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Abstract - Clones of 35S-Zmgstf4 transgenic Arabidopsis thaliana expressing the glutathione S-transferase F4 gene of Zea mays, were 

tested for stress-inductive GST (glutathione S-transferase) activity following treatments with the heavy metals Zn (150 and 1500 μM), 
Cd (20 and 30 μM) and chloroacetanilide herbicide metolachlor (2000 μM). The overexpression of Zmgstf4 gene in Arabidopsis 

resulted in an extreme resistance to all treatments. The GST activity of the transgenic plants was almost the double compared to the 

wild type plant in the untreated samples. After Cd (20 and 30 μM), and Zn (150 and 1500 μM) exposure the stress response activity of 

GSTs increased in both wild type and transgenic plants, however with significantly higher levels in transgenic plants with extreme 
level at 20 μM CdSO4 treatment (0.24 in transgenic and 0.13 in wild-type). To compare GST responsivity, Zn treatments was less 

inductive compared to Cd. Metolachlor (200 μM) was totally tolerated by transgenic plants, compared to wild type plants, which died 

in 11 days. 
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Introduction  

 
Plant GSTs (glutathione S-transferases) (EC 2.5.1.18) 

are a large and diverse stress-protective enzyme family, 

which catalyze the conjugation of the tripeptide 

glutathione (gamma-L-glutamyl-L-cysteinylglycine, 

GSH) with a wide variety of harmful electrophilic 

xenobiotics. E.g. plant resistance to chloroacetanilide 

herbicides is mainly caused by the functions of GSTs in 

maize and soybean, which, in case of atrazine, results in 

GSH-atrazine a complex (Cummins et al. 2011; Dixon, 

Skipsey, and Edwards 2010; Labrou et al. 2015). Recent 

results revealed that GSTs are also involved in heavy 

metal stress defence mechanisms in plants (Lyubenova 

and Schröder 2011; Schröder 2001). Genes encoding for 

GSTs are grouped in diverse gene families of A, B, D, 

K, M, O, F, T, U, Z, L, M, S. In Arabidopsis, 51 AtGST 

isoenzyme genes were cloned belonging to F (Phi), T 

(Theta), U (Tau) and Z (Zeta) families (Fig. 1). In maize 

42 ZmGSTs (12 F, 28 T, and 2 Z), and in soybean 25 

GmGSTs (20 T, 4 F, and 1 Z) are known.  

 

Here we report a study of GST enzyme activity of wild 

type and 35S(CaMV)-ZmgstF4 transgenic Arabidopsis 

following exposure to Zn, Cd and metolachlor. 

 

Materials and methods  

 
Plant material 

Arabidopsis thaliana (ecotype: Col-5) were transformed 

with cDNA clone overexpressing Zmgstf4 gene (Zea 

mays, NCBI: U12679 / X79515; Uniprot: P46420) 

driven by cauliflower mosaic virus 35S promoter. cDNA 

was introduced with floral dip transformation method 

(Clough and Bent 1998) using the hygromycin 

phosphotransferase (hpt) gene as selectable marker. The 

pCAMBIA1301 binary vector was used for 

transformation.  

 

Seeds of transgenic 35S(CaMV)-ZmgstF4 and wild type 

Arabidopsis thaliana (ecotype: Col-5) were germinated 

in vitro on aseptic hormone free agar media. First, seeds 

were stratified in dark for 72 hour at 4°C to break seed 

dormancy. Seeds were surface sterilized with 70 % 

ethanol (2 min), followed by 0.5% NaOCl (3 min) and 

rinsing with ddH2O, sown on ½ MS media, solidified 

with 7% agar, and supplemented with different 

chemicals. After germination, seedlings were illuminated 

with Osram Fluora fluorescent lamps for 16/8 

photoperiod (16-27 μmol m
-2

 s
-1

). Metolachlor was 

applied to plants as irrigation at rosette stage grown on 

Jiffy peat. 
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Treatments  

Zinc (ZnSO4) (150 and 1500 μM), and cadmium 

(CdSO4) (20 to 200 μM) were applied to the agar media 

in vitro (Fig. 2). Metolachlor (2000 μM) was applied (in 

agar media, or with irrigation) at concentrations lethal to 

wild type, which was determined in preliminary 

measurements. 

 

 
Biochemical analysis 

The aerial parts of plants were harvested, frozen in liquid 

nitrogen, and stored at -80ºC prior to enzyme extractions 

(Schröder et al. 2003). The GST enzyme activities were 

measured according to Lyubenova and Schröder (2009) 

with CDNB model substrate at 22°C by using a 

Shimadzu UV-1601 Spectrophotometer at 22°C. 

 
Statistics 

At least three independent parallel experiments were 

carried out in each case. The significant differences 

between mean values were evaluated by Student's t-test 

at P=0.05. 

 

Results 
 
Symptoms 

Wild type plants treated with Zn and Cd showed  typical 

heavy metal toxicity symptoms: loss of chlorophyll and 

leaf turgor. The symptoms of metolachlor (200 μM) 

were also significant (Fig. 2); apparently, transgenic 

plants were unaffected by metolachlor compared with 

wild type plants, which died after 11 days (Fig. 2). The 

root development of wild type plants was also seriously 

inhibited in wild type. 

 

Enzyme activities 

The GST activity of the transgenic plants is 75% higher 

than in the wild type plant (Fig. 3). After Cd (20 and 30 

μM), but not Zn (150 and 1500 μM) exposure, increased 

GST activities were measured in both wild-type and 

transgenic plants, but the induction in transgenic plants 

was significantly higher (Fig. 3). 

 

 
 

Figure 2. Phytotoxic symptoms of wild-type and 35S(CaMV)-Zmgstf4 transgenic Arabidopsis thaliana plants following a 10-day 

exposure to metolachlor (2000 µM) in agarose media, (left) and in pots (in Jiffy peat, right) 

 
 

Figure 1. Minimum Evolution (ME) cladogram of the amino 

acid (aa) sequences of AtGST isoenzyme families (1 - 51) 

compared to ZmGSTf4 (223 aa, NCBI #NP_001105366). ME 

cladogram was edited by MEGA4, with x1000 bootstrap 
based on the sequences of NCBI data bank. GST gene families 

(F - Phi, T - Theta, U - Tau, Z - Zeta) are indicated with 

different colours. Genetic distance (scale) indicates amino 

acid substitution rate per loci. 
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Discussion 
 

Genetic engineering is a powerful tool to study plant 

metabolic pathways. Overexpression of specific genes 

helps to clarify their physiological roles in the 

metabolism grown under different stress conditions 

(Bittsánszky et al. 2015). Deeper understanding of the 

biochemical pathways contributing to the processes of 

uptake, translocation and accumulation of heavy metals, 

and tolerance of phytotoxic chemicals will greatly help 

the improvement of phytoremediation potential of plants. 

Glutathione S-transferases seem to be valuable targets 

for these purposes. 

 

Glutathione S-transferases are considered to play an 

important role in heavy metal stress (Mendoza-Cozatl et 

al. 2011; Schröder et al. 2003; Saraswat and Rai 2011), 

especially through detoxification (Lyubenova et al. 

2009). 

 

Our results has indicated that overexpression of GST 

enzymes can play important roles in the detoxification of 

heavy metals, and tolerance to herbicides. The 

overexpression of Zmgstf4 gene was also found to 

increase resistance against chloroacetanilide herbicides 

(Milligan et al. 2001).  

 

In conclusion, Zmgstf4 transgenic Arabidopsis plant 

investigated in this study provided new data on the 

understanding of plant GST functions with indications in 

their use in phytoremediation. Results also show the 

applicability of the Zmgstf4 gene in molecular plant 

breeding for phytoremediation purposes. 
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Figure 3. Example The activity of GST (glutathione S-transferase) enzymes in wild-type (WT; green columns) and 

35S(CaMV)-Zmgstf4 transgenic (TR; pink column) Arabidopsis thaliana under stresses of Cd (CdSO4) (left) and Zn 

(ZnSO4) (right). Mean values ± SEM are indicated in percent of untreated wild type plant. 
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