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ABSTRACT  

Our knowledge of the internal structure of asteroids is, so far, indirect – relying entirely on 

inferences from remote sensing observations of the surface, and theoretical modeling of formation and 

evolution. What are the bulk properties of the regolith and deep interior? And what are the physical 

processes that shape asteroid internal structures? Is the composition and size distribution observed on 

the surface representative of the bulk? These questions are crucial to understand small bodies’ history 

from accretion in the early Solar System to the present, and direct measurements are needed to answer 

these questions for the benefit of science as well as for planetary defense or exploration.  

Radar is one of the main instruments capable of sounding asteroids to characterize internal 

structure from sub-meter to global scale. In this paper, we review the science case for direct observation 

of the deep internal structure and regolith of a rocky asteroid of kilometer size or smaller. We establish 

the requirements and model dielectric properties of asteroids to outline a possible instrument suite, and 

highlight the capabilities of radar instrumentation to achieve these observations. We then review the 

expected science return including secondary objectives contributing to the determination of the 

gravitational field, the shape model, and the dynamical state. This work is largely inherited from 

MarcoPolo-R and AIDA/AIM studies.  

 

Keyword: Near-Earth Asteroid, Radar Tomography, Dielectric properties, Asteroid deep internal 

structure, Asteroid regolith   

 

I -  INTRODUCTION 

Asteroids are fundamental to our understanding of the formation and history of our Solar System. 

Their diverse population ranges from primitive asteroids, whose materials have experienced the least 

processing since their condensation from the early solar nebula, to metallic asteroids widely interpreted 

as fragments of collisionally disrupted differentiated planetesimals. The asteroid population tells us the 

story of planetary accretion in the early Solar System and its evolution (Chambers and Wetherill, 1998; 

Morbidelli et al., 2000; Blum and Wurm, 2008). Consequently, a fleet of spacecraft is in operation, in 

cruise or under development, to observe asteroids: Dawn (NASA, launched 2007) rendezvous mission 

to 4 Vesta in 2011-2012 and 1 Ceres in 2015-2017 (Russell et al., 2015), Hayabusa2 (JAXA, 2014) 

sample-return mission to the C-type asteroid 162173 Ryugu in 2018-2019 (Tsuda et al., 2016),  OSIRIS-

REx (NASA, 2016) sample-return mission to the B-type asteroid 101955 Bennu in 2018-2021 (Lauretta, 

2015)  and the recently selected NASA/Discovery missions, Lucy, expected to be launched in 2021 to 

visit Jupiter's Trojan asteroids, and Psyche to the metallic asteroid 16 Psyche, expected to be launched 

in 2022.  

In the past (see, e.g., Barucci et al., 2011), a few missions were dedicated to asteroids as a prime 

objective, e.g., NEAR-Shoemaker (NASA, 1996) to 433 Eros in 2000-2001, Deep Space 1 (NASA, 

1998) to 9969 Braille in 1999 and Hayabusa (JAXA, 2003) to 25143 Itokawa in 2005, or as secondary 

objectives like Galileo (NASA, 1989) to fly-by 951 Gaspra in 1991 and 243 Ida in 1993, NEAR-

Shoemaker (NASA, 1996) to (243) Mathilde in 1997,  Stardust (NASA, 1999) to 5535 Annefranck in 

2002, Rosetta (ESA, 2004) to 2867 Steins in 2008 and 21 Lutetia in 2010, and finally Chang’e 2 (CNSA, 

2010) to 4179 Toutatis in 2012 (Zhu et al., 2014). 

It is remarkable to note that, despite the fairly large number of missions to asteroids, their internal 

structure is still poorly known and has never been measured directly for any asteroid. Therefore, 

important questions do not have a definite answer, even for asteroids whose bulk density has been 

estimated. For instance, are most asteroids monolithic pieces of rock, or are they rubble piles, i.e. 

aggregates of boulders held together by gravity? And is there a size threshold between these two 

structures? What is the porosity of a given asteroid, and is it homogeneous or multi-scale? What is the 

typical size of its constituent blocks? Are these blocks homogeneous or heterogeneous? What is the 

average thickness of the regolith covering the surface and how is it distributed? These are key to 

understanding the evolution of asteroids from their formation in the primitive solar nebula. However, 

our knowledge is only based on mass deduced from spacecraft fly-by trajectories (radioscience) and on 

inferences from remote sensing observations of the surface combined with theoretical modeling.  
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Because these questions are so crucial to understand and model asteroid accretion and evolution 

history, several missions have recently been proposed or are currently under selection to embed 

instrument suites dedicated to sub-surface sounding of asteroids. These instruments are based on radar 

or seismology techniques, that is, analysis of the controlled propagation of electromagnetic or acoustic 

waves throughout the volume. In the context of the 5th Medium Class (M5) ESA Cosmic Vision call, 

the Castalia mission to a Main-belt Comet (Snodgrass et al, 2017), the Heavy Metal mission to Psyche 

(Wahlund et al., 2016) and the MarcoPolo-M5 sample return mission to a D-type asteroid (Franchi et 

al., 2017), each include an instrument aimed at internal structure measurements. Such an instrument was 

also considered for the AIDA technology demonstration mission, composed of a kinetic impactor DART 

(NASA, Cheng et al., 2016) and of an observing spacecraft AIM (ESA, Michel et al., 2016) to test a 

deflection scenario and to study the binary near-Earth asteroid system, 65803 Didymos. Unfortunately, 

the European AIM component was not funded by ESA Member States during the Ministerial council in 

2016. A reduced version of AIM, currently under study, does not include internal structure direct 

measurements (Michel et al., 2017) but the concept is still valid for possible further options to achieve 

the original objectives.   

In this paper, we present the scientific issues for direct observation, using proven radar techniques, 

of the internal structure of a rocky asteroid of kilometer size or smaller. We establish the requirements 

for a future instrument suite, expose the capabilities of radar instrumentation to achieve these 

observations, and outline a possible instrument suite. We then review the expected science return 

including secondary objectives. This work is largely inherited from the Fantina instrument suite 

(Herique et al., 2012) proposed for the MarcoPolo-R mission, which reached the final selection for the 

ESA M3-Class ESA Cosmic Vision program opportunity (Barucci et al., 2012), as well as for the 

AIDA/AIM phase A/B1 study at ESA. 

II -  WHY ARE DIRECT OBSERVATIONS OF ASTEROID INTERIORS CRUCIAL?  

II - 1.  DEEP INTERIOR AND COLLISIONAL HISTORY  

So far, the interior structure of an asteroid has never been directly measured. There is no way, 

from classical optical remote sensing observations, to determine whether a body is monolithic (i.e., like 

a single piece of rock) or whether it is a gravitational aggregate (also called a “rubble pile”). Similarly, 

there is no optical technique to estimate a small body’s porosity, nor the porosity distribution in the form 

of small (micro-) and large (macro-) porosity or voids. Intuition and inference are applied, such as those 

based on spin rates and shapes, along with elaborate simulations and modeling, leading to a situation in 

which a lot of science is built upon hypotheses. In many cases even our intuition is insufficient to come 

up with plausible explanations. For instance, the bulk density of less than 1.5 g cm-3 of asteroid 101955 

Bennu, the target of the OSIRIS-REx mission (Chesley et al., 2012, 2014), is still hard to interpret. What 

could possibly be the implication of such a low density for the internal structure of the asteroid, when it 

is presumably a primitive chondrite with material density greater than 3 g cm-3? 

Collisional evolution models and measured bulk densities of some asteroids suggest that a 

significant number of small asteroids (typically smaller than 50 km and larger than a few hundred meters 

in diameter) have a rubble pile structure: 

For example, Itokawa, the near-Earth stony asteroid (S-type) visited by the JAXA Hayabusa 

spacecraft in 2005, has a size of about 320 m and a relatively low bulk density (1.9±0.13 g cm-3,  

Fujiwara et al., 2006; 1.95±0.14 g cm-3 Abe et al., 2006) as compared to its meteorite analogue (between 

3 and 4 g cm-3 for ordinary chondrites; Britt and Consolmagno, 2003). The analogy with ordinary 

chondrites was confirmed by the returned sample (the first ever returned samples from an asteroid), 

which have a similar composition to LL chondrites (Nakamura et al., 2011). This latter result, together 

with images showing that its granular surface is covered by large pieces of debris, as well as simulations 

of catastrophic disruption and re-accumulation (Michel and Richardson, 2013), suggest that Itokawa is 

indeed a rubble pile (Fujiwara et al., 2006). From surface images, it seems to be composed of 100-200 

m blocks and to be covered by a thin regolith mainly composed of gravels and pebbles (Barnouin-Jha et 

al., 2008 and Figure 1). However, each of these larger blocks can be a monolith or an aggregate of 
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smaller blocks, pebbles or gravels, and other internal structures can be invoked to explain the same 

observable features. For example, following the suggestion (Scheeres and Gaskell, 2008)  that the non-

detection of the YORP effect on Itokawa could be the result of a non-uniform mass distribution, Lowry 

et al. (2014) inferred mean densities of 1.750.11 g cm-3 and 2.850.50 g cm-3 for two components of 

the asteroid to reconcile their YORP measurement. This would imply one rubble pile lobe, attached to 

a monolithic lobe, something that is not at all easily explained by modeling. However, there are possible 

alternative explanations for the discrepant data, which demonstrates the need for direct measurements. 

In the same way, Mathilde, the main belt primitive asteroid (C-type) observed by the NASA 

NEAR-Shoemaker spacecraft during a fly-by in 1997, has a size of about 50 km and a low bulk density 

(1.30.2 g cm-3). Its porosity is larger than 50%, as derived from a comparison between its density and 

that of meteorite analogues (Yeomans et al., 1997). A rubble pile structure with voids between blocks 

(e.g., Asphaug et al., 2002) and possibly micro-porosity within the individual blocks can explain this 

difference (e.g., Housen and Holsapple, 1999).      

And finally. Eros, which was visited by the NASA NEAR-Shoemaker spacecraft in 2000-2001, 

can either be interpreted as a shattered monolithic block (Cheng, 2009) or as a sand pile (Asphaug, 2009)  

based on surface observations. 

 

Only a geophysical sounding investigation will allow us to discriminate between two possible 

structures currently based solely on surface observations or global measurements and meteorite 

analogues. As we have no a priori robust idea of the detailed internal structure of any asteroid, the results 

of interior sounding may require a revision of our current ideas on the origin of such small bodies and 

on how to relate surface properties to internal ones. Such information is crucial for our understanding 

and modeling of the evolution of an asteroid, beginning with its formation in the primitive solar nebula. 

For example, the internal structure of an asteroid determines its response to impacts by other small 

bodies and, consequently, its collisional lifetime. As models of the collisional evolution of small body 

populations over the history of the Solar System are dependent on the assumptions made on their internal 

structure, uncertainties in these properties can result in significant differences in our understanding of 

planetary accretion and collisional history.  

Numerical models of the collisional evolution of asteroids indicate that the vast majority of small 

asteroids are of secondary origin, i.e., they are fragments of larger parent bodies disrupted by collisions 

with smaller objects (Asphaug, 2009; Cheng, 2004). Numerical simulations indicate that fragments 

larger than a few hundreds of meters are produced by gravitational re-accumulation of smaller fragments 

from the original body (Benz and Asphaug, 1999). This modeling work suggests that most asteroids 

smaller than ~50 km in size (that is the vast majority of asteroids) should be rubble piles or heavily 

shattered bodies. Moreover, there should be a link between the size distribution of the blocks building 

up the asteroid and the past and future fragmentation of the object. Consequently, direct information on 

the size of the building blocks would provide crucial information to understand the collisional history 

of the asteroid and possibly the linked history of any retrieved sample. Note that in the range of impact 

energies involved in the events generating those bodies, except for extreme (rare) cases, heat effects are 

expected to be negligible and to affect at most a small region close to the impact point (Jutzi et al., 2015). 

Thus, the composition of the material constituting those bodies should not be strongly altered by their 

collisional history.  

Rubble pile structures are also invoked to explain the large fraction of binary systems (15%) 

observed in near-Earth asteroid populations (Margot et al., 2002). Arguably, the most realistic formation 

scenario for small binary systems in the near-Earth asteroid population and in the inner main belt is the 

spin-up of a rubble pile due to the thermal YORP effect (thermal torques generated by the heating of the 

object through the absorption of sunlight, and the re-radiation of this energy as heat, Rubincam, 2000) 

beyond the spin frequency at which centrifugal force causes a loss of particles that can then re-accrete 

to form a small satellite (Walsh et al., 2008).This scenario also allows reproducing the observed oblate 

spheroidal shape (also called top shape) of the primary of small binary systems, caused by the reshaping 

of the primary rubble pile asteroid as a result of spin-up and consequent mass loss. In this model, the 

satellite is slowly built in orbit by repeating mass-shedding events. Alternatively, the YORP effect may 

cause also a fission of the primary body, eventually also leading to a satellite (Jacobson and Scheeres, 

2011). In this case, the mass loss is a more singular catastrophic event (a fission) and later processing of 

this lost mass is invoked for the formation of the equatorial ridge of the primary giving it its top shape. 
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Both scenarios require an aggregate to start with, but the detailed structure of the aggregate and that of 

the resulting two components are quite different in the two scenarios. In order to better constrain the 

mechanism that forms binaries and discriminate between the two formation models for binaries, we need 

to obtain direct information on the internal structure of an actual asteroid. Another scenario, which best 

explains binary systems consisting of a very large primary, not necessarily with a top shape, and a very 

small satellite is the formation of a satellite during a catastrophic disruption when the ejected debris re-

accumulates and some of them become two gravitationally bound bodies (Durda et al., 2004; Michel et 

al., 2001). 

 

 

 

Figure 1 : Itokawa (left from JAXA Fujiwara et al., 2006);is a candidate example of the aggregate or rubble-pile structural 

model (right from Barnouin-Jha et al., 2008) 

II - 2.  REGOLITH FORMATION AND DYNAMICS   

So far, only the surfaces of asteroids have been observed by spacecraft. It was found that these 

airless bodies are covered by a blanket of soil, broken rocks, dust, and other fine granular materials that 

are collectively called regolith (see, e.g., Murdoch et al., 2015). The fact that regolith is ubiquitous on 

asteroid surfaces is supported by thermal infrared observations (Delbo et al., 2007, 2015) which indicate 

that asteroid thermal inertia has values generally well below those expected from bare rocks. Regolith 

properties can differ dramatically from one small body to another, even when they have similar 

composition. For instance, the regolith on the 23 km-size asteroid Eros observed by NEAR-Shoemaker 

consists of fine grained material. In the same spectral class, the regolith on the 320 m-size Itokawa, as 

observed by Hayabusa, mostly consists of widely distributed gravels and pebbles with spatial 

segregation depending on the size-distribution of the constitutive grain. Landslides features have been 

observed on Lutetia by Rosetta and on Vesta by Dawn. However, in all of these cases, the depth and 

structure of the regolith lack direct measurements and are only inferred from surface observations.  

Direct measurements of the regolith depth and structure, and of its lateral variations, would give 

better constraints on the process of regolith formation and evolution on asteroid surfaces, and help 

understand how such small bodies can retain loose material while their effective surface gravities are 

really low in magnitude. The formation and dynamics of granular materials in low-gravity environments 

has become an important area of research, given its importance to the interpretation of spacecraft mission 

data and preparation for spacecraft missions aimed at interacting with asteroid surfaces.  

Having direct information would help improve our understanding and refine our ability to model 

asteroid surfaces. Regolith properties depend on the regolith formation process. At least two main 

processes have been invoked to generate regolith, which are not necessarily exclusive: retention of ejecta 

resulting from impact cratering (see, e.g., Richardson, 2011) and thermal fragmentation (see, e.g., Delbo 

et al., 2014). Having direct measurements of the regolith properties (e.g. size distribution) and 

abundance (depth and stratigraphy) will allow us to better constrain its formation and evolution, 

including transport in a low-gravity environment. There is no way we can answer such questions about 

small bodies’ surface material without having direct access to detailed characteristics, such as regolith 

thickness, size distribution and possibly variation as a function of surface location. These measurements 

will also allow as us to infer other regolith properties, such as frictional and cohesive properties, that are 

important for modeling and interpretation of surface features.  

Asteroid surface processes are largely dependent on the material properties at depth. Mass 

migration, size segregation or landslides in low gravity are highly dependent on the material properties 
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of the subsurface. By combining observations of the surface and interior with numerical modeling, we 

can constrain those properties, to more accurately predict the effects of surface processes on small bodies 

and the interaction of future spacecraft with their surfaces.  

Because of its potentially high porosity, the regolith is also a thermally insulating layer 

(Schorghofer, 2008). The knowledge of the regolith thickness and its lateral variation is the only way to 

better model the thermal state of the asteroid surface and therefore the magnitude of the Yarkovsky 

thermal effect and the YORP effect which are key for the long term orbit prediction, especially applied 

to risk mitigation of potentially hazardous objects.  

In the case of space missions aimed at deflecting an asteroid, the regolith structure and depth can 

have a big influence on the efficiency of the various deflection techniques. All techniques relying on 

anchoring or similar surface interaction need some knowledge of the regolith properties. In the case of 

a kinetic impactor, depending on the depth and structure of the regolith layer, the shock wave may be 

transmitted more or less efficiently, which in turn will influence the momentum transfer efficiency.  

II - 3.  THE CONSTITUTIVE MATERIAL  

Probing of the interior is key to understanding structures and dynamical processes. It is also 

crucial for determining material composition and mineralogy. Space weathering (the cumulative effects 

of solar radiation, energetic particles and micrometeoroid collisions) alters the uppermost few microns 

of asteroid surface materials while thermal cycling affects greater depths.  Therefore, surface properties 

may not be representative of the interior, in terms of mineralogy and chemical composition. 

Assessing the homogeneity or heterogeneity within the first meter below the surface is essential 

since the surface has experienced thermal fracturing and radiative heating by the Sun. Note that a number 

of asteroids do contain water-ice (Campins et al., 2010), that is likely present at the surface in 

permanently shadowed regions, and in the close subsurface (see, e.g. Prettyman et al., 2017 on Ceres). 

As a response to solar heating a number of compounds can be degraded or lost to space, including some 

of the organic materials found in chondritic meteorites and interplanetary dust particles. In the case of 

objects with a very low perihelion distance (<0.1 AU) the surface temperature can become high enough 

to degrade some of the mineral compounds, which can decrepitate. This includes iron oxides and some 

of the phyllosilicates found in primitive meteorites (Garenne et al., 2014). Assessing the vertical degree 

of homogeneity and whether a degradation gradient is present in the first meter is crucial for these 

compounds, particularly in the framework of a sample return mission. 

The surfaces of grains exposed to solar radiation during millions of years are altered by space 

weathering. A well-known and major consequence is the flattening of their optical and near-infrared 

spectral signature, resulting in difficulties with comparison with meteorite spectra using remote-sensing 

observations. For bodies covered with regolith, this effect can be limited by resurfacing processes 

induced by grain mobility and YORP acceleration. On the other hand, the surface non-representability 

could also come from grain mobility mechanisms and from the regolith origin by itself (at least for the 

scenario based on gravitational accretion): these processes can induce grain segregation in size and in 

composition and a fraction of exogenous materials could also be present. Optical remote sensing 

observations of the surface only could introduce substantial bias and limit significantly the scope of the 

results.  

Similar bias is expected in meteorite analyses. Except for Itokawa’s samples, ground-based 

analyses in laboratories of asteroid materials are so far limited to the randomly selected meteorites that 

have survived the voyage through space, the violent passage through Earth’s atmosphere, and residence 

upon the surface. How representative meteorites are of pristine asteroid materials is still a matter of 

debate. A basic knowledge of surface composition of asteroids may nevertheless be derived from albedo 

and spectral measurements, although with large remaining uncertainties. An extrapolation to the interior 

is then only feasible as long as one assumes that the effects of impact processing and solar wind 

irradiation have not significantly modified the surface albedo and spectral properties.  

The limits of such an approach, regarding the possible presence of heterogeneities in a single 

body, are illustrated by the fall of the meter-sized asteroid 2008 TC3. It was the first time a small body 

fragment was spectrally observed prior to its atmospheric break-up into smaller pieces that eventually 

reached Earth’s surface. It was originally identified as an F-type object (relatively similar to C-type); 

however, surprisingly, the recovered meteorites were found to be friable breccia, each with its own 
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lithology, ranging from ureilite to enstatite, ordinary and carbonaceous chondrite clasts  (Horstmann and 

Bischoff, 2010; Jenniskens et al., 2009). Such a variety of meteorite types originating from a single body 

is unprecedented.  

 

To bypass such potential biases we need a physical characterization of the subsurface material 

with the context from surface measurements and supporting laboratory analyses. Sample return 

missions, such as OSIRIS-REx, and Hayabusa and Hayabusa2, offer a unique opportunity to obtain 

ground truth for the mineralogy, the chemistry and the physical structure of the surface material of a 

primitive asteroid. Indeed, such missions offer a unique way to connect ground truth (the analysis of 

retrieved samples) with asteroid and meteorite observations. The laboratory characterization of returned 

samples is crucial to determining how representative they are of the parent object (as observed from the 

spacecraft and from the Earth). A previous sample return mission, Stardust, was a tremendous success 

in retrieving mineral grains from the dust particles within the coma of a comet, 81P/Wild 2, for analysis 

on Earth (Brownlee et al., 2006; Zolensky et al., 2006). However, firm conclusions about the bulk 

composition of the comet, based on the analysis of these samples, is not possible due to questions of the 

representativeness of the samples, possible segregation processes in the nucleus, and possible sampling 

bias during collection at 6.1 km s-1. Consequently, we need a geologic map in 3D to support sample 

return missions not only to understand the context but also for sampling site selection.  

III -  HOW DO WE CHARACTERIZE DEEP INTERIOR AND NEAR SURFACE REGOLITH?  

Which instruments on an asteroid mission should aim at understanding the physical properties of 

the target asteroid by determining the characteristic sizes of its constituents, ranging from the sub-meter 

size to that of the whole body? Radar is the most mature technique capable of achieving these science 

objectives. Which radar concepts and requirements should achieve these science objectives? A 

monostatic radar configuration and a bistatic one (Figure 3) should be considered in the instrument trade-

off to choose the frequency and the bandwidth.   

  

The internal structure of asteroids, and even the near-subsurface structure, is almost unknown. 

This structure could drastically differ from one mission target to another and its direct observation is our 

major goal. Two end-member models can be imagined. At one extreme, is a monolithic body, which is 

well-characterized by its average composition and micro-porosity, as well as by an internal 

heterogeneity (stratigraphy, accretion or collisional metamorphism, hydration, fracturing) that will be 

revealed in radar images of the internal structure. At the other extreme is a body composed of an 

aggregate of a large number of fragments and other debris that is best characterized by the size 

distribution and composition of the constituent blocks, and their spatial heterogeneity (caused by 

segregation from impacts and re-accretion, as well as mass redistribution by YORP effect). Radar 

tomography can provide this characterization.  

Figure 2 summarizes the possible size range of asteroidal constituents. Asteroids are likely to be 

composed of a variety of different-sized constituents, given the results from previous spacecraft 

observations of asteroids. From surface images by the Hayabusa spacecraft, it is believed that the 

asteroid Itokawa is best modeled as an object consisting of a few large fragments covered with a primary 

layer of large blocks and a secondary layer of fine regolith (Barnouin-Jha et al., 2008 and Figure 1). 

Radar is the most mature technique capable of characterizing the internal structure and heterogeneity of 

an asteroid from sub-meter to global scale.  

Radar sounding does not allow direct 3D-mapping of material mineralogy or composition as is 

the case for any geophysical remote sensing method. It accesses only the dielectric permittivity: this 

quantity is related to the properties and the fraction of the different constitutive materials including 

porosity. The observed permittivity can be compared to the permittivity of “asteroid models” built from 

laboratory measurement, surface observation and theoretical modelling. The permittivity is then an 

additional constraint to model internal composition (see for example Herique 2015; Mouginot et al., 

2010).  

 

The capability of radar investigations to achieve the mission science objectives is determined 

mainly by the choice of the frequency, bandwidth and power of the transmitted radio signal:  
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Frequency typically determines penetration depth (Davis and Annan, 1989): for low-loss 

materials, such as ice or high-porosity regolith, the dielectric properties are essentially independent of 

frequency. However, for high-loss materials, like most dense rocks, penetration is approximately 

proportional to the wavelength. Radar propagation in volumetrically heterogeneous media (consisting 

of variations in permittivity, as well as the size and geometry of blocks and voids) is also determined by 

the size of heterogeneities with respect to the wavelength (λ): radar waves propagate coherently in a 

medium with a typical constituent size that is significantly larger than λ, although it can be refracted at 

any interface. Radar waves also propagate coherently through media where the heterogeneities are much 

smaller than λ; under these conditions, radar waves propagate as if they were in a perfectly homogeneous 

media. When the radar waves encounter heterogeneities whose size is of the same order of magnitude 

as λ, they result in scattering and the loss of wave coherence. For an aggregate, this effect depends on 

both the size of the fragments and the size of the voids between them. Stated another way, for the same-

size block distribution, an increase in macro porosity will increase scattering, while very small values 

of macro porosity will preserve the wave coherence independently of block size. 

Bandwidth determines range resolution (Davis and Annan, 1989). Since it is not possible to 

transmit a bandwidth that is larger than the highest frequency of the radar, an optimum needs to be 

defined between the requirements of high penetration, high resolution and the trade off with the technical 

constraints, especially the antenna size. In other words, deep investigation requires low frequencies in 

order to reduce dielectric and scattering losses and is then resolution-limited; while regolith sounding 

requires high bandwidth in order to image structures with higher resolution and is then penetration-

limited.  Then we have to consider two different frequency ranges to achieve our scientific goals for 

deep interior and regolith characterization. From a technical point of view, this means two separate radar 

instruments or one instrument with two channels sharing some digital electronics and ground segment 

but with separated analog electronics and antenna sets.  

 

This frequency/bandwidth trade-off has to be replayed for each target or mission taking into 

account the state-of-knowledge for a given asteroid in terms of structure (scattering) and composition 

(dielectric losses) and also the mission profile, its constraints and opportunities: in-orbit duration, orbit 

altitude, instrument accommodation constraints in term of mass, data volume and antenna size, presence 

of a lander, etc. For this trade-off, two types of radar sounding investigations can be envisaged (Figure 

3): a monostatic radar and a bistatic one.    

Monostatic radar sounding is the classical Synthetic Aperture Radar (SAR) configuration where 

the radar waves are transmitted and their reflected signal received by the Orbiter. At high frequency for 

surface and near surface characterization, this technique is well-known for both Earth and Planetary 

observation especially with the SAR onboard Magellan (NASA) and CASSINI (NASA) and MiniSAR 

on Chandrayaan1 (ISRO). At lower frequency and deeper penetration, there are the Martian radars 

MARSIS onboard Mars Express (ESA) and SHARAD onboard MRO (NASA); the lunar radar LRS 

onboard Kaguya (JAXA) and the Jovian moons radars RIME onboard JUICE (ESA) and REASON 

onboard JEO (NASA). For this technique, part of the incident wave is reflected by the asteroid’s surface, 

scattered by the topography, or continues to propagate into the subsurface, where it may reveal internal 

structures and sound depths directly related to the radar wavelength. Monostatic radar is less 

constraining for small bodies sounding than for planets or icy moons due to a significantly lower altitude 

and lower relative velocity with respect to the surface. It can be applied for regolith sounding with higher 

frequency or deep investigation with lower frequency allowing a partial or a full penetration.  

Bistatic radar tomography in transmission is similar to what has been employed by the CONSERT 

radar on Rosetta, to characterize the internal structure of the cometary nucleus of 67P/ Churyumov-

Gerasimenko (Kofman et al., 1998, 2004, 2007).  This technique utilizes radar waves transmitted by a 

Lander and received by an Orbiter after propagation throughout the comet (Figure 3). The measurement 

is repeated for different positions of the Orbiter with respect to the Lander to achieve a global 

characterization of the body’s deep interior. Tomography in transmission is relevant only for small 

bodies with a size lower than a few kilometers and propagation losses low enough to have the signal 

propagating throughout the entire body). In this technique, the waves are delayed, attenuated and 

possibly scattered by the asteroid internal materials and structures. One can note that this bistatic 

tomography in transmission is far from the bistatic radar technique in radio science (Simpson, 2007), 

which uses high frequency communication link from spacecraft to Earth to observe planetary or small 
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body surfaces. This last remote sensing technique of near-subsurface is a by-product of radio science, 

quite close to ground-based radar observation (Simpson, 2007).  

 

For investigations of the near-subsurface (top ~10 m), the use of a high-frequency monostatic 

radar will enable determination of the depth of the regolith, the detection of buried impact craters, the 

presence of internal layering, fractures, embedded blocks, variations in lithology and the distribution of 

macro porosity, all of which can provide valuable insights into the geology and geologic evolution of 

the asteroid. In this respect, operations and information obtained by a monostatic radar are similar to 

those of a traditional ground penetrating radar.   

For deep sounding and global characterization, depending on the size of the target, monostatic 

investigations require very low frequencies in order to propagate through the entire target body and 

back, necessitating the use of large antennas. Moreover, conducting monostatic tomography could 

require a minimum orbital coverage that impacts both the mission duration and telemetry budget. 

Bistatic radar investigations can use frequencies that are slightly higher, reducing antenna size and 

simplifying instrument accommodation. It is less ambitious, but also less demanding in terms of 

operations time and data budget, with a few small sets of measurement sequences. On the other hand, a 

bistatic radar requires a surface package. Again, this trade-off has to be considered for each mission, 

with the presence or absence of a surface package and the fact that a monostatic radar is more demanding 

in terms of mission implementation.  

Hereafter, we will consider mainly a high frequency monostatic radar for shallow subsurface and 

a low frequency bistatic radar for deep interior as developed for the AIDA/AIM project (Michel et al., 

2016) and of its lander MASCOT2 (Ulamec and Biele, 2015, Biele et al. 2017). This is also inherited 

from the FANTINA proposal: FANTINA was Marco Polo's eldest daughter, the name also stands also 

for "Fathom Asteroids Now: Tomography and Imagery of a NEA". This suite had been designed for the 

MarcoPolo–R mission (Barucci et al., 2012), to help answer these questions, support sample acquisition 

and analysis. FANTINA was finally not selected due to mass considerations. 

In order to specify the instrument suite and demonstrate its science performance, we will first 

review the state of knowledge about asteroid radar properties and propose a dielectric model for the 

different types of asteroids.  

 

                       

Figure 2 :  Asteroid structures, size distribution and tomography approach  
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Figure 3: Bistatic (top) and monostatic (bottom) radar configuration, Artist view from CONSERT/Rosetta   

 (credit: CGI/Rémy Rogez; shape model: Mattias Malmer CC BY SA 3.0, Image source: ESA/Rosetta/NAVCAM,  

 ESA/Rosetta/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA) 

 

IV -  DIELECTRIC MODEL OF ASTEROIDS  

Wave propagation in asteroids and thus their radar response is driven by the complex dielectric 

permittivity of the materials: the real part of the relative dielectric constant, εr' is related to the 

electromagnetic wave velocity while the imaginary part εr'' is related to the wave absorption and is 

usually represented by the loss tangent, tan δ = εr''/ εr'. Definition of the radar’s performance 

requirements and associated scientific return is therefore fundamentally related to a range of expected 

complex permittivities of constitutive materials. A careful study of dielectric properties is crucial for 

both instrument definition and data interpretation.  

Rocky materials on Earth give a preliminary range of values: εr’ is constrained within a relatively 

narrow range of values for almost all minerals, and exhibits some correlation with density: the interval 

3 < εr’ < 10 is typically used to represent compact rocks with little porosity. Variability of tan δ in natural 

materials is somewhat greater than the variability of εr’ and generally correlated with the metallic 

content: the interval 10-3 <tan δ < 10-2 can be used to represent most dry rocks with limited metal 

contents.  

For asteroids, the lack of data makes the work difficult. The spectral classes of asteroids are 

defined from visible and IR ground-based observation: Each asteroid class is assumed to have a distinct 

bulk composition, which would determine its radar response. Some data can be derived from Earth-

based radar observation and from meteorite lab measurement. The main part is obtained by modeling. 
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More than 700 near Earth asteroids have been observed by Arecibo and Goldstone radars at 2.4, 

7.2 and 8.6 GHz (https://echo.jpl.nasa.gov/asteroids/PDS.asteroid.radar.history.html; Naidu et al., 2016; 

Slade et al., 2011). The most prominent results consist of orbit, spin vector and shape (Magri et al., 

2007) and allow inference of internal structures, e.g from diamond shapes or binary systems (Ostro et 

al., 2006; Fang and Margot, 2012). The scattered power and the depolarization of radar-waves contribute 

to constraint of the range of values of porosity and roughness (i.e. the heterogeneity at decimeter scale) 

of the first meters of the regolith. Both power and depolarization are significantly correlated with 

spectral class (Benner et al., 2008, Magri et al., 2007, Shepard et al., 2015) but they do not seem to 

constitute an estimator of the dielectric permittivity.  

Magri et al. (2007) show that Earth-based radar echoes received from M-type asteroids are 

significantly more powerful than those from C-type and S-type, which correspond to the metallic versus 

rocky composition. C-type and S-type are mainly distinguishable by the polarization ratio, SC/OC 

(Same-sense Circular polarization to Opposite-sense Circular polarization ratio): S-types show a higher 

depolarization, which corresponds to a larger heterogeneity of the first few meters at the radar 

wavelength scale. This depolarization is produced by interfaces with curvature radius of the order of the 

wavelength (Benner et al., 2008) and dielectric contrast. In the shallow subsurface, blocks separated 

with voids - both with size comparable to the wavelength - will induce a larger wave depolarization than 

smaller grains with voids or than large blocks embedded in sand. It is the same for the surface and 

layering, where larger blocks will introduce more depolarization than gravels. In other words, the 

depolarization ratio characterizes disorder at the scale of the wavelength: size distribution of the 

constitutive blocks and macro porosity (large voids). This geomorphology is directly related to the 

collisional history and then to the mineralogy which determines their mechanical properties (Flynn et 

al., 2009). Composition also contributes directly to the characterization of the returned echoes: for a 

given block size distribution, the dielectric contrast determines the strength of the scattered power while 

the dielectric losses determine the typical penetration depth and then the contribution of each internal 

structure.  

 

Spectral asteroid classes are often associated with meteorite types. Nevertheless, the genetic link 

remains an open discussion for some classes. Measurements of the dielectric properties of meteorites 

from the literature are compiled in Table 3 (in annex), but the question is how are these samples 

representative of their meteorite family and furthermore of asteroids? Measurements were done on a 

limited number of samples. They may not reflect the compositional variability observed within a given 

meteorite family (Brearley and Jones, 1998). This results in a large variability in their measured 

permittivities (Table 3). Similar variability is observed for the density over a larger set of meteorites 

(Britt and Consolmagno, 2003). The L6 class ranges from r= 7.8 to 13.9 (Table 3) and two different 

samples of the Plainview meteorite (H5) give permittivities ranging from 25 to 46 (Fensler et al., 1962). 

This variability could reflect the original mineralogy but also heterogeneous terrestrial oxidation. 

Indeed, a large fraction of the meteorites in Table 3 are not falls. Some of them have been found in cold 

(e.g., Antarctica) or hot (e.g. North West Africa) deserts. They could have experienced significant 

terrestrial weathering, especially oxidation and leaching (Bland et al., 2006) resulting in a modification 

of their original mineralogy, leading to a change of the permittivity. Most of the measurements have 

been performed on raw samples (Table 3) while the others have been done on powdered samples: the 

permittivity of the material without porosity can be extrapolated using mixing formulae (Herique et al., 

2016). Nevertheless, this estimation is biased since the powder state of rocky meteorites reduces 

significantly both the real permittivity and the loss tangent, as observed by Campbell and Ulrichs (1969). 

An alternative approach to determine dielectric properties of meteorites is to use measurements 

on individual components identified in meteorites and to perform analytical mixing of these components 

using dielectric mixing formulas (Sihvola, 1999). A compilation of permittivity of minerals and organics 

from the literature can be found in Herique et al. (2016) and relevant candidates are summarized in Table 

4 (in annex). This compilation reveals a large variability for a given material. This may be partially due 

to the natural variability of minerals but also most likely to the variability of the experimental conditions 

(frequency range, temperature, laboratory equipment) and sample preparation (desiccation, powder 

sieving). This variability is significantly larger for the loss tangent, which is known to be extremely 

sensitive to the residual moisture, and also to be difficult to accurately measure when lower than a few 

10-2 (Stillman and Olhoeft, 2008).   

https://echo.jpl.nasa.gov/asteroids/PDS.asteroid.radar.history.html
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These two approaches (“bulk” measurements vs. “analytical mixing of individual components”) 

were considered for the three primary classes of asteroids from Tholen (1989) in Table 1. In this table, 

we did not consider asteroid subtypes from which the connection with meteorites and mineralogy is 

more speculative.  

IV - 1.  S-TYPE ASTEROIDS 

S-type asteroids are associated with L, LL and H meteorites’ groups (Table 1). Ordinary 

chondrites are dominated by silicates with a small volume fraction of metal varying from about 2 % for 

LL group to 8% for H group (Table 1). Although H chondrites dominate the collections of ordinary 

chondrites, they are suspected to originate from a limited number of parent bodies and cannot be 

considered as the dominant model for the S-type asteroid population in the main belt (DeMeo and Carry, 

2013). The radar properties of the S-group as observed from Earth allow us to clearly distinguish from 

C- and M-groups. However Benner et al. (2008) noted the proximity of the radar response of some S-

type asteroids with M-types and suspected a possible iron-stone composition for some members of this 

taxon.  

For the tested meteorites, the real permittivity ranges from 7 to 20 for LL5, L5 and L6 groups 

(without porosity) while it can be as high as 81 for H5 (Table 1). The permittivity appears directly 

correlated to the metal content and  composition variability could also explain the difference observed 

by Fensler et al. (1962) between two samples of the same meteorites (Leedy and Plainview, Table 1). 

Likewise the loss tangent increases significantly with metal proportion from less than 10-2 for LL5 to 

~3.10-2 for L5/L6 and up to more than 0.1 for H5. 

Table 4  presents silicates with permittivities ranging from 7.1 to 7.9 for the real part at 1 MHz 

for olivine, pyroxenes and forsterite. The real permittivity of the dunite is expected to be in the same 

range after compensation of the porosity with mixing formulas. To model mineral fraction of S-type 

asteroids, we will consider values ranging from 6.8 to 8 for the real part of the permittivity in a frequency 

range from 10 MHz to 1 GHz. The loss tangent is more difficult to evaluate, with measured values 

ranging from 8.10-4 to 4.10-2. The majority of laboratory measurement was done at room temperature:  a 

significant overestimation due to some residual sample moisture can be suspected. Moreover, asteroid 

interiors are expected to be significantly colder, while dielectric losses of minerals tend to decrease with 

decreasing temperature in this 10MHz-1GHz frequency range. Therefore we will consider a maximum 

loss tangent lower than 10-2 for the silicate fraction.   

The influence of iron / nickel fraction is more difficult to constrain and depends on the chemical 

states (metallic versus oxides or sulfides), on the topology and impurities content of the metal inclusions. 

In LL, L and H meteorites, metals consist mainly of metallic inclusions with millimeter size, far from 

the percolation threshold as minor components (<10% vol.). These inclusions increase the overall real 

permittivity but not the loss tangent, in an unexpected way (Sihvola and Lindell, 1992). This behavior 

could explain why L6 and L5 permittivities in Table 1 are larger than those measured for silicates (Table 

4). It could also explain the large permittivities measured for H5. A more limited part of the iron/nickel 

content is bound in molecular species without free charge but a large loss tangent; as a minor component 

they do not have a significant impact on the real part of the permittivity, although the loss tangent 

increases significantly by an amount that is controlled by the nature of the oxide or sulfides. The organic 

fraction is minor (~1%) and constituted by mature carbon (high C/H). This can be modeled by graphite, 

and impacts mainly on the loss tangent. Permittivities’ estimation from mineralogy using mixing 

formulas (Table 1) range from 7.8 for LL to 9.3 for H class while the loss tangent is close to the loss 

tangent considered for the silicates. The comparison with measured values shows a good correlation for 

LL and L5 meteorites, a slight deviation for L6 and drastic deviation for H5. This deviation has to be 

understood by the composition itself; our modeling is based on some averaged composition (i.e. metal 

fraction) while the contents can significantly change inside the group and also from the metal inclusion 

shape, while the impact on the permittivity is strongly dependent on the topology. Considering L and 

LL more representative of the S-type population than H chondrites, we will consider hereafter 

permittivities ranging from 7 to 10 for this group and maximum loss tangent in the range of 10-2 without 

porosity. 
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IV - 2.  C-TYPE ASTEROIDS 

C-type asteroids are often associated with carbonaceous chondrites. It has to be noted that only 

the Ch and Cgh subtypes have clear matches among meteorite families (Vernazza and Beck, 2016). Also 

the CV and CR chondrites have been in the past related to K-type asteroids (Bell, 1988; Burbine et al., 

2001). The permittivities of only one CR2 and one CM meteorite have been measured in the laboratory 

giving a real permittivity of 2.6 and 3.0 respectively for powdered material with 30% porosity in the 

range of 20 MHz to 1 GHz (Table 3, Kofman et al., 2015). As previously noted, measurements on 

powder lead to an underestimation of both the real permittivity and the loss tangent even after correction 

for the porosity (Campbell and Ulrichs, 1969). Hence, these measurements have to be considered with 

some caution. Moreover, the measured CR2 permittivity is lower than the measured CM value despite 

a significantly larger metal content and a higher density (Table 3, Table 1). This could be explained by 

terrestrial weathering of the tested sample; NWA 801 (CR2) has indeed experienced moderate to 

extensive terrestrial weathering with pervasive veins of rust (Connolly et al., 2007). Such oxidation of 

the metal fraction is expected to reduce significantly the permittivity and could then explain the low 

permittivity of the NWA 801 (CR2) with regards to NWA 5797 (CM). Therefore, taking this 

measurement as representative, would result in significant underestimation of the actual value of the 

CR2 meteorite class and bias the permittivity assumption for the overall C-type asteroids.  

Carbonaceous chondrites (CI, CM, some CV’s, CR) show evidence of an aqueous alteration 

process. In this process, primary minerals (silicates, metals, refractory minerals) reacted with water to 

produce a more oxidized secondary mineralogy (Brearley, 2006). This process is most intense in the 

case of CI and CM, where all iron metal was oxidized to iron oxides and a significant fraction of silicates 

was converted into phyllosilicates. The dielectric properties of CI, CM and CV meteorites were modeled 

by a ternary mixture, of hydrous silicates (serpentine), anhydrous silicates (olivine) and carbon. 

Phyllosilicates present lower permittivity from 5 to 7 (porosity-corrected) for montmorillonite and 

serpentine, while the loss tangent seems larger than for the silicates, ranging from 10-2 to 6 10-2. At lower 

frequency (kHz), Herique et al. (2002) observed that the montmorillonite loss tangent is larger than for 

dunite, both decreasing drastically when temperature decreases. This higher loss tangent can be 

explained by mineral hydration and water molecule relaxation. Then we will consider the loss tangent 

lower than 3.10-2 for phyllosilicates. The organics fraction in carbonaceous chondrites is typically less 

mature (lower C/H ratio) than in L/L, and is modeled by coals (Table 4 – we consider here coal with a 

loss tangent around 0.2 which is the worst case in term of dielectric losses). Estimation of the permittivity 

gives values from 5.9 to 6.3 for CI and CM, larger than the measured value. The loss tangent is around 

3.10-2 mainly driven by phyllosilicates.  

The dielectric properties of CR were modeled in this work by a mixture of anhydrous silicates, 

low maturity carbon (coal) and a significant fraction of metal (equal proportion of metallic and oxide 

species). Due to this metal fraction, the estimated permittivity is then 8.2 with a loss tangent around 

2.10-2. The real permittivity is significantly larger than that measured on NWA 801; as explained 

previously this measurement could not be taken as representative of CR2 due to terrestrial oxidations 

and to powder state. On the other hand, the modeled value seems consistent with the averaged 

composition and density of the meteorite family and with the permittivity of the other meteorite families. 

Therefore we will consider permittivities ranging from 5.9 to 8.2 for C-type associated with a maximum 

loss tangent 3.10-2. 

IV - 3.  M-TYPE ASTEROIDS 

M type asteroids seem to be the vestige of disrupted metallic cores of early planetesimal bodies 

and require discussion in more detail. A number of asteroid sub-types have been related to metal-rich 

meteorites: iron meteorites (associated with X-types), pallasite (A-type) or mesosiderite (Xk). This 

corresponds to pure metal or a metallic matrix embedding rocky inclusions, both explaining the strong 

radar echoes observed with ground-based radars (Shepard et al., 2015). In Table 3, RKP A79015 is an 

Antarctica mesosiderite meteorite without significant oxidation or terrestrial weathering. The measured 

permittivity (Heggy et al., 2012) appears extremely low with regard to its 78% taenite content (alloy of 

iron and nickel) and one cannot exclude some significant bias from the tested sample, inducing a large 

underestimation of the loss tangent. 
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The radar response of such metallic core material would be dominated by conductivity; with 75% 

metallic iron and nickel, macroscopic currents are induced in the matrix at the scale of the wavelength. 

The penetration depth is then limited by the skin effect at depth, orders of magnitudes lower than the 

wavelength with some dependence on the impurity contents. Radar echoes are then expected to be 

powerful and with limited depolarization as observed from Arecibo/Goldstone observations (Shepard et 

al., 2015).  

By comparison to C-type and S-type objects, the echoes from M-type asteroids present a larger 

standard deviation inside the class, and even for different echoes from the same body. From Earth 

survey, 40% of this family present a radar bifurcation (Shepard et al., 2015), a variability of the radar 

echo power with some areas more close to C-type or S-type, whereas other parts are fully representative 

of the M class. If this variability is not coming from a complex shape or a binary system (Ostro et al., 

2000; Shepard et al., 2015), this can be explained by a rocky regolith covering the metallic core with a 

local silicate enrichment from endogenous or exogenous origin. Studying this regolith, its structure and 

its origin is the goal of the monostatic high frequency radar to instrument the Heavy Metal mission (M5 

Cosmic vision program / ESA) proposed to visit Psyche (Wahlund et al., 2016).  

The present section summarizes our knowledge of the dielectric properties of asteroids and this 

work has to be continued by modeling, as well as laboratory measurement of minerals, meteorites and 

laboratory-synthesized asteroid analog mixtures, over a large range of temperatures, porosities and 

frequencies. The following section will focus on rocky asteroids and we will no longer consider the 

radar sounding of M class bodies, which are very specific, with expected limited penetration depth. In 

Figure 4 the key elements of dielectric model properties versus porosity for S-type (solid lines) and C-

type (dashed lines) are summarized. For each type, the two curves delimit the range of variability coming 

from the variability of the real part of the permittivity without porosity in our modeling above (from 5.9 

to 8.2 and from 7 to 10 for C-type and S-type respectively). In this model, we have considered only the 

maximum value of the loss tangent; one has to keep in mind that the dielectric losses derived from these 

curves will be the maximum dielectric losses expected for such asteroids.  

Finally, this model will be used in the next section to support the radar specification and to 

estimate the associated scientific return for both bistatic low frequency, and high frequency monostatic, 

radars. 

 

 

Table 1: Meteorite group with the associated asteroid type : mineralogical model (volume fraction), density (from Britt and 

Consolmagno, 2003) and estimated permittivity based on Maxwell Garnet modeling  

Asteroid type  meteorite group silicates phyllosilicates   carbons metals Density (kg m–3) ε tan δ (max) 

  CR 91.0% 0.0% 2.0% 7.0% 3230 +/- 280 8.2 0.019 

C CM 25.0% 70.0% 5.0% 0.0% 2710 +/- 110 6.3 0.029 

  CI 10.0% 80.0% 10.0% 0.0% 2120 +/- 400 5.9 0.037 

  H 91.0% 0.0% 1.0% 8.0% 3640 +/- 120 9.3 0.012 

S L 95.0% 0.0% 1.0% 4.0% 3510 +/- 110 8.3 0.012 

  LL 97.0% 0.0% 1.0% 2.0% 3480 +/- 80 7.8 0.012 

M Mesosiderites  25.0% 0.0% 0.0% 75.0% 4400 +/- 300   
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Figure 4 : Real permittivity and maximum loss tangent versus porosity for S-type (solid lines) and C-type asteroids (dashed 

lines) based on Looyenga mixture formula. Without porosity, S-type asteroid permittivity ranges from 7.0 to 10.0 

with a maximum loss tangent equal 0.01 and C-type asteroid permittivity ranges from 5.9 to 8.2 with a maximum 

loss tangent of 0.03. 

 

V -  GLOBAL CHARACTERIZATION WITH BISTATIC RADAR 

A bistatic radar is capable of probing an asteroid´s deep interior in order to discriminate between 

an aggregate or a monolithic structure and to characterize any heterogeneities: presence or absence of 

voids, compositional heterogeneity and size distribution of constitutive blocks. The radar signal is 

acquired after propagation from the Lander to the Orbiter through the asteroid body (Figure 3, top) and 

its main parameters of interest are the propagation delay, the wave attenuation and the signal texture. 

The measurements are repeated over many geometries to follow spatial variation of these parameters; 

for a probe orbiting a small body, geometry change is generally more from body rotation than from 

spacecraft orbital motion.  

As previously explained, the propagation mode inside the body is dependent on the scattering and 

therefore on the heterogeneity level at wavelength scales; materials with variation of the permittivity at 

a scale much smaller than the wavelength (</10) are seen as homogeneous by radar waves. It is the 

propagation mode inside monolithic rock with some micro-porosity and different minerals; it is also the 

case for a pile of sand with some macro porosity. Materials with heterogeneity at the scale of the 

wavelength (between /10 and 10), like an aggregate of meter-size blocks, produce scattering and so 

spreading of the radar waves that leads to a typical signature related to the statics of scattered block size. 

Moreover, larger-scales interfaces (>10) correspond to geometric optics with refraction and reflection. 

It is the propagation behavior for internal layers, blocks embedded in sand, large voids or separated large 

blocks.   

In other words, an aggregate of sand and a monolith correspond to similar wave behavior and 

then similar signal texture without significant wave spreading; the mean permittivity and its spatial 

variability as well as possible layers, basal regolith interface or embedded block allow discrimination 

between the two models. On the other hand, an aggregate of larger blocks produces wave scattering and 

signal spreading which inform directly on the size of the constitutive blocks and their spatial distribution. 

In practice, the internal structure could be more complex, as proposed for Itokawa (section II - 1. and 

Figure 1) mixing different propagation waves: several acquisitions and tomography processing will then 

allow retrieval of internal structure. 

Hence, the heterogeneity scales compared to the wavelength and the wave propagation inside the 

body determine the observable parameters present in the signal, and the inversion approaches to be 

applied. 
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V - 1.  FREQUENCY AND BANDWIDTH   

For the in-transmission tomography, the propagation delay provides a direct estimation of the 

average permittivity along the wave propagation path from the lander to the orbiter (Kofman et al., 

2015). This physical quantity can then be retrieved in terms of composition (Herique et al., 2016). We 

consider the AIDA/AIM scenario with the MASCOT2 lander placed on the surface of the secondary of 

Didymos, an S-type binary asteroid, whose moon diameter is around 160 m  (Michel et al., 2016). Figure 

5 (left) shows the variation of the optical length (equivalent to the propagation delay) versus the porosity 

for S-type permittivities as modeled (section IV - 1. and Table 1). To detect a variation of 5% in the 

mean porosity along a propagation path of 160 m length, a resolution better than 15 m on the optical 

length is required. This is equivalent to a time resolution of about 50 ns and a bandwidth of 20 MHz. 

This corresponds to an accuracy better than  = 0.6 for permittivity averaged along the propagation 

pass. For a larger body like the main body of this system, whose diameter is around 800 m, a resolution 

of 60 m would be sufficient (RF bandwidth BW = 5 MHz).  

The carrier frequency has to be determined from a trade-off between the bandwidth requirement, 

the antenna design and accommodation (size and matching), the electronic design (dispersion level) and 

signal to noise ratio performance (propagation losses and galactic noise). Figure 5 (right) shows how 

the dielectric losses increase with the frequency for this moonlet: the attenuation is equal to 

0.091 𝑓 √휀  𝑡𝑎𝑛𝛿  𝑑 in dB where f is the operating frequency (MHz) and d is the path-distance within 

the asteroid (m).  Up to 100 MHz, the radio noise is dominated by the galactic background (Figure 6, 

Kraus, 1986) which is significantly stronger than the antenna and receiver thermal noise and drives the 

radar sensitivity as well as radar receiver dynamics. The dielectric losses increase with frequency while 

at the same time, the galactic noise decreases (Figure 6). 60 MHz (=5 m in vacuum) appears to be a 

good compromise considering antenna accommodation constraints and target size. With dielectric losses 

lower than 20 dB for the S-type model and 40 dBm transmitted power (Table 2), a 10 km-radius orbit 

offers a comfortable signal to noise ratio (SNR) after processing (60 dB) for the moon (160 m diameter). 

This signal is still larger than the noise for the main body, but with a more limited margin (SNR > 5 dB). 

It is more difficult to estimate attenuation due to scattering, which becomes significant when the 

scatterers are numerous at a dimension comparable to the wavelength (), so attenuation itself provides 

information about internal structure. 

The design of the whole instrument is driven by the accuracy requirement of propagation delay 

which defines the in-time transponder structure associated with accurate local oscillators as described 

in several papers (Kofman et al., 1998, 2004, 2007). Dedicated signal pre-processing to resynchronize 

the transponder allows significantly improved propagation delay accuracy (a factor of 10) with regards 

to the bandwidth in case of favorable SNR (Pasquero et al., 2017). The accuracy limitation is then given 

by the orbit restitution accuracy (Herique et al., 2015). The main characteristics and performance of the 

bistatic radar developed for the AIDA/AIM mission are summarized in Table 2.  

V - 2.  DEEP INTERIOR 

The first observable parameter deduced from the radar signal is the real part of the mean 

permittivity of the body. It is derived from the group delay of the main path, introduced when the asteroid 

is inserted into the propagation path. The second is the dielectric loss tangent derived from the mean 

absorption of radio waves as the signal propagates through the body. When combined with other 

measurements like density estimation from radio science, the dielectric permittivity allows an estimation 

of the composition and porosity of the bulk material of the asteroid (for CONSERT see Kofman et al., 

2015, Herique et al., 2016). With observations along an arc of an orbit, the mean permittivity averaged 

along the propagation path can be calculated for different positions of the orbiter. Its variation as a 

function of the orbital position is related to large scale heterogeneities inside the body: gradient of 

density, presence of large boulders, compositional heterogeneity between large fragments, and variation 

of the size distribution in an aggregate, variation of the composition or micro-porosity within a 

monolithic structure. Such kinds of internal structure will also induce the presence of multiple 

propagation paths received at the same orbiter position.  

The statistical characterization of the spatial variation of the signal is a way to retrieve the typical 

size and contrast of the heterogeneity (Herique et al., 1999); this approach provides robustness in the 
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case of limited spatial coverage of the observation (i.e. an orbit or an arc of orbit). Full tomography of 

the interior, however, requires better coverage (Eyraud et al., 2017, Barriot et al., 1999) and is 

significantly improved by multiple source positions at the asteroid surface as provided by lander 

mobility or from the deployment of several transponders (Pursiainen and Kaasalainen, 2014). The signal 

texture is related to the scattering properties and also to heterogeneities at scales of the wavelength. A 

direct measurement of the peak spreading allows the quantification of this heterogeneity in terms of size 

and contrast (for 67P and CONSERT, see Ciarletti et al. 2017). It is a way to discriminate between an 

aggregate of large blocks and a monolith. As for the mean permittivity, the spatial variation of signal 

texture gives statistical properties of the large scale heterogeneities. For large scattering, propagation 

becomes incoherent and signal power decreases rapidly and only a partial tomography will be possible 

in chords through the asteroid. 

During an arc of an orbit, grazing angle tomography corresponds to a specific geometry 

tomography when the spacecraft is disappearing behind the horizon with respect to the lander. This 

geometry allows dedicated inversion approaches to retrieve near surface layering or gradient of 

permittivity (Ilyushin et al., 2003, Ciarletti et al., 2015). For a binary system, with the lander on the 

surface of one body, the signal transmitted from the lander in the direction of the second one is weak 

due to antenna directivity. Depending of the size of the second body, it could be difficult to expect deep 

sounding of this body; thus grazing angle is then a procedure to provide some information on the near 

subsurface of this second body. This configuration was considered for AIM mission to probe the 

Didymos’ main body, with MASCOT landed on surface of its moon.  

   

Aggregate or monolithic structure can therefore be discriminated from the mean permittivity and 

the signal peak enlargement. For a rubble pile asteroid, bistatic tomography will allow us to estimate the 

size distribution and the internal structure of the individual blocks, possibly by direct imaging in the 

case of large block sizes and high contrasts, and more generally by statistical analysis of the scattered 

signal. The estimation of the mean permittivity of the blocks is a way to determine macro- versus micro-

porosity in and throughout the regolith, whose spatial variations highlight the heterogeneity of the parent 

bodies and segregation mechanisms during cratering, disruption, and re-accretion.  

In the case of a monolithic asteroid, there is only micro-porosity, plus the existence of fracture 

planes from impact and thermal/cooling stress, and possible compositional boundaries. As before, 

images of the asteroid interior and spatial distributions of the permittivity determine the heterogeneity. 

A more advanced analysis by statistical or imagery approach will allow the characterization of the 

heterogeneity inside a monolith, whereas fracture planes and material contrasts would show up as strong 

reflectors. 

V - 3.  GRAVITY FIELD AND DYNAMICAL STATE   

The bistatic radar is also a way to have a direct measurement of the lander-to-orbiter distance 

during visibility periods with an accuracy better than a few meters. During the Rosetta (ESA) mission 

this mode demonstrated its efficiency in localizing the Philae Lander after its unexpected bounces 

(Herique et al., 2015). This mode is more than an operational-only mode and can contribute to science 

too. This secondary objective addresses mainly the determination of the gravitational field and the 

dynamical state, especially for a binary system like Didymos (Michel et al., 2016).  

With a typical asteroid rotational period lower than 12 h and a spacecraft orbiting at 10 km, the 

asteroid rotation dominates the variation of the lander/orbiter geometry (for the tomography we consider 

the asteroid-fixed reference frame and we describe then the orbiter motion in the rotating frame). The 

lander-to-orbiter distance when the lander is visible to the orbiter is determined by the asteroid 

gravitational field and by the possible precession or nutation of this body. The gravity field is mainly 

determined from Doppler tracking of the spacecraft from Earth; to reconstruct trajectories, the direct 

measurement of the body-to-orbiter distance is additional information with a lower accuracy but a better 

configuration (direct measurement) and a different line of sight as compared to the Earth-body direction. 

In the same way, the dynamical state is generally determined from optical data. Radar ranging adds a 

third direction to the optical image to improve navigation and then determination of the dynamical state.  



Direct Observations of Asteroid Interior and Regolith Structure: Science Measurement Requirements 

A. Herique et al. - Advances in Space Research in press - 16 October 2017- DOI: 10.1016/j.asr.2017.10.020 

18 

During the lander descent, radar ranging is also a way to contribute to the estimation of near-field 

components of the gravitational field. Again, to reconstruct lander trajectory, ranging is fully 

complementary to optical tracking, offering the third direction.  

 

 

 

Figure 5 : Bistatic radar sensitivity for the 160 m moon of the Didymos system. Variation of the optical length versus porosity 

(left) and total dielectric losses after 160 m propagation inside the body with 40% porosity (right).            

S-type asteroid permittivity (solid lines) ranges from 7.0 to 10.0 with a maximum loss tangent equal to 0.01.              

C-type asteroid permittivity (dashed lines) range from 5.9 to 8.2 with a maximum loss tangent equal to 0.03. 

 

 

 

Figure 6 : Galactic Noise: Antenna sky temperature as a function of the frequency and zenith angle                

(reworked from Kraus, 1986) 
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Table 2: Main characteristics and performance of the bistatic radar and high frequency monostatic radar for the AIDA/AIM 

mission 

 Bistatic Radar 

LFR 
Monostatic Radar 

 orbiter Lander   

Frequency : nominal 50-70 MHz 

  
300 – 800 MHz  

Frequency : extended 45-75 MHz 
  

up to 3GHz 

signal BPSK 

  
Step frequency 

Resolution  10 – 15 m (1D) 
  

1 m (3D) 

Polarization Circular (AIM) Linear (Mascot) Tx : 1 Circular  

      Rx : OC and SC 

Tx power 12 W 
  

20 W 

Pulse repetition 5 seconds 1 second (typical) 

sensitivity Dynamics = 180 dB 
  

NEσ0 = -40 dB.m2/m2 

Mass        

Electronics  920 g 920 g 830 g 

Antenna 470 g 230 +  100 g 1560 g 

Total w/o margin 1390 g 1250 g 2390 g 

Power  max / mean 50 W / 10 W 50 W / 10 W 137 W / 90 W 

Typical Data  (Gbit) 1 0.3 300 Gbit 

 

VI -  NEAR SUB-SURFACE IMAGERY WITH MONOSTATIC RADAR 

The aim of the monostatic radar is to investigate the shallow subsurface of the asteroid down to a 

few tens of meters depth with meter resolution. Such resolution will allow us to understand the structure 

of regolith, looking for potential layers and embedded blocks. The radar signal is transmitted by the 

orbiter and received by it after reflection and scattering by the asteroid surface and near subsurface 

(Figure 3, bottom). This signal is acquired as a function of time (i.e. propagation delay) and the 

measurement is repeated for different observation geometries during an acquisition sequence (i.e. along 

track motion inducing Doppler) depending on both body rotation and spacecraft motion. Then, the 

information on the propagation delay and phase (i.e. Doppler) of the received signal over different 

geometries allows calculation of near-surface scattering properties from the signal amplitude by 

Synthetic Aperture Radar (SAR) processing. Both the instrument design and the processing are 

determined by the geometry of small body observation.  

VI - 1.  SYNTHETIC APERTURE RADAR FOR SMALL BODIES   

SAR geometry for asteroids deviates drastically from spaceborne stripmap SAR as is used for 

Earth or planetary observations: The along-track motion is generally dominated by the rotation of the 

asteroid, given a relative motion lower than meters per second, which relaxes constraints on the pulse 

repetition frequency (PRF). The spacecraft could be significantly closer to the asteroid; typically at 10 

km range and down to few hundred meters for the AIDA/AIM mission (or less for a sample return 

mission) which improves the link budget but limits transmission duration (Tx duration < round-trip 

propagation delay).  

At this distance, when the antenna size is limited and its pattern (i.e. field of view) covers the 

entire small-body, the returned signal is limited by the extension of the body and not by the antenna 

pattern (“target limited” and not “beam limited”, Figure 7). Therefore, radar requirements and 

performance are driven by the geometry and not by the pattern. Due to the asteroid’s small dimension, 

range and Doppler are not separable and full-SAR processing including range compensation is required, 

as for Ultra-Wide Band (UWB) radar (Ulander and Frolind, 1998). In this geometry, the performance 

will vary with the latitude and the longitude on the asteroid surface (resolution, sensitivity, ambiguity 

ratios, etc.), as well as the incidence of observation. A signal return from the whole target induces 

north/south ambiguities: a point at the surface is aliased symmetrically with the ground track (Figure 7) 

with some SAR defocusing when the spacecraft is not in the equator plane (high resolution reinforces 

this defocus effect, helping to resolve ambiguities).  

Multipass acquisition and processing are required to fully resolve this ambiguity and provide 3D 

tomography: the propagation delay (RF signal bandwidth) gives the resolution in the line-of-sight 
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dimension; along-track motion due to body rotation gives the resolution in the body’s equatorial plane; 

resolving the third direction requires multiple acquisition sequences with the spacecraft moved in a 

direction parallel to the asteroid spin axis. Simulations show that 10 acquisition sequences provide a 

meter resolution in 3D with a dynamic range better than 20 dB (ambiguity ratio > 20 dB).  

 

To achieve our scientific goal the instrument requires a large degree of versatility to be in a 

position to operate at larger or reduced distance, to be optimized for performance for different latitudes 

or science objectives. The step frequency concept is the most relevant to offer this versatility by 

instrument setting. This consists of repetition of the transmission and the reception of a continuous wave 

with a variable frequency covering step-by-step the desired bandwidth. This repetition is possible due 

to the relaxed constraints on the PRF and offers the possibility of selecting the bandwidth, the number 

of frequencies and the transmission duration in order to match with the geometry or to focus 

investigation of some limited areas (increased performance). The succession of transmission and 

reception slots in time sharing (i.e. no transmission when receiving) is required to transmit power (20 

W - Table 2) in order to operate at a large distance (10 km) but could limit the minimum distance for 

operations (>200 m).    

Our step frequency radar must operate at frequencies significantly higher than the bistatic radar. 

This results from a trade-off between the dielectric losses and the resolution; dielectric losses increase 

with frequency and then limit the penetration depth (Figure 8) while a large bandwidth - to achieve high 

resolution - is easiest to be implemented at high frequencies. A nominal bandwidth ranging from 300 to 

800 MHz seems to be a good compromise allowing high resolution, better than one meter in range close 

to the surface (the resolution decreases with depth since the absorption varies with frequency). In terms 

of polarization, transmitting one circular polarization and receiving the two circular polarizations (Same 

Circular polarization SC and Opposite Circular polarization OC) as classical for earth-based and space-

borne planetary SAR is the scenario that avoids complex spacecraft attitude control. The main 

characteristics and performance of the monostatic radar developed for the AIDA/AIM mission are 

summarized in Table 2.  

VI - 2.  REGOLITH AND SHAPE MODEL  

As explained earlier, the final resolution and sensitivity will depend strongly on the geometry 

diversity provided by the observation scenario. The first observed parameter is the backscattering 

coefficient which quantifies the returned power per surface or volume unit. It is related to the degree of 

heterogeneity at the scale of the wavelength and to the dielectric contrast of heterogeneities. To illustrate, 

sand will give lower scattering than decametric blocks for our bandwidth, and the spectral signature 

could provide relevant information to retrieve block size distribution. The second parameter is the 

polarization ratio of the scattered wave (SC/OC power ratio) which is sensitive to the multiple scattering 

and then to the wave penetration.  

With one sequence of observation, 2D images mix surface and subsurface contributions, mixing 

signals arriving with the same delay and Doppler. Such images allow detection of embedded structures 

masked by surface deposits, which make optical identification impossible. The polarization ratio is then 

the quantity of interest as currently used for planetary surfaces (see for example Nozette et al., 2010; 

Thompson et al., 2011 for Mini-RF on LRO and MiniSAR on Chandrayan-1). These images allow 

identification of not only large blocks or lakes, but also variation of the regolith texture and composition 

in order to understand stratigraphic relations of the different units, layers or lenses. Larger coverage with 

at least ten sequences of acquisition in relevant configuration will give access to the full subsurface 

imagery.  

 

Any radar primarily measures the antenna-to-target range, and altimetry data are already present 

in SAR imagery as long as the radar field of view is covering the full asteroid. With a resolution of up 

to 30 cm, this altimetry is relevant to support operations that complement on board optical navigation 

(distance to the closest asteroid point calculated in real-time) or on ground navigation (orbit restitution). 

It is also of main interest to support determination of the gravity field and of the dynamical state, as 

explained for the bistatic radar case in section V-3.  
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SAR processing can also provide the shape model of the asteroid. It is in fact a sub-product of the 

multipass processing for 3D tomography: the phase difference between multiple acquisitions in different 

geometries is then used to rebuild the shape by interferometry as done for Venus (Jurgens et al., 1980). 

On board Rosetta such an instrument would have allowed construction of a shape model of the shadowed 

part of the nucleus from the early phase of the mission around 67P. For small-body missions, a shape 

model is derived from optical data: optical and radar measurements are complementary in the geometry 

point of view but are not sensitive to the same physical quantities. The promising synergy between the 

two constitutes a wide but relatively unexplored discipline. More classical, multipass approaches are 

ways to study temporal evolution of surfaces, as is well known for Earth surveys: interferometry to 

follow shape deformation, coherence to follow disruption, etc. (Goldstein et al., 1988). In the frame of 

AIDA with its DART component (Cheng et al., 2016), this approach would be implemented to better 

model the mechanics of the impact.   

 

To end this review, we can consider the interest in operating at higher frequencies. Higher 

frequencies provide a lower penetration and are therefore less relevant for investigation of regolith. 

Nevertheless, frequencies up to 2.5 GHz provide greater versatility, and increased altimetry resolution. 

They also open the door to promising synergies with ground-based radar observations from Earth. In-

orbit acquisition of radar echoes in the same frequency range with an increased resolution could benefit 

data retrieval of Arecibo observations.  

 

 
Figure 7: Geometry of acquisition. 

 

 

 

Figure 8 : Monostatic radar sensitivity: total dielectric losses in dB per meter with 40% porosity             

S-type asteroid permittivity (solid lines) ranges from 7.0 to 10.0 with a maximum loss tangent equal to 0.01.              

C-type asteroid permittivity (dashed lines) ranges from 5.9 to 8.2 with a maximum loss tangent equal to 0.03. 
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VII -  CONCLUSION  

After many missions, our knowledge of the internal structure of asteroids remains largely 

unknown and suffers from the lack of any direct observation. The structure of the deep interior and of 

the regolith is crucial to better understanding and modelling of planetary accretion and collisional 

history, as well as methods to deflect or disrupt potentially hazardous near-Earth objects. This requires 

the characterization of the aggregate structure and constitutive block size distribution to model 

mechanical and thermal properties as well as dynamical behavior. A direct observation of deep interior 

and regolith is a way also to constrain internal composition and porosity. These measurements are then 

key to planning any spacecraft interaction with an asteroid in the frame of a sample return mission, a 

well-defined planetary defense program, or any attempt at asteroid mining.  

Radar is certainly the most mature method suitable of characterizing the interior of a small airless 

body from sub-meter to global scale. Two complementary radars are needed to get the whole 

information: a bistatic radar around 60 MHz to provide the tomography of the deep interior and a high 

frequency monostatic radar to characterize the regolith structure.  

Bistatic radar allows discrimination between aggregate and monolith from the propagation delay 

and the signal spreading. Depending on the sounded structure, it gives access to the typical size of the 

constitutive blocks or heterogeneities and offers new constraints to model composition and porosity. To 

achieve these goals, the radar resolution has to be better than 7 m (in vacuum) with multiple sequences 

of acquisition (> 5).  The line of sight ranging from lander to orbiter during descent or after landing is 

to support the determination of the gravity field and the determination of the dynamical state in synergy 

with other instruments, especially camera.  

Monostatic radar operating in a frequency range of 300 to 800 MHz provides a 2D or 3D map of 

the first tens of meters of the regolith, imaging spatial variability, layers or embedded blocks and allows 

linking of surface to deep interior properties. This geological map is crucial for any sample return 

mission (sampling site selection and contextualization) as well as to prepare any asteroid deflection or 

asteroid mining program. To achieve these goals, the resolution has to be better than one meter in 3D, 

which requires a dozen sequences of operation. Altimetry data can be directly derived from radar 

sounding to support estimation of the gravity field and determination of the dynamical state. These data 

can also contribute to the shape modeling.  

For the two instruments, these secondary objectives are more speculative, but promising for 

science return and operational purposes.  

To achieve these science objectives, a bistatic radar and a monostatic radar have been developed 

with heritage from CONSERT on Rosetta and WISDOM on ExoMars respectively. After the 

AIDA/AIM phase A/B1, these instruments have been included in several M5 Cosmic Vision proposals 

for asteroids. After the preliminary selection three small-body missions carrying the high frequency 

radar are still in the running: Castalia to Main-belt Comet 133P/Elst-Pizarro (Snodgrass et al, 2017), 

Heavy Metal to Psyche (Wahlund et al., 2016) and also DePhine to Deimos (Oberst, 2017). We believe 

that this unique combination of two complementary radars for future asteroid missions will answer the 

questions that are crucial for science, exploration, planetary defense and in situ resource utilization.   

 

ACKNOWLEDGEMENT  
The radars’ development has been supported by CNES’s R&T program ("CONSERT Next Generation" 

study) and by ESA's General Studies Program (AIM Phase A). 

The High Frequency Radar is inherited from WISDOM/Exomars funded by CNES and DLR. 

The Low Frequency Radar is inherited from CONSERT/Rosetta funded by CNES and DLR. 

 

Authors thanks Paul Abell and the other reviewer for very useful comments and suggestions which help 

us to improve significantly our paper.  

 

  



Direct Observations of Asteroid Interior and Regolith Structure: Science Measurement Requirements 

A. Herique et al. - Advances in Space Research in press - 16 October 2017- DOI: 10.1016/j.asr.2017.10.020 

23 

ANNEXES 

Table 3  Dielectric permittivity of meteoritic samples from the literature (modified from Herique et al., 2016).            

- Campbell’s measurements present a range of variability coming from the explored frequency range.    

- Fensler’s measurements present the same range coming from the frequency and also the characterization of 3 different 

samples for each meteorite.           

- The other measurements have been done for porous materials and don’t present any significant variability frequency. In 

italic, the range of permittivity given by Hashin-Shtrikman bounds (from Sihvola, 1999) for the solid material, without 

porosity from Herique et al., (2016): the given range is due to the uncertainties from the mixing formula and not due to any 

variability of the measured value itself. In other words, the permittivity of the solid material is somewhere between the two 

bounds.   

Classification  Name fall ε tan δ porosity Frequency (MHz) Reference 

CR2 NWA 801 N 2.6 - 0.3 20-1000 Kofman, 2015 

  "   3.5<  .  <4.0 - compensated " Herique, 2016 

CM NWA 5797 N 2.9 - 0.3 20-1000 Kofman, 2015 

  "   4.0-4.7 - compensated " Herique, 2016 

LL5 MAC 88122 N 4.7 4. 10-3 0.3 20-1000 Heggy, 2012 

  "   6.9<  .  <12.2  compensated " Herique, 2016 

L5 MET 01260 N 5.6 4. 10-3 0.3 20-1000 Heggy, 2012 

  "   8.4<  .  <20.4  compensated " Herique, 2016 

L6 Holbrook Y 7.8 1.5 10-2 solid 450 Campbell, 1969 

  Burderheim Y 9.0 - 11.9 4. 10-2 solid 450 Campbell, 1969 

  Colby N 10.6 - 11.8 5. 10-2 solid 450 Campbell, 1969 

  Leedy (sample 1) Y 10.4 - 11.1 3-6. 10-2 solid 420-1800 Fensler,1962 

  Leedy (sample 2) Y 11.2 - 13.9 3-4. 10-2 solid 420-1800 Fensler,1962 

H5 LEW 85320 N 5.7 2. 10-2 0.3 20-1000 Heggy, 2012 

  "   8.6 <  .  <21.4  compensated " Herique, 2016 

  Forest City Y 16 - 33 0.11 solid 450 Campbell, 1969 

  Plainview (sample 1)  N 25.4 - 30.4 0.1-0.2 solid 420-1800 Fensler,1962 

  Plainview (sample 2) N 32.1 - 45.9 0.1-0.2 solid 420-1800 Fensler,1962 

  Bonita Springs N 43 - 81  0.13-0.19 solid 450 Campbell, 1969 

EH4 Indarch y 130 - 150 0.065-0.117 solid 450 Campbell, 1969 

Mesosiderite RKP A79015 N 8 3. 10-3 0.3 20-1000 Heggy, 2012 

  "   12.3< .    compensated " Herique, 2016 

 

Table 4  Permittivity of relevant minerals and organics (from the literature; compilation of permittivity in Herique et al., 

2016).   

 ε tan δ FREQUENCY porosity REFERENCES 

SILICATES           

OLIVINE  7.1 4 10-3 1 MHz 0 Olhoeft, 1979 

OLIVINE  7.3 4 10-2 1 MHz 0 Olhoeft, 1979 

PYROXENES 7.9 8 10-3 1 MHz 0 Olhoeft, 1979 

PHYLLOSILICATES           

SERPENTINE 6.4 (6.4) 4 10-2 (10-2) 35 (450) MHz  Campbell, 1969 

SERPENTINE 6.4 (7.0) 6 10-2 (2 10-2) 35 (450) MHz  Campbell, 1969 

MONTMORILLONITE 4.2 - 4.8    90 MHz <20% Herique, 2002 

CARBON            

GRAPHITE 15-23 0.5-0.85 1-10 GHz 42% Hotta, 2011 

PURE CARBON 23-30 0.35-0.4 1-10 GHz 37% Hotta, 2011 

CARBON BLACK 6.0-9.0 0.4 1-10 GHz 12% Hotta, 2011 

COAL with H – S – O – N 1.94 - 2.21 0.02-0.2 1-10 GHz ~50% Hotta, 2011 

METAL        

HEMATITE + MAGNETITE 15.0 0.2 50 MHz   Stillman, 2008 
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