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† LAPLACE, CNRS, UPS, INP, Université de Toulouse, 31400 Toulouse, France

Email: vincent.laquerbe@isae.fr

Abstract—This paper presents an analytical model to study the
electrostatic scattering of sub-wavelength radially inhomogeneous
spheres whose permittivity can be expressed as a general polyno-
mial function of the radial distance r. This technique is particu-
larly well suited to characterize the electrostatic resonance, also
known as surface plasmon resonance, of radially inhomogeneous
negative permittivity spheres.

Index Terms—Sub-Wavelength Inhomogeneous Resonator,
Negative Permittivity Spheres, Surface Plasmon Resonance.

I. INTRODUCTION

SUB-WAVELENGTH particles are known to exhibit scat-
tering peculiarities when their relative permittivity reach

negative values [1]. Indeed, strong electrostatic resonance
occurs in homogeneous sphere when εr = −2 [2], [3].
This specific feature has been suggested to design microwave
electrically small antennas [4], optical nanoantennas [5], [6],
or to study atmospheric re-entry blackout problem [7], [8].
Although many studies on this effect have been performed
assuming a homogeneous sphere, it is noteworthy to derive
radially inhomogeneous models.

The EM scattering of a radially inhomogeneous dielectric
sphere has been widely studied through Mie theory [9]–[12],
but these approaches usually require advanced numerical tech-
niques with extensive computational analysis. When consider-
ing sub-wavelength spheres, it is usually more convenient to
focus on the electrostatic scattering problem, thus simplifying
the problem to the resolution of the Laplace equation. In this
way, piecewise multilayered models have been proposed to
analyze sub-wavelength radially inhomogeneous spheres [13].
However, they usually misrepresent the electrostatic resonance
and its inherent local field amplifications [12]. To that extent,
specific models have been developed for continuous media
whose permittivity is a linear or single-powered function of
the radial distance r [14], [15].

In this paper, an analytical model is proposed to study the
electrostatic resonance of sub-wavelength radially inhomoge-
neous spheres whose permittivity is expressed as a general
polynomial function of the radial distance r.

II. THEORETICAL MODELING

A. Statement of the problem
The general problem is depicted in Fig. 1. It consists in the

EM scattering of a sub-wavelength radially inhomogeneous

sphere of radius a immersed in a vertically polarized elec-
tric field ~E0. Its frequency-dependent relative permittivity is
represented by the following lossless Drude model [16]:

εr(r, ω)= 1−
ω2
p(r)

ω2
(1)

where ω is the angular frequency of the incident wave and ωp

is the plasma angular frequency that accounts for the radial
inhomogeneity of the sphere. It is assumed that ωp(r) can be
expressed as a polynomial function of the radial distance r.
Thus, the relative permittivity of the sphere is also defined as a
polynomial function of r whose general expression at a given
angular frequency ω0 is:

εr(r, ω0) = εr,0 + εr,1r + εr,2r
2 + · · ·+ εr,mr

m (2)

where all εr,i are real coefficients.
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Fig. 1. EM scattering of a radially inhomogeneous sphere immersed in a
vertically polarized electric field ~E0

As long as the radius a of the sphere is small compared with
the free-space wavelength of the incident wave, i.e., ka � 1
where k is the free-space wavenumber, the problem can be
reduced to the computation of the scalar potential Φ(r, θ, φ)
using the Laplace equation. Note that the influence of a on
the electrostatic assumption has been raised in [17].

The method of separation of variables allows us to quickly
find the angular component of Φ. Only the first spherical
harmonic is non-zero, which highlights a dipole-like response
of the sphere [13]. Finally, the scalar potential in each region
is thus expressed as

Φsphere(r, θ)=R1(r) cos θ (3a)

Φout(r, θ)=−E0r cos θ +
Bout

r2
cos θ (3b)



where Bout, the dipole coefficient in the outer region, and
R1(r) are to be determined.

B. Solution for the scalar potential

Inside the sphere, the Laplace equation for the radial com-
ponent R1(r) does not reduce to a single power of r, as it
is the case for a homogeneous sphere [15], and the following
general equation must be solved:

εr(r)
d

dr

(
r2
dR1

dr

)
︸ ︷︷ ︸

T1

+ r2
dεr(r)

dr

dR1

dr︸ ︷︷ ︸
T2

− 2εr(r)R1︸ ︷︷ ︸
T3

= 0 (4)

Assuming a general normalized power-law solution
R1(r) =

∑
l Clr

l, only positive powers of r are non-zero
as negative values exhibit a pole at the origin. For the sake
of simplicity, (4) can be normalized to the first term in the
expansion of εr so that, with no loss of generality, we can
assume that

ε̃r(r̃) =
m∑
q=0

bq r̃
q where r̃ =

r

a
and bq =

εr,q
εr,0

aq. (5)

Similarly, R1 is normalized to the first term C0 in its
expansion so that (4) is now solved with:

R̃1(r̃) =
∑
l>0

C̃lr̃
l+s, with C̃l =

Cl

C0
al+s (6)

where s is a positive integer that is found by polynomial
identification on the lowest power of r̃ (which is r̃s) in the
development of (4). This leads to the following characteristic
equation, as presented in [15]:[

s(s+ 1)− 2
]

= 0 (7)

From (7), it is clear that s = 1. Developing (4) according
to the powers of r̃ and substituting each power to obtain only
sums of r̃l+1, the T1,2,3 terms can be expressed as follows:

T1 =
∑
l>0

(
m∑
q=0

(l + 1− q)(l + 2− q)bqC̃l−q

)
r̃l+1

T2 =
∑
l>0

(
m∑
q=1

q(l + 1− q)bqC̃l−q

)
r̃l+1 (8)

T3 =
∑
l>0

(
m∑
q=0

2bqC̃l−q

)
r̃l+1

By identification and after brief manipulations, the follow-
ing recurrence relation can be derived:

C̃l +

min(l,m)∑
q=1

l2 + 3l − lq − 2q

l(l + 3)
bqC̃l−q = 0 (9)

Dong et al. first suggested this approach in [15] but re-
strained the resolution to linear and single-powered radial
profile. Though, when considering linear profile, i.e., m = 1,
(9) becomes:

C̃l +
l2 + 2l − 2

l(l + 3)
b1C̃l−1 = 0 (10)

which is consistent with [15]. In the end, using (3) and the
boundary conditions at r = a on the scalar potential and
the electric displacement field between the sphere and the
surrounding medium restore E0 and yield to:

C0=
−3E0

εr(a)
dR̃1

dr̃

∣∣∣∣
r̃=1

+ 2R̃1(1)

(11)

and:

Bout=

εr(a)
dR̃1

dr̃

∣∣∣∣
r̃=1

− R̃1(1)

εr(a)
dR̃1

dr̃

∣∣∣∣
r̃=1

+ 2R̃1(1)

a3E0 (12)

When all bq>0 are zeros, i.e., for a homogeneous sphere, it
can be seen from the recurrence relation (9) that all C̃l>0 are
also zeros and R̃1(r̃) = r̃. This way, Bout simplifies to:

Bout=
εr,0 − 1

εr,0 + 2
a3E0 (13)

which is the classic dipole factor of a homogeneous sphere
that highlights the electrostatic resonance for εr,0 = −2 [1].

This model can be further extended to study more sophisti-
cated structures involving any radially inhomogeneous sphere
embedded inside multiple dielectric layers. In this case, the
scalar potential is likely derived applying the same boundary
conditions as before at the interfaces between each different
medium [13].

C. Discussion on the validity of the proposed model

The main benefit of considering a generic polynomial
permittivity profile inside the sphere, as in (2), lies in its ability
to uniformly approximate any continuous function on a closed
interval according to the Stone-Weierstrass theorem.

However, as it complicates the resolution of the Laplace
equation, the series R̃1 may not have a finite limit. It is
therefore necessary to find a domain of convergence D within
which R̃1 is unambiguous and well-defined. It is here proven
that a valid domain of convergence is:

D =

{
{bi}i∈[0,m] | fb =

m∑
q=1

|bq| < 1

}
(14)

Developing (9) for the first m−1 terms, it can be seen step-
by-step that each term is smaller than fb in absolute value, and
thus by recurrence:

∀l > 1,
∣∣∣C̃l

∣∣∣ 6 m∑
q=1

|bq| (15)

Likewise, considering the following terms (l > m) from (9)
and using the inequality derived above by recurrence, a new
upper bound can be derived:∣∣∣C̃l>m

∣∣∣ 6 m∑
q=1

|bq|
∣∣∣C̃l−q

∣∣∣ 6
m∑
q=1

|bq| (16)



The same technique can be used for each sequence of m
terms. Between each sequence the upper bound is tightened
by fb so that:

∀l > 0,
∣∣∣C̃l

∣∣∣ 6 ( m∑
q=1

|bq|

)bl/mc+1

(17)

where b·c denotes the floor function. Eq. (17) proves that
{C̃l}l>0 are converging to 0. Now grouping each sequence
of m terms in the expression of R̃1 and using (17), an upper
bound can be derived:∣∣∣R̃1

∣∣∣ 6
m−1∑
l=0

∣∣∣C̃l

∣∣∣+
2m−1∑
l=m

∣∣∣C̃l

∣∣∣+
3m−1∑
l=2m

∣∣∣C̃l

∣∣∣ · · ·
∣∣∣R̃1

∣∣∣ 6 m+m

(
m∑
q=1

|bq|

)
+m

(
m∑
q=1

|bq|

)2

· · ·

∣∣∣R̃1

∣∣∣ 6 m
1

1− fb
In the end, R̃1 is bounded and its terms are converging to

0. Thus, as it takes its values in a Cauchy space, namely the
closed interval [0, 1], it converges.

As it will be raised in Section III-A, the theoretical case of
a material whose permittivity is locally equal to 0 is singular.
Mathematically, if at a certain radial distance r̃1 in the sphere
ε̃r(r̃1) = 0, then (5) can be written as:

ε̃r(r̃1) = 1 +
m∑
q=1

bq r̃
q
1 = 0 (18)

which yields:

1 =

∣∣∣∣∣
m∑
q=1

bq r̃
q
1

∣∣∣∣∣ 6
m∑
q=1

|bq| = fb (19)

In other words, if the permittivity is locally equal to 0
inside the sphere, the domain of convergence D is no longer
respected and the proposed model is not applicable.

III. NUMERICAL RESULTS

A. Computation of the resonant frequency

The following non-trivial profile for ωp is now considered
as an example, with a = 10 mm:

ω2
p(r)

ω2
p(0)

= 1− 1

20

( r
a

)
− 1

10

( r
a

)2
− d

( r
a

)3
(20)

where ωp(0) is the plasma angular frequency at the center. The
coefficient d is a smaller-than-1 positive integer that will vary
to study the reliability of the model and prove its necessity.

Solving the Laplace equation with the proposed algorithm,
the normalized dipole coefficient |BOUT | from (3) is calcu-
lated and represented in Fig. 2 as a function of the electrical
size ka of the sphere and ωp(0) for d = 0.5. The dipole co-
efficient strongly increases locally which reflects a dipole res-
onance. For example, using Fig. 2 for ωp(0) = 1010 rad.s−1,
the resonance occurs at ka = 0.155, i.e. f = 740 MHz.

Note that the white area from Fig. 2 corresponds to
divergent cases for which the permittivity is locally equal
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Fig. 2. Normalized dipole coefficient |BOUT | (in dB) calculated for different
ka and ωp(0) assuming the profile from (20) with d = 0.5. The dipole
resonance is depicted by the yellow line.

to 0, as seen in Section II-C. Anyhow, as the electrostatic
resonance is obtained for purely negative permittivity sphere,
the proposed algorithm allows either the computation of its
resonant frequency assuming the material function ωp or the
opposite way.

B. Influence of the gradient on the resonance

As seen before, when ωp(0) varies, the corresponding
resonant electrical size ka changes similarly. Likewise, for a
given ωp(0), considering a different plasma angular frequency
gradient shifts the resonant ka. Fig. 3 depicts this matter where
the resonant parameters ωp(0) and ka have been calculated
for several profiles with different values of d, the normalized
coefficient of the highest power of r in (20). These resonant
sets of parameters have been compared with the classic ho-
mogeneous sphere that resonates when εr = −2. It is clear
from Fig. 3 that the larger the gradient is (i.e., larger d), the
stronger the shift from the homogeneous case is. This trend
confirms the need to derive continuous models that deal with
radial inhomogeneity, especially for resonant structures.
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Fig. 3. Locus of {ka, ωp(0)} exhibiting the dipole resonance, derived for the
profile (20) with different d and for the homogeneous case ωp(r) = ωp(0).

C. Comparison with full-wave simulation

Finally, the previously derived model is compared to numer-
ical simulations held with the commercial full-wave software
Ansys HFSS. The structure from Fig. 1 is considered with
ka = 0.05 and a = 10 mm, as assumed in III-A. This
defines the theoretical resonant frequency fth = 239 MHz.
The corresponding ωp(0) that is required to obtain a resonant
sphere is then computed from Fig. 3 for each d in (20).



Since inhomogeneous materials cannot be simulated with
Ansys HFSS, the sphere must be split into several homo-
geneous parts. Considering radial inhomogeneity only, the
sphere is modeled as N concentric spherical layers of uniform
thickness a/N . These spherical layers are excited by a plane
wave propagating along ~y-direction, as depicted in Fig. 4.

𝑬 

𝑩 
𝒌 

𝑦 

𝑧 

𝑥 

Fig. 4. Simulated sphere of N layers with constant permittivity in Ansys
HFSS excited by a plane wave propagating along ~y-direction. Note that 3
planes of symmetry were used and the sphere comprises at least 20000
tetrahedra (depending on the value of N ).

The dielectric permittivity is supposed to be constant inside
each spherical layer. To avoid numerical instabilities, small
losses have been added which, assuming a lossy Drude model,
leads to the following dispersive relative permittivity and bulk
conductivity for each spherical layer in Ansys HFSS:

εrn(ω) = 1−
ω2
pn

ω2 + ν2
, and σn(ω) = ε0

ω2
pnν

ω2 + ν2
(21)

where ν = 0.01ωp(0) represents the losses and ωpn the plasma
angular frequency inside the n-th spherical layer and is equal
to the median value of ωp in this layer, computed with (20).

As the electrostatic resonance of a sphere results in a strong
amplification of the electric field ~E at the poles, the numerical
resonant frequency fnum is defined as the frequency which
maximizes | ~E| at z = a. These calculations were performed
for several values of N and compared to the analytical
frequency fan derived with the proposed model.

Fig. 5 represents the relative error ∆f = |1− fnum/fth|
in the estimation of fnum obtained for different N and d.
Small N strongly misrepresent the electrostatic resonance
of the radially inhomogeneous sphere because of numerical
singularities that skew the computed electric field. Although
increasing N prevents these numerical instabilities and pro-
vides decent results for small d, it is clear that piecewise mul-
tilayered representations are not suitable for large gradients.
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Fig. 5. Relative error (in %) in the evaluation of the resonant frequency using
Ansys HFSS for different numbers of spherical layers N .
In our case, when d gets closer to 1, the sphere is strongly

inhomogeneous and the numerical convergence is extremely
slow. The proposed model overcomes this issue and allows to
easily compute the resonant frequency of any sub-wavelength
radially inhomogeneous sphere.

IV. CONCLUSION

A generalized approach using polynomial graded relative
permittivity profiles has been proposed to solve the Laplace
equation inside sub-wavelength radially inhomogeneous neg-
ative permittivity spheres. This model provides an accurate
estimation of the resonant frequency of such spheres. It has
been compared with commercial numerical solver and appears
to be well-suited to study their electrostatic resonance. An
analytical criterion has also been established to ensure its
reliability and convergence.
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