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Post-prognostics decision making in distributed MEMS-based
systems

Haithem Skima1
· Christophe Varnier1

· Eugen Dedu1
·

Kamal Medjaher2
· Julien Bourgeois1

Abstract In this paper, the problem of using prognostics

information of micro-electro-mechanical systems (MEMS)

for post-prognostics decision in distributed MEMS-based

systems is addressed. A strategy of post-prognostics decision

is proposed and then implemented in a distributed MEMS-

based conveying surface. The surface is designed to convey

fragile and tiny micro-objects. The purpose is to use the prog-

nostics results of the used MEMS in the form of remaining

useful life to maintain as long as possible a good performance

of the conveying surface. For that, a distributed algorithm for

distributed decision making in dynamic conditions is pro-

posed. In addition, a simulator to simulate the decision in the

targeted system is developed. Simulation results show the

importance of the post-prognostics decision to optimize the

utilization of the system and improve its performance.
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Introduction

A failure in an engineering system results not only in a

loss of timely services and productivity to the costumers,

but also in safety and environmental problems, for exam-

ple, aircraft crash due to engine failure, rail accident due

to bearing failure, etc. This risk emphasizes the need of

maintaining engineering systems before a failure could hap-

pen. For that reason, maintenance strategies have progressed

rapidly and shifted from unplanned breakdown mainte-

nance to preventive maintenance, then to condition-based

maintenance (CBM) and recently to predictive maintenance

(PM).

Unlike the traditional maintenance strategies (breakdown

and preventive maintenance), for which interventions are per-

formed after the occurrence of the failure or regardless of the

system status, the CBM is based on the current health state

of the system for deciding maintenance interventions (Mont-

gomery et al. 2012). In the case of PM, the current health

state is projected into the future to predict future mainte-

nance actions (Montgomery et al. 2012). These two smart

policies aim to improve the reliability, the availability and the

security of the system while reducing its maintenance costs.

Therefore, prognostics becomes a necessary step to anticipate

and predict the time to the failure of a degrading equip-

ment. The implementation of these maintenance strategies

requires a scientific approach involving different tasks such

as condition monitoring, modeling, analysis and decision

making. These tasks can be performed within the prognostics

and health management (PHM) framework (Mosallam et al.

2014).

PHM is the combination of seven modules that collectively

enable to link failure mechanisms with life management

(Fig. 1). It is a discipline that deals with the study of a sys-

tem failure mechanisms to better manage its health. Among
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Fig. 1 Prognostics and health management cycle (Lebold and

Thurston 2001)

the PHM modules, prognostics have attracted significant

research interest due to the need of models for accurate pre-

diction for different applications (Mosallam et al. 2014).

It is defined by the PHM community as the estimation

of the Remaining Useful Life (RUL) of physical systems

based on their health state and their future operating condi-

tions. The RUL estimation can be done by using three main

approaches (Benkedjouh et al. 2015): data-driven prognos-

tics (Zhang et al. 2013), model-based prognostics (He et al.

2012) and hybrid prognostics (Brezak et al. 2012).

Although the benefits of the PHM are related to the deci-

sion module, research on how to use the prognostics results

for decision is in its early stages. The purpose of the decision

module of the PHM is to determine appropriate maintenance

actions and to choose an appropriate system configuration

in response to prognostics predictions (Asmai et al. 2010;

Balaban and Alonso 2012; Chretien et al. 2015; Iyer et al.

2006).

In this paper, we focus on using already obtained prognos-

tics results to perform decision making. Our targeted system

consists in a distributed MEMS-based conveyor designed to

convey fragile and tiny micro-objects. It is a surface com-

posed of an array of blocks that communicate together to

fulfill a common mission, which is the transport of objects.

It is important to notice that there is no work in the liter-

ature dealing with post-prognostics decision in distributed

systems. In the targeted conveyor, the critical component

that needs to be monitored and to anticipate its failures by

calculating its RUL is the MEMS. To do so, in a previous

work (Skima et al. 2016b), the data acquisition, data pro-

cessing and prognostics (RUL estimation) steps of the PHM

cycle were applied to the MEMS used in the conveyor. The

objective in this paper is to exploit the obtained prognostics

results to ensure continuity of operation of our distributed

conveyor, optimize its usage and increase its lifetime.

The paper is structured in six sections. Next section

presents a brief literature review related to post-prognostics

decision and the proposed strategy for distributed systems.

The targeted distributed system and the decision algorithm

are presented in “Implementation in a distributed MEMS-

based conveyor” Section. The developed simulator and

the simulation results are presented respectively in “The

DiMEMS Simulator” and “Simulation and results” Sections.

Finally, conclusions are drawn in “Conclusion” Section.

Post-prognostics decision

In the PHM context, the decision making consists in exploit-

ing the results of the prognostics step to determine the

appropriate actions, such as maintenance interventions, mis-

sion reconfiguration, etc. The objective of this type of

decision is to optimally use the available information to min-

imize costs and avoid failures.

Several research works dealing with the post prognostics

decision were published. These works concern various appli-

cations, for example aerospace (Balaban and Alonso 2012;

Camci et al. 2007), wind turbines (Haddad et al. 2011; Vieira

et al. 2012), batteries (Saha et al. 2011), and electronic sys-

tems (Barros et al. 2003; Sandborn 2005). The three main

decisions used in these applications are: (1) the maintenance

optimization, (2) the control and (3) the missions reconfigu-

ration, presented in the following.

Maintenance optimization

Most of the research works related to the decision part of

the PHM focus on the maintenance optimization. This type

of decision consists in using prognostics results, the cur-

rent and future health state of components and the health

state of the system for maintenance planing (Camci et al.

2007). The main aim is to alert the user in time to plan opti-

mally the necessary maintenance actions. The maintenance

optimization using prognostics information has been used

in several applications, such as electronic systems (Barros

et al. 2003; Sandborn 2005), aerospace (Balaban and Alonso

2012; Camci et al. 2007) and wind turbines (Besnard and

Bertling 2010; Lei et al. 2015).

For example, Camci et al. (2007) proposed a tool for

integrating PHM data with maintenance data. The PHM data

are mainly the results of the prognostics step in the form of

RUL. The maintenance data includes the resources needed

for maintenance actions (personnel, hardware, tools, etc.), the

resources available in the inventory, and the time to receive

the resources ordered. The PHM process and the mainte-

nance system are based on the return of the integration to

update their data. Also, the proposed tool allows analyzing

the information about the programmed missions to obtain



more accurate RUL values since the mission profile affects

the degradation rate of an equipment. In their work, Camci

et al. (2007) implemented this tool for fighter aircraft to val-

idate its performance.

Control

The prognostics results are also used to improve the control

of systems by determining immediate or rapid actions.

For example, Bole et al. (2011) worked on the distribution

of tasks based on the prognostics data to perform the control

of a system. The idea consists in integrating the prognostics

model into the control system. This latter uses the prognostics

data to distribute the effort between the equipment of the

system in order to better manage the risks generated by the

uncertain estimates and the future performance of the system.

To validate its performance, this methodology were applied

to an autonomous vehicle subjected to degradation caused by

thermal stresses. Further works on improving control using

prognostics data may also be cited, such as the works of

Bogdanov et al. (2006) on servomotors and of Brown et al.

(2009) on the control of electro-mechanical actuators.

Missions reconfiguration

The data provided by the prognostics step can also be used to

reconfigure the mission of a system depending on its health

state. This type of decision is not yet sufficiently devel-

oped in the literature. However, there are some works that

were proposed in specific contexts, including production

scheduling (Asmai et al. 2010), sensors network manage-

ment (Elghazel et al. 2015), battery management (Saha et al.

2009) and the management of autonomous vehicles (Tang

et al. 2011).

For example, Asmai et al. (2010) have shown that know-

ing the RUL value can be very useful for the production

scheduling. Indeed, this value gives information on the health

state of the production equipment, which can be taken into

account when launching new production tasks. This can pre-

vent loss of production and waste of materials that can be

caused by a failure occurring during the production. The

decision using the prognostics information can take many

forms, such as an immediate stop of the machine to avoid

further damage, a continuation of normal production, a pre-

ventive maintenance intervention, or a re-scheduling of the

production.

This paper deals with the post-prognostics decision in dis-

tributed systems. The main aim is to define the appropriate

decision based on obtained prognostics results to optimize

the usage of such systems.

Post-prognostics decision in distributed systems

After defining the post-prognostics decision, its different

types and its main uses, this subsection is intended to

position the contribution proposed in this paper in the post-

prognostics decision. As presented before, most of the works

dealing with the post-prognostics decision focus on applica-

tions involving a single system or equipment. Contrary to

these works, our work aims to go further in the sense that we

consider a set of autonomous equipment which communicate

and interact with each other using a communication network

to fulfill a common mission, i.e. a distributed system.

Concerning the post-prognostics decision, such systems

can have two levels: the module and the overall system. At

the module level, it must be independent and able to assess

in real time its health, estimate its RUL and auto-reconfigure

depending on its health state to operate with the performance

expected by the operator. Then, at the overall system level,

modules communicate their health state and their RUL to

their direct neighbors. This allows to detect degraded or failed

modules in the system and reconfigure or adapt its mission

based on module health states. Two types of post-prognostics

decision can be used in this case: the control for the mod-

ule level and missions reconfiguration for the overall system

level.

This strategy can be applied to several modular applica-

tions such as sensor networks and modular robots (Lakhlef

et al. 2014). In this work, this strategy is applied to a dis-

tributed MEMS-based conveyor presented in the next section.

For clarity of presentation, only the mission reconfiguration

is considered in this work. In the following, we assume that

we have a control system at the module level.

Implementation in a distributed MEMS-based

conveyor

System description

Most of the existing solutions to convey objects in pro-

duction lines rely on contact-based technologies. However,

these solutions are not appropriate for fragile and tiny micro-

objects (medicines, micro-electronics parts, etc.), which can

be easily damaged, contaminated or even scratched dur-

ing conveying. Thus, conveyors based on contact-less air-jet

technology, which avoid contact with conveyed objects, can

be a solution in this case (Konishi and Fujita 1994; Dahroug

et al. 2015; Fukuta et al. 2006).

A conveyor generally consists of a single monolithic

block dedicated to a specific task in a fixed environment.

As a consequence, in case of failure or environment change,

the conveyor will not be able to perform the dedicated

task and has to be replaced. To address these issues, self-
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Fig. 2 General scheme of the conveying surface

reconfigurable systems, which consist generally of small

MEMS-based modules, can be used (Kurokawa et al. 2008;

Salemi et al. 2006).

A MEMS is a micro-system that integrates mechanical

components using electricity as source of energy in order to

perform measurement functions and/or operating in structure

having micro-metric dimensions. Thanks to their miniatur-

ization, low power consumption and tight integration with

control and sense electronics, MEMS devices come in a

wide variety of fields such as aerospace, automotive, bio-

medical and communication technologies. Classical MEMS

include accelerometers, gyroscopes, pressure sensors and

micro-mirror arrays.

A self-reconfigurable conveying system is proposed by

Boutoustous et al. (2010). It consists of a contact-less dis-

tributed MEMS-based conveying surface for safe and fast

conveying of fragile and tiny micro-objects (Fig. 2). It is

composed of an array of decentralized blocks, called smart

blocks. In this conveyor, only one MEMS valve is used in

each smart block to control the air flow.

In this paper, a similar conveyor is proposed, but with

some modifications. We designed a new smart block (Fig. 3),

in which four MEMS valves are used to control the air flow

in the four directions (one MEMS valve for each direction)

and a blinky block (Kirby et al. 2011). This latter allows a

block to communicate with its four neighbors and integrates

the prognostics and decision algorithms.

Through the blinky blocks, smart blocks communicate

with each other to exchange information about their health

state to ensure a common goal, which is the transport of

objects. The conveying principle consists in transferring

objects from a start block to a final destination using con-

trolled airflow controlled by the MEMS valves. To do so, all

MEMS valves involved in conveying the objects have to be in

a good health state and able to accomplish the mission. Then,

the objective consists in using the information provided by

the prognostics step to take appropriate decisions in order to

minimize the risk of mission failure, anticipate MEMS fail-

ures, avoid the loss of the transported objects, optimize the

MEMS 

valves

MEMS 

valves

Blinky block

(b)(a)

Fig. 3 a Design scheme of a smart block and b prototype of a manu-

factured smart block

utilization of the surface and maintain as long as possible

a good level of performance. The post-prognostics decision

consists in finding the best path that the object must take

from the point of view of the health state of MEMS in the

conveyor.

System characteristics

The object of study is a conveying surface composed of

m smart blocks denoted bk , where k ∈ {1, 2, . . . , m}

is the number identifying the block in the surface. Each

block contains four MEMS valves denoted Mk,i , where

k ∈ {1, 2, . . . , m} is the number identifying the block and

i ∈ {1, 2, 3, 4} is the number identifying the MEMS valve in

the block. Thanks to the MEMS valves, each block is able to

transfer objects to its neighbors in four directions (d1, d2, d3,

d4). The directions correspond to the four sides of the square

surface of the block.

The conveyor can be divided in two levels: (1) the smart

block level and (2) the overall system level.

The smart block level

We consider that the health state of the conveyor is given by

the health state of the smart blocks, which in turn is given by

the health state of the MEMS valves inside. To evaluate the

health state of the MEMS valve and predict its RUL, we have

first to define its degradation model. This model was obtained

in a previous work (Skima et al. 2016b) and is generic for all

the MEMS valves. It is related to the decrease in the mag-

nitude of a physical parameter of the MEMS, called Health

Indicator (H I ). The projection of this H I can be exploited to

predict the future behavior of the MEMS valve and estimate

its RUL. For more details about how the degradation model

is defined and the obtained prognostics results (RUL values),

interested readers can refer to Skima et al. (2016b).



Each MEMS valve in the smart block is characterized

by:

– A degradation model H It (k, i) It represents the health

state at time t of the MEMS Mk,i :

H It (k, i) = a. exp(b.Nt (k, i)) + c. exp(d.Nt (k, i)) (1)

where Nt (k, i) is the number of cycles performed by the

MEMS Mk,i up to time t and a, b, c and d are the param-

eters of the degradation model.

– A RUL value RU L(k, i) = F(H It (k, i)) the remaining

useful life expressed in number of cycles. This value is

estimated by using the degradation model and a state

estimation tool (see Skima et al. 2016b).

– A transfer time of the object T (k, i) the time that takes

an object to traverse a block and reach the next one. This

parameter can be presented in two forms:

– T (k, i) = G(H It (k, i)): it can be variable and

depend on the degradation of the MEMS valve. The

more degraded the MEMS is, the higher the transfer

time is.

– T (k, i) = const: it can be a constant value. This

is related to the control decision. The MEMS valve

is electro-thermally actuated and by increasing the

input voltage, we can have the same performance

(air pressure) even if the MEMS is degraded. Thus,

by controlling the input voltage, we can maintain the

same performance of the MEMS valve and then the

same transfer time.

The overall system level

The conveying surface is composed of a set of m smart blocks.

Each one is surrounded at most by four other blocks with

which is able to communicate (send and receive information

about the health state) thanks to its communication module

(blinky block). Moreover, each block can transfer objects

to its neighbors. This transfer is performed by the air flow

controlled by the MEMS valves inside the block. Figure 4

illustrates an example of a conveying surface composed of

9 smart blocks. For example, the block b5 can communicate

with its four neighbors b2, b4, b6 and b8. An object located

on the surface of the block b5 can be transferred in directions

d1, d2, d3 and d4 (respectively to blocks b2, b4, b6 and b8).

Mission of the system

The mission of the conveying surface consists in transporting

objects by using a controlled air flow. This mission results in

the search of the path allowing to go from a source block

to a destination block. Thus, the conveying of an object

Blinky block Blinky block Blinky block

Object

Fig. 4 Illustration of a conveying surface composed of 9 smart blocks

(S)

(D)

Fig. 5 Illustration of a path between the source block S and the desti-

nation block D

can be characterized by a path that corresponds to a set

of n blocks that participated in the transport of the object,

path = {S, bk2 , . . . , bkn−1 , D}, where S corresponds to the

source block bk1 and D to the destination block bkn . The

index j , with j ∈ {1, . . . , n = length(path)}, is the order

of the block on the path. For example, bk j
is the block

number j on the path. A path is valid when bk j
and bk j+1

are two neighboring blocks. Since two consecutive blocks

on the path are neighbors, we can then deduce the unique

direction between these two blocks that we denote by di ,

where i ∈ {1, 2, 3, 4}. Figure 5 illustrates an example of a

path on a given surface. For example, in this path denoted

path = {b8, b9, . . . , b27, b28}, d4 is the direction to go from

the block number 10 on the surface (b10 to the block 17 on

the surface (b17).

We defined the following two metrics on the path, namely

the RUL and the transfer time of this path:

– the path RUL value (RU L(path)) corresponds to the

minimum of all the RUL values of the MEMS valves that

participated in conveying the object on this path:

RU L(path) = min
j=1,...,n

RU L(k j , i) (2)

– the path transfer time (T ime(path)) is the sum of all the

transfer times of the MEMS valves that participated in

conveying the object on this path:



T ime(path) =

n∑

j=1

T (k j , i) (3)

The objective of a conveying mission is to maximize the

lifetime of the surface, optimize its utilization and improve

its performance. This can result in the maximization of the

RUL of the path and the minimization of the transfer time

of the objects from the source S to the destination D. In the

next section, an algorithm to solve this problem is presented.

Decision algorithm

Finding an optimal path from a start block to a destination

one on the conveying surface is similar to some classical

problems in the graph theory. The conveyor can be modeled

as a weighted undirected graph, where each vertex represents

a block with four edges connected to its neighbors. Each edge

in the graph has two weights, which are the RUL and the

transfer time.

The minimization of the transfer time is similar to the

search of the shortest path in a graph and the maximiza-

tion of the RUL is similar to the search of the maximum

flow in a network. In the literature, several algorithms are

proposed to find solutions to these classical problems, for

example Dijkstra (1959) and Bellman-Ford (Lewandowski

2010) algorithms for the time minimization, and Ford and

Fulkerson (1956) and Edmonds and Karp (1972) algorithms

for RUL maximization. However, in our case, the challenge

is to find a path between a source and a destination that max-

imizes the RUL and minimizes the transfer time.

Among the available algorithms, the Dijkstra’s algorithm

can be used to solve this problem. Indeed, this algorithm

meets our need in term of transfer time minimization, but

not in term of RUL maximization. Therefore, we adapted it

to maximize the RUL in addition to the minimization of the

transfer time.

The modified Dijkstra’s algorithm, presented in Algo-

rithm 1, finds an optimal path with maximum RUL, and in

case of equal paths (same path RUL), it chooses the path

that has the minimum transfer time (fastest path). Note that,

the obtained algorithm maintains the same complexity as the

original Dijkstra’s algorithm.

The optimized criteria need to be ordered according to

their importance. In Algorithm 1, the path RUL is maximized

as a principal criterion and the transfer time is minimized if

there is more than one path with the same path RUL value.

Recall that the path RUL value is the minimum RUL value

on the path, cf. (2), and the path transfer time is the sum

of all MEMS transfer time on the path, cf. (3). If we want

to minimize the transfer time as a principal criterion, the

relaxation part in the algorithm (line 19) should be changed

to:

Algorithm 1 Modified Dijkstra’s algorithm.

1: function ModifiedDijkstra (Graph, s)

2: for each vertex w in the Graph do

3: Ts [w] = ∞ // time from the source s to w

4: Rs [w] = 0 // RUL from the source s to w

5: P[w] = unde f ined // previous block in the path

6: end for

7: Ts [s] = 0 // transfer time from the source to the source

8: Rs [s] = ∞ // RUL from the source to the source

9: Q = initially contains the s vertex // Q is a priority queue

10: while Q is not empty do

11: u = vertex in Q with the biggest RUL in Rs []

12: remove u from Q

13: for each neighbor w of u do

14: ∆x = wx − ux

15: ∆y = wy − u y

16: ∆ = ∆y + 2 + 2∆x // number of the MEMS allowing to move

toward the neighbor

17: timeThroughU = Ts [u] + u.getT[∆]

18: RULThroughU = min(Rs [u], u.getR[∆])

19: if RULThroughU > Rs [w] or (RULThroughU == Rs [w] and

timeThroughU < Ts [w]) then

20: Rs [w] = RULThroughU

21: Ts [w] = timeThroughU

22: P[w] = u

23: add w to Q

24: end if

25: end for

26: end while

27: end function

if timeThroughU < Ts[w] or (timeThroughU ==

Ts[w] and RULThroughU > Rs[w])

This algorithm can be implemented in the blinky block of

each smart block as a decision maker. In the next section, it is

used to simulate post-prognostics decision in the distributed

conveying surface.

The DiMEMS Simulator

To show the importance of the post-prognostics decision

making in the distributed MEMS-based conveyor (resulting

in a longer life for the surface), we have developed DiMEMS

Simulator, a simulator written in Java programming language

and which is multi-threaded. Once launched, it allows to

choose the dimensions of the conveying surface, the num-

ber of objects to introduce on the surface, their source(s),

their destination(s) and the principal criterion (RUL or trans-

fer time). It creates the surface with random values for both

criteria in each block.

In a previous work (Skima et al. 2016a), the simulator used

only 1 MEMS per block and used a simpler, linear degrada-

tion model; also, this work does not analyze surface lifetime,

but the evolution of the best path during conveying.



In this paper, the simulator is updated to use four MEMS

per block and the degradation model previously described.

Each time a MEMS Mk,i participates at conveying an object,

its number of cycles N (k, i) is incremented. As a conse-

quence, its H I value H I (k, i) decreases, its RU L(k, i)

decreases and its transfer time T (k, i) increases. Hence, RUL

and transfer time of blocks change dynamically.

At the beginning of the simulation, each block stores a

matrix of the same size as the surface. Each cell of this

matrix maps to the corresponding block in the surface and

contains the RUL and the transfer time for each of its four

MEMS. Initially, the cell of its own block has the right

values of RUL and transfer time, and all the other cells

contain 0 for both criteria. Before starting the simulation,

each block communicates with its four neighbors and sends

them its matrix. When a neighbor receives the matrix, it

compares values in this matrix with its matrix and stores

the maximum, since the RUL and transfer time cannot be

less than or equal to 0. After some time, all the blocks

have the same matrix which contains the right values of the

surface.

Once this step is finished, the first object is sent in the sur-

face. Blocks execute asynchronously the algorithm shown

in Algorithm 2 (Fig. 6). If the block detects the presence of

an object, it executes the modified Dijkstra’s algorithm and

sends the object to the next block according to the result that

it finds. Thus, the RUL and the transfer time of the MEMS

which participates at conveying the object change. Then, it

sends its updated matrix with the new values to its four neigh-

bors. When a neighbor receives the matrix, it compares values

in this matrix with its matrix and stores the minimum RUL

as this criterion can keep the same value or decrease and

the maximum transfer time as it can keep the same value

or increase. We call this step diffusion. If a block does not

detect an object, it continues to send its matrix to its neigh-

bors (diffusion). Thus, blocks have always an updated matrix.

Figure 7 shows the steps performed by each block. The big

advantage of being asynchronous is that the surface does not

need a global clock for all the blocks, which facilitates the

surface manufacturing.

Algorithm 2 Algorithm executed asynchronously by each

block.
1: if the object is above the block then

2: execute modified Dijkstra’s algorithm with itself as starting block,

thus finding out the next block

3: send the object to the next block

4: consequently, the degradation of the used MEMS changes

5: update its matrix by changing the values (RUL and transfer time)

of its own cell

6: end if

7: send its matrix to its four neighbors, so that the next block have

always the updated matrix

When the object is in the destination, it leaves the con-

veyor. Meanwhile, the updated matrix spreads to the other

blocks. We assume that the information exchange is much

faster than the movement of the object, so the source receives

the updated matrix before the object completely leaves the

conveyor.

Simulation and results

Before explaining how values in the surface are generated and

the different scenarios of simulation, it is necessary to set the

framework of the simulations. This framework is defined by

the following assumptions:

– an object covers one block.

– multiple objects can be on the surface at the same time,

but the time between sending two consecutive objects is

sufficiently high to avoid collision of objects.

– the transfer time is constant and is the same for all MEMS:

T (k, i) = const (4)

– as the MEMS valve can perform more than 10 million

cycles, the RUL is expressed in days to get the results

more quickly (1 day = 85,000 cycles).

Data generation

In the previous work (Skima et al. 2016b), four MEMS valves

were tested. The obtained experimental results allowed to

define a generic degradation model (Eq. 1) for all MEMS

valves, but with different numerical values of the model

parameters (a, b, c and d). These values are given in Table 1.

In practice, the RUL is estimated using the degradation

model with a state estimation tool. The implementation of a

such tool in the simulator is of interest only when the input

data are acquired online. In this work, we propose to use

prognostics results obtained in a previous work (Skima et al.

2016b). For that, a relation between the evolution of the H I

and the RUL is defined rather than implementing the state

estimation tool:

RU L(k, i) = α. exp(β.H I (k, i)) (5)

where α = 0.2489 and β = 0.1575.

When the surface is generated, all the parameters (a, b,

c, d, α and β) are multiplied by a random value in order to

obtain different MEMS characterizations.

Scenarios of simulation

Table 2 resumes the various simulation scenarios. Details are

in the following.



Algorithm executed by each block

1: if the object is above the block then

2:        execute the modified Dijkstra’s algorithm

3:        send the object to the next block

4:        change the degradation

5:        update its values (RUL and transfer time) 

6: end if

7: send its values to its neighbors

Fig. 6 Distributed operation of the surface
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Fig. 7 Steps performed by each block

Table 1 Numerical values of

the exponential models

parameters

Param. MEMS 1 MEMS 2 MEMS 3 MEMS 4

a −1.025 × 104 −8.47 × 104 −3.727 × 105 4.041 × 106

b 0.0168 0.0157 0.0073 0.0116

c 1.029 × 104 8.48 × 104 3.727 × 105 −4.041 × 106

d 0.0167 0.0157 0.0073 0.0116

A homogeneous initial surface means that all MEMS are

not degraded and have almost the same values (differing by

a small random value). A heterogeneous surface means that

MEMS have various (random) initial degradations.

Scenario one source one MEMS Simulations consist in

sending objects from a given source (one block in the left side

of the surface) to a given destination (one block in the right

side of the surface) (Fig. 4). We assume that the destination

is known by all the smart blocks.

Four simulations are performed: (1) RUL as a principal

criterion without decision (without decision means that all

objects take the path found by the source block and taken by

the first object), (2) transfer time as a principal criterion with-

out decision, (3) RUL as a principal criterion with decision

(each block executes the decision algorithm once it detects

an object) and (4) transfer time as a principal criterion with

decision. Note that, for comparison purposes, the same initial

surface is used.

Scenario several sources one MEMS Two types of sim-

ulation are performed. The first type consists in alternating

sending objects from the sources (all blocks in the left side

of the surface) to a given destination. Several simulations are

performed and at each one we change the destination. The

second type consists in alternating sending objects from the

sources to the best destination. This means that each block

executes the decision algorithm and sends the object to the

destination that allows having the best path RUL or the best

transfer time. Thus, the destination can change during the

conveyance of the object.

Scenario several sources several MEMS One type of

simulation is performed. It consists in alternating sending

objects from the sources to the best destination. In this sce-

nario, the transport of objects continues even with some failed

MEMS in the surface, but stops however when there is no

possible path. Blocks containing these MEMS are avoided

thanks to the decision algorithm.



Table 2 Scenarios of

simulation
Scenario Initial surface Simulation

Simulation stops when one MEMS fails

1 s. 1 MEMS Homogeneous 1. RUL as principal criterion without decision

2. Transfer time as principal criterion without decision

3. RUL as principal criterion with decision

4. Transfer time as principal criterion with decision

Sev. s 1 MEMS Homogeneous 1. Alternating sending objects from the sources to a

given destination

2. Alternating sending objects from the sources to the

best destination

Simulation stops when there is no possible path to convey the object

Sev. s. sev. MEMS Heterogeneous –Alternating sending objects from the sources to the

best destination
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Fig. 8 Scenario 1 source 1 MEMS

For each scenario, several simulations were performed

with different surface dimensions. It was deduced that the

same observations are made regardless of the surface dimen-

sion. The following section presents the results obtained with

the dimension 4×9 (36 blocks, 144 MEMS).

Results

In the first scenario, Fig. 8, more objects are transported with

decision than without decision. Also, with decision better

optimizes the utilization of the surface. The minimum RUL

value in the surface is greater than without decision for the

same number of transported objects. In this scenario, the

same observations are made regardless of the optimized cri-

terion (RUL or transfer time).

Even with decision, only 69 objects are transported. This

can be explained by the fact that the source and the destination

are the most used and then their MEMS fail quickly since they

are more solicited.

In the second scenario, Fig. 9, the first type of simulation

shows that even if sources alternate, the same number of

objects is transported as in the first scenario. This is explained

by the fact that the destination is the most used. For that, the

second type of simulation is performed. It allows to transport

more objects and to better optimize the utilization of the

surface.

The conclusion of these first two scenarios, in which the

surface is homogeneous, is that there is not a big difference

between optimizing the RUL as principal criterion or the

transfer time. Also, it is better to alternate sources and choose

the best destination in order to optimize the utilization of the

surface.

The third scenario clearly shows the advantages of opti-

mizing the RUL as a principal criterion rather than the

transfer time. The minimum RUL value in the surface is more

important when optimizing the RUL (Fig. 10). Also, the first

MEMS fails after 92 objects. However, when the transfer

time is used as first criterion, the first MEMS fails after only
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Fig. 9 Scenario several sources 1 MEMS
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Fig. 11 Number of failed MEMS as a function of the number of trans-

ported objects

71 objects. In addition, with the transfer time as a principal

criterion, we have more failed MEMS at the end of the simu-

lation (14 MEMS) rather than with the RUL (5 MEMS) after

transporting the same number of objects (Fig. 11).

To conclude, in order to maintain a good performance of

the surface, optimize its usage, transport more objects and

have less failed MEMS, it is much better to use the third

scenario with the RUL as a principal criterion. The transfer

time is still optimized in the case of several paths with the

same RUL value to take the fastest path.

Conclusion

In this paper, the problem of post-prognostics decision in

distributed MEMS-based systems is addressed. First, a brief

literature review related to the decision in the field of PHM

is provided. After that, a strategy to make post-prognostics

decision in distributed MEMS-based systems is proposed.

The proposed strategy is then applied to a new conveying

surface to convey fragile and tiny micro-objects. This sur-

face is composed of an array of decentralized smart blocks

containing MEMS valves. The main aim is to use the prog-

nostics information related to the MEMS valves to optimize

the usage of this surface and maintain as long as possible a

good performance. For this purpose, the Dijkstra’s algorithm

is modified and adapted in order to optimize criteria related to

the health state of the used MEMS valves (RUL and transfer

time). The decision consists in finding which path an object

should take to optimize the usage of the conveying surface. To

simulate this decision, a simulator written in Java program-

ming language has been developed. Simulation results show

the significance of the proposed strategy and the importance

of the post-prognostics decision to maintain the operation of

the system and optimize its usage.

As future work, other simulation contexts will be per-

formed such as objects sorting and block maintenance. Also,

the prognostics and the decision algorithms will be imple-



mented in the blinky blocks to confirm the results in a real

physical system.
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