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Understanding how species have replaced each other in the past is important

to predicting future species turnover. While past species replacement is diffi-

cult to detect after the fact, the process may be inferred from present-day

distribution patterns. Species with abutting ranges sometimes show a charac-

teristic distribution pattern, where a section of one species range is enveloped

by that of the other. Such an enclave could indicate past species replacement:

when a species is partly supplanted by a competitor, but a population endures

locally while the invading species moves around and past it, an enclave forms.

If the two species hybridize and backcross, the receding species is predicted

to leave genetic traces within the expanding one under a scenario of species

replacement. By screening dozens of genes in hybridizing crested newts, we

uncover genetic remnants of the ancestral species, now inhabiting an enclave,

in the range of the surrounding invading species. This independent genetic

evidence supports the past distribution dynamics we predicted from the

enclave. We suggest that enclaves provide a valuable tool in understanding

historical species replacement, which is important because a major conserva-

tion concern arising from anthropogenic climate change is increased species

replacement in the future.

1. Background
Species thatmeet in nature but geographically exclude one another have parapatric

distributions [1]. While the position of parapatric range boundaries may be

dynamic, their actual movement is a protracted process and has necessarily been

recorded over shallow time frames only [1,2].Wehere argue that the current spatial

arrangement of parapatric species can be informative about distributional shifts in

the more distant past. In particular, we highlight the insight provided by enclaves.

An enclave is formedwhen part of the distribution of onememberof a pair of para-

patric species is isolated inside the range of the other (figure 1). An enclave could

originate via colonization—analogous to a species establishing a peripatric popu-

lation on an oceanic island [3,4]. Alternatively, the enclave might be a relict

distributionpatch of a previously broader distribution, left after incomplete species

replacement—akin to rising sea levels disconnecting a continental island popu-

lation from the mainland [5,6]. The likelihood of either scenario depends on the

interplay between the mean and shape of a species’s dispersal kernel [7] and the

enclave’s distance from the main distribution range [8]. We assert that enclaves

of species with low vagility, relative to the distance between the enclave and the

main range, provide strong a priori support for species replacement. We provide

proof of concept for an enclave system involving newts.

We take advantage of the fact that contact zones for parapatric species tend to

correspond to hybrid zones [1]. When, upon secondary contact, a hybrid zone is

first established, and one of the species possesses a competitive edge over the

other one, this would result in a non-equilibrium phase of species replacement,
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with the hybrid zone moving as a consequence [1,4,5]. Further-

more, for a hybrid zone initially stabilized at an environmental

gradient, this equilibrium phase could be disrupted if climate

change shifts the balance in favour of one of the species [9].

If the species involved show introgressive hybridization, a

moving hybrid zone is predicted to leave a trail of unlinked,

selectively neutral alleles in itswake, derived from thedisplaced

species and inside the territory newly claimed by the expanding

one (initially based on theoretical principles [10], later sup-

ported by simulation [11] and recently backed up by empirical

findings [12]). Under this rationale, the hypothesis of enclave

formation can be tested independently in hybridizing species,

based on the geography of genome-wide interspecific gene

flow: an enclave formed by incomplete species replacement is

expected to be accompanied by a genomic footprint of hybrid

zone movement, while an enclave formed by colonisation is

not consistent with this pattern (figure 1).

We examine an enclave observed in crested newts

(Amphibia: Triturus), located in central Serbia, on the Balkan

Peninsula [13]. Part of the range of T. ivanbureschi (blue in

figure 2a) is detached from the main distribution, because the

range of another species, T. macedonicus (green), intervenes.

The ranges of two additional species, T. cristatus (red) and

T. dobrogicus (orange), border that of T. ivanbureschi in the

north. Both T. ivanbureschi and T. macedonicus colonized the cen-

tral Balkan Peninsula postglacially, as they expanded from

discrete glacial refugia, distant from the enclave [15]. Triturus

cristatus was already in place as it had a glacial refugium in

the southern protrusion of its current range, where it borders

T. ivanbureschi today [16]. Although T. dobrogicus expanded its

range postglacially [17], it is, uniquely among crested newts, a

specialized lowland species [18], and its distribution in the

south is bounded by an elevational ecotone (figure 2b). There-

fore, while T. cristatus or T. dobrogicus represent a biological

barrier north of the enclave, it is unlikely that either species

invaded the range of T. ivanbureschi over a substantial area.

As the distance between the enclave and the main range

of T. ivanbureschi (approx. 83 km) is over 20 times larger than

lifetime dispersal distance (approx. 3.7 km [12]), incomplete

species replacement (rather than long-distance colonization)

is the likely explanation for the enclave’s origin. Because

crested newt species ranges meet at hybrid zones that facilitate

introgression [19], we are in a position to test for a genomic

footprint of hybrid zone movement around the enclave. We

predict that such a genomic footprintwas left byT. ivanbureschi,

where we assume it was superseded by T. macedonicus. We do

not predict a pronounced asymmetry in introgression between

T. ivanbureschi and either T. cristatus or T. dobrogicus, as we

expect T. ivanbureschi’s hybrid zones with these species to

have been relatively stable.

2. Material and methods

(a) Sampling
We included 1–3 individuals (mean 2.645) from 251 Triturus

localities; 664 individuals in total (figure 2a; electronic supplemen-
tary material, table S1). For part of these individuals the full set of
sequence data (n ¼ 308) or (mt) DNAs (n ¼ 283) were available
from previous studies [12,17,20–24], while additional individuals
(n ¼ 73) from Serbia and Bulgaria are studied here for the first
time. We selected 15 reference individuals per species—three indi-
viduals from five localities positioned away from contact zones
and presumed to be unaffected by interspecific gene flow—to
determine whether individual markers are diagnostic (electronic
supplementary material, table S1). We created a Voronoi diagram
in ARCGIS 10 (www.esri.com), where each locality is represented
by a Thiessen polygon that contains the area that is closer to that
particular locality than to any other one (figure 2c).

(b) mtDNA sequencing and analysis
We Sanger sequenced a 658 bp mtDNA fragment for 625
individuals (following [17]) and were able to sequence a 110 bp
internal fragment for 23 individuals following [12]. The clear-cut
geographical distribution of mtDNA allowed us to infer mtDNA
type for the 16 remaining individuals (electronic supplementary
material, table S1). The 658 bp mtDNA fragments were added to
the mtDNA haplotype database of [17] and collapsed into haplo-
types with MACCLADE 4.08 [25]. To assign new haplotypes to
species, we constructed a neighbour-joining phylogeny with
1000 bootstrap replicates in MEGA 5 [26], with the Pyrenean
newt Calotriton asper and the marbled newt T. marmoratus (from
[27]) as outgroups (electronic supplementary material, figure S1;
table S2). Internal 110 bp mtDNA fragments were aligned with
the set of 658 bp haplotypes and this set was then trimmed accord-
ingly. By removing redundancy in MACCLADE, the internal
fragments could be allocated unambiguously to species-diagnostic
mtDNA type.

(c) Sequencing nuclear DNA
For all 664 individuals, we sequenced 52 nuclear markers follow-
ing [22]. Details are in electronic supplementary material, text S1.

(d) Bayesian clustering analysis
We used STRUCTURE 2.3.3 [28] to estimate the fraction of ancestry for
each individual derived from the four parental species based on
nuclear DNA data. We used the admixture model in combination
with the correlated allele frequencymodelwith 1 000 000 iterations,
after 250 000 iterations of burn-in, and ran 10 replicates. An initial
STRUCTURE analysis on the set of reference individuals, in which
we allowed the number of genepools k to vary from 1–20 (with
the upper limit defined by the total number of localities included),
confirmed k ¼ 4 as the most likely number of genepools under

(a)

(b)

Figure 1. Two hypotheses on enclave formation in a pair of parapatric

species. In (a) a blue species founds a population within the range of a

green one via long-distance colonization, by leapfrogging across a stable con-

tact zone. In (b) a relict population of a receding blue species persists locally

within the range of a superseding green species, behind a moving contact

zone, which was initially positioned at the grey dotted line. If the two species

hybridize, a genomic footprint of hybrid zone movement would be expected

under the moving contact zone scenario (in the hatched area in (b)), but not

under the stable contact zone scenario. (Online version in colour.)
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Evanno’s Dk criterion [29], as implemented in CLUMPAK [30]. Next
we conducted a STRUCTURE run on the full set of individuals, in
which we fixed k to 4. The lowest Q-value with which a reference
individual was allocated to its respective species was Q ¼ 0.9794.
Localities allocated to two (or in some cases three) species with
Q. 0.0206 (i.e. 1–0.9794) were considered genetically admixed.
STRUCTURE scores (with replicates summarized in CLUMPAK) are pre-
sented in electronic supplementary material, table S1 and locality
averages are plotted in figure 2b.

(e) Hybrid index, heterozygosity and ancestry, and test

for asymmetric introgression
We determined the evolutionary origin of alleles based on our 15
reference individuals per species (see section on sampling). We
found 23 nuclear DNA markers to be diagnostic, i.e. exhibiting
fixed allelic differences between T. ivanbureschi (the species with
the enclave) and the other three species. We determined the pro-
portion of diagnostic T. ivanbureschi alleles present at each
locality, i.e. the mean hybrid index (electronic supplementary
material, table S1), and plotted this on a map (figure 2c). For pair-
wise species comparisons of T. ivanbureschi versus the other three
Triturus species, we determined individual heterozygosity (the

fraction of markers heterozygous for alleles from each parental
species) and ancestry (the fraction of alleles derived from each par-
ental species) using the R [31] package ‘HIest’ [32]. Locality
averages (electronic supplementary material, table S3) were
plotted in STATISTICA 7 (www.statsoft.com) (figure 3). To test if
introgression between species pairs was significantly asymmet-
rical we determined, for each locality, whether there was
introgression of nuclear DNAalleles andwhat the fraction of intro-
gressed alleles was (electronic supplementary material, table S3).
We used a Fisher’s exact test for the presence/absence data and
a one-tailed Mann–Whitney U test for the quantitative data (elec-
tronic supplementary material, table S5). To avoid the
confounding effects of gene flow from other Triturus species, we
excluded localities showing ancestry of additional Triturus species
(based on the STRUCTURE analysis or, in the case of low frequency
introgression, inferred from the genetic composition of neighbour-
ing Thiessen polygons; electronic supplementary material, table
S4) from pairwise comparisons.

( f ) Geographical cline analysis
In pairwise species comparisons forT. ivanbureschi versus the other
three species, excluding localities showing ancestry of additional
Triturus species (electronic supplementary material, table S4), we

500 km

50 km

STRUCTURE scores

sample size = 1–3

T. ivanbureschi

alleles 0–100%

Triturus cristatusTriturus dobrogicus

Triturus ivanbureschiTriturus macedonicus (a)

(b) (c)

Figure 2. A Triturus enclave in south-eastern Europe. In (a) the range of the genus Triturus is shown, with approximate outlines of the ranges of the four species under

study shown in colour (based on ref. [14]). The ranges of additional Triturus species are in dark grey. Dots are sampled localities. The box delineates part of the Balkan

Peninsula, highlighted in (b,c). In (b) pie diagrams illustrate the average fraction of ancestry derived from the four species per locality, based on a STRUCTURE analyses of 52

nuclear DNA markers, with pie slices coloured according to species. Pie diameter indicates sample size. Grey shading reflects elevation. The thick black line denotes the

Danube River, which connects the western and eastern segments of the range of T. dobrogicus. In (c) the colour of the border of Thiessen polygons specifies which species is

the genetically dominant one, based on the STRUCTURE results. The blue shading of polygons reflects the proportion of alleles diagnostic for T. ivanbureschi present at a

location (i.e. the average hybrid index). Dots reflect localities and are coloured according to mtDNA type. (Online version in colour.)
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determined the 0.5 contour for the hybrid index using the ‘akima’
package [33] in R. We calculated the minimum straight-line dis-
tance of each locality from that contour in ARCGIS, and gave
distances for T. ivanbureschi a positive sign and distances for
other species a negative sign (electronic supplementary material,
table S3). For the resulting one-dimensional transect [34] we then
fitted a geographical cline to the hybrid index in the R package
‘HZAR’ [35]. Frequency was fixed at the ends of the cline to 1
(pure T. ivanbureschi) and 0 (pure for the other species). The
hybrid index is the proportion of diagnostic alleles, calculated
from 23 diploid markers (minus a few missing genotypes) in one
to three individuals. Therefore, it was fitted with binomial error

distribution and sample size equal to the total number of geno-
types (loci � individuals) per locality. Although markers are
unlikely to be closely linked, they may not behave independently.
Using the number of genotypes rather than the number of alleles
makes our test conservative, despite this constraint. We tested
five models, differing in complexity: no tail, left tail only, right
tail only, mirror tails or both tails estimated separately. We used
the lowest Akaike information criterion score corrected for small
sample size to select the best one; in each case the score of the
chosen model was at least two likelihood points lower than that
of the next best fitting model (figure 4; electronic supplementary
material, table S6).
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Figure 3. Heterozygosity versus ancestry plots, comparing Triturus ivanbureschi with three congeners. The left and right corners of the triangle correspond to the

two parental species and the upper corner to an F1 hybrid. Circles represent localities and are coloured according to the genetically dominant species based on the

STRUCTURE analysis. We distinguish between localities from the core of the range (dark, filled circles), i.e. localities of which the Thiessen polygon (figure 2c) only

borders others in which the same species is genetically dominant (based on STRUCTURE results), or from the edge of the range (light, open circles), i.e. localities for

which the Thiessen polygon borders at least one locality where the alternative species is genetically dominant. Many T. macedonicus core localities show introgres-

sion of T. ivanbureschi alleles (highlighted with dashed ellipse) but core localities of other species (except a single T. cristatus one) do not show such introgression.

The blue crosses represent T. ivanbureschi core localities from the enclave. (Online version in colour.)
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Figure 4. Geographical cline analysis, comparing Triturus ivanbureschi with three congeners. Two-dimensional sampling was collapsed into a one-dimensional

transect, based on the shortest distance of localities to a 0.5 hybrid index contour. Geographical clines were fitted to the mean hybrid index for each locality.

The 95% credible cline region is shown in grey and the sampling sites are denoted by vertical bars. The dotted line signifies a hybrid index of 0.5. The

chosen cline models, with tail parameters if relevant, are noted for each cline fit. The tail parameters d and t represent the distance from the cline centre

to the tail and the tail slope. Two-log-likelihood-unit support limits are presented in parentheses. (Online version in colour.)
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3. Results
Bayesian clustering analysis with STRUCTURE based on 52

nuclear DNA markers allows us to delineate the enclave of

T. ivanbureschi (figure 2b). The range ofT.macedonicuspenetrates

north-eastwards, into the range of T. ivanbureschi and right up

to the range of T. cristatus, isolating the T. ivanbureschi enclave.

Several localities between the enclave and the main range of

T. ivanbureschi show genetic admixture among all three species.

A closer look at the 23 nuclear DNA markers that are diagnos-

tic for T. ivanbureschi versus the three other species reveals a

substantial number of T. ivanbureschi alleles in the core of the

range of T. macedonicus, but not the other way around

(figure 2c). Similarly, the mtDNA of T. ivanbureschi protrudes

into the range of T. macedonicus (figure 2c). No such asymmetry

is apparent when comparing T. ivanbureschi with T. dobrogicus,

while foreign alleles reach inside the range of T. cristatus only

over a short distance, just north of the enclave. Plots of hetero-

zygosity versus ancestry support the pattern of T. ivanbureschi

alleles reaching further into the range of T. macedonicus than

the ranges of the other two species (figure 3).

The asymmetry in nuclear DNA introgression from

T. ivanbureschi into T. macedonicus is statistically significant,

based on either the presence (Fisher’s exact test, p ¼ 0.000) or

the intensity (one-tailed Mann–Whitney U test, U ¼ 1423.5;

Z ¼ 23.11; p ¼ 0.000) of introgression. There is no such asym-

metric nuclear DNA introgression into T. cristatus ( p ¼ 0.554;

U ¼ 1071.0; Z ¼ 20.77; p ¼ 0.341) or T. dobrogicus ( p ¼ 1.000;

U ¼ 810.5; Z ¼ 0.47; p ¼ 0.444). To remove the influence of a

potential bias in sampling, we collapse the two-dimensional

sampling into a one-dimensional transect, based on the short-

est distance of localities to a 0.5 hybrid index contour. One-

dimensional geographical clines, fitted to a hybrid index

derived from the 23 diagnostic nuclear DNA markers for

T. ivanbureschi versus each of the other three species, differ in

the models that best fit the data. Only for T. macedonicus was

an asymmetric cline model preferred, with a substantial intro-

gression of T. ivanbureschi alleles into T. macedonicus, but not in

the opposite direction (figure 4).

4. Discussion
Guided by the enclave observed in our crested newt system,we

hypothesized a past parapatric range shift, in which T. macedo-

nicus intersected the range of T. ivanbureschi and excised the

enclave. As the two species must have hybridized in the pro-

cess, we could test this scenario by exploiting the pattern of

interspecific gene flow. In line with predictions for moving

hybrid zones based on theory [10] and data simulation [11],

we exposed a genomic footprint of hybrid zonemovement, left

by T. ivanbureschi, where it has been replaced by T. macedonicus.

While cytonuclear incompatibilities or dispersal effects might

cause asymmetry in mtDNA introgression and selection

might cause asymmetry for any given locus (while not necess-

arily in the same direction), a genome-wide shared asymmetry

in introgression over an extensive area strongly favours a

scenario of species displacement with hybridization [12].

Hence, the crested newt case illustrates the predictive power

of enclaves for inferring past species replacement.

Enclaves are not often reported, but, considering that three

are known in Triturus newts alone (see [36,37] for two other

species pairs), this does not necessarily mean that they are

rare. Enclaves may well be transient, with species replacement

not prevented butmerely postponed locally. Indeed, all individ-

uals from the T. ivanbureschi enclave show some degree of

genetic admixture with other crested newt species. The ephem-

eral nature of enclaves is illustrated byapreviously documented

enclave (established from museum specimens) having been

taken over by an invader over a period of roughly 50 years

[38]. Furthermore, ‘islands of alleles’ derived from a displaced

species that was genetically swamped out by a competitor,

could be regarded as genetic fossils of a past enclave [39]. In

general, being small and isolated from the main distribution

makes enclave populations more susceptible to the extinction

risks associated with habitat fragmentation [40].

Once an enclave is identified, it can provide crucial insights

into historical biogeography. While hybrid zones have been

tracked at the scale of decades [4], they are thought to stabilize

quickly at environmental density troughs [10,41]. Enclaves,

however, indicate hybrid zone movement over extended

periods of time—an opportunity that has as yet received

little-to-no attention in the hybrid zone literature [4,11]. Under-

standing past shifts in the mutual range boundaries of

parapatric species is particularly relevant in light of the

expected future increase in such shifts in response to man-

made habitat alteration and climate change [9,42].
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