were 

bigger clusters (Figure 18). For sample 33PScMA , when doubling the amount 

of polymer with respect to 16.5PScMA sample, out of 254 objects analyzed 

(Figure 17)—corresponding to 493 IONCs—70% were 1D and 2D constructs 

with an equal percentage of dimers and trimers (Figure 18). The 30% 

remaining objects were 19% individually coated NPs and 11% were 3D 

arrangements. For sample 66PScMA, when doubling once again the amount of 

polymer with respect to sample 33PScMA, almost only 3D clusters were 

obtained, representing 86% (Figure 18) of the 259 objects inspected—

corresponding to more than 1 000 NPs (Figure 17). The remaining 14% of 

sample 66PScMA was equally distributed between single particles (5%), dimers 

(5%) and trimers (4%). We could then confirm that on the sample where we 

have measured a higher SAR—33 PScMA—the percentage of dimers and 

trimers was statistically and significantly more abundant. Individual nanocubes 

and clusters with n ≥ 4 were instead the predominant population for the 

samples 16.5PScMA and 66PScMA, respectively. As already reported by others, 

also our data suggests that centro-symmetrical clusters significantly reduced 

the SAR value of the nanocubes (Figure 15).  
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Figure 17: Statistical distributions, by number of objects, for samples 16.5PScMA, 

33PScMA and 66PScMA  

 

 
Figure 18: Statistical analysis of size distribution for different cluster preparations. 

Distributions, by percentage, for samples (a) 16.5PScMA, (b) 33PScMA and (c) 

66PScMA indicated the presence of (a) 32% 1D and 2D constructs (28% dimers and 4% 

trimers) in sample 16.5PScMA, (b) a majority of 70% (35% dimers and 35% trimers) in 
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sample 33PScMA, and (c) only 10% (5% dimers and 5% trimers) 1D and 2D structures 

in sample 66PScMA.   

 

3.3.1.3. Magnetization, zero-field-cooled and field-cooled curves  

 As seen from hyperthermia measurements, soft colloidal nanoclusters 

of different sizes behaved differently under alternating magnetic fields. The 

trend consisted of an increase of SAR values for clusters formed of n = 2 or n = 

3 IONCs, while increasing the number above 4 the SAR value dropped again 

(Figure 15). Next we performed SQUID measurements to investigate the trend 

of magnetic parameters when considering the magnetization vs. field and 

zero-field-cooled field-cooled (ZFC-FC) measurements. Magnetization 

measurements provided us three important values: saturation magnetization 

Ms in magnetic fields up to 5570 kA/m, coercive Hc fields (when induced 

magnetization was zero), and exchange bias HE fields (shifted hysteresis loop 

towards field values opposite to the applied magnetic field due to the 

antiferromagnetic-ferri(o)magnetic (AFM-Fi(o)M) interface coupling). The ZFC-

FC measurements probed magnetization as a function of temperature while 

applying a magnetic field (H   ̴ 4 kA/m). The maximum of the ZFC curve 

provided a reasonable estimate of the superparamagnetic blocking 

temperature TB, temperature below which the particles were magnetically 

blocked. All these values are summarized in Table 4. 
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Table 4: Magnetic properties of sample A** 

 
Ms

298K/ Ms
10K 

[emu/gFe]†† 

HC
ZFC@298K/ 

HC
ZFC@10K  

[kA/m] ([mT]) 

HE
ZFC@298K/ 

HE
ZFC@10K   

[KA/m] ([mT]) 
TB

5mT [K] 

16.5 PScMA 98/148 
5.7 (7.2)/  

22.5 (28.2) 
1.4 (1.8)/  

2 (2.5) 
346 

33 PScMA 109/117 
5.7 (7.2)/  

22.4 (28.1) 
1.4 (1.8)/  
0.4 (0.5) 

355 

66 PScMA 84/119 
3 (3.8)/  

22.3 (28) 
0.6 (0.8)/  
1.3 (1.6) 

379 

 

 As seen in Figure 19c and Table 4, the saturation magnetization Ms of 

individual IONCs at RT (16.5PScMA) was 98 emu/gFe. The magnetization 

increased up to 109 emu/gFe for dimers and trimers (33PScMA) and decreased 

again down to 84 emu/gFe for clusters in a centro-symmetrical configuration, 

with n ≥ 4 (66PScMA). This trend was similar to the one of SAR values, where 

dimers and trimers showed a higher SAR compared to both individual IONCs 

and bigger clusters. Regarding coercivity (Figure 19d), individually coated 

IONCs and dimers and trimers had same coercivity HC of 7.2 mT (Table 4). Due 

to higher Ms value, dimers and trimers had a higher SAR as the area under the 

hysteresis was bigger for dimers and trimers compared to individual IONCs. 

When the number of nanocubes per nanocluster increased further (n ≥ 4), the 

nanoclusters became ‘softer’ and behaved as multi domain particles, with 

lower coercivity (HC = 3.8 mT) and a ratio between remanent magnetization MR 

and Ms < 0.1 (0.06 in our case, with MR = 5.38 and Ms  = 84 emu/gFe), typical of 

multi domain particles.63 

                                                           
** Ms, HC, HE and TB obtained from the analysis of magnetization curves.  
††

 Ms values are reported in emu/gFe as conversion to SI units requires knowing the 
exact ratios of wüstite and magnetite, which can be only roughly estimated without 
the Rietveld analysis of X-ray diffraction patterns  
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The presence of low amounts of wüstite phase was supported by small 

values of exchange bias (HE ≤ 2.5 mT), that were, surprisingly, present even at 

RT. The antiferromagnetic-ferri(o)magnetic interface coupling is expected to 

be seen only at temperatures below Néel temperature TN (TN = 198 K for 

wüstite). Magnetization versus magnetic field curves recorded at 10 K (ZFC) 

showed similar exchange bias fields with values between 0.5 and 2.5 mT.  

Lastly, as TB of individual particles, dimers and trimers, and clusters 

with n≥ 4, determined from temperature dependent ZFC-FC magnetization 

measurements (Figure 20), were all above RT, with values of 346, 355 and 379 

K, under magnetic fields of 5 mT (Table 4), respectively, we can infer that the 

clusters were blocked at RT. 

 

 
Figure 19: (a) Magnetization vs. magnetic field curves recorded at (a) 10 K and (c) 298 

K for 16.5PScMA (blue line—individual IONCs), 33PScMA (red line—dimers and 
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trimers), and 66PScMA (green line—clusters with n ≥ 4); (b) and (d) Zoom of the low 

magnetic field region to better visualize coercivity HC.  

 

 
Figure 20: Temperature dependent zero-field-cooled and field-cooled magnetization 

measurements performed on aqueous suspension of nanoclusters embedded in 

gypsum matrix recorded at 5 mT magnetic field: 16.5PScMA (blue line—individual 

IONCs, TB 346 K), 33PScMA (red line—dimers and trimers, TB 355 K), and 66PScMA 

(green line—clusters with n ≥ 4, TB 379 K).   

 

3.3.2. Core-shell iron oxide nanocubes. Sample B 

3.3.2.1. Clustering process and cluster characterization 

New samples of clusters were prepared for hyperthermia 

measurements. The starting sample B used was similar to the previous one, 

core-shell iron oxide nanocubes, with cube edge length of 20.2 ± 1.8 nm 

(Figure 21). However, the main difference was that the IONCs were 

synthesized and stored in chloroform, on the bench, for 2 years before being 
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used to prepare the clusters. As the wüstite core was oxidized over time, due 

to its unstable nature  under oxygen, the XRD was checked in order to 

determine if there was any wüstite phase still present. The XRD results (data 

not shown) showed only magnetite phase present.  

 In an attempt to prepare more concentrated samples of nanoclusters 

([Fe] ≥ 1 g/L), 4 new batches of soft colloidal nanoclusters were prepared. They 

were:  

- two samples prepared by using 18 molecules polymer/nm2 (VTot = 10 mL, mFe 

= 0.23 mg (Fe concentration 23 ppm), mpolymer = 0.875 mg), 

- one sample prepared by using the same ratio of 18 molecules polymer/nm2, 

but both the Fe and polymer amounts were doubled (VTot = 10 mL, mFe = 0.46 

mg (Fe concentration 46 ppm), mpolymer = 1.75 mg), 

- one sample prepared by using the same ratio of 18 molecules polymer/nm2, 

but both the Fe and polymer amounts were tripled (VTot = 10 mL, mFe = 0.69 

mg (Fe concentration 69 ppm), mpolymer = 2.625 mg).  

 

 

Figure 21: An oxidized sample used for cluster formation. TEM micrograph of (a) as-

synthesized core-shell iron oxide nanocubes dispersed in CHCl3 [inset: size histogram, 

a = 20.2 ± 1.8 nm], and (b) the same IONCs dispersed in CHCl3 2 years after synthesis.  
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The two samples prepared with a ratio of 18 molecules of polymer/nm2 

had similar characteristics by DLS: Z-average of 41.5 ± 0.3 nm (PDI 0.13) and Z-

average of 39.3 ± 0.1 (PDI 0.16). The samples were combined and 

concentrated at the magnet for 25 h. After magnet concentration the 

hydrodynamic diameter was 37.4 ± 0.2 nm (PDI 0.14). 

A new parameter emerged from this experiment, as by doubling the 

initial iron concentration, while keeping the amount of polymer per nm2 

constant, dimers and trimers started forming. This could be explained by a 

stronger dipole-dipole interaction—a long range order force—due to the 

increased Fe concentration thus increased number of nanocubes in the same 

solution volume. The sample formed by using 18 molecules polymer/nm2, with 

the initial Fe concentration of 46 ppm, Z-average of 62.0 ± 0.9 nm (PDI 0.18), 

was concentrated at the magnet for 19 h. The sample was stable as after 

magnet exposure, Z-average was 57.6 ± 0.6 nm (PDI 0.13).   

 

 
Figure 22: Tuning the mean hydrodynamic diameter by changing the initial [Fe] from 

23 to 69 ppm. DLS volume distributions, by intensity, of water transferred IONCs, ratio 
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of polymer 18 molecules/nm2, for Fe concentrations of 23 ppm—blue curve, 46 

ppm—red curve, and 69 ppm—green curve. It was then possible to tune the 

hydrodynamic size not only by varying the amount of polymer, but by changing the 

initial [Fe] as well.  

 

Lastly, the sample formed by using 18 molecules polymer/nm2, with the 

initial Fe concentration of 69 ppm, formed more trimers, increasing the Z-

average to 74.3 ± 0.3 nm (PDI 0.22). Also this sample was concentrated at the 

magnet. After 72 h at the magnet, Z-average was 72.4 ± 0.9 nm (PDI 0.23).   

If we are to compare the samples by average hydrodynamic size, 

intensity mean, an increase in size was observed, by doubling and later tripling 

the initial concentration of iron, from 23 to 69 ppm, 1D and 2D nanoconstructs 

were formed (Figure 22).  

This trend could also be seen on TEM micrographs of samples in water 

(Figure 23). For an initial Fe concentration of 23 ppm—concentration of the 

standard clustering procedure—individually coated NPs were obtained. For 46 

ppm Fe, dimers and trimers were formed, while for 69 ppm Fe the proportion 

of dimers and trimers continued to rise. As mentioned earlier, a new 

parameter emerged for the formation of clusters. If beforehand, the only way 

of creating bigger clusters was by increasing the amount of amphiphilic 

polymer, it was then possible to fine tune the size of the clusters (thus the 

number of nanocubes per cluster).  
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Figure 23: Soft colloidal cluster formation by changing the initial Fe concentration. 

TEM micrographs of the water transferred IONCs, ratio of polymer 18 molecules/nm2, 

while changing the initial Fe concentration: (a) 23, (b) 46, and (c) 69 ppm. By 

increasing the initial iron concentration, the dipole-dipole interaction—a long range 

order force—was stronger, thus more dimers and trimers were formed during the 

water transfer (b,c).   

 

3.3.2.2. Hyperthermia 

 Next, hyperthermia experiments were carried out in order to 

determine SAR values of the three cluster samples obtained from sample B. As 

stated earlier, the idea behind increasing the initial Fe concentration was to 

have more concentrated samples, that would allow measuring SAR values at 

different frequencies and fields and would not restrain our study to only one 

frequency and magnetic field—the highest one available on our instrument—

which was the case previously.  
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 The SAR values are summarized in Table 5. These values are also 

plotted in Figure 24 as a function of frequency applied, varying the frequency 

from 127.5 kHz to 302 kHz, while keeping the magnetic field amplitude 

constant at 30 mT (24 kA/m). Only for the sample made up of dimers and 

trimers—initial Fe concentration of 69 ppm—did the SAR increase linearly with 

the frequency applied. But what was most striking was the decrease of SAR 

when forming dimers and trimers, which was not the case beforehand. In an 

attempt to better understand the relaxation mechanisms dominating the 

magnetization dynamics when exposed to an AMF, magnetic characterization 

of the nanoclusters was carried out and the data is presented in section 

3.3.2.4.  

 

 
Figure 24: SAR values (with standard deviation) as a function of frequency at the 

magnetic field amplitude of 24 kA/m for nanoclusters prepared with an initial [Fe] of 

23 ppm (blue diamonds—89% individual IONCs: Figure 23a), 46 ppm (red diamonds—
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Figure 23b), and 69 ppm (green diamonds—61% dimers and trimers: Figure 23c). A 

SAR decrease was observed for the formation of dimers and trimers, which was 

surprising, as it was the inverse case for sample A.  

 

Table 5: SAR values of nanoconstructs @30 mT magnetic field 

Frequency 
[kHz] 

  23 ppm Fe 46 ppm Fe 69 ppm Fe 

SAR 
[W/gFe] 

StdDev. 
[W/gFe] 

SAR 
[W/gFe] 

StdDev.  
[W/gFe] 

SAR 
[W/gFe] 

StdDev.  
[W/gFe] 

127.5 179 2 128 7 83 9 
219 230 5 167 7 128 4 
302 320 8 249 1 177 2 

 
 

3.3.2.3. Statistics 

Also here image analysis was employed for statistical distributions, in 

order to quantify the percentage of individually coated nanoparticles when 

using the lower Fe concentration vs. the percentage of dimers and trimers 

formed when tripling the initial Fe concentration. Numerous TEM micrographs 

were analyzed. At least 235 objects were analyzed for each sample (Figure 25).   

Two samples were analyzed out of the three available. In the case of 

these core-shell iron oxide nanocubes, though the size of the particles (20.2 ± 

1.8 nm) was similar to the previous sample (20.2 ± 1.5 nm), due to a different 

crystallographic structure, the SAR value was halved when forming the 1D and 

2D objects, which was not the case previously when a 19% increase was 

reported (Figure 15).  

For the sample of IONCs transferred into water at the lower Fe 

concentration (23 ppm), 250 objects were studied (Figure 25), corresponding 

to a total of 274 nanocubes, out of which an overwhelming 89% were 

individually coated, while 7%, 3%, and 1% were dimers, trimers, and clusters 

with n ≥ 4, respectively (Figure 26). When tripling the initial Fe concentration 
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to 69 ppm, out of 236 objects analyzed (Figure 25)—corresponding to 403 

IONCs—61% were 1D and 2D constructs, with 34% and 27% corresponding to 

dimers and trimers (Figure 26). The 39% remaining objects were 36% 

individually coated IONCs and only 3% were bigger clusters.  

 

 
Figure 25: Statistical distributions, by number of objects, for samples prepared with 

an initial Fe concentration of 23 (individual IONCs) and 69 ppm (dimers and trimers). 

 
 

 
Figure 26: Statistical analysis of size distribution for different cluster preparations. 
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(individual IONCs) and (b) 69 ppm (dimers and trimers), indicated that 89% of IONCs 

were individually coated, 10% were 1D and 2D constructs and 1% were 3D centro-

symmetrical clusters for the sample shown in (a), while 36% were individual IONCs, 

61% were 1D and 2D constructs (34% dimers and 27% trimers) and 3% were 3D 

centro-symmetrical clusters for the sample shown in (b).   

 

3.3.2.4. Magnetic characterization              

3.3.2.4.1. Magnetization, zero-field-cooled and field-cooled curves 

 In an earlier section on magnetically induced hyperthermia, we saw 

that soft colloidal nanoclusters, made from sample B, showed SAR values that 

decreased for constructs formed of n = 2 or n = 3 IONCs. To better understand 

if other differences contributed to this trend that is opposite to the one 

observed for clusters made from sample A, we initially turned to classical 

SQUID measurements: magnetization vs. field and zero-field-cooled field-

cooled (ZFC-FC) measurements. These measurements allowed us to determine 

the following values: MS, HC, HE and TB. The magnetization curves were 

recorded both at RT (298 K) and at 10 K (where temperature fluctuation are 

negligible). All the values are summarized in Table 6.    

Magnetization vs. field hysteresis loops of individual IONCs vs. dimers 

and trimers are plotted in Figure 27a (at 10 K) and Figure 27c (at 298 K), with 

the respective zoom of the low magnetic field region to better visualize 

coercive HC and exchange bias HE fields. Both at 10 K and at RT the individual 

IONCs had smaller MS values compared to dimers/trimers: 89.5/96.4 (Figure 

27a) and 88.4/91.8 emu/gFe (Figure 27c). 

It is worth mentioning that similar to sample A, when forming dimers 

and trimers: (i) saturation magnetization increased, (ii) coercive fields, at 298 

K, were the same for individual IONCs and dimers and trimers (6.9/6.7 mT), 
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however in comparison to sample ‘A’, MS values were smaller (MS values for 

sample A were 98 (single IONCs) and 109 (dimers and trimers) emu/gFe at 298 

K).  

   

 
Figure 27: Magnetization vs. magnetic field curves recorded at (a) 10 K and (c) 

298 K for an initial [Fe] of 69 ppm (dimers and trimers—red line)) and 23 ppm 

(individual IONCs—blue line); (b,d) Zoom of the low magnetic field region to better 

visualize coercive HC fields.  

 
Table 6: Magnetic properties of sample B 

 Ms
298K/ 

Ms
10K 

[emu/gFe] 

HC
ZFC@298K/ 

HC
ZFC@10K  

[kA/m] ([mT]) 

HE
ZFC@298K/ 

HE
ZFC@10K 

[KA/m] ([mT]) 

TB
5mT 

[K] 

23 ppm Fe 
(individual IONCs) 

88.4/89.5 
 5.5 (6.9)/  
21 (26.3) 

1.5 (1.9)/  
1 (1.3) 

358 

69 ppm Fe 
(dimers and trimers) 

91.8/96.4 
5.3 (6.7)/  

14.8 (18.5) 
1.35 (1.7)/  
2.8 (3.5) 

370 
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The blocking temperatures TB of individual particles and dimers and 

trimers determined from temperature dependent ZFC-FC magnetization 

measurements (Figure 28), were above RT, with values of 358 and 370 K, 

under magnetic fields of 5 mT (Table 6). The respective blocking temperatures 

of clusters formed from sample A were 347 K and 355 K.   

 

 
Figure 28: Temperature dependent zero-field-cooled and field-cooled magnetization 

measurements performed on nanoclusters embedded in gypsum matrix at 5 mT 

magnetic field for samples prepared with an initial [Fe] of 23 (blue line, TB 358 K) and 

69 ppm (red line, TB 370 K). 

 

The results obtained from SQUID measurements at room temperature, 

ZFC, show no significant difference between the two types of constructs: 

individual or dimers/trimers. Currently, we are trying to advance our 

understanding of magnetization processes underlying magnetically induced 

heating in these particular nanosystems. One of the major challenge is that a 
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typical SQUID measurement time is in the 10-100 s timescale, while 

magnetization dynamical processes governing hyperthermia are typically in 

the order of microseconds. This means further magnetic dynamics 

characterization such as high frequency AC magnetometry had to be exploited 

as discussed in the next section. 

 

3.3.2.4.2. Dynamic hysteresis loops  

 High-frequency hysteresis loops were measured using a home-made 

set-up (with adjustable frequency and intensity) similar to the one described 

by Connord et al.64 This set-up was kindly provided by our colleague Prof. 

Francisco Teran (IMDEA group, Madrid). We had the set-up for a month in our 

laboratory. This system quantifies the inductive magnetic signal‡‡ of IONC 

dispersions, which is usually later calibrated by comparing the magnetization 

values at a given alternating magnetic field (HAC) intensity obtained under HAC 

and SQUID measurements.51 By calibrating the system, quantitative 

information is obtained. But one can use the set-up also for a qualitative 

analysis, by running the measurements at same Fe concentration and 

comparing the hysteresis areas under the same experimental conditions. The 

individually coated IONCs and the sample of dimers/trimers formed from 

sample B were subjected to dynamic hysteresis loops at frequency of 96 kHz 

and magnetic field amplitude of 30 mT (24 kA/m), at an [Fe] concentration of 1 

g/L. The data plotted in Figure 29a shows a larger hysteresis area for the 

individual IONCs compared to dimers and trimers. This result supported the 

SAR trend that showed for sample B a decrease when forming 1D and 2D 

nanoconstructs like dimers and trimers. 
                                                           
‡‡ The AC magnetic signal depended on the Fe content. The lowest Fe concentration 

at which reliable measurements were achieved was [Fe] = 2 g/L.  
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Figure 29: Dynamic hysteresis loops for different samples. (a) AC hysteresis loops for 

different Fe concentrations, (b) normalized hysteresis loops of individually coated 

IONCs (blue line) vs. dimers and trimers (violet line) under given HAC condition (f = 96 

kHz, B = 30 mT). The sample of dimers and trimers exhibited a smaller hysteresis area 

compared to individual IONCs.    

 

3.3.3. Core-shell iron oxide nanocubes. Sample C 

3.3.3.1. Clustering process and cluster characterization 

The idea behind the formation of the last set of soft colloidal 

nanoclusters was to combine the study on the cluster formation with the 

research on the improvement of SAR values by oxidizing the wüstite core in 

mild conditions. We were curious to find out whether the clusters, once 

formed, would be stable during the thermal oxidation and what would be the 

change in SAR values of individual IONCs vs. dimers and trimers and vs. bigger 

soft colloidal clusters (n ≥ 4). Would the SAR trend be similar to sample A or 

sample B? Due to a lack of time, the oxidation was not done by magnetic 

stimulation under alternating fields, but by heating in oven at 80°C overnight, 

several days in a row.   

The sample chosen for these new experiments had to be similar to the 

previous ones and be freshly synthesized. We chose sample C—a sample of 

core-shell iron oxide nanocubes with cube edge length of 20 ± 2 nm (Figure 
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30). The IONCs were synthesized 3 months before the cluster preparation and 

stored in chloroform. XRD data confirmed the presence of wüstite 

crystallographic phase just before performing the cluster formation (data not 

shown). 

To our surprise, the water transfer for sample C did not work. Several 

experiments were carried out, but regardless of the amount of polymer used, 

once THF was evaporated the IONCs were aggregated on the walls of the vials 

instead of being transferred into water. For the few samples whereby the 

IONCs did not aggregate during THF evaporation, upon the last step—i.e. the 

addition of CHCl3—the samples went from aqueous phase to organic phase. 

 
 

 
Figure 30: A fresh core-shell sample used for cluster formation. TEM micrograph of as-

synthesized core-shell iron oxide nanocubes dispersed in chloroform [inset: size 

histogram, a = 20 ± 2 nm].  

 

Free oleic acid (OA) in solution—the first step of the clustering 

procedure when the particles were dispersed in THF/H2O mixture—played a 
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key role in cluster formation and it will be explained in detail in section 3.3.3.2. 

Therefore, it was decided to increase the amount of surfactant, by adding 

known amounts of OA—from 1 to 25 µL—to the solution of THF/H2O in which 

the IONCs were dispersed alongside the amphiphilic polymer. The 

experimental conditions and the outcome of each experimental trial in terms 

of success of cluster formations are summarized in Table 7.  

 

Table 7:  Experimental conditions for nanocluster formation starting from    

sample C 

Exp. 
number 

Ratio of 
polymer/ 

nm2 

Volume 
of 

polymer 
[mL] 

Volume 
of oleic 

acid 
[µL] 

Fe 
amount 

[mg] 

% wt. OA 
compared 

to Fe 
amount 

Outcome 

1 18 0.25 2.5 0.23 1  
2 18 0.25 5 0.23 2  
3 18 0.25 10 0.23 4 /†† 

4 18 0.25 25 0.23 10  
5 72 1 2.5 0.23 1  
6 72 1 5 0.23 2 /§§ 

7 72 1 10 0.23 4  
8 72 1 25 0.23 10  
9 11 0.15 1 0.23 0.4  

10 11 0.15 2.5 0.23 1  
11 11 0.15 5 0.23 2 /†† 

12 11 0.15 7.5 0.23 3  
 

  
For all samples, irrespective of the initial amount of polymer, upon 

addition of small amounts of OA (≤ 5 µL) the cluster formation occurred during 

water transfer. By further increasing the OA amount the IONCs migrated 

                                                           
§§ The water transfer worked partially. Not all the IONCs were transferred into 
aqueous phase. Some of the IONPs stayed in organic phase.  
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towards organic phase upon the last step of CHCl3 addition. For example, for 

18 molecules polymer/nm2 after addition of 2.5 and 5 µL OA (Figure 31—#1 

corresponding to 2.5 µL and #2 corresponding to 5 µL), there was a clear 

separation between the nanoclusters dispersed in water (top layer of the 

Eppendorf tube) and the organic phase (bottom of the Eppendorf tube). When 

adding 10 µL OA (Figure 31, #3) the aqueous phase was cloudy with most of 

the IONCs found at the interface between organic/water phase. Lastly, upon 

addition of 25 µL OA (Figure 32, #4) the aqueous phase is transparent, no 

clusters were obtained. The IONCs were only in organic phase.  

The samples for which cluster formation worked—#1, #2, #5, #9, #10—

were characterized by DLS and TEM. Unexpectedly, for the ratio of 18 

molecules PScMA/nm2 clusters with hydrodynamic diameters around 100 nm 

were formed, instead of individually coated IONCs as seen in the previous 

sections for samples A, B, spherical IONPs, 19 nm IONCs with rounded edges, 

etc. When quadrupling the polymer ratio from 18 to 72 molecules 

polymer/nm2 even bigger clusters were formed—Z-average of 190 ± 2 nm with 

PDI 0.07 (Table 8—entry 3, experiment #5). As expected, by increasing the 

amount of polymer bigger clusters were formed, but the unpredicted results 

were: 

(i) dH of the clusters was twice the expected size from previous results (18 

molecules PScMA/nm2 having Z-average of 98-105 nm instead of 49-55 nm***),  

(ii) the increase of size by increasing the amount of surfactant, while keeping 

the polymer to particle surface ratio constant.  

Regarding the latter result, it is worth mentioning a slight increase in 

size from 98 ± 1 nm to 105 ± 1 nm when increasing the amount of surfactant 

                                                           
*** See Table 3, entry 1—16.5 molecules polymer/nm2. 
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from 1 to 2 % of polymer volume (experiment #1: 250 µL polymer and 2.5 µL 

OA, experiment #2: 250 µL polymer and 5 µL OA), while a more pronounced 

increase happened when increasing the amount of surfactant from 1.5% to 

3.75% polymer volume (experiment #9: 150 µL polymer and 1 µL OA, 

experiment #10: 150 µL polymer and 2.5 µL OA)—Z-average raised from 82 ± 1 

nm to 106 ± 1 nm. These facts suggest that the amount of surfactant played an 

important role not only in the outcome of the water transfer, but it also 

influences the average size of the clusters, especially for smaller clusters. The 

DLS data is summarized in Table 8.  

 

 

Figure 31: Importance of free surfactant for cluster formation. Eppendorf vials 

corresponding to experiments #1 to #4, after CHCl3 addition and phase separation 

(experimental conditions presented in Table 7). When adding small amounts of 

surfactant (2.5 or 5 µL per 0.23 mg Fe) the soft colloidal clusters were formed. When 

further increasing the amount of extra surfactant (10 or 25 µL per 0.23 mg Fe) the 

water transfer did not proceed, as the particles went into organic phase after addition 

of CHCl3.  
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Table 8: DLS data for clusters formed with 20 nm IONCs@PScMA (in H2O) 

Experiment 
number 

Z-Ave  
[nm] 

PdI 
Intensity 

mean 
[nm] 

Number 
mean 
[nm] 

Volume 
mean 
[nm] 

1 98 ± 1 0.07 ± 0.01 106 ± 1 74 ± 3 90 ± 1 

2 105 ± 1 0.07 ± 0.02 114 ± 1 81 ± 2 99 ± 1 

5 190 ± 2 0.07 ± 0.01 206 ± 1 168 ± 6 217 ± 1 

9 82 ± 1 0.15 ± 0.01 94 ± 1 52 ± 1 70 ± 1  

10 106 ± 1 0.10 ± 0.01 119 ± 3  73 ± 3 98 ± 1 

 

The DLS results were supported by transmission electron microscopy 

images. From the TEM micrographs presented in Figure 32, one could confirm 

the unpredicted formation of bigger clusters (n > 4) for the ratio of 18 

PScMA/nm2—Figure 32a, with addition of 2.5 µL OA, and Figure 32b, with 

addition of 5 µL OA during the first step of water transfer. When increasing the 

ratio of polymer/nm2 to 72, clusters with dH around 200 nm were formed 

(Figure 32c). As our main aim was to construct soft colloidal nanoclusters 

smaller than 100 nm, the amount of amphiphilic polymer was further reduced 

to 11 polymer molecules/nm2 (with addition of 1 µL OA—Table 8: experiment 

9). For this ratio, dimers and trimers were formed (Figure 32d). Further 

decreasing the amount of polymer did not result in individually coated IONCs. 

The water transfer did not work for 7 PScMA/nm2. In all the experiments 

carried out before, the range—in which the cluster size could be tuned from 

individual IONCs to dimers and trimers and later to bigger clusters—was from 

16 to 66 molecules polymer/nm2. For sample C the range was shrunk and only 

dimers and trimers and bigger clusters could be obtained for 11 to 18 

molecules polymer/nm2, respectively. In order to better understand the 

reasons behind these surprising results thermogravimetric analyses of the 

various samples were performed.           
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Figure 32: Soft colloidal clusters formed with addition of various amounts of extra 

polymer. TEM micrographs††† of 20 nm IONCs@PScMA (sample C) in H2O for a ratio of 

(a) 18 [+2.5 µL OA], (b) 18 [+5 µL OA], (c) 72 [+ 2.5 µL OA] and (d) 11 [+ 1 µL OA] 

PScMA molecules/nm2 particle surface.   

 

3.3.3.2. Thermogravimetric analysis 

As briefly mentioned earlier, towards the end of our research, we 

stumbled upon the fact that the amount of surfactant played an important 

role in cluster formation. When trying to reproduce the clustering process with 

a new batch of core-shell IONCs, we noticed that even if we were using the 

same ratio of polymer/nm2 of particle surface as done previously, the 

procedure did not result in cluster formation. This fact prompted us to 

investigate the amount of surfactant present on the surface of the IONCs by 

                                                           
†††

 Different scale bars in TEM micrographs 
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means of thermogravimetric analysis (TGA) in order to find a possible 

correlation with the unsuccessful result of cluster formation.   

First, we investigated the sample for which the clustering process 

worked straight away. The thermogravimetric analysis of the sample A in CHCl3 

(Figure 33, blue line) showed a first weight loss of 26.4% wt. in the 

temperature range from 150 to 300 °C and a second weight loss of 31.2% wt. 

from 300 to 400 °C. In literature, the first transition is usually attributed to 

unbound or physisorbed OA65–67, while the second transition is attributed to 

the oleate molecules chemisorbed to the particle surface65–67. The first weight 

loss for the sample occurred in the same temperature region in which the 

mass loss of oleic acid was ca. 90% wt. (Figure 33, red line), strongly supporting 

the claim that the first weight loss was due to free oleic acid. The equilibrium 

between free oleic acid and oleate bound to the surface of the IONCs was a 

crucial parameter to be controlled in order to obtain soft colloidal clusters as it 

will be discussed in this section. 

Before going any further, it is worth mentioning that the amount of 

oleic acid chemisorbed to the surface of the IONCs—ligand density (ρl)—was 

much higher than the theoretical 5 ligands/nm2.68,69 The calculated ligand 

density was 27 ligands/nm2 which implied a multilayer coating of surfactant. 

The formula used for the calculation of ligand density was the one described 

by Tong et al.70 :  

𝜌𝑙 =  
𝑤𝑙𝑁𝐴𝑣

𝑀𝑤,𝑙
·

𝑚𝑁𝑃

𝑤𝑁𝑃𝐴𝑁𝑃
  (Eq. 2) 

wherein 𝑤𝑙 was the weight fraction of the ligand, 𝑁𝐴𝑣 was Avogadro’s number, 

𝑀𝑤,𝑙 was the molecular weight of the ligand, 𝑚𝑁𝑃 was the mass of one 

nanoparticle, 𝑤𝑁𝑃 was the weight fraction of the iron oxide nanoparticles, and 

𝐴𝑁𝑃 was the surface area of one NP. The cube edge length of one nanocube 
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was taken as 20 nm for area and volume calculations. For mass calculation the 

density of bulk magnetite was considered (5.18 g/cm3). The weight fraction of 

ligand considered was the one corresponding to the second weight loss as 

determined by TGA. If we consider the total weight loss of ligand, the organic 

part that showed a two-step decomposition between 150 and 400 °C, then the 

ligand density was 50 ligands/nm2, with a 46% to 54% distribution between 

free oleic acid and oleate bound to the surface of the NPs. When having these 

fractions of free oleic acid and oleate bound to NPs the clusters were easily 

obtained.  

 

Figure 33: Sample A. TGA degradation profiles of oleic acid capped IONCs (blue curve) 

and free oleic acid (red curve) performed in air. The first weight loss in the region 

between 150 and 300 °C corresponded to free oleic acid in solution, while the second 

weight loss in the region between 300 and 400 °C corresponded to oleate 

chemisorbed to the surface of the IONCs.  

 

0

20

40

60

80

100

0 100 200 300 400 500 600 700

W
e

ig
h

t 
[%

] 

Temperature [°C] 

20 nm IONCs@OA

Free oleic acid (OA)

1.43 mg FexOy (42.4%) 

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



113 
 

 Next, thermogravimetric analyses were carried out on sample C—the 

sample for which the clustering process didn’t work without addition of extra 

OA. For the as-synthesized sample in CHCl3 (Figure 30), the organic layer 

accounted for a mass loss of 79.6% wt., with 11.5% wt. (Figure 34—blue curve) 

corresponding to free oleic acid in solution and 68.1% wt. to chemisorbed 

surfactant (Figure 35—blue curve). Upon addition of 1 µL OA per 0.23 mg Fe, 

the overall mass loss increased to 85.2% wt. with 24.6% (Figure 34—violet 

curve) and 60.6% wt. (Figure 35—violet curve) corresponding to oleic acid 

physisorbed and chemisorbed to the surface of the IONCs, respectively. Upon 

the addition of 2.5 µL OA the weight loss was 89.3% wt. with a bigger amount 

of free surfactant 32.3% wt. (Figure 34—green curve) and a lower amount of 

chemisorbed OA 57% wt. (Figure 35—green curve) compared to previous 

samples. These results suggested that it was the decrease in the amount of 

surfactant tightly bound to the surface of the IONPs, accompanied by an 

increase in free oleic acid, that facilitated the clustering process and the water 

transfer. When chemisorbed OA was higher than 61% wt. the polystyrene 

branches of the amphiphilic PScMA could not intercalate with the surfactant 

layer, as the surfactant molecules were tightly packed one close to another. As 

some of the OA molecules were stripped from the external layers—by 

decreasing the chemisorbed OA amounts to values below 61% wt.—PS braches 

took the place of OA molecules and the water transfer proceeded as expected.   

 If we took a closer look at the TGA degradation profiles (Figure 35), we 

could see that the second mass loss was a multistep process. Also, if we recall 

Equation 2, the second mass loss of 60.6% (Figure 36—violet curve) 

corresponded to a calculated ligand density of 150 ligands/nm2, that is 5.5 

times more than the ligand density calculated for sample A—27 ligands/nm2. 
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Thus we decided to run a one-hour long isotherm at 320°C—the temperature 

at which the second loss started. 

 

 
Figure 34: Sample C with different amounts of added free oleic acid. TGA degradation 

profiles of as-synthesized oleic acid capped IONCs (blue curve), oleic acid capped 

IONCs with addition of 0.4% wt. OA (violet curve), and oleic acid capped IONCs with 

addition of 1% wt. OA (green curve), performed in air. By adding extra surfactant, the 

first weight loss in the region from 150 to 300 °C increased from 11.5% (no extra OA), 

to 24.6% and  32.3% for addition of 2.5 and 5 µL of surfactant (per 0.23 mg Fe), 

respectively. This loss corresponded to free oleic acid in solution and physisorbed OA.   
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Figure 35: TGA degradation profiles of as-synthesized oleic acid capped IONCs 

[IONCs@OA] (blue curve), IONCs@OA with addition of 0.4% wt. OA (violet curve), 

IONCs@OA with addition of 1% wt. OA (green curve), performed in air. By adding 

extra surfactant, the 2nd weight loss in the region from 300 to 400 °C decreased from 

68.1% (no extra OA), to 60.6% and  57% for addition of 2.5 and 5 µL of surfactant (per 

0.23 mg Fe), respectively. This loss corresponded to OA chemisorbed to the surface of 

IONCs.   
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Figure 36: Breakdown of the multistep second weight loss into two steps by applying 

a one-hour isotherm @320 °C. TGA degradation profiles of sample C with addition of 

1 µL OA per 0.23 mg Fe (+ 0.4% wt. OA) without (violet curve) and with (black curve) 

one-hour isotherm at 320°C, performed in air. By applying the isotherm the amount 

of oleate bound to the surface dropped from 60.6% down to 29.1%.   

 
 When applying the one-hour isotherm, we could better distinguish the 

3rd mass loss as a single step process (Figure 36—black curve). The weight loss 

corresponding to chemisorbed OA decreased from 60.6% to 29.1% (Figure 36), 

the latter value corresponding to a ligand density of 72 ligands/nm2. The 

higher amount of surfactant chemisorbed to the surface of the IONCs could 

have explained why the clusters obtained with sample C had a bigger dH 

compared to clusters obtained with sample A when using the same amount of 

poly(styrene-co-maleic anhydride). Indeed, when the two samples were 

synthesized, the one parameter that changed was the amount of oleic acid 
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used—1.6 g for sample A and 2.6 g for sample C. This change in synthesis 

parameters was reflected in the total amount of surfactant chemisorbed to the 

surface of the nanoparticles.    

 

 
Figure 37: Sample A vs. sample C. TGA degradation profiles of sample A as-

synthesized (red curve) and sample C with addition of 1 µL OA per 0.23 mg Fe (black 

curve), performed in air.  

 
3.3.3.3. Hyperthermia (before and after annealing) 

 For sample C only dimers and trimers and bigger clusters with n ≥ 4 

were obtained by the clustering process. In order to have a comparison with 

individual IONCs as well, a part of sample C was transferred into water by 

ligand exchange with gallic-PEG (as performed on core-shell IONCs in  chapter 

2). The DLS data showed an increase in Z-average from 59 ± 1 nm for individual 

IONCs to 98 ± 1 for clusters with n ≥ 4 (Table 9). Though, by DLS, the 

characteristics of individual IONCs and the sample of dimers and trimers were 
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very close by intensity, number and volume weighted hydrodynamic diameters 

(Table 9), from the TEM micrographs we could clearly see the distinction 

between single IONCs (Figure 38a) and the dimers and trimers sample (Figure 

38b).    

 
Table 9: DLS data for clusters formed with sample ‘C’, in H2O, before annealing 

for 52 hours @80°C 

Sample 
Z-Ave  
[nm] 

PdI 
Intensity 

mean 
[nm] 

Number 
mean 
[nm] 

Volume 
mean 
[nm] 

Individual 
IONCs@GaPEG 

59 ± 1  0.18 ± 0.01  71 ± 2  34 ± 1  46 ± 1 

11PScMA  
(dimers and 
trimers) 

65 ± 1  0.20 ± 0.01  77 ± 2  38 ± 3 47 ± 5 

18 PScMA  
(clusters with  
n ≥ 4) 

98 ± 1  0.07 ± 0.01  106 ± 1  74 ± 3  91 ± 1 

 

 

Figure 38: Soft colloidal clusters formed with freshly synthesized 20 nm core-shell 

IONCs (sample C) plus addition of extra surfactant. TEM micrographs‡‡‡ of 20 nm (a) 

IONCs@GaPEG (individual IONCs), (b) 11 [+1 µL OA] (dimers and trimers)  and (c) 18 

PScMA molecules/nm2 [+ 2.5 µL OA] (clusters with n ≥ 4), in H2O.  

 

Once the clusters were obtained, as mentioned at the beginning of 

section 3.3.3.1., the idea was to oxidize the wüstite core to magnetite, in mild 

                                                           
‡‡‡

 Different scale bars in TEM micrographs 
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conditions—in an oven at 80°C. Hyperthermia experiments were carried out 

before the annealing process and after each step of the annealing process, 

alongside with DLS and TEM characterization in order to check the stability of 

the clusters. A schematic representation of the idea is depicted in Figure 39. 

Each step of the annealing process was done overnight, up to a total of 52 

hours. After 52 hours, the SAR values did not improve significantly, thus the 

annealing process was stopped.      

 

 
Figure 39: Schematic representation of the oxidation of the wüstite core for clusters 

of different sizes in an oven at 80 °C.  

 

All the samples were stable during the annealing process as confirmed 

by DLS measurements (Figure 40). For example, for sample 18 PScMA (bigger 

clusters with n ≥ 4), the volume weighted hydrodynamic diameter remained 

unchanged during the whole annealing process, with Z-average of 98 ± 1 nm 

(PDI 0.07) before annealing and 97 ± 1 (PDI 0.08) after 52 hours annealing. 
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Figure 40: Stability of the mean hydrodynamic diameter during annealing 

experiments. DLS volume distributions for soft colloidal nanoclusters 18PScMA before 

annealing (blue line), after 18 hours (red line), 35 hours (green line) and 52 hours 

(violet line) of annealing at 80 °C. The sample was stable under annealing @80 °C, as 

no aggregation occured. Z-average before annealing: 98 ± 1 nm (PDI 0.07), after 52 

hours of annealing: 97 ± 1 (PDI 0.08).  

 

The SAR values before annealing were below 50 W/gFe (Figure 41, Table 

10), which was expected of core-shell iron oxide nanocubes, due to non-

contributing paramagnetic wüstite core. As we started oxidizing the core by 

heat treatment, the SAR values increased up to 3.7 times to 131 ± 5, 179 ± 1, 

and 97 ± 4 W/gFe for individual IONCs, dimers and trimers and bigger clusters, 

respectively (Table 10). The dimers and trimers sample showed higher SAR 

values compared to the other two samples after only 18 hours of annealing. 

The trend was maintained through the whole annealing process, up to 52 

hours (Figure 41, Table 10).   
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Figure 41: SAR values (with standard deviation) for soft colloidal nanoclusters during 

the annealing process: IONCs@GaPEG (blue bars—individual IONCs), 11PScMA (red 

bars—dimers and trimers), and 18PScMA (green bars—clusters with n ≥ 4). Only after 

18 hours of annealing the sample of dimers and trimers showed higher SAR values. 

The trend was maintained up to 52 hours of annealing.  

 

Table 10: SAR values of nanoclusters at 302 kHz frequency and 30 mT magnetic 

field amplitude 

 

Individual 
IONCs@GaPEG 

Dimers and 
trimers 

Bigger clusters  
(n ≥ 4) 

 
SAR [W/gFe] SAR [W/gFe] SAR [W/gFe] 

Before annealing 46 ± 2 48 ± 3 42 ± 2 

After 18 h annealing 131 ± 5 179 ± 1 97 ± 4 

After 35 h annealing 180 ± 5 216 ± 1 142 ± 9 

After 42 h annealing 183 ± 2 233 ± 1  138 ± 3 

After 52 h annealing 162 ± 7 246 ± 8 150 ± 3 
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3.3.3.4. Magnetic characterization after annealing 

 As seen, from hyperthermia measurements, soft colloidal nanoclusters 

of different sizes—annealed for 52 hours at 80 °C—behaved differently under 

alternating magnetic fields. The trend, same as the one for sample A, consisted 

of an increase of SAR values for clusters formed of n = 2 or n = 3 IONCs 

compared to individual IONCs, while increasing n number above 4 the SAR 

value dropped again (Figure 41). Next, we turned to SQUID measurements to 

check the trend in MS and TB: magnetization vs. field and zero-field-cooled 

field-cooled (ZFC-FC) measurements. The magnetization curves were recorded 

both at 298 K and 10 K. All the magnetic parameters determined from SQUID 

experiments—MS, HC, HE and TB—are summarized in Table 11.   

As seen in Figure 42c and Table 11, the saturation magnetization Ms of 

individual IONCs at RT was 86.5 emu/gFe. The magnetization increased up to 

90.1 emu/gFe for dimers and trimers (11 PScMA) and decreased back to 86.1 

emu/gFe for centro-symmetrical clusters with n ≥ 4 (18 PScMA). This trend was 

similar to the one of SAR values (Figure 41), where dimers and trimers showed 

a higher SAR compared to both individual IONCs and bigger clusters. Regarding 

coercivity (Figure 42d), dimers and trimers had the highest coercivity HC of 6.9 

mT, while individual IONCs and bigger clusters had   coercivities HC of 5.0 and 

4.1 mT, respectively (Table 11). Lastly, blocking temperature TB of individual 

particles, dimers and trimers, and clusters with n≥ 4, determined from 

temperature dependent ZFC-FC magnetization measurements (Figure 43), 

were all above RT, with values of 400, 370 and 373 K, under magnetic fields of 

5 mT (Table 11). 
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Table 11: Magnetic properties of sample C, after 52 hours of annealing @80 °C  

 
Ms

298K/ Ms
10K 

[emu/gFe] 

HC
ZFC@298K/ 

HC
ZFC@10K  

[kA/m] ([mT]) 

HE
ZFC@298K/ 

HE
ZFC@10K 

[KA/m] ([mT]) 

TB
5mT 

[K] 

Individual 
IONCs@GaPEG 

86.5/93.1  
4 (5)/  

27 (33.8) 
1 (1.25)/  
1 (1.25) 

400 

11PScMA (dimers 
and trimers) 

90.1/94.5 
5.5 (6.9)/  

26.5 (33.2) 
1.5 (1.9)/  
1.5 (1.9) 

370 

18PScMA (clusters 
with n≥ 4) 

86.1/83.7  
3.25 (4.1)/  
25 (31.3) 

0.75 (0.9)/  
1.25 (1.6) 

373 

 
 

 
Figure 42: Magnetization vs. magnetic field curves recorded at (a) 10 K and (c) 298 K 

for IONCs@GaPEG (blue line—individual IONCs), 11 PScMA (red line—dimers and 

trimers), and 18 PScMA (green line—clusters with n ≥ 4); (b) and (d) Zoom of the low 

magnetic field region to better visualize coercivity HC.  
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Figure 43: Temperature dependent zero-field-cooled and field-cooled magnetization 

measurements performed on aqueous suspension of nanoclusters embedded in 

gypsum matrix recorded at 5 mT magnetic field: IONCs@GaPEG (blue line—individual 

IONCs), 11 PScMA (red line—dimers and trimers), and 18 PScMA (green line—clusters 

with n ≥ 4) 
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3.4. Conclusion 

To summarize, a procedure for the water transfer of iron oxide 

nanoparticles and the formation of soft colloidal nanoclusters during the water 

transfer have been developed. The polymer used was poly(styrene-co-maleic 

anhydride), cumene terminated (Mn of 1 600 g/mol). Nanoclusters of different 

sizes were obtained by changing the polymer to nanoparticle surface ratio. The 

method proved to be versatile as nanoparticles of different shapes, sizes, and 

types were clustered in a controlled manner. The cluster sizes were confirmed 

by DLS, TEM, and AC Susceptibility measurements.   

After cluster formation, the focus shifted towards correlating specific 

absorption rate SAR values of nanoclusters made of core-shell IONCs to their 

size, composition and magnetic features. From the studies on the clustering 

process, three crucial parameters have emerged:  

(i) the amount of polymer, as seen in section 3.2., was the main 

parameter allowing  the clustering process control, 

(ii) the initial Fe concentration had the same effect as the amount of 

amphiphilic polymer used: an increase in [Fe] concentration was accompanied 

by an increase in the numbers of dimers and trimers formed during water 

transfer—as seen in section 3.3.2.1.,   

 (iii) the amount of free surfactant was critical for the water transfer 

and cluster formation—as seen in section 3.3.3.2. 

 Regarding SAR values, the three samples presented different trends: 

sample A and C showed an increase in SAR value when anisotropic structures 

like dimers and trimers were formed, while sample B showed a decrease. For 

sample A and C, magnetization measurements vs. field gave us an indication 

about the increase of the response to the magnetic fields accompanied by an 
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increase in SAR values (for dimers and trimers), while for clusters formed with 

more than 4 IONCs, particles’ magnetic moments tended to arrange in a so-

called demagnetizing configuration, degrading the overall magnetic moment 

and behaving like multi-domain particles. For sample B, SQUID measurements 

were not enough to deepen our understanding of SAR values, thus we 

complemented the data with AC hysteresis loops under conditions similar to 

hyperthermia experiments. Larger area of the AC loops was recorded for those 

samples whose SAR was higher. For clusters from sample B, the SAR trend was 

confirmed as, under alternating field conditions, dimers and trimers displayed 

qualitatively a smaller hysteresis loop compared to individual IONCs.  
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3.5. Experimental part 

CHEMICALS 

All reagents were obtained from commercial suppliers and used without 

further purification. Iron pentacarbonyl Fe(CO)5 (98%), 1-octadecene (1-ODE, 

99%), oleic acid (OA, 90%), triethylamine (99%), chloroform (CHCl3), ethanol 

(EtOH), dichloromethane (DCM), poly(styrene-co-maleic anhydride), cumene 

terminated (Mn = 1 600 g/mol), α,ω-aminopropyl-poly(ethylene glycol) (Mn = 2 

000 g/mol), gallic acid, phosphate buffered saline (PBS) (150 mM NaCl, pH 7.4), 

sodium hydroxide were purchased from Sigma-Aldrich. Sodium oleate (97%) 

was obtained from TCI. THF was purchased from Carlo Erba Reagents.   

CHARACTERIZATION 

Dynamic Light scattering (DLS) 

Particle size measurements were carried out using a Malvern Zetasizer Nano 

series instrument, operated in the 173° backscattered mode on diluted 

aqueous solutions of nanoclusters. The measurements were performed at 25 

°C. An equilibration time of 2 minutes was allowed before each measurement 

and at least three measurements were performed for each sample. 

Transmission electron microscopy (TEM) 

Conventional TEM images were obtained using JEOL JEM 1011 electron 

microscope, working at an acceleration voltage of 100 kV and equipped with a 

W thermionic electron source and a 11Mp Orius CCD Camera (Gatan company, 

USA). Samples were prepared by placing a drop of sample onto a carbon 

coated copper grid which was then left to dry before imaging.  

Thermogravimetric analysis (TGA) 
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The weight loss of oleic acid coated nanoparticles was determined using a TA 

Instruments Hi-Res TGA 2950 thermogravimetric analyzer under air 

atmosphere (60 cm3/min). The samples (5-10 mg) of the surfactant coated 

nanocubes were heated from room temperature to 50 °C and an isotherm was 

applied for 15 minutes, then heated to 700 °C at a heating rate of 10 

°C/minute.  

SAR measurements 

The calorimetric measurements to determine the specific absorption rate 

(SAR) value of the iron oxide nanoclusters were carried out using the 

Nanoscale Biomagnetics instrument (DM100) operating over the range of 

frequencies from 105 to 302 kHz and fields up to 40 mT and 30 mT, for 105 kHz 

and 302 kHz, respectively. The SAR values were calculated using the formula:  

𝑆𝐴𝑅 (
𝑊

𝑔
) =  

𝐶

𝑚
×

𝑑𝑇

𝑑𝑡
 

where C is the specific heat capacity of dispersing medium (H2O in most cases) 

per unit volume (J/K) and 𝑚 is the concentration (g/L of Fe) of magnetic 

material in solution. The calorimetric measurements were carried out in quasi-

adiabatic conditions and the slope of the curve 
𝑑𝑇

𝑑𝑡
 was measured by taking into 

account only the first 20-25 seconds of measurement. 

Magnetic characterization  

Field dependent static magnetic measurements were carried out by employing 

an ever cooled Magnetic Property Measurement System (MPMS-XL, Quantum 

Design) on immobile nanoclusters. The samples were prepared by mixing 50 µL 

of nanoclusters dispersed in milli-Q water, at an iron concentration of 0.9 g/L, 

with 60 mg gypsum in the designated polycarbonate capsules and by drying 

them thoroughly. The zero-field-cooled (ZFC) and field-cooled (FC) 
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temperature dependent magnetization measurements were performed on 

samples prepared in the same way in the cooling field of 5 mT. The residual 

magnetic field in the SQUID magnets was nulled using the designated low field 

Hall sensor prior to ZFC measurements. All the presented magnetization data 

are corrected with respect to the diamagnetic and paramagnetic contributions 

of water and gypsum using the automatic background subtraction routine. The 

curves were normalized to the iron concentration as obtained from the 

elemental analysis. 

Elemental analysis  

Elemental analysis was carried out via Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP-AES) on a ThermoFisher iCAP 6000 series 

instrument. The samples were prepared by digesting 2.5-10 µL sample in 1 mL 

aqua regia in a 10 mL volumetric flask, overnight. The next day, the flask was 

filled up to the graduation mark with milli-Q water and filtered through a 0.45 

µm filter membrane prior to the measurement.  

SYNTHESIS 

Synthesis of nanocubes 

Core-shell iron oxide nanocubes were synthesized following a recently 

published procedure23 with a slight modification in order to obtain bigger 

nanoparticles. Briefly, in a typical synthesis§§§ of 20 nm nanocubes (Figure 4b), 

oleic acid (1.6 g, 5.7 mmol), sodium oleate (0.939 g, 3 mmol) and 1-octadecene 

(5 mL) were added to a 50 mL three-necked flask connected to a reflux cooler 

and pumped to vacuum for 30 min at 90 °C. Afterwards, the solution was 

cooled down to 60 °C and put under N2 flux. Then the precursor solution 

                                                           
§§§ For samples A and B. For sample C, the synthesis parameters that changed were the 
amount of OA (2.6 g, 9.3 mmol) and the initial volume of 1-octadecene (3 mL).  
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Fe(CO)5 (0.597 g, 3 mmol, dissolved in 1 mL of 1-ODE) was injected and the 

mixture heated, in 20 min, to 320 °C. The solution reaction was stirred 

vigorously at 320 °C and as nucleation started (the solution turned black) it 

was kept at that temperature for another 1.5 h, then cooled down and 

exposed to air for 30 min at 130 °C. Next it was left to cool to room 

temperature. Finally, the IONCs were collected by centrifugation at 8 000 rpm 

and washed with methanol. The cleaning process was carried out three times 

and the IONCs were stored in chloroform. 

METHODS 

Controlled clustering 

Briefly, for the formation of soft colloidal nanoclusters with hydrodynamic 

diameters around 100 nm, in a 20 mL vial, to 9 mL THF solution 1 mL of stock 

solution**** of poly(styrene-co-maleic anhydride), cumene terminated (Mn = 1 

600 g/mol), dissolved in THF ([PScMA] = 2.19 mM) was added, followed by the 

addition of 35 L of iron oxide nanocubes solution ([Fe] = 6.09 g/L, 0.33 µM) 

with a cube edge length of 20 nm. Afterwards, 1 mL H2O was added dropwise, 

while sonicating the solution in an ice bath for 2 minutes. Next, the solution 

was placed on a horizontal shaker rotating at a speed of 125 rotations per 

minute and it was left overnight to slowly evaporate the THF. The following 

day, the remaining 0.8 to 1 mL of solution was transferred to a 2 mL Eppendorf 

and an equivalent volume of CHCl3 was added. The Eppendorf vial was 

vigorously stirred and the two phases were left to separate for a couple of 

hours. Once the upper part became clear(/showed no signs of turbidity) the 

aqueous phase was transferred into a 1 mL HPLC vial.   

                                                           
****

 Corresponding to 66 PScMA molecules/nm
2
 for sample A. For 33 PScMA, to 9.5 mL THF 0.5 

mL stock solution was added. For 16.5 PScMA, to 9.75 mL THF 0.25 mL stock solution was 
added.  
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4. Doxorubicin loading and heat-triggered release 

from iron oxide nanocubes coated with thermo-

responsive polymers  

4.1. Introduction 

Targeted and triggered drug delivery have become important branches 

of nanomedicine and pharmacology research focusing on the fabrication of 

nanoparticle as smart drug delivery systems (DDSs). In particular, for cancer 

therapy, the administration of high doses of chemotherapy drugs as now 

required is mainly due (i) to the limited aqueous solubility of the drug 

molecules; (ii) to the non-specific whole-body drug distribution which 

generates toxicity not only towards tumor cells but also to healthy cells, 

alongside (iii) with the potential development of drug resistance.71,72 As such, 

there has been significant research activity centered on the design of 

responsive nano-scale delivery vehicles such as polymer–drug conjugates, 

liposomes, dendrimers, polymeric micelles and polymer-inorganic 

nanoparticles hybrid systems. These systems are designed to carry drugs 

through the circulatory system and release the drug only once they have 

accumulated at the target site—upon application of a well-defined stimulus.73 

Drug release in this case is triggered by response to internal or external stimuli 

such as temperature, pH, light, magnetic field, electric field as well as presence 

of specific targeting biomolecules at the surface of DDSs.74,75 Upon application 

of stimulus, changes in polarity, volume, configuration and conformation of 

the responsive polymer can occur, leading to disaggregation or deformation of 

the nanostructures hence facilitating the cargo release. Such drug delivery 

vehicles allow a high local concentration of the drug to be delivered only at the 

target site leading to highly effective therapy. This offers the advantages of (i) 
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reduced side effects since the drug is concentrated  only at the diseased site 

and (ii) reduction of drug dosage or administration frequency since high 

concentrations of drug can be attained at the target site.72 Among the nano-

scaled drug delivery vehicles, hybrid systems incorporating inorganic 

nanoparticles such as iron oxide nanoparticles (IONPs), gold nanoparticles, 

quantum dots, and silica with polymers have attracted much attention in 

recent years as they combine the unique intrinsic features of inorganic 

nanoparticles with those of responsive polymers affording multi-purpose 

complex hybrid nanostructures.76  

Of the aforementioned hybrid systems, much attention has been paid 

to the preparation of drug delivery vehicles incorporating magnetic 

nanoparticles (MNPs), typically iron oxide nanoparticles due to their 

biodegradability and low toxicity.77 The presence of iron oxide nanoparticles 

within the nanostructures offers the advantage (i) to image via magnetic 

resonance imaging the drug delivery vehicle, (ii) to target via magnetic 

guidance the nanostructure to the intended site, and (iii) to trigger the drug 

release through heating generated under application of alternating magnetic 

field at specific frequencies and fields by magnetic hyperthermia.78  

For the preparation of magnetic hybrid systems different techniques 

have been exploited which include: (i) grafting from approach which consists 

of surface initiated polymerization directly at the nanoparticle site,79–81 (ii) 

grafting to approach that is a post polymerization modification whereby pre-

synthesized polymers are attached to the surface of nanoparticles through 

ligating moieties on the polymers or via physical adsorption,82–86 (iii) in situ 

functionalization whereby nanoparticle synthesis is conducted in the presence 

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



133 
 

of a polymer resulting in functionalization,87–89 and (iv) encapsulation via self-

assembly into micelle type aggregates.90–95  

In most works cited in literature, the polymerization used for 

construction of the magnetic hybrid systems is usually achieved via 

conventional free radical polymerization in solution or emulsion. However, 

conventional free radical polymerization suffers from poor control over 

molecular weight and molar mass distribution as well as the inability to 

generate block copolymers. This has led to an increased interest in living 

radical polymerization (LRP) techniques since their emergence almost two 

decades ago.96 Living radical polymerization techniques that have been widely 

studied include atom transfer radical polymerization (ATRP), nitroxide 

mediated polymerization (NMP), and reversible addition-fragmentation chain 

transfer polymerization (RAFT).97 LRP techniques allow rapid access to well 

defined functional (co)polymers in a variety of different molecular architecture 

and thus offer good control over the size of hybrid nanostructures when 

exploited for surface functionalization.95 The tolerance to a wide variety of 

functional groups by these techniques enables facile access to a wide range of 

responsive hybrid systems—smart nanomaterials—at the same time offering 

the possibility of further functionalization via post-polymerization modification 

at the functional groups on the polymers. For details on LRP polymerization 

techniques, the reader is referred to several reviews and books.96–100 

As stated earlier, chemotherapeutic drugs suffer from lack of aqueous 

solubility, lack of selectivity and possible development of drug resistance. By 

incorporating these drugs inside polymeric hybrid nanosystems—e.g. thermo-

responsive systems—both biodistribution and circulation times are improved, 

alongside an increased concentration of the agent by the enhanced 
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permeability and retention (EPR) effect. To improve the accumulation of the 

therapeutic agent, the key appeal of using magnetic nanosystems is the ability 

to direct and accrue the therapeutic agent in a particular region by magnetic 

guidance/targeting.101 Under the influence of an external magnetic field, the 

superparamagnetic nanoparticles become magnetic and accumulate at the 

tumor site and once the field is removed they return to a paramagnetic state, 

making excretion possible.102  

In this chapter my research will focus on hybrid drug delivery systems 

integrating iron oxide nanocubes with thermo-responsive polymers for 

delivery of chemotherapeutic agents through a temperature stimulus. This 

opens up the perspective of combining hyperthermia treatment with 

chemotherapy. In this case, the thermo-responsive polymer accommodates 

the drug and after accumulation at the target site the application of an 

alternating magnetic field results in heat being generated from the magnetic 

nanoparticles—‘nanoheaters’—which forces the polymer to undergo 

conformational changes that leads to release of the encapsulated drug.72 

Although the cancer therapy via hyperthermia using magnetic nanoparticles 

alone has been proven to be effective103, it is however more effective if 

combined with chemotherapy104. 

Thermo-responsive polymers can undergo reversible changes in 

conformation and physical properties in response to changes in temperature.73 

Such polymers may exhibit a lower critical solution temperature TLC or an 

upper critical solution temperature TUC.105 For polymers that exhibit a lower 

critical solution temperature, polymer solubility is good in aqueous solution at 

temperatures below TLC but is observed to decrease above the TLC—transition 

known as the coil to globule transformation. Thus, when incorporated in 
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hybrid nanostructures, the response to temperature has the effect of swelling 

(coil state) and shrinking (globule state) the nanostructure with variations in 

temperature which can be exploited to trigger release of any entrapped 

molecules (Figure 1).  

 

 

Figure 1: Schematic representation of the heat-triggered drug delivery concept 

 

For drug delivery applications, it is desirable to have the transition 

temperature TLC of the polymer a few degrees above the body temperature as 

this ensures that drug leakage does not occur during transportation through 

the circulatory system and at the same time the temperature required for 

treatment is not too high to cause damage to the patient. It is also important 

that the polymer employed is biocompatible, water soluble and provides good 

stability to the hybrid magneto-polymer composite. Most of the thermo-

responsive hybrid nanostructures detailed in literature utilize polymers that 

exhibit TLC behavior with the most widely used polymer being poly(N-

isopropylacrylamide), TLC of 32 °C. Though the transition temperature of this 

polymer is below body temperature, the TLC can be easily adjusted by 

copolymerizing N-isopropylacrylamide with hydrophilic monomers to elevate 

the TLC to above body temperature. Homopolymers such as poly(N,N-

diethylacrylamide) (PDEAAm), poly(propylene oxide) (PPO), poly(vinyl methyl 

ether) (PVME), poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), and 

poly(ethylene glycol) (PEG), as well as block copolymers including 
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poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-

PEO) triblock copolymers have also been employed.106
  

 

4.2. Thermo-responsive polymers based on poly(N-

isopropylacrylamide)-co-poly(ethylene glycol) methyl ether 

acrylate 

 Recently, using RAFT polymerization, our group has reported the facile 

functionalization of strongly interactive iron oxide nanocubes (IONCs) with 

thermo-responsive (T-responsive) polymers and studied the doxorubicin 

hydrochloride (doxo) loading and release from this nanosystem under an 

alternating magnetic field (AMF).107 We demonstrated, as proof of concept, 

that the heat-triggered release of doxo from the thermo-responsive polymer 

functionalized IONCs was possible by applying an AMF under biologically 

relevant frequency and field conditions, given that—for a safe application of 

hyperthermia to patients—the product of frequency and  magnetic field (H·f) 

should be smaller than 5 x 109 A/m·s.108 In our case the doxo release was done 

under the frequency of 105 kHz and the field amplitude of 25 mT (20 kA/m), 

well below the so-called ‘biological limit’.  

 My contribution to this work was the study of the loading conditions of 

doxo as a function of initial doxo concentration, incubation time, cleaning 

method, and loading volume. Initially we used doxo stock solutions prepared 

weeks or months beforehand. After realizing that doxo is not stable if stored, 

at 4 °C in the dark, for long periods of time, we started preparing fresh doxo 

solutions before each loading experiment. The amount of doxo loaded was 

quantified by UV-Vis spectroscopy, by subtracting from the initial amount the 

doxo the amount that was left in the supernatant after each cleaning step by 

magnetic separation. For the preparation of samples for in vivo tests 
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quantification by fluorescence spectroscopy of the doxo released in the 

supernatant was carried out since fluorescence imaging would have been the 

imaging modality during the in vivo experiments to be used at the animal 

facility of our partners in Paris. We wondered if doxo quenching effects 

occurred after loading on the thermo-responsive polymer coated nanocubes. 

The release studies in water were also compared to the ones done in dimethyl 

sulfoxide (DMSO). DMSO was indeed a good solvent for the T-responsive 

polymers which would have helped the extension of the polymer to the coil 

state, thus releasing in solution the total amount of the drug loaded.      

 

4.2.1. Determining drug loading conditions 

 The classical loading conditions employed in our lab for doxo loading 

before I undertook the more in depth study were as follows: iron oxide 

nanocubes at 50 ppm Fe, 50 ppm initial doxo concentration, solvent—

phosphate buffered saline (PBS), incubation time—24 hours, loading volumes 

of 2 mL for small batches or 20 mL for release studies under AMF, and cleaning 

of the excess of drug done at the magnet (0.3 T). All these parameters were 

investigated with the aim of preparing a stable nanocarrier in the shortest time 

possible, and considering that for a complete in vivo study 28 mg of Fe in 

IONCs was needed overall and out of the total amount 14 mg of T-responsive 

polymer coated nanocubes had to be loaded with doxo. Per each animal 

injection 0.7 mg of Fe were needed.  

       The first parameter investigated was the effect of doxo concentration, 

that was the amount of doxo that was added to the IONCs solution. In this 

series of experiments all other conditions were kept constant and only the 

doxo amount was varied. As can be seen from the results summarized in Table 
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1, by progressively increasing the amount of starting doxo from 5 µg to 250 µg, 

the amount of doxo associated per 0.1 mg Fe increases from 0.3 µg to 122 µg, 

respectively. As the total amount of doxo associated per 0.1 mg Fe increased, 

the percentage loaded (calculated based on the initial doxo) saw initially a 

steep increase, from 6 to 40.8% (Figure 2), after which a plateau like behavior 

was observed with values in the range from 36 to 51% (Table 1, Figure2). Also 

it is worth mentioning that the number of magnetic cleaning steps needed to 

completely remove the excess of doxo increases by increasing the amount of 

initial doxo amount. For  instance for 5 µg initial doxo (2.5 ppm doxo) 2 

washing steps were enough, for 50 µg doxo (25 ppm doxo) 4 steps were 

needed, and for 250  µg doxo 7 washing steps were necessary to get rid of the 

free doxo in solution.   

 

Table 1: Study of the effect of doxo amount added to the IONCs solution for 24 

hours incubation on drug loading (%). Solvent: PBS. Cleaning: magnet.   

Sample 
Starting mDOXO 

[μg] 
VTOT 
[mL] 

mDOXO in 
supernatant [μg] 

Loading 
(%) 

1.1. 50 ppm Fe 5 2 4.7 6 

1.2. 50 ppm Fe 7.5 2 6.3 16 

1.3. 50 ppm Fe 10 2 7.6 24 

1.4. 50 ppm Fe 25 2 14.8 40.8 

1.5. 50 ppm Fe 50 2 31.8 36.4 

1.6. 50 ppm Fe 75 2 46.4 38.1 

1.7. 50 ppm Fe 150 2 83.8 44.1 

1.8. 50 ppm Fe 250 2 123 50.8 

 

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



139 
 

 

Figure 2: Percentage of doxorubicin loaded inside the T-responsive polymeric shell as 

a function of the initial amount of drug (before incubation for 24 hours). The overall 

amount of doxo loaded increased with the increase in starting doxo amount. The 

loading reached 40% for 25 µg doxo and it seemed to plateau in the range between 

35 and 50% loading. The black curve is just an indication for the eye. 

 

Table 2: Study of the effect of drug incubation time on drug loading (%). 

Volume: 3 mL. Solvent: PBS. Cleaning: magnet.    

Sample Starting mDOXO 
[μg] 

Time [h] 
mDOXO in 

supernatant [μg] 
Loading 

(%) 

2.1. 50 ppm Fe 50 6 36.1 27.8 

2.2. 50 ppm Fe 50 17 36.3 27.4 

2.3. 50 ppm Fe 50 24 35.9 28.2 
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Next, the incubation time that accounts for the time during which the 

thermo-responsive nanocubes were exposed to doxo, at 25 °C, was studied. 

Interestingly, the loading was similar for 6, 17 and 24 hours. Already after a 

couple of hours of incubation the drug was loaded inside the T-responsive 

polymer corona on the IONCs: 27.8% loading after 6 hours, 27.4% loading after 

17 hours, and 28.2% loading after 24 hours of incubation with doxo (Table 2). 

Longer incubation of the nanocube solution with the chemotherapeutic drug 

did not yield higher loading. This information was useful for the preparation of 

big batch loading experiments for in vivo studies as the time for the incubation 

and for the cleaning steps were limiting factors for the production of the big 

batch.  

The third parameter investigated was the cleaning method. Cleaning at 

the magnet was convenient and fast—within 30 min all the IONCs were 

accumulated at the magnet (VTot = 2 mL). But exposure to the magnet was 

destabilizing the nanocarriers, by possibly inducing a permanent magnetic 

moment in the iron oxide nanocubes with consequent partial aggregation. The 

typical 19 nm IONCs used for this study showed very good heating 

capabilities,22 but being at the interface between superparamagnetic and 

ferro(i)magnetic regimes they were difficult to handle and functionalize.107 

Preferably, the exposure to the magnet had to be avoided in order to avoid 

aggregation due to dipole-dipole interaction. For this reason centrifugation as 

alternative cleaning strategy to separate unbound doxo from the doxo-loaded 

nanocubes was also considered. The procedure was as follows: after 

incubation with the drug for 24 hours, the solution was transferred into 

Amicon tubes (100 kDa molecular weight cutoff membrane) and centrifuged 

for 15 min at the speed of 2 000 rotations per minute (rpm). Next the 
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supernatant was removed and the IONCs left in the Amicon tube were 

resuspended in fresh buffer. The centrifugation process was repeated three 

times. Complete removal of the free drug was monitored by UV-Vis 

spectroscopy as assessed by the disappearance of the absorption peak of doxo 

at λmax = 485 nm in the solution collected below the Amicon filter. Stability of 

the doxo-loaded nanocubes was preserved, as assed by dynamic light 

scattering measurements: the average hydrodynamic diameter dH by number 

was 233 ± 6 nm for the centrifuged sample, while the sample prepared in the 

same conditions and cleaned at the magnet had a hydrodynamic diameter of 

301 ± 6 nm (the initial sample had a dH around 200 nm). Unfortunately, a 

bigger loss of iron occurred when removing the excess of doxo by 

centrifugation compared to using magnetic decantation. As measured by ICP, 

the iron loss was 76%, due to the IONCs that got trapped inside the filter’s 

membrane and could not be resuspended in solution. That was not the case 

when a magnet was employed and only 6% Fe loss was estimated in the case 

of magnetic separation. Between the loss of stability and loss of ¾ of the 

material, a loss of stability and sample aggregation was preferred.             

 Lastly the volume of the solution during loading was briefly studied. 

When increasing the total volume from 2 to 3 mL, while keeping the other 

parameters constant, including Fe concentration (50 ppm), doxo concentration 

(25 ppm), and loading time (24 hours), a drop in loading capacity was 

observed. By reducing the solution volume, a higher loading was observed 

(with a corresponding loading percentage of 36.4% of doxo loaded for 2 mL vs. 

28.2% of doxo for 3 mL). In another experiment, when further increasing the 

volume, from 2 mL to 20 mL, the amount of doxo loaded decreased from 

23.1% to 17.6%, respectively.  
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Overall, in order to have a compromise between the stability of the 

sample, doxo loading efficiency, yield of the doxo loaded nanocube material 

and a reasonable time for the whole loading and cleaning procedure the 

following doxo loading conditions were set: 50 ppm Fe, 25 ppm doxo, 3 

cleaning steps in 2 or 20 mL solution volumes using PBS as solvent, and 

incubation done overnight (ca. 17 hours). For the magnetic cleaning the small 

2 mL batches were kept at the magnet 3 times for 30 minutes, while the big 20 

mL batches were kept at the magnet 3 times for 60 minutes, due to a slower 

magnet accumulation.   

 

4.2.2. Drug loading quantification: UV-Vis spectroscopy  

 It is known from literature that aqueous doxorubicin solutions 

photodegrade upon UV excitation.109 In order to avoid light exposure we kept 

all our solutions covered in aluminum foil inside a fridge at 4 °C. Nevertheless, 

a curious fact was noticed during the numerous loading experiments: even if 

the stock doxorubicin hydrochloride solution (1 mg/mL) was kept in the dark at 

4 °C, after a couple of weeks the molar extinction coefficient decreased up to 

25% of the value that was obtained the day when the solution was prepared.  

The absorption spectra of doxo at concentration of 5, 10, 15, 25, 50, 

and 100 µg/mL—measured on the day the stock solution was prepared—are 

plotted in Figure 3a. These solutions were kept as described earlier and 

measured 3 weeks later. The corresponding spectra are plotted in Figure 3c. 

One can clearly see that the absorption values recorded were much lower 

compared to the values determined 3 weeks prior. As for the molar extinction 

coefficient the value dropped from 10 448 Lmol-1cm-1 to 7 999 Lmol-1cm-1. For 

all following experiments fresh stock doxo solutions were prepared before 

each loading experiment. But the preparations for the in vivo tests were 
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already in full swing by the time we realized that, therefore in Table 3 it will be 

mentioned if the stock doxo solution used was a fresh or an old one. As we will 

see, this fact influences the loading capacity and it will be explained later.    

 

 

Figure 3: Doxorubicin hydrochloride instability over time. (a,c) Absorption spectra of 

doxo in phosphate buffered saline at different drug concentrations and (b,d) the 

corresponding calibration curves. The slope is the molar extinction coefficient—the 

length of the light path being 1 cm. The same solution was measured (a) on the day it 

was prepared or (c) three weeks later (while kept in the dark at 4 °C). The extinction 

coefficient value dropped from (b) 10 448 Lmol-1cm-1 to (d) 7 999 Lmol-1cm-1.  
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4.2.3. Sample preparation for in vivo studies   

The procedure for doxo loading was slightly modified in order to 

introduce a sterilization step. After addition of the IONCs to PBS, the solution 

was left under UV light for one hour. All the rest of the loading conditions were 

kept the same, only with the addition of a 3 minute sonication step at the end 

of the loading procedure in order to disperse the IONCs.  

The aim of the first experiment was to see the difference in loading in 

small batch vs. big batch. Once again a drop in loading was observed, with 

47.5% loading for 2 mL batch and 44.9% loading for 20 mL batch (Table 3), 

consistent with previous results. Next, as we realized the importance of using 

fresh doxo stock solutions, we compared two solutions: one using an old doxo 

solution and the other one using a fresh one. The difference in loading 

percentage was significant: 19.6% loading for the fresh solution and 40.9% for 

the old solution (Table 3). A possible explanation to the drop of loading 

efficiency could be related to the aggregation state of doxo when kept longer 

in solution as already reported110. During magnet cleaning the doxo aggregates 

could also have sedimented at the bottom of the vial although not trapped 

inside the polymeric corona. For the remaining experiments only fresh doxo 

solutions were used and the loading efficiency decreased, with maximum 27% 

loading achieved for the sample that was to be used for in vivo experiments. 

Unfortunately, despite the high loading—94 µg doxorubicin hydrochloride per 

0.7 mg Fe—the sample did not heat under alternating magnetic field: the 

maximum T reached, by 50 µL sample of doxo loaded thermo-responsive 

IONCs at an Fe concentration of 14 g/L, was 32 °C under frequency and field 

amplitude of 110 kHz and 25 mT, while the lower critical solution temperature 

of this batch was 35 °C, given that the body temperature of mice is ca. 31 °C.    
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Table 3: Loading conditions and loading values (%) for various samples 

prepared with the scope of preparing for the in vivo experiments. Incubation: 

overnight. Cleaning: magnet.      

Sample 
mFe 
[mg] 

Starting mDOXO [μg] 
(doxo solution 

used) 

Volume  
[mL] 

(solvent) 

Loading 
determined 

by UV-Vis [%] 

1.1. 50 ppm Fe  
(small batch) 

0.1 25 (old) 2  
(milliQ-H2O) 

47.5 

1.2. 50 ppm Fe  
(big batch) 

1 250 (old) 20  
(milliQ-H2O) 

44.9 

 

2.1. 50 ppm Fe  
(small batch) 

0.1 25 (fresh) 2  
(PBS) 

19.6 

2.2. 50 ppm Fe  
(small batch) 

0.1 25 (old) 2  
(PBS) 

40.9 
(26.9)†††† 

 

3.1. 25 ppm Fe  
(small batch) 

0.05 50 (fresh) 2  
(PBS) 

23.1 

3.2. 25 ppm Fe  
(big batch) 

0.5 500 (fresh) 20  
(PBS) 

17.6 

 

4.1. 25 ppm Fe  
(big batch) 

0.5 500 (fresh) 20  
(PBS) 

14.2 

4.2. 50 ppm Fe  
(big batch) 

1 500 (fresh) 20  
(PBS) 

21 

 

5. The samples for 
in vivo experiments 
[Paris] 
(x 10 vials of  
20 mL) 

1 500 (fresh) 20 (PBS) 27 (9.3)‡‡‡‡ 

 

                                                           
††††

 Loading as determined by fluorescence spectroscopy after release in DMSO:PBS 
(90:10) mixture.  
‡‡‡‡

 Loading as determined by fluorescence spectroscopy after release in DMSO:PBS 
(90:10) mixture. 
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By performing additional TEM characterization (Figure 4) on this 

sample, the nanocubes obtained with RAFT living polymerization were highly 

polydispersed. On the TEM micrographs some individual IONCs and a majority 

of aggregates were observed, aggregates that hampered the IONCs heating 

performance both in vitro and, of course, in vivo. It is important to underline 

that under given AMF conditions for the 19 nm particles the Brownian 

relaxation mechanism was not negligible. By aggregating the particles in a 

controlled50 or a non-controlled manner a decrease of their heating capacity 

was observed. However the same individually coated nanocubes stabilized by 

poly(ethylene glycol), having a gallic acid moiety as anchoring unit, were 

suitable nanoheaters and were capable to produce “tumor destructuration” in 

vivo.104 Therefore, the next goal of the polymer chemists in our group was to 

obtain nanocubes functionalized with thermo-responsive polymers that (i) 

would be individually coated by the thermo-responsive shell, (ii) that would be 

stable and (iii) that would not aggregate during the polymerization or the 

cleaning steps, thus providing comparable specific absorption rate (SAR) values 

for further in vivo studies.  
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Figure 4: Representative TEM micrographs of samples (a,b) 1, (c,d) 2, (e,f) 3, and (g,h) 

4 prepared for in vivo studies. (a,c,e,g) IONCs coated with T-responsive polymers in 

PBS before doxo loading. (b,d,f,h) After doxo loading inside T-responsive polymer 
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corona of IONCs. The doxo loading procedure did not impact the agglomeration state 

of the sample. If the starting sample was forming bead like structures before loading 

(a), the 3D agglomerates were observed after loading as well (b). From batch to batch 

the stability of the IONCs was varying, with some forming mainly 2D nanoconstructs 

on the TEM grid (c,d) while others were composed of both individual nanocubes and 

bead like agglomerates (f,h).         

 

4.3. Thermo-responsive polymers based on poly(diethylene 

glycol methyl ether methacrylate-co-oligo ethylene glycol 

methyl ether methacrylate) 

 With the aim of obtaining individually coated thermo-responsive 

nanoparticles for in vivo application, in the last three years another PhD 

student from our group has set up a new polymerization procedure that has 

guaranteed such an achievement (patent pending). Also the monomer 

composition of the thermo-responsive polymers was changed. Instead of using 

poly(N-isopropylacrylamide)-co-poly(ethylene glycol) methyl ether acrylate 

(PNIPAM-co-PEGA), poly(diethylene glycol methyl ether methacrylate-co-oligo 

ethylene glycol methyl ether methacrylate) (P(DEGMEMA-co-OEGMEMA)) was 

used due to its sustained biocompatibility. In addition, the LCST of this PEG-

based polymer could be easily tuned to reach a desirable value by varying the 

monomer compositions, as described previously for PNIPAM.   

 
4.3.1. Drug loading with previously determined loading conditions 

 Doxo loading experiments were carried out on the newly synthesized T-

responsive polymers, P(DEGMEMA-co-OEGMEMA) IONCs. Initially, similar 

loading conditions were employed for drug loading, as the goal was still the 

same: having a stable nanocarriers for in vivo studies. The experimental 

conditions for sample SIM404 are summarized in Table 4. To small batches of 2 
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mL with Fe concentration of 50 ppm, 50 and 100 µg doxo were added for 

incubation overnight.  

For sample SIM404 the average hydrodynamic size was not checked 

before drug loading, but it was done for all the subsequent experiments. After 

doxo loading, the sample to which 50 µg doxo was added had a number 

weighted dH of 57 ± 1 nm, the dH of the sample with the double amount of 

doxo added was 63 ± 5 nm (Table 5). This new polymerization method (patent 

pending) provided samples that were extremely stable and that would take 

hours or even days to accumulate at the 0.3 T magnet, while with the old RAFT 

polymerization the sample were attracted to the magnet within minutes—

usually one cleaning step lasted only 30 min. Therefore the magnetic 

accumulation step for the new batches lasted 24 to 48 hours per each 

cleaning, depending on the sample. The whole cleaning process lasted 5 to 7 

days. After 5 days exposure to the magnet, although the average 

hydrodynamic diameters increased to above 150 nm and the PDI indicated a 

slightly larger polydispersity (PDI increased from 0.34 to 0.5, Table 5) no 

aggregation was observed on the TEM micrographs (Figure 5). The IONCs 

formed chain like structures due to dipole-dipole interaction, but no 3D 

aggregation was present, like it was the case with PNIPAM-co-PEGA coated 

IONCs (Figure 4a,b,e,h).  

 
Table 4: Doxo loading conditions for sample SIM404 

Sample mFe [mg] mDOXO [mg] VTOT [mL] 

1. control 0 0.05 2 

2. control 0 0.1 2 

3. 50 ppm Fe 25 ppm doxo 0.1 0.05 2 

4. 50 ppm Fe 50 ppm doxo 0.1 0.1 2 

 
 

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



150 
 

Table 5: DLS data for sample SIM 404 

Sample 
Z-average 

[nm] 
PDI 

Number 
mean [nm] 

3. after doxo loading before magnet 122 ± 5 0.35 ± 0.01 57 ± 1 

3. after doxo loading after 
cleaning@magnet 

213 ± 7 0.34 ± 0.04 148 ± 14 

4. after doxo loading before magnet 493 ± 84 0.7 ± 0.1 63 ± 5 

4. after doxo loading after 
cleaning@magnet 

421 ± 34 0.50 ± 0.07 206 ± 42 

 
 

 

Figure 5: Doxo loaded IONCs@P(DEGMEMA-co-OEGMEMA). TEM micrographs of 

doxo loaded IONCs for initial conditions of (a,b) 50 ppm Fe, 25 ppm doxo and  (c,d) 50 

ppm Fe, 50 ppm doxo. The samples were stable after 5 days exposure to the magnet 

as no 3D aggregates were observed. Due to dipole-dipole interaction the IONCs 

formed chain like structures (a,c,d), but also individual IONCs could be observed on 

the TEM grid (b).    
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 The loading was calculated by carrying out UV-Vis spectroscopy 

measurements and by subtracting the amount of doxo left in the supernatant 

after the loading from the initial doxo amount. The loading capacity of the 50 

ppm Fe, 25 ppm doxo sample was 64% (32 µg doxo per 0.1 mg Fe) and for the 

50 ppm Fe, 50 ppm doxo sample 69% of the initial drug was loaded inside the 

polymeric corona (69 µg doxo per 0.1 mg Fe). These first tests were performed 

with a doxorubicin hydrochloride solution which was an old batch, and 

therefore these loading efficiencies might be overestimated. In the following 

experiments, fresh doxo solutions were prepared before each loading.     

 Next, we found out how SAR values changed (i) for the different 

batches of IONCs (influence of the starting magnetic material), (ii) the same 

starting material but different batches of polymerization (influence of the 

polymeric shell), and (iii) as a function of Fe concentration and thus number of 

nanocubes in solution.     

 We first measured the SAR values of different iron oxide nanocubes of 

similar core size  to verify the batch to batch reproducibility (16.6 ± 2.5 nm 

cube-edge length for sample SIM404 and 17.7 ± 2.4 nm for sample SIM406). As 

we can see from Table 6, the SAR value of sample SIM404 was 167 ± 3 W/gFe, 

18% lower compared to sample SIM406-0. The factors that influenced SAR 

where the size of the sample and the sample polydispersity. A monodispersed 

sample with a cube edge length of 19 nm was the ideal candidate, but not 

always achieved. A SAR value of ca. 170 W/gFe was still a good value, as 

previously under magnetic field amplitude of 25 mT and frequency of 105 kHz 

the SAR value of IONCs@PNIPAM-co-PEGA was ca. 40 W/gFe.  

Afterwards, the influence of the polymeric corona was checked. From 

the same starting batch SIM406, 5 polymerizations were carried out in 
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parrallel. The SAR values ranged from 181 ± 1 W/gFe to 236 ± 6 W/gFe (Table 6). 

The factors influencing the batch to batch reproducibility were mainly the 

polymer thickness and the amount of free polymer in solution after 

polymerization (that depended on sample cleaning done by 

ultracentrifugation).       

 Lastly, the influence of the iron concentration was studied. The most 

concentrated sample, SIM406-4, whose Fe concentration was 8.1 g/L was 

diluted to 3.7 g/L and later to 2 g/L and SAR values were measured for these 3 

different concentrations. For the lowest Fe concentration the SAR value was 

181 ± 2 W/gFe, then it increased to 200 ± 2 W/gFe for the middle Fe 

concentration and dropped once again to 181 ± 2 W/gFe for 8.1 g/L Fe. Reports 

in literature are very controversial: some groups report a decrease of SAR with 

Fe concentration, other observe an increase in SAR, while others observe yet 

another trend: an increase in SAR followed by a decrease52, with the optimal 

Fe concentration range being between 1.5 and 3 g/L. Even if we observed a 

10% variation in SAR values as a function of Fe concentration, in vivo the Fe 

concentration would be 14 g/L so we considered the value for higher Fe 

concentrations.     
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Table 6: Specific absorption rate values for different samples of 

IONCs@P(DEGMEMA-co-OEGMEMA) measured under magnetic field 

amplitude of 25 mT and frequency of 105 kHz  

(DM1 NanoScale Biomagnetics device) 

Sample 
Volume 

[mL] 
Fe concentration 

[g/L] 
SAR 

[W/gFe] 

SIM404 1 2.9 167 ± 3 

SIM406-0 1 2.0 205 ± 3 

SIM406-1 1 2.8 236 ± 6 

SIM406-2 1 3.0 -§§§§ 

SIM406-3 1.1 2.9 194 ± 4 

SIM406-4 0.5 8.1 181 ± 1 

SIM406-4 0.5 3.7 200 ± 2 

SIM406-4 0.5 2.0 181 ± 2  

 

As sample SIM406-4 was the most concentrated one it was used to 

carry out doxo loading experiments. The loading conditions were: 50 ppm Fe, 

25 ppm doxo (initial mdoxo = 50 µg), VTotal = 2 mL. The stability of the sample, 

assessed by DLS and TEM, was monitored during the loading process. The 

average hydrodynamic size by number was 65 ± 2 nm (PDI 0.16) before doxo 

loading and it increased to 83 ± 5 nm (PDI 0.19) after incubation with the drug 

overnight and up to 271 ± 20 nm (PDI 0.4) after 5 days of cleaning at the 

magnet (Table 7). The DLS results were once again in contradiction with what 

was observed by TEM (Figure 7): sample presented no aggregation and both 

chain like structures were observed at the end of the loading process (Figure 

7c) and individual IONCs (Figure 7d). The chain-like structure might account for 

the larger DLS sizes measured. 

 

                                                           
§§§§Sample precipitated during hyperthermia experiments. SAR value could not be 
determined.   
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Figure 6: Representative TEM micrographs of IONCs coated with T-responsive 

polymers (a) before doxo loading, (b) after doxo loading overnight before magnet 

exposure, and (c,d) after doxo loading and after cleaning at the magnet for 5 days. 

One could observe that no aggregation of the sample took place. After doxo loading 

and before magnet exposure, the polymer shell was ticker, which could be an 

indication of the drug loaded inside the corona. After cleaning the sample by exposing 

it to a 0.3 T magnet the sample formed chain like structures due to dipole-dipole 

interactions (c) as seen for non-loaded sample as well (a), but also individual IONCs 

could be observed on the TEM grid (d), that contradicted the high hydrodynamic 

diameters dH determined by DLS.    
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Table 7: DLS data for sample SIM406-4 

Sample 
Z-average 

[nm] 
PDI 

Number 
mean 
[nm] 

Intensity 
mean 
[nm] 

Volume 
mean 
[nm] 

before doxo 
loading 

106 ± 1 0.16 ± 0.01 65 ± 2 126 ± 2 100 ± 1 

after doxo 
loading before 
magnet 

144 ± 3 0.19 ± 0.02 83 ± 5 173 ± 9 173 ± 16 

after doxo 
loading after 
cleaning 
@magnet 

313 ± 14 0.4 ± 0.1 271 ± 20 518 ± 137 547 ± 174 

 

 The loading achieved with a fresh sample of doxo was 43% (21.5 µg 

doxo per 0.1 mg Fe), lower compared to loading with the old doxo sample—32 

µg doxo per 0.1 mg Fe, consistent with previous results. Once we knew that 

we could load doxo inside the new thermo-responsive polymer, P(DEGMEMA-

co-OEGMEMA), the next goal was to investigate the release under AMF.    

For the samples prepared with RAFT polymerization, only a few in vitro 

release tests under AMF were carried out. The release experiment under AMF 

described in the work by Kakwere et al.107 was done on 800 µL of sample at an 

Fe concentration of 3.8 g/L. We observed a release of 22% of the loaded doxo 

after 240 minutes of hyperthermia under alternating magnetic field amplitude 

of 25 mT and frequency of 220 kHz. It should be underlined that in these 

conditions, the maximal temperature reached was 87 °C, a temperature 35 °C 

above the LCST of the polymer (52 °C for that batch of T-responsive polymers). 

But release from smaller volumes, e.g. 50 µL, was not studied. Also, the 

heating performance of big volumes (150 µL) vs. small volumes (50 µL) of T-

responsive polymer coated IONCs had to be assessed in both hyperthermia 

devices that we had: (i) NanoScale Biomagnetics that allowed a more precise 
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SAR value calculation as the heat losses due to heat exchange with the 

environment were minimized (on which all of the SAR measurements so far 

were carried out) and (ii) Nanotherics device in which heat losses were more 

significant and the magnetic field amplitude was homogeneous only in the 

middle of the coil, thus the position of the sample vial influenced the SAR value 

measured. But this was the instrument being used for in vivo experiments.            

 

4.3.2. Studies to prepare for in vivo experiments  

4.3.2.1. Volume influence on specific absorption rate value and 

hyperthermia 

Firstly, we looked into the influence of volume on both SAR values and 

the maximum temperature reached during 30 minute hyperthermia 

experiments. The SAR value was measured before hyperthermia experiments. 

For 150 µL sample volume at 2.5 g/L Fe concentration, SAR was 220 ± 5 W/gFe 

(B = 25 mT, f = 105 kHz). The SAR value for 50 µL sample at the same Fe 

concentration and under same frequency and field amplitude condition was 

266 ± 5 W/gFe.      

Next, the temperature profile as a function of time was recorded for 

both samples at Fe concentration of 2.5 g/L. We opted for a lower Fe 

concentration as we were aiming for temperatures a few degrees above the 

LCST of the polymer that was usually ca. 40 °C. The three hyperthermia 

experiments were run with 30 minute break in between and no sample 

sonication during the rest time. We were trying to mimic the in vivo conditions 

and see the effect of sample aggregation on heating performance.      

The temperature profile for the sample with a 150 µL volume is plotted 

in Figure 7. One could observe a slow temperature increase for the first 

hyperthermia treatment, while in the consecutive runs the increase was 
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steeper. This was due to sample aggregation during heating and thus to a 

higher local Fe concentration at the bottom of the vial where the temperature 

probe was placed. Despite aggregation, the maximum temperature reached 

during the second run was 55 °C, the same as for the first run. This led us to 

believe that even if sample aggregated after reaching its LCST, the particles still 

heated despite aggregation. 

 

 
Figure 7: Three consecutive 30 minute long hyperthermia treatments under frequency 

and field conditions of 105 kHz and 25 mT (NanoScale Biomagnetics instrument) for a 

volume of 150 µL IONCs—at an Fe concentration of 2.5 g/L—coated with T-responsive 

polymers: blue line—first hyperthermia experiment, red line—second hyperthermia 

experiment, and green line—third hyperthermia experiment. The maximum 

temperature reached during 30 minute exposure to AMF was 55 °C. Once the 

temperature reached the LCST in the first run, the sample precipitated, thus the 

20

25

30

35

40

45

50

55

60

0 300 600 900 1200 1500 1800

Te
m

p
e

ra
tu

re
 [

°C
] 

Time [s] 

1st hyperthermia treatment

2nd hyperthermia treatment

3rd hyperthermia treatment

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



158 
 

heating curve for 2nd and 3rd run was steeper as locally (at the bottom of the vial) the 

concentration of the IONCs was much higher.  

  
For the sample with a 50 µL volume (Figure 8), the maximum 

temperature reached was only 43.5 °C, but still above the LCST of the polymer. 

This sample aggregated as well after the 1st run, but similar to the previous 

sample aggregation did not have a significant impact on heating performance.     

 

 

Figure 8: Three consecutive 30 minute long hyperthermia treatments under frequency 

and field conditions of 105 kHz and 25 mT (NanoScale Biomagnetics instrument) for a 

volume of 50 µL IONCs—at an Fe concentration of 2.5 g/L—coated with T-responsive 

polymers: blue line—first hyperthermia experiment, red line—second hyperthermia 

experiment, and green line—third hyperthermia experiment. The maximum 

temperature reached during 30 minute exposure to AMF was 43.5 °C, 11.5 °C lower 

compared to the 150 µL sample, for the same Fe concentration. Even if the maximum 
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temperature was lower than before it was still situated in the range from 40 to 45 °C, 

that corresponded to mild hyperthermia treatments. Similar to previous sample, the 

sample aggregated after the first run.  

  

4.3.2.2. Doxorubicin loading and release under AMF study 

 Following the study of the volume influence on SAR and maximum 

temperature reached carried out with the NanoScale Biomagnetics 

hyperthermia device, the next goal was to compare the two hyperthermia 

instruments in terms of SAR and maximum temperature reached for samples 

of 50 µL: with and without loaded drug. A new doxo loading experiment was 

carried out on 2 mL and 20 mL of sample. The experimental conditions are 

summarized in Table 8.     

The average hydrodynamic diameter by number was 52 ± 20 nm (PDI 

0.19) before doxo loading. It increased to 86  ± 6 nm (PDI 0.19) and 78 ± 8 nm 

(PDI 0.2) after incubation with the drug overnight for 2 mL and 20 mL samples, 

and further to 93 ± 52 nm (PDI 0.7) and to 88 ± 23 nm (PDI 0.65) after 7 days of 

cleaning at the magnet for 2 mL and 20 mL samples, respectively (Table 9). The 

TEM images revealed only chain like arrangements (3D aggregates could be 

excluded) on the TEM grids for all the samples: before loading, after loading 

and after cleaning at the magnet for one week (Figure 9). 

 

Table 8: Doxo loading conditions for sample SIM408 

Sample mFe [mg] mDOXO [mg] VTOT [mL] 

1. 50 ppm Fe 25 ppm doxo 0.1 0.05 2 

2. control 0 0.05 2 

3. 50 ppm Fe 25 ppm doxo 1 0.5 20 

4. control 0 0.5 20 
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Figure 9: Representative TEM micrographs of IONCs coated with T-responsive 

polymers (a) before doxo loading, (b) after doxo loading overnight before magnet 

exposure, and (c,d) after doxo loading and after cleaning at the magnet for 7 days: (c) 

VTot = 2 mL and (d) VTot = 20 mL. The IONCs were well dispersed in solution, no 

aggregation occured. Due to dipole-dipole interactions the IONCs formed chain like 

structures on all four TEM grids.  
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Table 9: DLS data for sample SIM408 

Sample 
Z-average 

[nm] 
PDI 

Number 
mean 
[nm] 

Intensity 
mean 
[nm] 

Volume 
mean 
[nm] 

SIM408 before doxo 
loading 

118 ± 1  0.19 ± 0.01 52 ± 20 145 ± 3 106 ± 9 

1. after doxo loading 
before magnet 

148 ± 2 0.19 ± 0.02 86 ± 6 179 ± 6 165 ± 8 

1. after doxo loading 
after cleaning@magnet 

469 ± 18  0.70 ± 0.16 93 ± 52 950 ± 5 
2168 ± 

14 

3. after doxo loading 
before magnet 

149 ± 2 0.20 ± 0.02 78 ± 8 204 ± 26 173 ± 5 

3. after doxo loading 
after cleaning@magnet 

490 ± 20 0.65 ± 0.08 88 ± 23 1090 ± 4 
2899 ± 

83 

 

 The loading efficiency measured by UV-Vis spectroscopy was 34% for 

the small batch of 2 mL (17 µg doxo per 0.1 mg Fe) and 23% for the 20 mL 

batch (115 µg doxo per 1 mg Fe), consistent with previous results when a 

decrease in loading efficiency was observed by increasing the  volume. 

Before running the 30 minute long hyperthermia treatments on doxo 

loaded samples, the SAR of this batch was measured on a non-loaded sample. 

For the 50 µL sample at 3.95 g/L Fe concentration measured with the 

NanoScale Biomagnetic instrument, SAR was 223 ± 1 W/gFe (B = 25 mT, f = 105 

kHz). The SAR value of the same 50 µL sample at the same Fe concentration, 

measured with the NanoTherics device was 149 ± 8 W/gFe (B = 25 mT, f = 110 

kHz), as expected, lower compared to the one measured with the NanoScale 

Biomagnetics device. As earlier explained the NanoTherics device has more 

heat losses given that the sample holder is less isolated than the NanoScale 

device. 

Next, the temperature profile as a function of time was recorded for 

the non-loaded nanocube solution at Fe concentration of 3.95 g/L in the 

UNIVERSITAT ROVIRA I VIRGILI 
AVANCES EN SISTEMAS INTERACTIVOS PARA PERSONAS CON PARÁLISIS CEREBRAL 
Dina Niculaes 
 



162 
 

NanoTherics device (Figure 10). Similar to the 150 µL sample measured with 

the NanoScale Biomagnetics device (Figure 7), a slow temperature increase for 

the first hyperthermia treatment could be observed, while the increase was 

steeper in consecutive runs (at least 15 minutes needed to reach the plateau 

temperature in the first run vs. ca. 5 minutes for the 2nd and 3rd treatment, 

Figure 10). The maximum temperature reached in the first run was 48 °C, after 

which the sample aggregated. After aggregation the sample reached lower 

maximum temperatures of 45 and 46 °C, but these temperatures were still 

suitable for mild hyperthermia treatments.   

  

 
Figure 10: Three consecutive 30 minute long hyperthermia treatments under 

frequency and field conditions of 110 kHz and 25 mT (NanoTherics instrument) for a 

volume of 50 µL IONCs—at an Fe concentration of 3.95 g/L—coated with T-responsive 

polymers: blue line—first hyperthermia experiment, red line—second hyperthermia 

experiment, and green line—third hyperthermia experiment. The maximum 
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temperature reached during 30 minute exposure was 48 °C. Sample aggregated after 

1st hyperthermia run, and though temperature difference ΔT decreased from 28 °C 

(for the 1st run) to 22 °C (for the 2nd run), the maximum temperature reached was 

above 44 °C, thus suitable for hyperthermia experiments.  

 

 After checking the temperature profile for 50 µL of non-loaded 

nanocube solution in both devices, the next step was to check the same 

temperature profile on drug loaded nanocube solution (in both devices). The 

sample SIM408 that was loaded previously, with 23% drug loading efficiency, 

was used for these experiments. In Figure 11 and Figure 12 the temperature 

profiles of the doxo loaded T-responsive IONCs solutions are plotted, with the 

first one corresponding to a 50 µL solution (Fe concentration of 3.2 g/L) 

measured in the NanoScale Biomagnetics device and the second one to a 50 µL 

solution (Fe concentration of 3.5 g/L) measured in the Nanotherics device. A 

slightly higher Fe concentration was used for the Nanotherics device in order 

to compensate for heat losses. However, we underestimated the Fe 

concentration needed to reach the LCST of the polymer, and unfortunately the 

maximum temperature reached was only 39.5 °C, thus the LCST temperature 

was not overcome for the sample analyzed with the NanoTherics device 

(Figure 12).  
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Figure 11: Three consecutive 30 minute long hyperthermia treatments under 

frequency and field conditions of 105 kHz and 25 mT (NanoScale Biomagnetics 

instrument) for a volume of 50 µL IONCs—at an Fe concentration of 3.2 g/L—coated 

with T-responsive polymers and loaded with doxorubicin hydrochloride: blue line—

first treatment, red line—second treatment, and green line—third hyperthermia 

treatment.   
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Figure 12: Three consecutive 30 minute long hyperthermia treatments under 

frequency and field conditions of 110 kHz and 25 mT (NanoTherics instrument) and a 

fourth treatment under frequency and field conditions of 105 kHz and 25 mT 

(NanoScale Biomagnetics device) for a volume of 50 µL IONCs—at an Fe concentration 

of 3.5 g/L—coated with T-responsive polymers and loaded with doxorubicin 

hydrochloride: blue line—first hyperthermia experiment, red line—second 

hyperthermia experiment, green line—third hyperthermia experiment, and violet 

line—fourth hyperthermia experiment. The maximum temperature reached during 30 

minute exposure to AMF with the NanoTherics instrument was 39.5 °C, the maximum 

temperature increasing to 41 °C during the 4th run carried out with NanoScale 

Biomagnetics device.  
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 The same sample, after 3 hyperthermia treatments in the NanoTherics 

device, was exposed to an alternating magnetic field inside the NanoScale 

Biomagnetics device in order to see if the maximum temperature reached 

(39.5 °C) was due to the doxo loaded inside the polymer that decreased the 

heating performance of the sample (as the same non-loaded sample reached 

48 °C at a slightly higher Fe concentration of 3.95 g/L) or if it was due to the 

device. In the 4th run, the maximum temperature increased to 40.8 °C (Figure 

12), thus not significantly higher than the value reached on the NanoTherics 

device.  

Also, if we compare the maximum temperature of 44.5 °C reached with 

the NanoScale device (50 µL at Fe concentration of 3.2 g/L) for the doxo 

loaded sample to a similar***** non-loaded sample at a lower Fe concentration 

(50 µL at Fe concentration of 2.5 g/L), but that reached a Tmax of 42.5 °C (Figure 

8), the data suggests that the drug loaded nanocubes had lower heating 

performance.   

 Lastly, given that we needed more material for one final study, yet 

another sample was prepared for doxo release studies under AMF: SIM407. 

The loading conditions were: 50 ppm Fe, 50 ppm doxo, VTotal = 20 mL. The DLS 

data is summarized in Table 10 and the TEM images of the samples after doxo 

loading can be seen in Figure 13.   

 
 
 
 
 
 

                                                           
*****

 Batch to batch variability must be taken into consideration. I am comparing batch 
SIM408 and batch SIM406, with same cube edge length of a = 17.7 ± 2.4 nm.     
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Table 10: DLS data for sample SIM407 

Sample 
Z-average 

[nm] 
PDI 

Number 
mean 
[nm] 

Intensity 
mean 
[nm] 

Volume 
mean 
[nm] 

before doxo loading 114 ± 2  0.19 ± 0.02  72 ± 10  140 ± 3  98 ± 8  

after doxo loading 
before magnet 

126 ± 1 0.21 ± 0.01  83 ± 5 151 ± 3  129 ± 1  

after doxo loading  
after cleaning 
@magnet 

129 ± 1 0.16 ± 0.01  98 ± 1  152 ± 2  138 ± 2 

 

 

Figure 13: Representative TEM micrographs of IONCs coated with T-responsive 

polymers after doxo loading overnight and before magnet exposure. The IONCs are 

well dispersed in solution, no aggregation occured. The chain like structures were no 

longer observed and this correlated to Z-average of 126 ± 1 nm with a low PDI of 0.21. 

The light grey polymer shell could be well observed on the TEM micrographs (a).  

 

 Interestingly, despite having a cube edge length of 18.7 ± 3.3 nm, this 

sample did not form chain like structure on the TEM grid (Figure 13), alongside 

having PDI values ≤ 0.21: before doxo loading (0.19 ± 0.02), after doxo loading 

and before magnet cleaning (0.21 ± 0.01) and after one week magnetic 

cleaning (0.16 ± 0.01) (Table 10). In the previous loading experiments the PDI 

values after magnet exposure were usually ≥ 0.4: 0.4 ± 0.1 for sample SIM406-

4 (Table 7), 0.70 ± 0.16 for sample SIM408 small batch, and 0.65 ± 0.08 nm for 
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sample SIM408 big batch (Table 9). Correspondingly, the Z-average increased 

from 114 ± 2 nm before doxo loading to 129 ± 1 nm at the end of the drug 

loading and cleaning procedure. The increase could be attributed to the drug 

incorporation. By UV-Vis spectroscopy the loading efficiency was determined 

to be 43% (430 µg doxo per 1 mg Fe).   

 The drug loaded sample SIM407 was used for release experiments 

under alternating magnetic fields. The Fe concentration chosen was 4 g/L in 

order to reach temperatures above the LCST of the polymer (41 °C). The 

volume was kept at 50 µL to mimic in vivo experiments conditions, but 

NanoScale Biomagnetics was the device used for this experiment in order to 

minimize heat losses. This was only a trial run to determine the total amount 

of doxo released after 3 cycles of hyperthermia treatment.  

The temperature profiles of the three hyperthermia cycles on doxo 

loaded 50 µL nanocube solution at an Fe concentration of 4 g/L are plotted in 

Figure 14. The maximum temperature reached in the first run was 48.9 °C, 

followed by two cycles reaching 49.1 °C. These high temperatures were above 

the LCST of the polymer, therefore they should have insured a heat triggered 

release of the drug. Indeed, the absorption spectrum of the supernatant after 

90 minutes exposure to AMF and magnetic separation of the IONCs overnight 

(diluted twice due to small volumes and a minimum of 50 µL needed for UV-

Vis spectroscopy measurements), the characteristic peak of doxo at 485 nm 

could  be observed (Figure 15). Unfortunately, the exact amount could not be 

quantified due to interference of the Fe absorption band. Also, pinkish color 

(characteristic doxorubicin solution color) was observed on the walls of the 

plastic vial, suggesting that doxo tended to stick to polymeric materials and 
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was not well solubilized in solution, as reported in literature and observed by 

us on numerous occasions.             

 

 

Figure 14: Three consecutive 30 minute long hyperthermia treatments under 

frequency and field conditions of 110 kHz and 25 mT (NanoTherics instrument) for a 

volume of 50 µL IONCs—at an Fe concentration of 4 g/L—coated with T-responsive 

polymers and loaded with doxorubicin hydrochloride: blue line—first hyperthermia 

experiment, red line—second hyperthermia experiment, and green line—third 

hyperthermia experiment. The maximum temperature reached during 30 min 

exposure to AMF with the NanoTherics instrument was 49 °C.  
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Figure 15: Heat-triggered doxo release under alternating magnetic field for a volume 

of 50 µL at Fe concentration of 4 g/L. Absorption spectra of the initial doxorubicin 

hydrochloride solution in PBS (blue line), 1st cleaning step (red line), 2nd cleaning step 

(green line), 3rd cleaning step (violet line), and 25 µ L of supernatant (+25 µL of PBS) 

after 90 minutes of AMF (3 hyperthermia cycles for 30 minutes with 24 hours break in 

between the hyperthermia treatments). The doxo characteristic peak could be 

observed in the supernatant solution, confirming the heat-triggered drug release.      
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4.4. Conclusions 

 In this chapter, two nanosystems designed for heat-triggered 

chemotherapeutic drug release were investigated. In a first instance, the doxo 

loading conditions as a function of initial doxo concentration, incubation time, 

cleaning method, and loading volume were studied on thermo-responsive 

polymers grown from the surface of the IONCs by reversible addition-

fragmentation chain transfer polymerization. The thermo-responsive polymer 

of choice was poly(N-isopropylacrylamide)-co-poly(ethylene glycol) methyl 

ether acrylate, whose lower critical solution temperatures values could be 

tuned from 32 °C (the LCST of PNIPAM) to values above body temperature (42 

- 52 °C). 

 In the second part, the study was focused on better characterizing and 

predicting sample performance for in vivo use. The polymerization method 

(patent pending) and the thermo-responsive polymer were changed in order 

to obtain individually coated iron oxide nanocubes with high specific 

absorption values. The polymer of choice was poly(diethylene glycol methyl 

ether methacrylate-co-oligo ethylene glycol methyl ether methacrylate) due to 

its biocompatibility and ease of LCST tuning to values in the range 39 - 42 °C, 

correlated to polymer composition. The heating performance of thermo-

responsive polymer coated iron oxide nanocubes, in terms of specific 

absorption rate and maximum temperature reached during 30 minute 

hyperthermia treatment, was assessed in small volumes of 50 µL at Fe 

concentrations ranging from 2.5 to 4 g/L. Lastly, the heat-triggered doxorubicin 

release under alternating magnetic fields at biologically relevant frequency and 

field conditions was qualitatively, but not quantitatively proven.             
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4.5. Experimental part  

CHEMICALS 

Doxorubicin hydrochloride and all other solvents were purchased from Sigma 

Aldrich at the highest purity available and used as received. Iron oxide 

nanocubes (IONCs) were prepared as previously reported.22,111 Thermo-

responsive polymers were grown from the surface of the IONCs by RAFT 

copolymerization of N-isopropylacrylamide and poly(ethylene glycol) methyl 

ether acrylate as previously reported.107  

CHARACTERIZATION 

Dynamic Light Scattering (DLS) 

Particle size measurements were carried out using a Malvern Zetasizer Nano 

series instrument, operated in the 173° backscattered mode on diluted 

aqueous solutions of nanoclusters. The measurements were performed at 25 

°C. An equilibration time of 2 minutes was allowed before each measurement 

and at least three measurements were performed for each sample. 

Transmission Electron Microscopy (TEM) 

Conventional TEM images were obtained using JEOL JEM 1011 electron 

microscope, working with an acceleration voltage of 100 kV and equipped with 

a W thermionic electron source and a 11Mp Orius CCD Camera (Gatan 

company, USA). Samples were prepared by placing a drop of sample onto a 

carbon coated copper grid which was then left to dry before imaging.  

Specific absorption rate (SAR) measurements 

The calorimetric measurements to determine the specific absorption rate 

value of the iron oxide nanoclusters were carried out using either the 

Nanoscale Biomagnetics instrument (DM100), operating under frequency and 
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field conditions of 105 kHz and 25 mT (20 kA/m), or NanoTherics instrument 

operating under frequency and field conditions of 110 kHz and 25 mT (20 

kA/m). The SAR value was calculated using the formula:  

𝑆𝐴𝑅 (
𝑊

𝑔
) =  

𝐶

𝑚
×

𝑑𝑇

𝑑𝑡
 

where C is the specific heat capacity of dispersing medium (H2O in most cases) 

per unit volume (J/K) and 𝑚 is the concentration (g/L of Fe) of magnetic 

material in solution. The calorimetric measurements were carried out in quasi-

adiabatic conditions and the slope of the curve 
𝑑𝑇

𝑑𝑡
 was measured by taking into 

account only the first 20-25 seconds of measurement. 

Elemental analysis  

Elemental analysis was carried out via Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP-AES) on a ThermoFisher iCAP 6000 series 

instrument. The samples were prepared by digesting 2.5-10 µL sample in 1 mL 

of aqua regia in a 10 mL volumetric flask, overnight. The next day, the flask 

was filled up to the graduation mark with milli-Q water and filtered through a 

0.45 µm membrane prior to the measurement.  

Spectroscopy  

UV-visible absorption spectra were recorded on a Varian Cary 300 UV-Vis 

spectrophotometer. Photoluminescence (PL) spectra were recorded using a 

Cary Eclipse spectrophotometer. 
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METHODS 

Doxorubicin hydrochloride loading. Example procedure. 

To thermo-responsive polymer functionalized iron oxide nanocubes (2 mL, 50 

ppm of Fe) in PBS buffer (pH 7.4) was added doxorubicin hydrochloride (50 

µg). The solution was placed on an orbital shaker overnight—set at the speed 

of 1 000 rpm—to load the drug within the polymer layer. The unloaded drug 

was removed by placing the solution on a magnet whereupon the loaded 

nanoparticles went to the magnet and the free drug remained in solution and 

was taken out using a micropipette. Fresh PBS buffer was then added to the 

vial with the nanoparticles in order to re-suspend them and more unloaded 

drug was then removed as previously described. The process was repeated 

(usually three times) until no absorption signal due to doxorubicin in the 

supernatant was observed via UV-Vis spectroscopy (λmax = 485 nm). The 

amount of doxo loaded was evaluated by using a calibration curve of doxo in 

PBS. The doxo concentrations used for the calibration curve were 5, 10, 15, 25, 

50, and 100 μg/mL. The absorption spectra of the standard solutions and the 

calibration curve are shown in Figure 17a and 17b, respectively. 

 

 

Figure 17: Doxorubicin hydrochloride calibration curve. (a) Absorption spectra of doxo 

in PBS at different drug concentrations, and (b) the corresponding calibration curve. 
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Doxorubicin hydrochloride release in dimethyl sulfoxide 

Briefly, 10 μL of doxorubicin hydrochloride loaded thermo-responsive IONCs in 

PBS ([Fe] = 2.5 g/L) were diluted with 90 μL of DMSO in a 250 μL Eppendorf 

tube. The supernatant was collected by magnetic decantation and subjected to 

fluorescence spectroscopy measurements. The amount of doxo released was 

evaluated by using a calibration curve of doxo in DMSO:PBS (90:10) mixture. 

The doxo concentrations used for the calibration curve were 1.6, 2, 3.25, 6.25, 

12.5, and 25 μg/mL. The absorption spectra of the standard solutions and the 

calibration curve are shown in Figure 18a and 18b, respectively. 

 

 

Figure 18: Doxorubicin hydrochloride calibration curve. (a) Fluorescence spectra of 

doxo in DMSO:PBS (90:10) mixture at different drug concentrations, and (b) the 

corresponding calibration curve. 

 

Doxorubicin hydrochloride release under alternating magnetic field 

Two samples of iron oxide nanocubes coated with thermo-responsive polymers and 

loaded with doxorubicin, with an iron concentration of 2 g/L (100 µL) in conical glass 

vials were placed on magnets (0.3 T) to remove any traces of unbound/leaked 

doxorubicin. The collected nanoparticles were resuspended in 50 µL of fresh PBS 

buffer (pH 7.4) and then one sample was placed centrally in the magnetic coil of the 
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hyperthermia instrument followed by application of an alternating magnetic field 

while the other sample was left at room temperature. The AMF was initially applied 

for 30 minutes (110 kHz, 25 mT) with the temperature measuring probe dipped in 

solution. After letting for 30 minutes the solution to cool down, another AMF cycle 

was applied. This was repeated one more time, after which the sample was taken out 

of the instrument and placed on the magnet for a couple of hours to collect the 

nanoparticles at the bottom of the vial. The amount of drug released was measured 

by UV-Vis spectroscopy. An aliquot of the doxo loaded sample was kept at room 

temperature and treated in the same way, but not subjected to an AMF, for 

comparison. No unspecific release was measured on this sample. 
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5. Overall conclusions 
Three main projects were conducted during my thesis that was focused 

on the study of nanosystems based on iron oxide nanocubes for magnetic 

hyperthermia.  

 

The novel use of MH set-up for the mild oxidization of Fe1-xO/Fe3-δO4 

core-shell nanocubes to single Fe3O4 phase was demonstrated. As specific 

absorption rate values of wüstite/magnetite core-shell nanocubes were lower 

compared to magnetite IONCs of similar cube edge length, the FeO core was 

oxidized by MH stimulation. After several MH treatments, the SAR values 

increased twice, while colloidal stability, size distribution and shape remained 

unaffected. The magnetically stimulated IONCs showed higher saturation 

magnetization, reflecting structural and compositional changes, as confirmed 

by electron microscopy and superconductive quantum interference device 

studies. The mild MH treatment also opened up the possibility of attaching 

biologically relevant molecules to the surface of nanocubes and preserving 

their activity while improving the IONCs heat performance.   

 

The SAR values of core-shell IONCs were also enhanced by clustering 

the nanocubes in chain like structures. Initially, the controlled clustering of the 

IONCs during their water transfer was developed, enabling the formation of 

clusters with mean hydrodynamic sizes between 30 and 100 nm. The 

hyperthermia response of individual nanocubes vs. soft colloidal nanoclusters 

of different sizes was evaluated. The so called “dimers” and “trimers”—2D 

structures formed with two and three IONCs—showed higher SAR values.  
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 Drug loading on two nanosystems designed for heat-triggered 

chemotherapeutic drug release was achieved. Both systems were based on 

magnetite IONCs coated with thermo-responsive polymers loaded with 

doxorubicin. The goal was to have stable nanocarriers at body temperature 

that would release the cargo exclusively upon the application of an alternating 

magnetic field. Once individually thermo-responsive polymer coated IONCs 

with high SAR values were obtained, the heat-triggered doxorubicin release 

under AMF—at biologically relevant field conditions—was qualitatively, but 

not quantitatively proven. 
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Annex: Nano-iron oxide-catalyzed oxidation of 

benzyl alcohol  

Introduction 

 Nanoparticle based catalysis is considered nowadays the bridge 

between heterogeneous and homogeneous catalysis. In the latter, catalysts 

are present in the same phase as reactants and products, offering high 

selectivity and the possibility of mechanistic studies through kinetic 

investigations. On the other hand, the main advantage of heterogeneous 

catalysts is their recyclability and superior thermal stability, features not 

associated with homogeneous catalysis.112 By employing magnetic 

nanoparticles as catalysts the recovery and reuse is easily implemented by 

magnetic decantation.  

 Iron oxides are widespread in nature and play an important role in 

many biological processes. Availability, low-toxicity and price are three of the 

main advantages of using iron-based catalysts over other transition metals. 

The group of Prof. Matthias Beller was one of the first that investigated iron 

oxide nanoparticle (IONP) based catalytic processes under mild reaction 

conditions, using hydrogen peroxide as the oxidant. In their first 

communication113, that was one year later followed by an article in the Journal 

of Molecular Catalysis A: Chemical114, they showed that, by tuning the size of 

the nanoparticles, catalyst activity and selectivity was controlled in the 

oxidation of alcohol and olefins. In their research they employed two types of 

γ-Fe2O3 nanoparticles: 3 - 5 nm uniform NPs and 20 - 50 nm commercially 

available NPs. The small IONPs showed high activity, but low selectivity and the 

inverse was true for the bigger polydispersed NPs: lower activity, but very high 

selectivity. The high activity and low selectivity of 3 - 5 nm IONPs was close to 
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that of Fe salts, where Fe3+ was the catalyst. The authors hypothesized that by 

downsizing the particle size to a few nanometers catalytic activity and 

selectivity values could approach those of Fe3+ single-site homogeneous 

catalysis. By increasing the size, better selectivity was obtained and the 

activity, though lower compared to the 3-5 nm NPs, was more than six times 

higher than the values obtained for bulk γ-Fe2O3 (particle size > 100 nm).       

Thus, I set out to study the nano-iron oxide-catalyzed oxidation of 

benzyl alcohol under mild conditions. In particular, I wanted to answer two 

questions: (i) does the use of monodispersed 22 nm spherical IONPs (Figure 

1a) influence the catalytic activity, as the surface area would be considerably 

increased compared to a polydispersed 20 - 50 nm sample and (ii) how does 

the change in the shape of the catalyst from spherical to cubic (Figure 1b), 

while maintaining the same total surface area per nanoparticle, impact the 

catalytic activity and selectivity.    

 

 
Figure 1: Shape influence on catalytic activity. Representative TEM micrographs of (a) 

spherical γ-Fe2O3 and (b) cubic Fe1-xO/Fe3O4 NPs in CHCl3.  
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First trials 

 The chosen model reaction was the oxidation of benzyl alcohol into 

benzaldehyde that is a typical benchmark reaction for liquid phase 

oxidation.113 

The general procedure for the oxidation of benzyl alcohol was the 

following (Scheme 1): to a glass vial (10 mL), benzyl alcohol (1 mL, 10.0 mmol) 

and 0.5 mol% of iron oxide nanoparticles (8.0 mg) were added. The reaction 

mixture was vigorously stirred (1 000 - 1 250 rpm) at 75 °C. H2O2 (30 wt. % in 

water, 1.0 mL, 10.0 mmol) was added continuously with a syringe pump in 12 

hours. The mixture was then cooled to room temperature and the remaining 

reactant and product were extracted three times with 3 mL of 

dichloromethane. After removing the excess of solvent under reduced 

pressure, 2-methoxynaphthalene (55.4 mg, 0.35 mmol) was added as an 

internal standard for quantitative analysis by gas chromatography-flame 

ionization detector (GC-FID). All GC-FID experiments were run three times and 

the average value is reported. 

 The nanoparticles remained in the organic phase in that case. As the 

oxidant was an aqueous solution, another reaction was run in which the 

nanoparticles were first transferred into aqueous media by ligand exchange 

with caffeic acid, by slightly modifying a previously published method.115 In 

two 20 ml vials, to 16 mL of tetrahydrofuran (THF) 825 μL of 22 nm NPs ([Fe]= 

6.8 g/L, [IONPs] = 0.58 μM) in chloroform (CHCl3) and 11.2 mg of caffeic acid 

were added, respectively. The ratio of ligand/nm2 of IONPs was 80 - 85. The 

vials were then stirred in a rotary evaporator (P = 1 atmosphere) at 55 °C for 3 

hours. After the addition of 2 ml H2O and 120 μL NaOH 2.5 M, IONPs and the 

sodium caffeate started precipitating. To remove the excess of caffeic acid the 
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samples were centrifuged three times at 2 500 rpm for 10 min. Each time, the 

supernatant was discarded and milliQ-water was added. Lastly, bubbling with 

nitrogen was performed in order to remove traces of tetrahydrofuran and 35 

μL hydrochloric acid 12 M were added to neutralize the base added in an 

earlier step.   

 

 
Scheme 1: Reaction conditions for the selective oxidation of benzyl alcohol to 

benzaldehyde, 0.5 mol% catalyst.  

 

Table 1: Oxidation of benzyl alcohol to benzaldehyde in solvent-free conditions 

Entry Type of catalyst Conversion [%] Yield [%] 

1 22 nm γ-Fe2O3@oleic acid 53.4 23.3 

2 16 nm Fe1-xO/Fe3O4@oleic acid  51.6 24 

3 22 nm γ-Fe2O3@caffeic acid 58.2 26.2 

4 No catalyst 36.7 7.5 

 

The results are presented in Table 1. For 0.5 mol% catalyst, used as-

synthesized, the conversions and yields are very similar for the 22 nm spherical 

IONPs (entry 1) and the 16 nm cube edge length core-shell iron oxide 

nanocubes (entry 2). The shape of the nanoparticles does not seem to have an 

influence under solvent-free conditions. The limiting factor is most probably 

the total surface area and, taking into consideration the fact that the total 

surface area is comparable for the two samples, that assumption was 

corroborated by the results. Once the catalyst was coated with caffeic acid, 

which made it dispersible in aqueous phase, the conversion and yield 

increased by ca. 10% (entry 3). Although the catalyst shows high activity, the 
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selectivity is low, with 44%, 46% and 45% for entries 1, 2 and 3, respectively. A 

control experiment in the absence of catalyst, showed a 36.7% conversion 

(entry 4), with 80% of the products being side-products that cannot be 

detected by GC-FID. These results point towards non-selective radical side-

reactions, typical for Fenton-type reactions.                

The enquiry into the change from non-selective radical to selective 

non-radical reactions, for iron-dependent oxidation reactions, was reported by 

Shi and co-workers116. The conclusions drawn by the authors involved the 

dependence between the absolute proton concentration and the change of pH 

value during the reaction vs. the catalytic activity: lowering the pH increased 

the conversion and the smaller the pH deviation, the higher was the selectivity. 

The use of the acidic buffer of pH 1 and the control of ΔpH below 0.05 

suppressed unwanted radical reactions. The best conversion value obtained 

was 92%, with 87% selectivity towards benzaldehyde and benzoic acid (86:14 

ratio of CHO to CO2H) for 2 mol% catalyst loading, 1.5 H2O2 equivalents and 5 

mL buffer solution. 

In an attempt to increase both conversion and selectivity for the 

monodispersed 22 nm spherical IONPs and the core-shell cubic IONPS, the 

experiments previously carried out were repeated, this time with 5 mL acidic 

buffer, based on KHSO4. The results shown in Table 2 confirmed a rise in 

conversion and yield when using a buffer, alongside a decrease in side-

reactions. In the control experiment conversion dropped to 23.8% for the Fe-

free reaction (entry 4), a 35% decrease compared to solvent-free conditions. 

The side-reactions were not fully suppressed as the variation of pH was 

controlled at 0.07 at best, but not down to 0.01 as in the literature 

reference116. Nevertheless, the results were encouraging as with only 0.5 mol% 
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catalyst loading, the 16 nm core-shell iron oxide nanocubes coated with caffeic 

acid gave 89% conversion with 67.7% selectivity (entry 3). In these cases, no 

traces of benzoic acid were detected by GC-FID. Given that the best results 

were obtained for the cubic nanoparticles coated with a small hydrophilic 

molecule, further studies focused on that type of catalyst. Two parameters 

were probed: reaction time and catalyst loading.           

 

Table 2: Oxidation of benzyl alcohol to benzaldehyde in acidic buffer 

conditions 

Entry Type of catalyst 
Conversion 

[%] 
Yield 
[%] 

Selectivity 
[%] 

1 22 nm γ-Fe2O3@caffeic acid 85.7 56 65.3 

2 22 nm γ-Fe2O3@oleic acid 82.6 52.7 63.8 

3 16 nm Fe1-xO/Fe3O4@caffeic acid 89.1 60.4 67.8 

4 No catalyst 23.8 1.5 n/a 
 

Optimization of catalysis parameters   

Reaction time 

In an effort to optimize reaction conditions, the reaction time 

parameter was investigated. Shorter reaction times are favorable as more 

reactions can be carried out in the same period of time. 16 nm core-shell iron 

oxide nanocubes (Fe1-xO/Fe3O4@caffeic acid) were used as catalyst, with a 0.5 

mol% loading. The reaction times considered were t = 1, 3, 6 and 15 hours. As 

can be observed from Figure 2, increasing the time from 1 to 15 hours, both 

conversion and yield steadily increased from 54% to 89% conversion of benzyl 

alcohol and from 18% to 60% benzaldehyde yield. Interestingly, the difference 

between 6 and 15 hours was a modest 7% increase in conversion and 11% in 

yield. This fact was used in the follow up study, when the catalyst loading was 

doubled from 0.5 to 1 mol% and both times were considered. 
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Figure 2: Reaction time study. Conversion and yield of Fe1-xO/Fe3O4-catalyzed 

oxidation of benzyl alcohol as a function of reaction time.  

 

Catalyst amount 

Next parameter examined was the catalyst loading. By increasing the 

catalyst loading conversion and yield are expected to rise for a given reaction 

time. In the experiments carried out, the amount of catalyst was doubled to 1 

mol% and the reactions were run for 6 and 15 hours. The results plotted in 

Figure 3 showed a more pronounced increase in conversion and yield for the 

six-hour reaction when the catalyst loading was doubled, while the 15-hour 

runs showed no improvement in benzyl alcohol conversion and a meager 9% 

increase in yield. It is worth pointing out the fact that for the 1 mol% catalyst 

loading, both conversion and yield were slightly better for a six-hour reaction 

compared to the 15-hour reaction. A possible explanation of this fact was a 

plateauing of conversion and yield values, as seen previously for 0.5 mol% 

catalyst loading. 
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Recyclability studies 

Lastly, a recyclability study was performed. As mentioned before, the 

main advantage of heterogeneous catalysis over homogeneous catalysis is the 

possibility of isolating and reusing the catalyst. For 1 mol% catalyst loading, t = 

6 hours, 5 cycles were run. As seen from Figure 4, benzaldehyde yield dropped 

faster compared to conversion, which remained around 89%. The decrease in 

yield was accompanied by the emergence of benzoic acid as side-product at 

the 4th run and its increase from 4th to 5th cycle. Selectivity also dropped from 

78% for the 1st run to 65.5% for the 5th run.    

        

 Figure 3: Catalyst amount comparison. Conversion and yield of Fe1-xO/Fe3O4-catalyzed 

oxidation of benzyl alcohol for 0.5 and 1 mol% catalyst loading for (A) t = 6 hours and     

(B) t = 15 hours. 
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Figure 4: Recyclability studies. Conversion and yield of Fe1-xO/Fe3O4-catalyzed 

oxidation of benzyl alcohol for 1 mol% catalyst loading, t = 6 hours.  
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Conclusions 

 At ICIQ, during my ten-month mobility stay, I have investigated two 

nanosystems made up of iron oxide nanoparticles: (i) 22 nm spherical iron 

oxide nanoparticles and (ii) 16 nm cube edge length core-shell iron oxide 

nanocubes (Fe1-xO/Fe3O4), either as-synthesized, thus stabilized in organic 

solvents by oleic acid, or coated with caffeic acid, a small molecules that 

imparted the IONPs hydrophilicity. The main focus was the study of the 

suitability of the IONPs as catalysts in mild reaction conditions. The reaction 

investigated was the selective oxidation of benzyl alcohol, using hydrogen 

peroxide as an oxidant. The optimized parameters were the reaction time, the 

amount and the type of catalyst. Lastly, recyclability studies were carried out 

for the best reaction conditions.     
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oxide nanoparticles’ at the 5th workshop of the Mag(net)icFun network. 

Place: University of Keele, Stoke-on-Trent (United Kingdom). Date: 

24.04.2015 
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