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ABSTRACT

The analysis of free vibration characteristics of an elastically connected non-prismatic
double-beam system based on both Euler-Bernoulli and Rayleigh beam theories was
carried out in this study. The two beams are parallel and connected to each other
by a Pasternak elastic medium which is characterized by Winkler modulus and
shear modulus. For this analysis, arbitrary boundary conditions were assumed, and
differential transformation method (DTM) was employed for the transformation of
the coupled governing equations of motion yielding the eigenvalue problems. The
natural frequencies and their corresponding mode shape functions for the system were
calculated via some developed computer codes with implementation. The numerical
results of the present method used were validated by comparing with the already
existing ones in literature. Moreover, the effects on natural frequencies of the system
produced by varying the taper ratio of the beams, Winkler modulus and shear modulus
of the layer connecting the two beams as well as the mass and flexural rigidity of the
upper beam were investigated in detail. It has been demonstrated that DTM can be
used to analyse the free vibration of non-prismatic double-beam systems. It was found
that the taper ratio of the beam, which accounts for non-uniformity of the beams in the
system, had significant effects on the natural frequencies of the double-beam system.
Also, it was observed that the effects on natural frequencies of the Winkler modulus
and shear modulus of the Pasternak layer connecting the beams in the double-beam
system largely depended on the type of the boundary conditions. Further more, it was
found that all the lowest four natural frequencies of the non-prismatic double-beam
system were very sensitive to the mass and the flexural rigidity of the upper beam.
It is recommended, among others, that DTM can be extended to analyse free and
forced vibrations of a non-prismatic double-beam system visco-elastically connected

by a Pasternak layer.

Keywords: differential transformation method; double-beam system; Euler-Bernoulli

beam; non-prismatic beam; Pasternak layer; Rayleigh beam.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Vibration is a natural phenomenon that is experienced on daily basis in our day-to-day
activities. In simple terms, the “to-and-fro” or “back-and-forth” movement of an object
from its normal stationary or equilibrium position is what is known as vibration. Many
practical examples abound, for instance, movement of a pendulum bob, movement of
a plucked guitar string, back-and-forth movement of a machine component and so on.
Generally speaking, vibration concerns itself with the oscillatory motions of objects
and the forces that are associated with these objects. Any object that, therefore,
possesses mass and elasticity has the tendency of vibrating. For this reason, virtually

all engineering structures undergo oscillatory motion to certain degrees (King, 2009).

Beams are the basic structural components in engineering which are used as simple
and accurate model for complex engineering structural analysis. Vibration analysis of
beams involves evaluation of their vibration characteristics, that is, natural frequencies
and mode shapes. This is, therefore, important for better designing as well as to
prevent resonance, which may lead to the collapse of the structure. It has been
noted that carrying out preliminary dynamic analysis of beam structures will help
to optimise the design and ultimately minimise future investments on repair to the

barest minimum (Rezaiee-Pajand and Hozhabrossadati, 2016).

Quite a large number of investigations have been done on free and forced vibra-
tions of single beams with uniform and non-uniform cross-section due to their useful
applications in many fields of engineering. Prominent among these research endeavours
are the studies done by Chun (1972), Grant (1975), Goel (1976a, 1976b), Maurizi et al.
(1976), Hamada (1981), Kukla (1991), Gbadeyan and Oni (1994), Kukla and Posiadala



(1994), Esmailzadeh and Ghorashi (1995), Michaltsos et al. (1996), Wang and Lin
(1996), Auciello and Maurizi (1997), Fung and Chen (1997), Foda and Abduljabbar
(1998), Yeih et al. (1999), Rao (2000), Abu-Hilal and Mohsen (2000), Abu-Hilal and
Zibdeh (2000), Kim and Kim (2001), Wu et al. (2001), Abu-Hilal (2003), Naguleswaran
(2004), Mehri et al. (2009), Zamorska (2010) and Motaghian et al. (2011).

An extension of the concept of the single beam which is of great significance is
that of the multiple or compound beam system, for instance double-beam system,
triple-beam system and so on. The vibration problem of beam-type structures such as
double-beam system whose members are elastically connected is still an important
field of study to applied mathematicians and engineers because of its applications. The
physical model of a double-beam system is usually composed of two parallel beams,
prismatic (or non-prismatic as the case may be) coupled together by innumerable

coupling springs (Abu-Hilal, 2006; Li and Hua, 2007).

The compound beam-type structures, one of which is double-beam system, have
many applications in the engineering fields. They are extensively used to simulate
bridges, guideways, railroads, overhead cranes, gun-tubes among many others. Specifi-
cally, an elastically connected double-beam system has been used to model a beam-type
continuous dynamic vibration absorber (CDVA) usually used to control beam vibration.
The beam-type dynamic vibration absorbing system is composed of the main beam and
another beam (referred to as dynamic absorbing beam). The main and the dynamic
absorbing beams are joined together by uniformly distributed springs and dampers.
The dynamic absorbing beam together with the spring between the beams helps
in reducing the vibratory motion undergone by the main beam of the system (Aida

et al., 1992; Oniszczuk, 2000; Stojanovi¢ and Kozi¢, 2012 and Simgek and Cansiz, 2012).

The double-beam system has also been used to capture floating-slab railway tracks,

which are widely used to control vibrations from underground trains. In this case, the



rail and the floating slab are represented by an upper and a lower beam respectively.
Moreso, the railpads between the rails and the slab are simulated by a continuous
layer of springs and dashpots (Hussein and Hunt, 2006). In addition, the mechanical
behaviour of multi-walled carbon nanotubes in nanomechanics can also be modelled

by a double-beam system (Kelly and Srinivas, 2009).

Considering the applications of the double-beam system in the fields of civil, aerospace
and mechanical engineering, several studies have been carried out on problems con-
cerning the vibration analysis of two parallel beams which are joined continuously by
an elastic layer. These problems have received a significant amount of attention in the
past and in recent years due to the fact that the dynamic analysis of structures helps

to prevent component failure.

Researchers have used a lot of analytical and numerical methods to determine the
vibration characteristics of the double-beam system. Approximate or numerical
approaches are mostly used owing to difficulty posed when attempts are made to
determine closed-form solutions for such structures. These methods include differential
quadrature method (De Rosa and Lippiello, 2007; Arani and Amir, 2013; Arani, Amir,
Dashti and Yousefi, 2014), Galerkin-type state-space method (Palmeri and Adhikari,
2011; Palmeri and Ntotsios, 2016), spectral element analysis (Li and Hua, 2007) and
Adomian modified decomposition method (Mao, 2012; Mao and Wattanasakulpong,
2015). Other methods are dynamic stiffness method (Jun and Hongxing, 2008; Xiaobin
et al., 2014), transfer matrix method (Irie, Yamada and Kobayashi, 1982; Abbas et al.,
2013; 2015) and finite element method (Xin and Gao, 2011; Huang and Liu, 2013).
Recently, Mirzabeigy et al. (2016) obtained a semi-analytical solution for free vibration
analysis of two parallel and uniform (prismatic) beams connected together by vari-

able stiffness Winkler-type elastic layer by means of differential transformation method.

In reality, it is often necessary to schematize certain structures which are used in



the field of engineering by means of non-prismatic beams in order to analyse their
vibration characteristics effectively. This is very important in the modelling of real
structures, especially where non-prismatic beams with variable characteristics of ge-
ometry is involved. It has been noted that non-prismatic beams, which are considered
in this study, are widely used in buildings, bridges, aircraft structures and other fields
of engineering in order to optimize weight, strength as well as satisfying different

functional requirements (Attarnejad et al., 2010).

1.2 Statement of the Problem

With respect to progress of research carried out on vibration analysis of double-beam
systems so far, it is observed that researchers in the past have considered a system of
elastically connected beams with a uniform cross-section where the elastic medium
between the upper beam and the lower beam is simulated using Winkler model. How-
ever, based on the research report in the literature reviewed in the next chapter, and
to the best of the Author’s knowledge, no research has been reported on vibration
analysis of double-beam system involving two non-prismatic beams which are elasti-
cally joined by a Pasternak elastic medium. It is worthy to note that Pasternak layer

is more realistic than the Winkler layer in practical applications (Hamarat et al., 2012).

To this end, the natural frequencies and the corresponding mode shapes of the coupled
vibration of a system composed of two parallel and non-prismatic beams continuously
joined by the elastic material of the Pasternak-type have been investigated in this
study. The formulation of the governing equations of motion for the vibratory system
is based on both Euler-Bernoulli and Rayleigh beam theories. The mathematical

formulation of the problems described are presented in Chapter Three.



1.3 Aim and Objectives

The aim of this study was to present semi-analytical solutions for free vibration
analysis of double-beam systems which are composed of two non-prismatic beams
connected by an elastic medium simulated by a Pasternak foundation. Thus, the

objectives of this study were to:

(i) determine the natural frequencies and associated mode shapes of an elastically
connected non-prismatic double-beam system with a Pasternak middle layer

based on Euler-Bernoulli and Rayleigh beam models;

(i) investigate the effects on the vibration characteristics of the double-beam system

described in (i) due to:
(a) Winkler modulus and shear modulus of the layer connecting the two beams;
(b) non-uniform cross-section parameter of the beams;
(¢) boundary conditions; and
(d) mass and flexural rigidity of the upper beam; and

(iii) show that differential transformation method (DTM) has high precision and
computational efficiency in vibration analysis of a system of two non-prismatic

beams which are elastically connected by a Pasternak elastic layer.

1.4 Justification for the Study

This study is innovative in two aspects. First, unlike most studies, in which the
beams were modelled as being uniform in cross-section, here due to the advantages of
non-prismatic beams over prismatic beams, the former were considered. In addition,
while most authors assumed Winkler model to simulate the layer connecting the two
beams which is not realistic in practice, here, Pasternak model which accounts for
interaction among the springs is assumed. The findings of this research would present

information on free vibration of a double-beam system consisting of non-prismatic



beams coupled by Pasternak elastic medium for use as a useful reference for future

study and design of such beam-type structures by structural engineers.

1.5 Significance of the Study

This study extended the frontiers of application of differential transformation method
to vibration analysis of a complex structure that has practical engineering application
to real-world challenges. The results of this study will be of specific interest to the
engineering community. To the future researchers, this study can provide baseline

information on the vibration problems undertaken in this thesis.

1.6 Scope of the Study

In structural engineering, the vibration characteristics of any structure can be defined
by its modal properties which are natural frequency, mode shape, modal mass and
modal damping. This study covered only two of the vibration characteristics of an
elastically connected double-beam system coupled by a Pasternak elastic layer. These
are the natural frequency and the mode shape of the double-beam system. Two of the
vibration characteristics of the double-beam system, namely modal mass and modal
damping were not considered in this study. The internal damping of the beams in the
system and the layer damping were neglected. Again, this study was based on only

Euler-Bernoulli and Rayleigh beam theories.

1.7 Limitation of the Study

Two of the vibration characteristics of the double-beam system, namely modal mass
and modal damping were not considered in this study. In addition, this research did
not investigate the forced vibration analysis of the system. Of note, the two beam

models considered in this study neglected the contribution of shear deformation.



1.8 Definition of Terms

Some of the terms used in this study are adopted from Meirovitch (2001) and Rao
(2004) as follows:

Definition 1.8.1. (Vibration). Vibration (also known as oscillation) is “any motion
that repeats itself after an interval of time. Examples include the swinging of a

pendulum and the motion of a plucked string”.

Definition 1.8.2. (Prismatic beam). A prismatic beam is a beam with a uniform

cross-section. It is also known as uniform beam.

Definition 1.8.3. (Non-prismatic beam). A non-prismatic beam, also referred to

as a non-uniform beam, is a beam with a non-uniform cross-section.

Definition 1.8.4. (Free vibration). Free vibration is “a form of vibration that
ensues if a system, after an initial disturbance, is left to vibrate on its own, without
any external force acting on the system. The oscillation of a simple pendulum is an

example of free vibration”.

Definition 1.8.5. (Forced vibration). Forced vibration is “a form of vibration that
occurs if a system is subjected to an external force”, for example, a repeating type of

force. For instance, the oscillation that arises in machines such as diesel engines.

Definition 1.8.6. (Out-of-phase vibration). Out-of-phase vibration is a situation
when two parallel beams, coupled by a connector, vibrate asynchronously, that is in

opposite direction. .

Definition 1.8.7. (In-phase vibration). In-phase vibration is a situation when
both beams vibrate synchronously. As a result, the relative displacement between the

two beams disappear.



Definition 1.8.8. (Amplitude). Amplitude of vibration of a vibrating body is “the

maximum displacement of a vibrating body from its equilibrium position”.

Definition 1.8.9. (Natural frequency). Natural frequency is the frequency at

which a system vibrates in the absence of any external force.

Definition 1.8.10. (Mode shape). Mode shape of a given structure is the deformed

shape that it would naturally exhibit at a particular frequency.

1.9 Organization of the Thesis

This thesis is organized into five chapters. This present introductory chapter gives the
background of this study. Chapter Two presents a detailed survey of literature that
bothers majorly on previous studies pertinent to the current research undertaken in
this thesis. In Chapter Three, the fundamental principle of the method of solution
applied in this study and the solution procedure for the vibration problems are
described in detail. This covers the review of the basic notations, definitions and some
theorems underlying the method. The mathematical formulation of the problems
which are expressed by the equations of motion governing the vibration problems
are also presented in this chapter. Chapter Four is devoted to the presentation and
discussion of the research findings. Finally, Chapter Five presents a brief review of
the objectives and contents of the research described in this thesis. It also features
the conclusion drawn from the research based on the findings. Chapter Five also
outlines the contributions of the study to knowledge in the field of vibration and

recommendations for future research related to this study.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, an overview of previous studies which are relevant to the scope of this

study is presented.

2.2 Survey of Related Previous Studies

The vibration problem of two beams which are elastically connected has wide appli-
cation in many fields of engineering. As a result, different cases of the vibration of
elastically connected double-beam systems have been studied by a number of investiga-
tors in the past. To start with, previous studies on free and forced vibrations of a single
beam are first reviewed for comprehensiveness sake. The free vibration of a single
beam under various supporting boundary conditions has been extensively studied
for many years. Chun (1972) investigated the free vibration of a Bernoulli-Euler
beam hinged at one end by a rotational spring with constant spring stiffness and with
the other end free. Grant (1975) used the Newton-Raphson root finding method to
solve the frequency equation for the normal modes of vibration of uniform beams
with linear translational and rotational springs at one end and having a concentrated
mass at the other free end. Maurizi et al. (1976) analysed the free vibration of a
uniform beam hinged at one end by a rotational spring and subjected to the restraining
action of a translational spring at the other end using exact expression of trigono-
metric and hyperbolic functions. Goel (1976) considered the vibration problem of a
beam with an arbitrarily placed concentrated mass and elastically restrained against
rotation at either end by using Laplace transforms. Kukla (1991) studied the free
vibration of a beam supported on a stepped elastic foundation under various boundary

conditions. Kukla and Posiadala (1994) also adopted the Green function to investi-



gate the free vibration of Euler-Bernoulli beams with many elastically mounted masses.

Wang and Lin (1996) investigated the dynamic analysis of beams with arbitrary
boundary conditions using Fourier series. Fung and Chen (1997) studied the free and
forced vibration of cantilever Euler-Bernoulli beam in contact with a rigid cylindrical
foundation. Governing differential equations were developed through variational calcu-
lus and solution algorithm involved Runge-Kutta method. Yeih, et al. (1999) employed
a dual multiple reciprocity method (MRM) to determine the natural frequencies and
natural modes for an Euler-Bernoulli beam. Kim and Kim (2001) used Fourier series
to obtain frequency expressions for uniform beams with generally restrained boundary
conditions. An approximate solution to the transverse vibration of uniform Euler-
Bernoulli beams under linearly varying axial force was presented in Naguleswaran
(2004). He solved the mode shape differential equation using the method of Frobenius.
Motaghian et al. (2011) developed closed form solutions to the free vibration problem
of beams with mixed boundary conditions and resting on a partial elastic foundation

of the Winkler type by means of seperation of variables and Fourier series.

Hamada (1981) applied the double Laplace transformation with respect to both
time and the length coordinate along the beam to solve the response problem of a
simply supported and damped Euler-Bernoulli uniform beam of finite length traversed
by a constant force moving at a uniform speed. He obtained an exact closed form
solution for the dynamic deflection of the beam. Gbadeyan and Oni (1994) developed
a theory concerning the dynamic response of Rayleigh beams and plates with arbitrary
end supports and under an arbitrary number of moving concentrated masses by means
of a technique based on modified generalized finite integral transform and the modified
Struble’s method. Esmailzadeh and Ghorashi (1995) investigated the dynamic be-
haviour of a beam under simply supported end boundary conditions carrying a uniform
partially distributed moving mass or force. They employed the central difference

expansions technique to solve the governing differential equation. Michaltsos et al.,
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(1996) studied the linear dynamic response of a simply supported uniform beam under
a moving load of constant magnitude and velocity, including the effect of its mass.
Foda and Abduljabbar (1998) determined the dynamic deflection of an undamped
simply supported Euler-Bernoulli beam of finite length under the action of a moving

mass at constant speed using a Green function approach.

Abu-Hilal and Mohsen (2000) treated the transverse vibrations of homogeneous
isotropic Euler-Bernoulli beams with general boundary conditions subjected to a
constant force travelling with different types of motion. He studied the effects of
boundary conditions, type of motion and damping on the response of the beams. In
2003, he used a Green function approach to determine the dynamic response of Fuler-
Bernoulli beam subjected to distributed and concentrated loads. Wu et al. (2001) used
combined finite element and analytical methods to determine the dynamic responses
of structures to moving bodies. The technique was used to study the response of a
clamped-clamped beam subjected to a single mass moving along the beam. Mehri, et
al. (2009) used a dynamic Green function to assess the effects of different boundary
conditions, velocity of load and other parameters on the linear dynamic response of
Euler-Bernoulli uniform beams excited by a moving load. Zamorska (2010) used the
Green’s function method to solve the free vibration problem of non-uniform Bernoulli-
Euler beams. An approximate approach for the vibration problem of non-uniform

Bernoulli-Euler beams had earlier been presented by Auciello and Maurizi (1997).

In the study carried out by Lee et al. (2014), the free vibrations of a prismatic
beam resting on a Pasternak foundation were studied with emphasis placed on the
bending-twist deformations of the beam. The analysis was carried out by combin-
ing both the Runge-Kutta and Regula-Falsi methods. The effects of the foundation
stiffnesses, among other parameters, on the natural frequencies of the beam were
investigated. It was found that the natural frequencies of the beam increase with the

increase in the stiffnesses of Winkler and shear foundation. Ahmadi and Nikkhoo
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(2014) studied the vibration behaviour of a non-uniform Euler-Bernoulli beam tra-
versed by a moving load and a moving mass. The eigenfunction expansion method
was used to transform the equations governing the motion of the beam into a system
of linear time-varying ordinary differential equations. Thereafter, the authors made
use of three function sets as the assumed vibration mode functions in determining
the natural frequencies of the beam. These functions included, a set of mode shape
functions of uniform beams with similar boundary conditions, a set of orthogonal
polynomial functions, and a set of non-orthogonal polynomial functions. It was found
that the values of natural frequencies obtained using non-orthogonal polynomials are
the same with those obtained using non-orthogonal polynomials which implies that
the orthogonalization of the beam’s characteristic polynomials has no effect on the
results. Abdelghany et al. (2015), in their study, used the differential transformation
method to determine the natural frequencies and mode shapes of non-uniform cir-
cular beam. It was shown that variation of cross section has a substantial effect on

the mode shapes of the circular beams as against the mode shapes of rectangular beams.

One of the earlier studies on double-beam systems was undertaken by Seelig and
Hoppmann IT (1964a), who presented the frequencies and associated mode shapes of a
system of n elastically connected parallel beams having different support conditions.
They used the result obtained for the general n-system to give detail analysis of the
particular case of a two-beam system. Later, the authors in another research, developed
and solved the differential equations of motion governing the vibration of an elastically
connected double-beam system under the action of a spontaneous load. (Seelig and
Hoppmann II, 1964b). Dublin and Friedrich (1956) and Osborne (1962), as cited in
Seelig and Hoppmann IT (1964b), had earlier studied the application of beam theory
to the vibration of elastically coupled double-beam systems. The resonance conditions
for an elastically double-beam system in which one of the beams is subjected to a
moving point load oscillating longitudinally along the beam about a fixed point were

derived by Kessel (1966). It was observed that an infinite number of load-movement

12



frequencies that will stimulate a given principal frequency of the double-beam system
for the rth mode of vibration exists. Kessel and Raske (1967) examined the damped
vibratory motion of an elastically connected double-beam system when it is disturbed
by a moving point-load. The oscillation of the moving point-load is in the same
direction as that of one of the members about a fixed point. The effects of damping,
frequency of oscillation of load movement, amplitude of load movement, and modulus
of the elastic connectors on the dynamic deflections of the system were assessed. Their
results revealed that the double-beam system possesses the quality to function as an

elastic vibration absorber.

Rao (1974) solved the differential equations governing the flexural vibrations of systems
of elastically connected parallel bars to determine the natural frequencies and mode
shapes of particular three- and two-beam systems. His analysis was based on the
Timoshenko model and as such the effects of rotatory inertia and shear deformation
were considered. Chonan (1976) investigated the dynamical responses of two beams
connected with a set of independent springs and subjected to an impulsive load. The
effect of the mass of the springs was taken into consideration. The method of the
Laplace transformations with respect to both time and space variables was employed
in solving the vibration problem. The numerical example considered to illustrate
the theory involved application of a concentrated half—sine impulsive force to the
mid-point of the upper beam of the system. The findings of the study indicated that
the periods become longer and the amplitudes become smaller when the mass of the
springs is increased. It was further found that an increase in the mass of the springs
that connect the two beams make the difference in the response between the upper
and the lower beams to be well pronounced, despite the fact that the amplitudes of
both beams are nearly the same. Kukla and Skalmierski (1994) solved the problem of
free vibration of a system of two prismatic Euler-Bernoulli beams which are coupled
by a Winkler elastic layer. The solutions for different types of boundary conditions

were presented.
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Vu et al. (2000) utilized modal analysis to obtain a closed-form solution for the
vibration of a damped uniform Euler-Bernoulli double-beam system. The system
which consisted of a main beam, an auxiliary beam, with a distributed spring and
dashpot in parallel between the two beams was subjected to harmonic excitation. It
was found that each natural mode consists of two submodes namely the in-phase
submode and the out-of-phase submode. The in-phase submode was described as
the mode whose values of natural frequencies are not influenced by stiffness and
damping. For the out-of-phase mode, increase in stiffness causes the natural fre-
quencies to increase. Oniszczuk (2000) developed the free transverse theory of an
elastically connected simply supported double-beam system continuously joined by a
Winkler elastic layer. The motion of the system was solved using the Bernoulli-Fourier
method. Oniszczuk (2003) used the modal expansion method to study the forced
transverse vibration analysis of an elastically connected simply supported double-beam
system. The excitation loadings considered included the stationary harmonic loads
and moving concentrated forces. Abu-Hilal (2006) studied the dynamic response of a
double-beam system subjected to a constant moving load under a simply supported
end configuration. The influence of the moving speed of the load, the damping as well
as the elasticity of the viscoelastic layer (used to join the two beams) on the dynamic

responses of the two beams were determined.

Zhang et al. (2008a) studied the properties of free transverse vibration of a dou-
ble beam system using Bernoulli-Euler beam model. The classical Bernoulli-Fourier
method was used to formulate the equations governing the motion of the double-beam
system with the assumption that both beams were simply supported and elastically
connected by a Winkler-type layer. The authors also investigated the influence of
compressive axial loading on the vibration characteristics of the system. Zhang et
al. (2008b) studied the effects of compressive axial load on the forced vibrations

of an elastically connected double-beam system. Their analysis was based on the
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Bernoulli-Euler beam model having simply supported boundary conditions while the
two beams of the system were connected by a Winkler elastic layer. It was found that
the magnitudes of the steady-state vibration amplitudes of the two beams depend
on the axial compression. Palmeri and Adhikari (2011) employed a Galerkin-type
state-space technique to investigate the transverse vibrations of a system of two paral-
lel Euler-Bernoulli elastic beams continuously joined by a Winkler-type viscoelastic
layer. Ariaei et al. (2011) studied the dynamic response of an elastically connected
multi-beam system using the Timoshenko beam theory. The authors employed change
of variables to decouple the equations of motion and later used modal analysis to
obtain the dynamic response of beams caused by a moving load. Then, the modal
expansion method in conjunction with the transfer matrix method was used to obtain
closed-form solution to the eigenvalue problem that arose from the vibration problem.
The study involved identical prismatic beams with the restriction that the boundary
conditions on the same side of the system must be similar. It was found that the
maximum deflection of the multiple Timoshenko beam system is always lower than
that of a single beam. It was also found that the values of the frequencies increase by

increasing the stiffness of the springs, as expected.

Mao (2012) employed Adomian modified decomposition method to study the free
vibrations of elastically connected beams under general conditions. The system consid-
ered was composed of uniform Euler-Bernoulli beams which are continuously joined by
a Winkler-type elastic layer. Gbadeyan and Agboola (2012) applied the finite Fourier
and Laplace integral transformations to analyse the dynamic behavior of a Rayleigh
double-beam system traversed by a uniform partially distributed moving load. The
system is made up of two identical, parallel simply-supported Rayleigh beams of equal
length. The two beams are constant in cross-section and are continuously connected
by a Winkler viscoelastic layer. It was found that increasing the value of the rotatory
inertia caused the maximum displacement of the upper beam to also increase. Earlier,

Gbadeyan et al. (2005) investigated dynamic behaviour of visco-elastically connected
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double-beam system carrying uniform partially distributed moving masses based on

Euler-Bernoulli theory.

The free and forced vibration analyses of two parallel prismatic beams connected
to each other by uniformly distributed vertical springs were investigated by Huang
and Liu (2013). The inner springs were also stimulated using Winkler model. Using
finite element method for the analysis, it was found that the inner spring with large
coefficient has a significant effect on the natural frequencies of out-of-phase vibration.
Abbas et al. (2013) employed the transfer matrix method to determine the free
vibration characteristics of a double-beam system composed of two identical, elastic
and uniform Euler-Bernoulli beams coupled by a spring. It was observed that the two
beams connected elastically by a spring show symmetric and anti-symmetric vibrations.
Rezaiee-Pajand and Hozhabrossadati (2016) investigated the free vibration analysis of
a double-beam system whereby the system was composed of two beams connected by
a mass-spring device with each beam having elastic restraints at one end and free at
the other end. The eigenvalue of the problem was obtained in the frequency domain

by using Fourier transform.

Stojanovi¢ and Kozi¢ (2012) studied the vibration characteristics of forced trans-
verse vibration and buckling of an elastically connected simply supported double-beam
system based on the Timoshenko beam theory, under compressive axial loading. The
classical modal expansion method was used for the analysis. The influence of com-
pressive axial load on the forced vibrations of the double-beam system were critically
examined for three identified cases of excitation loadings namely stationary harmonic
loads, uniformly distributed harmonic load and harmonic concentrated force. It was
observed that the magnitudes of the steady-state vibration amplitudes of the two
beams are dependent on the influence of rotary inertia and shear and axial compression.
Specifically, it was found that the magnitudes of the steady-state vibration amplitudes

of the two beams become larger as the axial compression increases and even larger
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when the effect of rotary inertia and shear were taken into consideration. The authors
argued that the Rayleigh and Timoshenko beam-type dynamic absorber could be used

to reduce the incidence of excessive vibrations of corresponding beam systems.

Pavlovié¢ et al. (2012) used direct Lyapunov method to study the stability and
instability of a prismatic Bernoulli-Euler double-beam system subjected to compressive
axial loadings. The two beams in the system were both simply supported at their ends
and continuously joined by a Winkler elastic layer. It was concluded that stability
regions are almost identical for Gaussian and harmonic processes considered in the
paper when the stiffness of the Winkler layer was increased while the uncertainty
regions increased with increment of the Winkler layer stiffness. The free vibration
and stability of a cantilever uniform double-beam system continuously joined by a
Winkler-type elastic layer was investigated by Mao and Wattanasakulpong (2015)
using the Adomian modified decomposition method. The free end of each beam in
the system was restrained by a translational spring and subjected to a combination of
compressive axial and follower loads. It was found that the natural frequencies tend to
zero as the concentrated compressive loads increase and this situation was described

as divergence instability of the system.

Recently, Li et al. (2016) used a semi-analytical method to obtain the natural
frequencies and corresponding mode shapes of a double-beam system interconnected
by a viscoelastic layer of the Winkler type. They further studied the effects of vis-
coelastic layer damping and Winkler layer on the vibration characteristics of the
double-beam system. It was reported that the dynamic responses of upper beam
decrease while the responses of lower beam increase with the increase in the stiffness
of viscoelastic layer. It was also found that the dynamic responses of the lower beam
decrease significantly with the increase of the mass of the upper beam. In addition, it
is found that the dynamic responses of lower beam decrease while those of the upper

beam increase with the increase of Winkler layer stiffness. Mirzabeigy et al. (2016)
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used DTM to analyse free vibration of two identical parallel uniform beams attached
together by variable stiffness Winkler-type elastic layer based on Euler-Bernoulli beam
theory. It was found that odd mode frequencies of the two beams having the same
boundary conditions remain constant for different values of stiffness of the Winkler
layer that connects the two beams while the even mode frequencies were reported to
be sensitive to variation of the stiffness of the connecting layer. Also, it was noted
that the fundamental frequency of the system was not affected by distribution type of

connecting layer when the total stiffness of connecting layer has a small value.

Virtually, all the above studies assumed that the two beams that make up the
double-beam system are prismatic, having a uniform cross-section. An interesting
research on double system is the investigation carried out by Fryba et al. (2007). A
beam with an axial force and a pretensiled string coupled with by an elastic layer of
Winkler type and subjected to a row of moving forces was used to model a prestressed
bridge. The vibration problem was solved by using the Fourier and Laplace-Carson
integral transformation methods. The authors noted that the prestressed bridges
widely used for highway and railway bridges of small and medium spans, form natu-
rally a double system with two elements namely beam and pretensiled strings which

are bound together with an elastic layer and dampers to diminish the dynamic response.

The recent study on vibration analysis of Rayleigh double-beam system which used
the Pasternak model to simulate the elastic layer that connects the two beams was
reported by Mohammadi and Nasirshoaibi (2015). They used the modal expansion
method for the analysis and studied the effects of Pasternak layer on the forced
vibrations of the double-beam system for the case of simply supported boundary
conditions for the two beams. It was found that the magnitudes of the steady-state
vibration’s amplitudes become smaller when the shear Pasternak modulus increases.
This reportedly implies that a Pasternak layer has the ability to reduce the magnitudes

of the steady-state vibration’s amplitudes more than a Winkler elastic layer. The
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forced transverse vibration analysis of a closed double single-walled carbon nanotube
system containing a fluid, based on the Rayleigh beam theory was carried out by
Nasirshoaibi et al. (2015) in a later study. The authors assumed that the two single-
walled carbon nanotubes are continuously joined by a Pasternak layer and the effect
of compressive axial load on the forced vibrations of the double-nanotube system was
investigated. It was found that the magnitudes of the steady-state vibration amplitude
of the upper and lower nanotubes that make up the system decrease and increase,
respectively when the axial compression becomes larger. It was also reported that the
amplitudes of the steady-state vibration of the two beams decrease with the increase
of shear modulus of the Pasternak layer for different axial compression ratios. It was
noted that Mohammadi and Nasirshoaibi together with their co-authors assumed that
the cross-section of the two beams was uniform. Mirzabeigy et al. (2017) used the
Bernoulli-Fourier method to analyse the free vibration of a double-beam system which
is elastically connected by a Winkler-type layer. The authors based their solutions
on the assumption that the two beams are uniform and that they can have different
cross sections or made from different materials. Also, the analysis required that the

boundary conditions of both the upper and lower beams must be the same.

From an overall point of view, it has been observed from the above literature that no
research has been done to investigate the free vibration analysis of a system of two
non-prismatic beams coupled by a Pasternak elastic layer. To the best of author’s
knowledge, no report has been published in the literature in this perspective. Thus in
this thesis, the free vibration of a non-prismatic double-beam system connected by a

Pasternak elastic layer under different boundary conditions is reported.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter discusses the methodology of the research presented in this thesis. Firstly,
the basic idea and principles of the method of solution employed in solving the
vibration problems are provided. Vibration analysis of systems involving uniform
beams can be done using analytical methods. However, it often becomes difficult,
if not impossible to find a suitable analytical method when the cross-section of the
beam is non-prismatic along its length. In this chapter, a semi-analytical technique
known as differential transformation method is presented for solving the vibration
problems proposed in Chapter One. The subsequent sections explicate the mathe-
matical formulation of the vibration problems and the implementation of the solution

procedures.

3.2 Description of Method of Solution: Differential Transformation Method
(DTM)

The goal of this section is to recall notations, definitions and review some theorems of
the DTM that were used in this study. These are comprehensively discussed in Chen
and Ho (1996, 1999), Hassan (2002, 2008), Ayaz (2004), Ho and Chen (1998) and
Ozgumus and Kaya (2006). Also, the main steps of implementing the DTM in solving

differential equations will be highlighted.

Meanwhile, different types of solution procedures have been used to solve eigen-
value problem which results from vibration analysis and other classes of problems.
Among the methods that have been used in the previous studies reported in the
available literature include the finite element method, the Frobenius method of series

(Naguleswaran, 1991 and 2004), variational techniques such as Rayleigh Ritz and
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Galerkin methods, generalized method of finite integral transformation, the Laplace
transformation, the classical Bernoulli Fourier method, the classical modal expansion
method, an exact dynamic stiffness method, the finite difference method, the pertur-
bation technique, Adomian decomposition method, Modified Adomian Decomposition
Method (Hsu et al., 2008), He’s variational iteration method (Liu and Gurram, 2009),
singular value decomposition method (Yieh et al., 1999) etc, may be found in literature.
The existing techniques have difficulties in relation to the size of computational work,

especially when the system has several partial differential equations.

The differential transformation method (DTM) is a semi-analytical technique that is
based on the well-known Taylor series expansion. The method was first introduced
and used by Zhou in 1986 to study electrical circuits (Chen and Ho, 1996; Ho and
Chen, 1998; Malik and Dang, 1998). Some of the advantages of the DTM are that
it is very simple to implement and also has a high level of accuracy (Kaya, 2006). It
has also been noted that DTM yields an analytical solution to given problem in the
form of a polynomial. One of the major differences between DTM and the traditional
higher order Taylor series method is that it does not require the symbolic computation

of derivatives of the data functions.

The methodology has been organized into the following stages:

(i) First, obtain the non-dimensional form of the governing equations of motion and

the boundary equations;

(ii) Use the definition and properties of the differential transformation to transform
the non-dimensional form of both the governing equations and the boundary

conditions;

(iii) Obtain the recurrence relations of the non-dimensional governing equations and
combine them with the boundary conditions to obtain the transformed solution

to the vibration problem; and
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(iv) Finally, obtain the inverse of the transformed solution.

DTM involves applying some transformation rules to the governing differential equa-
tions together with the boundary conditions associated with them. By so doing, we
obtain a set of algebraic equations in terms of the differential transforms of the original
functions and the desired solution is obtained by solving these algebraic equations. An
important merit that DTM has over Taylor series method is that it does not require
symbolic computation of derivatives which might be very expensive when large orders

are involved.

The differential transformation of the rth derivative of a function, y(), is defined as
follows: (Chen and Ho, 1996; Ho and Chen, 1998; Arikoglu and Ozkol, 2005; Abazari
and Abazari, 2009 and other references)

Y(r)= % {dzlygf)t:[) (3.1)

where y(€) is the original function and Y (r) is the rth order differential transformation

of y(€¢). The inverse differential transformation of Y (r) is defined as follows:

y(&) = &Y (r) (3.2)

Substituting equation (3.1) into equation (3.2), we have

y(€) = Z% {drdy—f(f)} B (3.3)

r=0

which is the Taylor series of y(£) at £ = 0. Equation (3.3) implies that the concept of
differential transformation is obtained from the Taylor series expansion. However, it
is important to remark that DTM does not require the symbolic calculation of the
derivatives. This is one of the advantages that DTM holds over higher-order Taylor

series method. In practical applications, the function, y(€), is often expressed by the
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finite-term series

y(&) =) &Y (r) (3.4)

where the value of M is determined by the convergence of the natural frequencies.

Equation (3.4) implies that

> v

r=M+1

is very small so that its value can be neglected.

The fundamental theorems (proofs included) of the dimensional transform which
are veritable tools used for the transformation of the governing equations and the asso-
ciated boundary conditions are as listed below: (Arikoglu and Ozkol, 2005; Mirzabeigy,
2014).

Theorem 3.2.1. If f(&) = g(&) £ h(£), then

F(r)=G(r) £+ H(r). (3.5)

Proof. From the definition (3.1), we can write

G(r) = % {drdg—g)} o (3.6)

and

() = {dT;{@L:O’ (3.7)
Suppose that
f(&) = g(&) + h(&). (3.8)
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Therefore,

Y

=0

Fir) = 7 { g (€ + hie}

which can be put in the form

F(r) = {ddg—ﬂ o 5 {%@] e

Hence, by equations (3.6) and (3.7), it follows that

F(r)=G(r)+ H(r).

Similarly, it can be proved that

F(r)=G(r)— H(r).

for

as required.

Theorem 3.2.2. If f(£) = A\g(§), then

where )\ is an arbitrary constant.

Proof. Suppose that
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(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)



or

This completes the proof.

Theorem 3.2.3. If f(¢) = dg_(f)’ then

d§
F(r)=(r+1)G(r+1).

Proof. Given that

Thus,

Fo= o e e ]}

which is equivalent to

= 1 [d*g(S)
F(r) = 1 [ der+1 }£=0.

9

=0
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(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)



From the definition (3.1), we have

d"y ()

d—g"‘ = T‘?(T)

=0

which implies that

d"g(€)
d£T+1

£=0

Using equation (3.24) in (3.22) gives

Fry= ; D +1).

Equation (3.25) reduces to

F(r)=(r+1)G(r+1).
The result follows.

d*g(§)
gz

Theorem 3.2.4. If f(§) =

F(r)=(r+1)(r+2)G(r+2).

Proof. Given that

Thus,

m-3{1%)

1 [d2g(6)
_ﬁ[ der+2 LO.

=0

= (r+1DIG(r+1).

then
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(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)



From the definition (3.1), we have

dy@©| _ 5

de g:U_T!Y(T)
Thus,

Py = U D 1)

or

F(ry=(r+1)(r+2)G(r+2).
This completes the proof.

d"g(§)

den then

Theorem 3.2.5. If f(£) =

F(ry=r+1)(r+2)...(r+n)G(r +n).

(3.29)

(3.30)

(3.31)

(3.32)

Proof. The proof of this theorem follows analogously from the proofs of theorems 3.2.3

and 3.2.4.

Theorem 3.2.6. If f(£) = g(&)h(E), then

r

or
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Thus,

P = 5 { g bmo1} (3.36)

£=0
By using Leibniz’s formula for the rth derivative of a product of functions, the

expression in the parentheses of equation (3.36) can be expressed as

i 91001 = 3= (1) s (0 g 0. (3.37)
where

r 7!

(s) " sl(r—s)! (3:38)
is the binomial coefficient.
Thus,

g @l =3 (7) (466 [0 sstr ), (330
noting that

C9Q ] _ s

{ e Lzo e .
and

d"h() =(r—s)H(r—s

{ = L:o =( VH( ). (3.41)

Equation (3.39) can be expressed as

Lg?" [g(é“)h(é)]] = Z; (Z)S!(r — $)IG(s)H(r — s), (3.42)

§=0 S=!
which, after simplification, becomes
T

[ " [g(&)h(&)]] = Y MG A 5. (3.43)
£=0 s=0
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Using equation (3.43) in equation (3.36), we have

F(r)=)_G(s)H(r - s). (3.44)
as required. O
Theorem 3.2.7. If f(¢§) = g(ﬁ)dzdhggo, then

F(r)=Y _G(r—s)(s+1)(s+2)H(s +2). (3.45)

s=0

Proof. The result of this theorem can be established by using theorems 3.2.5 and

3.2.6. O
Theorem 3.2.8. Tf f(¢) = g(g)dtl}éff), then
F(r)= Z G(s—r)(s+1)(s+2)...(s+n)H(s+n). (3.46)
s
Proof. Similar to the proof of theorem 3.2.7. O
Theorem 3.2.9. If f(¢) = dzgf) di;;f), then

T

F(r) = Z(T—S+1)(T—S+2) o (r=s+m)G(r—s+m)(s+1)(s+2) ... (s+n)H(s+n).
s=0
(3.47)
Proof. The proof is analogous to that of theorem 3.2.6. m
Theorem 3.2.10. If f(&) = ¢", then
_ 0 if ;
F(r)=d(r—n) = ifr 7 (3.48)
1 ifr=n.

The above-listed theorems are often used in the transformation of the equations of
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motion as used in this analysis. In a similar manner, some of the basic theorems (with

their proofs) that are used in the transformation of the boundary conditions are as

follows (Arikoglu and Ozkol, 2005):

Theorem 3.2.11. If f(0) =0, then

F(0) =0.

Proof. From the definition (3.1), it follows that

-3 1),

as required.

df (€)

Theorem 3.2.12. If T =0, then

L:O

F(1)=0.

Proof. Putting r = 1 in (3.50), we have

_ [df_@]
e=0

dg
=0.
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(3.49)

(3.50)

(3.51)



d£(E)

Theorem 3.2.13. If i

= 0, then
£=0

F(2) =0. (3.52)

Proof. From equation (3.50), we have

Fo) = {deff)Lzo

1 {dzf(é)]gzo

2| de
=0.
]
3
Theorem 3.2.14. If d f(f) =0, then
d&® |e_g
F(3)=0. (3.53)
Proof. Substituting r = 3 into equation (3.50) yields
= 1 [df(E)
F(3) = —
O =5 | LO
1[G
6 d& |
=0.
]
Theorem 3.2.15. If f(1) =0, then
> F(r)=0. (3.54)
r=0
Proof. By equation (3.2), we have
F€) =) &Fw). (3.55)

r=0
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Plugging £ = 1 in equation (3.55) gives

r=0
So,
Z F(r)y=0
r=0
Theorem 3.2.16. If df_(é) = 0, then
d§ ey

ZTF(T’) = 0.

r=0

Proof. Differentiating equation (3.55) with respect to £ once yields
df(é‘) = r—1 1
= > rg T E(r).
r=0

Evaluating equation (3.59) at & = 1, one obtains

d =
%)Ll = z; rE(r).
Hence,
Z rE(r) =0.
r=0
Theorem 3.2.17. If dzf(f) = 0, then
d€ =1

Zr(r —~1F(r)=0.

r=0
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(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)



Proof. Differentiating equation (3.59) again with respect to & gives

d’f(€)
dgz

This implies that

Zr(r— 1) F(r) = 0.

r=0

f(8)

Theorem 3.2.18. If e

= 0, then
=1

D r(r=1)(r—2)F(r) = 0.

r=0

Proof. Differentiating equation (3.63) again with respect to & produces

CrE) _ 5 _—
e Zr(r—l)(r—2)§ F(r).

r=0

Now, evaluation of equation (3.63) at & = 1 gives

) => r(r—1)(r—2)F(r).

r=0

This implies that

d r(r—=1)(r—2)F(r)=0.

r=0
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(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)



3.3 Mathematical Formulation of the Problems

The mathematical formulation of the vibration problems considered in this thesis in
terms of a pair of coupled partial differential equations and the associated boundary

conditions are presented in this section.

3.3.1 Mathematical models for the two vibration problems

The double-beam system shown in Figure 3.1 is composed of two parallel, non-prismatic
and homogeneous beams, which have the same length and are continuously joined
by an elastic Pasternak layer characterised by Winkler modulus, k(z) and shear
modulus, G(z). The two tapered beams that make up the double-beam system are
either Rayleigh or Euler-Bernoulli beams depending on the effects of the parameters

considered.

The top beam and the bottom beam were designated as the upper beam and lower
beam, respectively. In this study, it was assumed that the material properties of both
beams, that is, Young’s modulus of elasticity £;, and mass density p;, were constants.
However, the geometric properties of the beams, that is, the area of cross-section, A;(z)
and moment of inertia of the cross-section , I;(z), of both beams, vary continuously
along the length of each of the beams. The subscript j took the value 1 for the upper
beam and 2 for the lower beam. FEuler-Bernoulli and Rayleigh beam theories for
transverse vibration were adopted in this study. It was also generally assumed that
the two beams were not identical in terms of their material and geometric properties.
Since free vibration was considered, it was assumed that no external force acted on

the upper beam.

Consider first the Rayleigh beam theory. The governing differential equations of
motion and boundary conditions of the elastically connected double-beam system can

be derived in two ways, namely the Newtonian approach and the extended Hamilton’s
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Figure 3.1: The structural model of a system of two non-prismatic beams elastically
connected with a Pasternak elastic layer
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variational principle (Meirovitch, 2001). By using Newtonian approach, the governing
differential equation of motion for free vibration of a Rayleigh beam could be easily

obtained as:

where w(z,t) denotes the displacement, EI(x) the flexural rigidity, pA(z) the mass
per unit length and pI(z) is the rotatory inertia of the cross-sectional area of the beam

(Bottega, 2006).

Using w;(x,t) to denote the deflection of the jth beam at a distance x from its
left-hand end at time ¢, then the deflections of the upper beam (j = 1) and lower

beam (j = 2) can be written, respectively as w;(z,t) and ws(z,t).

Assume that there is no connection between the two beams such that they vibrate
independently. Then, based on this assumption and using the above notations, the
equations governing the motion of the upper and the lower beams can be written

respectively as:

o2 92 't 0? .t
KA S A CELA N P Ll
ox ox ot (3.71)
_9 I )Q 0wy (x, 1) —0 '
oz [P\, ot -
and
0? 0w (x,t) 0wy (x, 1)
pr EIW)T] T oAalr) =5
(3.72)

_ a% {plfg(x)% (—621“555’”)} =0,
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Next, it is assumed that the elastic layer which continuously connects the upper and
the lower beams together is of the Pasternak type characterised by k(x), the variable
Winkler modulus of the elastic layer (springs) that connects the two beams together
and G(z), the variable shear modulus that accounts for the shear interaction among

the springs. So, the restoring forces from the Pasternak elastic layer are expressed as:

F = <k‘(x) - G(x)%) [wy (z,t) — we(z,t)], (3.73)
and
Fy = (k(x) — G(x)%) (wa(z,t) —wy(z,1)], (3.74)

for the upper and lower beams respectively.

As a result of the restoring forces from the Pasternak elastic layer, the coupled
governing partial differential equations for transverse vibrations of the double-beam

system whose structural model is shown in Figure 3.1 can be stated in the form:

0? 0wy (x,t) 0w (x, 1)
s {Em(ﬂﬁ)T} +p(a)—p
9, 0 [ 0*wi(w,t)
% [Pl-’l(l‘)% < o2 )] (3.75)
82

(ko) = Ga) 3 ) ) = wala, )] =0,

and

02 D?wy(z,t) OPwy(z,t)
5z B =2 4 poti ) )
0 0 [ 0*wy(w,t)
v [f’ﬂz@)a—x <T)] (3.76)

2

+ (/{;(1‘) — G(I)%) [wy(x,t) — wq(z,t)] =0,
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where Ey, Fs, p1, p2, Ai(x), As(z), I1(z) and Is(x) have their usual meanings as
earlier defined. It should be noted that the products E;I;(z) and p;jA;(x), for j = 1,2
respectively represents the flexural rigidity (also called flexural stiffness) and mass per
unit length (also known as the beam mass intensity) of the jth beam. Also, p,I;(x),
for j = 1,2 is the rotatory inertia term of the jth beam. It is informative to point out
that the corresponding governing equations for Euler-Bernoulli beams can be obtained
as a special case of the Rayleigh beams’ equations if the rotatory inertia term, p;[;(x),
is neglected. This is equivalent to setting the term involving p;/;(x) in equations (3.75)
and (3.76) to zero. Equations (3.75) and (3.76), together with an appropriate set of
boundary and initial conditions, define the free vibration problem of the elastically

connected non-prismatic Rayleigh double-beam system with Pasternak middle layer.

3.3.2 Boundary Conditions

In order to solve equations (3.75) and (3.76), eight boundary conditions were required.
These were obtained by specifying two boundary conditions at the left-hand end,
x = 0 and two boundary conditions at the right-hand end, x = L of each beam. On
the basis of arbitrary boundary conditions at each end of the beams, the two beams
in the double-beam system were assumed, in this study, to be elastically restrained
by means of translational and rotational springs as shown in Figure 3.1. Now the
boundary conditions at the ends of the jth beam associated with a general elastically
end restrained non-prismatic Rayleigh double-beam system are given as follows: (Ho

and Chen, 1998; Hsu et al., 2008)

O*w;(z, 1) Ow;(z,t)
Ej]j# - kj’LR]a—x - 0, (377)
9, O?w;(x,t) Pw,(x,t) Ow,;(x,t)
£ Ejfj(x)# + ijj(x)w + ’fj,LT]a—‘,)3 =0, (3.78)
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at the left-hand end of the beam, and

O%w;(z,t ow;(z,t
E;I; (x)% + k:j,fm% =0, (3.79)
0 0w, (x,t Pw,(x,t
% E]IJ(IE)% + pjlj(l)# — ]{ijRij(ZL', t) = O, (380)

at the right-hand end of the beam, for j =1, 2,

where k;r and k;pr are the stiffnesses of the rotational and translational springs
at the left-hand end of the jth beam respectively, and k; rr and k; rr are the corre-
sponding spring stiffnesses at its right-hand end (see Han et al., 1999, Li et al., 2013).
Equations (3.75)—(3.80) constitute the first vibration problem that is solved. It is
remarked, at this juncture, that the corresponding governing equations of motion and
associated boundary conditions for the second problem based on Euler-Bernoulli beam

theory, are obtained by setting the p;I;(z) term in equations (3.75)(3.80) to zero.

3.4 Application of Differential Transformation Method

3.4.1 Assumed Solution (Modal Analysis)

An exact solution for the vibration characteristics of the vibration problem in this
study is intractable because of the nature of the pair of coupled governing equations
of motion having variable coefficients. This is why a recourse is made to approximate

solution which is obtained using the method earlier described.

The free vibration solution of the system under consideration (whose schematic
diagram is shown in Figure 3.1) can be obtained by assuming harmonic motion (the
simplest type of periodic motion) and applying the relevant boundary conditions. This
allows the transverse displacement of each beam, that is, w;(z,t) to be separable in

space and time (as the product of functions) and as such can be assumed to take the
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form (using complex-variable representation):
w;(x,t) = Y;(x)e™, j=1, 2, (3.81)

where Y;(x) is the mode shape function of the jth beam, ™" is a harmonic function of
time t with w as the angular natural frequency of the double-beam system’s structure.
Also, i = v/—1 is the conventional imaginary unit. As a matter of fact, the solution
is in the form of a sinusoidal variation of w;(x,t) with the natural frequency w. By
introducing the assumed solution (3.81) into equations (3.75) and (3.76) and after
necessary factorization, one obtains the time independent governing equations of

motion as follows:

& &Y, ) d LAY (z)
12 [Elll(x) dmZ} — mA(2)w?Y:(z) + I {plll(:v)w 7} .
(o) ) = Yao)] - Gl 5 i) = V)| =
and
& &2Y, , d L dYs(z)
k(o) ali) = Yi(0)] - Go) 5 [Valo) i) | =o.

Equations (3.82) and (3.83) are fourth order ordinary differential equations with
variable coefficients. Their solutions depend mainly on the distribution functions
representing the actual non-uniformity characteristics of the beams. To obtain the
boundary conditions for the modal functions, we substitute the assumed harmonic
response in equation (3.81) into equations (3.77)—(3.80) to get the boundary conditions

as follows:

Y (x) av,
dl‘2 - Kj,LR% - O, (384)
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d d*Y;(x dY;(x
o [Ejfj(x) d;g )} Pﬂj(ﬂﬁ)aﬁ% + KjorYj(z) =0, (3.85)
at z = 0, and
d*Y;(z) dY;
d d?*Y:(x dY;(x
T {Eﬂj(fc)#g)] + piIj(2)w? 0;; ) KjrrYj(z) =0, (3.87)
at x = L.

3.4.2 Non-dimensionalization of the governing equations and boundary

conditions

The ordinary differential governing equations of motion, (3.82) and (3.83), are not
convenient for the analysis since they include many parameters. Without any loss of
generality and in order to facilitate the general analysis, the following dimensionless

variables and parameters are introduced:

x Y;i(z)

where &;, y;(£), 1;(§), and A;(€) are the non-dimensional parameters for the length,
deflection, moment of inertia of the cross-section and cross-sectional area of the jth
beam respectively. In addition, ;(0) and A;(0) are the moment of inertia of the

cross-section and cross-sectional area of the jth beam at the left-hand end (x = 0).

Using the non-dimensional quantities stated in equations (3.88) in equations (3.82)

and (3.83) one can obtain:
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d2
d(LE)?

d? {Ly:(&)}
d(LE)?

[Eljl(o)ll (€) ] — p1A1(0) A1 (&)w? Ly (€)

_d 2 Lyi(§)}

- G@)ﬁ [Lyl (6 - Ly2<é>] o,

] @)Ly (€) — Lin(€)

and

d2
d(Lg)?

d* {Ly»(§)}
d(LE)

[E2[2(0)12(f) } — p2A5(0) Az (§)w? Ly (€)

4 {16}

- G(x)ﬁ {Lyzw Iy, <£>] 0,

] (@) LlE) — L (€)

respectively.

Equations (3.89) and (3.90), after necessary simplification, become

d291 (€)
dg?

d? |:E1]1(0> Il(f)

a2 } — o A (0) AL ()P Ly (€)

y »d{Ly ()}
- {pl L)L =57

- G@)ﬁ {Lyl(ﬁ) - Lyz<§>} _o,

} + (@) Ly (6) — Ly (€)]

and

d292(€)

& [ Ey1,(0)
| i

e

] — p2A5(0) Ay(§)w’ Lya (€)

L de{Lyz(ﬁ)}

- a@ﬁ [Lym Ly, @ﬂ o,

} + k(z)[Ly2(€) — Lyi (€]

respectively.

L3 L3

(3.89)

(3.90)

(3.91)

(3.92)

Multiplying equations (3.91) and (3.92) through by and respectively,

Elfl(O) EQIQ(O)
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one obtains

e d?m(fq _ ALY

de? { 1972 E11,(0)

d [pli(0)w?L? - dyi(§)] | Kk(z)L!
d_f {Tl(())ll(g) dé“ ] + Eljl(o) [yl(é) o y2(€)] (3.93)
- gfff(ﬁ) j—gg [yl(f) - yz(é)] =0,
and
j_e [ ()" ;’f)} -7 2’2228?(°5)L Ax(€)p2(6)
d [p2l(0)w?L? dys(§)] | k(z)L!
d_f {WIZ(E) d£ ] + EQIQ(O) [yZ(f) - yl(é)] (3.94)
o gz(z)(l(j)) C;d_gz {92(5) - yl(&):| =0,
which can be put in the forms
& Pyi(9)]  pA(0)wL
d [p1Ai(0)w’Lt 1(0) dy,(6)] | k(x)L*
de { EL(0) A (0)L2 1(€) T } EuL (0) [y1(§) — 32(&)]  (3.95)
- G e O - (@] =0
and
d2

a Pya(§)]  p2A2(0)w? Lt
de? {2(5) de? } E,15(0)
d |:p2A2(0)w2L4 IQ(O)

Aa(E)y2(8)

(Odyz(é)} k(z)L*
Byl (0) Ay (0)L2 2 de E,15(0)

dg
- o - we) <o

[y2(§) — 1 (§)] (3.96)

respectively.

The governing differential equations (3.82) and (3.83) can be written in the following

dimensionless forms:
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&’ d*y1(€) 2 2 d r2)\2 dy: (§)
o (o) - vraiomie + & [ine ] o
d? '
() 1O~ (6] — O) {yl (6 - y2<5>} o,
and
d_2 d*ya(§) 22 i r2)2 dy2(§)
& [ TED] st aerme + & [pne )] .
d? '
b ra(€) 1(6) — 10(6)] — 32(6) g5 {yzw _— <5>} o,
where
o k(l’)L4 2 IOJA](O)L4 o G((L‘)LQ 2 ]j<0)
SO ELo VT B Y T B T B O
for j =1, 2.

Following similar argument, the boundary conditions in equations (3.84)—(3.87) can

be rewritten in the following non-dimensional form:

=0, (3.100)

3. . 2, ‘
: Zga " dlcjzég) : gégg) 75 A?WQ—dyéég) + ¥j0ry;(§) = 0, (3.101)
at £ =0,
and
d*y; (€ dy; (€
fz/&g L ydé '-o, (3.102)
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dgyj (3] dzyj(é) 212 2dyj(§)
g g T TjAW T U rry;(€) = 0, (3.103)
at £ = 1, in which
VLr = Birnk LT = —Kj’LTLB Vj rr = Rnnk
” E;I;(0)" " E;I;(0)" 7 E;L; (L)’
(3.104)
Kj,RTL3 1 dfj(f)

W = = O]
METE LWL YT L6 de 1

for j =1, 2,

where W; 1, W, pr are the dimensionless parameters related to the stiffnesses of the
translational springs, and V; 1, V; rr are the dimensionless parameters related to the
stiffnesses of the rotational springs at the left and right-hand ends for the jth beam

respectively.

3.4.3 DTM Formulation and the Desired Solution

Now, the method already alluded to is applied to solve the problem in this Section.
The fundamental principle of the DTM is to transform the governing equations of
motion and the boundary conditions into a set of algebraic equations by using the

differential transformation rules and the theorems appropriately.

3.4.4 Differential Transformation of Governing equations of motion

By applying product rule of differentiation appropriately to equations (3.97) and

(3.98), we get

d* d d? d? d?
o Tt 2 ) SR @)
+ N 11<g>dzgé§5> +dfcll§) dycf)} (3.105)

2

() [ () = ()] — o1 <s>j—£2 {y (6) - y2<5>} _0,
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and

d'ya(§) | dDL(§) Eya(§) | PIx(8) dya(8)

n Tl O D) | THO TR st as(ente
+r2Ak? 12(£)d2§2§§) +djfif) dy;ég)} (3.106)
1) 126) = 1(©)] — (6 5 (6 — ()] =0,
respectively.

Using Theorems 3.2.1 through 3.2.10 appropriately, the differential transforms of

equations (3.97) and (3.98), are obtained as:

Zfl(r —8)(s+1)(s+2)(s+3)(s +4)Yi(s+4)

s=0

+ Zi(r —s+ 1)i(r—s+1)(s+1)(s+2)(s +3)Yi(s + 3)

+ XT:(T’ —s+1)(r—s+2)L(r—s+2)(s+1)(s+2)Yi(s+2)

s=0

i[l(’r —$)(s+1)(s+2)Yi(s+2) (3.107)

s=0

— A2 Z Ai(r — 8)Yi(s) + riNiw?
5=0

+ i(r — s+ D)h(r—s+1)(s+1)Yi(s+1)

s=0

+ ) Ki(r —s)[Ya(s) — Ya(s)]
=) Gi(r—s)(s+1)(s +2) [Yi(s +2) - Ya(s +2)] =0,

and

r

L(r—s)(s+1)(s+2)(s+3)(s+4)Ya(s +4)

=]

S=

it ZZT:(T — s+ 1)L(r—s+1)(s+1)(s+2)(s + 3)Ya(s + 3)

r

+ Y (r—s+1)(r—s+2)L(r—s+2)(s+1)(s+2)Ya(s +2)

S=

o

— Aw? Z Ay(r — 8)Ya(s) + raXsw? Z L(r —s)(s+1)(s +2)Ya(s + 2)

s=0
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+ i(r —s+ 1) L(r—s+1)(s+1)Ya(s+ 1)

+ ) Ko(r — s)[Ya(s) — Yi(s)] (3.108)

=) Gh(r—s)(s+1)(s+2) [Ya(s +2) — Yi(s +2)] =0,

s=0
where I;(r), A;(r) and Y;(r), j = 1, 2 are the transformed functions of I;(€), 4;()

and y, (&) respectively.

3.4.5 DTM Transformation of Boundary Conditions

In a similar fashion, Theorems 3.2.11-3.2.18 are appropriately applied to the boundary
conditions presented in equations (3.100)—(3.103). Thus, the transformed boundary

conditions at both ends of each beam in the double-beam system are obtained as:

21Y;(2) — ¥, LrY;(1) =0, (3.109)
6Y;(3 2djj(0)37 2 IN20%Y; (1) + U 1Y (0) =0 3.110
3(3) + T 3(2) + iAW Y;(1) + V5 17Y5(0) = 0, (3.110)
at £ =0, and
M - M B
> r(r=1)Yi(r) + Uypr Y rYi(r) =0, (3.111)
r=0 r=0
M B M B
Y+ D +2)(r +3)Y(r +3) +m; Y r(r — 1)¥;(r)
r=0 r=0
y iy (3.112)
+ r?A?wQ ZTYJ(T) —Wpr Y Yi(r)=0,
r=0 r=0
at £ = 1.
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3.4.6 Evaluation of Natural Frequencies and Mode Shapes

The values of Y;(0), Y5(0), Yi(1) and Y5(1) are unknown. So, they are set as unknowns

such as:
Yi(0) = ey,
= (3.113)
Y5(0) = ¢,
Ya(1) = 4

Solving equations (3.109) and (3.110) for Y1(2), Y5(2), Y1(3) and Y5(3), we get

— v

Yi(2) = — e (3.114)
- v

%(2) = —5 e, (3.115)
- v 1 dI, (0

}/'1(3) = — léLTcl — 6 {Ql,LR% + rf)\fuﬂ} Co, (3116)

and
_ 1 dI(0
}/2(3) = —52’6LT63 - 6 |:\I/27LR% + rg)\gwﬂ Cy. (3117)

In order to get Y;(4) and Y3(4), equations (3.112)-(3.117) are used appropriately in
equations (3.106) and (3.107). Following similar recursive procedure, the values of
Yi(r) and Ya(r) for r =5, 6,..., M (where M is to be decided by the convergence of

the natural frequency) can be determined in terms of constants ¢y, c2, c3 and cy.

Substituting Y;(r) and Y3(r) for » = 0, 1,2,..., M into equations (3.111) and
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(3.112) yields the following equation:

FM e+ F Wes + FMw)es + FI(W)ea =0, v =1, 2, 3,4,  (3.118)

L

such that f{ )(w), M ) (w), fL(BM W), ) (w) are polynomial functions of w corre-
sponding to M. The system of equations in (3.118) can be expressed in the following

matrix form:

0w 7w f30w) 3PN [a] (0]
2w W) 7w W) | e O
= : (3.119)
W) P w) W) 5wy | es| |0
1w W) 7w f1Pw)) el (o]

In order to obtain the frequency equation for computing w, we invoke the condition
that the determinant of the coefficient matrix of equation (3.119) must be equal to

zero. That is,

W) B w) S w) P w)

W) 120w W) P (w)
= 0. (3.120)

W) W) W) P w)

W) 7w W) P w)

From the foregoing, the frequencies are calculated by solving equation (3.120). The
non-trivial solution of equation (3.120) is simply a polynomial root finding problem.
The roots of the above frequency equation can be determined by using techniques

like Newton’s method, Laguerre’s method and so on. However, in this study, Student-
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Linear Algebra which is a built-in function in Maple 18 was used to develop a computer
programme code in accordance with Theorems 3.2.1-3.2.18 with a view to computing
the roots which are the eigenvalues. The programme codes can be found in Appendices

I and II.

Solving the frequency determinant equation (3.120), one gets
w=wM n=1 2., (3.121)
where w(™ is the nth estimated eigenvalue (natural frequency) corresponding to the

nth mode of vibration. The value of M will be decided by the convergence of the

natural frequency expressed by the following inequality:

(M) _ y(M=D| < ¢, (3.122)

|wn n

where w(™ is the Mth estimated natural frequency corresponding to M and ¢ is

the error tolerance parameter (allowable error). In this study, the error tolerance

parameter was taken as € = 0.0001.

If inequality (3.122) is satisfied, then we get the nth modal natural frequency, w,
of the structure. Generally, w, is a complex number of the form w, = a + ib. The
imaginary component of w,, is the nth natural frequency of the double-beam system.
Without mincing words, the first of w’s which approximately satisfies equation (3.122)

is the first natural frequency of the double-beam system.
The mode shape functions of the upper and lower beams can be obtained by setting

¢4 to unity in equation (3.119) so that the values of the remaining unknown constants,

c1, ¢o and c3 are determined. Setting ¢, = 1 in equation (3.119), we have the following
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system of equations:
W) e+ fw) - ea + FE (W) e = £,
M M M M
FAP W) e+ f27(w) - ea + [ (w) - es = 47, (3.123)

M M M M
FaD (W) e+ FP (W) - ea+ fP (W) - es = [0,

Solving the above equations for ¢, ¢ and c¢3 by Cramer’s rule, one obtains

det(Ay)

c1 = Jet(4)’ (3.124)
o d@t(AQ)
= Gad) (3.125)
and
. det(Ag)
C3 = det(d) (3.126)
provided that det(A) # 0,
where
AP w) W) A (w)
det(A) = | 1" (w) 9" W) fal W) (3.127)
W) W) 57 (W)
W) 5w 7w
det(Ay) = |~ 1" (w) £ (w) 57 w)], (3.128)

@) P w) (@)
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1w 17w AP w)

det(Ay) = [ fi1" (@) £ (w) 37 ()], (3.129)

2w " w) 3 (w)
and
1w 7w - W)

det(A3) = |15 (w) f9" (W) —fa" ()] (3.130)

W) 5w~ w)

Thus, the mode shape functions corresponding to any modal vibration frequency

for both upper and lower beams can be expressed as:

M
yi(§) =D &Yi(r), (3.131)
r=0
and
M _
() =D &Ya(r), (3.132)
r=0
respectively.

By normalizing equations (3.131) and (3.132), we obtain the normalized mode shape

functions for the upper and lower beams as follows: (Hsu et al., 2008)

W (5)

S (e e (3.133)

y1(§) =
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and

92(5)

y2(8) =
I o de (3.134)

Usually, there are two types of tapers in non-prismatic beam classification namely
single taper and double taper. The single taper is obtained when only the beam
depth (thickness) varies linearly along the beam axis. On the other hand, double
taper arises when the beam width and depth are varied linearly along the beam
axis. In the literature, the variation of the geometric properties of a non-prismatic
beam has been assumed using many distributions such as algebraic polynomials,
exponential functions, trigonometric series or their combinations. Abrate (1995) and
Ozgumus and Kaya (2006) used power functions to represent the distribution of the
non-prismatic characteristics of the beams which were adopted in this study. Following
the assumption in their research, polynomial functions of the position are used to
represent the cross-sectional area and the moment of inertia of the cross-section of
the beams. The general expressions for the breadth, b;(z), the height, h;(x), the
cross-sectional area, A;(x), and the moment inertia of cross-section, I;(x) of the jth

beam are given by the following expressions: (Tang et al., 2015)

bj(x) = b;(0) (1 - %%)p, (3.135)
hj(z) = h;(0) (1 - chj%)q, (3.136)
Ay(w) = by(@)hy(x) = A;(0) (1 - o, 7P (1~ chj%)q, (3.137)
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and

Liz) = 2 (x):?(x) = 1(0)(1 = e, (1 = en, 7, (3.138)
such that

A;(0) = b;(0)h;(0), (3.139)
and

1,(0) = OO (3.140)

where A,(0), 1;(0), b;(0) and h;(0) are the cross-sectional area, moment of inertia of
the cross-section, width and height of the jth beam at its left-hand end (x = 0). In
equations (3.135)-(3.138), ¢, and ¢;; which represent the breadth and height taper

ratios of the jth beam respectively, are defined as follows:

. b
o =13 0y (3.141)
and
. k(D)
= 1= 35 (3.142)

which satisfy 0 < ¢, <1, 0 < ¢; <1, p and ¢ are the constants used to describe the
profile of various cross-sections. b;(L) and h;(L) are the width and height of the jth

beam at the right-hand end, z = L (Ozgumus and Kaya, 2006).

Taking different combined values of p and ¢ will give various shapes of the cross-
section. It is easy to see that one can recover the prismatic beams by simply setting
p = ¢q =0 or just putting the taper ratio, ¢;; = c¢5; = 0. Non-negative integers such as
0, 1 or 2 are usually chosen for p and ¢ when considering most regular situations for

non-prismatic beams in practice (Tang et al., 2015).
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For the purpose of analysis in this study, attention is restricted to a beam pair
with constant width and linearly varying depth. This can be obtained by setting p = 0

and ¢ = 1 in equations (3.135)-(3.138) to obtain the following expressions:

bi(z) = b;(0), (3.143)

hy(x) = h;(0) (1 - chj%) , (3.144)

Aj(x) = A;(0) (1 - chj%) , (3.145)
and

I(x) = 1,0) (1 - chj%)‘g. (3.146)

For simplicity, let us write 3; = ¢, henceforth. Thus, the cross-sectional area and
the moment of inertia of the cross-section of the jth beam in equations (3.145) and

(3.146) become:

Aj(z) = A;(0) (1 = ﬁ;%) ; J=12, (3.147)
and

L@ =50 (1-57) " i=12 (3.148)

where A;(0) and 1,;(0) have their usual meanings for the jth beam at its left-hand
end x = 0, ; is the taper ratio for the jth beam which satisfies 0 < 3; < 1. The

cross-sectional area and moment of inertia of the cross-section of the jth beam, in
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dimensionless form, can now be written as

A
and
_ Li(x) NS s
I;(¢) = [;(O> = (1 —BJL) =(1-8;8)°, j=1,2, (3.150)
respectively.

Substituting equations (3.149) and (3.150) into equations (3.105) and (3.106), one

obtains
d4y1 €3] d[(l - 515)3] d3y1 €3] dz[(l - 515)3] d2y1 (f)
= S = BT
d? d(l — 3d
— R (1 = BE(E) + [(1 - ey e AL DO (g 15

() [91(6) — ()] — gl<s>j—; [m(@ - y2<£)} 0,

and
d'ys(&) | dl(1 = o)’ dPya(E) | d*[(1 — B2€)] dPya(€)
(1 - 525)3 d§4 +2 df d§3 + d§2 d§2
d? d(1 — 3d
— (1 - (@) + e |1 - pugp D) 4 AL BB (g 1

d2

1) 1(6) 1 (6)] ~ 929 5 {m(s) - y1<5>} o,

respectively.

These can be further simplified to give

d3y1 (5)
dg?

4
(1-36,€ + 3582¢> — 5?53)d géf)

d*y1 (&) — N1 = By (6)

dg?
d2yl (€)
dg?

— 661 (1 —2B5:€ + B7€7)

+ 6535 (1 — Bi€)
(3.153)

—301(1 = 25:¢

} () () — ()] — gl<f>j—§2 [ym - y2<5>} —0,

IESOH [(1 3 + 3837 3%

dy,(§)
/3

+ 377
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and

3
— 662 (1 — 286 + B3€7) dg—sz)

d4y2(§)
dgt

Pya(§) A2w?(1 = Bo8)ya(€)

de?
2
+ 2k [(1 — 366 + 38367 — e gg@

dya (& )
d¢

(1-36:¢ + 3636 — B3€)

+ 6035 (1 — B2€)
(3.154)

— 302(1 = 25:¢

d2
dg?

T 52e) }+m@nm@»—%@n—m@> {m@»—m@ﬂzo,

respectively.

Applying Theorems 3.2.1-3.2.10 appropriately to equations (3.153) and (3.154) yields

T

Z [6(r —s) = 3B16(r — s — 1) + 3876(r — s — 2) — B{(r — s — 3)]

><_(s +1)(s+2)(s+3)(s+4)Yi(s +4)

— 664 Z [6(r — ) = 2B10(r — s — 1) + B76(r — s — 2)]
X (s+1)(s +2)(s + 3)Vi(s + 3)
+ 67 Z [6(r —s) = Bi6(r —s—1)] (s +1)(s+2)Yi(s+2)

s=0
r

—)\waZ[é(r—s) — B18(r —s—1)]Yi(s+2) (3.155)

+ Tf)\%wg{z [(5(7“ —5) —3B16(r —s—1) +38%0(k —r —2)
s=0
k

— B35(r — s — 3)} x (s+1)(s +2)Yi(s +2) — 35 Z{(S(r —3)

—2B16(r — s — 1) + Bid(r — s — 2)} (s+1)Yi(s+ 1)}
£ Kolr = 8) [Fi(s) = Ya(o)]

—Gi(r—s)(s+1)(s+2) [Yi(s+2) — Ya(s +2)] =0,
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and

T

Z [6(r —s) = 3B20(r — s — 1) +3836(r — s — 2) — B36(r — s — 3)]

s=0

X (s41)(s+2)(s +3)(s +4)Ya(s + 4)

— 65 Y [6(r—s) = 2B:0(r — s — 1) + B35(r — s — 2)]
X (s +1)(s 4 2)(s + 3)Ya(s + 3)

+6835 ) [0(r—s) = Bad(r — s — 1)] (s + 1)(s + 2)Ya(s + 2)

— AW [6(r — s) = Bad(r — 5 — 1)] Ya(s + 2) (3.156)

+ r%)\goﬂ{z [5(7" —8) —3B20(r —s—1) +3830(k —r — 2)
s=0
k

— B35(r — s — 3)} X (s+1)(s+2)Ya(s+2) — 3622[5(7’ —3)

r=0

—2B8(r — s — 1) + B38(r — s — 2)} (s +1)Ya(s + 1)}

+ Ko (r — s) [Ya(s) — Ya(s)]

—Go(r—s)(s+1)(s+2) [Yao(s +2) = Yi(s +2)] =0,

respectively.

Equations (3.155) and (3.156) are the recurrence relations for the vibration problem
of elastically connected non-prismatic Rayleigh double-beam system with Pasternak
middle layer. It is assumed that both the upper beam and the lower beam have a

constant width and linearly varying depth.

It is remarked that, the corresponding recurrence relations for the vibration problem

based on Euler-Bernoulli beam theory can be derived by setting r;, for j =1, 2 in
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equations (3.155) and (3.156) to zero. To this end, we obtain

and

T

> [5(r—s) = 316(r — s — 1) +3870(r — s — 2) — B{6(r — s — 3)]

s=0

X (s +1)(s+2)(s +3)(s +4)Yi(s +4)

— 601 Z [6(r —5) = 2B10(r — s — 1) + B76(r — s — 2)]

X (s+1)(s +2)(s + 3)Vi(s + 3)

, (3.157)
+ 637 Z [6(r —8) — B10(r —s—1)] (s + 1)(s +2)Yi(s + 2)
— A2 Z [6(r —s) — B16(r —s —1)] Yi(s +2)

+ Ki(r — s) [Yai(s) — Ya(s)]

—Gi(r—s)(s+1)(s+2) [Yi(s +2) — Ya(s +2)] =0,

T

Z [6(r —s) = 3B20(r —s — 1) +3836(r — s — 2) — B36(r — s — 3)]

S=

(s+1)(s+2)(s+3)(s+4)Ya(s +4)
—6622 r—s)—2B0(r—s—1)+ B36(r — s — 2)]
X (s +1)(s +2)(s + 3)Va(s + 3)

(3.158)
[6(r —8) — B20(r — s — 1)] (s + 1)(s + 2)Ya(s + 2)

M*

+ 633

s=0

<

— \aw? Z [6(r —8) — Bab(r — s — 1)] Ya(s + 2)

+ Ko (r — s) [Ya(s) — Ya(s)]

— Ga(r —s)(s+1)(s+2) [Ya(s +2) = Yi(s +2)] =0,

respectively.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

A theoretical model for free vibration analysis of a system of two beams with variable
cross-section and moment of inertia of the cross-section which are continuously coupled
by Pasternak elastic layer has been formulated in the preceding chapter. In this
chapter, numerical computations were first carried out to show the efficiency of the
proposed method. The research findings are thereafter presented and discussed in
relation to relevant previous research on vibration of elastically connected double-beam

systems. These results are conveniently presented in tables and figures.

4.2 Verification and Numerical Examples

Firstly, in order to validate the results obtained from the present model, the natural
frequencies of a prismatic Euler-Bernoulli double-beam system whereby the two beams
are continuously connected by a Winkler-type elastic layer are compared with the
results available in the literature. Both cases of the two beams being identical and
non-identical are considered. Secondly, numerical examples on a non-prismatic double-
beam system whereby the two beams are connected by a Pasternak-type elastic layer
are considered. The effects of the taper ratio of the beams, stiffness of the springs, the
stiffness of the shear layer and boundary conditions on the natural frequencies of the

system are investigated. MAPLE 18 was used for all the computations.

Results Validation: A comparison of the results for a prismatic double-

beam system

Example 4.1: As the first example, we consider the free vibration of a simply sup-

ported prismatic Euler-Bernoulli double-beam system elastically coupled by an elastic
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layer of the Winkler type in order to validate the present method in this thesis. The
two beams were assumed to be identical in both material and geometric properties. In
this example, both upper and lower beams are homogeneous and simply supported at
their two ends (that is, SS-SS). Their material and geometric properties are:
Ei=FE,=1x10" Nm™2, [,(0) = I,(0) = =4 x 107 m*,

p1=ps=2x10> kgm™3 A;(0) = A3(0) = A =5 x 1072 m?,

Li=Ly=L=10m.

The above properties were adopted from the studies of Oniszczuk (2000) and Huang
and Liu (2013).

For convenience and purpose of comparison, the values of Winkler and shear moduli
of the Pasternak layer were assumed uniform. The Winkler modulus of the springs is
changed in the interval k = (0 ~ 5) x 10° Nm™2. The above system has already been
solved by both Oniszczuk (2000) and Huang and Liu (2013) using the classical modal

expansion method and finite element method respectively.

It is to be noted that any type of classical boundary conditions can be easily achieved
by setting the boundary spring stiffness to be either infinite (a very large number) or
zero. For example, the clamped boundary condition is obtained by setting both the
stiffness of the translational and rotational springs to a very large number, (1 x 10'®)
is used in this study). In a similar manner, assigning an extremely large number (say,
1 x 10') and zero to the stiffness of the translational spring and rotational spring,
respectively will yield the simply supported boundary condition. Moreover, setting
both the stiffness of the translational and rotational springs to zero leads to free
boundary condition (Mao, 2012). In identifying the boundary conditions, letters S,
C and F have been used respectively to indicate the simply supported, clamped and
free boundary condition. Further more, the values of shear modulus of the Pasternak
layer and taper ratio (non-uniformity parameter of the beams) were set to zero since

Winkler elastic layer was considered by Oniszczuk (2000) and Huang and Liu (2013).
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The results of the calculations which yielded the first five natural frequencies of
the system with the stated material properties using the present semi-analytical pro-
cedure known as DTM are reported in Table 4.1. The results are compared with
those reported by Oniszczuk (2000) and Huang and Liu (2013) who used different

approaches, as earlier stated.
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It is seen from Table 4.1 that the results yielded by differential transformation method
(DTM) are in excellent agreement with the values reported by Oniszczuk (2000) and

Huang and Liu (2013) in their respective studies.

Example 4.2: For the purpose of numerical validation, the DTM is next used
to calculate the natural frequencies of a double-beam system, with the two beams
having the same mechanical parameters. Here, we consider a prismatic double-beam
system with two physically and geometrically identical Euler-Bernoulli beams under
different vibrating configurations.The two beams are connected by a continuous linear

elastic layer of the Winkler-type (in the absence of shearing layer).

The material and geometric properties used here are the same as those for the system
previously examined in example 4.1. The Winkler modulus of the springs is k = 2 x 10°
Nm~2. The first three natural frequencies for the system with different boundary
conditions are listed in Table 4.2. The values reported by Huang and Liu (2013) are

recalled for the purpose of comparison.

Table 4.2: Comparison of DTM with Finite element method (FEM) for a prismatic
Euler-Bernoulli double-beam system composed of two beams (with identical material
and geometric properties) elastically connected by Winkler layer

Boundary conditions Methods o n s

Upper beam Lower beam

FEM (Huang & Liu,2013) 19.7392 66.2543  78.9568

S-S S-S
DTM (Present) 19.7392  66.2543  78.9568
99 C-C FEM (Huang & Liu,2013) 32.6046 72.9636 88.4699
DTM (Present) 32.6046 72.9636 88.4699
C-C C-C FEM (Huang & Liu,2013) 44.7466 77.4742 123.3456
DTM (Present) 44.7465 77.4742  123.3456
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From Table 4.2, it is obvious that the present results for the prismatic double-beam
system are also in excellent agreement with those obtained using finite element method.
These two examples show that the DTM is highly efficient and accurate. This again

shows the versatility of DTM.

Example 4.3: In this last stage of validation, a double-beam system comprised
of two prismatic Euler-Bernoulli beams having different material and geometric pa-
rameters and under different combinations of boundary conditions is considered. The
double-beam system studied by Mao (2012) is restudied here to further check the
accuracy and effectiveness of DTM. In this case, the length of each beam is L = 10 m,

while the material and geometric properties of the upper beam are:

F,=1x 100 Nm’Q, Al(O) = A1 =5x 1072 Hl2,
L(0)=1=4x10""m?* p; =2 x 10% kgm 3.

For the lower beam, the flexural stiffness and the mass per unit length are as follows:
Esly =2 x Bl and ps Ay = 2 X py Ay, respectively. This shows that the upper beam
is lighter and more flexible than the lower. The Winkler modulus of the inner springs
used for the computation is k = 1 x 10° kgm™>. By using these values, the natural fre-
quencies are calculated and the results are shown in Table 4.3. These calculated results

are compared with the ones listed in Mao (2012) via Adomian Modified Decomposition

method (AMDM).

The results in Table 4.3 also show that there is a close agreement between DTM
and Adomian Modified Decomposition Method (AMDM). The excellent agreement
between DTM results and the ones obtained via other methods motivated the author
to apply DTM to vibration analysis of non-prismatic double-beam system elastically

connected by a Pasternak layer.
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Table 4.3: Comparison of the first three natural frequencies by methods for a prismatic
Euler-Bernoulli double-beam system composed of non-identical beams elastically
connected by Winkler layer

Boundary conditions

Upper beam Lower beam Methods W1 w2 w3

AMDM (Mao, 2012) 19.7392 43.4699 78.9568

S-S S-S
DTM (Present) 19.7392  43.4699  78.9568
C.C CC AMDM (Mao, 2012) 44.7466 59.1799 123.3456
DTM (Present) 44.7645 59.1799  123.3456
C-C C.F AMDM (Mao, 2012) 21.6179 46.0571 58.2712
DTM (Present) 21.6179 46.0571 58.2712
C.F O.F AMDM (Mao, 2012)  7.0320 39.3630  44.0690
DTM (Present) 7.0320 39.3630  44.0690

4.3 Vibration characteristics of non-prismatic Euler-Bernoulli (EB) double-

beam system elastically connected by a Pasternak layer

Next, the numerical results for free vibration analysis of non-prismatic EB double-beam
system connected by a Pasternak layer for fixed values of Winkler modulus and shear
modulus of the Pasternak layer are presented in this Section. Also, the effects of
the Winkler modulus and shear modulus of the connecting medium on the natural
frequencies of the system are explored. Here, a non-prismatic double-beam system
when the two beams have identical material and geometric properties is first considered.

The material and geometric properties of the beams are given as follows:

EFi=FE,=1x 1010 1\III1727 11(0) = IQ(O) =4x 107 m4,
p1=ps=2x 10> kgm™3, A;(0) = A3(0) =5 x 1072 m?,
E=2x10°Nm2 G=100Nm2 3, =pB,=0,and L; = Ly = L = 10 m.

4.3.1 Natural Frequencies of Non-prismatic EB double-beam system com-

posed of identical beams for different boundary conditions

Table 4.4 lists the first four natural frequencies of non-prismatic EB double-beam

system composed of identical beams for different boundary conditions with various
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values of taper ratio (). The cases of the boundary conditions considered are:
(i) both ends of the two beams are simply supported (SS-SS);
(ii) both ends of the two beams are clamped (CC-CC);

(iii) both ends of the upper beam are simply supported; while both ends of the lower
beam are clamped (SS-CC);

(iv) both ends of the upper beam are simply supported; while both ends of the lower
beam are free (SS-FF);

(v) both ends of the upper beam are simply supported; while the lower beam is

clamped- free (SS-CF);

(vi) both ends of the upper beam are clamped; while the lower beam is clamped-free

(CC-CF);

(vii) both ends of the upper beam are simply supported; while the lower beam is

clamped- free (SS-CF);

(viii) upper beam clamped-free, lower beam clamped-free beam (CF-CF).
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It has, however, been demonstrated in Table 4.4 that DTM can be used to obtain
natural frequencies of non-prismatic elastically connected double-beam system for any

combination of end configurations for the beams that made up the system.

4.3.2 Effect of taper ratio on the natural frequencies of identical Euler-

Bernoulli double-beam system with Pasternak middle layer

The effects of the taper ratio on the first four natural frequencies of an elastically con-
nected non-prismatic double-beam system composed of two identical Euler-Bernoulli
(EB) beams attached together by a Pasternak elastic medium are graphically shown in
set of Figures 4.1- 4.4. The physical properties of the beams used for the calculations

are the ones stated earlier.
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Figure 4.1: Effect of taper ratio on the first four natural frequencies for a pair of
identical Euler-Bernoulli beams with Pasternak middle layer for simply supported
boundary conditions
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Figure 4.2: Effect of the taper ratio on the first four natural frequencies for CC-CC
(clamped-clamped upper beam, clamped-clamped lower beam) for a pair of identical
non-prismatic Euler-Bernoulli beams with Pasternak middle layer
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Figure 4.3: Effect of the taper ratio on first four natural frequencies for SS-CC
(upper beam simply supported at both ends, lower beam clamped at both ends) for a
pair of identical Euler-Bernoulli beams with Pasternak middle layer
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Figure 4.4: Effect of the taper ratio on first four natural frequencies for SS-FF
(simply supported-simply supported upper beam, free-free lower beam) for a pair of
identical non-prismatic EB beams
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It is seen that for simply supported boundary conditions as shown in Figure 4.1,
the first and fourth natural frequencies decrease by increasing the value of the taper
ratio. However, the second natural frequency initially increases until a certain value is
attained after which its trend is reversed. On the contrary, the third natural frequency
initially decreases and later increases after reaching a particular value. The case of the
first and fourth natural frequencies decreasing with the taper ratio might be due to

the softening effect resulting from the decrease of the area of cross-section of the beams.

From Figure 4.2 which shows the influence of taper ratio on the vibration frequencies
of a double-beam system consisting a pair of identical Euler-Bernoulli beams with
CC-CC boundary condition, it is observed that the first, third and fourth natural
frequencies decrease with the increase in the taper ratio, while the taper ratio has a

slight increasing effect on the second natural frequency.

From Figure 4.3, it can be seen that increasing the taper ratio has a decreasing
effect on all the natural frequencies, except for the second natural frequency which

initially increases and later decreases.

Figure 4.4 illustrates the influence of the taper ratio for the SS-FF case. It is obvious
that the first natural frequency decreases with the increase of the taper ratio. It is
also observed that the third and fourth natural frequencies increase as the taper ratio

increases for the end configuration being considered.

Obviously, the taper ratio has a decreasing effect on the fundamental (first) nat-
ural frequency of the double-beam system for all the boundary conditions treated. As
earlier noted, this behaviour might have occurred because of the softening effect owing

to the decrease of the cross-sectional area of the beams.
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4.3.3 Effect of Winkler modulus and shear modulus of the Pasternak
layer on the natural frequencies of non-prismatic EB double-beam

system

The influence of Winkler modulus of the springs and shear modulus of the Pasternak
layer in between the two beams is studied in this example for SS-SS, CC-CC and
SS-CC boundary conditions. The two beams that make up the system have identical

material and geometric properties given as follows:

EFi=FE,=1x 1010 1\III1727 11(0) = IQ(O) =4x 107 m4,
p1=p2=2x 10> kgm=3, A;(0) = A2(0) =5 x 1072 m?, G = 100 Nm~2,
Li=Ly=10m, and 31 = B, =5 =0.5

4.3.3.1 Effect of Winkler modulus on the natural frequencies

The Winkler modulus of the springs that connect the upper beam and lower beam is
an important parameter in the vibration analysis of the double-beam system. Thus, its
effect on the natural frequencies of the double-beam system is examined. In Figures 4.5
— 4.7, the variation of the first four natural frequencies of the system described in the
last Section is plotted with respect to the Winkler modulus of the springs connecting
the two identical beams at a fixed value of shear modulus for different boundary
conditions previously stated. The material and geometric parameters of the beams
used in the previous Section are used here with three different values of Winkler
modulus, that is, & = 1 x 10°,2 x 10°,3 x 10° Nm~2. The value of shear modulus,

G =100 Nm—2.
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Figure 4.5: Effect of Winkler modulus on the first four natural frequencies of
the non-prismatic EB double-beam system composed of two identical beams under
simply-supported boundary condition (G'= 100 N m~2)
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Figure 4.6: Effect of Winkler modulus on the first four natural frequencies of the
non-prismatic EB double-beam system composed of two identical beams under CC-CC

boundary condition (G'= 100 N m~2)
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Figure 4.7: Effect of Winkler modulus on the first four natural frequencies of the
non-prismatic EB double-beam system composed of two identical beams under SS-CC
boundary condition (G'= 100 N m~2)
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Figure 4.6 illustrates the effect of the Winkler modulus of the springs on the lowest four
frequencies of the double-beam system composed of two non-prismatic identical beams
under CC-CC boundary condition (G = 100 Nm™2). The influence of the Winkler
layer of the springs on the first four natural frequencies of the double-beam system
composed of two non-prismatic identical EB beams for SS-CC boundary condition
(G =100 Nm~2) is shown in Figure 4.7. It is observed from Figure 4.5 that the first
natural frequency for the double-beam system under SS-SS remains constant in spite
of the increase in the value of k. Also, the effect of Winkler modulus, k£ on the second
natural frequency is such that as k increases the natural frequency increases slightly.
However, it is observed that the third and fourth natural frequencies increase linearly

with an increase in the Winkler modulus.

With reference to Figure 4.6, it is obvious that increasing the Winkler modulus
has little or no effect on the first natural frequency. It is however, noticed that the
Winkler modulus has increasing effect on the third and fourth natural frequencies of
the system being considered for CC-CC case when the shear modulus, G = 100 Nm™2,
It is obvious in Figure 4.7 that the first four natural frequencies for the system are
increasing with an increase in the Winkler modulus of the springs between the two

beams.

4.3.3.2 Effect of Shear modulus of the Pasternak layer on the natural

frequencies of non-prismatic EB double-beam system

The influence of shear modulus of the Pasternak layer in between the two beams is
next studied for SS-SS, CC-CC and SS-CC cases. The values of the parameters of the

beams used for the analysis are as given here:

El(O) = EQ(O) =1x 1010 Nm_z, [1(0) = [2(0) =4 X 10_4 Hl4,
p1=pa=2x10° kgm™3 A;(0) = A3(0) =5 x 1072 m?,
k:2><105Nm_Q,L1:L2:L:10m,andﬁ1:ﬁ2:ﬁ:0.5.

The results of the calculations are shown in Tables 4.5-4.7.
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Table 4.5: The first four natural frequencies of a non-prismatic EB double-beam
system composed of two identical beams elastically connected by Pasternak layer for
different values of shear modulus under simply supported boundary condition (Winkler
modulus, k =2 x 10° Nm~2, 8 = 0.50)

=2
Natural Frequencies Shear Modulus (Nm™)

G=0 G=100 G=200 G =300
w1 14.2431 14.2431 14.2431 14.2431
W 57.9037 57.9037  57.9037  57.9037
w3 74.3194  74.3212  74.3230 74.3248
Wy 95.3624 95.3684  95.3744  95.3803

Table 4.6: The first four natural frequencies of a non-prismatic EB double-beam
system composed of two identical beams elastically connected by Pasternak layer for
different values of shear modulus under CC-CC boundary condition (Winkler modulus,
k=2x10°> Nm2, 3= 0.50)

)
Natural Frequencies Shear Modulus (Nm™)

G=0 G=100 G =200 G =300
w1 32.6712  32.6712  32.6712  32.6712
Wa 80.9684  80.9704  80.9725  80.9747
w3 89.9613  89.9614  89.9614  89.9613
Wy 117.0995 117.1051 117.1109 117.1167

It can be observed from Table 4.5 that the influence of shear modulus of the Pasternak
layer connecting the two beams is not the same for all the natural frequencies. Specifi-
cally, it has no effect on the lowest two natural frequencies of the system. Whereas,
magnitudes of the third and fourth frequencies of the system become larger when
the value of the shear modulus of the Pasternak layer increases. The insensitivity of
the first and the second natural frequencies for simply-supported boundary condition
can be explained by their associated mode shapes in Figure 5.8 where the two beams

appear to vibrate as a single beam.

As shown in Table 4.6, the first and third natural frequencies for the double-beam
system on CC-CC boundary condition have little or no sensitivity to the shear modulus
of the Pasternak layer connecting them. However, there is a tendency for the natural
frequency for the second and fourth modes of vibration to increase when the shear

modulus of the Pasternak layer is increased, though the increment noticed is not well
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Table 4.7: The first four natural frequencies of a non-prismatic EB double-beam
system composed of two identical beams elastically connected by Pasternak layer for
different values of shear modulus under SS-CC boundary condition (Winkler modulus,
k=2x10°> Nm2, 3= 0.50)

Shear Modulus (N m™?)

Natural Frequencies =0 G=100 G =20 G =300

w1 25.1392  25.1394  25.1397  25.1399
wa 69.1288  69.1299  69.1311  69.1322
w3 78.7643  78.7660  78.7678  T78.7696
Wy 110.2076 110.2125 110.2171 110.2219

pronounced.

As depicted in Table 4.7, it is noted that increment of the shear modulus for the case
of SS-CC boundary condition has small increasing effect on all the lowest four natural

frequencies of the double-beam system.

4.3.4 Mode shapes of a non-prismatic EB double-beam system composed
of two identical beams elastically connected by Pasternak layer for

different boundary conditions (Winkler modulus, ¥ = 2 x 10° Nm™2,

B = B2 = = 0.50)

The first four mode shapes for SS-SS, CC-CC and SS-CC boundary conditions are

shown in Figures 4.8-4.10.
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4.3.5 Non-identical beams case

The natural frequencies of a non-prismatic EB double-beam composed of two non-
identical beams elastically connected by a Pasternak layer for fixed values of Winkler

modulus of the springs and shear modulus of the Pasternak layer are presented here.

The two beams in this case are non-identical in terms of their material and geometric

properties. The properties of the beams are given as follows:

Ei=E,=1x10"° Nm=2, [,(0) =4 x 107* m*, I,(0) = 2 x I,(0),
pP1L=p2=2X 103 kgm_3, Al(O) =5x 1072 Hl2, AQ(O) =2 X Al(O),
kF=2x10° Nm2 G=100Nm2, and L; =Ly, =L =10 m

In Table 4.8, the first four natural frequencies for a non-prismatic Euler-Bernoulli (EB)
double-beam system having Pasternak middle layer under various combinations of
boundary conditions for various values of taper ratio (non-uniformity parameter) of

the beams on the free vibration frequencies of the system are presented.

Table 4.8: The first four natural frequencies of a non-prismatic EB double-beam
system elastically connected by Pasternak layer for different values of taper ratio under
different boundary conditions (non-identical case)

Fre Taper Ratio Boundary conditions
4 (8) SS-SS CC-CC  SS-CC SS-CF CC-CF  CF-CF
=0 19.7392 44.7466  35.5935 20.6665 27.5341  7.0320

Wi B=0.25 17.1544  38.9673  32.0082  20.2971 27.6686  7.2725
B =0.50 14.2431 32.6712  27.5406 19.3127 26.1178  7.6476

B = 58.2219  70.7279  64.2078 44.5054  48.4489  44.0690
w2 B=0.25 61.0686 70.4800  64.9492 44.8169 47.3715 40.5078
B = 0.50 57.9037  72.0574  66.5313 45.3763 48.8670 36.6345
g = 78.9568 123.3456 89.4528 62.0779 69.6474 55.2217
wy [ =0.25 68.8124 107.3941 81.4525 63.7103 69.7477 61.6178
B = 0.50 64.9313 89.9613  73.8008 66.5642 71.6508 69.3678

B = 96.0977 134.9624 128.2406 90.4147 124.1014 70.3013
we B =0.25 90.5810 122.4463 114.4671 83.6147 110.0005 72.2055
B = 0.50 87.4348 110.9236 101.8908 79.0304 95.4109 78.3339
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4.3.6 Effect of mass and flexural rigidity of upper beam on vibration
frequencies of non-prismatic EB double-beam system coupled by

Pasternak elastic layer

The influence of the mass of the upper beam on the natural frequencies of a non-
prismatic EB double-beam system elastically coupled by a Pasternak layer is investi-
gated here. Four cases of variation are considered as follows:
Case 1: p1A1(0)(0) = 0.1 x pA(0);

) = 0.5 x pA(0);
Case 3: p1A1(0) = pA(0);
) =

(
Case 2: p1A;(0

(

(0) =2 x pA(0)

Case 4: p1A1(0
where £ =1x 10" Nm™2, 1(0) =4 x 107" m?, p=2x10® kgm3,
A(0) = 5 x 102 m2, E111(0) = ByLp(0) = EI(0),

p2A2(0) = pAs(0),k =2 x 10° Nm2,

G=100Nm2 L=10m, and 3; = 3, = 8 = 0.5.

The results of the analysis for the effect of the mass of the upper beam on the
vibration frequencies of the EB double-beam system for SS-SS, CC-CC and SS-CC

boundary conditions are presented in Table 4.9.

The data in Table 4.9 evidently indicate that all the first four natural frequencies of
the non-prismatic double-beam system for the three cases of the boundary conditions
considered are very sensitive to the mass of the upper beam. Specifically, there is ten-
dency to lower the vibration frequency of the whole double-beam system by increasing

the mass of the upper beam.
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Table 4.9: Variation of the first four vibration frequencies with mass per unit length
of the upper beam of a non-prismatic Euler-Bernoulli double-beam system elastically
connected by Pasternak layer for SS-SS, CC-CC and SS-CC boundary conditions

Boundary conditions

S5S-55 CC-CC SS-CC
case 1  18.9741  41.7358  34.7902
case 2 16.4124  37.3353  29.6366

Natural Frequencies cases

“ case 3 14.2431  32.6712  25.1394
case 4 11.6053  26.4001  19.8849
case 1  69.0134 100.4019  97.1956

W case 2 64.8811  97.4295  89.9153
case 3 57.9037  80.9705  69.1299
case 4 458779  68.8931  50.8641
case 1 138.7188 183.3349 175.8171

ws case 2 91.4104 100.8411  93.6927
case 3 74.3212  89.9613  78.7660
case 4  64.6369  71.3054  70.0452
case 1 177.3322 200.7885 184.2698

wa case 2 120.0124 151.9237 125.0829

case 3 95.3683 117.1053 110.2125
case 4  84.8614 107.4262  98.3224

An investigation on the effect of the flexural rigidity of the upper beam on the
natural frequencies of non-prismatic EB double-beam system elastically connected by
a Pasternak elastic layer is discussed here. The cases of variation considered are as
follows:

Case 1: E11;(0)

Case 2: E11;(0)

Case 3: E11,(0) = EI1(0);
Case 4: E11,(0) =2 x EI(0)

where F =1 x 101 Nm=2, I(0) =4 x 107 m?*, p=2x10% kgm3,

A(0) =5 x 1072 m?, EyI5(0) = EI(0), p1A1(0) = paAz(0) = pAs(0),
kF=2x10°Nm™2 G=100Nm2 L=10m, and 8 =8, =8=0.5

The results of the study of the effects of the flexural rigidity of the upper beam on the

first four natural frequencies of the non-prismatic EB double-beam system coupled by
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Pasternak elastic layer for SS-SS, CC-CC and SS-CC boundary conditions are shown
in Table 4.10.

Table 4.10: Effect of flexural rigidity of upper beam on vibration frequencies of a
non-prismatic EB double-beam system elastically connected by Pasternak layer for
SS-SS, CC-CC and SS-CC boundary conditions

Boundary conditions
SS-SS CC-CC SS-CC
case 1 10.4893  23.3516  22.5807
case 2 12.3155  28.0649  23.8669

Natural Frequencies cases

“ case 3 17.3895  32.6712  25.1394
case 4  17.3895  39.3688  27.3853
case 1  38.1351  51.2399  46.8402

ws case 2 48.8783  73.3947  58.2902
case 3 57.9037  80.9705  69.1299
case 4  67.3792  84.5130  73.0224
case 1 62.8207  74.8903 64.7111

ws case 2 T73.8182  79.5717  78.0740
case 3 74.3212  89.9613  78.7660
case 4  75.5563 100.1939  86.3076
case 1 73.5035  78.3299  78.2700
Wa case 2 91.3999 111.0436 103.8485

case 3 95.3683 117.1053 110.2125
case 4 105.7530 140.9307 114.2948

It is evident from Table 4.10 that the natural frequencies of the double-system generally
increase with an increase in the flexural rigidity of the upper beam of the double-beam

system considered.

4.4 Vibration characteristics of non-prismatic Rayleigh double-beam sys-

tem elastically connected by Pasternak elastic layer

The following Section deals with the free vibration analysis of non-prismatic double-
beam system elastically connected by Pasternak layer in the case where both beams
are based on Rayleigh beam theory. The Rayleigh beam theory considers the effects
of rotatory inertia which is neglected in the Euler-Bernoulli beam hypothesis and thus

presents a better approximation on the behaviour of the double-beam structure.
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4.4.1 Natural Frequencies of Non-prismatic Rayleigh double-beam sys-

tem composed of identical beams for different boundary conditions

In Table 4.11, the variation of the first four natural frequencies with the taper ratio for
a double-beam system composed of two non-prismatic Rayleigh beams having identical
material and geometric properties for different arrangements of boundary conditions
of interest is displayed. The table is the counterpart of Table 4.4 which in its own

sense is based on Euler-Bernoulli beam model.

Table 4.11: The first four natural frequencies of a non-prismatic Rayleigh double-
beam system composed of identical beams for different boundary conditions with
various values of taper ratio (non-uniformity parameter) and coupled by Pasternak
elastic layer

Taper ratio Boundary conditions

(8) red- g9.95  ©ccooC SS-CC SS-CF SSFF
B=0 197314 447246 325011 23.1885 16.9708
B=0.25 Wi 171492 38.9526  29.1985 21.7603 15.3088
B =0.50 14.2397  32.6622  25.1332 19.7946 13.1707
B = 66.2207 77.4377 72.9311 50.8227 40.2391
B=0.25 w2 687207 781763  74.1900 52.6407 40.6027
B =0.50 57.8535  80.9474  69.0703 52.9703 39.4356
B=0 788324 1231191 83.3310 70.5326 57.9225
B =025 Wy 69.7727 107.2440  79.8979 72.9076 58.1684
B =0.50 74.2087  89.8720  78.7418 76.1478 58.3457
B= 101.0087 138.3638 1324941 90.3230 68.3175
B=0.25 Wi 96.9508 126.8927 120.3086 84.3113 70.5580
B =0.50 95.2803 116.9894 110.1046 83.1398 74.4839
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4.4.2 Effect of taper ratio on the natural frequencies of Rayleigh double-
beam system made up of identical beams and connected with Paster-

nak middle layer

Set of Figures 4.11-4.13 symbolize the effects of taper ratio on the first four natural
frequencies of a double-beam system composed of two identical Rayleigh beams with
variable cross-section and elastically coupled by a Pasternak elastic layer. The physical

properties of the beams used for the calculations are the ones used in Section 4.3.
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Figure 4.11: Effect of taper ratio on the first four natural frequencies of a non-
prismatic Rayleigh double-beam system under SS-SS boundary condition (with the
two beams having identical properties)
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Figure 4.12: Effect of taper ratio on the first four natural frequencies of a non-
prismatic Rayleigh double-beam system under CC-CC boundary condition (with the
two beams having identical properties)
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Figure 4.13: Effect of taper ratio on the first four natural frequencies of a non-
prismatic Rayleigh double-beam system under SS-CC boundary condition (with the
two beams having identical properties)
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Obviously, Figures 4.11-4.13 reveal that the influence of taper ratio on the first four
natural frequencies of a non-prismatic Rayleigh double-beam system for each of the
boundary conditions considered is similar to that of the Euler-Bernoulli double-beam
counterpart. The only difference observed is that the frequencies for the Rayleigh
double-beam system are lower than the ones for Euler-Bernoulli double-beam system
which are apparently due to the effect of the rotatory inertia included in Rayleigh

beam theory.

4.4.3 Effect of Winkler modulus and shear modulus of the Pasternak layer
on the natural frequencies of non-prismatic double-beam system

based on Rayleigh beam theory

Next, the influence of the two moduli relating to the Pasternak elastic layer on the
natural frequencies of vibration of non-prismatic double-beam system composed of
Rayleigh beams with identical properties is discussed. As earlier done for the Euler-
Bernoulli beam theory, the boundary conditions considered are SS-SS, CC-CC and
SS-CC. The properties of the beams used in Section 4.3 are used here but with inclusion

of the effect of rotatory inertia.

4.4.3.1 Effect of Winkler modulus on the natural frequencies of non-

prismatic double-beam system based on Rayleigh beam theory

The effects of Winkler modulus of the springs (at a fixed value of shear modulus) on the
natural frequencies of the non-prismatic Rayleigh double-beam system with both beams

having the same material and geometric properties are shown in Figures 4.14-4.16.
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Figure 4.14: Effect of Winkler modulus on the first six natural frequencies of the
non-prismatic double-beam system composed of two identical Rayleigh beams under
SS-SS boundary condition (G = 100 N m™2)
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Figure 4.15: Effect of Winkler modulus on the first six natural frequencies of the
non-prismatic double-beam system composed of two identical Rayleigh beams under
CC-CC boundary condition (G = 100 Nm~2)
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Figure 4.16: Effect of Winkler modulus on the first four natural frequencies of the
non-prismatic double-beam system composed of two identical Rayleigh beams under
SS-CC boundary condition (G'= 100 N m~2)
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4.4.3.2 Effect of shear modulus of the Pasternak layer on the natural fre-
quencies of a non-prismatic double-beam system based on Rayleigh

beam theory

The results of the effects of shear modulus of the Pasternak layer on Rayleigh double-
beam system for SS-SS, CC-CC and SS-CC boundary conditions are displayed in
Tables 4.12-4.14. The values of the parameters of the beams used for the analysis are
those previously used for the Euler-Bernoulli case but now with the inclusion of the

rotatory inertia term. They are restated here:

E1(0) = E»(0) =1 x 101 Nm~2, I,(0) = I,(0) = 4 x 10~* m*,
p1=ps=2x10> kgm™3 A;(0) = A3(0) =5 x 1072 m?
k:2><105Nm_2, L1:L2:L:10m,and51:62:ﬁ:0.5.

Table 4.12: The first four natural frequencies of a non-prismatic Rayleigh double-
beam system composed of two identical beams elastically connected by Pasternak
layer for different values of shear modulus under simply supported boundary condition
(Winkler modulus, k = 2 x 10° Nm™2, 8 = 0.50)

Shear Modulus (N m™?)
G=0 G=100 G=200 G =300

Natural Frequencies

w1 14.2397  14.2397  14.2397  14.2397
W 57.8535 57.8535 5H7.8335 57.8535
w3 74.2969  74.2987  74.3005  74.3023
Wy 95.2834  95.2893  95.2953  95.3012

Table 4.13: The first four natural frequencies of a non-prismatic Rayleigh double-
beam system composed of two identical beams elastically connected by Pasternak

layer for different values of shear modulus under CC-CC boundary condition (Winkler
modulus, k =2 x 10° Nm~2, 8 = 0.50)

Shear Modulus (N m™?)

Natural Frequencies G=0 G=100 =200 =300

w1 32.6622  32.6622  32.6622  32.6622
Wa 80.9453  80.9474  80.9495  80.9516
w3 89.8721  89.8719  89.8720  89.8721
Wy 116.9832 116.9894 116.9952 117.0004
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Table 4.14: The first four natural frequencies of a non-prismatic Rayleigh double-
beam system composed of two identical beams elastically connected by Pasternak
layer for different values of shear modulus under SS-CC boundary condition (Winkler
modulus, k =2 x 10° Nm~2, 8 = 0.50)

Shear Modulus (N m™)

Natural Frequencies G—0 G=100 =20 =300

w1 25.1329  25.1352  25.1335  25.1337
Wa 69.0691  69.0703  67.0714  69.0720
w3 78.7400  78.7418  T78.7435  78.7453
Wy 110.0997 110.1046 110.1095 110.1141

From the depicted results in Table 4.12, it can be observed that the first and second
natural frequencies of the non-prismatic Rayleigh double-beam system under the
simply-supported boundary condition remain unchanged when the shear modulus of
the Pasternak layer between the beams increases. In line with what was noted for
EB double-beam system, the increment of the shear modulus of the Pasternak layer
causes an evident increment of the third and fourth natural frequencies of a Rayleigh
double-beam system. However, for the CC-CC boundary conditions, it is clearly seen
in Table 4.13 that the first and third natural frequencies are generally independent of
the Pasternak layer while the second and fourth natural frequencies increase when the
shear modulus of the Pasternak layer increase. In Table 4.14 which refers to SS-CC
boundary condition, it is shown that the shear modulus of the Pasternak layer has

increasing effect on all the four natural frequencies.

4.4.4 Mode shapes of non-prismatic Rayleigh double-beam system com-
posed of two identical beams elastically connected by Pasternak

layer for different boundary conditions (Winkler modulus, k = 2x10°
Nm_2, /81 = 62 = ﬁ = 050)

Figures 4.17-4.19 show the first four mode shapes of the free vibration of a non-
prismatic double-beam system composed of two Rayleigh beams which are elastically

coupled by Pasternak layer under the SS-SS, CC-CC and SS-CC boundary conditions.
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Figure 4.17: The first four mode shapes of the non-prismatic double-beam system
composed of a pair of identical Rayleigh beams under simply-supported (SS-SS)
boundary condition: 8; = 33 = 3= 0.5, k =2 x 10° Nm~2, G = 100 Nm~2; upper
beam (solid line), lower beam (dash)
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Figure 4.18: The first four mode shapes of the non-prismatic double-beam system
composed of a pair of identical Rayleigh beams under CC-CC boundary condition:
B =pP=08=05k=2x10° Nm~2, G = 100 Nm~2; upper beam (solid line), lower
beam (dash)
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Figure 4.19: The first four mode shapes of the non-prismatic double-beam system
composed of a pair of identical Rayleigh beams under SC-CC boundary condition:
B =pP=08=05k=2x10° Nm~2, G = 100 Nm~2; upper beam (solid line), lower
beam (dash)
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The results of the study of the effects of mass per unit length of the upper beam on
the first four natural frequencies of the non-prismatic Rayleigh double-beam system
coupled by Pasternak elastic layer for SS-SS, CC-CC and SS-CC boundary conditions

are shown in Table 4.15.

Table 4.15: Variation of the first four vibration frequencies with mass per unit

length of the upper beam of a non-prismatic Rayleigh double-beam system elastically
connected by Pasternak layer for SS-SS, CC-CC and SS-CC boundary conditions

Boundary conditions

S5S-SS CC-CC SS-CC
case 1  18.9696  41.7244  34.7809
case 2 16.4085  37.3251  29.6291

Natural Frequencies cases

“ case 3 14.2397  32.6622  25.1332
case 4  11.6026  26.3928  19.8800
case 1 68.9533 100.3020  97.0996

o case 2 64.8248  97.3432  86.8378
case 3 H7.8536  80.9474  69.0703
case 4 45.8381 68.8319  50.8192
case 1 138.4522 182.9469 175.6932

ws case 2 91.3839 100.8017  93.6610
case 3 T74.2987  89.8720  78.7418
case 4  64.6182  71.2777  70.0257
case 1 177.2858 200.7347 183.9623

Wi case 2 119.9098 151.7731 124.9691

case 3 95.2894 116.9893 110.1046
case 4  84.7890 107.3195  98.1356
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The results of the study of the effects of the flexural rigidity of the upper beam on
the first four natural frequencies of the non-prismatic Rayleigh double-beam system
coupled by Pasternak elastic layer for SS-SS, CC-CC and SS-CC boundary conditions

are shown in Table 4.16.

Table 4.16: Effect of flexural rigidity of upper beam on vibration frequencies of a
non-prismatic Rayleigh double-beam system elastically connected by Pasternak layer
for SS-SS, CC-CC and SS-CC boundary conditions

Boundary conditions
SS-SS CC-CC SS-CC
case 1 10.4869  23.3452  22.5751
case 2 12.3126  28.0573  23.8610

Natural Frequencies cases

“ case 3 14.2397  32.6622  25.1332
case 4 17.3854  39.3581  27.3785
case 1 38.1012  51.1881  46.7958

Wa case 2 48.8359  73.2783  58.2380
case 3 H7.8536  80.9474  69.0703
case 4  67.3210  84.4887  77.9973
case 1 62.6964  74.7357  64.5876

ws case 2 73.7944  79.5472  78.0518
case 3 T4.2987  89.8721  T78.7418
case 4  75.5354 100.0951  83.2326
case 1  73.4868  78.2941  78.2499

Wy case 2 91.3215 110.9326 103.6592

case 3 95.2894 116.9889 110.1046
case 4 105.6628 140.7903 114.1873

Table 4.16 shows that the natural frequencies of the double-system are increased with
increasing the flexural rigidity of the upper beam of the non-prismatic Rayleigh double-
beam system. This is similar to what is observed for a non-prismatic Euler-Bernoulli

double-beam system in Table 4.10.
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5.1

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

Introduction

This chapter summarizes the research described in this thesis. Findings of the study,

contributions to the existing body of knowledge on vibration analysis of structures

and recommendations for some possible research extensions are also highlighted.

5.2

Summary of the Research Aim and Objectives

Based on the Euler-Bernoulli and Rayleigh beam theories, the free vibration analysis

of the characteristics of a non-prismatic double-beam system elastically connected by a

Pasternak layer has been studied. Specifically, the following tasks which are captured

in the objectives of this study have been accomplished:

()

(i)

The natural frequencies and their corresponding mode shapes for the double-
beam system having different boundary conditions, which are combination of
simply-supported, clamped and free end supports, have been determined by
employing a semi-analytical approach, known as differential transformation

method (DTM).

The effects of the Winkler modulus and shear modulus of the layer connecting
the two beams, the taper ratio (often referred to as the non-uniformity parameter
of the beams) and the boundary conditions on the vibration characteristics of

the double-beam system have been investigated.

The effects of the mass and flexural rigidity of upper beam on the natural

frequencies of the double-beam system have been equally studied.

Overall, it has been shown that differential transformation method (DTM) has

high precision and computational efficiency in the vibration analysis of a system
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of two non-prismatic beams which are elastically connected by a Pasternak elastic

layer.

Thus, all the objectives of the study stated in Chapter One of this thesis had been

successfully accomplished.

5.3

Highlight of Findings

Based on the results of various analyses performed on the non-prismatic double-beam

system, the findings are highlighted as follows:

(1)

(i)

(i)

(iv)

(vii)

the differential transformation method (DTM) is very proficient in analysing the

free vibration of non-prismatic double-beam systems;

the taper ratio of the beams which accounts for non-uniformity of the beams

has significant effect on the natural frequencies of the double-beam system;

the effects on natural frequencies of the Winkler modulus and shear modulus of
the Pasternak layer connecting the beams in the double-beam system largely

depend on the type of the boundary conditions;

non-prismatic double-beam systems have two forms of natural frequencies, known
as synchronous and asynchronous natural frequencies. The synchronous natural
frequencies are the ones that are independent of the Pasternak layer while

asynchronous frequencies are those whose values depend on the Pasternak layer;

the natural frequencies of the simply supported (SS-SS) double-beam systems

are smaller than those of the clamped (CC-CC) ones.

for all the boundary conditions considered, it is found that all the lowest four
natural frequencies of the non-prismatic double-beam system are very sensitive
to the mass of the upper beam. The mass of the upper beam, in particular, has

a decreasing effect on the vibration frequencies of the double-beam system; and

The natural frequencies of the double-beam system generally increase with an
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increase in the flexural rigidity of the upper beam.

5.4 Contributions to Knowledge

The study conducted has led to the following contributions:

(i) extension of differential transformation method to study vibration analysis
of elastically connected non-prismatic double-beam systems with a Pasternak

middle layer;

(ii) new results on the vibration problem identified above which would be of interest to
the scientific and engineering community in the area of multiple-beam structures

have been obtained; and

(iii) the natural frequencies and the mode shapes of free vibration analysis of the
non-prismatic double-beam system obtained can serve as benchmarks to other

researchers who might wish to verify the results using other numerical methods.

5.5 Conclusion

The study taken up in this thesis has developed differential transformation method
for solving the vibration problems of elastically connected non-prismatic double-beam
system based on Euler-Bernoulli and Rayleigh beam models. The elastic layer joining
the two beams in the system has been simulated by Pasternak model. The effects
of the structural parameters of the beam and the Pasternak elastic layer on the free

vibration characteristics of the system have also been studied.

5.6 Recommendations for future Research

For future development of this research, DTM can be extended to analyse the following

vibration problems:
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(i) free and forced vibrations of a non-prismatic double-beam system elastically

connected by a Pasternak layer subjected to pre-stressed compressive axial load;

(ii) free and forced vibrations of a non-prismatic double-beam system visco-elastically

connected by a Pasternak layer;

(iii) further investigation of more complex non-prismatic n-beam systems such as

non-prismatic triple-beam systems elastically connected by Pasternak layers;

iv) vibration of two non-prismatic beams partially; connected to each other by a

Winkler-type elastic layer; and

(v) free and forced vibrations of non-prismatic cross-beam system.
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APPENDIX I

MAPLE CODE FOR EVALUATION OF NATURAL FREQUENCIES

restart;

Typesetting:-Settings(functionassign = false):

with(Physics):

Setup(mathematicalnotation = true):

E[1]:= 10710: E[2]:= 10~10:

AT11(0):= 5%107(-2): A[2]1(0):= 5%10~(-2):

J[11(0) := 4%107(-4); J[2]1(0):= 4%10"(-4);

rho[1] := 2%1073: rho[2]:= 2%1073: k:= 2%10°5: G:= 100: L:= 10
J[11 (x1) :=(1-beta*xi) ~(3): J[2] (xi):=(1-betaxxi) ~(3):

J[1]1 (1) := eval (J[1]1(xi), xi = 1);
J[2] (1) := eval (J[2] (xi), xi=1):

kappal[1]:= k*L"4/(E[1]1*J[1]1(0)):
kappa[2] := kxL"4/(E[2]*J[2] (0)):

gl1l:= (G.(L"2))/(E[11%J[1]1(0)):

gl2]:= (G.(L"2))/(E[21*J[2]1(0)): r[0] := O:
rho[1]*A[1] (0)*xL~4/(E[1]1*J[1](0)):
gamm2:= rho[2]*A[2] (0)*L"4/(E[2]*J[2]1(0)):
Lambdal[1] := r[0]=*J[1] (0)/(L~2*A[1](0)):
Lambda[2]:= r[0]*J[2](0)/(L"2*A[2](0)):
J[1] (L) :=eval (J[1] (xi) ,xi=L):

J[2] (L) :=eval (J[2] (xi) ,xi=L):

gamm1l:

Theta[1]:= (eval(diff(J[1]1(xi), xi), xi= 1))/J[11(1):
Theta[2] := (eval(diff(J[2] (xi), xi), xi= 1))/J[2](1):
K[1,LT]:= 10718; K[2, LT]:= 10718:

K[1,RT]:= 10°18; K[2, RT]:= 10718:

K[1,LR]:= 0; K[2, LR]:= O:

K[1,RR]:= 0; K[2, RR]:= O:

Psi[1,LT]:= K[1, LTI*L"3/(E[1]*J[1](0)):

Psi[2,LT]:= K[2, LT]*L"3/(E[2]*J[2](0)):
Psi[1,RT]:= K[1, RTI*L"3/(E[11*J[1]1(L)):
Psi[2,RT]:= K[2, RTI*L"3/(E[2]*J[2](L)):
Psi[1,LR]:= K[1, LRI*L/(E[1]*J[1](0)):
Psi[2,LR]:= K[2, LRI*L/(E[2]1*J[2]1(0)):
Psi[1,RR]:= K[1, RRI*L/(E[1]1*J[1](L)):
Psi[2,RR]:= K[2, RRI*L/(E[2]*J[2](L)):
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beta:= 0.50:
Y[11C0), Y[11(1), Y[2]1(0), Y[21(1):= c[1], cl[2], c[3]1, cl4]:
Y[1]1(2):= solve(factorial(2)*Y[1](2)-Psi[1,LR]1*Y[1](1)=0,

Y[11(2)):

Y[2](2):= solve(factorial(2)*Y[2](2)-Psi[2,LR]*Y[2] (1) = O,
Y[2](2)):

Y[1](3):= solve(factorial(3)*Y[1](3)

+2% (eval (diff (J[1] (xi), xi), xi = 0))*Y[1]1(2)
+gamml*omega”2+Lambda [1]*Y[1] (1)+Psi[1,LT]*Y[1](0) = O,
Y[11(3)):

Y[2] (3) := solve(factorial(3)*Y[2](3)
+2x(eval (diff (J[2] (xi), xi), xi = 0))*Y[2](2)
+gamm2*omega”2+Lambda [2] *Y [2] (1) +Psi[2,LT]*Y[2] (0) = O,

Y[21(3)):

B[r-s]:= -beta~3*KroneckerDeltal[r, s+3]
+3xbeta”2*KroneckerDeltalr, s+2]

-3*beta*xKroneckerDelta[r, s+1]

+KroneckerDeltalr, s]:

Bl[r-s]:= beta"2*KroneckerDeltal[r, s+2]

-2xbeta*xKroneckerDeltal[r, s+1]
+KroneckerDeltalr, s]:
B2[r-s]:= -beta*KroneckerDeltal[r, s+1]

+KroneckerDeltalr, s]:
Al:= sum(B[r-s]*(s+1)*(s+2)*(s+3) *(s+4)*Y[1] (s+4),
s = 0 .. r)-6xbetax(sum(B1[r-s]*(s+1)*(s+2)*(s+3)
*Y[1](s+3), s =0 .. r))
+6xbeta”2* (sum(B2 [r-s] * (s+1) *(s+2) *Y[1] (s+2),
s =0 .. r))-gamml*omega”2* (sum(B2[r-s]*Y[1] (s),

s =0 .. r))+gamml*omega”2+Lambdal[1]

*(sum(B[r-s]*(s+1)*(s+2)*Y[1](s+2), s =0 .. 1)

-3*beta*(sum(B1[r-s]*(s+1)*Y[1](s+1), s = 0 .. r)))

+kappa [1]1*(Y[1] (r)-Y[2] (r))-g[1]* (r+1)*(r+2)

*(Y[1] (r+2)-Y[2] (xr+2)) = O:

A2:= sum(Blr-s]*(s+1)*(s+2)*(s+3)*(s+4)*Y[2] (s+4), s =0 .. r)

-6*betax (sum(B1 [r-s]* (s+1)*(s+2) *(s+3) *Y[2] (s+3),
s =0 .. r))+6xbeta”2*(sum(B2[r-s]*(s+1)*(s+2)

*Y[2] (s+2), s = 0 .. r))-gamm2*omega”2* (sum(B2 [r-s]

*Y[2](s), s = 0 .. r))+gamm2*omega”2*Lambda[2]

*(sum(B[r-s]*(s+1)*(s+2)*Y[2] (s+2), s = O .. r)-3*beta
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*(sum(Bl[r-s]*(s+1)*Y[2] (s+1), s = 0 .. r)))
+kappa [2]*(Y[2] (r)-Y[1] (r))-g[2]* (r+1) *(r+2)
*(Y[2] (r+2)-Y[1] (r+2)) = O:

m:= 46:

for i from O to m do

Y[1] (i+4) := solve(eval(Al, r = i), Y[1](i+4));
Y[2] (i+4) := solve(eval(A2, r = i), Y[2](i+4))
end do:

M:= m+4;

M:= 50

C:= sum(r*(r-1)*Y[1](x), r =0 .. M-1)

+Psil[1, RRI*(sum(r*Y[1](r), r 0 .. M-1)):
Cl:= sum(r*(r-1)*Y[1](r), r =0 .. M)
+Psi[1, RR]I*(sum(r*Y[1](r), r =0 .. M)):
F:= sum(rx(r-1)*Y[2](xr), r = 0 .. M-1)
+Psi[2, RR]*(sum(r*Y[2](r), r =0 .. M-1)):
Fl:= sum(r*x(r-1)*Y[2](r), r =0 .. M)
+Psi[2, RRI*(sum(r*Y[2](r), r =0 .. M)):
Gl:= sum(r*(r-D*(r-2)*Y[1]1(x), r = 0 .. M-1)
+Theta[1]*(sum(r*(r-1)*Y[1](r), r = 0 .. M-1))
0 .. M-1))

+Lambda[1] *gamml*omega~2* (sum(r*Y[1] (r), r
-Psi[1, RT]*(sum(Y[1](x), r =0 .. M-1)):
G2:= sum(r*(r-1)*(r-2)*Y[1](r), r =0 .. M)

+Theta[1]*(sum(r*(r-1)*Y[1](r), r =0 .. M))

+Lambda[1] *gamml*omega~2* (sum(r*Y[1](r), r =0 .. M))
-Psi[1, RTI*(sum(Y[1](xr), r =0 .. M)):
H:= sum(r*(r-1)*(r-2)*Y[2](r), r = 0 .. M-1)
+Theta[2] *(sum(r*(r-1)*Y[2](r), r = 0 .. M-1))
+Lambda [2] *gamm2*omega~2* (sum (r*Y[2] (r), r = 0 .. M-1))
-Psi[2, RT]*(sum(Y[2](x), r =0 .. M-1)):
Hi:= sum(r*(r-1)*(r-2)*Y[2](r), r =0 .. M)
+Theta[2] *(sum(r*(r-1)*xY[2](r), r = 0 .. M))
+Lambda [2] *gamm2*omega~2* (sum(r*Y[2] (r), r = 0 .. M))
-Psi[2, RTI*(sum(Y[2](xr), r =0 .. M)):
f11[M-1], £12[M-1]:= coeff(C, c[1]), coeff(C, c[2]):
£f13[M-1], f14[M-1]:= coeff(C, c[3]), coeff(C, c[4]):
£f21[M-1], £f22[M-1]:= coeff(F, c[1]), coeff(F, c[2]):
£23[M-11, f24[M-1]:= coeff(F, c[3]), coeff(F, c[4]);
£31[M-1], £32[M-1]:= coeff(Gl, c[1]), coeff(Gl, c[2]):
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£33[M-1], £34[M-1]:
f41[M-1], £42[M-1]:
f43[M-1], f44[M-1]:
£11[M], £12[M]:

£13[M], £14[M]
f21[M], £22[M]
£23[M], £24[M]
£31[M], £32[M]
£33[M], £34[M]
f41[M], f42[M]

£43[M], f44[M]:

coeff(Gl, c[3]), coeff(Gl, cl[4]):
coeff(H, c[1]), coeff(H, c[2]):
coeff(H, c[3]), coeff(H, cl[4]):
coeff(C1l, c[1]), coeff(Cl, c[2]):
:= coeff(C1l, c[3]), coeff(Cl, cl[4]):
:= coeff(F1, c[1]), coeff(F1, c[2]):
:= coeff(F1, c[3]), coeff(F1, c[4]):
:= coeff (G2, c[1]), coeff(G2, c[2]):
:= coeff(G2, c[3]), coeff(G2, cl[4]):
:= coeff(H1, c[1]), coeff(H1, c[2]):
coeff(H1, c[3]), coeff(H1, c[4]):

with(Student [LinearAlgebral):
XticMatrix[M-1]:= <<f11[M-1], f21[M-1], £31[M-1], f41[M-1]>
|<f12[M-1], £22[M-1], £32[M-1], f42[M-1]>
|<£13[M-1], £23[M-1], £33[M-1], £43[M-1]>
|<f14[M-1], £24[M-1], £34[M-1], f44[M-1]1>>:

XticMatrix[M]:

= <<f11[M], f21[M], £31[M], f41[M]>

[<f12[M], f22[M], £32[M], f42[M]>
|<£f13[M], £23[M], £33[M], f43[M]>
|<f£14[M], £24[M], £34[M], f44[M]>>:

A2[M-1] := Determinant (XticMatrix[M-1]) = O:
A2[M] := Determinant (XticMatrix([M]) = O:

omega[M-1]:= fsolve(A2[M-1], omega);

omegal[49] := -6

.2856557669%1078, -6.284248984%1078, -1298.492326,

-1247.871753, -694.4936865, -355.4439026, -242.0994957,

-231.0958517,
-74.32122731,

-150.2546743, -129.9596919, -95.36822285,
-57.90368216, -14.24306578, 14.24306578,

57.90368216, 74.32122731, 95.36822285, 129.9596919,
150.2546743, 231.0958517, 242.0994957, 355.4439026,

694.4936865,

1247.871753, 1298.492326, 6.284248984%1078,

6.285557669%1078

omega[M] := fsolve(A2[M], omega);

omega[50] := -5

.254428516%1078, -5.2563114128%1078, -1734.354468,

-1726.193667, -563.1193873, -472.9214141, -242.5383188,

-230.7967972,
-74.32121786,

-150.2584998, -129.9583344, -95.36829888,
-57.90368219, -14.24306568, 14.24306568,

57.90368219, 74.32121786, 95.36829888, 129.9583344,
150.2584998, 230.7967972, 242.5383188, 472.9214141,

563.1193873,

1726.193667, 1734.354468, 5.253114128%1078,
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APPENDIX II

MAPLE CODE FOR PLOTTTING OF MODE SHAPES

restart;

Typesetting:-Settings(functionassign = false):

with(Physics):

Setup(mathematicalnotation = true):

E[1]:= 10710: E[2]:= 10~10:

AT11(0):= 5%107(-2): A[2]1(0):= 5%10~(-2):

J[11(0) := 4%107(-4); J[2]1(0):= 4%10"(-4);

rho[1] := 2%1073: rho[2]:= 2%1073: k:= 2%10°5: G:= 100: L:= 10
J[11 (x1) :=(1-beta*xi) ~(3): J[2] (xi):=(1-betaxxi) ~(3):

J[1]1 (1) := eval (J[1]1(xi), xi = 1);
J[2] (1) := eval (J[2] (xi), xi=1):

kappal[1]:= k*L"4/(E[1]1*J[1]1(0)):
kappa[2] := kxL"4/(E[2]*J[2] (0)):

gl1l:= (G.(L"2))/(E[11%J[1]1(0)):

gl2]:= (G.(L"2))/(E[21*J[2]1(0)): r[0] := O:
rho[1]*A[1] (0)*xL~4/(E[1]1*J[1](0)):
gamm2:= rho[2]*A[2] (0)*L"4/(E[2]*J[2]1(0)):
Lambdal[1] := r[0]=*J[1] (0)/(L~2*A[1](0)):
Lambda[2]:= r[0]*J[2](0)/(L"2*A[2](0)):
J[1] (L) :=eval (J[1] (xi) ,xi=L):

J[2] (L) :=eval (J[2] (xi) ,xi=L):

gamm1l:

Theta[1]:= (eval(diff(J[1]1(xi), xi), xi= 1))/J[11(1):
Theta[2] := (eval(diff(J[2] (xi), xi), xi= 1))/J[2](1):
K[1,LT]:= 10718; K[2, LT]:= 10718:

K[1,RT]:= 10°18; K[2, RT]:= 10718:

K[1,LR]:= 0; K[2, LR]:= O:

K[1,RR]:= 0; K[2, RR]:= O:

Psi[1,LT]:= K[1, LTI*L"3/(E[1]*J[1](0)):

Psi[2,LT]:= K[2, LT]*L"3/(E[2]*J[2](0)):
Psi[1,RT]:= K[1, RTI*L"3/(E[11*J[1]1(L)):
Psi[2,RT]:= K[2, RTI*L"3/(E[2]*J[2](L)):
Psi[1,LR]:= K[1, LRI*L/(E[1]*J[1](0)):
Psi[2,LR]:= K[2, LRI*L/(E[2]1*J[2]1(0)):
Psi[1,RR]:= K[1, RRI*L/(E[1]1*J[1](L)):
Psi[2,RR]:= K[2, RRI*L/(E[2]*J[2](L)):
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beta:= 0.50:
Y[11C0), Y[11(1), Y[2]1(0), Y[21(1):= c[1], cl[2], c[3]1, cl4]:
Y[1]1(2):= solve(factorial(2)*Y[1](2)-Psi[1,LR]1*Y[1](1)=0,

Y[11(2)):

Y[2](2):= solve(factorial(2)*Y[2](2)-Psi[2,LR]*Y[2] (1) = O,
Y[2](2)):

Y[1](3):= solve(factorial(3)*Y[1](3)

+2% (eval (diff (J[1] (xi), xi), xi = 0))*Y[1]1(2)
+gamml*omega”2+Lambda [1]*Y[1] (1)+Psi[1,LT]*Y[1](0) = O,
Y[11(3)):

Y[2] (3) := solve(factorial(3)*Y[2](3)
+2x(eval (diff (J[2] (xi), xi), xi = 0))*Y[2](2)
+gamm2*omega”2+Lambda [2] *Y [2] (1) +Psi[2,LT]*Y[2] (0) = O,

Y[21(3)):

B[r-s]:= -beta~3*KroneckerDeltal[r, s+3]
+3xbeta”2*KroneckerDeltalr, s+2]

-3*beta*xKroneckerDelta[r, s+1]

+KroneckerDeltalr, s]:

Bl[r-s]:= beta"2*KroneckerDeltal[r, s+2]

-2xbeta*xKroneckerDeltal[r, s+1]
+KroneckerDeltalr, s]:
B2[r-s]:= -beta*KroneckerDeltal[r, s+1]

+KroneckerDeltalr, s]:
Al:= sum(B[r-s]*(s+1)*(s+2)*(s+3) *(s+4)*Y[1] (s+4),
s = 0 .. r)-6xbetax(sum(B1[r-s]*(s+1)*(s+2)*(s+3)
*Y[1](s+3), s =0 .. r))
+6xbeta”2* (sum(B2 [r-s] * (s+1) *(s+2) *Y[1] (s+2),
s =0 .. r))-gamml*omega”2* (sum(B2[r-s]*Y[1] (s),

s =0 .. r))+gamml*omega”2+Lambdal[1]

*(sum(B[r-s]*(s+1)*(s+2)*Y[1](s+2), s =0 .. 1)

-3*beta*(sum(B1[r-s]*(s+1)*Y[1](s+1), s = 0 .. r)))

+kappa [1]1*(Y[1] (r)-Y[2] (r))-g[1]* (r+1)*(r+2)

*(Y[1] (r+2)-Y[2] (xr+2)) = O:

A2:= sum(Blr-s]*(s+1)*(s+2)*(s+3)*(s+4)*Y[2] (s+4), s =0 .. r)

-6*betax (sum(B1 [r-s]* (s+1)*(s+2) *(s+3) *Y[2] (s+3),
s =0 .. r))+6xbeta”2*(sum(B2[r-s]*(s+1)*(s+2)

*Y[2] (s+2), s = 0 .. r))-gamm2*omega”2* (sum(B2 [r-s]

*Y[2](s), s = 0 .. r))+gamm2*omega”2*Lambda[2]

*(sum(B[r-s]*(s+1)*(s+2)*Y[2] (s+2), s = O .. r)-3*beta
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*(sum(Bl[r-s]*(s+1)*Y[2] (s+1), s = 0 .. r)))
+kappa [2]*(Y[2] (r)-Y[1] (r))-g[2]* (r+1) *(r+2)
*(Y[2] (r+2)-Y[1] (r+2)) = O:

m:= 46:

for i from O to m do

Y[1] (i+4) := solve(eval(Al, r = i), Y[1](i+4));
Y[2] (i+4) := solve(eval(A2, r = i), Y[2](i+4))
end do:

M:= m+4;

M:= 50

C:= sum(r*(r-1)*Y[1](x), r =0 .. M-1)

+Psil[1, RRI*(sum(r*Y[1](r), r 0 .. M-1)):
Cl:= sum(r*(r-1)*Y[1](r), r =0 .. M)
+Psi[1, RR]I*(sum(r*Y[1](r), r =0 .. M)):
F:= sum(rx(r-1)*Y[2](xr), r = 0 .. M-1)
+Psi[2, RR]*(sum(r*Y[2](r), r =0 .. M-1)):
Fl:= sum(r*x(r-1)*Y[2](r), r =0 .. M)
+Psi[2, RRI*(sum(r*Y[2](r), r =0 .. M)):
Gl:= sum(r*(r-D*(r-2)*Y[1]1(x), r = 0 .. M-1)
+Theta[1]*(sum(r*(r-1)*Y[1](r), r = 0 .. M-1))
0 .. M-1))

+Lambda[1] *gamml*omega~2* (sum(r*Y[1] (r), r
-Psi[1, RT]*(sum(Y[1](x), r =0 .. M-1)):
G2:= sum(r*(r-1)*(r-2)*Y[1](r), r =0 .. M)

+Theta[1]*(sum(r*(r-1)*Y[1](r), r =0 .. M))

+Lambda[1] *gamml*omega~2* (sum(r*Y[1](r), r =0 .. M))
-Psi[1, RTI*(sum(Y[1](xr), r =0 .. M)):
H:= sum(r*(r-1)*(r-2)*Y[2](r), r = 0 .. M-1)
+Theta[2] *(sum(r*(r-1)*Y[2](r), r = 0 .. M-1))
+Lambda [2] *gamm2*omega~2* (sum (r*Y[2] (r), r = 0 .. M-1))
-Psi[2, RT]*(sum(Y[2](x), r =0 .. M-1)):
Hi:= sum(r*(r-1)*(r-2)*Y[2](r), r =0 .. M)
+Theta[2] *(sum(r*(r-1)*xY[2](r), r = 0 .. M))
+Lambda [2] *gamm2*omega~2* (sum(r*Y[2] (r), r = 0 .. M))
-Psi[2, RTI*(sum(Y[2](xr), r =0 .. M)):
f11[M-1], £12[M-1]:= coeff(C, c[1]), coeff(C, c[2]):
£f13[M-1], f14[M-1]:= coeff(C, c[3]), coeff(C, c[4]):
£f21[M-1], £f22[M-1]:= coeff(F, c[1]), coeff(F, c[2]):
£23[M-11, f24[M-1]:= coeff(F, c[3]), coeff(F, c[4]);
£31[M-1], £32[M-1]:= coeff(Gl, c[1]), coeff(Gl, c[2]):
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£33[M-1], £34[M-1]:
f41[M-1], £42[M-1]:
f43[M-1], f44[M-1]:
£11[M], £12[M]:

£13[M], £14[M]
f21[M], £22[M]
£23[M], £24[M]
£31[M], £32[M]
£33[M], £34[M]
f41[M], f42[M]

£43[M], f44[M]:

coeff(Gl, c[3]), coeff(Gl, cl[4]):
coeff(H, c[1]), coeff(H, c[2]):
coeff(H, c[3]), coeff(H, cl[4]):
coeff(C1l, c[1]), coeff(Cl, c[2]):
:= coeff(C1l, c[3]), coeff(Cl, cl[4]):
:= coeff(F1, c[1]), coeff(F1, c[2]):
:= coeff(F1, c[3]), coeff(F1, c[4]):
:= coeff (G2, c[1]), coeff(G2, c[2]):
:= coeff(G2, c[3]), coeff(G2, cl[4]):
:= coeff(H1, c[1]), coeff(H1, c[2]):
coeff(H1, c[3]), coeff(H1, c[4]):

with(Student [LinearAlgebral):
XticMatrix[M-1]:= <<f11[M-1], f21[M-1], £31[M-1], f41[M-1]>
|<f12[M-1], £22[M-1], £32[M-1], f42[M-1]>
|<£13[M-1], £23[M-1], £33[M-1], £43[M-1]>
|<f14[M-1], £24[M-1], £34[M-1], f44[M-1]1>>:

XticMatrix[M]:

= <<f11[M], f21[M], £31[M], f41[M]>

[<f12[M], f22[M], £32[M], f42[M]>
|<£f13[M], £23[M], £33[M], f43[M]>
|<f£14[M], £24[M], £34[M], f44[M]>>:

A2[M-1] := Determinant (XticMatrix[M-1]) = O:
A2[M] := Determinant (XticMatrix([M]) = O:

omega[M-1]:= fsolve(A2[M-1], omega);

omegal[49] := -6

.2856557669%1078, -6.284248984%1078, -1298.492326,

-1247.871753, -694.4936865, -355.4439026, -242.0994957,

-231.0958517,
-74.32122731,

-150.2546743, -129.9596919, -95.36822285,
-57.90368216, -14.24306578, 14.24306578,

57.90368216, 74.32122731, 95.36822285, 129.9596919,
150.2546743, 231.0958517, 242.0994957, 355.4439026,

694.4936865,

1247.871753, 1298.492326, 6.284248984%1078,

6.285557669%1078

omega[M] := fsolve(A2[M], omega);

omega[50] := -5

.254428516%1078, -5.2563114128%1078, -1734.354468,

-1726.193667, -563.1193873, -472.9214141, -242.5383188,

-230.7967972,
-74.32121786,

-150.2584998, -129.9583344, -95.36829888,
-57.90368219, -14.24306568, 14.24306568,

57.90368219, 74.32121786, 95.36829888, 129.9583344,
150.2584998, 230.7967972, 242.5383188, 472.9214141,

563.1193873,

1726.193667, 1734.354468, 5.253114128%1078,
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f11[M]:= eval(coeff(Cl, c[1]), omega = 14.2431):
f12[M] := eval(coeff(Cl, c[2]), omega = 14.2431):
£13[M] := eval(coeff(Cl, c[3]), omega = 14.2431):
f14[M] := eval(coeff(Cl, c[4]), omega = 14.2431):
£21[M] := eval(coeff(F1, c[1]), omega = 14.2431):
£22[M] := eval(coeff(F1, c[2]), omega = 14.2431):
£f23[M] := eval(coeff(F1, c[3]), omega = 14.2431):
£24[M] := eval(coeff(F1, c[4]), omega = 14.2431):
£31[M] := eval(coeff(G2, c[1]), omega = 14.2431):
£32[M] := eval(coeff (G2, c[2]), omega = 14.2431):
£33[M] := eval(coeff(G2, c[3]), omega = 14.2431):
£34[M]:= eval(coeff(G2, c[4]), omega = 14.2431):
f41[M] := eval(coeff(H1l, c[1]), omega = 14.2431):
f42[M] := eval(coeff(H1l, c[2]), omega = 14.2431):
f43[M] := eval(coeff(H1l, c[3]), omega = 14.2431):
£44[M] := eval(coeff(H1, c[4]), omega = 14.2431);
Delta := eval(Determinant(<<f11[M], f21[M], £31[M])>
|<f£12[M], £22[M], £32[M]>

|<£13[M], £23[M], £33[M]>>), omega = 14.2431):
y[1]1 (xi) [M]:= subs([omega = 14.2431,

c[1] = (Determinant(<<-f14[M], -f24[M], -f34[M]>
|£12[M], £22[M], £32[M]1>|<f13[M], £23[M], £33[M]>>))/Delta,
c[2] = (Determinant(<<fi11[M], f21[M], £f31[M]>
|<-f14[M], -f24[M], -f£34[M]>
|<£13[M], £23[M], £33[M]>>))/Delta,

c[3] = (Determinant(<<fi11[M], f21[M], £f31[M]>
|£12[M], £22[M], £32[M]>

|-f14[M], -f24[M], -£34[M]>>))/Delta, cl[4] = 1],
sum(xi“r*Y[1](x), r =0 .. M));

y[2] (xi) [M] := subs([omega = 14.2431,

c[1] = (Determinant(<<-f14[M], -f24[M], -f34[M]>
|£12[M], £22[M], £32[M]>|<£13[M], £23[M], £33[M]>>))/Delta,
c[2] = (Determinant(<<f11[M], f21[M], £31[M]>
|<-f14[M], -f24[M], -£34[M]>|<f13[M], £23[M], £33[M]>>))/Delta,
c[3] = (Determinant(<<fi11[M], f21[M], £31[M]>
[f12[M], f£22[M], £32[M]>
|-f14[M], -f24[M], -£34[M]>>))/Delta, cl[4] = 1],
sum(xi“r*Y[2](x), r =0 .. M));
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ynormalizedmodeshapefunction[upperbeam] : =
y[11 (xi) IM]/(@Ant(y[1] (x1) M]"2, xi =0 .. 1)):
ynormalizedmodeshapefunction[lowerbeam] : =
y[11 (xi) MI1/Gnt(y[1] (x1) M]1"2, xi =0 .. 1)):
plot ([ynormalizedmodeshapefunction[upperbeam],
ynormalizedmodeshapefunction[lowerbeam]], xi = 0 .. 1,
axes = boxed, legend = ["Upper beam", "Lower beam"],
labels = ["xi", "1st mode shape: omega = 14.2431"],
labeldirections = ["horizontal", "vertical"],
labelfont = ["ROMAN", 18], linestyle = [solid, longdash],
axesfont = ["ROMAN", "ROMAN", 12],
legendstyle = [font = ["ROMAN", 12], location = top]l)
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