
�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	������������������

�����

����	����
����	���������

�����������	�
��	���
��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/17982

Rachelson, Emmanuel and Quesnel, Gauthier and Garcia, Frédérick and Fabiani, Patrick A Simulation-based

Approach for Solving Temporal Markov Problems. (2008) In: European Conference on Artificial Intelligence (ECAI

2008), 21 August 2008 - 25 August 2008 (Patras, Greece).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/141498372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Simulation-based Approach for Solving Generalized
Semi-Markov Decision Processes

Emmanuel Rachelson1 and Gauthier Quesnel and Frédérick Garcia and Patrick Fabiani

Abstract. Time is a crucial variable in planning and often requires
special attention since it introduces a specific structure along with
additional complexity, especially in the case of decision under un-
certainty. In this paper, after reviewing and comparing MDPframe-
works designed to deal with temporal problems, we focus on Gener-
alized Semi-Markov Decision Processes (GSMDP) with observable
time. We highlight the inherent structure and complexity ofthese
problems and present the differences with classical reinforcement
learning problems. Finally, we introduce a new simulation-based re-
inforcement learning method for solving GSMDP, bringing together
results from simulation-based policy iteration, regression techniques
and simulation theory. We illustrate our approach on a subway net-
work control example.

1 Introduction

Many problems in planning present both the features of decision un-
der uncertainty and time-dependency. Imagine, for instance, having
to plan the exploitation of a subway network, where available actions
only consist in introducing or removing trains from service. In this
problem, the goal is to maximize the number of passengers going
through the network while minimizing the exploitation costof the
subway. Passenger arrival times, movements going in and outof the
trains and possible delays in the system make the outcome of every
action uncertain with regard to the next state and the date ofthe next
decision epoch. On top of that, the flow of passengers and their des-
tinations depend greatly on the time of day. All this defines the kind
of problems we try to capture as Temporal Markov Problems. These
problems cover a wide variety of other applications, as onboard UAV
coordination or airport taxiway management, etc.

Problems of decision under uncertainty are commonly modelled
as Markov Decision Processes (MDP). Recent work on solving large
state-space MDP include, for example, factored MDP methods, ap-
proximate linear programming, hierarchical approaches, reinforce-
ment learning, etc. Temporal Markov Problems, however, have re-
ceived little attention from the planning and machine learning com-
munities, even though simulation seems a promising approach to
tackling these problems. This paper presents formalisation and al-
gorithmic issues about Temporal Markov Problems and proposes
a simulation-based algorithm designed to solve them. In section 2,
we will review the models adapted from Markov Processes and de-
signed to include time-dependency and decision making. Building
on this first section’s conclusions, we focus on controllingGener-
alized Semi-MDP (GSMDP). Section 4 presents our algorithm and
discusses the issues and interests of simulation-based approaches for

1 ONERA, France, email: emmanuel.rachelson@onera.fr

GSMDP. We illustrate our approach on the subway control example
in section 4.3 and conclude in section 5.

2 Temporal Markov Problems

MDP have become a popular model for describing problems of plan-
ning under uncertainty. Formally, an MDP is composed of a 4-tuple
〈S, A,P, r〉, whereS is a countable set of states for the system,A is
the countable set of possible actions,P (s′|s, a) is a probability dis-
tribution function providing the transition model betweenstates (as
in a Markov Process, but conditioned with the actiona) andr(s, a)
is a reward value associated with the(s, a) transition, used to build
criteria and to evaluate actions and policies. Solutions toMDP prob-
lems are often given asMarkovian policiesπ, namely functions that
map current states to actions. One can introduce criteria toevaluate
these policies, as the discounted reward criterion given inequation 1.
Criteria permit definition of thevalue functionV π associated with a
policy. An important result concerning MDP is that for any history-
dependent policy, there exists a Markovian policy which is at least as
good with regard to a given criterion. Consequently, one cansafely
seach for optimal control policies in the restricted space of Marko-
vian policies without loss in optimality. Finally, algorithms asvalue
iterationor policy iterationare based on the fact that the optimal pol-
icy’s value functionV ∗ obeys Bellman’s optimality equation 2 [1].

V
π
γ (s) = E

∞
X

δ=0

γ
δ
r (sδ, π(sδ))

!

(1)

V
∗(s) = max

a∈A

"

r(s, a) + γ
X

s′∈S

P (s′|s, a)V ∗(s′)

#

(2)

2.1 Including continuous time in the MDP
framework

Introducing time in Markov Processes (MP) models — and in their
decisional counterparts, MDP — can be done by defining stochastic
durations between decision epochs. In a standard MP or MDP, the so-
journ time in a given state is one and decision epochs occur atinteger
time values (thus yielding theγδ in the discounted criterion). Allow-
ing the sojourn time in a given state to be continuous and stochastic
defines the Semi-MP, or Semi-MDP formalism. In an SMDP [11],
state sojourn time is described through a distributionF (τ |s, a) indi-
cating the time before transition, provided that we undertake actiona
in states. Therefore, an SMDP is a 5-tuple< S, A,P, F, r > which
corresponds to a Markov Process but with stochastic state sojourn
time. Policies for the control of SMDP can be computed using stan-
dard MDP algorithms since solving a discounted reward SMDP turns

out to be equivalent to performing an integration over expected tran-
sition durations and to solving a total reward MDP. This is mainly due
to the independence between state sojourn timeτ and arrival states′.
This very strong assumption was lifted in the Time-dependent MDP
(TMDP) model of [2] and generalized recently in the XMDP model
of [13]. Formally, an XMDP is described by a 4-tuple< S, A, p, r >

where the state spaceS can be composed of discrete and continuous
variables and may include the process’ time,A is a continuous or
discrete parametric action space andp andr correspond to transition
and reward models for states ofS and actions ofA. [13] proved that
XMDP obeyed a similar optimality equation as equation 4, thus prov-
ing that standard algorithms as value iteration could be safely used
to solve XMDP. Using the XMDP representation, one can model any
stochastic decision process with continuous observable time and hy-
brid state and action spaces.

This seems to suit our Temporal Markov Problems well and
some recent techniques for solving hybrid state space MDP ([6, 4])
could be applied here. However, writing transition and duration
functions for Temporal Markov Problems is often a very complex
task and requires a lot of engineering. For instance, the effect of a
RemoveTrain action on the global state of the subway problem
is the result of several concurrent processes : the passenger arrivals,
the trains movements, the removal of one train, etc.: all compete to
change the system’s state and it is a complex task to summarize all
these process’ concurrent stochastic influence into the transition and
duration functions.

2.2 Concurrency and MDP

In the stochastic processes litterature, concurrent Markov processes
are modelled as Generalized Semi-Markov Processes (GSMP) [5].
A GSMP is a natural representation of several concurrent SMPaf-
fecting the same state space. [16] introduced Generalized Semi-
Markov Decision Processes (GSMDP) in order to model the problem
of decision under uncertainty where actions compete with concur-
rent uncontrollable stochastic events. A GSMDP describes aprob-
lem by factoring the global transition function of the process by the
different stochastic contributions of concurrent events.This makes
GSMDP an elegant and efficient way of describing the complexity
of Markov Temporal Problems. We will therefore focus on solving
time-dependent GSMDP from now on and will give a more formal
definition of GSMDP in section 3.

MP SMP GSMP

MDP SMDP GSMDP

+ continuous
sojourn time + concurrency

+ actions

Figure 1. From MP to GSMDP

3 GSMP and GSMDP

The previous section illustrated how Temporal Markov Problems
needed both continuous observable time models and an efficient rep-
resentation of concurrency in order to represent the complexity of the

phenomena at stake. In this section, we focus on the GSMDP formal-
ism with observable time. We define control policies, the associated
state variable issues and present resolution methods.

3.1 Concurrent processes

We start from the stochastic process point of view, with no decision
making. Formally, a GSMP [5] is described by a setS of states and
a setE of events. At any time, the process is in a states and there
exists a subsetEs of events that are calledactiveor enabled. These
events represent the different concurrent processes that compete for
the next transition. To each active evente, we associate a clockce

representing the duration before this event triggers a transition. This
duration would be the sojourn time in states if evente was the only
active event. The evente∗ with the smallest clockce∗ (the first to
trigger) is the one that takes the process to a new state. The transi-
tion is then described by the transition model of the triggering event:
the next states′ is picked according to the probability distribution
Pe∗(s′|s). In the new states′, events that are not inEs′ are disabled
(which actually implies setting their clocks to+∞). For the events
of Es′ , clocks are updated the following way:

• If e ∈ Es \ {e
∗}, thence ← ce − ce∗

• If e 6∈ Es or if e = e∗, pick ce according toFe(τ |s
′)

The first active event to trigger then takes the process to a new state
where the above operations are repeated.

One first important remark concerning GSMP is that the overall
process does not retain Markov’s property anymore : knowingthe
current states is not sufficient to predict the distribution on the next
state of the process. [9] showed that by augmenting the statespace
with the events’ clocks, one could retain the Semi-Markov behaviour
for a GSMP, we will discuss this issue in the next section.

Introducing action choice in a GSMP yields a GSMDP as defined
by [16]. In a GSMDP, we identify a subsetA of controlable events or
actions, the remaining ones are called uncontrolable or exogenous
events. Actions can be enabled or disabled at will and the subset
As = A ∩ Es of activable actions is never empty since it always
contains at least the “idle” actiona∞ (whose clock is always set∞)
which, in fact, does nothing and lets the first exogenous event take
the process to a new state. As in the MDP case, searching for control
strategies on GSMDP imply defining rewardsr(s, e) or r(s, e, s′)
associated to transitions and introducing policies and criteria.

3.2 Controling GSMDP

As mentionned before, the transition function for the global semi-
Markov process does not retain the Markov property without aug-
menting the state space. In the classical MDP framework, onecan
make use of the Markov property of the transition function to
prove that there exists a Markovian policy (which only depends
on the current state) which is at least as good as any history-
dependent policy [11]. In the GSMDP case however, this is no
longer possible and in order to define criteria and to find opti-
mal policies, we need - in the general case - to allow the policy
to depend on the wholeexecution pathof the process. An execu-
tion path [16] of lengthn from states0 to statesn is a sequence
σ = (s0, t0, e0, s1, . . . , sn−1, tn−1, en−1, sn) whereti is the so-
journ time in statesi before eventei triggers. As in [16], we define
the discounted value of an execution path by:

V
π

γ (σ) =

n−1
X

i=0

γ
Ti

„

γ
tik(si, ei, si+1) +

Z ti

0

γ
t
c(si, ei)dt

«

(3)

wherek andc are traditional SMDP lump sum reward and reward
rate functions, andTi =

Pi−1

j=0
tj . One can then define the expected

value of policyπ in states as the expectation over all execution paths
starting ins: V π

γ (s) = Eπ
s

ˆ

V π
γ (σ)

˜

.
This provides a criterion for evaluating policies. The goalis now

to find policies that maximize this criterion. The main problem here
is that it is hard to search the space of history-dependent policies. On
the other hand, the supplementary variable technique is often used
to transform non-Markovian processes into Markovian ones.It con-
sists in augmenting the state space with just enough variables so that
the distribution over future states only depends on the current value
of these variables. In [9], Nielsen augments the natural state s of
the process with all the clock readings and shows that this operation
brings Markov behavior back to the GSMP process. We will notethis
augmented state space(s, c) for convenience.

Unfortunately, it is unrealistic to define policies over this aug-
mented state space since clock readings contain information about
the futureof the system. From here, several options are possible:

• One could decide to sacrifice optimality and to search for “good”
policies among a restricted set of policies, say the policies defined
on the current natural state only.

• One could also search for representation hypotheses that simplify
the GSMDP model and that make natural state Markovian again.

• One could compute optimal policies on the augmented state space
(s, c) and then derive a policy on observable variables only.

• Finally, one could search for a set ofobservablevariables which
retain the Markov property for the process, for example the set
composed of the natural state of the processs, the duration for
which each active eventei has been activeτi and its activation
statesi. We will note this augmented state(s, τ, sa)

[16] is based on the second option listed above. In the next para-
graph, we briefly present this approach and introduce our reinforce-
ment learning method designed to deal with very large state spaces
for GSMDP with continuous observable time and that can be adapted
to the three other options.

3.3 Resolution methods

The resolution method for GSMDP proposed by [16] relies on the
memoryless property of the exponential distribution. If one approx-
imates all duration functionsF by phase-type distributions (which
are combinations of exponential distributions), then augmenting the
state space with the distribution phases brings the overallbehaviour
of the GSMDP back to a Continuous Time MDP, which can, in turn,
be transformed to a standard discrete time MDP by the method of
uniformization[11]. We refer the reader to [16] for more details.

We wish not make hypotheses on the distributions that describe the
dynamics of our system. On top of that, many problems we want to
consider present other characteristics such as very large,and some-
times continuous state spaces. Therefore, we need to consider meth-
ods for policy search that can cope with large hybrid state spaces
(yielding large hybrid trajectory spaces) and observable time. Finally,
for some aspects of the problems, the stochastic behaviour might still
be very complex to model formally while simulators might be readily
available (for instance, in the airport taxiway managementproblem,
the weather model is not given as probability distribution functions
but as a simulator). In order to deal with such problems we turn to-
wards reinforcement learning methods. More specifically, in order to
avoid complete state space exploration, we introduce a version of ap-
proximate policy iteration where policies are defined and evaluated

on a subset of states and then generalized by regression to the whole
state space. The choice of the subset of states used for evaluation is
guided by the simulation of the current policy. We present our algo-
rithm in section 4.1 and then illustrate why simulation-based policy
iteration is particularly adapted to temporal problems in section 4.2.

4 Simulation-based approaches

4.1 Algorithm

Our algorithm belongs to the Approximate Policy Iteration (API)
family of algorithms. Policy Iteration is an algorithm for solving
MDP which searches the policy space in a two-step fashion as il-
lustrated on figure 2. Given a policyπn at stepn, the first step con-
sists in computing the value ofπn. The second step then performs a
Bellman backup in every state of the state space, thus improving the
policy. An important property of policy iteration is its good anytime
behaviour: at any stepn, policy πn will be at least as good as any
previous policy. Policy Iteration usually converges in less iterations
than the standard Value Iteration algorithm but takes longer since the
evaluation step is very time consuming. To deal with real problems,
one needs to allow for approximate policy evaluation (as in [7]) since
exact computation is often infeasible. There are few theoretical guar-
antees on convergence and optimality of API, as explained in[8].

Policy evaluation: V
πn

One-step improvement: πn+1

Figure 2. Policy Iteration

The version of simulation-based policy iteration we use performs
simulations of the current policyπn starting from the current state
of the process and stores the triplets of states, times and rewards
(sδ, tδ, rδ) obtained. Thus, one execution path yields a value func-
tion over the discrete set of states explored during simulation (equa-
tion 3). All the value functions issued from simulation forma training
set{(s, v)}, s ∈ S, v ∈ R, from which we wish to generalize a value
functionṼ over all states. The average value of states in the training
set tends toV πn(s) as the number of simulations tends to+∞. One
major advantage of policy-driven simulation is that the policy guides
the exploration of the state space to the states most likely to be vis-
ited, thus refining the training set over the states that havethe largest
probability of being reached by the policy. A second advantage is
that this technique is adapted to large dimension state spaces.

Once simulation has provided the set of samples in the space of
trajectories, we want to use it as a training set for a regression method
that will generalize it to the entire state space. Several approaches to
regression based reinforcement learning have been proposed in the
machine learning community - methods based on trees [3], evolu-
tionary functions [15], kernel methods [10], etc. - but few have been
coupled with policy simulation. We chose to focus on supportvector
machines (SVM) because of their ability to handle the large dimen-
sion spaces over which our samples are defined. SVM belong to the
family of kernel methods and can be used for both regression and
classification. Training a standard SVM over a given training set cor-
responds to looking for a hyperplane interpolating the samples in a

higher dimensional space calledfeature space. Practically, SVM take
advantage of thekernel trickto avoid expressing the feature space ex-
plicitely. For more details on SVM, we refer the reader to [14]. In our
case, we call̃Vn(s) the interpolated value function of policyπn.

Finally, while simulation-based exploration and SVM generaliza-
tion of the value function are techniques dedicated to improve the
evaluation step of approximate policy iteration, the thirdspecificity
of our algorithm deals with improving the optimization step. For
large and possibly continuous state spaces, it might be verylong or
impracticable to compute the one-step improvement of the policy.
Indeed, most of the time, computing a complete policy is irrelevant
since most of this policy will never be used for the simulation-based
evaluation step. Instead, it might be easier to compute online the one-
step lookahead best action in the current state with respectto the
stored value function. More precisely, in a standard MDP, the opti-
mization step consists in solving equation 4 in every state:

πn+1(s)← arg max
a∈A

Q̃n+1(s, a) (4)

with: Q̃n+1(s, a) = r(s, a) +
X

s′∈S

P (s′|s, a)Ṽn(s, a)

For continuous state spaces, computingπn+1 implies being able to
compute integrals overP andṼn. We wish not make hypotheses on
the model used and therefore will perform a discretization for evalu-
ation of the integral. Finally, since the model ofP is not necessarily
known to the decision maker and since we have a simulator of our
system, we will make a second use of this simulator for the purpose
of evaluating the expected reward̃Qn+1(s, a) associated with per-
forming actiona in states with respect to value functioñVn (equa-
tion 5). At the end of the evaluation phase, the value function Ṽn is
stored and no policy is computed from it. Instead, we immediately
enter a new simulation phase but whenever the policyπn+1 is asked
for the action to perform in the current states it performsonline the
estimation of allQ-values for states and then choses the best action
to perform. The speed up in the execution of the policy iteration al-
gorithm is easy to illustrate for discrete state spaces problems since
we replace|S| evaluations of theQ-values for policy update by the
number of states visited during one simulation. This is especially in-
teresting in the case of Temporal Markov Problems since (as we will
explain in section 4.2) a state is never visited twice. Consequently,
Q̃n+1(s, a) is calculated by simply simulatingN times the applica-
tion of a in s and observing the set of{(ri, s

′

i)} as in equation 5.
Then the policy returns the action which corresponds to the largest
Q-value. We call this online instanciation of the policy “online ap-
proximate policy iteration”.

Q̃n+1(s, a) =
1

N

N
X

i=1

h

ri + Ṽn(s′i)
i

(5)

Our algorithm, calledonline Approximate Temporal Policy Iteration
(online-ATPI), is summarized in algorithm 1.

Note that in algorithm 1,s actually denotes the part of the state
that is observable to the policy. This makes online-ATPI adaptable to
any of the sets of policy variables presented in section 3.2.We tested
a version of online-ATPI on the natural state of the process.

4.2 Simulating GSMDP and learning

Simulation is a key aspect of ATPI. The Discrete EVents Simula-
tion theory (DEVS) of [17] provides a general framework for spec-
ifying discrete event dynamic systems. We implemented GSMPand

Algorithm 1 Online-ATPI
main:
Input :π0 or Ṽ0, s0

loop
TrainingSet ← ∅
for i = 1 to Nsim do
{(s, v)} ← simulate(Ṽ , s0)
TrainingSet← TrainingSet ∪ {(s, v)}

end for
Ṽ ← TrainApproximator(TrainingSet)

end loop

simulate(Ṽ , s0):
ExecutionPath← ∅
s← s0

while horizon not reacheddo
action← ComputePolicy(s, Ṽ)
(s′, r)← GSMDPstep(s, action)
ExecutionPath← ExecutionPath ∪ (s′, r)

end while
convert execution path to value function{(s, v)} (eqn 3)
return {(s, v)}

ComputePolicy(s, Ṽ):
for a ∈ A do

Q̃(s, a) = 0
for j = 1 to Nsamples do

(s′, r)← GSMDPstep(s, a)

Q̃(s, a)← Q̃(s, a) + r + γt′−tṼ (s′)
end for
Q̃(s, a)← 1

Nsamples
Q̃(s, a)

end for
action← arg max

a∈A
Q̃(s, a)

return action

GSMDP extensions in the VLE multi-modeling platform [12] based
on the DEVS specification; by doing so, we take advantage of the
DEVS framework’s properties which fit our simulation requirements,
namely:

• Event driven simulation and time oriented output.
• The simulation engine deals with simultaneity issues and with

simulation consistency and reproducibility.
• Simulation engines such as the VLE platform [12] are readily

available and built on the same discrete events simulation theory.
• Multi-modelling possibilities, opens the algorithm to other for-

malisms than MP.

On top of that, the DEVS formalism allows for experimental frames
definition, which would permit integration of the whole simulation
and planning loop in a DEVS specification. We haven’t used experi-
mental frames yet but plan to do so in future versions.

Finally, we have claimed that Temporal Markov Problems present
a specific structure that makes the problem both hard to deal with for
classical reinforcement learning algorithms and particularly adapted
for online approximate policy iteration. More specifically:

• Most reinforcement learning algorithms deal with discretestate
spaces. Some approaches have been proposed ([10, 3, 6] for deal-
ing with continuous or hybrid states but the topic is still very new.
Often, continuous state resolution methods depend strongly on the

representation used and on the ability to calculate integrals over
the probability functions. Simulation-based sampling approaches
propose a different approach to this issue.

• When time is observable, thecausality principleensures that the
process never goes back in time. This avoids loops and insures
that online policy instanciation performs less operationsthan a
complete offline policy improvement step.

4.3 Example

Table 1 presents optimization results for the first four iterations of
online-ATPI for the subway problem initialized with a policy π0 that
sets trains to run all day long2. Nsim was set to 20 andNsamples

to 15 withγ = 1 (finite horizon). This simple instance of the sub-
way problem implied 4 trains and 6 stations. The problem’s specifi-
cation took time-dependency and stochastic behaviour intoaccount;
for example passenger arrival periods were represented using Gaus-
sian distributions with means and standard deviations depending on
the time of day. The state space for this problem included 22 dis-
crete, boolean or continuous variables (including time), thus yielding
a sample space of dimension 22 for the training set.

In table 1,tsim is the training set building time (which corresponds
to performing theNsim simulations) whiletlearn is the SVM train-
ing time (in seconds).̃Vstat(s0) is the statistical evaluation of̃V (s0),
while ṼSV M (s0) is the value provided by the trained SVM. Lastly,
#SV is the number of support vectors in the SVM.

The expected value of the initial state increases with iterations;
this confirms the fact that policy quality improves with eachitera-
tion. This increase is not necessarily linear and depends onthe prob-
lem’s structure. If the policy takes the simulation to states that are
“far” from explored states (states for which the interpolated value
might be erroneous) and that provide very bad rewards, it canhap-
pen that the initial state’s expected value drops for one iteration. This
is the drawback from partial exploration of the state space and inter-
polation: very good or very bad regions of the state space might be
discovered late in the iterations.

One can notice that simulation time increases with iterations. This
is mainly due to the number of support vectors in the SVM. Depend-
ing on the iteration step, the SVM can be much simpler and simu-
lation time can drop again. On the other hand, online-ATPI isstill
very sensitive to the initial policy and we are currently working on
other possibilities to improve solution quality (such as roll-out tech-
niques and estimator refinement during optimization by simulation-
optimization interweaving).

Table 1. Subway control policy

π0 π1 π2 π3 π4

tsim 47.1 203.43 206.45 446.15 1504.41
tlearn 2.28 2.7 12.18 56.08 229.45

Ṽstat(s0) -3261.31 -3188.11 -2074.74 -1850.12 -887.076
ṼSV M (s0) -2980.29 -2962.46 -2020.22 -1837.41 -875.417

#SV 55 61 439 3588 13596

SinceNsim = 20 simulations per iteration always provide a train-
ing set of around 45000 points for the SVM in the subway example,
the number of support vectors for the SVM - and therefore, theitera-
tion duration - is bounded. Longer runs on the subway problemshow
that the number of support vectors and learning time in column π4

are a good estimate of the worst values.

2 experiments were ran on a 1.7GHz single core processor with 1GB of RAM

5 Conclusion

This paper introduces a new reinforcement learning method for solv-
ing Generalized Semi-Markov Decision Processes. These processes
are a natural and elegant way of representing the complexityof con-
current stochastic processes. In the framework of time-dependent
GSMDP with explicit time, simulation seems to be an efficientway
of exploring the state space and evaluating strategies. Drawing from
this idea, we introduced a simulation-based version of Approximate
Policy Iteration (API), which we called online-ATPI. This algorithm
incrementally improves the quality of an initial policy by making use
of simulation-based evaluation, SVM regression and onlinepolicy
instanciation. Although there are few theorical results concerning the
convergence and optimality of API, online-ATPI seems to perform
well on an example of subway network control.

Future work will deal with making online-ATPI more robust toini-
tialization; in fact, if the initial policy does not guide the simulation
towards relevant areas of the state space, the error in policy evalua-
tion can greatly penalize the algorithm. To avoid this drawback, we
plan to use incremental refining methods for simulation initialization.
This could result in building a more dense training set, therefore min-
imizing the risk of not exploring relevant parts of the statespace.

REFERENCES
[1] R. E. Bellman,Dynamic Programming, Princeton University Press,

Princeton, New Jersey, 1957.
[2] J. Boyan and M. Littman, ‘Exact solutions to time dependent MDPs’,

Advances in Neural Information Processing Systems, 13, 1026–1032,
(2001).

[3] D. Ernst, P. Geurts, and L. Wehenkel, ‘Tree-based batch mode rein-
forcement learning’,JMLR, 6, 503–556, (2005).

[4] Z. Feng, R. Dearden, N. Meuleau, and R. Washington, ‘Dynamic pro-
gramming for structured continuous markov decision problems’, in
20th Conference on Uncertainty in AI, pp. 154–161, (2004).

[5] P. Glynn, ‘A GSMP formalism for discrete event systems’,Proc. of the
IEEE, 77, (1989).

[6] M. Hauskrecht and B. Kveton, ‘Approximate linear programming for
solving hybrid factored MDPs’, in9th Int. Symp. on AI and Math.,
(2006).

[7] M. Lagoudakis and R. Parr, ‘Least-squares policy iteration’, JMLR, 4,
1107–1149, (2003).

[8] R. Munos, ‘Error bounds for approximate policy iteration’, in Int. Conf.
on Machine Learning, (2003).

[9] F. Nielsen, ‘GMSim: a tool for compositionnal GSMP modeling’, in
Winter Simulation Conference, (1998).

[10] Dirk Ormoneit and Saunak Sen, ‘Kernel-based reinforcement learning’,
Machine Learning, 49, 161–178, (2002).

[11] M. Puterman,Markov Decision Processes, John Wiley & Sons, Inc,
1994.

[12] G. Quesnel, R. Duboz,́E. Ramat, and M.K. Traore, ‘VLE - A Multi-
Modeling and Simulation Environment’, inMoving Towards the Uni-
fied Simulation Approach, Proc. of the 2007 Summer Simulation Conf.,
pp. 367–374, (2007).

[13] E. Rachelson, F. Garcia, and P. Fabiani, ‘Extending theBellman equa-
tion for MDP to continuous actions and continuous time in thedis-
counted case’, in10th Int. Symp. on AI and Math., (2008).

[14] V. Vapnik, S. Golowich, and A. Smola, ‘Support vector method for
function approximation, regression estimation and signalprocessing’,
Advances in Neural Information Processing Systems, 9, 281–287,
(1996).

[15] Shimon Whiteson and Peter Stone, ‘Evolutionary function approxima-
tion for reinforcement learning’,JMLR, 7, 877–917, (2006).

[16] H. Younes and R. Simmons, ‘Solving Generalized semi-Markov Deci-
sion Processes using Continuous Phase-Type Distributions’, in AAAI,
(2004).

[17] B. P. Zeigler, D. Kim, and H. Praehofer,Theory of modeling and sim-
ulation: Integrating Discrete Event and Continuous Complex Dynamic
Systems, Academic Press, 2000.

