

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18745

The contribution was presented at ICTTL 2015 :
http://ttl2015.irisa.fr/

To cite this version : Ben Slimane, Khaled Skander and Comte, Alexis and
Gasquet, Olivier and Heba, Abdelwahab and Lezaud, Olivier and Maris, Frédéric
and Valais, Maël Twist your logic with TouIST. (2015) In: 4th International
Congress on Tools for Teaching Logic (ICTTL 2015), 9 June 2015 - 12 June 2015
(Rennes, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/141498444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Twist your logic with TouIST

Skander Ben Slimane1, Alexis Comte1, Olivier Gasquet1,

Abdelwahab Heba1, Olivier Lezaud1, Frederic Maris1, and Mael

Valais1

1 University Paul Sabatier

Toulouse, France

{gasquet,maris}@irit.fr

Abstract

SAT provers are powerful tools for solving real-sized logic problems, but using them requires solid

programming knowledge and may be seen w.r.t. logic like assembly language w.r.t. programming.

Something like a high level language was missing to ease various users to take benefit of these

tools. TouIST aims at filling this gap. It is devoted to propositional logic and its main features

are 1) to offer a high-level logic langage for expressing succintly complex formulas (e.g. formulas

describing Sudoku rules, planification problems,. . .) and 2) to find models to these formulas

by using the adequate powerful prover, which the user has no need to know about. It consists

in a friendly interface that offers several syntactic facilities and which is connected with some

sufficiently powerful provers allowing to automatically solve big instances of difficult problems

(such as time-tables or Sudokus). It can interact with various provers: pure SAT solver but

also SMT provers (SAT modulo theories - like linear theory of reals, etc) and thus may also be

used by beginners for experiencing with pure propositional problems up to graduate students

or even researchers for solving planification problems involving big sets of fluents and numerical

constraints on them.

Keywords and phrases Interface High-level logic formalization SAT-prover

1 The history

O. Gasquet and F. Maris teach at University Paul Sabatier in Toulouse, France. They

teach logic at different levels starting from introductory courses of propositional logic up

to advanced topics for graduate students, like modal logic or logic-based planning. S. Ben

Slimane, A. Comte, A. Heba, O. Lezaud and M. Valais are graduate students of the same

university. They have been implementing TouIST during three months of their MSc.

Motivation of students

At the beginning of undergraduate studies, we (teachers) found that students’ motivation

may be increased by showing them that logic is useful and powerful for computer scientists

and that computer science does not only consist in hacking C-code or JAVA. Classically, logic

is motivated by abstract examples or, at the best, by toy examples. At some time, we thought

that it would be preferable to show and not only tell them that with little knowledge, logic

can be used to solve difficult problems whose size prevents humans from solving them by hand

easily or would require rather complex programming in C or any other programming language.

© Skander Ben Slimane, Alexis Comte, Olivier Gasquet

Abdelwahab Heba, Olivier Lezaud, Frederic Maris, and Mael Valais;

licensed under Creative Commons License CC-BY

4th International Conference on Tools for Teaching Logic.

SAToulouse’s genesis

In ICTTL’2011, we presented SAToulouse [2], devoted to propositional logic whose main

features were 1) to offer a high-level logic language for expressing succinctly complex formulas

and 2) to find models of these formulas by using a powerful SAT prover. But SAToulouse

had several drawbacks to be corrected.

Of course, there are loads of logic tools like provers, proof assistants, truth table editors,. . . on

the Internet, even PROLOG could have been used, but none fits our requirements which are:

the tool must be very easy to install and to use, with no complex syntax;

the prover can be used as a black box without knowing how it works;

no normal forming, ordering on clauses, or PROLOG cut must be needed;

only little knowledge in logic should be necessary.

As we could not find an existing tool fulfilling these requirements, in 2010 we started

to implement ours, and we came to the idea of just developing an interface that allows to

very comfortably use a powerful SAT-prover (namely SAT4J [1]): this tool had been called

SAToulouse and is described in [2]. With this tool, students could experiment by themselves

that a logical language is not only descriptive but may lead to computations that solve

real-life problems. In particular, with SAToulouse, they could solve Sudokus quite easily,

as well as many other combinatorial problems such as time-table, map coloring, electronic

circuits design,. . . .

Here are the main facilities that SAToulouse offered:

Input formulas need not to be in clausal form and arbitrary connectives may be used,

normal forming is done dynamically during keyboarding of the user;

Big conjunctions and disjunctions facilities are offered like in:
∧

i∈{1..9}

∨

j∈{1..9}

∧

n∈{1..9}

∧

m∈{1..9},mÓ=n

(pi,j,n → ¬pi,j,m)

Running the solver only consists in clicking a button;

The tool displays a model in the syntax of the input formula.

Then it is possible to show the power of propositional logic to students that have been trained

a bunch of hours to formalize sentences in logic and have acquired basic notions of validity

and satisfiability to automatically solve some Sudokus.

Practical work with SAToulouse

But this is not the whole story, since the same SAT-solver may be used for solving many other

combinatorial problems as easily as they just did for Sudokus: they just have to formalize the

constraints. Our students are asked to do so for: time-table, map coloring,. . . SAToulouse has

been used during three years now by about 400 students with great satisfaction. Particularly,

students used it to perform long-term homeworks in the spirit of programming projects: we

give them a logical problem to solve (too big to be solved by hand), they must formalize it

and then use this formalization to solve the problem. For example, a problem of storage of

chemicals that must be stored in same/contiguous/non-contiguous rooms according to their

degree of compatibility. Students must solve a case involving a lot of chemicals.

SAToulouse’s limitations and TouIST’s genesis

But during these years, we noticed some painful limitations of SAToulouse: many bugs,

flaws in the interface, lack of modularity (if one wishes to change the SAT prover used),

ambiguity and limitations of its language, etc.

For example, problems involving pigeon-holes principle like the rules of the Takuzu game1

which requires to count 0’s and 1’s could not be easily formalized: facilities to express

something like “exactly 5 among 10 propositions are true” were missing.

SAToulouse do not offer the possibility to browse all the models provided by the prover,

it only returns one.

Lessons learned from two years using SAToulouse are that many of our CS students

clearly become aware that logic has real applications w.r.t. problem solving, and many of

them gained ability in formalizing problems. But remaining flaws of SAToulouse made

debugging really hard because only one model is displayed and because of the raw way the

models is displayed, together with the poor editing capabilities it has. Moreover only pure

combinatorial problems could be handled which heavily limitates the wide range pretention

of SAToulouse w.r.t. real world problems.

Another drawback of SAToulouse not specifically linked to logic teaching, was its inability

to be used from the command line: researchers or engineers who wish to use it intensively

would find it tedious to type input problems. Last, extension to richer theories is also

something that may interest researchers, engineers or graduate students, since SAToulouse

is definitely not suited for satisfiability modulo theories or for solving planification problems

though the same architecture of the software could be used by just changing the solver used.

A few months ago, we started to go for a whole new software which would fulfill all these

demands. It would be called TouIST which stands for TOUlouse Integrated Satisfiability

Tool and should be pronounced “twist”.

TouIST is of course publicly available for download from the following site

https://github.com/olzd/touist/releases

To sum it up, here are the features TouIST offers that SAToulouse does not:

definition of domain sets:
∧

i∈A vs.
∧

i∈{P aris,London,Roma,Madrid}

multiple binding of indexes:
∧

i∈A,j∈B vs.
∧

i∈···

∧

j∈···

rich computations on indexes as well as on domain sets
∧

i∈(A∪(B∩C))

built-in pigeon-holes primitives: “atLeast” (resp. “atMost”, “exact”) so many values are

true among these values

predicates also may be variables ranging over domain sets:
∧

X∈{A,B},i∈{1,2} X(i) vs.
∧

i∈{1,2}(A(i) ∧ B(i))

specialized literals targeting constraints between integer or real numbers

easy browsing of models successively computed by the solvers

regular expressions allowing filtration of literals under interest

possibility to use the software on command line and/or batch

many editing facilities and improvements

2 Quick survey of TouIST

TouIST is made of three modules, but the standard user will only see one of them: the

interface. In the sequel we mainly insist on the latter rather than on the translator and the

solver. The global architecture looks as pictured in figure 1:

With TouIST one accesses a powerful and friendly editor for editing complex logical

formulas and various constraints like:

1 Also known as Binero. http://fr.wikipedia.org/wiki/Takuzu

TTL2015

Figure 1 TouIST architecture

∧

i∈{1..9}

(Pi −→ Qi+1),

which comfortably abbreviates (P1 −→ Q2) ∧ (P2 −→ Q3) ∧ . . . ∧ (P9 −→ Q10).

Once it has been given to the interface, a set of formulas may be checked for satisfiability:

the interface would send it to the provers which would send back a satisfying model, displayed

as shows figure 2 if such models exist. Then through the interface, the user can for example

ask for other models (button “Next” of the interface).

Figure 2 Model display

Models returned by the prover are “total” ones: each variable appearing in the formulas

sent to the prover is assigned a value. The user may select only True propositions or only

False ones. She can also select subsets of the variables under interest by typing a regular

expression filtering them.

3 Details of what can be done with TouIST

3.1 Domain sets

With time, we noticed that we often need to write things like

∧

i∈{1..9}

∧

j∈{1..9}

∧

m∈{A,B,C,D,E,F,G,H,I}

Pi,j,m −→
∧

n∈{A,B,C,D,E,F,G,H,I}|mÓ=n

¬Pi,j,n

If one read Pi,j,m as “there is a letter m in cell (i, j)” of some 9× 9 grid, the above formula

expresses that there is at most one letter among ‘A’ ... ‘I’ in each cell.

These sets {1..9} and {A, B, C, D, E, F, G, H, I} are domain sets, with TouIST the user

may define as many domain sets she wants, e.g.:

N=(1..9) L=(A,B,C,D,E,F,G,H,I)

and then write the above formula as
∧

i∈N

∧

j∈N

∧

m∈L Pi,j,m −→
∧

n∈L|mÓ=n ¬Pi,j,n

Moreover, usual operations on sets (∪, ∩, \, . . .) can be used to define other sets.

3.2 Propositional formulas

The formulae of TouIST are based on propositional variables (that can have indices) and

usual logical operators (∧, ∨, −→, ¬, ↔). Thus one can type usual simple formulas like

Rain −→ Clouds. But in addition, we provide high-level logical operators that allow to

express complex statements in a very compact form.

Generalized conjunctions and disjunctions

They allow to express conjunctions and disjunctions over formulas containing parameters

that vary, e.g.
∧

i∈N Pi, where N is the domain set defined above. It represents P1 ∧ P2 ∧ . . . ∧ P9.
∨

i∈E Pi.

Of course, these operators may be nested, as in
∧

i∈N

∧

j∈N

∨

m∈L Pi,j,m stating that in

each cell there is at least one letter.

Pigeon-hole statements

They were one of the “left-to-the-future” topic of [2]. These less classical logical operators

are available in TouIST: they allow to drastically lower the size of some formulas, they are:

6, > and <>.

The following examples will describe their meanings:

6
2
i∈N Pi represents “for at most two values of i ∈ N P (i) is true;

>
2
i∈N Pi represents “for at least two values of i ∈ N P (i) is true;

<>2
i∈N Pi represents “for exactly two values of i ∈ N P (i) is true;

Generalized disjunction is in fact a special case of those: at least one is true, conjuction too:

at most 0 are false, and exclusive or may be viewed as: exactly one among two is true.

Let us recall that with basic logical operators and with N containing 9 elements, 63
i∈N Pi

would necessitate a formula containing 84 propositions Pi since it amounts to choosing 3

among 9 which yields
(

9
3

)

possibilities, and neither
∧

and
∨

would help a lot.

Constraints and calculus on indexes

Often we need to add constraints on indexes, for example:
∧

i∈E

∧

j∈E|iÓ=j

Pi,j

which means that Pi,j is true whenever i Ó= j.

This was the only constraint available in SAToulouse, now in TouIST the range of

possibility has been widely enriched. Constraints may include usual comparaison operators

like <, >, ≤, ≥, Ó=, = and these comparisons may not only apply to indices but to any

arithmetic expressions involving indexes and +, −, ∗, /, mod ,
√

. Expressing a sentence

like “each cell (i, j) contains a number which is not equal to i+ j” will give:
∧

i∈N

∧

j∈N

∨

k∈N |k Ó=i+j

Pi,j,k

TTL2015

Of course, all these sentences may be expressed with usual plain logical operators, but this

would be an aweful work to do. Nevertheless, students must know what is behind the scene,

and that such a compact formula abbreviates something long and dull like:

P1,1,1 ∨ P1,1,3 ∨ P1,1,4 . . . P1,2,1 ∨ P1,1,2 ∨ P1,2,4 ∨ . . .

3.3 Technical aspects

Input language vs display language

Formulas as seen above are written in the display language (LATEX-style), but all those

symbols are not available on keyboards, thus for writing formula and domain sets, the user

will use the input language. For example, the above formula together with the associated set

N will be typed as (variables are prefixed with $):

bigand $i in $N , $j in $N

bigor $k in $N when $k < $i+$j :

P($i,$j,$k))

end

end

But TouIST displays it in LATEX-style as seen in the right panel shown in figure 3. The

definition of the set N is done in the Sets tab.

Figure 3 LATEX style display

Also, formulas may either be hand-typed in the editor window, or introduced in a sort of

syntax-directed editor, by progressively refining the syntax tree, or else they can be imported

from some external file.

4 Advanced topics for graduate students

In what follows, we very briefly present some advanced features of TouIST. They may rather

interest researchers, engineers, graduate students and their teachers. They concern SMT

(SAT modulo theories), Planning as SAT and their combination Planning as SMT.

4.1 SMT: SAT modulo theories

Some combinatorial problems require nevertheless to deal with some calculus over natural or

real numbers. This can be done using only propositional logic (e.g. 2+3 = 5 may be encoded

by ADD2,3,5), but it is very uncomfortable as soon as there are more than a few additions

to be made. Do not even mention products or more complex operations. The idea behind

SMT genesis has been to combine SAT solvers with arithmetic solver in order to improve the

treatment made to the arithmetic part of reasoning. In many cases, it will not only improve

the efficiency of the prover, but will also allow to express arithmetic constraints of problems

in a drastically more compact way.

Think of the Kamaji game2 where the player must group adjacent numbers in a grid so

that their sum is equal to some fixed number. Solving the game essentially requires logical

reasoning but still needs a few arithmetic (addition).

Then if xi,j for each cell (i, j) is an integer and G(i, j, i, k) represents the fact that cells

(i, j) to (i, k) of line i form a group, the sum constraint may be expressed as: Σm∈Exi,m = N

where N is the fixed number and E is {j, j + 1, . . . , k}. Pure propositional logic is definitely
unsuited for such sentences!

4.2 TouIST for classical planning as SAT

In Artificial Intelligence, planning is a cognitive process to automatically generate, through a

formal procedure, an articulated result in the form of an integrated decision-making system

called plan. The plan is generally in the form of an organized collection of actions and

it must allow the universe to evolve from the initial state to a satisfactory state, the goal.

Propositional planning as SAT has been introduced by Kautz and Selman in [4].

One important difference of TouIST compared with SAToulouse is its ability to take

into account both logic formulas and domain sets. For example, if one wants to solve a

particular planning problem, SAToulouse is easy to use for describing the problem and

solving it via a SAT solver. But in order to solve several generic planning problems, we can

take advantage from the flexibility of TouIST which will allow the user to describe a generic

solving method with rules encoded as formulas and to use domains sets to describe each

particular planning problem. Numerous encoding rules for planning problem resolution have

already been proposed [4, 5, 7]. As an example of such a rule we give below an encoding of

frame-axioms. If a fact is false at step i-1 of a solution plan and becomes true at step i, then

the disjunction of actions that can establish the fact at step i of the plan is true. That is, at

least one of the actions that can establishes the fact should have been applied.

∧

i∈{1..length}

∧

f∈Facts

(¬f(i − 1) ∧ f(i)) ⇒
∨

a∈Actions/f∈Effects(a)

a(i)

4.3 TouIST for temporal planning as SAT (modulo unquantified
rational difference logic)

Moreover, in addition to SAT, our new platform TouIST is able to handle theories like

difference logic or linear arithmetic on integer or real numbers, and call a SMT solver to

find a solution. To be solved, real world temporal planning problems require to represent

continuous time, and so, the use of real numbers in logic encodings. TouIST can also be used

to solve such problems involving durative actions, exogenous events and temporally extended

goals, for example with encoding rules proposed in [6]. We give below an encoding of temporal

2 http://fr.wikipedia.org/wiki/Kamaji

TTL2015

mutual exclusion of actions. If two actions respectively producing a proposition p and its

negation are active in the plan, then the time interval [τ(a |→ p), τ(a →| p)] corresponding

to the activation of p, and the time interval [τ(b |→ ¬p), τ(b →| ¬p)] corresponding to the

activation of ¬p are disjoint.

∧

a∈Actions

∧

b∈Actions

∧

f∈F acts|f∈Effects(a)∧¬f∈Effects(b)

[(a ∧ b) ⇒ [(τ(b →| ¬f) < τ(a |→ f)) ∨ (τ(a →| f) < τ(b |→ ¬f))]]

5 Conclusion

As far as we are aware, there is no other tool targeted at the same large audience, neither at

the same wide class of problems, neither with the same comfort. Most existing pedagogical

tools (either implementation of truth-tables or semantic tableaux) that could do the job of

searching a model cannot efficiently handle big problems, and real tools able to deal with

them are definitely not designed to be used by beginners in logic, and not even by most

graduate students. Advanced tools designed for graduate topics, like Mozart [8] or Alloy [3]

have a steep learning curve that may dissuade beginners and non-specialist users.

We believe TouIST will be useful for beginners in logic as well as for advanced users

thanks to its large scope of applications and to its ease of use.

References

1 Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. JSAT, 7(2-3):59–6, 2010.

2 Olivier Gasquet, François Schwarzentruber, and Martin Strecker. Satoulouse: the computa-

tional power of propositional logic shown to beginners. In P. Blackburn, H. van Ditmarsch,

M. Manzano, and F. Soler-Tosca, editors, Third International Congress on Tools for Teach-

ing Logic (ICTTL’2011), volume 6680 of Lecture Notes in Computer Science, pages 77–84.

Springer, 2011.

3 Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,

2006.

4 Henry Kautz and Bart Selman. Planning as satisfiability. In IN ECAI-92, pages 359–363.

Wiley, 1992.

5 Amol Dattatraya Mali and Subbarao Kambhampati. On the utility of plan-space (causal)

encodings. In Proceedings of the Sixteenth National Conference on Artificial Intelligence

and Eleventh Conference on Innovative Applications of Artificial Intelligence, 1999, pages

557–563, 1999.

6 Frédéric Maris and Pierre Régnier. Tlp-gp: New results on temporally-expressive planning

benchmarks. In International Conference on Tools with Artificial Intelligence (ICTAI),

volume 1, pages 507–514. IEEE Computer Society, 2008.

7 Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satisfiability: Parallel plans

and algorithms for plan search. Artif. Intell., 170(12):1031–1080, 2006.

8 Peter Van Roy, editor. Multiparadigm Programming in Mozart/Oz, Second International

Conference, MOZ 2004, Charleroi, Belgium, October 7-8, 2004, Revised Selected and In-

vited Papers, volume 3389 of Lecture Notes in Computer Science. Springer, 2005.

