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Abstract

This work presents novel techniques for parsing the structures of multi-party di-
alogue and argumentative texts. Finding the structure of extended texts and
conversations is a critical step towards the extraction of their underlying meaning.
The task is notoriously hard, as discourse is a high-level description of language,
and multi-party dialogue involves many complex linguistic phenomena.

Historically, representation of discourse moved from local relationships, forming
unstructured collections, towards trees, then constrained graphs. Our work uses
the latter framework, through Segmented Discourse Representation Theory. We
base our research on a annotated corpus of English chats from the board game The
Settlers of Catan. Per the strategic nature of the conversation and the freedom of
online chat, these dialogues exhibit complex discourse units, interwoven threads,
among other features which are mostly overlooked by the current parsing literature.

We discuss two corpus-related experiments. The first expands the definition of
the Right Frontier Constraint, a formalization of discourse coherence principles,
to adapt it to multi-party dialogue. The second demonstrates a data extraction
process giving a strategic advantage to an artificial player of Settlers by inferring
its opponents’ assets from chat negotiations.

We propose new methods to parse dialogue, using jointly machine learning,
graph algorithms and linear optimization, to produce rich and expressive struc-
tures with greater accuracy than previous attempts. We describe our method of
constrained discourse parsing, first on trees using the Maximum Spanning Tree al-
gorithm, then on directed acyclic graphs using Integer Linear Programming with
a number of original constraints.

We finally apply these methods to argumentative structures, on a corpus of En-
glish and German texts, jointly annotated in two discourse representation frame-
works and one argumentative. We compare the three annotation layers, and exper-
iment on argumentative parsing, achieving better performance than similar works.
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Résumé

Le présent manuscrit présente de nouvelles techniques d’extraction des structures :
du dialogue de groupe, d’une part; de textes argumentatifs, d’autre part. Déceler
la structure de longs textes et de conversations est une étape cruciale afin de re-
construire leur signification sous-jacente. La difficulté de cette tâche est largement
reconnue, sachant que le discours est une description de haut niveau du langage, et
que le dialogue de groupe inclut de nombreux phénomènes linguistiques complexes.

Historiquement, la représentation du discours a fortement évolué, partant de
relations locales, formant des collections non-structurées, vers des arbres, puis des
graphes contraints. Nos travaux utilisent ce dernier paradigme, via la Théorie
de Représentation du Discours Segmenté.1 Notre recherche se base sur un corpus
annoté de discussions en ligne en anglais, issues du jeu de société Les Colons de
Catane. De par la nature stratégique des conversations, et la liberté que permet le
format électronique des discussions, ces dialogues contiennent des Unités Discur-
sives Complexes,2 des fils de discussion intriqués, parmi d’autres propriétés que la
littérature actuelle sur l’analyse du discours ignore en général.

Nous discutons de deux investigations liées à notre corpus. La première étend
la définition de la contrainte de la frontière droite,3 une formalisation de certains
principes de cohérence de la structure du discours, pour l’adapter au dialogue de
groupe. La seconde fait la démonstration d’un processus d’extraction de données
permettant à un joueur artificiel des Colons d’obtenir un avantage stratégique en
déduisant les possessions de ses adversaires à partir de leurs négociations.

Nous proposons de nouvelles méthodes d’analyse du dialogue, utilisant conjoin-
tement apprentissage automatisé, algorithmes de graphes et optimisation linéaire
afin de produire des structures riches et expressives, avec une précision supérieure
comparée aux efforts existants. Nous décrivons notre méthode d’analyse du dis-
cours par contraintes, d’abord sur des arbres en employant la construction d’un
arbre couvrant maximal, puis sur des graphes orientés acycliques en utilisant la
programmation linéaire par entiers avec une collection de contraintes originales.

Nous appliquons enfin ces méthodes sur les structures de l’argumentation,
avec un corpus de textes en anglais et en allemand, parallèlement annotés avec
deux structures du discours et une argumentative. Nous comparons les trois
couches d’annotation et expérimentons sur l’analyse de l’argumentation, obtenant
de meilleurs résultats, relativement à des travaux similaires.

1Segmented Discourse Representation Theory.
2Complex Discourse Units.
3Right Frontier Constraint.
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Chapter 1

Introduction

This thesis belongs to the domain of Natural Language Processing (NLP), the
sub-domain of Artificial Intelligence (AI) dedicated to the task of manipulating
human languages, like English or French, as opposed to artificial ones like Python
or HTML. The latter have rigorously defined syntax and semantics. Natural lan-
guage does not, it’s ambiguous, full of exceptions, it needs context to be correctly
interpreted, and it’s constantly evolving. Yet, humans use it fluently, without
noticing the feat.

Consider, for instance, the following conversation:

– Alice: I’m hungry.
– Bob: Me too. Who’s up for pizza?
– Carol: Pizza again? We just had some yesterday.
– Bob: So what? Everyone loves it. Especially Dan.
– Dan: Hey guys, sorry for being late.
– Alice: Hey Dan, we’re about to order pizza.
– Dan: Pizza again? Of course!
– Bob: Told you he would love it.
– Alice: Ordering the usual, pepperoni, hawaiian, cheese?
– Dan: Sounds good.
– Bob: Great.
– Carol: Eh, ok. I’m too hungry to be picky anyways.

As a reader, you probably had no difficulty figuring out the flow of this conver-
sation. You perform a similar task every day, without noticing, and every person
you interact with does too.

We, humans, are able to use language as a very rich, powerful and ubiquitous
tool to convey meaning, to communicate ideas with others in an ordered manner.
We infer, from text or speech, the implicit structure of conversation: who’s an-
swering to whom, the topic of the conversation, keeping track of multiple topics
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at once, and so on. All these items are necessary to understand the meaning of a
conversation, but it also works for any text directed at someone. When reading a
newspaper article, the ideas aren’t jumbled together: they are organized so that
the reader could follow the train of thought of the writer, as if the text was read
aloud to them.

Language not only conveys facts and observations, but also commitments to
rhetorical stances. Carol, for example, in the conversation above, was initially
opposed to pizza, and begrudgingly accepted it at the end, following the stated
wishes of everyone else to order some.

Such argumentative stances are fundamental to any debate. The facts have a
persuasive role, which we don’t always perceive consciously, but that we process
anyways, updating our beliefs endlessly and effortlessly.

All of this suggests a natural language text possesses a structure, a non-random
underlying organization. The two domains of argumentation and discourse involve
a set of content units linked by various semantic relations. One question is whether
the units and semantic relations are the same across domains, or share interesting
features. Another natural question is whether methods developed in one domain
can be transported to the other.

This thesis will make headway in answering these two questions. However, there
is much to be done before these questions have a definitive answer. The methods
for extracting discourse structures from texts, let alone dialogues, is still in its
infancy, and a large part of the thesis details my efforts to further discourse parsing
(see chapter 6). We also have investigated methods for extracting argumentation
structures from texts (see chapter 7).

In general our work shows that discourse structures and argumentation struc-
tures have important and deep similarities, even if the basic constituents of the
structures may very well differ, and even though the relations used in one domain
may only be a subset of those used in another.

We will give now an chapter-by-chapter outline of the thesis. We will describe
successively the background of our research in discourse and argumentation; then
the Settlers corpus, the primary dataset for our study of discourse, and investi-
gation thereof; finally our work and experiments in discourse and argumentative
parsing, before concluding.

In chapter 2, we will describe past research on the representation of discourse,
and the automated extraction of its structure. All representation frameworks rely
on the existence of discourse relations, linking parts of a text, with associated
semantics and behavior. Consider the following example:

(1.1) Max fell. John pushed him.

2



CHAPTER 1. INTRODUCTION

The first sentence describes an event, the second its cause; we describe the
discourse relation linking the two semantically by giving it a label (here Expla-
nation) and linking the two:

	

Explanation

Max fell. John pushed
him.

We describe three discourse representation frameworks:

• Rhetorical Structure Theory (henceforth RST), developed by (Mann and
Thompson, 1987; Mann and Thompson, 1988; Taboada and Mann, 2006),
describes a hierarchical tree-based global structure of texts;

• Segmented Discourse Representation Theory (SDRT), developed by Asher
(1993), describes a global structure of texts as well, based on hypergraphs;

• The Penn Discourse TreeBank (PDTB) framework, developed by (Miltsakaki
et al., 2004; Prasad et al., 2008), describes local relations only between pairs
of text spans.

While each of them have their own section in chapter 2, we will examine them
jointly in this introduction.

To describe the structure of a whole text, me must first describe the entities
which will be linked together, by splitting the text in Elementary Discourse Units
(henceforth edus); we call this process segmentation. All frameworks possess
discourse units, although their formal definition and semantics differ. Consider
the following segmentation of a news excerpt:

(1.2) [Interprovincial Pipe Line Co. said]1 [it will delay a proposed two-step,
830 million dollar expansion of its system]2 [(US$705.6 million)]3 [because
Canada’s output of crude oil is shrinking.]4

In the hierarchical view of RST, a text (considered as a root span) is split
in children spans linked together by a rhetorical relation. Each child is then split
recursively, until a span cannot be broken down by a relation. The resulting atomic
spans, contiguous and mutually exclusive, represent the edus of the text. A given
span always being contiguous, this also means all of its children must remain
adjacent: as a result, RST trees are projective (with no crossing dependencies).

The rhetorical relations are defined by a label and a nuclearity. The label,
such as Explanation, Contrast, Summary or Background, represent the

3



semantic roles played by the children. Those are clearly defined by a natural
language description, while having no formal interpretation. The nuclearity de-
termines which children span is the Nucleus of the relation, of which the other
spans are the subordinate Satellites. Most relations accept two arguments only
(one Nucleus and a Satellite) while some rare multinuclear relations such as List
have multiple nuclei, all of the same importance.

For example, the Evidence relation is used when the author thinks the Satel-
lite increases the belief of the reader in the Nucleus.1

	

Attribution

1

	

Explanation

	

Restatement

2 3

4

Figure 1.1: RST representation for example 1.2, with arrows pointing to the Nu-
cleus.

A key element to the interpretation (and construction) of RST structures is the
Nuclearity Principle: a rhetorical relation between two spans should hold between
the recursive Nuclei of the spans, which is a restrictive model (see next paragraph),
but allows quick summarization of spans by reducing them to their Nucleus.

SDRT has its roots in Kamp’s Discourse Representation Theory (Kamp et al.,
2011), aiming to produce a logical interpretation of discourse structure through
the combination of the logical form of its components. Thus, edus in SDRT are
text spans corresponding to the atomic clauses of the text. A SDRT structure can
be described as a directed graph between two kinds of units: edus, and Complex
Discourse Units (cdus). cdus are clusters of dus acting as arguments for discourse
relations.

In figure 1.2, the cdu π contains both edus 2 and 4 but not 3, meaning the
target of the Attribution relation, i.e. what Interprovincial Pipe Line Co. said
leaves out the currency reformulation. This enables SDRT to have finer scoping
rules than RST. SDRT also allows crossing dependencies: there are no limitations

1Which means an RST annotator should interpret the author’s intention when identifying the
relations. This is intended.
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CHAPTER 1. INTRODUCTION

1

2 4

3

π
Attribution

Explanation

Background

Figure 1.2: SDRT representation of example 1.2. Arrows mark discourse relations,
dashed lines mark inclusion in a cdu.

in the formal definition regarding adjacency of arguments of relations, allowing
crossing dependencies and even units being the arguments of multiple relations,
e.g. edu 2 in example 1.2.

There are, however, formal constraints regarding units able to be linked. The
first one is acyclicity: a SDRT relation represents a reference to an earlier context,
which is very often anaphoric (a unit referring to an earlier unit), but sometimes
cataphoric (the opposite). In any case, references cannot be circular.

The second constraint, stemming from observation of the coherence of dis-
course, is the Right Frontier Constraint. The concept of right frontier denotes the
current context of interpretation of discourse by a reader (or listener). Compare
the following examples:

(1.3) Rose dumped the cookies on the floor.d1 (So) She was sent to her room.d2
(And) She drew all over the kitchen wall.d3

(1.4) Rose dumped the cookies on the floor.e1 (And) She drew all over the
kitchen wall.e2 (So) She was sent to her room.e32

The first example is intuitively incoherent: the fact that Rose drew over the wall
no longer seems relevant to the context, as the consequence (sent to her room) was
already explored. The two examples are represented in the following way:

Result is a coordinating relation, which “closes access” to its first argument for
all later edus. In contrast, Elaboration is a subordinating relation, which still
enables access to its first argument. In example 1.4, a Result relation may well
join edus e1 and e3 without incoherence. We separate SDRT relations between
subordinating and coordinating.

2A discourse marker or two would render the discourse less choppy, though markers are not
needed to achieve the intended interpretation.

5



d1

d2 d3

Result
Elaboration

Figure 1.3: Example 1.3

e1

e2 e3

Elaboration

Result

Figure 1.4: Example 1.4

The Right Frontier Constraint (rfc) is applied to any new edu being added to
a discourse graph, filtering which existing "accessible" edus it can attach to. This
creates a “right frontier”, due to the position of the accessible edus when drawing
the SDRT graph; hence the name.

While this constraint isn’t absolute in SDRT’s definition, we hypothesize it
matches closely the behavior of natural conversation. We test this assertion em-
pirically on the Settlers corpus. The formal definition, accuracy and filtering power
of the rfc are discussed in section 2.3.

The PDTB is a dataset, created specifically for the study of discourse. Its an-
notation model aims to be theory-neutral, by describing informally a wide number
of relations. The primary focus of the PDTB are discourse connectives linking
two (and always two) spans of text; importantly, the authors of the corpus do not
ambition to describe the whole structure of text, but only local relations.

In example 1.2, spans 2 and 4 are linked by the connective because with a
Contingency.Cause.Reason relation. The connective is here explicit as it
appears in the text, but connectives may also be implicit. Compare the following:

(1.5) Max fell, because John pushed him.

(1.6) Max fell. John pushed him.

The relation is the same in both examples, however without connective in the
second. In the PDTB, two adjacent spans without a connective are annotated
with the implicit connective that matches best their relation.3 To help disam-
biguate polysemous connectives (e.g. since, which can have a temporal and/or
causal interpretation), PDTB offers a detailed sense annotation hierarchy (shown
in section 2.1.2). Reusing the previous example, the Reason sense belongs to the
category Cause, itself belonging to the top-level category Contingency.

Few large-scale annotated datasets are dedicated to discourse structure. PDTB
itself is one, albeit for local discourse relations only. We also describe the RST
Discourse Treebank (composed of news articles annotated in RST fashion) and the

3In case they are completely unrelated, there is a connective for that too: NoRel.
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Settlers corpus (online game chats annotated in SDRT fashion), the latter being
extensively described in chapter 4.

In section 2.2, we move on to discourse parsing: the task of extracting all of
the previously described structures automatically. As a description of the high-
level organization of text, they can be used in a variety of applications, such as
text summarization, coreference resolution, data mining, conversational interfaces,
among many others. We detail a direct application of parsing in section 5.2.

The history of discourse parsing follows closely the development of new rep-
resentation frameworks and, more importantly, of reliable annotated datasets to
experiment on.

Focusing on the analysis of local relations, Marcu (2000) relies on discourse
markers (akin to explicit PDTB connectives) to build a brittle parser of RST
structures. Faced with the high dimensionality of semantic space and the combi-
natorial nature of vocabulary,4 the discourse parsing community quickly relied on
machine learning methods to classify discourse relations.

However, reliable data is scarce. Marcu and Echihabi (2002) also use discourse
markers to automate annotations on a large dataset, to predict implicit relations
from lexical cues. Sporleder and Lascarides (2005) use a similar approach to dis-
ambiguate between a restricted set of relations.

The publication of the Penn Discourse TreeBank drove a fair amount of re-
search on local structure. Efforts in the domain are mostly incremental, and rely
on shallow features for detection or classification of relations (Wellner and Puste-
jovsky, 2007; Pitler et al., 2009; Lin et al., 2009; Zhou et al., 2010). Frequently used
are the syntactic structure of texts (syntactic heads in particular), organisational
features (where is the connective placed in the sentence, how long is the sentence,
etc.), and lexical features (word count, keywords, lexical patterns). More recent
work uses original features from distributional semantics, such as Brown clusters
(Rutherford and Xue, 2014) and word embeddings (Braud and Denis, 2015).

In parallel, the extraction of full discourse structures receive fewer attention.
The vast majority of works analyze the RST Discourse Treebank,5 thus parsing
projective trees. The majority of the methods use bottom-up parsing, using greedy
algorithms (Soricut and Marcu, 2003; duVerle and Prendinger, 2009; Hernault et
al., 2010), shift-reduce parsing (Sagae, 2009; Subba and Di Eugenio, 2009) or CKY
parsing (Joty et al., 2012). Works are also split whether they restricted themselves
to the sentence scope (which is easier), or attempted to parse full texts.

4In other words, language being vastly too powerful and expressive to be bound by handmade
rules.

5Unsurprisingly, as reliable data is scarce and it was for a long time the largest corpus of the
domain by far.
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With one notable exception (Baldridge and Lascarides, 2005), all the aforemen-
tioned work focus on monologue. We base our own research on the first large-scale
corpus of annotated dialogue, exploring the limits of the recent monologue-centric
methods and expanding the scope of dialogue parsing to new horizons.

In chapter 3, we will describe the past research in the representation of argu-
mentation, and the automated extraction of its structure. We won’t give a detailed
account of the very abundant literature on the domain, as we focus on the con-
struction of semi-formal argumentation structure, which require relatively basic
concepts, and avoid lengthy discussions of the linguistic nature of persuasion.

Classical study of argumentation are based on the validity of arguments, ex-
pressed through logic, and the various rhetorical means to persuade people. The
work of Toulmin (1958), focusing on the practical way arguments are organized in
language has been extremely influential; based on legal arguments, he separates
the statements of a persuasive text by function: the core claim and conclusion of
the text; the facts and evidence to back it; the reasoning to extract the conclusion
from the facts; the credentials to support that reasoning; finally qualifiers of the
strength of the final assertion, and possible exceptions to the reasoning.

Another influential approach is Van Eemeren and Grootendorst (1992), initiat-
ing pragma-dialectical theory. They emphasize the use of standpoints, i.e. stances
taken towards particular claims. Parties in a debate advance new standpoints and
attack others, according to certain rules for a critical discussion that must be
observed to avoid fallacious reasoning. The pragma-dialectical view treats argu-
mentation as a complex speech act, intimately linked with discourse.

The logic-based view of Dung (1995) explores a simplified and formal version
of argumentative structure, reducing it to a directed graph of abstract claims
attacking each other. Dung expresses the interactions between sets of arguments
in great detail, influential to the automated processing of idealized negotiations
between artificial agents.

We use in our work the framework of Freeman (2011), synthesized by Peldszus
and Stede (2013). An argumentative text is there split into argumentative discourse
units (adus), which are sorted by their stance towards the core claim of the text:
proponent, or opponent. adus are then organized in a tree structure; claims that
directly support or attack another claim are linked together in the graph. The
framework also supports the notion of undercutting, where the inference itself,
holding between a supporting claim and its target, is attacked:

– A: Carthage is threatening Rome.

– A: Therefore, Carthage must be destroyed.

– B: Maybe we could negotiate with the threat instead.

8



CHAPTER 1. INTRODUCTION

We will then review the domain of argumentative parsing, which has been fo-
cused mainly on the detection of argumentative claims and stances in text (Moens
et al., 2007; Palau and Moens, 2009; Florou et al., 2013) rather than their inter-
actions. The prediction of complete argumentative structures is extremely recent
and employ statistical models to classify stances and relations (Peldszus and Stede,
2015; Persing and Ng, 2016; Stab and Gurevych, 2016).

In chapter 4, we will describe in detail the Settlers corpus, on which our work
in chapters 5 and 6 is based. The corpus comprises annotated text chats from an
online version of the board game The Settlers of Catan. The game itself involves a
group of players competing for resources, trading and negotiating, the bargaining
being expressed through free-form text-based discussion. Dozens of such games
have been annotated with the SDRT framework. The corpus exhibits many inter-
esting features specific to dialogue, crossing dependencies, long-distance anaphoric
links, complex discourse units, interwoven threads of discussion, abbreviated lan-
guage, among others.

234 gwfs anyone got wheat for a sheep?
235 inca sorry, not me
236 Ccg nope. you seem to have lots of sheep!
237 gwfs yup baaa
238 dmm i think i’d rather hang on to my wheat

i’m afraid
239 gwfs kk I’ll take my chances then...

Figure 1.5: Excerpt from the Settlers corpus.

Table 1.5 presents an excerpt from the corpus, a failed negotiation between
four players. Negotiation for resources typically happen once every player turn,
starting a conversation. Sometimes, bargaining session are continued over several
player turns. The games are thus split in dialogues, which can mostly be taken
in isolation context-wise. Those are further split in dialogue turns, comprised of
the utterances of single players (consecutive statements being grouped in the same
turn); which are further split into elementary discourse units (edus), the atomic
elements of discourse representation.

The games have been annotated with the SDRT framework, adding discourse
relations between units, as well as complex discourse units, clusters of dus acting
as higher-level arguments for relations.

Table 1.6 summarizes the main statistics of the Settlers corpus. As mentioned
earlier, it is the largest corpus of annotated dialogue structure at the time of this
writing, providing a solid base for future study.
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Dialogues 1081
Turns 9160
edus 10678
cdus 1284
Relation instances 10513

Figure 1.6: Statistics for the Settlers corpus.

In chapter 5, we describe two works exploiting the corpus for very different
purposes. The first work (Hunter et al., 2015) concerns the right frontier constraint,
which has been mentioned previously, and its adaptation to multi-party chat. Our
observation of interwoven threads of conversation makes the original definition of
the rfc brittle, as multiple contexts are defined at once by each participant. We
thus propose, and test, a new definition of the rfc for multi-party chat, which is
mechanically less restrictive (more units become accessible as a player has more
threads to answer to), still retaining a high filtering power.

The second work (Perret et al., 2014) develops a practical application of dis-
course parsing to data extraction. Our pipeline identifies, from the dialogues from
the Settlers corpus, the resources revealed by the players during their negotia-
tions. Knowing the possessions of opponents during the game leads to strategic
advantages for the player, who can propose more efficient trades. Our system uses
a maximum entropy model to classify the dialogue turns revealing resources, an-
other one to detect question-answer pairs (and potential anaphora), and finally a
set of rules to extract the type and quantity of the revealed resources.

In chapter 6, we present our efforts on discourse parsing, using the Settlers cor-
pus. We attempt to build the structure of dialogues, which are already segmented.
We have followed two consecutive approaches on the task.

In a first time, we (Afantenos et al., 2015) expand on the work of Muller et al.
(2012b), who focused on SDRT-annotated monologue. We employ a probabilistic
local model of discourse relations to pairs of edus, trained with the Maximum
Entropy method. We used shallow features for training, mostly positional and
lexical features, as well as syntactic parsing and dialogue act parsing. The local
model is then used as input to a decoding process, which optimizes the global
discourse structure generated, through the Maximum Spanning Tree algorithm, as
opposed to the classic parsing methods based on series of local decisions.

Our parsing model creates and trains on dependency structures. While those
are isomorphic to an edu-only graph with labeled relations, the SDRT framework,
and the Settlers corpus as a result, contains complex discourse units. We eliminate
them using a head replacement strategy, described in greater detail in the chapter.

10
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In a second time, as we showed that trees aren’t expressive enough to describe
multi-party chat discourse structures, we (Perret et al., 2016) experiment with In-
teger Linear Programming to build directed acyclic graphs from an enhanced local
model. The method also optimizes the resulting structure globally, and enables
the creation of original constraints fine-tuned for dialogue. We describe and justify
each of the constraints used for decoding.

Additionally, we present two novel ways to convert cdus to obtain dependency
graphs, to match more closely the semantics of relations involving clusters of edus.
This creates three versions of our corpus, on which we evaluate our methods.

In chapter 7, drawing from Stede et al. (2016), we describe the construction
of a corpus of argumentative texts, expanded from Peldszus and Stede (2016) to
feature three layers of annotations: RST and SDRT for discourse structure, and
the framework described in Peldszus and Stede (2013) for argumentative structure.
After comparing the three layers, we apply Integer Linear Programming methods
to the task of extracting argumentative structures, with a dedicated local model.

In chapter 8, we give a summary of our main contributions and project the
continuation of our work.
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Chapter 2

Background: discourse and dialogue

2.1 Discourse representation theories

The introduction outlined how we can define discourse relations between pairs of
units. This segues into defining a discourse structure for a whole text. While the
structure of syntax is clearly defined as a tree, and has very formal constraints
regarding the nature of its components, discourse units are much more loosely
defined. In this section, we review the various formalisms to represent discourse,
exploring the following questions: does discourse have a unambiguous structure?
Can we define properly discourse relations? How many kinds of them are there?
Can we interpret them?

For instance, Hobbs (1985) describes the various coherence relationships bind-
ing spans of text together. From his paper:

(2.1) A: John can open Bill’s safe.
A: He knows the combination.

In this example, both utterances are linked by an Elaboration relation,
as the second sentence expands the information expressed in the first. Hobbs
describes the semantics of multiple kinds of relations happen throughout text. No
formal interpretation is given here.

2.1.1 Rhetorical Structure Theory

Rhetorical Structure Theory (RST), developed by Mann and Thompson (1987),
expanded by Mann and Thompson (1988) and Taboada and Mann (2006), formal-
izes the segmentation of text and defines a set of relations, with defined structural
behavior, creating a full treelike discourse structure.

13
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When defining a RST structure, the text is is split in contiguous atomic spans.
Every span is then assigned a parent span, which encloses it along with other
adjacent spans, and so on recursively. The only exception is the root span, which
has no parent and encloses the entire text. Sibling spans (having the same parent)
can be linked together in the following fashions:

• Nucleus-Satellite: one sibling, the nucleus, is the principal component of
the asymmetric relation it has with the other siblings, the satellites. The
nucleus usually contains the core claim of the parent span. The satellites are
typically subordinate clauses, contain optional information.

• Multinuclear: no sibling is particularly salient; instances are contrast rela-
tions, sequence relations, where sibling spans depend on each other to carry
the meaning of the parent span.

The resulting structure is a projective tree, as sibling spans must always be adja-
cent.

Consider the following example, slightly different from the introduction, as the
restatement is embedded in the middle of the span:

(2.2) [Interprovincial Pipe Line Co. said]a1 [it will delay a proposed two-step,
830 million dollar]a2 [(US$705.6 million)]a3 [expansion of its system]a4
[because Canada’s output of crude oil is shrinking.]a5

The corresponding RST structure in figure 2.1 contains several features. There
are directed arcs labeled with discourse relations like Explanation or Attribu-
tion, where the target of the directed arc is designated as a nucleus, while other
components are designated as satellites of the relations. There are also unlabeled,
horizontal lines that pick out the spans potentially related by the relations, and
vertical lines that link spans to sub-spans. The spans themselves may consist of
one or more discourse units or distinguished sub-spans.

More formally, RST trees are typically understood in computational terms as
binary trees. But as RST annotations countenance relations that may have an
arity greater than 2, we give a general definition, isolating out binary trees as a
special case.

While such structures are familiar to most researchers on discourse structure,
a rigorous interpretation of it was never part of RST, and is rarely discussed in
computational linguistics. The first thing to notice is a possible ambiguity in what
might be the terms of a discourse relation; for example, the Attribution relation
might hold between the discourse constituent/span on the left Interprovincial Pipe
Line Co. said and the span consisting of the following three segmented units or
some subset of these.
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Attribution

Interprovincial
Pipe Line Co.
said

	

Explanation

	

Same-Unit

	

Restatement

it will delay a
proposed two-
step, 830 mil-
lion dollar

(US$705.6 mil-
lion)

expansion of
its system

because Canada’s
output of crude oil
is shrinking.

Figure 2.1: RST representation, with arrows pointing to the Nucleus.
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In the example at hand, it is obvious from the context that Interprovincial Pipe
Line Co. said that it will delay the expansion of its system, and it’s also quite
probable that what they said didn’t include the content in which 830 Canadian
dollars are specified in U.S. dollar amounts. Concerning the last discourse unit
because Canada’s output of crude oil is shrinking, it’s unclear whether this was
part of what Interprovincial Pipe Line Co. said or not.

In RST, we can represent this ambiguity by other making the right term of
the Attribution relation the value of iteratively seeking the nucleus of a span
until one comes to a basic span that has no discourse structure beneath it. We’ll
call such spans Elementary Discourse Units. In our example, this idea, which is
formalized under the heading of the Nuclearity Principle, would net us only the unit
it will delay a proposed two-step, 830 million dollar. On the other hand, one might
choose not to use the Nuclearity Principle and accordingly take the entire span
to the right as the argument of the Attribution relation. Interestingly, there
does not seem to be a mechanism in the RST literature that would yield, as the
second argument of the Attribution relation, the content given by elementary
discourse units number 2, 4 and 5.

Additionally, units 2 and 4 correspond to the same rhetorical unit, split by
the embedded unit (US$705.6 million). As spans must remain contiguous, this
translates into the structural relation Same-Unit, which has no semantic value
whatsoever.

Mann and Thompson describe a number of rhetorical relations, each associated
with a rough description of the intended behavior of the relation’s arguments. For
instance, the asymmetric Evidence relation is described as follows:

• Constraints on Nucleus: Reader R might not believe N to a degree sat-
isfactory to Writer;

• Constraints on Satellite: Reader believes Satellite or will find it credible;

• Constraints on the combination: Reader’s comprehending Satellite will
increase Reader’s belief of Nucleus;

• Effect: Reader’s belief of Nucleus is increased;

• Locus of the effect: Nucleus.

Corpora for discourse structure limited themselves to handcrafted illustrative
examples. However, there was a growing need for larger datasets, in order to
study discourse parsing. This led to the creation of the first large-scale annotation
corpus for discourse structure, the RST Discourse Treebank (RST-DT) (Carlson
et al., 2003). 385 Wall Street Journal articles, along with their RST structure,
annotated by hand. 78 discourse relations are used, partitioned in 16 classes
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displayed in table 2.1. Totalizing 21,789 edus, the corpus has guided most work
in recent discourse parsing of multi-sentence text (Subba and Di Eugenio, 2009;
Hernault et al., 2010; duVerle and Prendinger, 2009; Joty et al., 2013; Joty et al.,
2015), which will be reviewed in section 2.2.

Attribution Background Cause Comparison
Condition Contrast Elaboration Enablement
Evaluation Explanation Joint Manner-Means
Topic-Comment Summary Temporal Topic-Change

Table 2.1: RST relation classes used in Carlson et al. (2003).

2.1.2 Penn Discourse TreeBank

The Penn Discourse Treebank (PDTB) (Miltsakaki et al., 2004; Prasad et al., 2008)
is a dataset, in opposition to the frameworks of RST and SDRT discussed in this
section. However, the corpus has been designed to be theory-neutral, while using
a particular discourse framework for its underlying annotations1.

The aim of PDTB is to provide a dataset in which discourse connectives are
annotated. This sets apart PDTB from the RST Discourse Treebank for two main
reasons: first, PDTB has no objective of describing the full structure of texts, but
only the local level of discourse structure represented by connectives. Secondly,
the annotated discourse connectives have to be lexically grounded, while RST
annotation aims to reflect the interpretation of the structure of a text by a reader.
An overall goal is to make the PDTB annotations reliable and unambiguous.

PDTB connectives are central to the dataset. They are divided in two cate-
gories.

Explicit connectives are the expressions that signal a discourse relation be-
tween parts of a text. They are split into four syntactic classes:

• Subordinating conjunctions: because, although, when, if, as, etc.

• Coordinating conjunctions: and, but, so, nor, or (and paired versions of the
latter — neither/nor, either/or)

• Prepositional phrases: as a result, in comparison, on the one hand/on the
other hand, etc.

• Adverbs: then, however, instead, yet, likewise, subsequently, etc.

1The neutrality of the annotation schema itself is thus debatable.
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Figure 2.2: PDTB sense hierarchy
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Category Relation count
Explicit 18,459
Implicit 16,224
AltLex 624
EntRel 5,210
NoRel 254
Total 40,600

Table 2.2: Total number of relations annotated in the PDTB, by category.

Implicit connectives “join” two adjacent spans of text where no explicit con-
nective is present. The concept is best illustrated by an example:

(2.3) [Max fell]a1, [because John pushed him]a2.

(2.4) [Max fell]b1. [John pushed him]b2.

In the second case, the causal relation is implicit; in PDTB, the pair would
be annotated by IMPLICIT-because, as the connective matches best the implied
relation.

Several additions were made to the PDTB framework following its introduction
in 2004, which were eventually gathered into PDTB 2.0 (Prasad et al., 2008),
with an actualized annotation manual. Among the new features were three new
connective categories, for special cases where an implicit connective couldn’t be
provided:

• AltLex, when the discourse relation is marked by a non-connective expression
(such as “One potential cause may be...”);

• EntRel, when the spans are linked only by an entity-based coherence relation;

• NoRel, when no relation at all could be detected between adjacent spans.

Another new feature was refined sense annotations for connectives, semantic
categories provided for disambiguation. For instance, the connective since can
have a causal (2.5) or a temporal sense (2.6):

(2.5) Arthur was happy, since the cake tasted good.

(2.6) Arthur was happy, since the arrival of his guests.

The set of sense tags is organized hierarchically, with four semantic classes
at the top: Temporal, Contingency (for causal and conditional connectives),
Comparison (for contrast and concession) and Expansion (for conjunction, in-
stantiation, restatement, alternatives, exceptions and lists).

19



2.1. DISCOURSE REPRESENTATION THEORIES

2.1.3 Segmented Discourse Representation Theory

Origins of SDRT As described in the introduction, one of the original goals
of discourse representation was to accurately describe, and formalize, the meaning
of text in logical form. Montague semantics (Montague et al., 1976) aimed to
translate the syntactic structure of sentences from the semantic value of their
components (ultimately, words). The next step of the bottom-up approach was
to move on to multi-sentence texts, and eventually dialogue. In contrast, RST
follows a top-down approach to discourse structure, highly hierarchical. Building
a correctly labeled structure in RST involves having access to the whole text from
the start of the parsing process.

Expanding on Montague’s work, Kamp developed Discourse Representation
Theory (DRT, Kamp (1988)), using an incremental approach to the interpretation
problem. The parsing process first builds a logical interpretation of the first sen-
tence. Following sentences are then parsed as additions to the existing context,
referring to the previous elements of the text. Any sentence after the first is never
viewed as standalone. This approach permits a greater flexibility for discourse
structure. An excellent thing, since further study of dialogue proved that the RST
constraints weren’t expressive enough.

Asher (1986) extended DRT to take account of propositional type discourse
entities. Such entities describe the mental state of an agent towards a proposition
(belief, fear, hope, etc.) Those were frequently introduced by elements like that-
clauses, as in

(2.7) Yoda believes that Palpatine is evil.

Asher’s analysis of this was roughly:

∃p believes(Y oda, p) ∧ p ≈ evil(Palpatine)

where a ≈ b is defined as the content of a is at least partially specified by b.
Asher noted however that discourse made reference to such abstract entities as

propositions even when they were not marked syntactically, e.g. as denotations of
that clauses. As in:

(2.8) Palpatine is a traitor and a murderer but most Jedi sadly don’t realize
it.

The it picks up the first clause, but in standard semantic theories, including
DRT, such entities would not be introduced as variables in any way. Furthermore,
Asher noticed that not all proposition level contents could be so picked up. For
example,
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(2.9) Three students got in trouble. One had copied during an exam; the
second had plagiarized someone else’s work; the third had bullied other
students into doing his homework for him. The teacher found this rep-
rehensible.

Asher observed that the anaphoric antecedents for this were quite limited. It
could be what all three of the students had done (collectively) or it could be
what the last student had done, but it could not pick up what the first or second
students had done. To solve this problem Asher (1993) developed Segmented Dis-
course Representation Theory (SDRT), in which all clauses introduced discourse
entities. To limit the set of potential antecedents, he then observed that such dis-
course entities stood in particular semantic relations to each other that governed
anaphoric accessibility of propositional discourse referents. This relational struc-
ture then allowed him to define a right frontier constraint that served to restrict
anaphoric availability.

If SDRT was developed as a theory of abstract entity anaphora, it soon be-
came apparent that the discourse structures (SDRSs) it posited had other uses
in semantics. Hobbs (1979) had already observed that discourse relations could
affect the temporal structures in texts, and Lascarides and Asher (1993) developed
and formalized Hobbs’s insights. They also provided the first logical reconstruc-
tion of the reasoning required to construct SDRSs from information contained in
the clauses that provide the basic discourse units in those representations using a
non-monotonic logic developed in Asher and Morreau (1991). Since then SDRT
has been applied to analyses of many semantic phenomena: verb phrase ellipsis
(Asher et al., 1997), presupposition (Asher and Lascarides, 1998) and many other
phenomena both in text semantics and the semantics of dialogue.

Also while SDRT was originally designed to remedy defects of Kamp’s DRT, it
also soon became apparent that while dynamic semantics was essential to SDRT’s
analyses of anaphora and temporal structure, the relational structure or discourse
structure posited by the theory was compatible with pretty much any dynamic
semantics (e.g. Groenendijk and Stokhof (1991) or continuation style semantics
(e.g. Asher and Pogodalla (2010)).

Motivations for a flexible structure While projective trees are arguably a
contender for representing the discourse structure of monologue text, they rule
out by definition any kind of crossing dependencies. We argue this cripples the
expressivity of the framework. In a long monologue, an author might spend a
sentence or even some paragraphs to give more details on a topic they mentioned
earlier, before resuming their core narrative of sequence. At any other point in
the text, the other might delve into a minor subject, referring to entity or events
from any point in the previous text, as long as the author remains semantically
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coherent (which is a rather weak constraint). The only limit as to how far back
the author can make connections is the cognitive ability of the reader.

This kind of crossing dependency appears more frequently in multi-party dia-
logue. Several subgroups of interlocutors can momentarily form and carry on a dis-
cussion amongst themselves, forming thus multiple concurrent discussion threads.
Furthermore, participants of one thread may reply or comment to something said
to another thread, or refer to an observation made much earlier in the discussion.
In the case of chat dialogue, the cognitive load required from the participants is
drastically reduced, as they all have direct access to the history of the conversation,
enabling them to refer to any previous comment easily and often implicitly.

Such freedom rules out using a theory like RST as a basis either for an an-
notation model or as a guide to learning discourse structure in a more general
context. One might conclude from the presence of multiple threads in dialogue
that we should use non-projective trees to guide discourse parsing. But non-
projective trees cannot always reflect the structure of discourse either, as Asher
and Lascarides (2003) argue on theoretical grounds. We give more details on the
matter in section 4.2.1. As an example, the following dialogue exhibits non-treelike
structure:

1. Alice: Is pizza OK for you two?
2. Bob: Yup!
3. Carol: No objection.
4. Alice: Perfect.

1

2 3

4

QAP QAP

Ack Ack

Here, the simultaneous Acknowledgement from Alice of the two answers of
Bob and Carol create an intuitive, “lozenge”-like structure which projective trees
cannot represent.

The above observations lead to the use of graphs as discourse structure, which
in turn isn’t expressive enough for discourse. A final, important organizing element
of the discourse structure for text and dialogue is the presence of clusters of edus
that can act together as an argument to other discourse relations. Consider the
following examples, from Asher et al. (2011):

(2.10) [For the last two decades,]a1 [the German central bank had a restric-
tive monetary policy,]a2 [because it viewed inflation as the number one
problem.]a3
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(2.11) [John worked at U.T. for two decades ]b1 [He worked in the library]b2
[because he wanted to be in charge of large collections.]b3

Here, the RST representation of both sentences is the same:

R

Elaboration

1
	

Explanation

2 3

However, the semantic interpretation of the structure differs. In example 2.10,
Elaboration has scope over both other edus: the German viewed inflation as a
concern for two decades. In contrast, in example 2.11, Elaboration doesn’t have
scope over edu 3: John didn’t want to be in charge of collections for two decades.
Using clusters of nodes for representation enables the following distinction:

a1 a2

π a3
Explanation

Elaboration

Figure 2.3: Example 2.10

b1 b2

b3

Elaboration

Explanation

Figure 2.4: Example 2.11

Sub-graphs of the entire discourse graph can thus act as elements or nodes
in the full discourse structure. These sub-graphs are called complex discourse
units or cdus. Asher (1993) argue they are an important organizing principle
of discourse. As we saw in the examples, cdus enable precise and unambiguous
scoping of discourse relations, which is critical to the accurate interpretation of
anaphora and ellipsis.

However, although cdus are present in discourse corpora, especially SDRT-
annotated ones, as they are a fundamental component of the framework, very
few works have attempted to predict them, substituting them by other structure
whenever they appear; we describe these workarounds, and our own propositions
on the topic, in sections 6.1.1 and 6.2.1.

SDRT structures We move now to a complete definition. In SDRT, a discourse
structure, or SDRS (for Segmented Discourse Representation Schema), consists of
a set of Discourse Units (dus) and of discourse relations linking those units. dus
are distinguished into edus and cdus:
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– edus (elementary discourse units) correspond to phrases or sentences de-
scribing a state or an event, the atomic clauses of the text, ideally inter-
pretable as logic predicates;

– cdus (complex discourse units) are sets of dus acting as arguments for dis-
course relations, used whenever a group of units act as a single semantic
unit.

Formally, for a given text segmented in a setD of edus, whereD = {e1, . . . , en},
an SDRS is a tuple (V,E1, E2, `) where:

• V = D ∪ Π is a set of nodes or discourse units, with Π as the set of cdus ;
• E1 ⊆ V × V is a set of edges representing discourse relations;
• E2 ⊆ V × Π is a set of edges that represents parthood in the sense that if

(x, y) ∈ E2, then the unit x is a component of the cdu y;
• ` : E1 → Relations is a labeling function that assigns an edge in E1 its dis-

course relation type.

Consider the following example:

(2.12) [Interprovincial Pipe Line Co. said]e1 [it will delay a proposed two-
step, 830 million dollar [(US$705.6 million)]e2 expansion of its system]e3
[because Canada’s output of crude oil is shrinking.]e4

e1

e2 e4

e3

π
Attribution

Explanation

Background

Figure 2.5: SDRT representation of example 2.12.

Here D = {e1, e2, e3, e4}, Π = {π}, E1 = {(e1, π), (e2, e3), (e2, e4)} and E2 =
{(e2, π), (e4, π)}.

While SDRT units cannot partially overlap, inclusion is allowed, e.g. edus
2 and 3. The semantic interpretation strips away embedded span, so that the
portion of text corresponding to edu 3 is it will delay a proposed two-step, 830
million dollar expansion of its system.
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In the corresponding SDRT representation of the example, in figure 2.5, plain
arrows correspond to discourse relations (edges in E1) and dashed arrows to cdu
membership (edges in E2).

SDRT relations We describe informally the set of SDRT relations used in the
annotation of the Settlers corpus, described in chapter 4.

Elaboration β provides extra information about
the eventuality described in α

Explanation β explains why, or gives the cause of, what happened in α
Acknowledgement β signals acknowledgement or acceptance of the content of α
Q-answer pair β is the answer to the question α
Q-Elab2 β is a follow-up question to α, requesting more information
Clarification q. β is clarification question for α
Comment β provides an opinion or evaluation for the content of α
Narration The main eventualities of α and β occur in sequence
Continuation β and α elaborate on the same topic
Contrast α and β have similar semantic structures,

with contrasting content
Parallel Same as Contrast, with echoing content, maybe ellipsed
Result The main eventuality of α is the direct cause of β
Background β provides some stage setting for what happens in α
Conditional Typically: if α, then β
Alternation Typically: α, or β

Table 2.3: SDRT relations. α and β designate respectively the first and second
arguments, in textual order, of the relation.

2.2 Discourse parsing

The previous section showed how we can describe, as accurately as possible, the
discourse structure of texts. However, the next step is to build them automatically.
Works dedicated to this task, discourse parsing, have been much more recent than
the work on representation. We will review in this section the progression and
challenges of the domain, starting from low-context environments to our current
rich domain, dialogue.

2Also named Follow-up question
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2.2.1 Cue-based parsing

Here is again the John & Max example:

(2.13) [Max fell]a1, [because John pushed him]a2.

(2.14) [Max fell]b1. [John pushed him]b2.

In both examples, edus 1 and 2 are linked by a causal relationship (in RST
and SDRT, Explanation). In the first example, this discourse relation is hinted
by the word because; as in PDTB we call this kind of hint a discourse marker.

Marcu (1997), pioneering the field of discourse parsing, attempts to recreate
full RST structures from discourse markers. Marcu argues that markers are con-
sistently used by humans throughout text; that they occur frequently enough to
infer the structure of a text from them alone; that the semantics of the markers
are consistent with the semantics of the components they link.

Marcu points out the ambiguity of markers, with respect to the relations they
convey, and their reach in the text. This example is given:

(2.15) [Although discourse markers are ambiguous]1, [one can use them to build
discourse trees for unrestricted texts:]2 [this will lead to many new ap-
plications in natural language processing.]3

Does the Elaboration relation cued by the colon links edus 2 and 3, or 1 and
3? In the proposed parser, the second option is ruled out due to the Concession
relation cued by Although: edu 2 is the Nucleus of the 1 − 2 span, and by the
Nuclearity Principle, if a relation should link edus 1 − 2 and 3, it must hold
between the Nuclei of the span, i.e. 2 and 3.

Marcu (2000) details the parsing method. The parser uses a wealth of informa-
tion regarding the behavior of discourse markers, among which:

• if they appear before, between, or after the two spans they link;

• the boundaries of the spans;

• the textual types of the spans (some markers link clauses together, other
whole paragraphs);

• the rhetorical status (Nucleus or Satellite) of the spans;

• the rhetorical relations associated with the marker.
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Many other fields are included in the analysis of markers, created from careful
review of annotated examples. This enables Marcu to create a shallow analysis of
texts, procedurally generate their segmentation, and hypothesize relations between
spans. The possible structures verifying the set of hypotheses are then enumerated
exhaustively, and assigned a weight (privileging balanced trees). The structure of
highest weight is then returned as the parsed rhetorical structure of the text.

2.2.2 Implicit relations

As stated earlier, the entire process in Marcu (2000) relies on the presence of
explicit discourse markers to identify relations and their spans. However, this
hypothesis doesn’t hold in the general case.

Marcu and Echihabi (2002) refer to the then-recent RST Discourse TreeBank
(Carlson et al., 2003)3, observing that less that a third of the Contrast and
Explanation-Evidence relations in the corpus were marked by a cue phrase.
Those two relations being extremely distinct semantically, the ambiguity caused
by the absence of markers has to be resolved by other methods. The NLP field
doesn’t have access to robust semantic interpreters and knowledge bases powerful
enough to infer from example 2.4 that the fall of Max was caused by John pushing
him.

Marcu and Echihabi study how to disambiguate between rhetorical relations.
Their novel approach is to consider discourse markers as additional material for the
semantic parsing of a pair of span; in other words, that the spans retain semantic
cues of rhetorical relations even if the explicit markers are removed. Consider the
following sequence:

(2.16) John is good in math and science.

(2.17) Paul fails almost every class he takes.

The two sentences are linked by a Contrast relation. The two words good
and fails, as a pair, are good indicators of contrasting statements. The authors
hypothesize, I quote: “that lexical item pairs can provide clues about the discourse
relations that hold between the text spans in which the lexical items occur.” In
order to predict, from statistical methods, which lexical pairs imply which relation,
one would need a large corpus of annotated pairs, not available at the time.

Marcu and Echihabi choose a restricted set of rhetorical relations to disam-
biguate between; namely, Contrast, Cause-Explanation-Evidence, Con-
dition, Elaboration, and the default relation None of the above. The

3The initial release of the paper and the associated corpus dates from 2001.
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relations are clearly distinct semantically, defining coarse groupings of usual la-
bel (the coarse label Contrast encompasses Antithesis and Concession, for
example). This choice enables the authors to build a low-noise dataset from cue
phrases present in unannotated large corpora. Using a collection of nearly 43
million sentences gathered from various sources and various extraction patterns
(see Table 2.4), a corpus of millions of automatically annotated pairs of spans is
created.

Label Instances Example pattern
Contrast 3,881,588 [BOS ... ][but ... EOS]
Cause-Expl.-Ev. 889,946 [BOS ... ][because ... EOS]
Condition 1,203,813 [BOS If ... ][then ... EOS]
Elaboration 1,836,227 [BOS ... EOS][BOS ... for example ... EOS]

Table 2.4: Patterns for automatic extraction of related pairs. BOS and EOS stand
for Beginning and End Of Sentence, respectively.

The markers present in the annotated pairs are then removed, and the data is
provided to a Naive Bayes method, which gives the most probable relation from
the words in a pair of text spans:

r∗ = argmax
rk

P (rk|W1,W2)

= argmax
rk

(logP (W1,W2|rk) + logP (rk))

P (W1,W2|rk) =
∏

(wi,wj)∈W1×W2

P (w1, w2|rk)

where (rk) are the relation labels, W1 and W2 are the two word sequences of
the spans. Probabilities P (w1, w2|rk), linking word co-occurences to labels, are
computed over the corpus by a maximum likelihood estimator.

For the task of classifying pairs of spans into the six categories cited above,
this model obtains an accuracy of 49.7%. Two-way classifiers were also tested,
with greater performance. For instance, two-way disambiguation between Cause-
Explanation-Evidence and Elaboration attained 93% accuracy (their best
result).

Sporleder and Lascarides (2005) use a similar approach, disambiguating from
SDRT relations, namely Contrast, Result, Explanation, Summary and
Continuation. Their training corpus was, as well, built from a compilation
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of written text corpora, mainly from the new domain. The resulting set of ex-
tracted pairs was smaller, from less than 2,000 examples for the Continuation
relation, to around 50,000 for Contrast.

Instead of relying on word co-occurrences for probability estimation, the au-
thors relied on a set of shallow features extracted from span pairs:

• the length of the spans;

• lexical features, such as the string of lemmas contained in the spans, the
overlap of lexicon between the two spans, and the WordNet (Miller, 1995;
Fellbaum, 1998) class of lemmas;

• part-of-speech features, such as the string of POS tags of the spans;

• temporal features, classifying verbal complexes along five criteria (Lapata
and Lascarides, 2004);

• syntactic features, extracted from parse trees;

• cohesion features, from the distribution of pronouns and the use of ellipses.

Their 5-way classifier, using a model similar to Marcu and Echihabi (2002),
attained 33.96% accuracy, with a smaller dataset.

For another example of pattern-based extraction of training data, Saito et al.
(2006) use Japanese phrasal patterns as indicators of rhetorical relations.

2.2.3 PDTB connectives

Many works focused on predicting local discourse relations use the Penn Discourse
TreeBank (Miltsakaki et al., 2004; Prasad et al., 2008), which incidentally is the
largest corpus dedicated to local structures of discourse.4

Wellner and Pustejovsky (2007) propose a method to identify the arguments of
PDTB discourse connectives. In the PDTB, explicit discourse relations are anno-
tated with the connectives themselves, so that parsing explicit relations amount to
find the spans linked by the connectives. They use a variety of features, drawing
from diverse parsers:

• Baseline features describing the location of the connective, the (candidate)
arguments themselves;

4If this sounds tautological, we want to stress that the publication of new reliable annotated
datasets, (not only in discourse parsing but in natural language processing as a field), is a critical
driving force behind many new advances. Annotations are expensive.
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• Constituency features based on a constituent (syntactic) parse of the argu-
ments;

• Dependency features based on a dependency parse of the arguments;

• Connective features based on the definition of the connective itself;

• Lexico-syntactic features detecting attribution patterns (as in X said Y)

With the use of probabilistic ranking models5, the authors achieve .887 F-
measure on identifying segment boundaries, and .763 F-measure when also labeling
the arguments as nucleus and satellite.

Pitler et al. (2009) introduce a set of original shallow features for sense predic-
tion. They include:

• Polarity tags, words in the spans indicating sentiment (such as good, nice,
awful, etc.;

• Inquirer tags, same as above with various semantic classes from the General
Inquirer lexicon (Stone et al., 1966);

• Money-Percent-Num, detecting numerical figures in text;

• WSJ-LM, classifying the likelihood of the span’s words with respect to the
relation labels;

• various other features describing the verb occurring in the spans, the first
and last words of the spans, modality markers (e.g. can, should), preceding
explicit connectives, and word pairs.

Lin et al. (2009) focus on implicit relations, which are evidently harder to extract
than their explicit counterparts. Using a Maximum Entropy classifier (Berger
et al., 1996), they also use a feature set with similar categories as Wellner and
Pustejovsky (2007), drawing from dependency and constituency parsing, as well
as word pairs, like Marcu and Echihabi (2002). In particular, they discuss the
difficulties of the extraction of implicit connectives:

• Ambiguity: several relations, such as Contrast and Conjunction, are
very similar in syntax, lexicon and semantics. A formulation like X, while
Y can be interpreted both ways, even if the connective while is explicit.
An analysis of the context may disambiguate between several senses, which
would require further annotation effort;

5We refer the reader to the paper for additional equations.
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• Inference: as in the example Max fell; John pushed him, external knowledge
and semantics is sometimes needed to infer discourse relation;

• Context: while the annotated arguments in the PDTB are enough for the
interpretation of the relation, more context is sometimes needed to under-
stand the argument themselves (and predict the relation from unannotated
text);

• World knowledge: discussed with the example below:

(2.18) Arg1: Senator Pete Domenici calls this effort “the first gift of democ-
racy”.
Arg2: [but] The Poles might do better to view it as a Trojan Horse.
(Contrast - PDTB - wsj_2237)

Here, one has to recognize that a Trojan Horse is a kind of gift, and infer the
Contrast relation from the negative connotation. Alongside the other difficulty
classes, which are mirrored in many sub-domains of natural language processing,
this illustrates the need for deeper semantic representations and access to more
world knowledge.

Zhou et al. (2010) attempt to predict implicit discourse connectives as an inter-
mediate step to predict discourse relations. The first task of predicting connectives
uses a small set of features, and outputs a set of 60 most probable connective for
a given pair of spans.6 They propose two approaches to the second task of pre-
dicting relations: one using the predicted connectives as additional features, the
other using the predicted connectives alone as features. The results vary greatly
depending of the label, but consistently beat the baseline classifier following the
usual approach of predicting directly the relation label from the initial features.

Rutherford and Xue (2014) use Brown clusters (Brown et al., 1992) (grouping
words appearing in the same contexts) to tackle the problem of the sparsity of
word pairs. Replacing each word by their cluster generates a much smaller feature
set, as 3200 clusters were generated, for a vocabulary several orders of magnitude
bigger. Aside from word pairs, the clusters are also used to define several new
features, detecting the number of same-cluster words (or specifically nouns or
verbs) present in both spans. Their experiments, using Naive Bayes classification,
improve previous performance on one-against-all labeling tasks (where the goal is
to determine if a pair is linked by a particular relation or not).

6At this point, we’d like to point out that borrowing features from preceding literature is a
common occurrence, which explains the succinct mention of the feature sets, which are no longer
the main focus of the publications.
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Braud and Denis (2015) expand on their work, using alternative word and seg-
ment representations as features. They describe three ways to represent a word
with vectors;

• one-hot, equivalent to word count methods, where each word has its own
dimension and is counted separately;

• cluster-based one-hot, as in Rutherford and Xue (2014), where one dimension
corresponds to one cluster;

• dense real-valued, low-dimensional vectors, where dimensions correspond to
latent features of words, often learned through neural models (Bengio et al.,
2003) or distributional analysis;

The authors’ next step is to represent whole spans with vectors before using them
as training instances. They describe multiple methods to get there from the vector
representation of the component words:

• by considering the word vector of the span’s syntactic head only, or all words
(and eventually normalizing the results to compensate for the word count of
the span);

• by concatenating the vectors from both spans, or taking their outer product
(in the one-hot case, this amounts to have one dimension per word pair);

These methods, along with the choice of one-hot or dense representation of words,
combine into numerous possible representations for pairs of spans. Using a Maxi-
mum Entropy classifier trained on vector features, heads of spans, and commonly
used other features, the model reaches a similar performance as Rutherford and
Xue (2014).

2.2.4 Full structure parsing

While the above cited works explore in depth the prediction of local discourse
relations, comparatively few works attempt to predict the full discourse structure
of a text. Early works, without any global optimization, include Marcu (2000),
relying on explicit cues, which are in minority in the RST-DT corpus.

Discourse parsing involves at least three main steps: the segmentation of a
text into elementary discourse units (edus), the basic building blocks for discourse
structures, the attachment of edus together into connected structures for texts,
and finally the labeling of the links between discourse units with discourse relations.
Many recent works take segmentation for granted, as reliable methods exist for the
task.

32



CHAPTER 2. BACKGROUND: DISCOURSE AND DIALOGUE

Soricut and Marcu (2003) explore discourse parsing for the restricted scope of a
sentence, using RST-DT as a corpus. They detail the two challenges of the task.
First, discourse segmentation; much like Wellner and Pustejovsky (2007) sought
to find the spans of text involved in discourse relation, to parse a text one needs
to split it in Elementary Discourse Units, forming the basic component of the
structure. The segmenter proposed by the authors uses a probabilistic likelihood
model to predict unit boundaries, using lexical and syntactic features.7

Once the text has been segmented, the authors use another probabilistic model
to build the structure. The objective is binary trees instead of general RST trees,
as 99% of the nodes in the RST-DT corpus are binary (the resulting model is
made simpler by this choice). In the paper’s formalism (which will be reused in
Joty et al. (2012)), an RST relation is written as a tuple R[i,m, j], where R is an
RST label augmented by nuclearity (that is, which of the relation’s arguments are
Nucleus or Satellite), holding between the two spans containing edus i through
m, and m+ 1 through j. The parser the uses a bottom-up dynamic programming
algorithm to determine the subtrees of highest probability, merging adjacent spans
together repeatedly until all spans are merged, forming a binary tree.

One specific feature used in their model concerns the notion of dominance set,
which describe where and how two adjacent edus are linked in the syntactic tree.
For all edus except the one containing the root of the tree, the syntactic head of
the edus will have a parent belonging to another edus. The direction of this link
is the dominance relationship between the two edus. Dominance sets are used to
filter out irrelevant elements while computing the probability of a subtree.

Le Thanh et al. (2004) use a cue-based segmenter and bottom-up parser to
build RST trees. Interestingly, they compute the accuracy of their parser on seven
distinct levels: discourse unit boundaries, local attachment only, nuclearity role
of spans, full discourse relation (attachment and label); the three latter being
evaluated once at the sentence level, once at the text level.

Baldridge and Lascarides (2005) choose to study dialogue parsing; more specifi-
cally, appointment scheduling dialogues from the Redwoods corpus (Oepen et al.,
2004). They re-annotated the corpus using a restricted version of SDRT, encoded
into trees so their model could use statistical techniques from sentential parsing,
namely Probabilistic Context Free Grammars.

Sagae (2009) pioneered the technique of transition-based discourse parsing, build-
ing an RST tree by the shift-reduce method. Starting with a stack of subtrees

7Work on segmentation not being the focus of this review, we refer the reader to the paper
for more details.
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containing the first edu of a text (as an atomic subtree), the parser performs one
of three kinds of action: shift, where the next edu is pushed on the stack; reduce-
left-LABEL and reduce-right-LABEL, where the two topmost subtrees are joined
together with the relation LABEL to form a bigger subtree (so that each label cor-
responds to two actions). Whether the head of the newly created subtree is the left
or right one depends on the aptly named left or right version of the action.8 The
action to be performed by the parser is determined through an averaged percep-
tron,9 using basic lexical and syntactic features. The parser achieves a performance
of .445 F-measure for full discourse tree creation, evaluated on RST-DT.

Subba and Di Eugenio (2009) also use transition-based parsing, with an Induc-
tive Logic Programming (ILP)10 to create a ruleset determining which action the
parser should perform. The rules are built on lexical features as well as similarity
features based on the author’s previous work (Subba et al., 2006). Here is an
example of one of their generated rules:

IF segment A contains a cause and a theme, the same object that is
the theme in A is also the theme in segment B, and B contains the
discourse cue and at the front THEN the relation between A and B is
preparation:act.

duVerle and Prendinger (2009) introduce a new method, Support Vector Ma-
chines (SVM) (Vapnik, 1995), to estimate the probability of subtrees (using the
same greedy bottom-up tree-building algorithm as Soricut and Marcu (2003)).
SVM is a machine learning technique well-suited to classification problems in-
volving high-dimensional feature spaces, which had yet to be applied to discourse
parsing, as SVM exclusively performs binary classification, and adaptations were
necessary. The authors thus use two classifiers, one for detecting whether two
adjacent subtrees are directly connected or not, and another for predicting the
relation labels (using a multi-class variant of the model, per Crammer and Singer
(2001)).

Hernault et al. (2010) expand on their own work,11 adding a discourse segmenter,
which also uses SVM to detect the presence of edu boundaries, with features
inspired from Soricut and Marcu (2003). The proposed full parser achieves a

8Another action, reduce-unary-LABEL, which takes only one argument subtree, is also de-
scribed but unused when creating binary RST trees.

9A linear binary classification method, of the neural network class.
10Not to be confused with Integer Linear Programming (also ILP), an entirely different tech-

nique used in our own work and described later on.
11Which is duVerle and Prendinger (2009), as they’re also co-authors of this paper.
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performance of .473 F-measure for full discourse tree creation, evaluated on RST-
DT.

Feng and Hirst (2012) expand on Hernault et al. (2010), predicting RST struc-
tures, incorporating features from the work of Lin et al. (2009) in PDTB relation
parsing, as well as their method of feature selection.

Joty et al. (2012) focus on sentence parsing. They introduce, in turn, a new
method to estimate the probability of subtrees: Dynamic Conditional Random
Fields. DCRFs (Sutton et al., 2007) is a structured machine learning technique
suited to predict sequences of items. Where regular models accept features de-
scribing two spans, merged into a single training instances, DCRFs allow the au-
thors to input an arbitrarily long sequence of spans to the model, each having their
own features, so that the output for a given span is dependent on the rest of the
sequence.

The model enumerates all the possible span combination for a given sequence.
For three edus, the possible groupings are ([1], [2], [3]), ([1], [2-3]),
([1-2], [3]), ([1-2-3]). For every span combination, a DCRF is generated,
of the following form12:

Figure 2.6: Structure of a CRF model for a sequence of spans

The unit sequence at the bottom is the sequence of spans; the Si nodes output
probabilities whether spans Ui−1 and Ui are linked by a relation; the Ri nodes
(of which there are actually several layers, one per label) output probabilities
for the relation labels. In conjunction, over all possible combinations of spans, the
DCRFs produce the probabilities of the constituentR[i,m, j].13 These probabilities

12Picture borrowed from Feng and Hirst (2014)
13A relation of label R, between the spans i through m and m + 1 through j. See the above

paragraph on Soricut and Marcu (2003).
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are then used in a CKY-like14 bottom-up algorithm, which, unlike the greedy
algorithm of Hernault et al. (2010), returns the globally optimal tree given the
input constituent probabilities.

Joty et al. (2013) expands the method on multi-sentential parsing. The higher
number of edus makes the computation of all combinations of spans impractical.
The paper introduces a new CRF structure designed to predict the attachment of
pairs of adjacent spans only (which are far fewer). In order to parse a whole text,
the parse trees of pairs of adjacent sentences are built, so that every non-terminal
sentence belongs to two parse trees. The trees are then combined to produce the
final parse tree of the text.

Joty and Moschitti (2014) expand again their method by generating the k-best
parses for multi-sentential texts, then using tree kernels to re-rank the parses. The
kernels enable trees to be used directly as input for the following SVM classification
task: should the pair of parses (Ti, Tj) be re-ranked?. The results are then combined
to find the new best parse.

Joty et al. (2015) finally adds a segmenter (which uses a Maximum Entropy
model) to their parsing framework to complete it.15

Muller et al. (2012b), precursor to our own research, parse the French-language
ANNODIS corpus, comprising newspaper and Wikipedia articles annotated in
SDRT fashion. Their framework uses a probabilistic (Maximum Entropy) model
of local relations based on shallow features; they experiment with two heuristic-
based approaches, the Maximum Spanning Tree method and A* search, to obtain
a globally optimized structure. Both outperform the replicated greedy approach of
Hernault et al. (2010).

Li et al. (2014) use the RST-DT corpus, Margin-Infused Relaxed Algorithm
(McDonald et al., 2005) for learning feature weights, and create tree structures
using the Eisner algorithm (Eisner, 1996) as well as the MST algorithm as decoders.

While it doesn’t predict discourse relations per se, we also mention Elsner
and Charniak (2010), exploring the task of disentangling IRC16 chats, which often
involves groups of people carrying multiple discussions at the same time through
the same channel. Their work isn’t the first in the domain, and we invite the

14Referring to the Cocke–Younger–Kasami algorithm, described in Jurafsky and Martin (2014).
15They also give it a little name: CODRA. The framework from Hernault et al. (2010) was

named HILDA, and before that Soricut and Marcu (2003) had SPADE. It may be a tradition.
16Acronym for Internet Relay Chat, a protocol for text-based online discussion.
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reader to follow their citations. Their model uses a maximum entropy classifier
with shallow features to detect whether pair of utterances are part of the same
discussion thread, then aggregates the results using clustering algorithms.

2.2.5 Observations on the state of the art

We recapitulate a few overarching elements from the progression of the field of
discourse parsing.

Shallow features are useful in parsing. The feature sets vary, of course, be-
tween the publications, but simple features such as syntactic heads and labels,
presence of words of various lexicons, part-of-speech tags, are frequently used suc-
cessfully throughout the literature. Analysis of features is no longer frequent, and
seemingly reserved to long-form papers. For instance, Hernault et al. (2010) pro-
vide a list of the most influential features by weight, in their SVM linear kernel
for predicting whether two spans are linked or not. Table 2.5 displays the first ten
items of their list.

Feature Weight
Both spans belong to the same sentence 4.118836
Size of span over sentence in edus 3.582545
Distance of the left span to beginning of sentence in edus -3.437157
Common ancestor’s POS tag is ‘PRN’ -2.911269
Dominating node’s lexical head is ‘which’ -2.668148
POS tag of the right span’s last token is ‘.’ 2.636921
Size of left span over sentence in tokens -2.341654
Size of both spans over sentence in tokens -2.222655
Left and right span belong to the same sentence -2.217709
POS tag of the left span’s last token is ‘.’ 2.170483

Table 2.5: Most weighted features of the linear kernel for attachment prediction
of Hernault et al. (2010).

Local parsing of relations still isn’t robust. The use of increasingly sophis-
ticated techniques to reduce the feature space of learning models, such as Brown
clusters Rutherford and Xue (2014) or word embeddings Braud and Denis (2015),
accelerates the training of the systems, allowing them to work on bigger datasets
(which are already scarce). However, they don’t address directly the problems
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described in Lin et al. (2009), calling for better semantic models of context and
knowledge representation.

Most works focus on monologue. Before the publication of the Settlers cor-
pus, discussed in chapter 4, RST-DT and PDTB were the two most prominent
corpora for the study of discourse, both containing only monologues and driving
the majority of the above-cited research, one notable exception being Baldridge
and Lascarides (2005) (focused on dialogue). We’ll develop on the key differences
between monologue parsing and dialogue parsing in section 4.2.

2.3 The Right Frontier Constraint

2.3.1 History

Many theories of discourse structure posit a Right Frontier Constraint (rfc) on
discourse attachment (Polanyi and Scha, 1984; Polanyi, 1985; Webber, 1988). The
rfc restricts the attachment of newly processed units of a discourse to a small
subset of the units in the structure already constructed for some portion of the
discourse. The motivating hypothesis behind the rfc is that discourse structure
plays a major role in controlling salience. A coherence relation R inferred between
two bits of a discourse d will have a particular effect on the shape of the overall
tree or graph used to represent d’s structure in a way determined by the semantics
of R and the discourse theory in use. Relations thus determine what nodes are
found along the tree or graph’s Right Frontier (rf), a set that evolves dynamically
as a discourse proceeds. The rf constraint captures the observation that new
utterances are normally attached to these nodes, which are predicted to be the
most salient.

The rfc constrains semantic phenomena like anaphora and topic, as antecedents
for most anaphoric expressions and ellipses are hypothesized to be found along the
rf (Polanyi, 1985; Webber, 1988; Asher, 1993). It is also potentially helpful for
discourse parsing: restricting attachments to units on the rfc considerably reduces
the search space for attachments for discourse units and thus has the potential to
improve inter-sentential attachment scores, which are in general much lower than
scores for intra-sentential attachment (Joty et al., 2015). Note, however, that the
rfc rarely on its own determines attachment, and it can be violated in certain
discourse configurations (Asher, 1993; Prévot and Vieu, 2008), though violations
are rare in our corpus study (cf. section 5.1.4). The rfc is a defeasibly necessary
but not sufficient constraint.

More importantly, the rfc is practically the only structural constraint on dis-
course attachment that takes the overall structure into account. Most discourse
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parsing models optimize probabilities for attachments over pairs of elementary
discourse units, based on features like textual distance or grammatical or lexical
properties of the paired elements. While local features are useful, discourse parsing
performance lags behind syntactic parsing, because it does not use global features,
in the way syntactic methods have done since Collins and Duffy (2002). The rfc
is just such a global feature: it says the overall structure of the discourse graph has
to have a certain shape. Because of data sparseness and our current limitations to
supervised learning, it is infeasible to learn probabilistic global constraints like the
rfc from the data directly. So defining an appropriate rfc via symbolic methods
is a necessary step to improve discourse parsing.

The rfc has in practice been developed for, and tested on, monologue, gener-
ally in the form of newspaper texts (Afantenos and Asher, 2010). It is expected
to be helpful as a constraint on multilogue as well, though important differences
between multilogue and monologue prevent a trivial extension of standard rfc
definitions. In monologue, a speaker is uniquely responsible for the information
presented in the discourse, and the rfc is a constraint on the way that informa-
tion should be presented. In dialogue, we deal not only with how speakers present
information but also how they pick up on information presented by others. One
speaker might make multiple points, but her respondent might pick up on just one,
or ignore them all. Or one or more respondents might wish to discuss multiple
points simultaneously, introducing multiple conversation threads.

The rfc is related to projectivity in parsing (Nivre, 2003). Like projectivity,
rfc compliance is a property of a graph with respect to textual order, and like
projectivity, the rfc rules out crossing dependencies (relative to textual order) ex-
cept in special cases. Unlike projectivity, however, the rfc depends on a semantic
distinction between subordinating and coordinating relations, and a distinction
between cdus and edus. Projectivity and the rfc are thus not equivalent even
on trees.

The rfc has been a topic of interest in theoretical work on discourse structure
for a long time. But to our knowledge, we are the first to study how it fares for
multilogue on a large discourse annotated corpus. With regard to empirical work
on discourse parsing, Afantenos and Asher (2010) demonstrate the potential of
this constraint, but we are not aware of any actual parsing results with the rfc
for monologue or dialogue. They also conducted an empirical study on rfc for
monologue.

2.3.2 Formal definition

In general, when an utterance u is made, the content of the utterance immediately
prior to u will be highly salient, but other contents might be salient as well. A
speaker might linger on a topic—elaborating on it, providing background on it,
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or explaining it and so on. In such a case, the point that is being elaborated on
or explained, etc. will remain salient, and potentially form a chain of salient and
accessible contents underneath it.

On the other hand, when a speaker, say, lists a series of attributes or describes
a sequence of events, the most recently described attribute/event will be more
salient than the previously described ones, rendering the latter inaccessible to
later utterances. Thus in (2.19), the content of π1 is inaccessible to that of π3—
we cannot infer the sequence π1 + π3 + π2, even though that would yield a more
coherent discourse (without further context).17

(2.19) Rose dumped the cookies on the floor.π1 (So) She was sent to her room.π2
(And) She drew all over the kitchen wall.π3

If we reverse the order of π2 and π3, as in (2.20), we can group Rose’s two acts
together, as desired. What’s more, while π′1 alone is inaccessible to π′3, the fact
that π′2 clearly describes an event in a series of related events makes the group
π′1 + π′2 salient and accessible. That is, we understand Rose’s being sent to her
room as the result of both acts, not just of the more recently described one.

(2.20) Rose dumped the cookies on the floor.π′1 (And) She drew all over the
kitchen wall.π′2 (So) She was sent to her room.π′3

To make this precise, let’s consider the rfc as defined in Segmented Discourse
Representation Theory. In SDRT, the structure for a discourse d is modelled as
a rooted spanning directed acyclic graph, called an sdrs, G = (V,E1, E2, Last).
V is the set of elementary discourse units (edus; labeled π0, ..., πn) and Complex
Discourse Units (cdus) in d, where an edu is a clausal or sub-clausal unit and
a cdu is a collection of edus (and possibly other cdus) that together serve as
an argument to a discourse relation. E1 ⊆ V × V is the set of edges or labeled
discourse attachments between elements of V . E2 ⊆ V × V is the parenthood
relation that relates cdus to their component dus. We write e(πx, πy) when e is
an edge with initial point πx and endpoint πy. Last is the last edu in V , following
the linear ordering of edus determined by their order in d. An sdrs is “spanning”
in that all elements of V other than the root have at least (and possibly more

17Eliciting intuitions about examples like (2.19) is a delicate matter. While rhetorical theories
hold that discourse structure and coherence are intimately related, this does not mean that other
factors, such as intonation and word choice, do not affect coherence. In (2.19), it is important
to read the example with a normal intonation. Were a speaker to preface π3 with and and
pronounce and with a certain intonation, it would be clear that she wanted to retroactively add
π3 to the list of reasons why Rose was sent to her room, i.e. π3 could attach to π1. However, the
special intonation would arguably be a signal that the speaker wanted to return to a less salient
point.
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than) one incoming edge:

∀πx ∈ V : (πx 6= root→ ∃πv ∈ V : ((πv, πx) ∈ E1))

The set E1 can contain two types of edges, coordinating and subordinating.
Relations such as Explanation, Elaboration, and Background—in which
the second argument extends the discussion about the first—are represented with
subordinating (vertical) edges. Relations such as Continuation, Narration,
and Result—in which the second argument shuts off the accessibility of the first—
are represented with coordinating (horizontal) edges. Suppose we prefix (2.20) with
π0, We’ve been having a rough time, so that π′1–π′3 elaborates on π0. π0+(2.20)
would yield the graph Gπ0+(2.20):

• V = {π0, π′1, π′2, π′3}

• E1 = {〈π0, C1〉, 〈π′1, π′2〉, 〈C0, π
′
3〉}

• E2 = {〈π′1, C0〉, 〈π′2, C0〉, 〈C0, C1〉, 〈π′3, C0〉}

• Last= π′3.

π0

π′1 π′2 π′3c0
c1

Figure 2.7: Graph of π0 + (2.20)

For monologue, a node πx is on the rf of a graph G, i.e. rfG(πx), if either πx
is Last, or πx is related to Last via a series of subordinating (Sub) edges, or πx
is a cdu that includes a node in rfG. Formally, let G = (V,E1, E2, Last) be a
discourse graph.

∀πx, πy, πz ∈ V rfG(πx) ⇐⇒ πx = Last

∨ (rfG(πy) ∧ ∃e ∈ E1, e(πx, πy) ∧ Sub(e))
∨ (rfG(πy) ∧ ∃e ∈ E2, e(πx, πy))

So the rf of Gπ0+(2.20) is {π′3, C1, π0}. Note that the rf is updated dynamically
each time a new edu is processed; the rf for (attachment of) an edu πn will be
determined by the graph Gπ0−πn−1 . The rf for a cdu πm . . . πn, m < n, is the rf
for πm.
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Chapter 3

Background: argumentation

While the study of discourse has progressed closely to the study of semantics and
syntax, the study of argumentation began with the very fundamentals of logic,
from Aristotle:

– All humans are mortal.

– Socrates is human.

– Therefore, Socrates is mortal.

Logical arguments and their validity have been studied for millenia, forming the
basis of argumentation theory. In this chapter, we will give the reader an overview
of the main concepts relevant to our study of argumentation, as well as a quick
review of the effort directed towards the automatic extraction of argumentative
elements.

3.1 The building blocks of argumentation
This description follows the formalism of Peldszus and Stede (2013), which is used
in our work on argumentation. While there exists an important number of detailed
descriptions of the following concepts in the literature, their core meaning stems
from the same basic definitions.

Claims At the center of argumentation structure is the claim, the assertion that
something is true, or false. A claim doesn’t have an embedded truth value. If one
says John is mean, this claim could be true or false according to the belief of the
listener; a claim is only a declaration of truth (or falsehood), which may itself be
interpreted. A claim can eventually be formalized as a logical predicate.
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3.1. THE BUILDING BLOCKS OF ARGUMENTATION

Support The usual goal of a claim is to increase the belief of the receiver in
that claim.1 A supporting claim has the goal of increasing belief in the supported
claim, by virtue of being believable itself, and being relevant to the original claim.
In the previous example, the claims All humans are mortal and Socrates is human
both support the claim Socrates is mortal.

Support takes several forms. A claim can, alone, support another claim; a
set of claims can support another claim, with all the parts being necessary. In
the previous example, All humans are mortal isn’t enough of a claim to support
alone Socrates is mortal. A claim can support another claim that supports another
claim, and so on.

Attacks An attacking claim has, symmetrically, the goal of decreasing belief in
the attacked claim, by the very same virtues of being believable itself, and being
relevant to the original claim. While attacks can simply target the original claim
or its supporters (i.e. a rebuttal), an undercut attack can challenge the relevance
of a particular support:

– A: Carthage is threatening Rome.
– A: Therefore, Carthage must be destroyed.
– B: Maybe we could negotiate with the threat instead.

Here, B doesn’t deny that Carthage is a threat, but attacks the inference that it
warrants a swift obliteration.

Attacks (and supports) can also target implicit claims:

– A: If the bill passes, riots will occur.
– B: Don’t worry, the Senate won’t let it pass.

Here, with the only explicit claim by A is if bill passes then riots, B attacks
indirectly the implicit claim riots will occur by attacking another implicit claim,
the bill will pass.

These building blocks of claims, support, attack, counter-attack, undercut, im-
plicit content, can be combined in every way possible, which have been represented
in various theories focusing on particular aspects of argumentation, with variable
formalism.

1Leaving out sarcasm, which highlights the difference between the semantic meaning of dis-
course and its intended meaning, and introduces a great deal of complexity in argumentation
theories. We’ll ignore it for now.
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For instance, Apothéloz et al. (1993) describe four different ways to attack a
claim with supporting arguments through counter-argumentation, which specifi-
cally involves the supporting arguments, instead of moving on another relevant
topic. In all cases, a different part of the argument is attacked. Consider the
following examples:

(3.1) A: This movie was awful. The CGI was too visible.

a. B: I didn’t even notice the CGI.

b. B: But it had a great plot!

c. B: Plenty of good movies have visible CGI.

d. B: That’s what makes it good.

The four answers counter respectively: the plausibility of the reason (attacking
the supporting claim); the completeness of the reason (attacking the conclusion
directly with another claim); the relevance of the reason (undercutting the support
by attacking the implicit inference); the argumentative orientation of the reason
(undercutting the support by reusing the same argument, this time as an attack).

3.2 Argumentation structures
This section is a review of some major works centered on the task of giving argu-
mentation a structure, beyond the classical formalism of premises and conclusions.

Toulmin (1958), in his very influential early work, describes the practical roles
of arguments in persuasive texts. Initially based on an analysis of courtroom ar-
guments, Toulmin’s layout identifies six different components of an argumentative
text, the first three of which are always encountered:

• Conclusion: the core claim of the argument, supported by the rest of the
text;

• Ground: a base fact (which doesn’t need backing), evidence that supports
a claim ;

• Warrant: a statement describing how the Conclusion can be inferred from
the Grounds;

• Backing: additional support for Warrants, in case they’re not convincing
enough;

• Rebuttal: a statement describing how the argument may be undermined;
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• Qualifier: giving additional information about the force of the claim.

This separation has been discussed extensively in following works. Some of the
main criticisms expansions of the model are:

• a Warrant can be viewed as the Conclusion of its own argument, creating a
nested argument structure;

• the separation between Ground and Warrant isn’t always clear. Both are
claims supporting the conclusion, but ground evidence itself, being an inter-
pretation of reality, can also require backing;

• only the Rebuttal component may contain claims undermining the Conclu-
sion. In general the role of an eventual opponent is not properly represented,
which limits the usefulness of the framework in debates.

Van Eemeren and Grootendorst (1992) initiate the pragma-dialectical theory of
argumentation, treating it as a complex speech act that obeys to informal rules to
remain focused and non-fallacious. A debate is viewed as an exchange of stand-
points, i.e. positive or negative stance toward a particular claim, and arguments to
support one of the two. When Gricean maxims (Grice, 1978) attempt to describe
the underlying assumptions of the participants in a conversation, pragma-dialectics
define for debaters the following rules for a critical discussion, here informally
abridged:

• Freedom: Advancing standpoints or casting doubt on them is always permit-
ted;
• Burden of proof: A party must defend its own standpoints on request;
• Standpoint: An attack must target a standpoint actually advanced by the

other party;
• Relevance: Defense of a standpoint must relate to the standpoint;
• Unexpressed premise: If a party leaves a premise implicit, they cannot deny

it; nor they can force a premise onto the other party;
• Starting point: The premises accepted as the starting point of the debate

shall not be altered;
• Argument scheme: A standpoint cannot be conclusively defended without

appropriate argumentation;
• Validity: Arguments should be valid, provided potentially unexpressed premises;
• Closure: A failed defense should result in the retraction of a standpoint; a

conclusive defense should result in the retraction of the attack;
• Usage: Parties should remain clear and unambiguous in their arguments,

and conversely be accurate in the interpretation of the opponent.
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Breaking one or several of those rules induce fallacious reasoning, of which
the authors describe many varieties. Threatening the opponent, for example, is
a basic violation of the first rule, as putting pressure on the other party hinders
their freedom to cast doubt.

The structure implied by this framework is a tree of standpoints and arguments
directly linked by attacks and supports.

Freeman (1991), updated by Freeman (2011), proposes a generic structure of
argumentation, where claims are separated by their stance with respect to the
core claim of the argument. The text can thus be viewed as an exchange between
a proponent and an opponent view, attacking or undercutting the moves of the
other side and supporting their own, creating the structure of a graph.

Peldszus and Stede (2013) synthesize this view in the formalism which basic
concept were presented above, enabling the annotation of argumentative texts in
a lightweight fashion.

In more detail, the formalism posits that the argumentative text has a central
claim, which the author can back up with statements that are in a Support re-
lation to it; this is a transitive relation, leading to “serial support” in Freeman’s
terms. A statement can also have multiple Supports; these can be independent
(each Support works on its own) or linked (only the combination of two state-
ments provides the support). Also, the scheme distinguishes between “standard”
and “example” support, whose function originates from providing an illustration,
or anecdotal evidence.

When the text mentions a potential objection, this segment is labeled as bear-
ing the role of “opponent’s voice”; this goes back to Freeman’s insight that any
argumentation, even if monological, is inherently dialectical. The segment will be
in an Attack relation to another one (which represents the proponent’s voice),
and the scheme distinguishes between Rebuttal (denying the validity of a claim)
and Undercut (denying the relevance of a premise for a claim). When the au-
thor proceeds to refute the attack, the attacking segment itself is subject to a
Rebuttal or Undercut relation.

The atomic components of such an analysis are Argumentative Discourse Units,
which often are larger than edus: multiple discourse segments can play a common
argumentative role. In such cases, the edus are linked together by a meta-relation
called Join.

For illustration, here is a short sample text, with its analysis shown in Fig-
ure 3.1.

Should health insurers pay for alternative treatments?
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Health insurance companies should naturally cover alternative medical
treatments. Not all practices and approaches that are lumped together
under this term may have been proven in clinical trials, yet it’s precisely
their positive effect when accompanying conventional ’western’ medical
therapies that’s been demonstrated as beneficial. Besides many general
practitioners offer such counselling and treatments in parallel anyway
- and who would want to question their broad expertise?

[e1] Health
insurance
companies

should
naturally cover

alternative
medical

treatments.

[e2] Not all
practices and

approaches that
are lumped

together under
this term may

have been
proven in

clinical
trials,

1

[e3] yet it's
precisely their
positive effect

when
accompanying
conventional

'western'
medical

therapies
that's been

demonstrated as
beneficial.

2

[e4] Besides
many general
practitioners

offer such
counselling and
treatments in

parallel anyway
-

3

[e5] and who
would want to
question their

broad
expertise?

4 5

c9 c7

c6

Figure 3.1: Argumentation structure of the example text

From a completely different background, Dung (1995) proposes a logical frame-
work for simplified abstract argument structures, consisting only of claims and at-
tacks. An argumentation framework (AF) is formally defined as a pair (AR, attacks)
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where AR is a set of claims, and attacks : AR 7→ AR is a function describing which
claims attacks which.2

Dung then defines various properties of AFs and associated lemmas, the first
of which are:

• A set of claims S ∈ AR is conflict-free iff its components don’t attack each
other, i.e.

∀a, b ∈ S2 ¬attacks(a, b)

• A set of claims S ∈ AR is admissible iff its components defend each other
from attacks, i.e.

∀a ∈ S, (∃b ∈ AR attacks(b, a)) =⇒ (∃c ∈ S attacks(c, b))

• Any AF has at least one preferred extension, a maximal (wrt set inclusion)
admissible set of claims.

The rationale behind admissible sets of claims is that a debater who leaves counter-
arguments unanswered is vulnerable, and admissible sets represents a well-rounded
and believable argumentation. Dung introduces a high number of descriptive prop-
erties of argumentation frameworks, tying his formalism to applications in game
theory, non-monotonic reasoning and logic programming. The structures remain
abstract and quickly drift away from linguistic concerns.

3.3 Argumentation parsing

The literature dedicated to the automatic extraction of argumentative structures
has long been sparse, even compared to the previous chapter’s review of full-
structure discourse parsing. However, in recent years, argumentation parsing has
become a very active line of research. Initial works focus on solving specific re-
lated problems (identifying individual argumentative units, claims/premises, etc)
without performing full parsing of the argumentative structure.

More recent works employ more sophisticated techniques involving global de-
coding over local probability distributions. This is something that follows similar
trends from discourse parsing, an area with which argumentation parsing shares
many commonalities, but has crucial differences too, as we will later see. The
move towards more structured output prediction methods has only been natural
since pipeline approaches suffer from error propagation problems.

2Hence the name. It’s a very abstract framework.
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Initial works. Moens et al. (2007) attempt to retrieve which sentences contain
arguments, in a corpus of English texts from very diverse sources (news articles,
legal proceedings, fora, speeches, etc). For this classification task, they employ
both a naive Bayes method and a maximum entropy method, yielding an averaged
74% accuracy. Only shallow features are used for training, such as n-grams, verbs
and adverbs present in the sentence; length of the sentence, average word length,3
punctuation, and presence of keywords such as but, consequently or because of.
Expanding on their work, Palau and Moens (2009) use the same techniques to
predict whether a argumentative sentence is a conclusion (the core claim of an
argument) or a premise (any other claim).

Florou et al. (2013) similarly identify arguments in Greek texts, using shallow
features such as the presence of discourse markers and grammatical features of
verbs (tense and mood).

Stab and Gurevych (2014b) performs a two-step decoding of local support struc-
tures, using two separate classifiers based on Support Vector Machines (Vapnik,
1995) and the corpus of argumentative essays described in Stab and Gurevych
(2014a). Their first classifier identifies argument components, that is, whether a
portion of a text corresponds to its central claim, to a secondary claim, to a sup-
porting premise, or to a completely irrelevant utterance. Their second classifier
identifies whether a pair of argumentative units is linked by a support relation, or
not. Both models are trained with shallow features drawing from the basic struc-
ture of the text, lexical and syntactic analysis, as well as sets of PDTB discourse
markers4

As we mentioned earlier, focused tasks in argumentation parsing have been
performed by numerous works. However, as our efforts focus on the creation
of complete argumentative structures of texts, we refer the reader to the very
extensive documentation of Stab and Gurevych (2016) on argumentation tasks.

Full structures. Most approaches follow what Smith (2011) categorizes under
polytope decoding, or decoding using specialized graph algorithms.

Peldszus and Stede (2015) learn local models which yield local probability dis-
tributions over adus and then perform global decoding using Maximum Spanning

3Quoting the publication: “difficult” words might make the argument look more impressive.
4Penn Discourse TreeBank. The feature sets used in discourse parsing (see section 2.2) and

argumentative parsing often overlap.
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Trees (MST). Their approach, which we expand on in our work, is further described
in section 7.2.

Stab and Gurevych (2016) primarily work on their corpus of persuasive essays
(Stab and Gurevych, 2014a), and also report results on the corpus of small texts
used by Peldszus and Stede (2015). The authors of this ArXiv prepublication
create a full parsing pipeline with the following steps:

• Segmentation of the source text, identifying the boundaries of argumen-
tative units using a sequence prediction model, Conditional Random Fields
(Lafferty et al., 2001);
• Argument component identification, using SVM as described previously

in Stab and Gurevych (2014b);
• Argumentative attachment identification, also using SVM to detect

whether arguments are linked or not (independently from the attack or sup-
port label);
• Tree decoding, using Integer Linear Programming to build a tree optimized

with respect to the result of the two previous tasks;
• Stance recognition finally, classifying arguments by their voice, proponent

or opponent.

Persing and Ng (2016) work on the very same corpus, with a very similar
pipeline,5 using the CoreNLP pipeline (Manning et al., 2014) for segmentation,
maximum entropy classification for argument component and relation identifica-
tion, and Integer Linear Programming for structure decoding, with an extensive
set of constraints, among which:

• One major claim (with no parents) per essay, which must occur in the first
or last paragraph;
• One parent per premise, which must be located in the same paragraph;
• The only parent of a claim must be the major claim;
• Each paragraph contains at least one claim or major claim;6
• Each sentence contains at most two components;
• Components never overlap on each other.

As we also employ similar techniques in our work, we discuss the ILP model of
Persing and Ng (2016) in section 7.2.2 and perform a replication of their framework
in section 7.2.3.

5Great minds think alike. Then again, the release of a new corpus such as Stab and Gurevych
(2014a) probably suffices to explain the apparent synchronicity of new works

6Which is redundant with the combination of other constraints; otherwise some premises
would have no claim to attach to.
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Parallel work in discourse. As we mentioned earlier, argumentation and dis-
course parsing draw from the same techniques, be it their feature sets or their
decoding mechanism.

Both MST and ILP techniques have been proposed as well in discourse pars-
ing. In contrast though to discourse parsing, where different theories propose
different underlying annotation schemes—trees for Rhetorical Structure Theory
(RST)(Mann and Thompson, 1988), hyper-graphs transformed into dependency
DAGs, for the Segmented Discourse Representation Theory (SDRT) (Asher and
Lascarides, 2003) or pairs of mostly adjacent sentences linked with implicit or ex-
plicit discourse markers for PDTB (Prasad et al., 2008)—underlying annotation
schemes for argumentation use thus far only tree structures. Several relations,
such as undercut can link arguments with other relations. Nonetheless, when
transformed into dependency structures the end result is always a tree.

In discourse parsing, we demonstrated ourselves the use of ILP as a decoder
for DAG structures (cf. section 6.2) while MST has been used repeatedly for tree
structures (our own work in section 6.1, as well as Li et al. (2014)).
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The Settlers corpus

As described in section 2.1, existing corpora of annotated discourse either didn’t
provide full discourse structures, limiting annotations to pair of units (e.g. PDTB);
or used tree-based representations of discourse (e.g. RST-DT). Additionally, few
corpora studied multi-party dialogue, where incidentally tree-based structures aren’t
expressive enough.

The work on discourse parsing described in this thesis exploits the Settlers
corpus (Asher et al., 2016), a corpus of multi-party chats annotated for discourse
structure in the style of SDRT, based on chat logs of human players playing an
online version of the game The Settlers of Catan (Teuber (1995); www.catan.com).
The contents and purpose of the corpus are described in the following sections, as
well as experiments highlighting some of its features.

4.1 The Settlers of Catan
Settlers is a win-lose multiplayer board game. 2 to 4 players compete to colonize
the fictitious island of Catan. The process involves the acquisition of five kinds of
resources (ore, wood, wheat, clay, sheep),1 used to build roads, settlements and
cities. Buildings earn players Victory Points (VPs); the first totaling 10 VPs wins
the game. Buildings also allow players to receive new resources, according to the
terrains surrounding them.

Every player’s turn starts with a two-dice roll, which decides which terrains
will produce resources for the neighboring settlements and cities. If a 7 is rolled,
the player will instead move a special piece, the robber, which prevents the terrain
where it’s placed in from producing resources, and allows the player to steal a
resource from an opponent.

1The official resource names are respectively ore, lumber, grain, clay and wool, which are
usually ignored to reflect the icons of resource cards in the game.
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Figure 4.1: The JSettlers interface during a game.

A critical part of the game is the trade phase. Specific combinations of resources
are needed to complete buildings: for example, a road requires one clay and one
wood. In most games a player won’t be able to gather all the needed resources
from their personal production. One has several options to trade resources: with
the game reserve, at a generally unfavorable rate; or with other players, through
negotiations. Players converse to obtain what they want, and try to learn which
resources their opponents need, or have. Resources stolen via the robber are kept
secret, and player with more than 7 resources must discard half of them secretly
when a 7 is rolled. As a result, players lack complete information about the
possessions of their opponents.2 Agents can, and frequently do, engage in ‘futile’

2In most casual games of Settlers, players don’t even bother to remember and track the
resources exactly anyway.
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negotiations that result in no trade (i.e., they miscalculate the equilibria).
Players in the Settlers corpus must chat in an online interface in order to nego-

tiate trades, and each move in the chat interface is automatically aligned with the
current game state—so one can compare what an utterance reveals about possessed
resources with what the speaker actually possesses, and so identify examples of
obfuscation (e.g., see table 4.1). The corpus consists of 59 games, each game con-
taining from 100 to 900 dialogue turns, split into individual negotiation dialogues
(up to several dozens per game).

Dialogue turn Player Utterance
157 gotwood4sheep anyone got wood?
158 ljaybrad123 no
159 gotwood4sheep ore for a wood, tomas?
160 tomas.kostan yes but i need mine
161 gotwood4sheep ore more?
162 tomas.kostan 2 ore for a wood?
163 gotwood4sheep i don’t have 2, sorry, just the one
164 gotwood4sheep early doors, early offers :)
165 tomas.kostan then i cannot make you a deal
166 tomas.kostan sry
167 gotwood4sheep ah dommage :(

Table 4.1: Excerpt from a dialogue.

4.2 What’s so special about multi-party dialogue?

4.2.1 Non-tree-like structures

Multi-party dialogue or multi-party chat involves multiple participants who may
address one or more others during their turn. For example, a person might ask
a general question relevant to everyone present; once everybody has replied, that
same person might reply to all of them with a single comment (e.g. thanking them)
or with a single acknowledgment. Figure 4.2 provides such an example from our
corpus. In turn 234, gotwood4sheep asks a question by making an underspecified
offer to all other players. He then gets back negative responses to his question from
inca, CheshireCatGrin and dmm; and then he broadcasts in 239 an acknowledg-
ment of all the negative responses. That is, we have 235, 236 & 238 all attached
to 234 as answers to the question in 234; and we have 239 that is attached to
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235, 236 & 238 as an acknowledgment of the contents of those turns. The graph
representation of the exchange is shown below the dialogue.

234 gotwood4sheep anyone got wheat for a sheep?
235 inca sorry, not me
236 CheshireCatGrin nope. you seem to have lots of sheep!
237 gotwood4sheep yup baaa
238 dmm i think i’d rather hang on to my

wheat i’m afraid
239 gotwood4sheep kk I’ll take my chances then...

234

235 236 238

239

QAP
QAP

QAP

Ack
Ack

Ack

Figure 4.2: Dialogue excerpt showing the need for general graphs instead of trees.

The presence of such structures makes a powerful case that the general frame-
work guiding the annotation of multi-party dialogues should take non-tree-like
graphs as the underlying space of discourse structures. This requires a re-examination
of the task of discourse parsing before attempting to learn such structures. In par-
ticular, the following questions arise:

• What are the common patterns found in non-tree-like structures? We ex-
pect dialogue to be coherent, which entails non-random behavior regarding
structure. For instance, we expect units to be related more frequently to
their neighbours, and rarely to distant units;

• If constraining discourse graphs to trees is too restrictive, what are the re-
maining constraints on discourse graphs? Are there hard constraints that all,
or an overwhelming majority of structures, respect, so the can guide parsing
in the same way tree-structure did in previous research?

• How far can traditional tree-based decoding mechanisms get us in dealing
with such data? How well do they perform, and can we use them as a
preliminary step for non-tree-like parsing?
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4.2.2 Interwoven threads

Another complicated phenomenon in multi-party chat dialogues is the presence of
crossing dependencies. Many theories of discourse structure like RST, given that
they allow attachment only between adjacent spans, will not create structures
with crossing dependencies. Also, theories that postulate a simple right frontier
constraint, according to which only elements on the right frontier of a discourse
structure (whether graph or tree) will not typically create structures with crossing
dependencies. However, crossing dependencies are commonplace in multi-party
chat. Several subgroups of interlocutors can and do momentarily form and carry
on a discussion amongst themselves, forming thus multiple concurrent discussion
threads. Since, though, what is being written is publicly available to all involved
parties, it can be the case that participants of one thread might reply or comment
to something said to another thread. Table 4.2 contains an example from our
corpus, and figure 4.3 its associated structure.

165 lj anyone want sheep for clay?
166 gw got none, sorry :(
167 gw so how do people know about the league?
168 wm no
170 lj i did the trials
174 tk i know about it from my gf
175 gw [yeah me too,]a

[are you an Informatics student then, lj? ]b
176 tk did not do the trials
177 wm has anyone got wood for me?
178 gw [I did them]a [because a friend did]b
179 gw lol william, you cad
180 gw afraid not :(
181 lj no, I’m about to start math
182 tk sry no
183 gw my single wood is precious
184 wm what’s a cad?

Table 4.2: Example of interwoven threads.

There are at least three threads in this excerpt, highlighted with different fonts
to aid the reader. The intuitive attachments in this excerpt involve the following
crossing dependencies: (165, 168), (167, 170), (176, 178), (177, 179), (175, 181),
(177, 182), and (180, 183). We note also the lack of standard discourse markers
such as those found in the PDTB or RST manuals, “non-standard” orthography,
the lack of elaborate syntactic structure and the frequent presence of sentence
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165

166 167 168

170 174 175a 175b 176 177

178a

178b

179 180 181 182

183184

Figure 4.3: Structure of the interwoven threads of table 4.2.

fragments, all of which means we cannot rely on sentential syntax to aid with dis-
course parsing (syntax is very useful in monologue discourse parsing, as witnessed
by the dramatically higher scores for intra-sentential discourse parsing (Joty et al.,
2015)). Multi-party dialogue presents a discourse parsing problem free of syntactic
crutches.

4.3 SDRT annotations
What is the Settlers corpus? We will give in this section a more practical overview
of the dataset, with a description of the annotation model, as well as some useful
statistics.3

The phenomena we just described are only part of the complications that ap-
pear in the discourse representation of multi-party dialogues, unfortunately ren-
dering discourse theories based on attaching only adjacent units unsuitable for the
annotation of the Settlers corpus. In order to be able to capture the discourse
phenomena present in our chats, we decided to use Segmented Discourse Rep-
resentation Theory (SDRT) (Asher and Lascarides, 2003). The theory not only
allows long-distance attachments, which Ginzburg (2012) finds attested in multi-
logue, but also has semantics capable of dealing with fragments or non-sentential
utterances (Schlangen, 2003), which are frequent in our corpus. Also, it can model
non-tree like structures, which account for at least 9% of the links in our corpus
(cf. section 4.2.1). Such structures make theories that model discourse structures
with rooted trees, like Rhetorical Structure Theory (RST) (Mann and Thompson,
1988) or simple dialogue models where attachments are always made to Last—cf.
(Schegloff, 2007; Poesio and Traum, 1997)—unsuitable.

3The corpus is available for download at https://aclweb.org/anthology/attachments/D/
D15/D15-1109.Attachment.zip.
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The raw data The entire corpus is based on the game log files of JSettlers4,
the open-source application enabling online play for Settlers , as well as a chat
interface. 59 games have been recorded, out of which 36 had been fully annotated
in the first release of the corpus. The log files contain very extensive information
about the game events: dice rolls, building actions, and of course chat utterances.
The latter are tied to the game state at their emission time, so we can track exactly
the possessions of each player participating in the negotiations at any given point.

The log files, once parsed, give us the full chat history of the games. Given
that bargaining sessions typically start after the dice roll opening each player turn,
the history could be split into those sessions, one for each turn. However, discus-
sions frequently span several consecutive turns, and the sessions were merged,
accordingly, to mostly standalone dialogues. Whereas discussions in the midst
of the game were fairly negotiation-focused (as expected), the discussions before
and after the game often featured completely unrelated topics. As could be ex-
pected from chat logs, the text is messy from misspellings, contractions, missing
punctuation and creative vocabulary.

The background structure The corpus possesses the following hierarchy, which
has been manually annotated. At the top level, dialogues, ultimately treated as
independent texts for the task of parsing. Inside them, dialogue turns are the
consecutive utterances of a single player in the chat. While a dialogue turn may
correspond to several log entries (the player sending their message in multiple
parts), we grouped them together as they shared the same context. The final
division of the text corresponds to Elementary Discourse Units, the arguments of
discourse relations. In stark contrast to other corpora of discourse, a significant
part of edus are one or two words long.

Each edu has been associated with a dialogue act, representative of its role in
the negotiations. The possible labels were:

• offer, initiating trade negotiations, even if they are often vague in practice,
as in anyone has clay?
• counter-offer, a refinement of a prior offer, or a competing offer;
• acceptance, refusal and other, self-explanatory.

Cadilhac et al. (2013) creates a dialogue act prediction model for the Settlers
corpus, which we reused as feature for our own parsing framework.

SDRT annotation process Annotation of the corpus involved four naive anno-
tators and countless expert corrections of the structures,5 involving five stages of

4http://homepages.inf.ed.ac.uk/mguhe/socl/
5Sometimes corrections of the data itself, as game log processing wasn’t perfect, as well as

segmentation tuning.
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validation. In order to obtain meaningful results for our experiments, some games
have been set apart to form a test set. The main statistics for the SDRT annota-
tions are summarized in table 4.3. Please note that those statistics are extracted
from the training and test corpora used in the experiments of chapter 6, and differ
from the latest stats mentioned in Asher et al. (2016) by small amounts.

Total Training Testing
Dialogues 1091 968 123
Turns 9160 8166 994
edus 10677 9545 1132
cdus 1281 1132 152
Relation instances 10515 9423 1092

Table 4.3: Main statistics for SDRT annotations.

The corpus thus is quite sizable and has approximately the same number of
edus and relations as the RST corpus (Carlson et al., 2003), the only other large
corpus with full discourse structures for texts. Table 4.4 show the absolute frequen-
cies of SDRT relation labels in the corpus. Three of the four most frequent labels
in the corpus, Question-answer_pair, Comment and Acknowledgment
witness the highly reactive nature of strategic multi-party chat.

Table 4.5 shows the distance between discourse relation arguments. Adjacent
arguments correspond to a distance of one; if cdus are involved, the cdu compo-
nent which minimizes the distance is selected to compute it.

Table 4.6 shows the number of components of complex discourse units, which
can be edus or cdus (creating recursive cdus).
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Total Training Testing
Question-answer pair 2546 2236 310
Comment 1869 1699 170
Continuation 984 870 114
Acknowledgment 947 839 108
Elaboration 874 776 98
Result 643 609 34
Q-Elab 592 528 64
Contrast 489 446 43
Explanation 430 397 33
Clarification question 239 220 19
Parallel 216 197 19
Correction 207 187 20
Alternation 153 134 19
Narration 134 120 14
Conditional 123 105 18
Background 63 60 3
TOTAL 10515 9423 1092

Table 4.4: SDRT label count of the corpus.

Distance 1 2 3 4 5 6 7 8-12 13+
Training 5889 1676 829 417 225 126 76 129 48
Test 697 220 94 31 15 10 4 12 4

Table 4.5: Distance between relation arguments.

Length Total Training Testing
2 1121 982 139
3 137 119 18
4 13 12 1
5 7 6 1
6 2 2 0
7 1 0 1
TOTAL 1281 1121 160

Table 4.6: cdu count, by number of components
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Chapter 5

Initial experiments: the Right
frontier constraint and Extraction of
hidden resources

This section describes two pieces of work exploiting the Settlers corpus, which are
related to the parsing of discourse structure. The first subsection of this chapter
presents an investigation of the Right Frontier Constraint and our efforts to expand
it into multi-party dialogue, published in Hunter et al. (2015).

The second subsection presents a data extraction process, published in Perret
et al. (2014), which is capable of extracting the resources that players of Settlers
try to hide for strategic reasons. An artificial agent playing the game can leverage
this probabilistic knowledge of its opponent’s resources to improve its negotiation
power.

5.1 A right frontier for multi-party chat

5.1.1 Importance of the rfc in multilogue parsing

In order to study the Right Frontier Constraint rfc for multi-party dialogues, we
have chosen SDRT as our framework. As we have seen in the previous chapter, the
Settlers corpus is already annotated for discourse structure in the style of SDRT.
In addition, SDRT’s rfc has been empirically validated on written monologue
(newspaper articles and Wikipedia entries), using an annotation task in which
annotators were not told about the rf, much less instructed to follow it (Afan-
tenos and Asher, 2010). More importantly, however, SDRT deals easily with long
distance attachments, which Ginzburg (2012) finds attested in multilogue, and
has a semantics capable of dealing with fragments or non sentential utterances
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(Schlangen, 2003), which are frequent in our corpus. Also, it can model non-tree
like structures, like that shown in figure 5.1, which account for at least 9% of the
links in our corpus. Such structures make theories that model discourse structures
with rooted trees, like Rhetorical Structure Theory (RST) (Mann and Thompson,
1988) or simple dialogue models where attachments are always made to Last, cf.
Schegloff (2007; Poesio and Traum (1997), unsuitable. In figure 5.1, qap is the
relation Question-Answer-Pair, ack is Acknowledgement, and “kk” means “okay,
cool”.1

234 gw anyone got wheat for a sheep?
235 inca sorry, not me
236 ccg nope. you seem to have lots of sheep!
238 dmm i think i’d rather hang on to my wheat
239 gw kk I’ll take my chances then...

234gw

235in 236ccg 238dmm

239gw

qap
qap

qap

ack ack ack

Figure 5.1: Example of a non-tree-like structure.

From the perspective of discourse processing, the rfc could be key in solving
the attachment problem—that of predicting where a discourse unit πn will attach to
the structure for π0−πn−1. To put it in simpler terms, if there are no constraints at
all concerning attachment, the search space of solutions is very large making thus
attachment predictions impossible given the limited amount of data. So adding
constraints is potentially interesting as it can limit the search space for a given
approach. Of course, if attachment is already very constrained, adding an rfc
makes little to no difference. In RST, attachment is restricted to adjunction over
trees from contiguous spans, so the attachment problem is comparatively easy to
solve.

SDRT is more liberal in its attachment principles than RST: though it incorpo-
rates constraints like connectedness, acyclicity and constraints on cdus (Venant
et al., 2013), non-adjacent and long distance attachments are common. Thus,

1For the clarity of examples, we will skip dialogue turns irrelevant to our main point.
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adding an rfc to SDRT in principle greatly reduces the search space for attach-
ment. When we combine this with the fact that SDRT’s graphs can deal with
examples like figure 5.1 and the examples of multiple threads discussed below,
using SDRT to develop an rfc for multilogue is a natural choice.

5.1.2 Modifying the rfc

We recall the formal definition of the right frontier from section 2.3.2:

Definition 1 For monologue, a node πx is on the rf of a graph G, i.e. rfG(πx), if
either πx is Last, or πx is related to Last via a series of subordinating (Sub) edges,
or πx is a cdu that includes a node in rfG. Formally, let G = (V,E1, E2, Last)
be a discourse graph.

∀πx, πy, πz ∈ V rfG(πx) ⇐⇒ πx = Last

∨ (rfG(πy) ∧ ∃e ∈ E1, e(πx, πy) ∧ Sub(e))
∨ (rfG(πy) ∧ ∃e ∈ E2, e(πx, πy))

First modifications

SDRT’s rfc relies on an incremental construction procedure that ensures that
each edu πn is attached at some point along the rf of a connected graph G for
edus π1, ..., πn−1 before πn+1 is even considered. Before developing an rfc for
multilogue, we first need to modify this procedure to handle cdus and backwards
links. This subsection treats these topics in turn.

The incremental construction procedure assumes that it is possible to tell where
a cdu will attach to an incoming discourse structure even before the full content
of the cdu is known. Given that a cdu is a group of dus that function together
to form a single argument to a discourse relation, the incremental procedure po-
tentially introduces a fair amount of guesswork into the process of reasoning about
attachment. Consider (5.1) and the two possible continuations, (a) and (b).

(5.1) Bill: I’m running lateπ0 because my car broke downπ1 .
Janet: If you call Mikeπ2 , ...

a. he might be able to pick you up and get you to the party on timeπ3 .

b. he might be able to come over and fix your carπ′3 .

In (5.1a), π2 +π3 intuitively attaches to π0, while (5.1b) suggests an attachment of
π2 + π′3 to π1. Until Janet utters the consequent, we can’t tell where she is going
with the antecedent.
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There are two solutions to the problem posed by cdus without resorting to
a probabilistic version (which does not seem automatically learnable): (i) allow
graphs to be corrected/repaired in light of new information (Asher, 1993; Prévot
and Vieu, 2008) or (ii) wait to attach cdus to an incoming discourse until the
content of the cdu is complete. As an illustration, consider the graph G, shown
in figure 5.2. We can, as shown in (i), construct G by first drawing an edge e1
from πx to πy and then adding an edge e2 from πy to πz and correcting e1 so that
its endpoint is the cdu (πy+πz). Alternatively, as shown in (ii), we can wait to
draw an edge with πx as initial point until the cdu (πy+πz) has been constructed.
Relevant steps are separated by commas.

G: πx

πy πz

i: πx

πy ,

πx

πy πz

ii: πx

πy ,

πx

πy πz ,

πx

πy πz

Figure 5.2: Corrected vs. delayed cdu construction

We adopt option (ii) and recast the rfc as a constraint on attaching sub-graphs.
This makes the construction of an sdrs more compositional and allows us to rec-
oncile the rfc with standard, non-incremental discourse parsing models. Even the
standard case of edu attachment can be thought of in this way. Let π5 be an edu
that needs to be attached to a connected discourse graphG1 = 〈{π1, π2, π3, π4}, E1, E2, π4〉
and treat π5 as the sole node in a graph G2 = 〈{π5}, ∅, ∅, π5〉. The problem of at-
tachment for π5 can be recast as the problem of attaching G2 to G1.

To verify that a graph G contains no rf violations, we must be able to check
for any sub-graph of G, whether that sub-graph violates the constraint. And
we must allow that a sub-graph of G might contain further, unconnected sub-
graphs, G1, G2, ...Gn, each with its own Last. Let G be an sdrs over edus
{π1, . . . πj, πj+1, . . . πk, πk+1, . . . πn} and suppose we have constructed three sub-
graphs Gj restricted to π1, . . . πj in their textual order, Gk restricted to πj+1, . . . πk
in their textual order, and Gn restricted to πk+1, . . . πn in their textual order. Gj,
Gk, and Gn each has its own rf, open to attachment, which makes possible highly
undesirable graphs. Consider G′ below and its sub-graphs G′1, G′3, and G′5:
If we allow any sub-graph to attach to the rf of any other sub-graph, we could in
theory, combine the sub-graphs of G′ to build a graph G′′ as follows:
In fact, every edu in any graph G could be considered a single-node sub-graph,
in which case allowing attachment on the rf of any graph would render an rfc

66



CHAPTER 5. INITIAL EXPERIMENTS

G′: π1

π2 π3 π4 π5

G′1: π1

G′3: π2 π3 G′5: π4 π5

G′′: π1 π4 π5 π2 π3

pointless. An utterance could serve as reaction to an arbitrarily later utterance,
and speakers would be able to respond to points that haven’t been salient for some
time.

G′′ is problematic because the cdu π2 + π3 is attached to π4 + π5, but neither
π4, π5, nor π4 + π5 belong to the rf for π2. Moreover, the rf for a new edu, π6,
would be defined by π5 (Last in G′′), despite the the coordinating link from π4 +π5
to π2 + π3, which should block attachment to π5.

We need to constrain graph development. Let’s return to our sub-graphs Gj,
Gk, and Gn of G, and let Gjn be the extension of Gj with Gn. We must eventually
construct a graph that attaches Gk to Gjn; call it Gjn+Gk. Such configurations can
occur when Gk contains a parenthetical remark about Gjn or when it provides the
topic. This means that Gk will be subordinate to Gjn or that rfGk

∩rfGjn+Gk
6= ∅.

Let rfc(Gjn) mean that each edge in Gjn complies with the rfc in that each node
πn in Gjn attaches to a node on the rf for πn as defined in Definition 1.

Another complication, given that edges in E1 are directed, is that the direction
of some edges reverses the textual order of their arguments.

(5.2) A [Would anyone give me some clay?]π1
B [I would,]π2 [if you give me a sheep]π3

B’ [if you give me a sheep]π′2 [I would,]π′3

GA+B: π1

π2 π3

GA+B′ : π1

π2’ π3’

A+B yields a coherent sdrs, yet the backwards link π2 ← π3 violates the rf
defined by Definition 1. The edu π1 is Last from the point of view of π2, and so
defines the rf for π2; π3 will not figure in this rf, thus the edge from π3 to π2 is
a violation.

Furthermore, while (5.2B) is truth conditionally equivalent to (5.2B’), they are
not discourse equivalent because (π2 + π3) and (π′2 + π′3) do not have the same
felicitous continuations; i.e., (πx → πy) and (πy ← πx) make importantly different
contributions to discourse structure.
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(5.3) [I would,]π2 [if you give me a sheep.]π3

a. [and an ore]π4
b. ??[with pleasure.]π′4

(5.4) [if you give me a sheep]π′2 [I would.]π′3

a. ??[and an ore]π4
b. [with pleasure]π′4

The examples above are noticeably more felicitous if the continuation targets the
textually last edu (π3 or π′3) despite the fact that these edus are the inputs for
their respective conditional links.

To handle backwards links, we permit two graphs Gn and Gm to be attached
with an edge in either direction.

We can now handle examples (5.3)-(5.4). Consider (5.4). In constructing the
graph for (5.4a), π′2 and π′3 potentially determine separate sub-graphs. Suppose
we attach π4 to π′2 to build the structure [π′2 → π4]→ π3′ (a felicitous combination
of the edus in (5.4a)). π3′ is the only node on the rf in the sub-graph consisting
only of π3′ , so by Definition 1, it should remain on the rf once we attach it to
π′2+π4, but this will not be the case, as the rf will be defined by π4, the Last node.
Hence we predict that (5.4a) is unacceptable while (5.4b) is acceptable. Reversing
the links makes no difference; while the highest link is reversed in (5.3), Last is
determined by textual order, so Last is π3 not π2. Thus we cannot attach π′4 to π2
in (5.3b) for the same reason that we cannot attach π4 to π′2 in (5.4a).

5.1.3 Extending the modified rfc to multi-party dialogue

Our undirected rfc cannot yet handle structures like that in figure 5.1 (as neither
235 nor 236 are on the rf for 239) or examples of “interwoven threads”, in which
speakers juggle multiple conversations simultaneously. Both types of example are
common in our corpus; the example in figure 5.3 involves (at least) three interwoven
threads.

To handle such examples, we assign each speaker s in a multi-party dialogue a
textual Last, i.e. the textually last edu that s introduced into the chat. We call
the rfc defined by allowing attachment to the Last of any speaker rfc+mlast.
rfc+mlast allows the discourse parser to attach turns 235, 236 and 238 in figure
1 to turn 239 without violations, because for every edge with 239 as its endpoint, its
initial point is Last for some speaker. For figure 5.3, mlast lets 168 (no) attach
to 165 as an answer, even though gw has introduced a separate question on a
completely different topic that attaches via a coordinating Continuation relation
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165 lj anyone want sheep for clay?
166 gw got none, sorry :(
167 gw so how do people know about the league?
168 wm no
170 lj i did the trials
174 tk i know about it from my gf
175 gw [yeah me too,]a

[are you an Informatics student then, lj? ]b
176 tk did not do the trials
177 wm has anyone got wood for me?
178 gw [I did them]a [because a friend did]b
179 gw lol william, you cad
180 gw afraid not :(
181 lj no, I’m about to start math
182 tk sry no
183 gw my single wood is precious
184 wm what’s a cad?

Figure 5.3: Example of interwoven threads.

to 165. Similarly, mlast allows us to attach 175b to lj’s turn in 170 and gw’s in
178 to 176 in spite of wm’s attempt to start a new bargaining session. Likewise for
the attachment of 182 to 177. rfc+mlast fails, however, to allow the intuitive
attachment of 181 to 175b, because gw’s Last is 180 not 175b (cf. section 5.1.5
for discussion). Still, it yields considerable improvement over the modified rfc.
Table 5.1 shows the effect of mlast on rfc violations on the development portion
of the Settlers corpus. The manually annotated structures obey rfc+mlast on
95% of the links, while only 83.5% of the links obey the modified rfc.

5.1.4 Experiments and results for mlast

A dynamic calculation of restrictions to the search space for attachments using
basic rfc and rfc+mlast shows that rfc+mlast has a positive effect on the
search space for dialogue parsing in the Settlers corpus. As shown in figure 5.4, the
number of possible attachment points decreases dramatically with rfc+mlast as
the size of the dialogues in the corpus increases.

Using rfc+mlast can have an important and beneficial effect on parsing. Yet
just as the value of adding an rfc can vary depending on the discourse theory
in question, it can also vary depending on the discourse parser in question. We
have developed and trained learner and decoder dialogue parsers for attachment
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Figure 5.4: basic and mlast versions of rfc

on a simplified version of the Settlers chat corpus (without cdus). The learner
is a regularized maximum entropy model (Berger et al., 1996). Using standard,
superficial features for discourse parsing of the sort found in e.g., Muller et al.
(2012b) and Li et al. (2014), we learn a probability distribution over pairs of edus
as an input to several decoders. One decoder uses the MST algorithm (Chu and
Liu, 1965; Edmonds, 1967). Another constructs first a maximal spanning directed
acyclic graph, or MSDAG (McDonald and Pereira, 2006; Schluter, 2014) and then
prunes it with constraints defined using ILP. The attachment F-scores for MST
and ILP2 without the rfc are provided in table 5.1.

Table 5.1 shows that MST closely complies with the standard rfc; 96,7% of
its predicted attachments obey the rfc while 97,7% comply with rfc+mlast.
Therefore, using rfc+mlast as a filtering constraint on MST would have little
effect. ILP on the other hand could benefit considerably from having rfc+mlast
as a constraint, gaining up to 10% in its attachment score.

The data on MST, however, raise questions about its value as a parsing algo-
rithm for our corpus. Note how closely it complies with the rfc. This is surprising,
because cdus are important in calculating the rf in both monologue and multi-
logue, so we would expect a considerable amount of rfc violations with a decoder
that ignores cdus. This is especially so given that removing cdus from the gold

2Integer Linear Programming, a linear optimization technique we will encounter again in
chapter 6.
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Data total links rfc mlast F-attachment
gold 9293 1536 447 100%
MST 8179 267 191 60.4%
ILP 17430 4342 2693 49.3%
LAST 8179 0 0 56%

Table 5.1: rfc violations

annotations on the Settlers corpus results in about a 10% increase in violations
of the basic rfc; only 73% of the attachments in the manually annotated corpus
obey rfc once we drop cdus.

Let us consider the baseline, which we name LAST, where we simply attach
each edu to the preceding one. LAST verifies the plain rfc at 100%. The rfc
violations over our corpus suggest that MST is much closer to LAST than it is
to the gold annotations. The figures suggest that tree construction algorithms
such as MST miss around 12% of the attachments in the gold corpus that are rfc
violations but not violations on rfc + mlast. Thus while MST might be a locally
good strategy (with attachment F-scores at 0.81 within a sequence of consecutive
turns by the same speaker), it is a globally mediocre strategy. This worsening
echoes the difference reported by others between intra-sentential attachment scores
and inter-sentential attachment scores in monologue (Joty et al., 2015). ILP, on
the other hand, patterns more closely with the gold data and has many more long
distance links.

5.1.5 Beyond mlast

Double-tasking Recall that rfc+mlast blocks the attachment of 181 to 175b
in figure 5.3, because gw’s Last is 180, and not 175b. This violation is interesting,
because it illustrates a systematic pattern in which the same speaker carries on
several interwoven threads, while others are talking. Such cases intuitively call for
multiple Lasts for a single speaker; that is, a Last for speaker s for each thread
in which s is engaged. This notion, in turn, calls for a criterion for distinguishing
threads.

One possible, and simple, solution would be to individuate threads by their
members. Then we could extend the rfc+mlast to include a Last for each
speaker for each subset of speakers that is engaged in a thread. This would solve
the problem of attachment in figure 5.3; however, it would not solve the problem
in general, as we also have examples of multiple threads involving the very same
subset of speakers. In figure 5.5, lj and gw are engaged in both a trade negotia-
tion, which takes place over turns 123-125, 127-129 and 131, and a thread about
whether gw took logic, which takes place over turns 119, 126 and 130. Even if we

71



5.1. A RIGHT FRONTIER FOR MULTI-PARTY CHAT

119 lj gw did you take logic1 this year?
123 gw anyone got more clay? I fancy another
124 gw can offer a range of items
125 lj i have clay
126 gw no i didn’t lj, I’m not a student :)
128 lj would like wood
129 gw 1 for 1?
130 lj ahhh ok, never mind
131 lj sure

Figure 5.5: More interwoven threads in dialogue.

add a Last for each subgroup of speakers, 126, 128, and 130 will still give rise to
rf violations.

It is difficult to define a thread precisely. And in fact, it’s not clear to us that
126, 128, and 130 shouldn’t count as rfc violations, in the same way that “dis-
course subordinations” (Asher, 1993) in monologue text count as rfc violations.
Violations involving multiple threads with the same two speakers can be coherent
but they require more effort to understand. For instance, annotators and inter-
preters could argue about the attachment of 130 to 126; and if we imagine that
gw had made a different offer in 129 (say, 2 for 2 or 2 for 1), the we could easily
imagine 130 as a response to 129. Moreover, gw actually refers to lj by name
in 126. This is a funny thing to do given that lj is his only interlocutor at this
point; if we treat 126 as an example of discourse subordination, however, then we
can imagine that the name is being used as a signal for a discourse subordination.

Turn internal violations While we have not found a significant number of
such examples in our corpus, the rfc might ultimately need loosening to handle
examples like the following.

(5.5) B: Who has ore? I have sheep to give. I could also give some clay.
A’: How many sheep?
B’: ?? Three sheep even.

(5.6) A: Anyone want ore for sheep?
B: I’m not giving up my sheep for now, but lj might want to give
some of hers.

A’: What if I offer you two ore?
B’: ?? Not for all the ore in the world.

Attachment possibilities for speakers are asymmetric. In (5.5)-(5.6), the boldface
argument is related to the italicized argument by a coordinating relation (Alter-
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nation in (5.5), Contrast in (5.6)), which should block the accessibility of the
boldface argument. Indeed, B cannot continue with a comment targeting this
argument (B+B’), though B’ would have been felicitous in the absence of the ital-
icized argument. By contrast, if another speaker, A, responds to B’s turn, both
arguments of the coordinating relation are accessible, as shown by the felicity of
the A’ continuations (B+A’).

The theoretical explanation of this has to do with the underlying semantics of
contributions in multilogue. The meaning of a dialogue is a set of commitment
slates, one for each speaker. Speakers commit to their own contributions in di-
alogue but not necessarily to the contributions of their interlocutors, unless the
attachments they make of their own contributions requires also that they take on
board the commitments of the interlocutor (Hamblin, 1987; Lascarides and Asher,
2009). From this point of view, an asymmetry in the rfc is to be expected in
multilogue.

5.2 Revealing resources

As suggested in the introduction, humans naturally extract meaning from dis-
course. We must not forget that this process has a purpose: for example, updating
our beliefs about the world; communicate information efficiently; or in our chosen
domain, bargain efficiently and win a board game. By a similar process, we must
strive to leverage the information uncovered by discourse parsing.

To this effect, we propose in this section a practical application of discourse
parsing: a framework for the task of extracting strategic information from online
chat.

5.2.1 Motivation

When resources are limited, there is a fine line between agents cooperating and
competing with one another for those resources, especially in a win-lose game.
The goal of every rational agent is to maximize his expected utilities by finding
equilibrium strategies : that is, an action sequence for each player that is optimal
in that no player would unilaterally deviate from his action sequence, assuming
that all the other players perform the actions specified for them (Yoam Sholam
and Kevin Leyton-Brown, 2009). Calculating equilibrium strategies thus involves
reasoning about what’s optimal for the other players, which in turn depends on
which resources they possess and which resources they need. However, almost
every kind of bargaining game occurs in a context of imperfect information (Os-
borne and Rubinstein, 1994), where the opponent’s current resources are hidden
or non-observable.
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Indeed, imperfect information often results from deliberate obfuscation: if an
opponent can accurately identify your resources then they can exploit it for their
own strategic advantage. For instance, in The Settlers of Catan (or Settlers), our
chosen domain of investigation here, Guhe and Lascarides (2014) develop a Set-
tlers playing agent where game simulations show that making the agent omniscient
about his opponents’ resources enables him to achieve more successful negotiations
(i.e., a significantly higher proportion of his trade offers are accepted) and a signif-
icantly higher win rate than his non-omniscient counterparts. So it is rational for
players to balance achieving their desired trades with revealing as little as possible
about their own resources, while at the same time attempting to elicit information
about their opponents’ resources.

In negotiations using natural language dialogue, eliciting information about an
opponent’s resources is often realized as a question; the opponent, on realizing
the question’s purpose, often avoids revealing their resources in their response.
They use various communicative strategies to achieve this effect, such as making
a counteroffer, being vague, or simply changing the subject.

5.2.2 Annotation of the training data

Base corpus. Our model is trained on the Settlers corpus, described in chap-
ter 4. As a reminder, in a game of Settlers, players acquire resources (ore, wood,
wheat, clay, sheep) to build roads, settlements and cities, through dice rolls. They
can also acquire missing resources through trading with other players—so players
converse to negotiate trades. Players lack complete information about their oppo-
nents’ resources. Consequently, agents can, and frequently do, engage in ‘futile’
negotiations that result in no trade (i.e., they miscalculate the equilibria).

Players in the corpus described in Afantenos et al. (2012) must chat in an
online interface in order to negotiate trades, and each move in the chat interface
is automatically aligned with the current game state—so one can compare what
an utterance reveals about possessed resources with what the speaker actually
possesses, and so identify examples of obfuscation (e.g., see table 5.2). The corpus
consists of 59 games, and each game contains dozens of individual negotiation
dialogues, each dialogue consisting of anywhere from 1 to over 30 dialogue turns.
In our experiments, we have used 7 games consisting of more than 2000 dialogue
turns (see section 5.2.2).

Table 5.2 contains an excerpt from one of the dialogues. In turn 157 the player
gw asks if anyone has any wood, implying that he wants to negotiate an exchange
of resources where he receives wood. Player lj is the first to reply, negatively,
implicating that he has no wood. Turn 158 is thus annotated with the information

74



CHAPTER 5. INITIAL EXPERIMENTS

Turn Player Utterance
157 gw anyone got wood?
158 lj no
159 gw ore for a wood, tomas?
160 tk yes but i need mine
161 gw ore more?
162 tk 2 ore for a wood?
163 gw i don’t have 2, sorry, just the one
164 gw early doors, early offers :)
165 tk then i cannot make you a deal
166 tk sry
167 gw ah dommage :(

Table 5.2: Excerpt from a dialogue.

that the player lj is revealing that he has 0 wood.3 In turn 159 player gw persists
in his attempt to negotiate, referring directly to player tk and making a more
specific trade offer, of ore in exchange for wood. He has thus revealed that he
possesses at least one ore. The player tk acknowledges that he has wood (so this
turn is annotated with the information that tk has at least one wood) but that
this resource is important to him. tk then proposes two ore in exchange for one
wood (again, this turn is annotated with the information that tk possesses at
least one wood). gw in turn 162 explicitly says that he has only one ore and not
two, so this turn is annotated with the information that player gw has exactly 1
ore. In the end the negotiation fails since for tk a wood is currently worth more
to him than what gw is currently offering.

Note that revealed resources depend not only on the content of the individ-
ual utterance but also on its semantic connection to the discourse context. For
example, the dialogue turn 158 (no) reveals nothing about resources on its own;
it is the fact that it is connected to the question 157 with a QAP (Question-
Answer-Pair) relation that commits lj to having zero wood. Similarly, 160 is
an Acknowledgment to 159 and so reveals that tk possesses at least one wood.

Annotation process. We manually annotated each utterance with its corre-
sponding revealed resources. Two annotators (including myself) were involved in
the task. After a thorough examination of the dialogues in an initial game, we

3In this paper, we simplify our task by ignoring the fact that players can lie. As matter of
fact, manual analysis of the corpus logs show that players rarely lie concerning their resources,
preferring instead to conceal relevant information by avoiding giving a direct answer.
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settled on the format of the annotations and the guide for performing the annota-
tion task. The annotation format is as follows: each speech turn corresponding to
a revealed resource is annotated with a pair: a resource name, and the quantity
interval which the player reveals, representing the lower and upper bound of the
resource. For example, in dialogue turn 158 of table 5.2 player lj declares that he
has no wood, so this dialogue turn is annotated as (wood, [0,0]). In dialogue
turn 159 player gw reveals he has at least one ore, so this turn is annotated as
(ore, [1,+∞]). Revelations of multiple resources are associated with multiple
pairs.

To test the consistency and difficulty of the task, both annotators indepen-
dently annotated a single game after settling on the above format and instruc-
tions for annotation. Over 422 speech turns, the resulting kappa coefficient of
inter-annotator agreement is 0.94, enough to validate our annotation method.
The remaining 6 games were then annotated, for which statistics can be found
in tables 5.3 and 5.4. Most dialogues appear to be short, frequently consisting
of comments on the game status, which do not call for answers. Trade negotia-
tions are usually longer, with players emitting offers and counteroffers, sometimes
competitively. Revelations of resources are present in 21% of dialogue turns.

Speech turns 2201
Dialogues 263
Word count 9121
Turns revealing resources 452 (21% of turns)

Table 5.3: Overview of the annotated dataset.

Number of speech Dialogue count
turns in dialogue
1-5 112
6-10 63
11-15 23
16-20 13
21 and more 23

Table 5.4: Dialogue statistics of the annotated dataset.
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5.2.3 Formulating the problem

As mentioned earlier, our goal is to predict whether a given turn reveals that its
emitter possess a resource, and if so the type of the resource and its quantity
in the form of an interval. Although players could potentially reveal having a
specific number of resources (e.g., line 163 in table 5.2), in most cases the players
reveal either having zero resources (interval [0,0]) or having at least one (interval
[1,∞]), and in few occasions, players reveal that they have more than one (interval
[2,∞]) or exactly two resources ([2,2]). In most of the cases, a revelation of
having zero resources is manifested through the player rejecting a trade offer by
stating that they don’t have the resource desired by their opponent.

Using a single classifier to predict from an NL string the revelation of a par-
ticular type of resource, or no revelation of any resource, would involve classifying
each utterance into 6 classes: one for each of the 5 types of resources, and one for
revealing that no resources are possessed. But such a model would fail to take full
advantage of the following facts. First, the NL strings that reveal a resource are
relatively invariant, save for the particular resource type; in other words, the ways
in which people talk about their possession of clay is the same as their talk about
possessing wood, save for the words clay vs. wood. Secondly, it is easy to specify
the properties of a revelation (both the type of resource and quantity) when we
know a given utterance exhibits a revelation. Given these observations, we decided
to divide the prediction process into two sub-tasks:

1. Determine if a given speech turn reveals a resource or not;

2. For those utterances that do reveal a possessed resource, determine the type
of resource and its associated quantity interval.

5.2.4 Classification of revealing turns

Our goal is to learn a function

f : X 7→ {0, 1}

where every x ∈ X corresponds to a vector representing a dialogue turn and {0, 1}
represents the fact that there is a revelation concerning an unspecified resource
from the part of the dialogue act emitter.

Features. The (mostly shallow) features that we have extracted for every dia-
logue turn can be summarized in the following categories:

• Contextual features: positioning of the turn in the dialogue;
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Category Description
Contextual Speaker initiated the dialogue

First utterance of the speaker in the dialogue
Position in dialogue

Lexical Contains resource name
Ends with exclamation mark
Ends with interrogation mark
Contains possessive pronouns
Contains modal modifiers
Contains question words
Contains a player’s name
Contains emoticons
First and last words

Pattern-related Contains a possession structure, such as I have (no) X
Contains a query structure, such as I need X
Contains X for Y

Relational Is predicted as question wrt another speech turn
Is predicted as answer wrt another speech turn

Table 5.5: Feature set description.

• Lexical features: single words present in the utterance;

• Pattern-related features: recurring speech structures associated with re-
vealed resources;

• Relational features: discourse relationships with other turns.

These features are listed more extensively in table 5.5. Non-relational features
are extracted directly from the underlying text. In order to compute the relational
features—essentially whether a pair of dialogue turns are linked with a Question-
answer pair (QAP) or a Question-Elaboration (Q-Elab) discourse relation—we
used the results of a separate classifier for the prediction of discourse relations.
This classifier was trained on 7 games consisting of 2460 dialogue turns. We used
a Maximum Entropy classifier, as in the case of predicting revealed resources (see
below for more details). We selected, for this classifier, a subset of the feature set
used for the task of predicting revealed resources. More specifically, we used only
the Contextual and Lexical features shown in Table 5.5. Although the model we
have used was a general one, capable of predicting the full set of SDRT discourse
relations used in the Settlers corpus, for this series of experiments we were only
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Precision Recall F1 score
Question-answer pair 83.8 86.8 85.3
Q-Elab 53.3 57.9 55.5

Table 5.6: Results for the relation prediction task.

interested in the QAP and Q-Elab relations. Results for these relations are shown
in table 5.6.

Probabilistic model. For our classifier, we used a regularized maximum en-
tropy (MaxEnt, for short) model (Berger et al., 1996). In MaxEnt, the param-
eters of an exponential model of the following form are estimated:

P (b|t) =
1

Z(c)
exp

(
m∑
i=1

wifi(t, c)

)

where t represents the current dialogue turn and c the outcome (i.e., revelation
of a resource or not). Each dialogue turn t is encoded as a vector of m indicator
features fi (see table 6.1 for more details). There is one weight/parameter wi
for each feature fi that predicts its classification behavior. Finally, Z(c) is a
normalization factor over the different class labels (in this case just two, whether
we have a revelation of a resource or not), which guarantees that the model outputs
probabilities.

In MaxEnt, the values for the different parameters ŵ are obtained by maxi-
mizing the log-likelihood of the training data T with respect to the model (Berger
et al., 1996):

ŵ = argmax
w

T∑
i

logP (c(i)|t(i))

Various algorithms have been proposed for performing parameter estimation
(see Malouf (2002) for a comparison). Here, we used the Limited Memory Variable
Metric Algorithm implemented in the MegaM package.4 We used the default
regularization prior provided by MegaM.

5.2.5 Predicting the type and quantity of revealed resource

From our observations, the majority of utterances revealing resources fall into one
the following two categories:

4Available from http://www.cs.utah.edu/~hal/megam/.
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Type Keywords
Negation no, not, don’t
Second-person you, someone, anyone
Possession got, have, give, spare, offer
Query want, need, get
For for

Table 5.7: Markers used in type prediction

• Self-contained: resource and quantity can be deduced from the utterance
alone, such as I have no ore;

• Contextual: some information is deduced from another utterance. Both
usually form a question-answer pair, such as Do you have any wheat? – Yes.

We created five marker categories, described in table 5.7, from the most fre-
quent words appearing in revealing utterances. We designed a rule-based model
using these markers; their combination allows us to pinpoint where the resource
the player reveals is mentioned. For example, in the utterance anyone has sheep
for ore?, the second-person marker anyone and the possession marker has indi-
cate that the first mentioned resource is the one wanted by the player, which he
doesn’t reveal as possessing. Moreover, the presence of a for marker indicates that
the players offers a resource. Hence, the resource following the marker, ore, is
possessed by the player.

Such a rule system allows us to analyze a single utterance. However, in the case
of a QAP, we often fail to retrieve data from the answer utterance alone. A second
pass is thus performed on the question utterance, giving us enough context to
deduce revealed resources. For example, in the QAP anyone have wood? – none,
sorry, in the second utterance, the negation marker none implies the absence of
an unknown resource. The processing of the first utterance reveals that wood is
requested by another player. We conclude that the answering players possess no
wood.

We first tested our rule model on reference data, knowing exactly (from the
annotations) which speech turns contained revealed resources, and which discourse
relations linked them. We then used the model on predicted data (discourse rela-
tions as well as dialogue turns representing revealed resources), effectively creating
a full end-to-end system.
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Baseline (accuracy : 82.1)
Precision Recall F1 score

H+ 54.7 73.7 .628
H− 92.5 84.2 .882
Our method (accuracy : 89.2)

Precision Recall F1 score
H+ 75.2 70.6 .728
H− 95.2 94.0 .933

Table 5.8: Results for the task of detecting whether a turn reveals a resource. H+

represents the hypothesis that the dialogue turn does reveal a resource, while H−
the hypothesis that it doesn’t.

5.2.6 Experiments and results

The classifier is trained using 10-fold cross-validation. For every training round,
we partition the data by dialogues. 90% of them (resp. 10%) are then used to
train (resp. evaluate) our model. We compared our method to a baseline, which
does not involve machine learning. This naive model predicts revealed resource
whenever a resource is mentioned by name in the utterance.

After performing ten rounds of cross-validation on the training data, we achieve
a F1 score of 0.72 for the positive hypothesis “This speech turn reveals a resource”.
The opposite class (“There is no revealed resource in this turn”) has an F1 score
of 0.93, achieving thus a global accuracy of 89.2%. Detailed results for our model
and baseline are shown in table 5.8.

Results for the prediction of resource type quantity interval are shown in ta-
ble 5.9. As we can see, prediction of the type of resource that a player’s dialogue
turn reveals has an accuracy of 77% on the manually annotated instances, which
falls down to 61.5% when using the results of the first classifier as input. Inter-
val prediction on the other hand has an accuracy of 79.9% when using manually
annotated results which falls down to 65.7% when using the results of the first
classifier as input. Note as well that we have implemented a baseline for both
systems. Concerning resource type, the baseline randomly attributes a resource
to utterances labeled as revealing one. The baseline for interval prediction assigns
the most frequent interval. Results are also shown in table 5.9.

In table 5.10 we report results on the pipeline combining the three tasks. The
accuracy of 57.1% does not include the instances that have been classified as not
revealing any resources by the first classifier. When we evaluate both classes the
accuracy goes up to 86.3%.

81



5.2. REVEALING RESOURCES

Accuracy on manual on the output of
annotations the first classifier

Baseline (random)
Resource type 0.165 0.146
Interval 0.559 0.328

Our method
Resource type 0.770 0.615
Interval 0.799 0.657

Table 5.9: Baseline and evaluation of predicting resource type and interval.

Accuracy
On all instances 0.863
Only on instances classified
as revealing a resource 0.571

Table 5.10: Results of the pipeline, that is prediction of the exact triplets
(resource, [lower bound, upper bound]).

Discussion

The first step of our prediction process, locating turns revealing resources, yields
very encouraging results (see Table 5.8): we are able to retrieve such turns with
an F1 score of over 0.72, while they represent only 21% of all speech turns. On
the other hand our system does not perform very well on the detection of resource
type as well as the associated interval. This is to be expected: since we have split
our system in three parts, there is error propagation in the pipeline. On the other
hand jointly predicting the triplets is not a viable solution either, since this would
lead to a great number of classes (six as we have mentioned above, multiplied by
all the possible values for lower and upper bounds). We would like though to note
that we greatly outperform both baselines for each of the last two tasks.

One way to improve the quality of our prediction would be to add more rela-
tional features. As context plays a critical part in determining the meaning of an
utterance, features associated to its relational neighbors should be taken into ac-
count. This is true for the prediction of whether a dialogue turn reveals a resource
as well as for the prediction of its type.

Accuracy for this last task is not very satisfying. The main reasons for this,
which can serve as the basis for future improvements, include:

• Ambiguous for patterns. The utterance X for Y can be interpreted two
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ways : either as a revealing possession of X or Y. This is ambiguous even
for the players themselves since often they pose a clarification question. Ob-
servation shows that the latter (possession of Y) is more frequent. The rule
model implements this behavior as default when encountering such a pat-
tern. In actual dialogues, this ambiguity is resolved by a follow-up question
(Which one are you offering ? ) or by the game context (dice rolls and
resource distribution) which we haven’t access to.

• Long-distance resource anaphora. On most trade negotiations, the re-
source being traded isn’t mentioned by name at every point of the discussion,
but rather referred to implicitly. When this carries over several speech turns,
it becomes increasingly difficult to determine the traded resource (solving the
anaphora) from a later utterance. Incorporating anaphora resolution could
definitively improve our results.

• Uncommon idioms. Some utterances, such as I’m oreless, or I just dis-
carded all of my sheep, employ rare vocabulary (with respect to the corpus)
to describe resource possession. Incorporating more lexical information is
necessary.
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Chapter 6

Parsing dialogue structure

In this chapter we present our work on predicting full discourse structures. Most
previous work on discourse parsing has focused on monologues; to the best of our
knowledge this thesis is the first work to fully study discourse parsing for multi-
party dialogues. Our approach consists in performing global decoding over a local
model which learns a probability distribution of attachments and relation types
between pairs of edus. In addition, we provide mechanisms to remove cdus from
SDRT structures, converting into dependency graphs, which are more accessible
to available parsing techniques.

Our first approach (Afantenos et al., 2015) explores decoding using Maximum
Spanning Tree decoding on top of a probabilistic model of local discourse relations.
We introduce a simple mechanism of cdu elimination.

Our second approach (Perret et al., 2016) performs decoding using Integer
Linear Programming, which enables us to predict directed acyclic graphs (dags)
instead of trees. We introduce and motivate a set of constraints for multi-party
dialogues, as well as improved mechanisms of cdu elimination.

Formalism In this chapter we will heavily use the SDRT formalism presented
in section 2.1.3. As a reminder, for a dialogue D segmented in n edus, i.e. D =
{e1, . . . , en}, a SDRT structure is defined as a tuple (V,E1, E2, `), where:

• V = D ∪ Π is a set of nodes or discourse units, with Π as the set of cdus ;
• E1 ⊆ V × V is a set of edges representing discourse relations;
• E2 ⊆ V × Π is a set of edges that represents parthood in the sense that if

(x, y) ∈ E2, then the unit x is a component of the cdu y;
• ` : E1 → R, is a labeling function that assigns an edge in E1 its discourse

relation type (R being the set of SDRT relation labels).
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6.1 Tree decoding

6.1.1 Dependency structures

For a given discourse graph for SDRT of the form (V,E1, E2, `), there is, as of today,
no general and reliable method to calculate edges in E2 (i.e. the cdus); and no
such method has been presented in the literature. In order to perform constrained
decoding over local probability distributions, we have opted for a strategy first
presented in Muller et al. (2012b) for SDRT. The strategy involves transforming
hyper-graphs into dependency graphs. We transform our full graphs (V,E1, E2, `)
into dependency structures (D,E ′1,∅, `′), D being the set of edus, by replacing
any attachment to a cdu with an attachment to the cdu’s head—the textually
first edu within the cdu which has no incoming links. Our transformation in
effect sets E2 in our general definition of a graph to ∅. In the case that we have
a discourse relation between two edus, this relation is kept intact since it already
represents a dependency arc. In case a discourse relation has one or two cdus
as arguments, the cdus need to be replaced with their recursive head. In order
to calculate the recursive head we identify all the dus with no incoming links; if
they are cdus we recursively apply the algorithm until we get an edu. If there is
more than one edu with no incoming links we pick the leftmost, i.e. the one firstly
introduced in the text. Figure 6.1 shows an example of such a transformation.

Hirao et al. (2013) and Li et al. (2014) later followed a similar strategy for
the creation of dependency structures for RST. Every single nucleus-satellite re-
lation was transformed into a dependency relation with the governor being the
edu representing the nucleus and the dependent being the satellite. For relations
between non-edu higher spans, the recursive head was used. It is unclear how Li
et al. (2014) deal with binary multi-nucleus relations like Contrast for example;
it is not clear how to calculate the recursive head of the span.1 In such cases an
arbitrary decision—like always taking as the nucleus the leftmost or the rightmost
span—has to be taken. In the SDRT annotations, however, every edge in the
graph is already directed and so such arbitrary decisions can be avoided.

The above transformation gives us a directed acyclic graph G = (D,A) for
each dialogue D such that:

• D = {e1, . . . , en} ;

• A ⊂ D ×D ×R, where R is the set of SDRT relation labels ;

• if (ei, ej, r) ∈ A then ∀r′ 6= r, (ei, ej, r
′) /∈ A, ensuring that our graph is not

a multi-graph (only one relation exists between two edus).
1Although Li et al. (2014) do explain how to treat n-ary multinuclear relations, following

others (Hernault et al., 2010, for example).
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Figure 6.1: Translation of SDRT discourse graphs into dependency structures. In
the left figure, the cdus are displayed as boxes for greater clarity, as in section 5.1.

6.1.2 The turn constraint

Given our observations about the structure of dialogues in our corpus, we hy-
pothesize that a dialogue is fundamentally sequential: first one person talks and
then others react to them or ignore them, but the discourse links that do occur
between speaker turns are reactive. In other words, a turn can’t be anaphorically
and rhetorically dependent on a turn that comes after it. Thus, the nature of
dialogue imposes an essential and important constraint on the attachment process
that is not present for monologue or single-authored text, where an edu may be
dependent upon any edu, later in the ordering or not: in dialogue there are no
“backwards” rhetorical links such that an edu in turn n by speaker A is rhetori-
cally and anaphorically dependent upon an edu in turn n+m of speaker B with
A 6= B. We call this the Turn Constraint. Within a turn, however, just as in
monologue (as is evident from a study of most styles of discourse annotations of
text), backwards links are allowed.

Given this observation, we decided to split our local model into two different
ones. The first one concerns the learning of a model for intra-turn utterances,2
while the second models inter-turn utterances. The intra-turn model considers as
input during learning all pairs of edus (i, j) with i 6= j. The inter-turn model
on the other hand does not contain any backward links during learning. In other
words it takes as input all pairs of edus (i, j) with i < j. We apply the turn
constraint not only during learning of the local models, but also during decoding.
This practice is also followed—at the sentence level—for monologues (Wellner and
Pustejovsky, 2007; Joty et al., 2012; Joty et al., 2013), though our turn constraint,

2edus are considered as belonging to the same turn if they are by the same speaker without
any interjection from an other speaker. In other words any consecutive edu by the same speaker
is considered as belonging to the same turn.
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we believe, is firmly supported not only by our data but also by a good theoretical
model of dialogue.

6.1.3 Local model of discourse relations

Ideally, we want to be able to learn a function

h : XEn 7→ YG
where XEn is the domain of instances representing a collection of edus for each dia-
logue and YG is the set of all possible SDRT graphs. However, given the complexity
of this task and the fact that it would require an amount of training data that we
currently lack in the community, we aim at the more modest goal of learning a
function

h′ : XE2 7→ YR
where the domain of instances XE2 represents features for a pair of edus and YR
represents the set of SDRT relations. The upshot of this is that we are building
a local sort of model that learns relations between individual edus with a certain
probability but does not learn a global or even local structure.

Feature extraction To train our local models, we extracted features for every
pair of edus in a given dialogue. Our features concern the pair of edus as well as
features related to each edu specifically.

For any given dialogue (as defined previously), every pair (ui, uj) ∈ E2 of edus
it contains will correspond to a feature vector xij ∈ XE2 , of the form

xij = (p1(ui, uj), ..., pm(ui, uj),

s1(ui), ..., sn(ui),

s1(uj), ..., sn(uj))

so that each vector represents a set of pair features and two sets of singular features
for every pair of edus.

The feature set, detailed in table 6.1, can be summarized as follows:

• Positional features: (related to) the non-linguistic context of the pair;

• Lexical features: single words3 and punctuation present in the edus;

• Parsing features: syntactic dependency4 and dialogue act5 tagging.

3We use a number of lexicons (opinion markers, quantifiers, PDTB markers, etc.), each cor-
responding to a feature

4Provided by the Stanford CoreNLP pipeline (Manning et al., 2014).
5The prediction model of Cadilhac et al. (2013) generates edu tags such as Offer, Refusal,

etc.
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Category Description
Positional Speaker initiated the dialogue

First utterance of the speaker in the dialogue
Position in dialogue
Distance between edus
edus have the same speaker

Lexical Ends with exclamation mark
Ends with interrogation mark
Length in lemmas
Contains possessive pronouns
Contains modal modifiers
Contains words in lexicons
Contains question words
Contains a player’s name
Contains emoticons
First and last words

Parsing Subject lemmas given by syntactic dependency parsing
Predicted dialogue act

Table 6.1: Feature set description. Pair features are italicized.

Local probability distributions We use a regularized maximum entropy model
(shortened as MaxEnt) (Berger et al., 1996). In MaxEnt, we estimate the pa-
rameters of an exponential model of the following form:

P (r|p) =
1

Z(c)
exp

(
m∑
i=1

wifi(p, r)

)
where p represents a pair of edus and r the learnt label (i.e. the type of

relation, or a binary attachment value between the two edus). Each pair of edus
p is encoded as a vector of m indicator features fi (detailed in table 6.1). The
parameters learned by the model are the weights wi, associated to each feature fi
(a higher weight translating to a higher influence on the classification). Finally,
Z(c) is a normalization factor over the different class labels, which guarantees that
the model outputs valid probabilities. In MaxEnt, the final values for the different
parameters ŵ are obtained by maximizing the log-likelihood of the training data
T with respect to the model:

ŵ = argmax
w

T∑
i

logP (r(i)|p(i))
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Various algorithms have been proposed for performing parameter estimation (see
(Malouf, 2002) for a comparison). In this experiment, we used the Limited Memory
Variable Metric Algorithm implemented in the MegaM package.6

One of the drawbacks of this approach, however, is that it does not guarantee
an object that is well-formed. Learning a probability distribution over edus and
then choosing the most probable relation or attachment for each pair of edus
potentially leads to structures that contain cycles. To avoid this, we can’t blindly
choose the most probable relation or attachment decision for each pair of edus.
Instead, we should use this probability distribution as an input to a decoding
mechanism.

6.1.4 Decoding with Maximum Spanning Trees

To answer our questions, “how many non-tree-like structures are there?” and “how
far can tree decoding algorithms get us in multi-party dialogue?”, our first decoder
starts from the hypothesis that although the structures that we have are not trees,
they can nonetheless roughly be approximated by them. To this end, we have
started from the classic Maximum Spanning Tree (MST) algorithm— used by
McDonald et al. (2005) for syntactic dependency parsing, as well as Muller et al.
(2012b) and Li et al. (2014) for discourse parsing—tweaking it in order to produce
structures that are closer to the ones specific to multi-party dialogue. The formal
optimization problem is defined as follows:

T ∗ = argmax
T a spanning tree of G

∑
e∈E(T )

w(e)

w(e) = log

(
PA(a|e)

1− PA(a|e)

)
G being the complete graph of possible edges returned by the classifiers ; E(D)

representing the edges of D. The weight function w computes the log-odds of the
attachment probability PA(a|e) returned by the MaxEnt attachment model. The
edges of the spanning tree are then assigned the label with the highest probability
l∗ = argmaxl PL(l|e) by the labeling model.

We used the Chu-Liu-Edmonds version of the MST algorithm (Chu and Liu,
1965; Edmonds, 1967), which requires a specific node to be the root, i.e. a node
without any incoming edges, of the initial complete graph. For each dialogue, we
created an artificial node as the root with special dummy features. At the end of
the procedure, this node points the real root of the discourse graph.

6Available from http://www.cs.utah.edu/~hal/megam/. We used the default regularization
prior provided by MegaM.
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Combining intra- and inter-turn models with the turn constraint As
described above, we trained separate local models for intra- and inter-turn edus.

To create a full discourse tree, we perform a first decoding step, with the
intra-turn model, to each turn in isolation. The graph from which we obtain the
spanning tree is complete, as there are no restrictions on which edus can be linked
inside a turn. We obtain the internal structure of each turn in the dialogue. It
being a rooted tree, turns now possess a discourse head.

We then apply a second decoding step to detect edges between edus belonging
to distinct turns. However, the graph from which we obtain a spanning tree
only contains “forwards” edges (per the previously cited turn constraint), and only
between the discourse heads of the turns. We obtain the full structure of the
dialogue, with the sub-structures of the turns being joined together by their heads.

6.1.5 Experiments and results

Table 6.2 shows our results on our unseen test corpus, which contains a randomly
selected 10% of dialogues in our corpus. The best configuration was selected after
performing ten-fold cross validation on the training corpus. The reported results
implement the turn-constraint during training for the local models. In other words,
training instances for the local models include only forward links.

Along with MST decoding, we used the following two baselines:

• Last, which always attaches an edu to the preceding one, forming a single
chain; despite its simplicity, this method is a very strong baseline in discourse
parsing (Muller et al., 2012b, for example);

• Local, a naive classifier that performs binary decisions on attachment and
labeling based on the local probability model; attaching a pair of edus when-
ever Pa(e) > 0.5, then selecting the label with highest probability.

The Last method gives us an F-score of 0.584 for attachment and 0.391 when
we add the relations as well. The naive Local method gives 0.541 for attachment
and 0.446 for attachments and relations.

The best results for the global parsing problem exploited the turn constraint
both during learning the local model and during decoding. Within a turn, our
discourse structures are simple and largely linear; the best intra-turn results came
from using Last. Most of our interlocutors did not create elaborate discourse
structures with long-distance attachments within the same turn. The inter-turn
level was a different story, as the figures show. For inter-turn and the global
problem, MST using the heads of the intra-turn substructures computed with
Last, produced the best results.
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6.2. DIRECTED ACYCLIC GRAPH DECODING

The obtain a 0.671 F1 score for unlabeled structures, and 0.516 for labeled
structures.

To enable a comparison with RST style parsing where exact arguments for
discourse relations are not computed, we achieved a F1 score of 0.68 for the task
of undirected attachment in the full structure.

Despite the inherent difficulty of discourse parsing on multi-party chat dia-
logues (simultaneous, multiple discussion threads, improper syntax) our results
are close to or better than the current state of the art for discourse parsing on
monologue. We compare these results with two other approaches using depen-
dency parsing strategies for discourse. Li et al. (2014) report an accuracy of
0.7506 for unlabeled structures and 0.4309 for the full labeled structures. Muller
et al. (2012b) report 0.662 for unlabeled structure and 0.361 for labeled struc-
tures. We outperform both systems for fully labeled structures, and in spite of our
non-tree-like structures we improve on them on unlabeled attachments. Though
comparisons across different corpora are difficult, the numbers suggest that our
results are competitive. Our results also suggest that one can get quite far with
tree-based decoding algorithms, though we know that in principle MST cannot do
better than 91% even with a oracle local model (ideal model in which an arc is
giving probability 1 in case it occurs in the gold standard annotation).

Method Undirected Attachment Directed Attachment Full Labeled Structure
prec rec F1 prec rec F1 prec rec F1

Last 0.602 0.566 0.584 0.602 0.566 0.584 0.403 0.379 0.391
Local 0.698 0.488 0.574 0.623 0.478 0.541 0.513 0.394 0.446
Intra-turn 0.837 0.955 0.892 0.808 0.922 0.861 0.489 0.558 0.521
Inter-turn 0.617 0.516 0.562 0.616 0.514 0.561 0.492 0.411 0.448
Global 0.697 0.663 0.680 0.688 0.655 0.671 0.529 0.503 0.516

Table 6.2: Evaluation results.

6.2 Directed acyclic graph decoding
We discussed in section 4.2 the particularities of multi-party dialogue. We know
for a fact, that tree-based methods try to predict the wrong type of structure. For
a dialogue containing n edus, a tree will include exactly n− 1 discourse relations
between them, even if the local model assigns high probability to additional rela-
tions. The Settlers corpus demonstrates that dialogues usually contain more than
n− 1 relations, so that a tree-based method, even with perfect precision, will not
have perfect recall (as previously mentioned: 91% is the maximum attainable).
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However, getting closer to the accurate structure of dialogue raises some is-
sues, discussed in the next subsection, requiring the simplification of our original
annotations.

6.2.1 From SDRT to dependency graphs

Motivation. Predicting full SDRSs (V,E1, E2, `) with E2 6= ∅ has been to date
impossible, because no reliable method has been identified in the literature for cal-
culating edges in E2 (i.e. Complex Discourse Units). We described in section 6.1.1
the head replacement strategy (HR) for eliminating cdus from SDRSs.

However, transforming SDRSs using HR does not come without its problems.
The decision to attach all incoming and outgoing links to a cdu to its head has
little theoretical or semantic justification. The semantic effects of attaching an
edu to a cdu are not at all the same as attaching an edu to the head of the cdu.
For example, suppose we have a simple discourse with the following edus marked
by brackets and discourse connectors in bold :

(6.1) [The French economy continues to suffer]a because [high labor costs
remain high]b and [investor confidence remains low]c.

The correct SDRS for example 6.1 is one in which both b and c together explain
why the French economy continues to suffer. That is, b and c form a cdu and give
rise to the top graph in figure 6.2, which HR converts into the bottom one.

a b c
Explanation Continuation

a b c
Explanation Continuation

Figure 6.2: SDRS for example 6.1, and its HR conversion.

HR on example 6.1 produces a graph whose strictly compositional interpreta-
tion would be false—b alone explains why the French economy continues to suffer.
Alternatively an interpretation of the proposed translation an SDRS with cdus
would introduce spurious ambiguities: either b alone or b and c together provide
the explanation. To make matters worse, given the semantics of discourse rela-
tions in SDRT (Asher and Lascarides, 2003), some relations have semantics that
implies that a relation between a cdu and some other discourse unit can be dis-
tributed over the discourse units that make up the cdu. But not all relations are
distributive in this sense. For example, we could complicate example 6.1 slightly:
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(6.2) [The French economy continues to suffer]a and [the Italian economy re-
mains in the doldrums]b because of [persistent high labor costs]c and
[lack of investor confidence in both countries]d.

In example 6.2, the SDRS graph would be the top graph in figure 6.3, which HR
converts to the bottom one.

a b c d
ExplanationContinuation Continuation

a b c d

Explanation

Continuation Continuation

Figure 6.3: SDRS for example 6.2, and its HR conversion.

However, this SDRS entails that a is explained by [c, d] and that b is explained
by [c, d]. That is, Explanation “distributes” to the left but not to the right.
Once again, the HR translation from SDRSs into dependency structures described
above would get the intuitive meaning of this example wrong or introduce spurious
ambiguities.

Given the above observations, we decided to take into account the formal
semantics of the discourse relations before replacing cdus. More precisely, we
distinguish between left distributive and right distributive relations. In a nut-
shell, we examined the temporal and modal semantics of relations and classi-
fied them as to whether they were distributive with respect to their left or to
their right argument; left distributive relations are those for which the source
cdu node should be distributed while right distributive relations are those for
which the target cdu node should be distributed. A relation can be both left and
right distributive. Left distributive relations include Acknowledgement, Ex-
planation, Comment, Continuation, Narration, Contrast, Parallel,
Background, while right distributive relations include Result, Continua-
tion, Narration, Comment, Contrast, Parallel, Background, Elab-
oration. In figure 6.4 we show an example of how relations distribute between
edu/cdu, cdu/edu and cdu/cdu.

The three strategies. This analysis of the conversion of SDRT graphs into
dependency graphs leaves us with the following three cdu replacement strategies:

• Head: the original head-based strategy used in previous literature;
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ei

ej1 . . . ejn

=⇒
ei

ej1 . . . ejn

(a)

ei1 . . . ein

ej

=⇒
ei1 . . . ein

ej

(b)

ei1 . . . ein

ej1 . . . ejn

=⇒
ei1 . . . ein

ej1 . . . ejn

(c)

Figure 6.4: Distributing relations: (a) right distribution from an edu to a cdu,
(b) left distribution from a cdu to an edu, (c) from a cdu to a cdu, assuming
that the relations are distributive in their respective examples.

• Partial: the distribution of edges according to the semantics provided by
SDRT, discriminating between left, right, or either-distributive relations;
• Full: the distribution of all edges, regardless of their label, considering all

relations as left and right-distributive.

We conducted our experiments on three converted versions of our original
SDRT corpus, one for each strategy.

6.2.2 Decoding with Integer Linear Programming

Formal definition An integer linear programming problem is a mathematical
optimization problem, where the goal is to maximize (or minimize) a real-valued
function over a defined set of variables, under a defined set of variables. More
specifically, in ILP, the variables must be integers and the constraints must be
linear, hence its name. The canonical form of an ILP problem is:

maximize cTx

subject to Ax ≤ b

x ≥ 0

and x ∈ Zn
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where b, c are real-valued vectors and A is an integer-valued matrix.
A large number of problems can be formulated as ILP problems, such as the

eight queens puzzle, the traveling salesman problem, many packing problems, etc.
The resolution or general ILP problems is NP-hard, however entirely feasible when
using a reasonably limited number of variables.

ILP has been used for various computational linguistics tasks: syntactic parsing
(Martins et al., 2010; Fernández-González and Martins, 2015), semantic parsing
(Das et al., 2014), coreference resolution (Denis and Baldridge, 2007) and temporal
analysis (Denis and Muller, 2011). As far as we know, we are the first to use ILP
to predict discourse structures.

Because we have left the domain of trees, well-explored by syntactic analysis
and the previous works on discourse parsing, we must design new constraints on
discourse graphs, which we have developed from empirical study of our corpus
while also being guided by theoretical principles.

Objective function Our goal is to build the directed, edge-labeled graph G =
(D,A) stemming from the conversion of SDRT structures to dependency graphs.
As a reminder:

• D = {e1, . . . , en}, the edus of the dialogue;

• A ⊂ D×D×R, the labeled edges, with R as the set of SDRT relation labels;

• if (ei, ej, r) ∈ A then ∀r′ 6= r, (ei, ej, r
′) /∈ A (i.e. only one label per edge).

Vertices in D are indexed from 1 to n, by their position in textual order. The
labels are indexed from 1 to m in arbitrary order.

The local model provides us with two real-valued functions, which correspond
closely7 to the probabilities output by the MaxEnt local model. We note that
taking the log-odds of the probabilities, as with MST decoding, did not have a
significant effect on the results.

sa : {1, . . . , n}2 7→ [0, 1]

sa(i, j) ≈ PA(a|(ei, ej))
sr : {1, . . . , n}2 × {1, . . . ,m} 7→ [0, 1]

sr(i, j, k) ≈ PL(k|(ei, ej))

sa(i, j) gives the score of attachment for a pair of edus (i, j); sr(i, j, k) gives the
score for the attached pair of edus (i, j) linked with the relation type k. We define

7Give or take a rounding error.
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the n2 binary variables aij, the mn2 binary variables rijk, and the core constraint
linking them:8

aij = 1 ≡ (i, j) ∈ V
rijk = 1 ≡ R(i, j) = k

∀i, j
m∑
k=1

rijk = aij

The objective function that we want to maximize is

n∑
i=1

n∑
j=1

(
aijsa(i, j) +

m∑
k=1

rijksr(i, j, k)

)

which gives us a score and a ranking for all candidate structures.

Constraints We describe now the set of constraints for our graphs. Properties
that do not follow evidently from the formal expression of the constraint, such as
connectedness and acyclicity, are proven in appendix A.

The first source of constraints is SDRT, the underlying theory of the annota-
tions. In SDRT discourse graphs should be dags with a unique root or source
vertex, i.e. one that has no incoming edges, which corresponds to the topic or
initial move for the whole dialogue or text. They should also be weakly connected;
i.e. every discourse unit in it is connected to some other discourse unit.

We implemented connectedness and the unique root property as constraints in
ILP by using the following equations.

n∑
i=1

hi = 1

∀j 1 ≤ nhj +
n∑
i=1

aij ≤ n

where hi is a set of auxiliary variables indexed on {1, . . . , n}. The above constraint
presupposes that our graphs are acyclic.

Implementing acyclicity is facilitated by another theoretical observation that
we call the turn constraint, discussed earlier in section 6.1.2. The graphs in our
training corpus are reactive in the sense that speakers’ contributions are reactions
and attach anaphorically to prior contributions of other speakers. This means that
edges between the contributions of different speakers are always oriented in the
forward direction.

8Which is a given edge, if it exists, has only one label.
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A turn by one speaker can’t be anaphorically and rhetorically dependent on a
turn by another speaker that comes after it. Once made explicit, this constraint has
an obvious rationale: people do not know what another speaker will subsequently
say and thus they cannot create an anaphoric or rhetorical dependency on this
unknown future act. This is not the case within a single speaker turn though;
people can know what they will say several edus ahead so they can make such
kinds of future directed dependencies (cataphoric links).

ILP allows us to encode this constraint as follows. We indexed turns from
different speakers in textual order from 1 to nt, while consecutive turns from the
same speaker were assigned the same index. Let t(i) be the turn index of edu i,
and T (k) the set of all edus belonging to turn k. The following constraint forbids
backward links between edus from distinct turns:

∀i, j (i > j) ∧ (t(i) 6= t(j)) =⇒ aij = 0

The observation concerning the turn constraint is also useful for the model
that provides local scores. We used it for attachment and relation labeling during
training and testing.

Given the turn constraint we only need to ensure acyclicity of the intra-turn
sub-graphs. We introduce an auxiliary set of integer variables, (cki), indexed on
{1, . . . , nt} × {1, . . . , n} in order to express this constraint:

∀k, i 1 ≤ cki ≤ |T (k)|
∀k, i, j such that t(i) = t(j) = k

ckj ≤ cki − 1 + n(1− aij)

Another interesting observation concerns the density of the graph. The objec-
tive function being additive on positive terms, every extra edge improves the global
score of the graph, which leads to an almost-complete graph unless the edge count
is constrained. We imposed an upper limit δ ∈ [1, n] representing the density of
the graphs:

n∑
i=1

n∑
j=1

aij ≤ δ(n− 1)

δ ∈ [1, n] since we need to have at least n− 1 edges for the graph to be connected
and at maximum we can have n(n−1) edges if the graph is complete without loops.
δ being a hyper-parameter, we estimated it on a development corpus representing
20% of our total corpus.9

The development corpus also shows that graph density decreases as the number
of vertices grow. A high δ entails a too large number of edges in longer dialogues.

9δ takes the values 1.0, 1.2 and 1.4 for the Head, Partial and Full distribution of the
relations, respectively.
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We compensate for this effect by using an additive cap η ≥ 0 on the edge count,
also estimated on the development corpus:10

n∑
i=1

n∑
j=1

aij ≤ n− 1 + η

Another empirical observation concerning the corpus was that the number of
outgoing edges from any edu had an upper bound eo � n. We set that as an ILP
constraint:11

∀i
n∑
j=1

aij ≤ eo

These observations don’t have a semantic explanation, but they suggest a prag-
matic one linked at least to the type of conversation present in our corpus. Short
dialogues typically involve a opening question, broadcast to all the players in search
of a bargain. Typically also, all the other players reply; the replies are then taken
up and either a bargain is reached or it isn’t. The players then move on. Thus,
the density of the graph in such short dialogues will be determined by the number
of players (in our case, four).

In a longer dialogue, more directed discourse moves and threads involving sub-
groups of the participants appear, but once again in negotiation dialogues it never
happens that our participants return again and again to the same contribution.
The state of the game evolves constantly, and older contributions quickly become
irrelevant to the current situation. Our ILP constraints on density and edge counts
thus suggest a novel way of capturing different dialogue types and linguistic con-
straints.

Finally, we included various minor constraints, such as the fact that edus
cannot be attached to themselves; edus within a sequence of contributions by the
same speaker in our corpus are linked at least to the previous edu (according to
our previous experiments in section 6.1.5, this is a reasonable hypothesis); finally,
that edges with zero score are not included in the graph:

10η takes the value of 4 for the Full distribution while it has no upper bound for the Head
and Partial distributions.

11eo is estimated on the development corpus to the value of 6 for the head, partial and full
distributions.
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∀i aii = 0

∀i t(i) = t(i+ 1) =⇒ ai,i+1 = 1

∀i, j sa(i, j) = 0 =⇒ aij = 0

∀i, j, k sr(i, j, k) = 0 =⇒ xijk = 0

6.2.3 Experiments and results

As with MST decoding (cf. section 6.1.3), features for training the local model
and getting scores for the decoders were extracted for every pair of edus. Fea-
tures concerned each edu individually as well as the pair itself. We used obvious,
surface features such as: the position of edus in the dialogue, who their speakers
are, whether two edus have the same speaker, the distance between edus, the
presence of mood indicators (‘?’, ‘ !’) in the edu, lexical features of the edu (e.g.,
does a verb signifying an exchange occur in the edu), and first and last words
of the edu. We also used the structures and Subject lemmas given by syntactic
dependency parsing, provided by the Stanford CoreNLP pipeline (Manning et al.,
2014). Finally we used Cadilhac et al. (2013)’s method for classifying edus with
respect to their dialogue acts (whether they involved an offer, a counteroffer, etc).

The MaxEnt model itself was trained, this time, using the scikit-learn library
(Pedregosa et al., 2011). For ILP decoding, we used the SCIP optimization suite
(Gamrath et al., 2016).

As mentioned earlier, in addition to the ILP and MST decoders we used two
baseline decoders, Last and Local. The Last decoder simply selects the pre-
vious edu for attachment no matter what the underlying probability distribution
is. This has proved a very hard baseline to beat in discourse. The Local decoder
is a naive decoder which in the case of attachment returns “attached” if and only
if the probability of attachment between edus i and j is higher than 0.5.

Each of the three distribution methods described at the end of section 6.2.1
(Head, Partial and Full distribution) yielded different dependency graphs for
our input documents, which formed three distinct corpora on which we trained
and tested separately. For each of them, our training set represented 90% of the
dependency graphs from the initial corpus, chosen at random; the test set repre-
senting the remaining 10%. Table 6.3 shows the main statistics of our dataset. The
influence of the cdu replacement strategies is clearly visible: the more relations
are distributed, the higher the relation count in the converted dataset.

Table 6.4 shows our evaluation results, comparing decoders and baselines for
each of the distribution strategies.
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Total Training Testing
Dialogues 1091 968 123
Turns 9160 8166 994
edus 10677 9545 1132
cdus 1284 1132 152
Relation instances

Head 10191 9127 1064
Partial 11734 10507 1227
Full 13675 12210 1465

Table 6.3: Dataset overview

As can be seen, our ILP decoder consistently performs significantly better
than the baselines as well as our own MST decoder, even when restricted to tree
structures and Head strategy (setting the hyper-parameter δ = 1). This prompted
us to investigate how our objective function compared to MST’s. We eliminated all
constraints in ILP except acyclicity, connectedness, turn constraint and eliminating
any constraint on outgoing edges (setting δ = ∞); in this case, ILP’s objective
function performed better on the full structure prediction (.531 F1) than MST
with attachment and labeling jointly maximized (.516 F1). This means that our
objective function, although it maximizes scores and not probabilities, produces an
ordering over outputs that outperforms classic MST. Our analysis showed further
that the constraints on outgoing edges (the tuning of the hyperparameter eo = 6)
were very important for our corpus and our (admittedly flawed) local model; in
other words, an ILP constrained tree for this corpus was a better predictor of the
data with our local model than an unrestrained MST tree decoding.

We also note that our scores dropped in distributive settings, but that the
margin between ILP’s performance and other methods considerably widened by
increasing the edge count of the target structures. We need to investigate further
constraints, and to refine and improve our features to get a better local model. Our
local model will eventually need to be replaced by one that takes into account more
of the surrounding structure when it assigns scores to attachments and labels. We
also plan to investigate the use of recurrent neural networks in order to improve
our local model.
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Decoder Model Unlabeled Attachment Labeled Attachment
Precision Recall F1 Precision Recall F1

Head (no distribution)
Last – 0.602 0.566 0.584 0.403 0.379 0.391
Local local 0.664 0.379 0.483 0.591 0.337 0.429
MST local 0.688 0.655 0.671 0.529 0.503 0.516
ILP local 0.707 0.672 0.689 0.544 0.518 0.531

Partial distribution
Last – 0.651 0.545 0.593 0.467 0.391 0.426
Local local 0.647 0.370 0.471 0.544 0.311 0.396
MST local 0.710 0.594 0.647 0.535 0.448 0.488
ILP local 0.680 0.657 0.668 0.528 0.510 0.519

Full distribution
Last – 0.701 0.498 0.582 0.505 0.360 0.420
Local local 0.681 0.448 0.541 0.558 0.367 0.443
MST local 0.737 0.524 0.613 0.561 0.399 0.466
ILP local 0.703 0.649 0.675 0.549 0.507 0.527

Table 6.4: Evaluation results.
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Chapter 7

Parsing argumentative structure

Many works in the field of argumentative parsing mention the similarities between
discourse and argumentation.1 However, while parsing methods from the two
domains share common techniques, an in-depth comparison of the structures of
discourse and argumentation needed annotated material enabling this research.2
In Stede et al. (2016), which section 7.1 draws from, we set out to create a dataset
suitable for the task.

After having studied methods to extract discourse structure, our next step was
to transfer our Integer Linear Programming methods to argumentation parsing,
expanding of the work of Peldszus and Stede (2015). Our approach, described in
section 7.2, is currently unpublished.

7.1 Building a parallel corpus

We described, in chapter 2, three approaches to analyzing and representing dis-
course structure have resulted in various annotated corpora and in implemented
discourse parsers:

• The Penn Discourse Treebank (PDTB) annotates individual connectives with
their coherence relations and their argument spans (Prasad et al., 2008).

• Rhetorical Structure Theory (RST) predicts tree structures on the grounds
of underlying coherence relations that are mostly defined in terms of speaker
intentions (Mann and Thompson, 1988).

1In contrast, we barely found any mention of argumentation frameworks in the discourse
parsing literature.

2In argumentation as well, data is scarce.
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• Segmented Discourse Representation Theory (SDRT) exploits graphs to model
discourse structures and defines coherence relations via their semantic effects
on commitments rather than relative to speaker intentions (Asher and Las-
carides, 2003; Lascarides and Asher, 2009).

As we plan to study, in this chapter, the full argumentative structure of text,
our concern is with RST and SDRT only. To date, it has been difficult to compare
the two frameworks on empirical grounds, since there were no directly-comparable
parallel annotations of the same texts. To improve upon this situation, we took an
existing corpus of 112 short “microtexts”, which had already been annotated with
argumentation structure, and added layers for RST and SDRT. To this end, we
harmonized the underlying segmentation rules for minimal discourse units, so that
the resulting structures can be compared straightforwardly. We implemented an
approach to merge the annotations, and we report here some initial observations
on the correlations between RST, SDRT and argumentation in that corpus.

In addition to comparing RST and SDRT, we foresee interesting applications
of this kind of corpus data for purposes of argumentation mining. The correlations
between discourse structure and argumentation structure have not been studied
yet in depth, and thus it is not clear whether established discourse parsing tech-
niques (geared either toward RST or toward SDRT) can contribute to an automatic
argumentation analysis, and if so, in what ways.

In the following, we introduce our data set (section 7.1.1) and describe the
three layers of annotation (section 7.1.3). Then, we explain the mapping of the
layers to a common dependency tree format (section 7.1.4), and we present some
initial observations on correlations (section 7.1.5).

7.1.1 Argumentative texts

The “corpus of argumentative microtexts” (Peldszus and Stede, 2016), henceforth
referred as the Microtext corpus, has been designed as a collection of relatively
“simple” yet authentic texts enabling the study of argumentation. It consists of 90
texts that have been collected in a controlled text generation experiment, where 23
competent subjects wrote short texts of controlled linguistic and rhetoric complex-
ity, discussing one of the issues they chose from a pre-defined list of controversial
issues. These include questions like “Should everybody be required to pay fees for
public radio and TV” or “Should health insurers cover alternative medical treat-
ments”.

Each text was to fulfill three requirements: it should be about five segments
long; all segments should be argumentatively relevant, either formulating the main
claim of the text, supporting the main claim or another segment, or attacking the
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Should health insurers pay for alternative treatments?
Health insurance companies should naturally cover alternative medical treatments.
Not all practices and approaches that are lumped together under this term may
have been proven in clinical trials, yet it’s precisely their positive effect when ac-
companying conventional ’western’ medical therapies that’s been demonstrated as
beneficial. Besides many general practitioners offer such counselling and treat-
ments in parallel anyway - and who would want to question their broad expertise?

Figure 7.1: Sample text from the Microtext corpus.

main claim or another segment. Also, the writers were asked that at least one
possible objection to the claim should be considered in the text.

To supplement the original German version of the collected texts, the whole
corpus has been professionally translated into English. Figure 7.1 shows a sample
text from this English part of the corpus. A more detailed overview of the data
collection is given in Peldszus and Stede (2016).

For the purposes of this study, we worked with the English version of the
corpus. The finer edu segmentation as well as the creation of the additional RST
and SDRT annotation layers was done on the basis of the English text. Mapping
the new annotations back to the German version of corpus will be achieved by
future efforts. The corpus is freely available online.3

7.1.2 Aligned segmentation

In order to achieve comparable annotations on the three layers, we decided in the
beginning of the project to aim at a common underlying discourse segmentation.
For a start, the argumentation layer already featured adu (argumentative discourse
unit) segmentation; these units are relatively coarse, so it was clear that any adu
boundary would also be an edu (elementary discourse unit) boundary in RST and
SDRT. On the other hand, the discourse theories often use smaller segments. Our
approach was to harmonize edu segmentation in RST and SDRT, and then to
introduce additional boundaries on the argumentation layer where required, using
an “argumentatively empty” Join relation.

As explained in the next two sections, RST and SDRT annotation start from
slightly different assumptions regarding minimal units. After building the first
versions of the structures, we discussed all cases of conflicting segmentations and
tweaked both annotations so that eventually all edus were identical.

3For the original German/English corpus, see https://github.com/peldszus/
arg-microtexts. The finer segmented, multi-layer annotation done in this study for
English is available at https://github.com/peldszus/arg-microtexts-multilayer.
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The critical cases fell into three groups:

• “Rhetorical” prepositional phrases: Prepositions such as ’due to’ or ’despite’
can introduce segments that are rhetorically (and sometimes argumenta-
tively) relevant, when for instance a justification is formulated as a nominal-
ized eventuality. We decided to overwrite the syntactic segmentation criteria
with a pragmatic one and split such PPs off their host clause in cases where
they have an argumentative impact.

• VP conjunction: These notoriously difficult cases have to be judged for ex-
pressing either two separate eventualities or a single one. We worked with
the criterion that conjoined VPs are split in separate edus if only the subject
NP is elided in the second VP.

• Embedded edus: For technical reasons, the Potsdam Commentary Corpus
Stede and Neumann (2014, in German) annotation had not marked center-
embedded discourse segments; and, in general, different RST projects treat
them in different ways. In SDRT, however, they are routinely marked as
separate edus. In the interest of compatibility with other projects, we de-
cided to build two versions of RST trees for texts with embedded edus: one
version ignores them, while the other splits them off and uses an artificial
“Same-Unit” relation to repair the structure (cf. Carlson et al. (2003) and
section 2.1.1 of this work).

As a result of the finer segmentation, 83 adus not directly corresponding with
an edu have been split up, so that the final corpus contains 680 edus.

7.1.3 Structure annotation

Argumentation The initial release of the corpus already incorporated argu-
mentation structures for all texts, following the scheme devised in Peldszus and
Stede (2013), which itself is based on Freeman’s theory of the macro-structure
of argumentation (Freeman, 1991; Freeman, 2011). Its central idea is to model
argumentation as a hypothetical dialectical exchange between the proponent, who
presents and defends his claims, and the opponent, who critically questions (“at-
tacks”) them in a regimented fashion. Every move in such an exchange corresponds
to a structural element in the argumentation graph (cf. section 3.2).

The first step in an analysis consists in segmenting the text into its argumen-
tative discourse units (adus); these may in turn consist of several elementary
discourse units (edus) as used in RST and SDRT. The argumentation structure
scheme then distinguishes between simple support (one adu provides a justifi-
cation of another) and linked support, where several adus collectively fulfill the
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role of justification. On the side of attacks, we separate rebutting (denying the
validity of a statement) and undercutting (denying the relevance of a statement in
supporting another). The scheme is designed in such a way that the fine-grained
representations can be reduced to coarser ones that, for example, only distinguish
between support and attack (see Peldszus and Stede (2015)), as it is customary in
much of the related work on argumentation mining.

In Figure 7.2, we show the representation for the sample text given in Fig-
ure 7.1. The nodes of this graph represent the propositions expressed in text
segments (grey boxes), and their shape indicates the role in the dialectical ex-
change: round nodes are proponent’s nodes, square ones are opponent’s nodes.
The arcs connecting the nodes represent different supporting (arrow-head links)
and attacking moves (circle/square-head links). By means of recursive application
of relations, representations of relatively complex texts can be created, identify-
ing the central claim of a text, supporting premises, possible objections and their
counter-objections.

These structures have been annotated on the German texts by two experts,
and they apply equally to the English translation. The guidelines are specified
in Stede (2016). They have been shown to yield reliable agreement, see Peldszus
(2014).

The annotated corpus contains 576 adus, of which 451 are proponent and 125
opponent ones. The most frequent relation is Support (263), followed by Rebut
(108), Undercut (63). Linked relations (21) and support by Example (9)
occur only rarely.

RST The RST annotations have been created according to the guidelines (Stede,
2016) that were developed for the Potsdam Commentary Corpus (Stede and Neu-
mann, 2014, in German). The relation set is quite close to the original proposal
of Mann and Thompson (1988) and that of the RST website4, but some relation
definitions have been slightly modified to make the guidelines more amenable to ar-
gumentative text, as it is found in newspaper commentaries or in the short texts of
the corpus we introduce here. Furthermore, the guidelines present the relation set
in four different groups: primarily-semantic, primarily-pragmatic, textual, multin-
uclear. The assignment to ’semantic’ and ’pragmatic’ relations largely agrees with
the subject-matter/presentational division made by Mann & Thompson and the
RST website, but in some cases we made diverging decisions, again as a step to
improve applicability to argumentative text; for example, we see Evaluation as
a pragmatic relation and not a semantic one. ’Textual’ relations cover phenom-
ena of text structuring; this group is motivated by the relation division proposed
by Martin (1992), but the relations themselves are a subset of those of Mann &

4www.sfu.ca/rst
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Figure 7.2: Argumentation structure of the example text. Here 4 and 5 support
1, 2 attacks 1, and 3 undercuts this attack.
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Thompson and the website (e.g., List, Preparation). Finally, the ’multinuclear’
relations are taken from the original work, with only minor modifications to some
definitions.

The annotation procedure explained in the guidelines suggests to prefer prag-
matic relations over semantic ones in cases of ambiguity or doubt, which is also
intended as a genre-specific measure. All RST annotations on the Microtext corpus
were done using the RSTTool5. In the resulting corpus, there are 467 instances of
RST relations, hence on average 4.13 per text. The most frequent relation is (by a
large margin) Reason (178 instances), followed by Concession (64), List (63),
Conjunction (44), Antithesis (32), Elaboration (27), and Cause/Result
(22); other relations occur less than 20 times.

		

Reason Reason

Health insurance
companies should
[...].

R

Comment

Not all prac-
tices and ap-
proaches [...],

yet it’s pre-
cisely [...].

Joint

Besides many
general prac-
titioners offer
[...]

and who would
want to question
their broad ex-
pertise?

Figure 7.3: RST representation, with arrows pointing to the Nucleus.

SDRT The SDRT annotations were created following the ANNODIS annota-
tion manual (Muller et al., 2012a) which was based upon Asher and Lascarides
(2003). The amount of information about discourse structure was intentionally
restricted in this manual. Instead it focused essentially on two aspects of the dis-
course annotation process: segmentation and typology of relations. Concerning
the first, annotators are provided with an intuitive introduction to discourse seg-
ments, including the fact that we allowed discourse segments to be embedded in
one another as well as detailed instructions concerning simple phrases, conditional

5http://www.wagsoft.com/RSTTool/
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and correlative clauses, temporal, concessive or causal subordinate phrases, relative
subordinate phrases, clefts, appositions, adverbials, coordinations, etc. Concern-
ing discourse relations, the goal of the manual was to develop an intuition about
the meaning of each relation. Occasional examples were provided, but we avoided
an exhaustive listing of possible discourse markers that could trigger a particular
relation, because many connectives are ambiguous and because the presence of a
particular discourse connective is only one clue as to what the discourse relation
linking two segments might be.6 For the purposes of this annotation campaign we
used the Glozz annotation tool.7

The SDRT corpus contains 669 edus, 183 cdus and 556 relations. The most
frequent relations are Contrast (144), Elaboration (106), Continuation
(80), Result (76), Explanation (55), Parallel (26), Conditional (23) while
the rest had fewer than 20 instances. Figure 7.4 shows the SDRT graph for the
text shown in Figure 7.1.

e1

π1

e2 e3

π2

e4 e5

Elaboration

Contrast

Background

Comment

Figure 7.4: SDRT structure of the example text.

7.1.4 A common format: dependency structures

Calculating correlations between argumentation and discourse as well as between
the two discourse corpora themselves requires converting the annotations from
their tool-specific XML formats (RSTTool, Glozz) into a common format. This
is not an easy task since the two theories have fundamental differences at least
as far as scoping of relations is concerned. We consider dependency structures

6The manual also did not provide any details concerning the structural postulates of the
underlying theory, including constraints on attachment (the so-called “right frontier” of discourse
structure), crossed dependencies and more theoretical postulates. The goal of omitting such
structural guidelines was the examination of whether annotators respected the right-frontier
constraint or not (Afantenos and Asher, 2010).

7http://www.glozz.org
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as a reasonable candidate for a common format capturing the structures of RST
and SDRT, as it had also been proposed earlier by Danlos (2005). This is further
facilitated by the fact that—with the exception of embedded edus in SDRT, for
which we used the Same-Unit “relation” in RST—both annotations use the same
edus.

In our case, dependency structures are graphs whose nodes represent the edus
and whose arcs represent the discourse relations between the edus. Given this
representation, calculating correlations between argumentation and discourse be-
comes an easy task since we have the same nodes, and only the relations vary.

Furthermore, future experiments on discourse parsing and argumentation struc-
ture analysis can be facilitated by using a common format for all annotations; how-
ever, we need to be cautious when it comes to theory-specific discourse parsing,
since the mapping between the theories is not one to one.

SDRT makes use of cdus to represent larger units of discourse. The prob-
lem of converting them to dependency graphs has been discussed previously in
sections 6.1.1 and 6.2.1.

RST, on the other hand, makes use of some version of the “Nuclearity Principle”
to determine what is the exact scope of a discourse relation. Most formulations of
the Nuclearity Principle hinder a structural match between RST trees and SDRT
graphs, as detailed in Venant et al. (2013). In this paper, the authors axiomatize
that both RST trees and SDRT graphs in an ecumenical fragment of monadic
second order logic, so that precise translation results can be proved concerning the
posited structures of the two theories. They show that if one restricts SDRT graphs
to those that have just one incoming arc to each node, then one SDRT graph may
correspond to several RST trees. Nevertheless for the restricted and simplified
texts of the argumentation corpus, it seems that the two structures are largely
inter-translatable, depending on (i) how we translate cdus into a dependency
graph and (ii) how we fix the arguments of relations in the translation of an RST
tree into a dependency graph.

Another obvious mismatch concerns the labels of the relations in the two theo-
ries. Because RST and SDRT start from different explanatory goals, they employ
different principles for individuating their sets of discourse relations. For example,
our analyses of the sample text in figures 7.3 and 7.4 show that an SDRT Elabo-
ration corresponds to Reason in the RST tree. Such differences can in principle
be due to the different motivations of the theory (identify relations primarily on
the basis of semantic properties of the argument, or on the grounds of interpreted
speaker intentions), or they can result simply from different readings of the text
by the respective analysts. Clarifying this in our corpus, and undertaking more
principled comparisons between the theories is one goal for our future work with
the aligned corpora.
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7.1.5 Comparison between annotation layers

1 2 3 4 5

concession

reason

reason

joint

(a) RST

1 2 3 4 5

elaboration contrast

background

comment

(b) SDRT

1 2 3 4 5

rebut undercut

support

link

(c) ARG

Figure 7.5: Example dependency conversions for the example text from the anno-
tations of the three theories.

Methodology The parallel annotation of the corpus converted to a dependency
format now invites systematic comparison of the three structures. As we can see in
figure 7.5, there are evident structural similarities between discourse structures—
both RST and SDRT— and argumentative structure. Segment 1 holds the most
prominent position in the SDRT graph, is the central nucleus in the RST tree,
and the “main thesis” in the argumentation. The proponent/opponent distinction
made in the argumentation analysis (circle vs. box node) of course has no direct
counterpart in RST and SDRT, but the perspective switch between the two roles
might be indicated by adversarial coherence relations. For a quantitative, pair-
wise comparison of the correspondences between related segments and the relation
types, we apply two strategies: common edges, and common connected components.

First, we look for undirected edges common to the different structures. In the
example shown in figure 7.5, an edge between 2 and 3 and between 4 and 5 is
found in all structures. Note that the first ones all have an adversative relation
label, while the latter all have a more organizational relation label assigned. Ar-
gumentation and SDRT share an edge between 1 and 2, while argumentation and
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RST share an edge between 1 and 4. For the purpose of quantitative comparison,
we collect the relations of all common edges in a co-occurrence matrix. Edges in
one graph without a correspondence in the other graph are mapped to none in
this matrix. An example matrix for argumentation and RST is shown in table 7.1
and will be discussed below.

Furthermore, we extend the scope of analysis and look for connected com-
ponents common to both structures. We apply a simple sub-graph alignment
algorithm yielding connected components with 2, 3 or 4 nodes occurring in the
undirected, unlabeled graphs of both structures. This can reveal typical structural
patterns. We can then determine how often these matches can be successfully
mapped to one another given the relation labels. The structures shown in figure 7.5
have for example several common components: All of them share a sub-graph 1,
2, 3, although with different connection configurations. RST and argumentation
additionally share a sub-graph 1, 4, 5, with aligned connections. We will sum over
the corpus, how often these common sub-graphs occur and how likely they can be
mapped to each other based on the relations.8

Argumentation vs. RST The co-occurrences of the edge-labels are shown
in table 7.1. In total, 60% of the edges are common in both structures. The
most frequent class of support edges in argumentation correspond mainly with
Reason and some Cause and Evidence edges, however 39% of them do not map
to RST edges. The second frequent class in argumentation, rebut, does not map
well to RST: 72% of those edges have no correspondence in RST. The rest co-occurs
with Antithesis and Concession. A very wide distribution of RST relation
labels is found for the Join relation in argumentation. This relation connects
multiple edus to argumentatively relevant adus and is converted to dependencies
in a left-to-right fashion. Since the nucleus in RST is not necessarily the left-most
node, it correlates with both less argumentative relations such as Conjunction
or Condition and more argumentative relations such as Reason or Cause.
For the argumentative Undercuts, most of them align with Concession and
Antithesis, while 33% do not co-occur with RST relations. Note, that nearly no
correspondence can be found for RST List relations.

Regarding the common components in both theories, about 43% of all 3 node
argumentation sub-graphs can be matched to RST sub-graphs, and 46% vice versa.
Most of them are parallel structures, e.g. 2 Supports for a claim on the argumen-
tation side and two parallel Reasons on the RST side. On the other hand there
are also common sub-graphs with differing edges, e.g. when the argumentation
structure features two separate Supports or Rebuts, while the RST structure

8Note that the comparisons in this subsection exclude 8 texts with center-embedding, as these
complicate the correlation procedure here.
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joins them into one larger span in a List or Conjunction. Very interesting
are the attack- and counter-attack constructions, some of which are shown in fig-
ure 7.6. The RST annotations do not explicitly represent the rebutting functions
of segments, but instead take the counter-attack as a reason for the claim. While
the countering of an attack is implicitly supporting the attacked claim, supporting
a claim cannot be taken as an implicit counter of potential attacks. The RST
structure is thus missing one aspect of the attack- counter-attack structure.9 This
also become evident by the different predictive power of this correspondence. For
the linearization with the claim first, the argumentation structure 7.6c can be
mapped to the RST structure 7.6d in 81%, but vice versa only in 60%. For the
linearization with the claim behind, the situation is less clear: The argumentation
structure 7.6a can be mapped to the RST structure 7.6b in 57%, vice versa in 67%.
A more detailed comparison of the different sub-graph correspondences is left for
future work.

1 2 3

undercut

rebut

(a) ARG

1 2 3

concession reason

(b) RST

1 2 3

rebut undercut

(c) ARG

1 2 3

concession

reason

(d) RST

Figure 7.6: Common components between RST and ARG for attack-, counter-
attack constructions.

Argumentation vs. SDRT When comparing common edges, we find that 63%
of the edges can be mapped from one structure to the other. The co-occurrences
of the relation labels are shown in figure 7.2. Argumentative Supports co-occur
with Elaboration, Explanation, and Result. However, 48% of the supports
cannot be mapped to SDRT edges, which is more than in the alignment of argu-
mentation and RST. Rebuts correspond mainly with Contrast, but also with
Elaboration, the remaining 43% of the rebutting edges do not map to SDRT,

9This point was already raised by Peldszus and Stede (2013), but could only now be investi-
gated on a larger empirical basis.
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NO
NE

antithesis . 3 . 9 1 6 7
background . 1 2 . 4 . 8
cause . 4 1 . 11 . 2
circumstance . 4 . . . . 1
concession . . . 6 1 32 18
condition . 13 . 1 1 . .
conjunction . 10 6 . . 2 23
contrast . . . 1 . . 3
disjunction . 2 . . . . 2
e-elaboration 2 5 . . . . 1
elaboration 4 7 . 2 3 . 11
evaluation-s . 2 . . . . .
evidence . . . . 8 . 2
interpretation . . . . . . 2
joint . 2 5 1 4 1 8
justify . . . . 4 . 3
list . 1 . 1 2 . 53
means . 1 . . . . .
motivation . . . 1 2 . .
preparation . 3 . . . . .
purpose . 3 . . . . .
reason . 6 . 3 99 . 55
restatement . . . . 2 . 2
result . 1 . . 1 . .
sameunit . 1 . 1 . . .
solutionhood . . . . . . 1
unless . . . 1 . . 1
NONE 2 10 7 72 92 20 .

Table 7.1: Co-occurrence matrix for edge labels for RST (rows) vs Argumentation
(columns).
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which is better than the coverage of RST for this relation. Undercutting attacks
are quite clearly related to Contrast. As in RST, instances of the Join relations
in argumentation structures distribute widely over the SDRT relations. From the
SDRT perspective it is striking that nearly no correspondence is found for Con-
tinuation relations. Also, 34% of the Contrast relations do not align with
edges in the argumentation graphs.

Looking at the common components, we cannot only investigate larger sub-
graphs but also consider the direction of the edges. Forward-looking supports
(i.e. 1 supports 2) rather map to Result, while backward-looking supports (i.e. 2
supports 1) rather correspond with Elaborations. Explanations can be found
for both directions of supports. In a similar vein, Elaborations co-occur with
Rebuts only, when the latter are backward-looking, not when the rebutted claim
comes after the rebuttal. Contrasts can be found for both directions of rebuttal.

For larger sub-graphs with 3 nodes, 49% of the argumentation graphs can be
mapped to SDRT, vice versa 53%. The most frequent correlation shown in fig-
ures 7.7a and 7.7b. The common Rebut & Undercut scheme in argumentation
only maps to SDRT when linearized backward-looking. The SDRT correspondence
of two Contrasts, as shown in figures 7.7c and 7.7d, is only found in 35%, the
remaining instances leave either the adversative character of the rebuttal or of
the undercutter underspecified by using other relations such as Elaboration,
Explanation or Conditional. As in RST, the identification of argumenta-
tive attacks and counter-attacks by chains of adversative relations is not trivially
achieved and might require a deeper investigation of the surrounding signals.

1 2 3

support

support

(a) ARG

1 2 3

elaboration continuation

(b) SDRT

1 2 3

rebut undercut

(c) ARG

1 2 3

contrast contrast

(d) SDRT

Figure 7.7: Common components between ARG and SDRT
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alternation . 1 . 1 . 1 4
background . 3 . . 4 . 1
comment 1 2 2 . 2 . 2
conditional . 12 . 3 . 1 1
continuation 1 2 1 . 5 1 62
contrast . 6 1 35 6 39 45
e-elab 1 3 . . . . .
elaboration 4 8 3 10 46 . 26
explanation . 4 1 2 33 . 6
frame . 4 1 . 1 . .
goal . . 1 . . . .
narration . 3 1 . . 1 2
parallel . 5 2 . 1 4 13
result . 16 2 5 25 . 23
NONE 1 10 6 43 112 14 .

Table 7.2: Co-occurrence matrix for edge labels for SDRT (rows) vs Argumentation
(columns)

7.2 Parsing the Microtext corpus

7.2.1 Local models

In order to perform structured output prediction on argumentation structures,
ideally what one would like to do is to learn a model

h : XAn 7→ YG

where XAn is the domain of instances representing a collection of adus for each
dialogue and YG is the set of all possible argumentation graphs. Directly predict-
ing argumentation structures, though, is a very difficult task which requires an
amount of data that we currently lack in the community since, in a sense, every
document is considered as a single instance. Moreover no appropriate logistic or
hinge loss function (Smith, 2011) has been proposed in the community either for
argumentation or discourse structures. Most approaches, including our novel ILP
approach, aim thus at the more modest goal of learning a model

h : XA2 7→ YR

where the domain of instances XA2 represents features for a pair of adus and YR
represents the set of argumentative relations. The upshot of this is that we are
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building a local sort of model that yields a probability distribution of relations
between individual adus.

Note that we do not directly make a classifier out of this model. In other words,
we do not try to directly extract relations from the above model by searching for a
threshold that will have optimal local results. Indeed, concatenating the relations
predicted by a local classifier would not necessarily yield a well-formed structure,
even with good local results; there would be no guarantee that there would be no
cycles or a single connected component, as required by our data. Instead we use
the probability distribution that this model yields as input to a decoder that tries
to optimize a global measure of the argumentation structure.

Dependency Structures We use the dependency conversion of the argumen-
tative portion of the corpus, as presented in section 7.1.4, with the coarse grained
set of relations {support, attack}.

For illustration, figure 7.8 shows the dependency graph for the argumentation
structure of the following example.

(7.1) [Health insurance companies should naturally cover alternative medical
treatments.]1[ Not all practices and approaches that are lumped together
under this term may have been proven in clinical trials,]2[ yet it’s precisely
their positive effect when accompanying conventional ’western’ medical
therapies that’s been demonstrated as beneficial.]3[ Besides many general
practitioners offer such counselling and treatments in parallel anyway -]4[
and who would want to question their broad expertise?]5

1 2 3 4 5

attack attack

support

support

Figure 7.8: Dependency conversion of the argumentation structure of example 7.1

Subtasks Peldszus and Stede (2015) proposed the following four subtasks for
predicting the argumentation structures:

• attachment (at): Given a pair of adus, are they connected by an argu-
mentative relation? [yes, no]

• central claim (cc): Given an adu, is it the central claim of the text? [yes,
no]
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• role (ro): Given an adu, is it in the [proponent]’s or the [opponent]’s voice?

• function (fu): Given an adu, what is its argumentative function? [support,
attack, none]

We reproduced this approach and trained a log-loss SGD (stochastic gradient
descent) classifiers for each of these tasks. Note, that relation labels are classified
using only the source segment. We reimplemented their feature set, which includes
lemma uni- and bigrams, the first three lemmas of each segment, POS-tags, lemma-
and POS-tag-based dependency parse triples, discourse connectives, main verb of
the sentence, and all verbs in the segments, absolute and relative segment position,
length and punctuation counts, linear order and distance between segment pairs.

For the syntactic analysis, we use the spaCy parser (Honnibal and Johnson,
2015) instead of the mate parser (Bohnet, 2010). Both parsers provide pretrained
models for English and German. The spaCy parser is a bit less accurate and
does not offer a morphological tagging, but it is very fast and allows us to greatly
simplify the pipeline. Moreover, it comes with Brown clusters and vector-space
representations, which we want to test. Another difference is that we extended
the lexicon of English discourse connectives with the connectives collected in the
EDUCE project.10

New features In addition to the reimplemented feature set, we test the impact
of the following new features: We add Brown cluster unigrams (BC) and bigrams
(BC2) of words occurring in the segment. We completed the discourse relations
features (DR): While the lexicon of discourse connectives for German used in ex-
periments of Peldszus and Stede (2015) was annotated with potentially signaled
discourse relations, their English lexicon was lacking this information. We ex-
tended the English connective lexicon by those collected in the EDUCE project
which also have been annotated with signaled discourse relations. Also, a fea-
ture representing the main verb of the segment was added; the already existing
verb features either focused on the verb of the whole sentence which might be
too restrictive, or on all possible verbal forms in the segment which might not be
restrictive enough.

In order to investigate the impact of word embeddings for this task, we add the
300 dimensional word-vector representations, averaged over all content words of the
segment, as a feature for segment wise classifiers (VEC). Stab and Gurevych (2016)
gained small improvements –around 1 point F1-score on their dataset– by adding
word-embeddings as a features to their argumentative stance classifier. Moreover,
we derive scores of semantic distance between two segments using these vectors:
We measure the cosine distance between the average word vector representations

10https://github.com/irit-melodi/educe
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of the segment and its left and right antecedents (VLR). Also, for the attachment
classifier, we measure the cosine distance between the average word vectors of the
source and target segment (VST).

Furthermore, we added features for better capturing the inter-sentential struc-
ture, i.e. for relations with subordinate clauses: One feature representing that the
source and target segments are part of the same sentence (SS) and one representing
that the target is the matrix clause of the source (MC).

7.2.2 Decoders

MST decoder In a classic MST decoding scenario, one uses a matrix Π ∈ Rn×n

representing the attachment probability distribution of the local model. The Chu-
Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967) is then used in order
to find the maximum spanning tree. The predicted edges could finally be labeled
in a subsequent step using a separate classifier.

In contrast to that, Peldszus and Stede (2015) opt in jointly predicting attach-
ment and the other levels using MST methods. They first set up a fully connected
multigraph with as many parallel edges as relations-types (in their case two, for
supporting and attacking relations). This is the "evidence graph" in their termi-
nology. A local model is trained for each of the four levels (attachment, central
claim, role and function). From the scores of the local models, four probabilities
are derived which are linearly combined into one edge score in the multigraph:
the probability of attachment, the probability of having the corresponding argu-
mentative function, the probability of the source not to be the central claim and
the probability of switching the argumentative role from the source to the target
segment (for attacks) or of preserving it (for supports). The multigraph is reduced
to a graph, for which the maximum spanning tree is found. The combination of
these probabilities constrains some typical interactions between the different levels
in the argumentation structure.

We replicate this decoder using the exact same procedure and the results of
the local models described in section 7.2.1.

Novel ILP decoder Using as input the same local model as used before, we try
to build a directed acyclic graph G =< V,E,R >. Vertices (adus) are referred
by their position in textual order, indexed starting from 1. The argumentative
functions central_claim, attack, support are referred by their respective indexes
νcc = 1, νa = 2, νs = 3. Let n = |V |. We create four sets of core variables
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corresponding to the levels of prediction:

cci = 1 ≡ adui is a central claim

roi =

{
1 if adui is a proponent node
0 if adui is an opponent node

fuik = 1 ≡ adui has function label k
atij = 1 ≡ (i, j) ∈ E

The local models described above provide us with four real-valued functions:

scc : {1, . . . , n} 7→ R
sro : {1, . . . , n} 7→ R

sfu : {1, . . . , n} × {νcc, νa, νs}R
sat : {1, . . . , n}2 7→ R

The objective function that we try to maximize is:

S1 =
n∑
i=1

scc(i)cci +
n∑
i=1

sro(i)roi

+
n∑
i=1

3∑
k=1

sfu(i, k)fuik +
n∑
i=1

n∑
j=1

sat(i, j)atij

We refer to this objective function as S1.
The constraints that we use can be split into different categories. First of all,

the output structures need to respect the definitions related with the core variables.
More specifically, there can be only one central claim:

n∑
i=1

cci = 1 (7.2)

All vertices have exactly one outgoing edge with the exception of central claim,
which is a sink node:

∀i

(
cci +

n∑
j=1

atij

)
= 1 (7.3)

All vertices have exactly one argumentative function:

∀i
3∑

k=1

fuik = 1 (7.4)
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The central claim must be a proponent node:

∀i cci ≤ roi (7.5)

This bans the case cci = 1, roi = 0, where the central claim is an opponent
node. All other cases are allowed. The argumentative function should also match
the central claim core variable:

∀i cci = fuiνcc (7.6)

The next set of equations describe the relationship between argumentative
functions and roles. A support edge can only occur between nodes of the same
role, while attack edges only occur between nodes of different roles. We consider
the edge from adui to aduj. We build the following table:

atij roi fuiνs roj valid? Comments
0 * * * yes No attachment,

no restrictions
1 0 0 0 no OPP attacks OPP
1 0 0 1 yes OPP attacks PRO
1 0 1 0 yes OPP supports OPP
1 0 1 1 no OPP supports PRO
1 1 0 0 yes PRO attacks OPP
1 1 0 1 no PRO attacks PRO
1 1 1 0 no PRO supports OPP
1 1 1 1 yes PRO supports PRO

We now define Sij = roi + fuiνs + roj. The table can be reduced to:

atij Sij valid?
0 * yes
1 0 no
1 1 yes
1 2 no
1 3 yes

We introduce a set of auxiliary variables, (pspij), which is set to 1 if and only
if adui and aduj form a “PRO supports PRO” pattern. in which case the adus
need not to be attached and the defining constraint is as follows:

∀i, j 0 ≤ Sij − 3pspij ≤ 2 (7.7)

If 0 ≤ Sij ≤ 2, then pspij must be 0, or the sum will be negative. If Sij = 3, then
pspij must be 1, or the sum will be greater than 2. We now defineKij = Sij−2pspij.
The table can be completed:
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atij Sij pspij Kij valid?
0 * * * yes
1 0 0 0 no
1 1 0 1 yes
1 2 0 2 no
1 3 1 1 yes

If atij = 1, then the case is valid iff Kij = 1. If atij = 0, then Kij can take any
value between 0 and 2. Therefore, we build the following constraint:

∀i, j atij ≤ Kij ≤ 2− atij (7.8)

Other simpler constraints that we have used include the fact that there must
be at least two proponent nodes in the graph

∑n
i=1 roi ≥ 2. Also, the central claim

must have at least one supporter. We introduce a set of binary variables, (sccij),
which is set to 1 if and only if adui supports aduj, and aduj is the central claim.
Given constraints 7.5, 7.7 and 7.8, we only need to check whether adus i and j
are attached, and respectively proponent node and central claim. The structure
of the constraint is similar to constraint 7.7:

∀i, j 0 ≤ roi + atij + ccj − 3sccij ≤ 2 (7.9)

The desired constraint follows from the previous definition:

n∑
i=1

n∑
j=1

sccij ≥ 1 (7.10)

We also require that there be more proponent nodes than opponent nodes:

2
n∑
i=1

roi ≥ n (7.11)

Finally we require that our graphs are acyclic.11 We introduce an auxiliary set of
integer variables, (ci):

∀i 1 ≤ ci ≤ n (7.12)
∀i, j cj ≤ ci − 1 + n(1− atij) (7.13)

11The proof of validity of this constraint can be found in appendix A
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Replications of other ILP models We described in section 3.3 the approach
of (Persing and Ng, 2016), also using ILP to build structures. We replicate their
constraint set as closely as possible. Incidentally, as our corpus only contain pre-
segmented single paragraphs, a fair number of their constraints are no longer nec-
essary, and the rest match the ones we already implement. The difference resides
in their objective function, which takes the following form once adapted to our
local models:

α = 0.8

pX(·) =
1

1 + e−sX(·) for X ∈ {cc, ro, fu, at}

S2 =
n∑
i=1

φ(pcc(i), cci) +
n∑
i=1

2∑
k=1

φ(pfu(i, k), fuik)

+
n∑
i=1

n∑
j=1

φ(pat(i, j), atij)

φ(x, y) = 2α(xy + (1− x)(1− y))− (1− α)(x(1− y)− (1− x)y)

In our series of experiments we labeled the above objective function S2.

7.2.3 Experiments and results

Evaluation procedure

In our experiments, we follow the setup of Peldszus and Stede (2015). We use the
same train-test splits, resulting from 10 iterations of 5-fold cross validation, and
adopt their evaluation procedure, where the correctness of predicted structures is
assessed separately for the four subtasks, reported as macro averaged F1.

While these four scores cover important aspects of the structures, it would be
nice to have a unified, summarizing metric for evaluating the decoded argumen-
tation structures. To our knowledge, no such metric has yet been proposed, prior
work just averaged over the different evaluation levels. Here, we will additionally
report labeled attachment score (LAS) as a measure that combines attachment
and the argumentative function labeling, as it is commonly used in dependency
parsing. Note however, that this metric is not specifically sensitive for the impor-
tance of selecting the right central claim and also not sensitive for the dialectical
dimension (choosing just one incorrect argumentative function might render the
argumentative role assignment for the whole argumentative thread wrong).

For significance testing, we apply the Wilcoxon signed-rank test on the series
of scores from the 50 train-test splits and assume a significance level of α = 0.01.
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English German
model cc ro fu at cc ro fu at
Peldszus and Stede (2015) .817 .750 .671 .663 .849 .755 .703 .679
Stab and Gurevych (2016) .830 .745 .650
base .832 .762 .710 .690 .827 .757 .709 .696
base + BC +.008 -.005 +.001 +.004 +.008 +.005 -.001 -.003
base + BC2 -.003 -.002 +.001 -.001 +.003 -.001
base + DR +.005 +.018 +.019 +.003 +.002 -.002 -.001
base + VS -.001 -.002 -.001 +.002 +.001 +.001 -.001
base + VEC -.002 -.002 -.002 +.001 +.004 -.003 +.002 +.002
base + VLR -.002 +.001 -.001 +.001 -.002
base + VST -.001
base + SS +.009 +.009
base + MC +.012 +.016
all - VEC .840 .782 .723 .711 .837 .765 .709 .711
all .840 .780 .724 .710 .836 .762 .712 .711

Table 7.3: Evaluation scores for the base classifiers reported as macro avg. F1

Local models

The results of the experiment with the local models are shown in table 7.3. We first
repeat the reported results of Peldszus and Stede (2015) and Stab and Gurevych
(2016) for comparison. Below is our re-implementation of the classifiers of Peldszus
and Stede (2015) (base), followed a feature analysis where we report on the impact
of adding each new feature to the replicated baseline, reported as the delta.

Our replication of the baseline features (base) already provides a substantial
improvement on all levels for the English version of the dataset. We attribute this
mainly to the better performance of spaCy in parsing English. For German, the
results are competitive. Only for central claim identification our replicated local
models does not fully match the original model, which might be due to the fact
that the spaCy parser does not offer a morphological analysis as deep as the mate
parser and thus does not derive predictions for sentence mood.

Investigating the impact of the new features, the highest gain is achieved by
adding the features for subordinate clauses (SS and MC) to the attachment classi-
fier. Brown cluster unigrams give a moderate boost for central claim identification.
Interestingly, the word-vector representation did not have a significant impact. The
averaged word embeddings themselves (VEC) lowered the scores minimally for En-
glish and improved the results minimally for German, but increased the training
time considerably. The distance measures based on word vectors (VST and VLR)
yielded no improvement likewise.
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English
model cc ro fu at LAS
Peldszus and Stede (2015) (EG-equal) .860 .721 .707 .692 .481
Stab and Gurevych (2016) .857 .745 .683
this work EG-equal .876 .766 .757 .722 .529
this work ILP objective S1 .864 .775 .749 .722 .523
this work ILP objective S2 .869 .783 .740 .717 .519
this work ILP Persing & Ng .869 .678 .732 .716 .491

German
model cc ro fu at LAS
Peldszus and Stede (2015) (EG-equal) .879 .737 .735 .712 .508
Stab and Gurevych (2016)
this work EG-equal .861 .730 .725 .731 .523
this work ILP objective S1 .876 .752 .740 .731 .526
this work ILP objective S2 .873 .743 .723 .729 .517
this work ILP Persing & Ng .866 .634 .706 .723 .480

Table 7.4: Evaluation scores for the decoders reported as macro avg. F1 for the
cc, ro, fu and at levels, and as labeled attachment score (LAS)

Taking all features together, excluding only the time-costly word embeddings
(all - VEC), provides us with local models that achieve state of the art performance
on all levels but fu for English and cc for German. We use this set of classifiers
as the local models in all decoding experiments.

Global model

The results of the experiments with the decoders are shown in table 7.4. We again
first repeat scores of prior studies and then present the results for the decoders
introduced in section 7.2.2.

The overall best results for English are produced by the replication of the MST-
based model of Peldszus and Stede (2015), followed by the novel ILP decoders. For
German the novel ILP decoders score best, followed by the MST-based ’evidence
graph’ model. For both languages, there are no significant differences between
these three models on any level.

The improvement in role, LAS and (for English only) fu of the MST method
against the replication of Persing & Ng is statistically significant.
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Chapter 8

Conclusion

8.1 Contributions
This thesis is the result of a prolonged effort to understand and recreate the orga-
nization of dialogue and argumentation.

While the structure of discourse has been the subject of decades of research, as
discussed in chapter 2, the high-level structure of dialogue had been mostly over-
looked. The creation of an annotated corpus dedicated to strategic dialogue was
an incredible opportunity to advance the study of the particularities of multi-party
dialogues. Parsing efforts were also mostly focused on monologue, which left a gap
in the research for dialogue, where conventional methods proved inappropriate.

Regarding argumentation, the representation of persuasive text has drawn from
logic and linguistics for a long time. While the multiple ways to express viewpoints
have been explored in detail, the global structure of argumentation is still a unex-
plored field, especially for longer texts.

We present the following main contributions:

• We improved the formalization of the coherence of discourse, expanding its
scope to multi-party dialogue;

• We designed a data extraction process for natural-language negotiations,
providing evidence of the usefulness of discourse parsing;

• We evaluated the capabilities of tree-based methods in the production of the
structure of dialogue;

• We created an efficient method to parse dialogue beyond trees, using more
flexible and globally optimized graph structures;

• We annotated and compared the structures of discourse and argumentation
on a corpus of persuasive texts;
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• We applied our methods on the mostly-unexplored field of full-structure ar-
gumentative parsing.

Our new Right Frontier Constraint definition detailed in section 5.1 represents
with greater semantic accuracy the interwoven threads present in multi-party chat
dialogue. While group discussion is more chaotic than back-and-forth exchanges of
two-party dialogue, and extremely distinct from the careful structure of monologue,
we show that participants still abide by rules of coherence and respect the flow of
conversation, even with access to the full history of the conversation granted by
the medium of online chat.

Our process of identification of potentially hidden resources detailed in sec-
tion 5.2 demonstrates an application of discourse parsing towards anaphora reso-
lution. Local models of discourse structure prove useful in a context other than
monologue, in situations where laconic responses do not carry any useful informa-
tion when taken out of their reactive context.

We show in section 6.1 that we can successfully transfer the previous research
on discourse parsing, applying tree-based methods to dialogue. Shallow features,
adapted to the new domain, are verifiably reliable to model local discourse rela-
tions. We also build a solid case for the use of global optimization of decoded
structures directly from the elementary discourse units, as opposed to bottom-up
models implying a series of local decisions.

The ILP-based discourse parser presented in section 6.2 outperforms tree-based
methods by a fair margin. We developed a more semantically accurate conversion
of SDRT to dependency graphs, yielding an even wider margin compared to the
MST algorithm. We show that we can predict directed acyclic graphs, introducing
and formalizing original constraints for multi-party chat.

Finally, we transfer our methods on the field of argumentative parsing. We
demonstrate again the efficiency of global optimization, and formalize the con-
straints of argumentative structure. We show that ILP-based methods work as
well as tree-based methods on documents which actually have a tree structure.

8.2 Perspectives

Our research leaves some interesting questions unresolved, laying all the necessary
groundwork for their resolution. We present three of them in this section.

cdu prediction We exposed in section 6.2.1 how we could remove cdus from
SDRT graphs, distributing discourse relations over the components of the cdu.
We also mentioned there is no known method in the literature to predict clusters
of units.
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We see our progress on discourse parsing as an opportunity to tackle this prob-
lem. Distribution of cdus typically create subsets of consecutive nodes with a high
density of relations with the same label. Given a sufficiently accurate prediction of
the discourse graphs of such small subsets, one could attempt to recreate cdus by
grouping edus sharing an antecedent (or target) via the same discourse relation.

One could also directly train a model to learn the parthood relation underlying
cdus, detecting units that belong to the same cluster.

Reliable detection of cdus could open a new path towards interpretation of
discourse and correct resolution of anaphoric links.

Comparative study of discourse and argumentation We described in sec-
tion 7.1 a three-layer annotated corpus of short texts. While we performed a
co-occurrence and common component analysis between argumentative and dis-
course structure, our descriptions scratched only the surface of the interaction
between the two frameworks. In the same vein, we didn’t apply our discourse
parsing methods to the annotated discourse structure of the Microtext corpus,
which would yield even more comparison material.

We believe the corpus can enable significant advances in the following open
questions: to which extent discourse structures signal argumentative functions?
Are argumentation and discourse structurally similar? Are the segmentations be-
tween discourse units and argumentative units aligned? Can the logical inter-
pretation of discourse (in the SDRT framework) be tied to the formalization of
arguments?

Study of long-distance attachments The Settlers corpus provides a number
of long-distance attachments, where rhetorically connected units are separated by
five or more edus, but short-distance attachments are far more frequent. As a
result, the training dataset of our probabilistic model for pairs of edus is skewed
in favor of the latter. We hypothesize this is the main reason the rfc didn’t give us
a significant increase in accuracy when used as an ILP constraint, as short-distance
relations almost always follow the constraint.

We also observe that the performance of our parser degrades as the distance of
attachment increases; a tendency also observed in the rest of the literature, inter-
sentential relations being harder to predict than intra-sentential ones. Shallow
features don’t appear sufficient to predict long-distance attachment, and what
exactly is needed in order to capture then is an open question. We hypothesize
that deep semantic representation of utterances and background knowledge would
play an important part in the matter, similarly to the general problem of implicit
relation parsing.
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Appendix A

Constraints

In this appendix, you will find the proofs related to the integer linear constraints
used in sections 6.2.2 and 7.2.2.

Notation The constraints apply to a directed graph G = 〈V,E,R〉 with R being
a function that provides labels for the edges in E = (ei). Vertices (edus) are
referred by their position in textual order, indexed from 1. The m labels are
referred by their index in alphabetical order, starting from 1. Let n = |V |.

Per the definition of integer programming, all variables mentioned here take
integer values. In addition, binary variables can only take the values 0 or 1 (this
constraint will be implied whenever binary variable are introduced).

We define the n2 binary variables aij and mn2 binary variables rijk:

aij = 1 ≡ (ei, ej) ∈ V
rijk = 1 ≡ R(ei, ej) = k

The two are tied by the unique label constraint:

∀i, j

(∑
k

rijk

)
= aij (A.1)

Acyclicity We require that our discourse and argumentative graphs are acyclic.
We introduce an auxiliary set of integer variables, (ci):

∀i 1 ≤ ci ≤ n (A.2)
∀i, j cj ≤ ci − 1 + n(1− aij) (A.3)

If there is no edge between vertices ei and ej, then by definition aij = 0. In
that case, inequality A.3 becomes cj ≤ ci − 1 + n. Per inequality A.2, this always
holds.
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If there is an edge between vertices ei and ej, then by definition aij = 1 and
inequality A.3 becomes cj ≤ ci − 1 ≡ cj < ci.

Now assume, without loss of generality, that (e1, e2..., ek) is a chain. The con-
straint implies (c2 < c1) ∧ (c3 < c2) ∧ · · · ∧ (ck−1 < ck) ≡ (c1 < ck). An extra edge
from vertex ek to e1, forming a cycle, would imply ck < c1, which is incompatible
with the previous result. Thus, constraints A.2 and A.3 enforce the acyclicity of
the graph.

6

4 3

2

11

Figure A.1: Illustration of the acyclicity constraint.

Unique head We call head any vertex that has no incoming edge. We require
our discourse graphs to have a unique head. We introduce an auxiliary set of
binary variables, (hi), and the following constraints:

∑
i

hi = 1 (A.4)

∀j 1 ≤ nhj +
∑
i

aij ≤ n (A.5)

We show that hi = 1 iff ei is a head.
If ej is a head, then ∀i aij = 0 =⇒

∑
i aij = 0. Per A.5, 1 ≤ nhj =⇒ hj =

1.
If ej is not a head, then ∃i aij = 1 =⇒

∑
i aij ≥ 1. Per A.5, (nhj + 1 ≤

nhj +
∑

i aij ≤ n) =⇒ hj = 0. QED.
Equation A.4 trivially ensures the existence and uniqueness of the head.

Connectedness The combination of the acyclicity and unique head constraints
is actually sufficent to ensure connectedness. To prove it, let G = 〈V,E〉 be
an directed acyclic graph with a unique head. Let G′ = 〈V ′, E ′〉 be connected
component of G. G′ is acyclic as well, so we can define a partial order on V ′,
where u ≤ v iff there is a directed path from u to v in G′. As V ′ is finite, it has at
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least one minimal element. Moreover, any minimal element of V ′ is a head. Thus,
any connected component of G contains a head.

As there must be only one head in G, this proves that G has only one connected
component.

Unique sink node In argumentative graphs, the structural constraints are
stronger: every vertex must have a single outgoing edge, except for a unique
vertex, the central claim, which has none. We introduce an auxiliary set of bi-
nary variables, (cci), where cci = 1 iff ei is the central claim (determined by other
means). We introduce the following constraints:

n∑
i=1

cci = 1 (A.6)

∀i

(
cci +

n∑
j=1

aij

)
= 1 (A.7)

Equation A.6 ensures the existence and uniqueness of a central claim. Let
ei ∈ V ; if ei is the central claim, then cci = 1 and equation A.7 becomes

∑n
j=1 aij =

0 =⇒ ∀j aij = 0, which means that ei has no outgoing edge, as intended. If ei
is not the central claim, then cci = 0 and equation A.7 becomes

∑n
j=1 aij = 1 =⇒

∃!i aij = 1, which corresponds to a unique outgoing edge, also as intended.
Associated with the acyclicity constraint, the unique sink constraint also en-

sures connectedness of the argumentative graph, with a proof similar to the pre-
vious paragraph. Additionally, equations A.6 and A.7 imply that

∑n
i=1,j=1 aij =

n− 1, i.e. the graph has exactly n− 1 edges: the graph is thus a tree.
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