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Abstract Highly concentrated layers of atomic K have been observed in the mesosphere above Yanging
near Beijing (40°N, 116°E). The K density in these narrow layers exceeds 1,100 cm 3 (at least 4 times higher
than reported elsewhere), and the K/Na ratio is superchondritic by a factor of 3-4. A model with detailed
metal ion chemistry, supported by ancillary measurements from a nearby ionosonde and meteor radar, is
used to show that these sporadic K layers can be produced from a strong sporadic E layer (critical
frequency > 11 MHz) that descends from above 100 km at a velocity of 1-2 km h™". This allows most of the
Na* ions to be neutralized before the remaining ions are dumped around 90 km, where the higher pressures
and colder temperatures facilitate the formation of K*.N, and K*.CO, cluster ions. These cluster ions then
undergo dissociative recombination with electrons to form K.

Plain Language Summary The source of metallic atoms in the Earth’s upper atmosphere is the
ablation of cosmic dust particles. These metals exist in layers between 80 and 105 km. Under most
circumstances, the abundance of K is about 1/15 that of Na, the same ratio as in cosmic dust. However, in this
study near Beijing, thin layers of K with a concentration more than 4 times that previously reported were
observed, accompanied by a dramatic increase in the K/Na ratio to 1/5. These observations are explained by a
wind shear above 100 km producing a highly concentrated layer of metal ions and electrons, which then
descends over more than 5 h to around 90 km. K ions only neutralize at relatively high pressures and low
temperatures, and this occurs around 90 km where a concentrated layer of neutral K atoms then forms.
Because Na ions are mostly neutralized at higher altitudes, a large increase in the K/Na in the layer results.

1. Introduction

Meteoric ablation is the source of the layers of Na and K atoms that occur globally at an altitude between 80
and 105 km. The layers have been observed from geographically widespread locations using the ground-
based resonance lidar technique and also from space by satellite-borne spectrometric observations of
solar-pumped resonance fluorescence (Plane et al., 2015). These observations have also been modeled suc-
cessfully in a whole atmosphere chemistry-climate model (Dawkins et al., 2015; Marsh et al., 2013). Although
the K/Na ratio is generally close to the value of 0.06 found in carbonaceous chondrites (Asplund et al., 2009),
at high latitudes, the ratio varies from 0.1 in summer to 0.02 in winter (Dawkins et al.,, 2015).

Sporadic Na and K layers (termed Nag and K;) are thin layers (typically <2 km vertical extent) of these metal
atoms, develop peak densities at least 3 times larger than the typical metal background layer, and exhibit a
duration of between only a few minutes and several hours (Clemesha, 1995). Following the observation of a
close spatial and temporal correlation between sporadic E layers (termed E;) and sporadic neutral metal
layers, the most widely accepted mechanism to explain Na; layers is the neutralization of Na™ ions in a des-
cending E; layer (Cox & Plane, 1998; von Zahn & Hansen, 1988). This theory has also been supported by
laboratory studies of the relevant ion-molecule chemistry (Cox & Plane, 1998) and modeling (Collins et al.,
2002; Heinselman, 2000). A comparison of satellite measurements of Nas and K occurrence probabilities
reveals significant geographic and seasonal differences (Dawkins et al.,, 2015; Fan et al., 2007). These differ-
ences may be caused by differences in the chemistry of these two alkali ions, which also largely account
for the different seasonal behaviors of the background Na and K layers (Plane et al., 2014).

In this paper we will report observations of extremely high concentrations of atomic K over Yanqing near
Beijing (40°N, 116°E), more than a factor of 4 times higher than the previously published highest density
(~400 cm3) of which we are aware. The reported maximum K concentrations at various locations are low
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latitudes, 100 cm™> at Arecibo (18°N) (Friedman et al,, 2013) and 71 cm™> at Tenerife (28°N) (Fricke-
Begemann et al., 2002); midlatitudes, 360 cm > at Kiihlungsborn (54°N) (Eska et al., 1998) and 300 cm > at
Haute Provence (40°N) (Megie et al, 1978); and high latitudes, 90 cm™> at Spitsbergen (78°N) (Héffner &
Libken, 2007). The highest density K layer observed by the Odin satellite was 230 cm > (Dawkins et al,,
2015). von Zahn et al. (1999) reported a K concentration of 376 cm ™ in a thin layer, but this was a freshly
ablated meteor trail. In the present study we will describe simultaneous K and Na measurements on two
nights—one with an extreme K; layer and abnormally high K/Na ratio, the other a typical background night
as a reference. The mechanism for the K; layer formation will then be explored using a model of a descending
E; layer with detailed ion-molecule chemistry, supported by ancillary measurements of wind and electron
density.

2. Data and Methods

The Yanqging Na-K lidar is a two-channel system that can be used to observe Na atoms (589 nm) and K atoms
(770 nm) simultaneously. The temporal and spatial resolutions of the lidar are 2.8 min and 96 m, respectively,
with a beam divergence of 0.5 mrad (Jiao et al., 2015).

The absolute K density measured by the lidar was corrected for saturation effects, using the relation (Chu &
Papen, 2005; Megie et al., 1978):

Nz 1 Jg o S [exp(—t (7 +-2)) — 1| *where N>¥(z) is the photon counts received at height
NZ) T TS w TR (SR T i P 9

z; N(z) would be the photon counts from height z in the absence of saturation; 7 is the lifetime of the 4°P;,

202, o .
20, is the “saturation time,” where

exited state of the K D, line; t; is the pulse width of the laser; and ts;: = Sof T
6, is the beam divergence of the laser, N, is the total photon number emitted in each laser pulse, and T, is the
one-way atmospheric transmission. For the current K lidar system, N, = 1.74 x 10"” counts; assuming atmo-
spheric transmission T, = 0.7 (Megie et al., 1978) at 770 nm and z = 90 km (i.e., around the layer peak), the

N (2)
N(z)

before smoothing using a Hamming function with a 5 min, 96 m window. The photon counts in the altitude
range 170-190 km were used as background noise and deducted in the density calculation. The correspond-
ing saturation ratio for Na is 97.8%. We assign a 10% uncertainty to these saturation corrections. There is an
additional 5% uncertainty in the Na signal that arises from the nonlinear response of the photomultiplier at
the higher photon count rate; this is corrected using the method of Guan et al. (2013). The photon noise-
induced uncertainties are ~1% and <10% for Na and K, respectively. The effective resonance scattering cross
section for the Na D2 line is ~5.2 x 10~ "2 cm?, and for the K D1 line is ~5.0 x 10~ "% cm?, calculated using tem-
peratures from the NRLMSIS-00 model (Picone et al., 2002). The estimated uncertainty of these cross sections
is around 20%. The reference air density at 30 km altitude was taken as the nighttime average from the
NRLMSIS-00 model for the particular night of observation, at the latitude and longitude of the lidar. The
uncertainty in the reference air density is estimated to be around 20%. Propagating all these sources of error
yields uncertainties in the Na and K atom densities at the layer peaks of up to 30%.

saturation time ts, is 116 ns. Thus, the ratio = 96.3%, and this was used to correct the measured counts,

The E; layer electron density was determined using the Beijing ionosonde, which has a 1 h temporal resolu-
tion (Hu et al., 2014). Horizontal wind data were provided from the Beijing meteor radar, with a 1 h temporal
and 2 km vertical resolution (Jiang et al., 2012). The ionosonde and meteor radar are located at Peking
University (Changping district, Beijing) (40.3°N, 116.3°E), which is 40 km from the Yanging lidar. The
Changping ionosonde field-of-view is 60°, corresponding to a horizontal distance of ~58 km for an E; height
of 100 km, so that the Yanging lidar is within range.

3. Results and Discussion

The seasonal K density measured with the Yanging lidar exhibits a semiannual variation with a maximum of
110 cm ™3 in winter and a second maximum of 85 cm™2 in summer (Wang et al.,, 2017), in good accord with
the zonal average measured by satellite (Dawkins et al., 2015). However, K, layers are observed at this location
with much higher densities than previously reported elsewhere: out of a total of 809 h of observation, K
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Figure 1. Na and K densities on 23 July 2013 at Yanqing (local time = UT + 8 h): (a) Na density versus height and time; (b) Na column abundance versus time;
(c) vertical profile of Na density at the time of peak Na concentration (19:21 UT); (d) K density versus height and time; (e) K column abundance versus time;

(f) vertical profile of K density at the time of peak of the K concentration (19,38 UT); (g) K/Na density ratio as a function of height and time; (h) K/Na column
abundance ratio versus time; (i) vertical profile of the K/Na ratio at 19:38 UT.

densities above 500 cm 3 are observed 1.7% of the time, and densities above 1,000 cm ™3 occur with a ~
0.3% probability.

Figure 1 illustrates an example of an extreme K, layer that was observed on the night of 23 July 2013. The time
series of Na and K density profiles (Figures 1a and 1d, respectively) show the Nag and K, layers descending at a
speed of 1-2 km h™" over about 7 h, essentially throughout the night. This is good evidence for a layer with
large-scale horizontal homogeneity and justifies the use of the 1-D model described below. The time series of
Na and K column abundances (Figures 1b and 1e, respectively) show that these grew in a similar fashion over
the course of the night. However, the Na/K column abundance ratio (Figure 1h) reveals that the K column
abundance grew more quickly, particularly after 18:30 UT. This is also clear from inspection of the K density
profile time series (Figure 1d) and the K/Na density ratio profile time series (Figure 1g). In fact, the K column
abundance exceeds 5 x 108 cm™2 at the end of the night, which is an order of magnitude higher than the
40°N zonal average in July (Dawkins et al., 2015). Figure 1c shows the maximum density Na profile, which
occurred 17 min earlier than the maximum K density (Figure 1f). Note also that the peak K layer is much nar-
rower than the peak Na layer and occurs 1-2 km lower. Strikingly, the maximum K density is 1,363 cm >, The
maximum ratio K/Na ratio profile (Figure 1i) shows that the peak value of the ratio is 0.23, that is, ~4 times
larger than the background ratio.

An interesting contrast to the conditions of Figure 1 is shown in Figure 2, where the Na and K layers were
observed by the Yanqing lidar over 13 h during the night of 17 December 2013. Both the Na and K layers
are broader compared to the summertime layers shown in Figure 1, especially on their bottom sides, and
have lower peak heights (Figures 2a and 2d). The column density time series plots (Figures 2b and 2e) show
that the Na and K column densities increased significantly during this night. However, in contrast to Figure 1,
the peak K/Na density ratio (Figure 2g) remained essentially constant around 0.06 at 85 km (Figure 2h), and
the column density ratio (Figure 2h) had a near-constant value of ~0.04. These values are in accord with pre-
vious ground-based and satellite observations (Dawkins et al., 2015; Plane, 2003) and the chondritic K/Na
ratio of 0.06 (Asplund et al., 2009). Note that the layers also peaked at very different times: the Na layer at
15:35 UT with a peak density of 4,800 cm™> at 88 km (Figure 2c) and the K layer at 21:38:05 UT with a peak
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Figure 2. Na and K densities on 17 December 2013: (a) Na density versus height and time; (b) Na column abundance versus time; (c) vertical profile of Na density at
the time of peak Na concentration (15:35 UT); (d) K density versus height and time; (e) K column abundance versus time; (f) vertical profile of K density at the time
of peak of the K concentration (21:38 UT); (g) K/Na density ratio as a function of height and time; (h) K/Na column abundance ratio versus time; (i) vertical profile of the

K/Na ratio at 21:38 UT.
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Figure 3. (a) Zonal wind on 23 July 2013; (b) zonal wind shear on 23 July 2013; (c) zonal wind on 17 December 2013; (d) zonal wind shear on 17 December 2013.
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Figure 4. 1-D model simulation: (a) neutralization rates of Nat K* Fe™, Mg+, and
Si* in the MLT for a background electron density. (b) Na density as a function
of time and height, produced from Na* in a descending sporadic E layer shown
by the dashed white line; (c) same as in Figure 4b but for K; (d) the [K]/[Na] ratio
versus time.

density of ~310 cm™> at 84 km (Figure 2f). That is, the K layer peaked
~6 h later and 4 km lower than the Na layer.

The important difference between the two example cases is that the
Na, and K layers in Figure 1 started descending from around 100 km
(Figures 1a and 1d), whereas in Figure 2, there is no evidence of a des-
cending layer. The Nag and K, layers are therefore very likely to have
been produced from an E layer. Indeed, there is an usually high occur-
rence frequency of E; in the East Asia region during summer (Wu et al.,
2005), which is consistent with satellite observations of a relatively high
occurrence of K layers (Figure 10 in Dawkins et al,, 2015). £ layers form
at wind shears and can then undergo vertical transport by atmospheric
tides (Mathews, 1998). The classical mechanism for E; formation at mid-
latitudes requires a westward wind above an eastward wind, with the
resulting Lorentz force concentrating metallic ions at the null point of
wind shear (Chimonas & Axford, 1968). The E; layer is largely composed
of metallic ions because they are atomic and thus do not undergo dis-
sociative recombination with electrons, unlike ambient NO* and
0," ions.

Figure 3a shows the zonal wind profile time series measured with the
Changping meteor radar on 23 July 2013 (i.e, corresponding to
Figure 1). From 14:30 to 18:30 UT, the null point in the wind shear des-
cended with a velocity of 1-2 km h™", with the westward wind above
and eastward wind below, therefore favoring the convergence of
metallic ions. The maximum negative zonal wind shears (Figure 3b)
are —15.0 ms~' km™' at 92 km at 15:00 UT, —14.1 ms™' km~' at
90 km at 17:00 UT, and —13.6 ms™~ " km ™' at 88 km at 18:00 UT. This rate
of descent corresponds closely to the descent of the K and Nag layers
(Figures 1a and 1d). In contrast, on 17 December 2013, the wind shear
was reversed (eastward wind above westward wind), and the negative
wind shear values were much smaller (Figures 3c and 3d).

We now employ a 1-D model (Bones et al., 2016; Cox & Plane, 1998) to
investigate how Na and K would be released from a descending E;
layer. The ion-molecule chemistry of both alkali metals along with the
major meteoric species Fe, Mg, and Si were included in the model.
The Tables S1-S5 in the supporting information list the relevant reac-
tions and rate coefficients for Na*, K*, Fe*, Mg*, and Si*, respectively
(Plane et al., 2015, 2016; Rollason & Plane, 1998), as well as analytic
steady state expressions (Plane, 2004) for calculating the rate of neutra-
lization of each metal ion as a function of height. These first-order rates
are plotted in Figure 4a, for the case of a background electron density
profile (Bilitza & Reinisch, 2008). There are two points to note. First,
Si* is neutralized more rapidly than the other atomic ions because
the dissociative charge transfer reaction Si* + O3 — SiO + O,* (reaction
4 in Table S5) causes the direct neutralization of Si*. In contrast, while
the other major ions Fe* and Mg* also react with Os (reaction 3 in

Tables S3 and S4, respectively), the resulting FeO* and MgO* ions are much more likely to be reduced back
to Fe™ and Mg* by atomic O (reaction 4 in Tables S3 and S4, respectively), rather than undergoing dissociative
recombination with electrons (reaction 8 in Table S3 and reaction 9 in Table S4, respectively). In fact, Fe* and
Mg* are neutralized more slowly than Na* and K* between 90 and 105 km. This means that during the des-
cent of an E layer down to 90 km, the electron density can remain relatively high, so that the neutralization
rates of Na* and K" are effectively decoupled from the major metallic ions in the E; layer. Second, K* is neu-
tralized 5-10 times more slowly than Na™. This is because K* is a larger ion than Na*, and the resulting weaker
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electrostatic forces cause cluster formation through pressure-dependent association reactions with Ny, O,
and CO; to be slower (Tables S1 and S2); furthermore, the resulting clusters dissociate more rapidly (e.g., reac-
tion 4 in Table S2) unless the temperature is relatively low (Plane et al., 2014). This means that K* will tend to
be neutralized later than Na® as the descending E; layer encounters higher pressures and
lower temperatures.

The E; layer was initialized with relative metallic ion ratios of K":Na*:Mg*:Fe*:Si* = 1:10:35:67:80, based on
measurements by rocket-borne mass spectrometry above 95 km (Kopp, 1997). Background atmospheric den-
sities of Os, O, total density, and temperature were taken from the MESOMOD model (Murray & Plane, 2005).
In accord with the observed sporadic layers in Figure 1, the model E; layer was set to descend from 100 km at
a velocity of 1.7 km h™', taking 5.9 h to reach 90 km (the track of the E; is depicted with a dashed white line in
Figures 4b and 4c). In order to generate the observed K density of ~1,100 cm3on 23 July 2013 (Figure 1¢),
the E layer was initialized with a peak electron density of 1.7 x 10° cm™> and a full width at half maximum of
1.5 km. This electron density would correspond to an ionosonde critical frequency f. = 11.6 MHz, which is
slightly lower than the value of 12.9 MHz measured at 13:00 UT on that day with the Changping ionosonde,
located 40 km from the lidar. The modeled electron density in the E; layer decreased to 8.0 x 10* cm®—that is,
by a factor of ~20—by the end of the model run (12.7 h after the descent commenced). Note that the spora-
dic layer is assumed to have a large horizontal homogeneous extent so that advection does not play a role
while the layer is descending, which is a necessary condition for the 1-D model to be valid.

The modeled release of Na and K from the descending E; is shown in Figures 4b and 4c, and the K/Na ratio in
Figure 4d. As expected, Na is released earlier and higher up than K, which is only released to any significant
extent once the descent of the E layer ceases around 90 km. The resulting sporadic K layer density exceeds
1,100 cm 3, and the K/Na ratio approaches 0.2, as observed (Figure 1). Although the density in the modeled
sporadic Na layer (Figure 4b) is roughly twice that observed, given the simplifications involved in a 1-D repre-
sentation, we consider that the overall agreement is strong enough to support this explanation for the unu-
sually concentrated K layer.

A final point to note is that such high K densities were not observed from the Odin satellite (Dawkins et al.,
2015). However, these spaceborne measurements used spectroscopic observations of K emission in the day-
glow and thus at the local time of the satellite (~0600 and 1800 h), in contrast to the very concentrated K;
layers reported in this study that tend to appear around local midnight.

4, Conclusions

In this study we report observations of narrow layers of atomic K with densities at least 4 times higher than
previously published. The K/Na ratio in these layers is also ~4 times larger than chondritic. The conditions that
appear to be required to generate the K; layers are (1) a strong sporadic E layer that starts descending from
above 100 km; (2) a rate of descent (1-2 km h~") that allows Na* ions to be mostly neutralized above the alti-
tude where the remaining ions are dumped; and (3) a dump altitude around 90 km, where the pressure is
high enough and the temperature cold enough to facilitate the formation of K*.N, and K*.CO, ions, which
can then undergo dissociative recombination with electrons to form K. These conditions were met on the
night of 23 July 2013 (Figure 1), but not on 17 December 2013 (Figure 2), where, although there was signifi-
cant variability in the Na and K layers, the horizontal wind structure did not facilitate formation and descent of
a sporadic E layer, so that the K/Na ratio remained essentially chondritic.
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