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László Bányai1 • Eszter Sz}ucs1 • Viktor Wesztergom1

Received: 2 May 2016 / Accepted: 17 August 2016 / Published online: 31 August 2016
� Akadémiai Kiadó 2016

Abstract At present, the satellite SAR persistent scatterer interferometry can already

estimate surface changes with a near to 1 mm theoretical precision limit. However, the

ascending and descending acquisitions of available SAR services cannot provide three-

dimensional changes routinely, though the slow deformation processes are basically three-

dimensional (3D). In this paper the geometric features of ascending and descending SAR

data and possible fusion with geodetic data are summarised. All the geometric equations

are introduced, which are necessary to derive the two characteristic changes in the

observation plain defined by ascending and descending unit vectors pointing to SAR

satellite positions. The unambiguously derivable characteristic changes can be transformed

into vertical and east changes, but they may be biased by possible north displacement. The

geometric features of symmetric and asymmetric acquisitions are also investigated. Monte-

Carlo simulation is used to investigate the precision of two estimated components. It is

experienced that the precisions are not sensitive to one degree standard deviations of

positional angles. The Gauss–Markov model of least square adjustment method is used to

derive only the statistical properties of reasonable data fusion which can contribute to the

3D applications. Although complementary satellites, which are already proposed in the

literature, could provide precise autonomous solutions, in the practise GNSS and levelling

data can be used for direct data fusion. Whereas, even errorless levelled high changes

cannot contribute to the proper estimation of northern components, GNSS derived changes

are the best candidates, which can be interpolated or measured directly. Moreover, these

two techniques can properly compensate the weaknesses of each other. The interferometric

SAR techniques are not sensitive enough to the north changes, but can contribute to the

precision of height estimation, which are the weakest components of the GNSS technique.

This statement is valid if the standard deviations of combined data are comparable. For test

computations the geometric parameters of available Sentinel-1A images are used, which
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cover the area of the Széchenyi István Geophysical Observatory, where experimental

integrated geodetic benchmark is located combining ascending and descending backscat-

terers with the possibility of the GNSS, gravimetric and traditional geodetic measurements,

as well.

Keywords InSAR � Persistent scatter interferometry � GNSS � Levelling � Data fusion �
Least square adjustment � Gauss–Markov model

1 Introduction

The well-known satellite synthetic aperture radar (SAR) technology is regularly used for

the estimation of displacements and volume changes of the Earth surface by means of

remote sensing and differential interferometric methods. There are plenty of reviews

dealing with three-dimensional (3D) investigations (e.g. in Tralli et al. 2005; Hu et al.

2014).

According to the theoretical and practical advances (Colesanti et al. 2003; Hooper 2008;

Hooper et al. 2012; Plank et al. 2013; Wasowski and Bovenga 2014), the persistent scatter

interferometry (PSI) can provide surface change time series in LOS directions at a mm-cm

precision level. In the best cases the precision is near to the 1 mm theoretical limit. This

accuracy is already competitive compared to the high precision Global Navigation Satellite

Systems (GNSS) and traditional geodetic techniques. The 3D absolute stereo localisation

of persistent scatterers may be a successful alternative in the near future, using high

resolution X band data (Gisinger et al. 2015). However, it is emphasized that this paper

concentrates only on interferometric technologies, which can be optimally applied using

Sentinel-1 images freely available to the scientific community.

Moreover, at this level it is more reasonable to speak about the cooperation than a

competition, if the advantages and disadvantages of different techniques are taken into

account.

Those geoscientists who deal with the slow deformation of the earth surfaces are

basically interested in the estimation of 3D displacement fields. Though GNSS and

geodetic techniques provide 3D displacements, the maintenance of the continuous net-

works or the repeated measurements of epoch networks are relatively expensive and

provide usually sparse data distribution in space or time, respectively.

The success of PSI technology strongly depends on the recognition of large numbers of

accurate persistent scatterers (PS) in coherent SAR images (Riddick et al. 2012; Garthwaite

et al. 2013). The territorial coverage of PSs may be more favourable than the benchmarks

of GNSS networks, but the resolution cells (or pixels) cover areas of several square meters

and additionally the LOS changes are referred to only one spatial direction.

There are several excellent practical applications where ascending or/and descending

LOS data are combined with theoretical models (e.g. glaciers, volcanos, landslides or

earthquakes) of expected surface changes, e.g. Wright et al. (2004), Hooper et al. (2004),

Cascini et al. (2010), Meyer et al. (2015) and Kumar et al. (2011). They strongly depend on

the investigated phenomenon and their proper preliminary models; therefore they are not

investigated in this paper.
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If satellite missions can provide LOS data of same PSs during ascending and descending

illuminations, two displacement components can be estimated. The vertical (or up) and east

components can be derived if the north components are negligible (Manzo et al. 2006),

otherwise the estimated vertical displacements are biased by north movements.

From a theoretical point of view, at least three or more ascending and descending LOS

observations can provide direct 3D displacements. A successful case study was presented

in Gray (2011) using RADARSAT data, but the procedure can be applied effectively only

in high latitude regions, where the positional directions are sufficiently different. The direct

3D applications have already been discussed in the literature (Wright et al. 2004; Rocca

2003) supposing the combinations of usual right and/or possible left looking acquisitions.

In Wright et al. (2004) an additional SAR mission is proposed with a satellite inclination of

60
�
=120

�
is one of the proper solutions, which covers the Earth between 60�S and 60�N

latitudes. In the lack of such missions the combination of different data sources are

preferred.

The common application of dense PSs and sparse 3D GNSS (or traditional) and 1D

levelling data require the proper areal overlapping of the different networks. Another

requirement is the proper interpolation of 3D and/or 1D geodetic data to the position of PSs

cells. The interpolations can be carried out by using different deterministic models or

stochastic methods. In Hung et al. (2011) the combination of SAR and levelling data is

demonstrated for subsidence investigation on a large area, using kriging and draping

method. The levelling data can improve the subsidence estimation (e.g. reducing the bias

caused by possible north movements) but cannot help the estimation of 3D displacements.

While there will be no complementary SAR satellite missions at our disposal or the

stereo localization cannot be applied routinely, thus autonomous 3D displacement esti-

mation is not possible by this way; therefore the data fusion with GNSS displacements is

the best candidate for the combinations. Excellent applications and methods are presented

in several papers (Gudmundsson et al. 2002; Samsonov et al. 2007; Guglielmino et al.

2011; Catalao et al. 2011). Though the interpolation errors of GNSS derived changes effect

the accuracy of data combination, they effectively compensate the weaknesses of each

other.

The high accuracy of recent PSI technologies and the ESA Sentinel-1 C band mission,

which is very near to the fully operational phase, can significantly raise the number of

practical investigations, since the Sentinel-1A satellite (repeat cycle 12 days), and later in

tandem mode with Sentinel-1B will be regularly available for the end-users free of charge.

The collocated or integrated application of artificial ascending and descending

backscatterers and multi-purpose geodetic/geodynamics benchmark can open a new area of

combined applications. It can be used in areas covered by vegetation, where the PSI

technology cannot be applied routinely, or the properly installed integrated benchmark can

guarantee the common geometric reference of the different sources of data. It can be

utilized at hazardous areas or can be used for stability monitoring of those fundamental

geodetic benchmarks, which are used to maintain the terrestrial reference frames for

industrial and/or scientific purposes.

In this manuscript we concentrate only on the application of PSI derived ascending and

descending data and the possible geodetic data combination to provide high precision 3D

displacement estimations, regardless of the fact that the geodetic data are interpolated or

directly measured.

In Sect. 2.1 the information content and the features of ascending and descending LOS

data are discussed by geometric and algebraic methods. In Sect. 2.2 the usual direct data
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fusion and their precisions are investigated by the Gauss–Markov model of the least square

adjustment method, which is frequently used in geodetic and surveying applications.

Although, the design of integrated benchmarks is not subject of this manuscript, the

geometric parameters of the practical investigations are taken from the position of

experimental integrated benchmark (http://www.ggki.hu/nc/en/news/) located in Széchenyi

István Geophysical Observatory and Sentinel-1A orbit data of single look complex (SLC)

images acquired from 03.10.2014. Images of two ascending and one descending frames are

chosen. Since the high precision applications are addressed, the measurements are treated

by r ¼ 2 mm standard deviation (precision), which can be provided by precise GNSS and

geodetic measurement together with properly designed artificial backscatterers if coherent

SAR images are available.

2 Theoretical background

During the derivation of algebraic equations displacements between two epochs of PSI

time series are chosen. These equations are valid if the displacements are replaced by

average velocities estimated for longer time period. Since the same geometric reference

system is used and the same reference areas can be chosen in overlapping ascending and

descending images (see StaMPS/MTI manual, Hooper et al. 2012), common PSs can be

combined.

2.1 Geometric features of ascending and descending LOS data

The geometry of ascending and descending observations referring to same PS (or more

generally to same resolution cell on the Earth surface) is presented in Fig. 1, where aa and

ad re the LOS azimuths, ha and hd re the incidence (or zenith) angles of the right looking

illuminations, sa and sd re the unit vectors of ascending and descending satellite directions,

all given in the ellipsoidal topocentric coordinate system, which is attached to PS at the

reference epoch (or on master image), U is the direction of ellipsoidal normal (up), N is a

direction to the north and E is the direction to the east in the plane perpendicular to U. The

azimuths and incidence angles are changing slowly from PS to PS.

Fig. 1 Geometry of ascending
and descending LOS
observations of the same
resolution cell on the Earth
surface. aa and ad are the LOS
azimuths, ha and hd are the
incidence angles of the SAR
illuminations, sa and sd are the
unit vectors of ascending and
descending satellite directions
given in the ellipsoidal
topocentric coordinate system, U
is the direction of the ellipsoidal
normal (up), N is a direction to
the north and E is the direction to
the east in the plane
perpendicular to U

424 Acta Geod Geophys (2017) 52:421–436

123

http://www.ggki.hu/nc/en/news/


According to the looking directions of the antennae the LOS azimuths are perpendicular

to the azimuths of the satellite motions. During the satellite motion the backscattered

signals are projected into the LOS directions and the distances of reflecting resolution cells

are estimated. Using the phase values of master and slave images, the differential SAR

interferometry (DInSAR, PSI) can determine the change of distances with high precision.

In the SAR publications usually the PS to satellite azimuth is preferred to describe the

changes, here for geometric convenience the LOS azimuths are chosen, which connects the

satellite to the PS.

If the investigated PS is displaced with respect to the reference epoch and reference PS

(on the slave images), the LOS changes can be derived from the known 3D coordinate

changes according to Fig. 2 using the known method of coordinate transformation. In

Fig. 2a the displaced PS is shown in a 3D local system, Fig. 2b depicts the impact of the

horizontal components (DE and DN) and Fig. 2c contains the additional impact of DU
component. According to Fig. 2b the effects of the horizontal components are

Fig. 2 Displacements of the PS in ellipsoidal topocentric coordinate system (E, N, U). a PS is displaced by
DE, DN and DU values. b R and A axes are connected to a LOS azimuth in the N-E plane. c S and L axes
are connected to h incidence angle in the U-R plane
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DR ¼ DE sin aþ DN cos a; ð1Þ

DA ¼ DE cos a� DN sin a; ð2Þ

where DR is a displacement along the LOS azimuth, while the perpendicular displacement

DA cannot be sensed from this direction. According to Fig. 2c the additional impact of the

vertical components is given by

DS ¼ DR sin h� DU cos h; ð3Þ

DL ¼ DR cos hþ DU sin h; ð4Þ

where DS is a displacement in LOS direction, while the perpendicular displacement DL
cannot be sensed from this direction. If we accept the rule of thumb that the displacement

should be positive if the PS moves toward the satellite, the sign of Eq. (3) has to be

changed (Figs. 1, 2), which leads to the basic equation

DSða; hÞ ¼ DU cos h� ðDE sin aþ DN cos aÞ sin h: ð5Þ

It is supposed that the differential InSAR or PSI data processing provides the time series

of aa; ha;DSa and ad; hd;DSd values of the same PSs (or nearly the same resolution cells)

for both ascending (a) and descending (d) satellites, the error sources are properly handled

and the data refer to the same reference PS.

The measured changes (Eq. 5) contain information on all the three displacement

components, but two measurements are not enough to directly determine three unknowns.

Moreover, the unit vectors pointing to the two satellite positions define an observation

plane in which two characteristic directions, I (inclination) and D (declination), can be

identified. The intersection of this observation and N-E planes defines the axis D, while the

axis I in the observation plane is perpendicular to axis D. The most important quantities

that can be derived are summarised in Fig. 3.

The unit vectors (sa, sd) can be determined according to Fig. 1, substituting the proper

angles

sE

sN

sU

2
4

3
5 ¼

� sin a sin h
� cos a sin h

cos h

2
4

3
5: ð6Þ

The vectorial multiplication

n ¼ sa � sd ¼
nE

nN

nU

2
4

3
5 ð7Þ

provides the vector perpendicular to the plane. Because sa and sd are unit vectors

d ¼ sin�1 n ð8Þ

holds, where n is the length of the vector and d is the angle between sa and sd. If the vector

components of n are divided by its length
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m ¼
nE=n
nN=n
nU=n

2
4

3
5 ¼

mE

mN

mU

2
4

3
5 ð9Þ

becomes a unit vector, too. According to the geometric background the following quan-

tities can be derived

v ¼ tan�1 mE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

E þ m2
N

q� �
; ð10Þ

aD ¼ p
2
þ v; ð11Þ

aI ¼ pþ v; ð12Þ

x ¼ tan�1 mU=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

E þ m2
N

q� �
; ð13Þ

s ¼
�mUsinv
�mUcosvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

E þ m2
N

p

2
4

3
5 ¼

sE

sN

sU

2
4

3
5; ð14Þ

where v is the angle between axes D and E, aI is the azimuth of the inclination and aD is the

azimuth of declination directions, x is the inclination (or zenith) angle between the

observation plane and the vertical axis U, and finally s is a unit vector along the axis I.

Fig. 3 Geometric parameters of
the observation plane defined by
sa and sd unit vectors in
ellipsoidal topocentric coordinate
system (E, N, U). a m is a normal
unit vector of the plane, I and D
are the inclination and
declination axes, x and v are the
inclination and declination
angles, s is the unit vector along
I. b sa, s and sd are the unit
vectors in the I-D plane, d, b and
c are the angels between the unit
vectors
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The following angles (Fig. 3b)

b ¼ sin�1 s� saj j; ð15Þ

c ¼ sin�1 s� sdj j ð16Þ

should satisfy the control equation: d ¼ bþ c.
After the geometric parameters of the observation plane have been derived, the dis-

placements can be computed. According to Fig. 4 the intersection of the two lines

I ¼ fa Dð Þ ¼ DSa
cosb

þ D tan b; ð17Þ

I ¼ fd Dð Þ ¼ DSd
cos c

� D tan c ð18Þ

have to be solved, where the first terms of right hand sides are the intersections with axis I.

They can be simplified as

DSa ¼ I cos b� D sin b; ð19Þ

DSd ¼ I cos cþ D sin c: ð20Þ

There are several solutions of the two equations, e.g.

I ¼ DSd
sin c

þ DSa
sinb

� �
= ctgbþ ctgcð Þ; ð21Þ

D ¼ DSd
cos c

� DSa
cosb

� �
= tan bþ tan cð Þ: ð22Þ

Another solution will be presented in next section.

The following projections

DU0 ¼ I

cosx
; ð23Þ

Fig. 4 Position of the PS in the
D-I plane, where DSa and DSd are
the displacements towards the
satellite positions. The
intersection of the lines I ¼ faðDÞ
and I ¼ fdðDÞ, which are
perpendicular to the
displacements, defines the
position of the PS
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DE0 ¼ D

cos v
ð24Þ

are different from DU and DE if DN is not zero and the satellite configurations are not

symmetric. However, there are some special cases that can be deduced from the introduced

equations.

If the satellite configuration is symmetric to the north (aa þ ad ¼ 2p and ha ¼ hd),

which leads to v ¼ 0; the following relations can be derived

• if DN 6¼ 0 then DE0 ¼ DE but DU0 is biased by DN,

• if DN ¼ 0 then DE0 ¼ DE and DU0 ¼ DU,

• if DN ¼ DE ¼ 0 then DE0 ¼ 0 and DU0 ¼ DU,

• if DU ¼ DE ¼ 0 then DE0 ¼ 0 and DU0 ¼ �ðDN cos aa sin haÞ=ðcosb cosxÞ.
Both incidence asymmetry (aa þ ad ¼ 2p but ha 6¼ hd) and azimuth asymmetry

(aa þ ad 6¼ 2p but ha ¼ hd) lead to v 6¼ 0 and the relations are

• if DN ¼ 0 then DE0 ¼ DE but DU0 is biased by DE,

• if DN ¼ DE ¼ 0 then DE0 ¼ 0 and DU0 ¼ DU.

Additionally, the smaller the ha and hd are, the smaller the x is, and the results are more

sensitive to DU and DE then to DN.

2.2 Single data combinations using the Gauss-Markov model

Supposing two different SAR satellites with ascending and descending LOS changes the

following general equations can be written according to Eq. (5)

DSa1

DSd2

DSa3

DSd4

2
64

3
75 ¼

� sin aa1
sin ha1

� sin ad2
sin hd2

� sin aa3
sin ha3

� sin ad4
sin hd4

� cos aa1
sin ha1

� cos ad2
sin hd2

� cos aa3
sin ha3

� cos ad4
sin hd4

cosha1

coshd2

cosha3

cosha4

2
64

3
75

DE
DN
DU

2
4

3
5: ð25Þ

In matrix notation

y ¼ Ax; ð26Þ

where A is a liner coefficient matrix. If normally distributed unknown correction (or noise)

vector v is added to the LOS measurements, the correction equation is

v ¼ Ax� y; ð27Þ

and the statistical properties of the Gauss–Markov model are

Ehvi ¼ 0; ð28Þ

Dhvi ¼ Dhyi ¼ Q ¼ r2
0P

�1; ð29Þ

where operator Eh:i stands for expectation and Dh:i for dispersion, Q is a known variance

matrix, r0 is an ‘‘a priori’’ standard deviation of unit weight, which can be chosen arbitrary,

and P is a weight matrix. The diagonal elements of variance matrix contain the square of

measurements standard deviations as the measure of dispersion. The off-diagonal elements

may contain the covariance values.
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If A has no rank deficit the solution can be derived by least square adjustment

x̂ ¼ AtPAð Þ�1
AtPyð Þ; ð30Þ

v̂ ¼ Ax̂� y; ð31Þ

r̂2
0 ¼ v̂tPv̂

m� u
; ð32Þ

Qx̂ ¼ r̂2
0 AtPAð Þ�1

; ð33Þ

where t signs the transpose matrix, r̂2
0 is the ‘‘a posterior’’ standard deviation of unit

weight, Qx̂ is a variance matrix of the estimated unknowns, m is the number of mea-

surements and u is the number of unknowns. In the case when there is no redundancy

(m ¼ u), the precision of derived displacements can be estimated by ‘‘a priory’’ data

Qx̂ ¼ r2
0 AtPAð Þ�1

: ð34Þ

If ellipsoidal height changes are available from levelling measurement (or from other

estimations) or all the three displacement components are available from GNSS mea-

surements (or from other estimations), the following equations can be written

DSa1

DSd2

DUl

2
4

3
5 ¼

� sin aa1
sin ha1

� sin ad2
sin hd2

0

� cos aa1
sin ha1

� cos ad2
sin hd2

0

cosha1

coshd2

1

2
4

3
5

DE
DN
DU

2
4

3
5; ð35Þ

DSa1

DSd2

DEg

DNg

DUg

2
66664

3
77775
¼

� sin aa1
sin ha1

� sin ad2
sin hd2

1

0

0

� cos aa1
sin ha1

� cos ad2
sin hd2

0

1

0

cosha1

coshd2

0

0

1

2
6664

3
7775

DE
DN
DU

2
4

3
5; ð36Þ

where l subscript indicates the levelling and g the GNSS origin. These observation

equations can also be solved by least square adjustment.

In the case of additionally known height changes, Eq. (35) can be rearranged as

DSa1
� cosha1

DUl

DSd2
� coshd2

DUl

� �
¼ � sin aa1

sin ha1

� sin ad2
sin hd2

� cos aa1
sin ha1

� cos ad2
sin hd2

� �
DE
DN

� �
; ð37Þ

where the number of unknowns are reduced. If the satellite configuration is symmetric to

the north, the number of unknowns cannot be reduced to DE and DN, because the reduced

A matrix will have a rank deficit as the consequence of satellite symmetry.

The unambiguous inclination and declination components of ascending and descending

changes can also be estimated by least square adjustment rearranging Eqs. (19) and (20) as

DSa
DSd

� �
¼ cosb � sin b

cos c sinc

� �
I

D

� �
: ð38Þ

Diagonal elements of Qx̂ matrices contain the square of the estimated standard devia-

tions (rÊ, rN̂ , rÛ) which are the measure of precision. Neglecting the standard deviation of

unit weight the square roots of the diagonal elements are the measure of geometric dilution

of precisions (DOPÊ, DOPN̂ , DOPÛ) and the correlation matrix can also be computed
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Cði; jÞ ¼ Qx̂ði; jÞ=Qx̂ði; iÞ=Qx̂ðj; jÞ; ð39Þ

where i; j denote the row and column of the matrix elements. The DOP and C values can be

computed even if there are no real or redundant measurements.

3 Results of test computations

3.1 Source of test data

Although, the Sentinel-1 mission of the European Space Agency (ESA) is not yet declared

as fully operational, useful Sentinel-1A SAR SLC images are available from 03.10.2014.

The used geometric parameters are derived from the position of integrated benchmark

established in the Széchenyi István Geophysical Observatory and Sentinel-1A orbit data of

two ascending and one descending SAR acquisition series. Their geometric parameters,

together with fictional supplementary ‘‘IDEAL’’ satellite are summarized in Table 1. The

mean position angels and their standard deviations show a very stable Sentinel-1A satellite

orbit.

The displacements of test computations (DN = - 0.02, DE = 0.03 and

DU = - 0.15 m) are chosen according to the characteristic values of landslides along the

bank of river Danube in Hungary (Újvári et al. 2009; Bányai et al. 2014).

3.2 Ascending and descending data processing

According to Sect. 2.1 only two components (I and D) can be derived - without any further

assumptions - from one ascending and one descending LOS changes. From the available

Sentinel-1A image series, two observation planes can be selected. Their characteristic

angles are given in Table 2.

Since there are two changes and two unknowns, moreover the Eqs. (21) and (22) are

difficult referring to six starting parameters; instead of error propagation the Monte-Carlo

simulation was applied to investigate the precision of the estimated values. Some 1000

normally distributed random angles (aa; ha and ad; hd) and LOS (DSa and DSd) errors were

simulated with r = 1 degree for the positional angles and r = 2 mm for LOS changes.

The results are given in Table 3. It can be seen that the observation planes are not

symmetric at all; consequently, the estimated parameters are biased by the north compo-

nent, especially the up components.

Table 1 Ascending (A) and descending (D) geometry of Sentinel-1A and IDEAL acquisitions

Satellite Nr a ra h rh DS (m)

S-1A A(1) 12 81�08004
00

2
00

45�21002
00

11
00

-0.1243

S-1A A(2) 8 79�37012
00

2
00

36�41025
00

14
00

-0.1358

S-1A D 5 279�46030
00

2
00

40�20003
00

16
00

-0.0930

IDEAL A – 169� – 37� – –

IDEAL D – 189o – 40o – –

Nr is the number of available images, a is the mean LOS azimuth, h is the mean LOS incidence angle, r is
their standard deviations and DS is the simulated LOS change
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The observation Eq. (38) and the Gauss–Markov model of least square adjustment can

be used also to determine the unknowns, which are exactly the same as the results of

Monte–Carlo simulation, despite only the dispersions of LOS changes were taken into

account. It means the precision of the estimation is not sensitive to the random errors of

positional directions.

The statistics of A(1)–D observation plane

rD ¼ 0:0021 m;DOPD ¼ 1:1
rI ¼ 0:0019 m;DOPI ¼ 1:0

;

C ¼ 1

0:01

0:01

1

� �

and for A(2)–D observation plane

rD ¼ 0:0023 m;DOPD ¼ 1:1
rI ¼ 0:0018 m;DOPI ¼ 0:9

;

C ¼ 1

�0:02

�0:02

1

� �

are very similar. The small correlations are the consequence of asymmetric satellite

geometry.

3.3 Single PS estimations with different data fusion

During the test computations it is supposed that all the observations (LOS, GNSS and

levelling) are uncorrelated and their known standard deviations are uniformly 2 mm.

Choosing r0 ¼ 0:002 the weight matrices became unit matrices and the solution became

simpler. Since we have no real observations Eq. (34) is used for the statistical

investigations.

The element of Eq. (25) are computed from the parameters of Sentinel (A(2), D) frames

and IDEAL satellites (Table 1). The statistical results are

Table 2 Characteristic angles of Sentinel-1A observation planes in degree

Obs. plain b c x aD aI

A(1)–D 44.72 39.58 8.51 89.63 179.63

A(2)–D 35.95 39.68 7.91 90.36 180.36

Table 3 Displacements derived in the observation planes in meter

Obs. plain D rD I rI DE0 DU0

A(1)–D 0.0299 0.0021 -0.1454 0.0020 0.0299 -0.1470

A(2)–D 0.0301 0.0023 -0.1458 0.0018 0.0301 -0.1472

Known 0.0300 -0.1500

The r standard deviations are estimated by Monte-Carlo simulations
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rÊ ¼ 0:0023 m;DOPÊ ¼ 1:1
rN̂ ¼ 0:0028 m;DOPN̂ ¼ 1:4
rÛ ¼ 0:0016 m;DOPÛ ¼ 1:6

;

C ¼
1

0:02

�0:01

0:02

1

�0:57

�0:01

�0:57

1

2
4

3
5:

This would be one of the ideal solutions which apply only InSAR data. If the parameters

of the three available Sentinel-1A frames (A(1), A(2) and D) are used, the statistics

rÊ ¼ 0:0019 m;DOPÊ ¼ 1:0
rN̂ ¼ 0:1749 m;DOPN̂ ¼ 87:4
rÛ ¼ 0:0252 m;DOPÛ ¼ 12:6

;

C ¼
1

�0:11

�0:09

�0:11

1

1:00

�0:09

1:00

1

2
4

3
5

show the very poor condition of this solution.

In the next investigations the Sentinel-1A frames (A(2), D) are combined with levelled

changes. The Eq. (35) leads to the statistics

rÊ ¼ 0:0023 m;DOPÊ ¼ 1:2
rN̂ ¼ 0:0194 m;DOPN̂ ¼ 9:7
rÛ ¼ 0:0020 m;DOPÛ ¼ 1:0

;

C ¼
1

0:06

0:04

0:06

1

0:74

0:04

0:74

1

2
4

3
5;

while Eq. (37) to:

rÊ ¼ 0:0023 m;DOPÊ ¼ 1:2
rN̂ ¼ 0:0130 m;DOPN̂ ¼ 6:5

;

C ¼ 1

0:05

0:05

1

� �
:

The errorless treatment of levelled height change does not significantly improve the

solution of north component. However, in the case of large north movements, this precision

may be acceptable.

Finally the fusion with GNSS derived changes is investigated. The Eq. (36) provides the

statistics

rÊ ¼ 0:0015 m;DOPÊ ¼ 0:8
rN̂ ¼ 0:0020 m;DOPN̂ ¼ 1:0
rÛ ¼ 0:0013 m;DOPÛ ¼ 0:7

;
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C ¼
1

0

�0:01

0

1

0:11

�0:01

0:11

1

2
4

3
5;

which seems to be an excellent data combination.

4 Discussion of the test computations

As it was expected, the available SAR data are not suitable to derive 3D changes by

themselves. A properly chosen complementary satellite would be the solution to provide

excellent 3D solutions using only SAR data.

Having one ascending and one descending LOS change, only two components (I and

D) can be determined unambiguously in the observation plane. The Monte-Carlo simu-

lation proved that the solution is not sensitive to the random errors of positional angles;

therefore it is enough to take the standard deviations of changes in LOS directions into

account. The estimated precisions are practically the same, as the ideal complementary

satellite case would provide, but we have no information about the north component, which

can bias both the east and up components in the case of asymmetric satellite configurations.

In the lack of complementary satellite, additional geodetic data can be used. The fusion

even with errorless levelling data cannot significantly improve the estimation of north

component. However, the direct fusion of LOS data with GNSS displacements can sig-

nificantly improve the solution, although the estimation of north component is the direct

impact of GNSS derived values. Since the nearly vertical inclination is the best estimable

component of ascending and descending PSI data, which is partly biased by north

movement, and the height is the weakest estimable component of GNSS technique, they

are excellent complementary technologies.

On the whole, the presented statistical investigation can be used only to compare the

different possibilities, because in the practice there may be other limitations that were not

taken into account during the test computations.

5 Summary and conclusions

The geometric information content of ascending and descending LOS data and their

equations are derived. One ascending and one descending LOS data of same PS can be

used to determine unambiguously only two characteristic components in the observation

plane, which can be transformed to east and vertical directions. The north component

remains unknown, but usually biases both the east and vertical components.

While there will be no complementary SAR satellite at our disposal and thus autono-

mous 3D displacement estimation is not provided by this way, the different data fusion

with GNSS derived displacement are the best candidates for the 3D procedures.

In the case of geodetic networks using integrated benchmarks, which are not measured

continuously by GNSS technique, the ascending and descending LOS data can be utilized

between the periods of two GNSS observation campaigns. Taking into account the time

series nature of PSI and GNSS data the Kalman filter techniques seems to be one of the

optimal methods to update the 3D displacements continuously.
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