-

brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO 1is an open access repository that collects the work of some Toulouse

researchers and makes it freely available over the web where possible.

This is anauthor's version published in: https://oatao.univ-toulouse.fr/17982

To cite this version :

Rachelson, Emmanuel and Quesnel, Gauthier and Garcia, Frédérick and Fabiani, Patrick A Simulation-based
Approach for Solving Temporal Markov Problems. (2008) In: European Conference on Artificial Intelligence (ECAI
2008), 21 August 2008 - 25 August 2008 (Patras, Greece).

Any correspondence concerning this service should be sent to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

https://core.ac.uk/display/141498372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Simulation-based Approach for Solving Generalized
Semi-Markov Decision Processes

Emmanuel Rachelsof and Gauthier Quesnel and Frédérick Garcia and Patrick Fabiani

Abstract.
special attention since it introduces a specific structlmagawith

additional complexity, especially in the case of decisioer un-

certainty. In this paper, after reviewing and comparing Midne-

works designed to deal with temporal problems, we focus ameGe
alized Semi-Markov Decision Processes (GSMDP) with olzddes
time. We highlight the inherent structure and complexitytludse
problems and present the differences with classical reiafoent
learning problems. Finally, we introduce a new simulati@sed re-
inforcement learning method for solving GSMDP, bringingether
results from simulation-based policy iteration, regressechniques
and simulation theory. We illustrate our approach on a syhved-

work control example.

1 Introduction

Many problems in planning present both the features of @ecim-
der uncertainty and time-dependency. Imagine, for ingahaving
to plan the exploitation of a subway network, where avadatitions
only consist in introducing or removing trains from servite this
problem, the goal is to maximize the number of passengersygoi
through the network while minimizing the exploitation cadtthe
subway. Passenger arrival times, movements going in andf abé
trains and possible delays in the system make the outcomeepf e
action uncertain with regard to the next state and the datteeafiext
decision epoch. On top of that, the flow of passengers anddbsi
tinations depend greatly on the time of day. All this defireskind
of problems we try to capture as Temporal Markov Problemss&h
problems cover a wide variety of other applications, as anthAV
coordination or airport taxiway management, etc.

Problems of decision under uncertainty are commonly medell
as Markov Decision Processes (MDP). Recent work on solarggl
state-space MDP include, for example, factored MDP methayols
proximate linear programming, hierarchical approachesfaorce-
ment learning, etc. Temporal Markov Problems, howeverge trav
ceived little attention from the planning and machine l@agrcom-
munities, even though simulation seems a promising appré@c
tackling these problems. This paper presents formalisatitd al-
gorithmic issues about Temporal Markov Problems and pregpos
a simulation-based algorithm designed to solve them. Itigee,
we will review the models adapted from Markov Processes and d
signed to include time-dependency and decision makingldBigi
on this first section’s conclusions, we focus on controlligner-
alized Semi-MDP (GSMDP). Section 4 presents our algoritimch a
discusses the issues and interests of simulation-basedaabes for

1 ONERA, France, email: emmanuel.rachelson@onera.fr

Time is a crucial variable in planning and often requires GSMDP. We illustrate our approach on the subway control @t@am

in section 4.3 and conclude in section 5.

2 Temporal Markov Problems

MDP have become a popular model for describing problemsaof-pl
ning under uncertainty. Formally, an MDP is composed of eplet
(S, A, P,r), whereS is a countable set of states for the systehis
the countable set of possible actiof¥s’|s, a) is a probability dis-
tribution function providing the transition model betwestates (as
in a Markov Process, but conditioned with the actigrandr (s, a)
is a reward value associated with the a) transition, used to build
criteria and to evaluate actions and policies. Solutiond B prob-
lems are often given ddarkovian policiesr, namely functions that
map current states to actions. One can introduce critegadtuate
these policies, as the discounted reward criterion givexgiration 1.
Criteria permit definition of thealue functionl’™ associated with a
policy. An important result concerning MDP is that for angtory-
dependent policy, there exists a Markovian policy whiclt igast as
good with regard to a given criterion. Consequently, one sadBly
seach for optimal control policies in the restricted spachlarko-
vian policies without loss in optimality. Finally, algdnins asvalue
iterationor policy iterationare based on the fact that the optimal pol-
icy’s value functionV* obeys Bellman'’s optimality equation 2 [1].

Vi(s) = E <Z ¥r (sa,w(sa») @
5=0
Vi) = mag [r(s,a) + 7 Z P(s'|s,a)V*(s)| (2)
s'esS

2.1 Including continuous time in the MDP

framework

Introducing time in Markov Processes (MP) models — and iiirthe
decisional counterparts, MDP — can be done by defining sgtitha
durations between decision epochs. In a standard MP or NieBga-
journ time in a given state is one and decision epochs ocdntegter
time values (thus yielding the® in the discounted criterion). Allow-
ing the sojourn time in a given state to be continuous anchsiic
defines the Semi-MP, or Semi-MDP formalism. In an SMDP [11],
state sojourn time is described through a distribufitirr|s, a) indi-
cating the time before transition, provided that we undertctiona

in states. Therefore, an SMDP is a 5-tupte S, A, P, F,r > which
corresponds to a Markov Process but with stochastic stgoeirso
time. Policies for the control of SMDP can be computed ustag-s
dard MDP algorithms since solving a discounted reward SMDiFst

out to be equivalent to performing an integration over eigettran- ~ phenomena at stake. In this section, we focus on the GSMDirafor

sition durations and to solving a total reward MDP. This isriyedue ism with observable time. We define control policies, theoaesded

to the independence between state sojourn tiraed arrival stata’. state variable issues and present resolution methods.

This very strong assumption was lifted in the Time-depenhtéDP

(TMDP) model of [2] and generalized recently in the XMDP mode 3.1 Concurrent processes

of [13]. Formally, an XMDP is described by a 4-tupteS, A, p,r >

where the state spaccan be composed of discrete and continuous'Ve Start from the stochastic process point of view, with ncisien

variables and may include the process’ timgjs a continuous or Making. Formally, a GSMP [5] is described by a Setf states and

discrete parametric action space arehdr correspond to transition @ SetE of events. At any time, the process is in a statnd there

and reward models for states $fand actions ofd. [13] proved that exists a subsel; of events that are calleattiveor enabled These

XMDP obeyed a similar optimality equation as equation 4s iov- events represent the different concurrent processes dhgate for

ing that standard algorithms as value iteration could belpaised ~ the next transition. To each active eventwe associate a clock.

to solve XMDP. Using the XMDP representation, one can modgl a representing the duration before this event triggers aitian. This

stochastic decision process with continuous observable éind hy- duration would be the sojourn time in stat& evente was the only

brid state and action spaces. active event. The evert" with the smallest clock.~ (the first to
This seems to suit our Temporal Markov Problems well andtrigger) is the one that takes the process to a new state.raihsi

some recent techniques for solving hybrid state space MBRA] tion is then described by the transition model of the trigggeevent:

could be applied here. However, writing transition and tara the next states’ is picked according to the probability distribution

functions for Temporal Markov Problems is often a very campl e+ (s'|s). Inthe new state’, events that are not iy, are disabled

task and requires a lot of engineering. For instance, thecetif a (which actually implies setting their clocks toco). For the events

RemoveTrain action on the global state of the subway problem Of £, clocks are updated the following way:

is the result of several concurrent processes : the passangals, e Ifec Es\ {e*}, thenc, < ce — cex

the trains movements, the removal of one train, etc.: allgE®mto o If ¢ ¢ F; orif e = e*, pick c. according toF. (7|s)

change the system’s state and it is a complex task to sumenaliiz

these process’ concurrent stochastic influence into timsitran and

duration functions.

The first active event to trigger then takes the process tavestege
where the above operations are repeated.

One first important remark concerning GSMP is that the oleral
process does not retain Markov's property anymore : knovtfirgg
2.2 Concurrency and MDP current states is not sufficient to predict the distribution on the next

. . state of the process. [9] showed that by augmenting the speaiee
In the stochastic processes litterature, concurrent Mapkocesses with the events’ clocks, one could retain the Semi-Markovaséour

are modelled as Generalized Semi-Markov Processes (GSBIP) [¢, GSMP, we will discuss this issue in the next section.

A GSMP is a natural representation of several concurrent @MP Introducing action choice in a GSMP yields a GSMDP as defined

];\icnl?g tge _sgmepstate Spacg.S’Ejg]Plr?trod(l;ced Gegelratl:zfml-i by [16]. In a GSMDP, we identify a subsdtof controlable events or
arkov Decision Processes () in order to model thelpro actions, the remaining ones are called uncontrolable ogenaus

of decision url}dzlr uncerlzalnt.y where a;tlgr;sMcgszete \{vl)lthnn; events. Actions can be enabled or disabled at will and theefub
rent uncontrollable stochastic events. ESCribpea- As = AN E; of activable actions is never empty since it always

Igm by factoring the 9'°b‘?" trgnsition function of the prgseby the contains at least the “idle” actian., (whose clock is always seb)
different stochastic contrlbqtlgns of concurrent. gvemms makes . which, in fact, does nothing and lets the first exogenous tetade
GSMDP an elegant and efficient way of describing the COWEX' the process to a new state. As in the MDP case, searchingritmoto
qf Markov Temporal Problems. We will therefore. focus on smiv strategies on GSMDP imply defining rewards, ¢) o (s, ¢, s')
tlmt_a-_d_ependent GSMDP frqm now on and will give a more formal associated to transitions and introducing policies arteiai.
definition of GSMDP in section 3.

~+ continuous 32 COﬂtI’O“ng GSMDP

sojourn time + concurrency

— — As mentionned before, the transition function for the glodemi-
MP SMP GSMP Markov process does not retain the Markov property withaig-a
. menting the state space. In the classical MDP framework,camne
>+ actions)) make use of the Markov property of the transition function to
prove that there exists a Markovian policy (which only defgen
MDP > sMDP > GSMDP on the current state) which is at least as good as any history-
dependent policy [11]. In the GSMDP case however, this is no
Figure 1. From MP to GSMDP longer possible and in order to define criteria and to find-opti

mal policies, we need - in the general case - to allow the ypolic
to depend on the wholexecution pattof the process. An execu-
tion path [16] of lengthn from states, to states, is a sequence
o = (807 t0,€0,S51,--.,8n—1,tn—1,€n—1, Sn) Whereti is the so-

3 GSMP and GSMDP journ_time in states; before evenéz-_ triggers. A.s in [16], we define
the discounted value of an execution path by:

The previous section illustrated how Temporal Markov Peois n—1 t

needed both continuous observable time models and an effieje- V(o) = Z AT (Vti k(si,ei,si41) + / Vtc(s,“ ei)dt) 3

resentation of concurrency in order to represent the coxiiplef the i=0 0

wherek andc are traditional SMDP lump sum reward and reward on a subset of states and then generalized by regressioa tdhtiie
rate functions, and’; = Z;;}) t;. One can then define the expected state space. The choice of the subset of states used foatualis
value of policyr in states as the expectation over all execution paths guided by the simulation of the current policy. We presemtaigo-

starting ins: V7 (s) = ET [V (o)].

This provides a criterion for evaluating policies. The gisahow
to find policies that maximize this criterion. The main peil here
is that it is hard to search the space of history-dependditigm On
the other hand, the supplementary variable technique & afsed
to transform non-Markovian processes into Markovian ofte=on-
sists in augmenting the state space with just enough vagad that
the distribution over future states only depends on theectivalue
of these variables. In [9], Nielsen augments the naturaé staf
the process with all the clock readings and shows that thésation
brings Markov behavior back to the GSMP process. We will tinite
augmented state spage c) for convenience.

Unfortunately, it is unrealistic to define policies oversttdaug-
mented state space since clock readings contain informatiout

thefuture of the system. From here, several options are possible:

e One could decide to sacrifice optimality and to search foottjo
policies among a restricted set of policies, say the pdaidifined
on the current natural state only.

e One could also search for representation hypotheses thplifsi

the GSMDP model and that make natural state Markovian again.
e One could compute optimal policies on the augmented stateesp

(s, c) and then derive a policy on observable variables only.
e Finally, one could search for a set albservablevariables which

retain the Markov property for the process, for example #te s

composed of the natural state of the procesthe duration for
which each active evert; has been active; and its activation
states;. We will note this augmented state, 7, s.)

[16] is based on the second option listed above. In the nes:pa

graph, we briefly present this approach and introduce onfawie-
ment learning method designed to deal with very large staees

for GSMDP with continuous observable time and that can bptada

to the three other options.

3.3 Resolution methods

rithm in section 4.1 and then illustrate why simulationdzhpolicy
iteration is particularly adapted to temporal problemsdation 4.2.

4 Simulation-based approaches
4.1 Algorithm

Our algorithm belongs to the Approximate Policy IteratidkP()
family of algorithms. Policy lIteration is an algorithm foolsing
MDP which searches the policy space in a two-step fashioitas i
lustrated on figure 2. Given a poliey, at stepn, the first step con-
sists in computing the value af,. The second step then performs a
Bellman backup in every state of the state space, thus i dkie
policy. An important property of policy iteration is its gg@anytime
behaviour: at any step, policy =, will be at least as good as any
previous policy. Policy Iteration usually converges insl@rations
than the standard Value Iteration algorithm but takes losgee the
evaluation step is very time consuming. To deal with reabfmms,
one needs to allow for approximate policy evaluation (agJpgince
exact computation is often infeasible. There are few theaeguar-
antees on convergence and optimality of API, as explaind@]in

()

One-step improvement:
n+1

Figure 2. Policy Iteration

The version of simulation-based policy iteration we usdqrers
simulations of the current policy,, starting from the current state
of the process and stores the triplets of states, times amarde
(ss,ts,7s) Obtained. Thus, one execution path yields a value func-

The resolution method for GSMDP proposed by [16] relies an th tion over the discrete set of states explored during sinurigequa-

memoryless property of the exponential distribution. lé@pprox-

tion 3). All the value functions issued from simulation foatraining

imates all duration functiong’ by phase-type distributions (which set{(s,v)}, s € S,v € R, from which we wish to generalize a value

are combinations of exponential distributions), then aeigtimg the
state space with the distribution phases brings the ovieelaviour

functionV over all states. The average value of staitethe training
settends td’™ (s) as the number of simulations tends+oc. One

of the GSMDP back to a Continuous Time MDP, which can, in turn, major advantage of policy-driven simulation is that theigouides
be transformed to a standard discrete time MDP by the method ahe exploration of the state space to the states most likebetvis-

uniformization[11]. We refer the reader to [16] for more details.
We wish not make hypotheses on the distributions that destine

ited, thus refining the training set over the states that bavéargest
probability of being reached by the policy. A second advaates

dynamics of our system. On top of that, many problems we want t that this technique is adapted to large dimension stateespac

consider present other characteristics such as very langesome-
times continuous state spaces. Therefore, we need to eoms&th-
ods for policy search that can cope with large hybrid stateap
(vielding large hybrid trajectory spaces) and observabie tFinally,
for some aspects of the problems, the stochastic behaviigint still

be very complex to model formally while simulators might badlily
available (for instance, in the airport taxiway managenpeablem,
the weather model is not given as probability distributiondtions
but as a simulator). In order to deal with such problems we tor
wards reinforcement learning methods. More specificallgrder to
avoid complete state space exploration, we introduce &oveos ap-
proximate policy iteration where policies are defined analated

Once simulation has provided the set of samples in the sgface o
trajectories, we want to use it as a training set for a regressethod
that will generalize it to the entire state space. Sevenatagches to
regression based reinforcement learning have been prbposbe
machine learning community - methods based on trees [3]uevo
tionary functions [15], kernel methods [10], etc. - but feawh been
coupled with policy simulation. We chose to focus on suppector
machines (SVM) because of their ability to handle the laligeed-
sion spaces over which our samples are defined. SVM belorgeto t
family of kernel methods and can be used for both regression a
classification. Training a standard SVM over a given trajrgat cor-
responds to looking for a hyperplane interpolating the damm a

higher dimensional space calleghture spacePractically, SVM take

advantage of thkernel trickto avoid expressing the feature space ex-

plicitely. For more details on SVM, we refer the reader to][14 our
case, we call/, (s) the interpolated value function of poliay,.
Finally, while simulation-based exploration and SVM gettiea-
tion of the value function are techniques dedicated to ivgride
evaluation step of approximate policy iteration, the thipcificity
of our algorithm deals with improving the optimization stefor
large and possibly continuous state spaces, it might belgagyor
impracticable to compute the one-step improvement of tHiypo
Indeed, most of the time, computing a complete policy idéxrant
since most of this policy will never be used for the simulatlmased
evaluation step. Instead, it might be easier to comput@ertie one-
step lookahead best action in the current state with regpeitte
stored value function. More precisely, in a standard MD®,dti-
mization step consists in solving equation 4 in every state:

Tn+1(s) < arg max Qn+1(s, a) 4
with: Quy1(s,a) = r(s,a) + > P(s']s,a)Va(s, a)
s’'esS

For continuous state spaces, computing 1 implies being able to
compute integrals oveP andV,,. We wish not make hypotheses on
the model used and therefore will perform a discretizataref/alu-
ation of the integral. Finally, since the model Bfis not necessarily

known to the decision maker and since we have a simulator of ou

system, we will make a second use of this simulator for theqss
of evaluating the expected rewafd}, 1 (s, a) associated with per-
forming actiona in states with respect to value functioft,, (equa-
tion 5). At the end of the evaluation phase, the value functip is
stored and no policy is computed from it. Instead, we imntetija
enter a new simulation phase but whenever the paticy; is asked
for the action to perform in the current stat@ performsonlinethe
estimation of allQ-values for state and then choses the best action
to perform. The speed up in the execution of the policy iterasl-
gorithm is easy to illustrate for discrete state spaceslpnab since
we replacd S| evaluations of th&)-values for policy update by the
number of states visited during one simulation. This is eigflig in-
teresting in the case of Temporal Markov Problems since Gawill/
explain in section 4.2) a state is never visited twice. Cqusatly,
Qn+1(8, a) is calculated by simply simulatingy times the applica-
tion of a in s and observing the set df(r;, s;)} as in equation 5.
Then the policy returns the action which corresponds to dhgelst
Q-value. We call this online instanciation of the policy “om ap-
proximate policy iteration”.

N
Quia(5,0) = 5 3 [+ V(o)) ©)

Our algorithm, callednline Approximate Temporal Policy Iteration
(online-ATPI), is summarized in algorithm 1.

Note that in algorithm 1s actually denotes the part of the state
that is observable to the policy. This makes online-ATPtalle to
any of the sets of policy variables presented in sectionBe2tested
a version of online-ATPI on the natural state of the process.

4.2 Simulating GSMDP and learning

Simulation is a key aspect of ATPI. The Discrete EVents Sanul
tion theory (DEVS) of [17] provides a general framework fpes-
ifying discrete event dynamic systems. We implemented GanP

Algorithm 1 Online-ATPI

main:
Input : o or Vo, so
loop
TrainingSet «— ()
for ¢ = 1t0 Ngim do
{(s,v)} « simulatdV, so)
TrainingSet «+— TrainingSet U {(s,v)}
end for
V « TrainApproximatofT'rainingSet)
end loop

simulate(V, so):
EzecutionPath «— ()
S < So
while horizon not reachedo
action «— ComputePolicys, V)
(s',7) «— GSMDPsteps, action)
EzecutionPath « EzecutionPath U (s',r)
end while
convert execution path to value functidts, v)} (eqn 3)
return {(s,v)}

ComputePolicy(s, V):
fora € Ado
Q(s, a)=0
for j = 110 Nsampies dO
(s',7) «— GSMDPstefs, a)
Q(s,a) — Q(s,a) + 1+~ "tV (s")
end for ~
Q(S, a) — m@(sv a)
end for

action — arg max Q(s, a)
acA

return action

GSMDP extensions in the VLE multi-modeling platform [12]sked

on the DEVS specification; by doing so, we take advantage ef th
DEVS framework’s properties which fit our simulation reguirents,
namely:

e Event driven simulation and time oriented output.

e The simulation engine deals with simultaneity issues antth wi
simulation consistency and reproducibility.

e Simulation engines such as the VLE platform [12] are readily
available and built on the same discrete events simulatieory.

e Multi-modelling possibilities, opens the algorithm to ethfor-
malisms than MP.

On top of that, the DEVS formalism allows for experimentalnfres
definition, which would permit integration of the whole silation
and planning loop in a DEVS specification. We haven't usecexp
mental frames yet but plan to do so in future versions.

Finally, we have claimed that Temporal Markov Problems gmées
a specific structure that makes the problem both hard to déafov
classical reinforcement learning algorithms and pardidyladapted
for online approximate policy iteration. More specifically

e Most reinforcement learning algorithms deal with discreti@te
spaces. Some approaches have been proposed ([10, 3, 6afor de
ing with continuous or hybrid states but the topic is stiltwaew.
Often, continuous state resolution methods depend siyyamghe

representation used and on the ability to calculate integneer
the probability functions. Simulation-based samplingrapphes
propose a different approach to this issue.

e When time is observable, tleausality principleensures that the

process never goes back in time. This avoids loops and msure®

that online policy instanciation performs less operatitiman a
complete offline policy improvement step.

4.3 Example

Table 1 presents optimization results for the first fouratiens of
online-ATPI for the subway problem initialized with a pafig, that
sets trains to run all day Ioni; Nsim Was set to 20 an®Vsqmpies

to 15 withy = 1 (finite horizon). This simple instance of the sub-
way problem implied 4 trains and 6 stations. The problemécip
cation took time-dependency and stochastic behaviouraotount;
for example passenger arrival periods were representad Gaus-
sian distributions with means and standard deviationsritipg on
the time of day. The state space for this problem includedig2 d
crete, boolean or continuous variables (including tim@)styielding

a sample space of dimension 22 for the training set.

5 Conclusion

This paper introduces a new reinforcement learning metbosidiv-
ing Generalized Semi-Markov Decision Processes. Thesegses
re a natural and elegant way of representing the complekitgn-
current stochastic processes. In the framework of timeegnt
GSMDP with explicit time, simulation seems to be an efficienly
of exploring the state space and evaluating strategiesvibgafrom
this idea, we introduced a simulation-based version of Apipnate
Policy Iteration (API), which we called online-ATPI. Thitgarithm
incrementally improves the quality of an initial policy byaking use
of simulation-based evaluation, SVM regression and ontiokcy
instanciation. Although there are few theorical resultsoemning the
convergence and optimality of API, online-ATP| seems tdfquen
well on an example of subway network control.

Future work will deal with making online-ATPI| more robustitd-
tialization; in fact, if the initial policy does not guidedtsimulation
towards relevant areas of the state space, the error inypaledua-
tion can greatly penalize the algorithm. To avoid this dragk) we
plan to use incremental refining methods for simulationahiation.
This could result in building a more dense training set,afa@e min-

Intable 1t is the training set building time (which corresponds imizing the risk of not exploring relevant parts of the stspace.

to performing theNs;,, simulations) whil€f;cq, is the SVM train-
ing time (in seconds W+ (s0) is the statistical evaluation &f(s),
while VSVM(SO) is the value provided by the trained SVM. Lastly,
#SV is the number of support vectors in the SVM.

The expected value of the initial state increases with tins;
this confirms the fact that policy quality improves with eatdra-
tion. This increase is not necessarily linear and dependseoprob-
lem’s structure. If the policy takes the simulation to statieat are
“far” from explored states (states for which the interpethtvalue
might be erroneous) and that provide very bad rewards, ithegn
pen that the initial state’s expected value drops for orratiten. This
is the drawback from partial exploration of the state spaxckiater-
polation: very good or very bad regions of the state spacdntig
discovered late in the iterations.

One can notice that simulation time increases with itenatid his
is mainly due to the number of support vectors in the SVM. Delpe

ing on the iteration step, the SVM can be much simpler and simu

lation time can drop again. On the other hand, online-AT Fitiis
very sensitive to the initial policy and we are currently Wing on
other possibilities to improve solution quality (such ak-ouit tech-
nigues and estimator refinement during optimization by ftan-
optimization interweaving).

Table 1. Subway control policy

o T T2 3 T4
Toim 471 20343 | 206.45 | 446.15 | 1504.41
Trearn 2.28 2.7 12.18 56.08 | 229.45
Vatat(so) | -3261.31| -3188.11 | -2074.74| -1850.12 | -887.076
Vovar(so) | -2980.29 | -2962.46 | -2020.22 | -1837.41 | -875.417
#SV 55 61 439 3588 13596

SinceN,;» = 20 simulations per iteration always provide a train-
ing set of around 45000 points for the SVM in the subway exampl
the number of support vectors for the SVM - and thereforeitéra-
tion duration - is bounded. Longer runs on the subway prolsieoav
that the number of support vectors and learning time in calamn
are a good estimate of the worst values.

2 experiments were ran on a 1.7GHz single core processor @ihdf RAM

REFERENCES

[1] R. E. Bellman,Dynamic ProgrammingPrinceton University Press,
Princeton, New Jersey, 1957.

[2] J. Boyan and M. Littman, ‘Exact solutions to time depemd®IDPs’,

Advances in Neural Information Processing Systeh3s 1026-1032,

(2001).

D. Ernst, P. Geurts, and L. Wehenkel, ‘Tree-based batclderein-

forcement learning’ JMLR, 6, 503-556, (2005).

Z. Feng, R. Dearden, N. Meuleau, and R. Washington, ‘Dyicgoro-

gramming for structured continuous markov decision proisfe in

20th Conference on Uncertainty in Adp. 154-161, (2004).

P. Glynn, ‘A GSMP formalism for discrete event systeni&oc. of the

IEEE, 77, (1989).

M. Hauskrecht and B. Kveton, ‘Approximate linear progmaing for

solving hybrid factored MDPs’, i9th Int. Symp. on Al and Math.

(2006).

M. Lagoudakis and R. Parr, ‘Least-squares policy iferaf JIMLR 4,

1107-1149, (2003).

R. Munos, ‘Error bounds for approximate policy iteratipin Int. Conf.

on Machine Learning(2003).

F. Nielsen, ‘GMSim: a tool for compositionnal GSMP madef, in

Winter Simulation Conferencé1998).

Dirk Ormoneit and Saunak Sen, ‘Kernel-based reinforeet learning’,

Machine Learning49, 161-178, (2002).

M. PutermanMarkov Decision Processgsohn Wiley & Sons, Inc,

1994.

G. Quesnel, R. DuboZ. Ramat, and M.K. Traore, ‘VLE - A Multi-

Modeling and Simulation Environment’, iMoving Towards the Uni-

fied Simulation Approach, Proc. of the 2007 Summer Simula&ionf,

pp. 367-374, (2007).

E. Rachelson, F. Garcia, and P. Fabiani, ‘ExtendingBbkman equa-

tion for MDP to continuous actions and continuous time in die

counted case’, id0th Int. Symp. on Al and Math(2008).

V. Vapnik, S. Golowich, and A. Smola, ‘Support vector thmed for

function approximation, regression estimation and sigmatessing’,

Advances in Neural Information Processing Systef)s281-287,

(1996).

Shimon Whiteson and Peter Stone, ‘Evolutionary fuorctpproxima-

tion for reinforcement learningJMLR, 7, 877-917, (2006).

H. Younes and R. Simmons, ‘Solving Generalized semikda Deci-

sion Processes using Continuous Phase-Type DistribUtion&AAl,

(2004).

B. P. Zeigler, D. Kim, and H. PraehofeFheory of modeling and sim-

ulation: Integrating Discrete Event and Continuous Comby/namic

SystemsAcademic Press, 2000.

(3]
[4]

(5]
(6]

[7]
(8]
9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

