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Abstract Revealing the current source distribution along the neuronal membrane is a key step

on the way to understanding neural computations; however, the experimental and theoretical tools

to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here,

we address this problem using extracellularly recorded potentials with arbitrarily distributed

electrodes for a neuron of known morphology. We use simulations of models with varying

complexity to validate the proposed method and to give recommendations for experimental

applications. The method is applied to in vitro data from rat hippocampus.

DOI: https://doi.org/10.7554/eLife.29384.001

Introduction
A variety of methods are used to investigate the electrophysiological properties of neurons. To

date, patch-clamp (Neher and Sakmann, 1976) is the most commonly used technique to monitor

neuronal membrane potential. Despite its unquestionable utility, it remains challenging to monitor

the activity of a cell at more than one or two sites. Extracellular recordings, on the other hand,

deliver a more global picture of neural activity (Buzsáki et al., 2012; Einevoll et al., 2013a). With

modern multielectrodes and microelectrode arrays, it is now possible to record neuronal activity

from many thousands of channels (Buzsáki, 2004; Berdondini et al., 2005; Obien et al., 2014).

However, this technique does not permit direct recording of membrane potentials but instead spik-

ing activity [which may be of individual cells (single-unit activity, SUA) or multiple cells (multiunit

activity or MUA, which is the mean firing rate of cell populations)] and components of postsynaptic

activity visible at low frequencies (<300 Hz, so-called local field potential, LFP); see (Buzsáki et al.,

2012; Einevoll et al., 2013a; Głąbska et al., 2017) for discussion.

So far, the main advantages of high-density array recordings have been improved resolution of

spike detection (Rey et al., 2015), as more cells can be identified in a single recording, improved

stimulation precision (Hottowy et al., 2012; Chichilnisky, 2001), of particular importance for retinal

neuroprosthetics, and new features observed in the profiles of slow fields (Ferrea et al., 2012).
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Recently, high-density probes have also been used in studies of axon tracking (Bakkum et al., 2013;

Lewandowska et al., 2016) and multisynaptic integration (Jäckel et al., 2017).

Multielectrode recordings have been traditionally used for improved spike sorting (Buzsáki, 2004;

Berdondini et al., 2005; Obien et al., 2014; Muthmann et al., 2015) and for the reconstruction of

current source densities (CSD) behind the recorded LFP (Pitts, 1952; Mitzdorf, 1985; Wójcik, 2015),

although more specific methods have sinse been devised (Einevoll et al., 2013b; Głąbska et al.,

2014; Głąbska et al., 2016). Several attempts have been made, using different approaches, to local-

ize cells from multielectrode recordings. For example, accounting for the properties of electric field

propagation in the tissue (Muthmann et al., 2015), that form the basis of CSD methods

(Somogyvári et al., 2005, Somogyvári et al., 2012Somogyvári et al., 2012), or other triangulation

approaches (Mechler et al., 2011; Mechler and Victor, 2012). We are not aware of any prior

attempts, however, to reconstruct the CSD of individual neurons using their available morphologies,

which we propose here.

This method assumes we have a set of extracellular recordings, coming from a specific neuron,

whose morphology and location with respect to the electrode is known, collected with multiple con-

tacts. This could be realized experimentally by patching a neuron close to the multielectrode and

driving it through an intracellular injection or monitoring its activity to determine the contribution of

this specific cell to the extracellular field. Computing spike-triggered average of the potential, which

we do in our proof-of-concept experiment, or driving the neuron with sinusoidal current and averag-

ing the extracellular potential over periods of the driving current, are ways in which this could be

achieved. When the recordings are complete, we inject dye into the cell and reconstruct its morphol-

ogy. Thus, we obtain a set of synchronous multichannel extracellular recordings reflecting the activity

of a single neuron whose morphology is also known, as well as the position of the neuron relative to

the electrode contacts. Here, we show how to use this approach to infer the distribution of current

sources based on cell morphology as they change in time. The data necessary to apply presented

method have been available for some time (Henze et al., 2000; Gold et al., 2006), although

recently have became much more comprehensive (Jäckel et al., 2017). While we believe the estima-

tion of transmembrane currents along the cell morphology using this type of data has not been

reported previously, similar questions have been posed by (Gold et al., 2006), who attempted to

identify the biophysical properties of a neuron membrane based on the extracellular signature of the

action potential. A similar strategy was used by Frey et al., 2009) in their studies of extracellular

action potential shape observed with high-definition multi-electrode arrays.

The single-cell kernel Current Source Density method (skCSD) we introduce here is an application

of the framework of the kernel Current Source Density method (Potworowski et al., 2012) to the

data coming from a single cell. This is done by restricting current sources to cell morphology. This

can be done efficiently for arbitrarily complex morphologies and arbitrary electrode configurations.

The importance of this work is that for the first time we show here how a collection of extracellu-

lar recordings in combination with cell morphology can be used to estimate how the current sources

located on a studied cell contribute to the recorded field potential. Since it is feasible to acquire the

relevant data, we believe that the method proposed here may be used to constrain the biophysical

properties of the neuron membrane and facilitate consistency of the reconstructed morphology. Fur-

ther, this method can help guide new discoveries by providing a more global picture of the current

distribution based on neuronal morphology, leading to a coherent spatiotemporal view of synaptic

drive and return currents of the observed neuron.

In the following Results section, we start with a high-level overview of the skCSD method. We

explain how it is applied and why it works. Then, we validate this method on several ground truth

datasets obtained in simulations and apply it to data from a proof-of-concept experiment. In the Dis-

cussion, we summarize our main findings and discuss the practical aspects and feasibility of experi-

mental acquisition of the required data. Finally, in the Materials and methods section, we present

the skCSD method in detail.

Results
The main result of this work is the introduction of the skCSD method, so we start here with a high-

level overview. The technical details are deferred to the Materials and methods section. Next, we

Cserpán et al. eLife 2017;6:e29384. DOI: https://doi.org/10.7554/eLife.29384 2 of 35

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.29384


study the properties of the skCSD reconstruction for three representative morphologies of increas-

ing complexity and for different setups.

First, for a ball-and-stick neuron, we study the general quality of reconstruction of fine detail by

considering CSD distributions in the form of standing waves of increasing spatial frequency which

form the Fourier basis of any possible CSD profile. It is unlikely that standing waves would be natu-

rally observed in a cell, therefore to better understand how the results for the Fourier space repre-

sentation relate to a specific distribution which might arise in a physiological situation, we also

consider reconstruction of sources for random synaptic activation of the ball-and-stick cell.

Secondly, we consider a Y-shaped neuron with a single branching point, we check if skCSD can

differentiate between synaptic activations located on the different branches close to the branching

point. We also investigate the effects of random distribution of contacts on skCSD reconstruction.

Finally, we investigate the possibility of skCSD reconstruction on a realistic model of a ganglion cell

placed on a microelectrode array (MEA) as well as the sensitivity of the method to noise.

After establishing and validating skCSD on these fully controlled model datasets, to demonstrate

neurophysiological viability, the CSD distribution was reconstructed for a pyramidal cell using the

experimental spike-triggered averages of the recorded potentials.

Single-cell kernel current source density method, a high-level overview
The goal of this section is to provide an overview of the proposed method for non-specialists, with

limited mathematical terminology and notation. A more formal discussion is provided in the Materi-

als and methods section.

Assume we study a neuron, we have its morphology, we know how it is located with respect to a

multielectrode used for extracellular recording, we also have a set of simultaneous recordings of

extracellular potential generated by this cell collected with this multielectrode. In principle, the num-

ber and placement of the electrodes can be arbitrary. Also, the potential may be filtered, or we may

consider the full spectrum of the signal, depending on whether we wish to focus more on synaptic

contributions or consider the extracellular signatures of spiking. For now, we shall ignore the chal-

lenge of separating the part of the signal contributed by the studied neuron from background extra-

cellular signals generated by nearby cells; we shall return to this issue in the Discussion.

We wish to reconstruct the distribution of current sources which generated the measured poten-

tials. By assumption, we know the potential that comes from the studied cell, we wish to restrict the

sources to lie on its morphology. To do this, we first represent the morphology by a closed line

which we call the morphology loop. To construct it consider a one-dimensional abstraction of the

cell, where we ignore the thickness of the dendrites. Alternatively, you may imagine the graph con-

structed from the lines passing centrally through all the dendrites. Then, starting for example at the

soma, we draw a line along this graph passing all sections along the dendrite, eventually reaching

the starting point. The morphology loop is shown as the red line in Figure 1.

If we spread the morphology loop, we obtain a circle, which means all point of dendritic morphol-

ogy have been mapped to a circle, and the opposite, any point on the circle has been mapped to

the morphology. The mapping from the cell to the circle is not unique: we pass by most points on

the dendrite twice, with the exception of the tips, which are visited once, and the branching points,

which may be visited more than twice in our graph representation. So in most cases, a given point

from the morphology corresponds to multiple points from the circle. The other mapping is unique:

every point in the circle is mapped onto exactly one point on the morphology without skipping any.

One way to think about the morphology loop is as a rubber band tightly wrapping around the neu-

ron’s morphology.

We now want to consider the distribution of current sources on the morphology. We found it con-

venient, technically, to start with a distribution of sources along the morphology loop. Then, we

wrap this distribution around the cell together with the loop. We do this by construction. We cover

the morphology loop with a large number of identical but translated functions which we call the

CSD basis functions denoted by ebjðxÞ. There is a large flexibility here, but in practice we use Gaus-

sians, so ebjðxÞ / expð�ðx� xjÞ
2=2R2Þ. The number of basis functions we use, M, and the width of the

basis function, R, are parameters of the method whose effect on results we discuss below.

We place these basis functions so that they uniformly cover the morphology loop. We require

their centers to be uniformly spaced. When we wrap these functions around the morphology,
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passing a given dendrite twice will introduce more overlap. We only require that no two functions

overlay: we want them to be independent which means each two must differ, here, in practice, be

shifted with respect to each other. Once the CSD basis functions are in place, we compute the

potential they generate in the whole space. The distribution of the potential in space coming from a

single CSD basis function is called a basis function in the potential space, or potential basis function

for short, and is denoted by bjðxÞ (we drop the tilde).

We are now ready to start the estimation of the distribution of the current sources on the cell

from the recording. This is a static procedure, in the sense that the estimated CSD at any moment in

time depends only on the present value of the measurements. We are looking for the distribution of

Figure 1. Schematic overview of the skCSD method. The black line indicates the two-dimensional projection of the neuron on the MEA plane, the blue

circles mark the location of multielectrode array (hexagonal grid, in this example), rk is the position of the kth electrode. The morphology in our method

is described by a self-closing curve in three dimensions, which is indicated by red on the plot. We shall refer to this curve as the morphology loop. A

point of the cell is visited once, if it is a terminal point of a dendrite, more than twice, if it is a branching point and twice in all the other cases. With this

strategy, any point on the morphology loop uniquely identifies the physical location of the corresponding part of the cell unambiguously. To set up

estimation framework, we distribute one-dimensional, overlapping Gaussian basis functions spanning the current sources. Several of these Gaussians

are plotted in green, ti marks the center of the ith basis element, R is the width parameter.

DOI: https://doi.org/10.7554/eLife.29384.002
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current sources in the form of a linear combination of the basis sources which we placed. This means

a weighted sum of each CSD basis source

CðxÞ ¼
XM

j¼1

ajebjðxÞ:

Then, the potential they generate, is the linear combination of the respective potential basis sour-

ces with the same weights,

VðxÞ ¼
XM

j¼1

ajbjðxÞ: (1)

Conceptually, we want to match the described potential with actual measurements and from this

infer the weights. In practice, however, we cannot do it directly, because typically there will be many

more basis functions, and therefore weights to be estimated, than the available measurements. To

understand why this is a problem consider the simplest case, where you have two numbers, x and y,

to estimate from a single measurement which gives 1, and the physics of the problem gives equal

contribution to the measurement, so that we must solve xþ y¼ 1. It is easy to see that without fur-

ther constraints this has an infinite number of equally good solutions.

One way to solve this problem, which was our inspiration, was proposed by Vapnik (1998)

(Appendix to Chapter 6: Estimating functions on the basis of indirect measurements), who effectively

considered the problem of estimating one quantity (here: CSD) from measurements of its function

(here: potential). Here, we combine it with the kernel trick (Schölkopf and Smola, 2002), which

allows us to make indirect estimation in the high-dimensional space of basis functions through com-

putations in the space of measurements. We construct a kernel function which is a sum of products

of the potential basis functions with themselves

Kðx;x0Þ ¼
XM

j¼1

bjðxÞbjðx
0Þ:

This function, which takes two spatial arguments, can be understood as a similarity measure

between the potentials at the two points. It is easy to see, that any model of potential we can con-

struct from our potential basis functions can also be written as a linear combination of these kernel

functions with one of the variables fixed, if we use sufficiently many kernels (large L)

VðxÞ ¼
XL

l¼1

blKðxl;xÞ: (2)

The reason is that Kðxl;xÞ is a linear combination of all the basis functions spanning the potential

space: Kðxl;xÞ ¼
PM

j¼1
bjðxlÞbjðxÞ. Thus, if we take as many kernels as we have basis sources (L¼M)

and equate Equation 2 with Equation 1, we have to solve M ¼ L equations of the form

aj ¼
XL

l¼1

blbjðxlÞ

for bl, or in other words, we have to find such points xl for which the above equation is solvable.

This can be done, this is another way of saying that the functions bjðxÞ form a basis. It is thus fair to

say that the kernel functions Kðxl;xÞ and bjðxÞ are equivalent basis. At this stage, it is not clear if one

basis should be better than the other.

The rationale for using the kernels is provided by the Representer Theorem (Schölkopf and

Smola, 2002), which shows that in the form of Equation 2 we can minimize the prediction error

(sum of the squared differences between the predictions of our model and actual measurements)

uniquely. Moreover, the solution obtained has as many parameters as there are measurements, and

we take xl to be the measurement points. This is the advantage of the kernel approach over direct

estimation of underlying model: here the number of parameters to be calculated is the same as the

number of measurements N, much less than the original number of basis sources M, so it can be

done.
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Since we can expect our measurements to be noisy, a perfect fit will typically misrepresent the

true potential, this is called overfitting. To counter this effect, we add a so-called regularization term

to our error function to be minimized, which is the sum of squared parameters,

XN

k¼1

VðxkÞ�Vkð Þ2þl
XN

l¼1

b2

l :

Thus, we want to simultaneously minimize the difference between our prediction and actual

measurements while moderating the fluctuations of the interpolated potential in space. This only

slightly changes the computation while significantly improving the stability of the solution. The result

is

b¼ ðKþlIÞ�1 �V:

where V is the vector of the measurements Vk, I the identity matrix, Kjk ¼Kðxj;xkÞ, and l the reg-

ularization parameter, which needs to be set.

We still need to obtain the CSD profile from the interpolated potential. In fact, we can do this

without resorting directly to the basis functions. Replacing one of the potential basis functions in the

definition of our kernel with the corresponding CSD basis function, we obtain what we call a cross-

kernel function,

eKðx;x0Þ ¼
XM

j¼1

bjðxÞebjðx0Þ:

Defining

eKT
ðxÞ :¼ ½eKðx1;xÞ; . . . ; eKðxN ;xÞ�;

the estimated CSD is

C�ðxÞ ¼ eKT
ðxÞ � ðKþlIÞ�1 �V:

The skCSD is a model-based analysis method since the specific model of CSD distribution we

use, collecting of the CSD basis functions along with the model relating these functions to the mea-

surement of potential, influences the result. This is advantageous, since all the assumptions are

explicit and the user can see how they affect the result. All the estimation methods of any quantity

contain assumptions, which in many cases are implicit and thus it is difficult to analyze how they

affect the estimation. With all the parameters explicit we can study how their specific values affect

the quality of solution. In particular, we wish to select parameters leading to the optimal solution.

We do this using cross-validation which we shall now explain.

We select a set of parameters: R, N, l, which fixes the model. Then, going contact by contact, we

ignore the signal recorded at that particular site and build models from the remaining signals. This

model predicts the potential at the ignored contact. The difference between the prediction and the

actual measurement is a measure of prediction quality for a given set of parameters. We then add

squares of the differences between the actual measurements at every electrode and predictions

from the respective models built from all signals except the reference. Scanning through a range of

parameters we look for a minimum prediction error. We use the parameters minimizing the predic-

tion error in the subsequent analysis.

Ball-and-stick neuron
Here, we consider the simplest neuron morphology, the so-called ball-and-stick model, which stands

for the soma and a single dendrite. A virtual linear electrode was placed in parallel to the model cell

50 mm away, the electrodes were distributed evenly along the electrode extending for 600 mm.
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Increasing the density and number of electrodes improves spatial
resolution of the method
To study the spatial resolution of the skCSD method, we consider the ground truth membrane cur-

rent source density distributions in the form of waves with increasing spatial frequencies

CSDðxÞ ¼ Acosð2pfx=LÞ;

where A¼ 0:15 nA=�m is the amplitude, f 2 f0:5;1;1:5; . . . ;12:5g is the spatial frequency, x is the

position along the cell, L is the length of the cell. Then, we compute the generated extracellular

potential at the electrode locations. The laminar shank consisting of 8, 16 and 128 electrodes was

placed 50 mm from the cell in parallel to the dendrite. Finite sampling of the extracellular space sets

a limit to the spatial resolution of this method. Increasing the density of electrodes within the studied

region leads to higher spatial precision. As shown in Figure 2, with 128 electrodes it is possible to

reconstruct higher frequency distributions as compared to eight electrodes. This is reminiscent of

the sampling theorem (Oppenheim et al., 1997), except here we measure the potential and recon-

struct current sources, while in the sampling theorem we consider reconstruction of a continuous sig-

nal from discrete samples. What we observe is quite intuitive and typically observed in different

discrete inverse methods (Hansen, 2010). Note that once we move to complex morphologies and

random rather than regular electrode placement, the intuition we build here, that denser probing

gives better spatial resolution, would hold true, even if the relation to the sampling theorem would

be less apparent.

Reconstruction of random synaptic activation
Using the ball-and-stick neuron, we now place 100 synapses along the dendrite and stimulate them

randomly in time. We simulate 70 ms of recordings from this synaptically activated cell. The stimula-

tion is sufficiently strong to evoke spiking, see Materials and methods for details. The spiking is indi-

cated by strong red spots in the lowest first two segments in Figure 3, which correspond to the

soma. As can be seen, the reconstructed CSD distribution reflects the ground-truth, and the preci-

sion of reconstruction improves with an increasing number of contacts, which is reflected in the

reduction of cross-validation error. Notice how the reconstructed synaptic activity gets more precise

with increased density of probing the potential. In particular observe how the width of the recovered

synaptic activations and the somatic activations shrink with an increasing number of electrodes,

which clearly shows improved resolution. This is consistent with our observations for the Fourier

mode CSD profiles above. Not much change is seen in time, which is a consequence of the fact that

skCSD, like all the CSD estimation methods, acts locally in time. That is, for every moment in time,

the collection of potentials at this time, is analyzed. There is no direct relation to the past or future

of the measured signals.

Simple branching morphology
Let us now study the effect of branching and breaking of rotational symmetry of the cell using the

skCSD method. We consider here a simple Y-shaped model neuron with one branching point

(Figure 4B). We place two synapses, one on each branch (at segments 33 and 62, close to the

branching point, see Figure 4D and Figure 5C). We consider both simultaneous and independent

activation of these synapses, specifically, the first synapse was activated at 5, 45, 60 ms of the 70 ms

long simulation, while the other was stimulated at 5, 25, 60 ms from the stimulation onset. Our goals

were to determine if it was possible to separate the synaptic inputs located on two different

branches, what happens at the branching point, how the arrangement of the electrodes-cell setup

influences the reconstruction. We also wanted to determine if this method provides more detail

about the current distribution on the cell than what is accessible from the interpolated potential and

the CSD reconstructed with kCSD under the assumption of a smooth distribution of sources in

space, which is the natural approach to try (Frey et al., 2009).

Differentiation of synaptic inputs located on different branches
To investigate the differentiation power of the proposed approach, we consider two placements of

the cell with respect to the electrode grid. Plane xy, in which the cell is placed in parallel to the plane

of electrodes 50 mm above (Figure 5A), and plane xz, where the cell is perpendicular to the grid,
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Figure 2. Limitations of the spatial resolution of the skCSD method in a simple ball-and-stick and laminar electrode setup. (A) The ground truth

membrane current source density distribution was constructed from cosine waves of increasing spatial frequency (x-axis) along the cell mophology (y-

axis), which is shown in the interval representation. (B–D) skCSD reconstruction from 8, 16 and 128 electrodes. (E) The L1 Error of the skCSD

reconstruction for 8 (black), 16 (red) and 128 (green) electrodes for CSD patterns of increasing frequency.

Figure 2 continued on next page
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with the grid 50 �m away from the dendritic shaft stemming from the soma, (Figure 5B,C). In Fig-

ure 5, each panel (A–C) shows the spline-interpolated extracellular potential (V), followed by stan-

dard kCSD reconstruction, both at the plane of the 4 � 16 electrode grid used for simulated

measurement. Then, the ground truth and skCSD reconstruction are shown in the branching mor-

phology representation in the plane containing the cell morphology. Each figure is superimposed

with the morphology of the cell. The dark gray shapes are guides for the eye and are sums of circles

placed along the morphology with a radius proportional to the amplitude of the sources located at

the center of the circle. Panel A shows results for a synaptic input depolarizing one branch. Panel B

shows the same current distribution as in the previous setup, but the cell is rotated by 90 degrees

with respect to the grid. In panel C synaptic input is added to the other branch. Observe that in all

three cases the interpolated potential and the standard CSD reconstruction, which can be drawn

only in the plane of the electrode grid, do not differ significantly, hence they cannot distinguish

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.29384.003

Figure 3. Performance of the skCSD method for a ball-and-stick neuron with random synaptic stimulation for recordings with a laminar probe placed 50

mm away from the cell. (A) The ground truth spatio-temporal membrane current density in time (x-axis) along the cell in the interval representation (y-

axis). The lowest segment is the soma, where the visible high amplitude of potential is a consequence of spiking. To make the much less pronounced

synaptic activity on the dendritic part visible, nonlinear color map was used. Panel (B) shows the lowest values of cross-validation and L1 error for the

before-mentioned setups. Panels (C–E) present the best skCSD reconstruction in case of recording with 8, 32, and 128 electrodes. One can see how

increasing the number and density of probes in the region improves the reconstruction quality until a certain level. CV error was used here to select the

parameters leading to the best reconstructions.

DOI: https://doi.org/10.7554/eLife.29384.004
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between these three situations. On the other hand, the skCSD method correctly identified the syn-

aptic inputs in all three cases.

Note that without the method proposed here, the most natural approach to analyze current sour-

ces is through use of the regular, population CSD. This approach was used, for example, to investi-

gate the changing distribution of current sources during action potential generation using data from

a high-definition MEA (Frey et al., 2009). What we show in figures here and below, is that while

CSD (kCSD) and skCSD are consistent, using the additional information about morphology renders

significantly more detail about the activity studied.

The effect of electrode placement on skCSD reconstruction for
Y-shaped cell
In Figure 6, we show how the number and specific distribution of the electrodes affect the quality of

the reconstruction in the case of simultaneous stimulation. Panel 5. A shows the ground truth data,

that is the actual distribution of the transmembrane current sources, along the morphology. To visu-

alize it simply, we used the interval representation, the soma is shown first, followed by one branch,

followed by the other. Figure 6B shows the reconstruction results for regularly arranged 8 (4 � 2),

16 (4 � 4), 32 (4 � 8), and 64 (4 � 16) electrodes. In Figure 6C, we show reconstructions for five dif-

ferent random placements of the same number of electrodes as for the regular case. As expected,

the skCSD method is able to recover the synaptic activations and the reconstruction resolution

increases with the number of electrodes. Note that in certain cases, the random distribution is more

efficient than the regular grid, which is probably due to more fortunate samplings of the area cov-

ered by the morphology.

The effect of basis on skCSD reconstruction for the Y-shaped cell
To investigate reconstruction quality in the parameter space set by the number of basis functions

(M), basis function width (R) and regularization parameter (l), we used the simulation setup for the

Figure 4. Neuron morphologies used for simulation of ground truth data. (A) Ball-and-stick neuron. (B) Y-shaped neuron. (C) Ganglion cell.
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Figure 5. Reconstruction of synaptic inputs on a Y-shaped neuron with a regular rectangular 4 � 16 electrode grid. Each panel (A–C) shows the spline-

interpolated extracellular potential (V), followed by standard kCSD reconstruction, both at the plane of the 4 � 16 electrodes’ grid used for simulated

measurement. Then, the ground truth and skCSD reconstruction are shown in the branching morphology representation in the plane containing the cell

morphology. Each figure shows superimposed morphology of the cell. Note that in panel A the grid is parallel to the cell, while in panels (B–C) it is

Figure 5 continued on next page
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Y-shaped morphology with 4 � 4 electrodes. Figure 7 shows the L1 reconstruction error for

M ¼ 32; 128; 512; 1024, R ¼ 8; 16; 32; 64; 128, and l ¼ 10
�5; 10�4; 10�3; 10�2; 10�1. As we can see, for the

smallest basis (M ¼ 32) and small l, the minimum error is obtained for wide basis sources, so that

the basis functions have substantial overlap. This is necessary for the method to be able to recon-

struct the family of test sources we considered. As the basis size increases, the reconstruction

improves overall with minimum error obtained for narrow basis sources and small l. The fact that we

have two comparable minima for M ¼ 32, for small and large l (top and bottom right of the plot for

M ¼ 32), means that the error we obtain by emphasizing the measurements (small l) is comparable

to the error we obtain by emphasizing the regularization term, which prevents over-fitting (large l)

and in effect, reflects our doubt about precision of measurement. We interpret it here as the effect

of insufficient basis size. This effect disappears with increasing basis size when a unique minimum

appears for moderate values of l and for narrow basis sources, which can best resolve small details

of the CSD to be reconstructed.

Reconstruction of current distribution on complex morphology
In this section, we consider the performance of the skCSD method in the case of a complicated, bio-

logically realistic scenario. To achieve good spatial resolution, permitting detailed study of a cell

with substantial extent, densely packed electrode arrays are required. In the present reconstruction

we assumed a hexagonal grid arrangement with 17.5 mm inter-electrode distance inspired by recent

experiments on reconstructing axonal action potential propagation (Bakkum et al., 2013;

Frey et al., 2009). We assumed a grid consisting of 936 contacts from which we used 128 for recon-

struction to be consistent with the hardware of (Bakkum et al., 2013; Frey et al., 2009).

In the simulation we assumed an experimentally plausible scenario, where oscillatory current was

injected to the soma of a neuron in a slice with other inputs impinging through a 100 excitatory syn-

apses distributed on the dendritic tree. The simulated data consisted of two parts. During the first

400 ms, the cell was stimulated by the injected current as well as through the synapses. The ampli-

tude of the injected current was 3.6 nA, the frequency of the current drive was around 6.5 Hz. Dur-

ing the second 400 ms the cell was stimulated only with the current. Figure 8 shows an example of

the skCSD reconstruction at a time selected right after a spike was elicited by the cell. As we can

see, neither the standard CSD reconstruction assuming smooth current distribution in space, nor the

interpolated potential, give justice to the actual current distribution. At the same time, the skCSD

reconstruction is quite a faithful reproduction of the ground truth. A movie comparing the ground

truth with kCSD, interpolated potential, and skCSD reconstruction, in time, is provided as a supple-

mentary material (Video 1).

Dependence of reconstruction on noise level
So far, we have assumed that the data are noise-free which is never true in an experiment. Both the

measurement device and the neural tissue are potential sources of distorted data. To investigate

how the performance of the method is influenced by noise, we added Gaussian white noise of differ-

ing amplitudes to the simulated extracellular recordings of Y-shaped cell described above.

Figure 9A shows the smoothed ground truth we used. The Y-shaped neuron is placed on top of a

MEA with a regular grid of 4 � 8 electrodes marked by asterisks. Figure 9B shows the noise-free

reconstruction. Panel C–F of the figure show the reconstruction results for increasing measurement

noise with signal to noise ratio, SNR¼ 16; 4; 1. The signal-to-noise ratio (SNR) here is the standard

deviation of the simulated extracellular potentials normalized with the std of the added noise. The

Figure 5 continued

perpendicular. The dark gray shapes are guides for the eye and are sums of circles placed along the morphology with radius proportional to the

amplitude of the sources at the center of the circle. (A) Shows results for a synaptic input depolarizing one branch. (B) Shows the same current

distribution as in the previous setup, but the grid is rotated by 90 degrees. (C) A synaptic input is added to the other branch. Observe that in all three

cases, the interpolated potential and the standard CSD reconstruction, which can be drawn only in the plane of the electrodes’ grid, do not differ

significantly, hence they cannot distinguish between these three situations. On the other hand, skCSD method is able to identify correctly both synaptic

inputs.
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Figure 6. Reconstruction of synaptic inputs placed on different branches of the Y-shaped neuron for electrodes arranged regularly and randomly within

the same area. We use the interval representation for visualization. The numbers on horizontal axis enumerate different electrode setups. The black

profiles show the averaged membrane current as reconstructed in a given case; for random electrode distribution these are averages over five different

realizations. (A) Ground truth membrane currents, the strong red indicates the synaptic inputs. (B) Reconstruction results for 8 (4 � 2), 16 (4 � 4), 32 (4 �

8), and 64 (4 � 16) electrodes arranged regularly. The skCSD reconstruction improves with the number of electrodes as the color representation and the

black profiles indicate. (C) When distributing the same numbers of electrodes on the same plane as in the previous case, the quality of the average

skCSD reconstruction, as indicated by the black profiles, is similar.
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degradation of reconstruction visible in this figures is summarized in Figure 9C. As can be seen in

the reconstruction plots (Figure 9D–F), the increasing noise actually does not seem to significantly

alter the obtained reconstructions so the regularization is providing adequate correction, except for

the noise on the order of signal (Figure 9F).

Dependence of reconstruction on the number and arrangement of
recording electrodes
Reconstruction of the distribution of the current sources along the morphology with skCSD (just like

the reconstructions of smooth population distributions with kCSD) formally can be attempted from

an arbitrary set of recordings, even a single electrode. While we do not expect enlightening results

at this extreme, it is natural to ask the following questions: (1) to what extent can we trust the recon-

struction in a given case, (2) which of the reconstructed features are real and which are artifacts of

the method, and (3) how can the optimal parameters be selected for this method. We will return to

these issues in the Discussion. Here, we wish to investigate how the number of electrodes, the den-

sity of the grid, and the area covered by the MEA, affect the results.

To answer these questions, we selected a snapshot of simulation of the model of the ganglion

cell described in the Materials and methods section, with the specific membrane current distribution

shown in Figure 10A. In Figure 10B–H. we show seven different reconstructions assuming different

experimental setups, with differing numbers of electrodes, covering different area.

In each case, we selected the width of basis functions and the regularization parameter for the

method by minimizing the L1 error calculated for the first 1000 time steps of the simulation or cross-

validation error (L1-T and CV in Figure 10I). To verify the quality of reconstruction we computed the

L1 error between the ground truth and reconstruction for the remaining 5800 time steps of the simu-

lation. We found that minimization of L1 error gave better results and L1-V in Figure 10I shows the

results for this case; however, the results obtained with minimization of CV error were often not

much worse (not shown).

Given that L1 error can only be used where the ground truth is known, which is in simulations, we

propose the following. Given the data necessary for application of the skCSD method, (neuronal

morphology, positions of electrode contacts, and recorded signals) different CSD distributions

should be assumed for the obtained morphology, reconstructions obtained for a range of parame-

ters, then the L1 error could be used for optimization. Note that it is not necessary to actually

Figure 7. The effects of basis properties on reconstruction quality. We used the Y-shaped morphology and the 4 � 4 electrode setup to investigate the

effect of using various basis numbers for the reconstruction. L1 error was calculated to compare the results for basis with M ¼ 32; 128; 512; 1024

elements, for several values of basis width R and l. With few basis sources one cannot recover CSD properly. As the number of basis functions

increases, the reconstruction error is minimized for moderate values of l and for narrow basis sources, which can best resolve small details of the CSD

to be reconstructed.
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Figure 8. skCSD reconstruction of dendritic backpropagation patterns for a retinal ganglion cell model driven with oscillatory current. (A) Somatic

membrane potential during the simulation. The red line marks the time instant for which the remaining plots were made. (B) Extracellular potential

interpolated between the simulated measurements computed at the electrodes, which are marked with asterisks. (C) kCSD reconstruction computed

from the simulated measurements of the potential. (D) Spatial smoothing with a Gaussian kernel was applied to the ground truth membrane current to

Figure 8 continued on next page
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simulate a model of the cell with proper membrane biophysics, which often is not known, although it

might lead to more physiological test sources. It is sufficient to distribute the different sources along

the morphology without making any assumptions concerning the biophysical properties of the neu-

ronal membrane.

Once the parameters are obtained with this procedure, perform the analysis of actual experimen-

tal data with the obtained parameters. Performing the simulations and comparing the best recon-

structions with the assumed ground truth has the further benefit of building intuition about which

features of the real CSD survive in the reconstruction and which are distorted. This is another exam-

ple of model-based data analysis which we believe becomes inevitable with the growing complexity

of experimental paradigms, such as the one considered here.

We feel that the above procedure is optimal, since it not only gives optimal parameters, but also

allows one to investigate which features are recovered and which are misformed. However, if only

parameters for estimation are needed, CV error could be used, which is simpler and the results are

often comparable.

The results obtained in this study are consistent with our expectations: the quality of reconstruc-

tion improves with the coverage of the morphology by the electrodes, with increasing density of

probing, and with increasing number of probes (Figure 10I). Interestingly, it seems, that it is difficult

to improve the reconstruction beyond a certain level, in consequence, the setups with moderate

densities (on the order of 200 mm IED) can easily compete with setups at the edge of current devel-

opments (40 mm IED, [(Berdondini et al., 2005). We believe that this is not a hard limit and that bet-

ter results can be obtained here. This, however, requires further development of the methods.

Proof-of-concept experiment: spatial current source distribution of
spike-triggered averages
To examine the experimental feasibility of the skCSD method, we analyzed data from a patch clamp

electrode and a linear probe with 14 working electrodes recording signals simultaneously from a hip-

pocampal pyramidal cell in an in vitro slice preparation (see Materials and methods). As there is no

ground truth data available in this case, the optimal width of the basis functions and the regulariza-

tion parameter were selected using the L1 error and simulated data. To do this, we used the same

simulation protocol as for the ganglion cell model. A snapshot of the reconstruction is shown in Fig-

ure 11 at the moment of firing. A 10 ms long video of the spike triggered average is shown in the

supplementary materials (Video 2). At �0.05 ms the brief appearance of a sink (red) in the basal

dendrites is visible which can be a consequence of the activation of voltage sensitive channels in the

axon hillock, or the first axonal segment leading to the firing of the cell. Since there were no electro-

des close to the axon initial segment, the skCSD method did not resolve it, instead it resolved to

introduce the activity into the basal dendrite. This phenomenon is quickly replaced by a sink at the

soma and in the proximal part of the apical dendritic tree, accompanied by sources (blue) in the

basal and in the more distal apical dendrites. The extracellular potential on the second electrode

reaches its minimum at 0.45 ms, which signals the peak of the spike. The deep red of the soma at

this point signifies a strong sink, while the blue of the surrounding parts of the proximal apical and

basal dendrites indicate the current sources set by the return currents. At 1.30 ms a source appears

at the soma region, which indicates hyperpolarizing currents. Overall, the observed spatio-temporal

CSD dynamics is dominated mostly by the somatic currents, responsible for the spike generation,

and the corresponding counter currents. This example demonstrates the experimental feasibility of

the skCSD method and may help in planning further experiments, aiming to reveal the spatial distri-

bution and temporal dynamics of the synaptic input currents which evoke the firing of the neuron.

Figure 8 continued

facilitate comparison with the skCSD reconstruction with the same spatial resolution level. (E) skCSD reconstruction computed from the simulated

measurements of the potential.
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Discussion

Summary
In this work, we introduced a method to estimate

the distribution of current sources (CSD) along the

dendritic tree of a neuron given its known mor-

phology and a set of simultaneous extracellular

recordings of potential generated predominantly

by this cell. First, assuming the ball-and-stick neu-

ron model and a laminar probe parallel to the cell,

we studied the basic viability of this method. We

showed that introducing more electrodes to cover

the same area leads to increased spatial resolu-

tion of the method allowing reconstruction of

higher Fourier modes of the CSD generating the

measured potentials (Figure 2). In a dynamic sce-

nario of multiple synaptic inputs impinging on the

cell, higher density of probes leads to higher

reconstruction precision allowing us to distinguish

individual inputs (Figure 3). Testing the recon-

struction against the known CSD (the ground

truth) shows a clear transition from poor to faithful

reconstruction when the electrode distribution

becomes dense enough to capture the fine detail

of the CSD profile to be reconstructed (Figure 2.

E). We also applied this method to more complex

neuron morphologies, namely the Y-shape and

ganglion cell. As expected, the reconstructed

CSD profiles became more detailed with increas-

ing electrode number over a fixed area

(Figures 6,10).

Using the Y-shaped morphology we showed

that (i) synaptic inputs activating different den-

drites can be separated, Figure 5; (ii) skCSD pro-

vides meaningful information about the

membrane CSD in cases, when the interpolated

LFP and standard, population CSD analyses, are

not informative, Figure 5; (iii) the reconstruction

is not sensitive to a specific selection of electrode

placement, Figures 6,9; and (iv) even significant

additive noise (SNR = 1) is not prohibitive for the

reconstruction, Figure 9.

Biologically, the most relevant example we

considered was a ganglion cell model which we

studied with virtual multi-electrode arrays of dif-

ferent designs. The MEAs we considered differed

with inter-electrode distances for the simulated

setups, as well as in the area they covered, rang-

ing from an area close to the soma to roughly

four times the size of the smallest square cover-

ing the whole morphology. The best results were

obtained when we used the electrodes from the

region which closely covered the cell (9.G and H);

a reduction of inter-electrode distance from

100 mm to 40 mm yielded less impressive results

than selecting the electrodes from the smallest

Video 1. skCSD reconstruction of current source

density distribution on the ganglion cell. The video

shows the skCSD reconstruction for the retinal ganglion

cell model driven with oscillatory current (Section

Reconstruction of current distribution on complex

morphology) for the whole duration of simulation.

Figure 7 shows a snapshot taken at t ¼ 495:25 ms from

the simulation onset. During the first 400 ms of

simulation, apart from somatic drive, 100 excitatory

synaptic inputs were randomly distributed along the

dendrites. For reconstruction, 128 virtual electrodes

were selected from the 936 arranged in a hexagonal

grid of 17.5 mm interelectrode distance to record the

extracellular potentials. Panel A presents the somatic

membrane potential during the simulation. The red line

marks the time instant for which the remaining plots

were made. The colormap on Panel B shows the

extracellular potential interpolated between the

simulated measurements computed at the electrodes,

which are marked with asterisks. The regular CSD is

shown on Panel C, while the spatially smoothed ground

truth membrane current is presented on Panel D. Panel

E shows the skCSD reconstruction of current source

density along the cell morphology from the selected

measurements. The dark gray shapes are guides for the

eye and are sums of circles placed along the

morphology with radius proportional to the amplitude

of the sources at the center of the circle.
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Figure 9. The effect of noise on the reconstruction. The corrupting influence of noise on the skCSD reconstruction is shown with the example of

simultaneous excitation of both branches of the Y-shaped cell close to the branching point in case of the 4 � 8 electrodes setup. (A) Smoothed ground

truth CSD shown on the branching morphology used. (B,D,E,F) skCSD reconstructions in cases of no added noise and signal-to-noise ratio equal to 16,

4, 1, respectively. Even the highest noise considered does not fully disrupt the reconstructed source distribution, although increasing the noise

systematically degrades the result. This is shown in C, where the L1 error of the reconstruction was calculated for the full length of the simulations. This

is consistent for different electrode setups which are marked with various colors. While the setups consisting of more electrodes perform better for low

noise, the reconstruction seems to be more sensitive to noise in these cases. This might be a side effect of a specific definition of error.
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Figure 10. Dependence of skCSD reconstruction on multielectrode setup. Figures (A–H) show morphology used in the simulation together with the

distribution of current sources in branching morphology representation taken at 247.5 ms of the simulation. Figures (B–H) show additionally the

electrode setup assumed. (A) Smoothed ground truth CSD. (B) Reconstructed sources for a setup of 5 � 5 electrodes with 50 mm interelectrode

distance (IED) covering a small part of the cell morphology around the soma. (C) Reconstructed sources for a setup of 5 � 5 electrodes with 100 mm IED

Figure 10 continued on next page
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square covering the morphology. Our study, assumed realistic cell morphology of the ganglion cell

and commercially available MEA designs, as well as realistic cell activity, showed that it is feasible to

reconstruct the distribution of the current sources in realistic, noisy situations.

The skCSD method performed adequately for the proof-of-concept experimental data, even if

the nature of the experiment allowed only the reconstruction of the general features of the spike-

triggered average spatio-temporal current source density distribution patterns.

While the traditional (population) CSD method was used to analyze membrane currents of single

cells before (Buzsáki and Kandel, 1998; Bereshpolova et al., 2007; Frey et al., 2009), the first

CSD method specific for investigating membrane currents on single cells was proposed by

(Somogyvári et al., 2005). However, it assumed simplified, linear neuron morphologies. An impor-

tant preprocessing step proposed there was separating the single neuron’s contributions to the

extracellular potentials from the background activity. The novelty of the skCSD method proposed

here is in its use of actual neuronal morphologies and in the underlying algorithmic solutions based

on the kCSD method (Potworowski et al., 2012) which were initially used in the study of popula-

tions of neurons.

General comments
Observe that skCSD, like any other data analysis method, is not a magic wand. Technically, it can be

applied to data coming from a single electrode just like the age profile of a human population can

be estimated from a single specimen. Obviously, in both cases, the estimate would be a poor reflec-

tion of the distribution of interest. As we improve the sampling, the quality of the estimate improves,

yet ultimately it is hard to judge a priori how many electrodes is enough and if our results obtain the

required level of precision. We see two approaches to address this type of questions. One is through

simulations, as we discussed. The other is analysis of the singular vectors arising in the decomposi-

tion of the matrix translating the measured potentials into the estimated CSD (Hansen, 2010); how-

ever, the necessary tools for kCSD and skCSD are still under development. We plan to investigate

this further in the future.

Having obtained the distribution of currents it would be interesting to decompose it into physio-

logically meaningful components, such as synaptic currents, leak currents, voltage-gated currents for

different channels, etc. This seems rather challenging and we do not see a direct way of achieving

this from experimental data. It is possible that an application of statistical decomposition methods

will prove useful, as in the case of kCSD for population activity (Łęski et al., 2010; Głąbska et al.,

2014). However, we find the contributions to the extracellular potential from individual currents

highly counter-intuitive (Głąbska et al., 2017).

Experimental recommendations
To attempt experimental application of skCSD we must have (1) an identified cell of known morphol-

ogy, and (2) a set of simultaneous extracellular recordings of electric potential generated by this cell.

Each aspect poses its challenges, some of which have been addressed here. Once we have the nec-

essary data the natural question is how to select the parameters of the method in the specific con-

text of a given setup, specific morphology, and recordings. Our investigations above give some

Figure 10 continued

covering a substantial part of the dendritic tree, which improves the reconstruction of the synaptic input on the left. (D) Reconstructed sources for 5 � 5

setup with 200 mm IED setup; both sinks in the membrane currents are visible. (E) Expanding the 5 � 5 electrode setup to 400 mm IED leads to a small

number of electrodes placed in the vicinity of the cell which leads to a poor reconstruction. (F) Increasing the number of electrodes to 9 � 9 while

keeping the coverage, which leads to 200 mm IED, does not improve the reconstruction. (G) Reducing IED in the previous example to 100 mm, which

reduces the coverage of the MEA to the whole cell (same area as in panel D) bringing majority of the electrodes close to one of the dendrites, leads to

one of the most faithful reconstructions among the ones shown in this figure. (H) Shows results for a matrix of 21 � 21 contacts with 40 mm IED,

covering the same area as in examples D and G. The results are very good but the improvement in reconstruction does not justify the use of so many

contacts with so high density. (I) Comparison of reconstruction errors for all the cases shown. Left axis: L1 error for the training (L1–T) and validation (L1–

V) part . Right axis: crossvalidation error (CV). The L1-T error is marked with black points, L1-V error is represented by green stars. Generally, the L1-V

errors are a bit higher than the L1-T errors but show a similar tendency. Also the CV errors, which are drawn with red crosses, show a similar tendency.

The reconstructions in panels (B–H) are for parameters determined with the L1-T error.
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Figure 11. skCSD reconstruction of spike-triggered average for a hippocampal pyramidal cell (A) Extracellular potentials measured with the five

electrodes closest to the soma. The 0 s marks the time of the membrane potential crossing the 0 mV threshold. The black vertical line marks the 0.40

ms time instant for which the extracellular potentials and skCSD reconstruction are shown. (B) Two-dimensional projection of the cell morphology and

extracellular electrodes’ positions marked by stars, the five electrodes used in the top panel of the figure are labeled with matching colors. The

amplitudes of the measured potentials are shown as color-coded circles around the electrodes. (C) The skCSD reconstruction on the branching

morphology representation. This is a snapshot of the cell firing, the red color indicates the sinks close to the soma, the blue marks the current sources

on the dendrites.
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indications. First, the electrodes selected for anal-

ysis should essentially uniformly cover the area

spanned by the cell. This is illustrated in Figure 6,

which shows that some degree of irregularity

does not significantly affect the reconstruction.

Secondly, the basis should be selected so that

the basis sources could resolve the features on

the membrane we are interested in (narrow basis

functions) with sufficient multiplicity, that smooth

coverage of the cell can be ensured (see

Figure 7).

Clearly, as the irregularity of the setup grows

we expect growing reconstruction errors. This

can be studied with singular vectors of the opera-

tor transforming potential measurements into

reconstructed sources, Equation 21, as discussed

for example by (Hansen, 2010). We are con-

vinced, however, that the most efficient approach

to investigate the effects of these different

parameters is through simulations. This is a natu-

ral place to apply the model-based validation of

data analysis (Denker et al., 2014). Our sugges-

tion is to build a computational model of the cell.

We believe that for the purpose of parameter

selection assuming passive membrane in the den-

drites should be sufficient, but of course, more

realistic biophysical information may be included,

especially if available. The model cell may be

stimulated with synaptic input, with current

injected, or even specific profiles of ground truth

CSD may be placed along the cell. Then the

extracellular potential must be computed at

points where the actual electrodes are placed in

the experiment. One can then investigate the

effects of different parameter values on recon-

struction and, for the analysis of actual experi-

mental data, select those parameters minimizing

prediction error on test data. The advantage of

this procedure is two-fold. First, we end up with a

selection of parameters adapted for the specific

problem at hand. Secondly, we build intuition

regarding the interpretation of the results for our

specific cell and setup. This approach is the only

way to address arbitrary electrode-cell configura-

tions and to determine how much information we

can extract in a given case.

We found that the best way to identify optimal

parameters for reconstruction is by minimizing

the L1 error between the reconstruction and the

ground truth. Since we cannot have the ground

truth in an experiment, but we can assume it in

the model-based validation, this is another argu-

ment for the model-based validation approach.

Obviously, to efficiently apply this technique, the

appropriate computational tools must be avail-

able. We plan to develop and open framework

Video 2. Spike triggered average of pyramidal cell in

vitro. The video shows the recorded potentials and

skCSD reconstruction for a 10 ms time window

centered around the spike as described in Section

Proof-of-Concept experiment: Spatial Current Source

Distribution of Spike-triggered Averages. The top

panel presents the spike triggered averages of the

potentials during 5 s before and after the spike

recorded at five electrodes closest to the soma. The

lower left panel shows the morphology of the cell,

electrode positions, and the recorded potentials. The

electrodes are marked by stars and the amplitude of

the recorded potential is shown as color-coded circles

around the electrodes. The snapshot is taken at the

time given in the figure title and indicated by the black

vertical line in the top panel. The reconstructed skCSD

distribution at the same moment is shown in the lower

right panel. At -0.05 ms a sink appears at the basal

dendrites. This can be a consequence of the activation

of voltage-sensitive channels in the axon hillock or the

first axonal segment leading to the firing of the cell.

Since there were no electrodes close to the axon initial

segment, the skCSD method did not resolve it, instead

it resolved to introduce the activity into the basal

dendrite. This phenomenon is quickly replaced by a

sink at the soma and in the proximal part of the apical

dendritic tree, accompanied by sources (blue) in the

basal and in the more distal apical dendrites. The

extracellular potential on the second electrode reaches

its minimum at 0.45 ms, which signals the peak of the

spike. The deep red of the soma at this point signifies

a strong sink, while the blue of the surrounding parts of

the proximal apical and basal dendrites indicates the

current sources set by the return currents. At 1.30 ms a

source appears at the soma region, which indicates

hyperpolarizing currents.

DOI: https://doi.org/10.7554/eLife.29384.014
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facilitating such studies, meanwhile, the code used for the present study is available at https://

github.com/csdori/skCSD (Cserpán, 2017; copy archived at https://github.com/elifesciences-publi-

cations/skCSD).

Challenges of recording extracellular potentials and obtaining the
morphology from the same cell
Although recording extracellular potential with a MEA, filling a neuron with a dye, and reconstruct-

ing its morphology, are standard experimental techniques, using them simultaneously remains a

challenge due to the size of the experimental devices which need to be arranged within a small vol-

ume. Cells in the vicinity of the MEA can be filled individually by intracellular or juxtacellular electro-

des, or with bulk dying. Individual recording and dying with a glass electrode provides not only the

morphology, but also unambiguous spike times, giving an opportunity to determine the extracellular

potential fingerprint of the recorded cell on the MEA. Although these would be favorable data,

intracellular recording less than 100 mm from the MEA is extremely challenging. Experimental setups

featuring the necessary equipment already exist (Neto et al., 2016), but as far as we know, have not

been used in this way. On the other hand, bulk dying techniques result in more filled neurons,

although the quality of the dying, and thus the quality of the 3D morphology reconstructions, is con-

siderably lower in these cases. Although there are methods for estimation of the cell position relative

to the MEA (Somogyvári et al., 2005, Somogyvári et al., 2012), association of multiple optically

labeled neurons with the recorded extracellular spike patterns is still unsolved.

Challenges of separating the activity of a single neuron from
background
We propose two experimental scenarios one could apply to separate the activity of the studied neu-

ron from the background. If we can sort the spikes elicited by the neuron of interest we can calculate

the spike-triggered averages of the potentials reducing all uncorrelated contributions. Unfortunately,

in live tissue, contributions from neighboring cells will have some correlations due to shared inputs.

Separation of the contribution of the neuron of interest from the correlated background can be

obtained in two ways. One is decomposition of the activity into meaningful components, for exam-

ple, as shown by (Somogyvári et al., 2015), the high amplitude correlated oscillatory background of

hippocampal theta activity can be extracted with independent component analysis, allowing the

determination of cell-type-specific time course of the synaptic input. Alternatively one could consider

combining skCSD with population kCSD analysis, that is, consider basis sources covering the cell of

interest as well as the space covering the whole population. This will be the subject of further study.

The second experimental scenario to obtain the contributions to the extracellular potential from a

specific cell is to drive the cell with intracellular current injection of known pattern, for example, with

an oscillatory drive as we discussed (Figure 8), and by averaging over multiple periods (event-based

triggering). Again, further study is needed to establish the validity of this type of experimental

procedure.

Challenges of using novel MEAs
Handling data from high-density MEAs with thousands of electrodes will require further studies, as

the large numbers of small singular values of the kernel matrix may introduce numerical sensitivity to

the reconstruction. Also, optimal selection of electrodes in case of programmable MEAs merits fur-

ther investigations. We believe it is best to address such issues when actual experiments are

attempted.

Importance of this work
Traditional electrophysiology has focused on the electrical potential, which is relatively easy to

access, from intracellular recordings, all kinds of patch clamp, juxtacellular, to extracellular and volt-

age-sensitive dyes (Covey and Carter, 2015). While the relation of the actual measurement to the

voltage at a point may significantly differ, often this is a reasonable interpretation, if needed, more

realistic models of measurement can be considered, for example, averaging over the contact surface

for extracellular electrodes, etc (Moulin et al., 2008; Ness et al., 2015).

Cserpán et al. eLife 2017;6:e29384. DOI: https://doi.org/10.7554/eLife.29384 23 of 35

Tools and resources Neuroscience

https://github.com/csdori/skCSD
https://github.com/csdori/skCSD
https://github.com/elifesciences-publications
https://github.com/elifesciences-publications
https://doi.org/10.7554/eLife.29384


Already in the middle of the 20th century, Walter H. Pitts observed that for recordings obtained

with regular grids one can approximate the Poisson equation to estimate the distribution of current

sources in the tissue (Pitts, 1952). His approach assumed recordings on a regular 3D grid, which

was challenging to obtain for some 60 years (Łęski et al., 2007). However, with the work of Nichol-

son and Freeman (Nicholson and Freeman, 1975) 1D CSD analysis became attractive, as summa-

rized by Ulla Mitzdorf (Mitzdorf, 1985). In 2012, we proposed how to overcome the restriction of

regular grids with a kernel approach which both allows to use arbitrary distribution of contacts and

corrects for noise (Potworowski et al., 2012). All the previous work, however, always assumed the

contributions to the extracellular potential coming from the whole tissue and smooth in the estima-

tion region.

In the present work, we show for the first time how a collection of extracellular recordings in com-

bination with a cell morphology can be used to estimate the current sources located on the cell con-

tributing to the recorded potential. Since it is now feasible experimentally to obtain the relevant

data, we believe that the method proposed here may find its uses to constrain the biophysical prop-

erties of the neuron membrane, facilitate verification of morphological reconstructions, as well as

guide new discoveries by offering a more global picture of the distribution of the currents along the

cell morphology, giving a coherent view of the global synaptic bombardment and return currents

within a cell.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain background
(Wistar rat, male)

Male Wistar rat PMID: 11619935

Biological sample
(Wistar rat, male)

Hippocampal slice

Chemical compound,
drug

Biocytin PMID: 17990268

Software, algorithm Neurolucida Stereo
Investigator

PMCID: PMC3332236 RRID:SCR_001775

Software, algorithm RHD2000-Series Amplifier
Evaluation System Intan
Technologies, LLC

Intan Technologies,
http://intantech.com/aboutus.html

Software, algorithm LFPy doi: 10.3389/fninf.2013.00041 RRID:SCR_014805

Software, algorithm NEURON https://neuron.yale.edu/neuron/ RRID:SCR_005393

Software, algorithm Python Programming
Language

http://www.python.org RRID:SCR_008394

Software, algorithm R Project for Statistical
Computing

https://www.r-project.org/ RRID:SCR_001905

Software, algorithm NeuroMorpho.Org PMCID: PMC2655120,
http://neuromorpho.org/

RRID:SCR_002145

Software, algorithm Kernel Current Source
Density Python library

PMID: 22091662 RRID:SCR_015777

Software, algorithm skCSD method this paper,
https://github.com/csdori/skCSD

A tool for estimating transmembrane
currents along the dendritic tree of
a neuron from extracellular recordings

Other Ganglion cell morphology PMID: 20826176,
http://neuromorpho.org/neuron_
info.jsp?neuron_name=Badea2011
Fig2Du
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Overview of current source density reconstruction methods
Traditional CSD
For reader’s convenience, here we briefly present the basic ideas behind the traditional and recent

approaches to reconstruction of current source density (CSD analysis). For a more complete review

of CSD analysis see Wójcik (2015), for recent reviews of the relations between neural activity, cur-

rent sources and the recordings see (Buzsáki et al., 2012; Einevoll et al., 2013a).

The relation between current sources in the tissue and the recording potentials is given by the

Poisson equation

C¼�rðsrVÞ; (3)

where C stands for CSD and V for the potential. While this can be studied numerically for nontrivial

conductivity profiles (Ness et al., 2015), here we shall mostly assume a constant and homogeneous

conductivity tensor, s. In that case, the above equation simplifies to C¼�sDV and can be solved

for C given potential in the whole space. On the other hand, given the CSD in the whole space, the

potential is given by

VðxÞ ¼
1

4ps

Z
d3x0 Cðx0Þ

jx�x0j
: (4)

Walter Pitts observed that having recordings on a regular grid of electrodes we can estimate

CSD by taking numerical second derivative of the potential (Pitts, 1952), we call this approach tradi-

tional CSD method. Pitt’s idea gained popularity only after Nicholson and Freeman popularized its

use for laminar recordings (Nicholson and Freeman, 1975) in the cortex. In this setup, assuming the

layers are infinite and homogeneous (Pettersen et al., 2006), the current source density at each

layer can be estimated from

CðzjÞ ¼�s
Vðzj þ hÞ� 2VðzjÞþVðzj � hÞ

h2
; (5)

where zj is the position of the jth electrode and h is the inter-electrode distance.

Inverse CSD (iCSD)
To overcome limitations of the traditional approach, such as difficulty of handling the data at the

boundary and hidden assumptions about the dimensions we do not probe, Pettersen et al. proposed

a model-based inverse CSD method (Pettersen et al., 2006). Initially proposed in 1D, the method

was later generalized to other dimensionalities (Łęski et al., 2007; Łęski et al., 2011). Given a set of

recordings V1; . . . ;VN at regularly placed electrodes at x1; . . . ;xN this method assumes a model of

CSD parametrized with CSD values at the measurement points, CðxÞ ¼
PN

k¼1
CkfkðxÞ, where fkðxÞ are

functions taking 1 at xk, 0 at other measurement points, with the values at other points defined by

the specific variant of the method, for example, spline interpolated in spline iCSD (Wójcik, 2015).

Assuming the model CðxÞ one computes the potential at the electrode positions obtaining a relation

between the model parameters, Ck, and the measured potential, Vk, which can be inverted leading

to an estimate of the CSD in the region of interest.

Kernel CSD (kCSD)
The kernel Current Source Density method (Potworowski et al., 2012) can be considered a general-

ization of the inverse CSD. It is a non-parametric method which allows reconstructions from arbi-

trarily placed electrodes and facilitates dealing with the noise. Conceptually, the method proceeds

in two steps. First, one does kernel interpolation of the measured potentials. Next, one applies a

’cross-kernel’ to shift the interpolated potential to the CSD. In 3D, in space of homogeneous and

isotropic conductivity, this amounts to applying the Laplacian to the interpolated potential, Equa-

tion. (3). To handle all cases in a general way, including data of lower dimensionality or with non-triv-

ial conductivity, we construct the interpolating kernel and cross-kernel from a collection of basis

functions. The idea is to consider current source density in the form of a linear combination of basis

sources ebjðxÞ, for example Gaussian,
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CðxÞ ¼
XM

j¼1

ajebjðxÞ; (6)

where the number of basis sources M�N, the number of electrodes, and aj are the weights with

which the basis sources are combined into the model CSD. Let bjðxÞ be the contribution to the extra-

cellular potential from ebjðxÞ, which in 3D is

bjðx;y; zÞ ¼Aebjðx;y; zÞ ¼
1

4ps

Z
dx0

Z
dy0

Z
dz0

ebjðx0;y0; z0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þðy� y0Þ2 þðz� z0Þ2

q ; (7)

but in 1D or 2D we would need to take into account the directions we do not control in experiment

(for example, along the slice thickness for a slice placed on a 2D MEA). Then, the potential will have

a form

VðxÞ ¼ACðxÞ ¼
XM

i¼1

aibiðxÞ: (8)

Since we cannot estimate M coefficients aj from N measurements for N<M, we construct a kernel

for interpolation of the potential,

Kðx;x0Þ ¼
XM

i¼1

biðxÞbiðx
0Þ: (9)

Then, any potential field VðxÞ spanned by biðxÞ can be written as

VðxÞ ¼
XL

l¼1

blKðxl;xÞ; (10)

for some L, xl, and bl, but it minimizes the regularized prediction error

XN

k¼1

VðxkÞ�Vkð Þ2þl
XL

l¼1

b2

l ; (11)

when L¼N. Here, xk are the positions of the electrodes, Vk are the corresponding measurements, l

is the regularization constant. The minimizing solution is obtained for

b¼ ðKþlIÞ�1 �V: (12)

where V is the vector of the measurements Vk, and Kjk ¼Kðxj;xkÞ.

To estimate CSD we introduce a cross-kernel

eKðx;x0Þ ¼
XM

j¼1

bjðxÞebjðx0Þ: (13)

If we define

eKT
ðxÞ :¼ ½eKðx1;xÞ; . . . ; eKðxN ;xÞ�;

then the estimated CSD takes form of

C�ðxÞ ¼ eKT
ðxÞ � ðKþlIÞÞ�1 �V; (14)

where l is the regularization parameter and I the identity matrix; see (Potworowski et al., 2012) for

derivation and discussion.
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Spike CSD (sCSD)
The Spike CSD (Somogyvári et al., 2012) is the forerunner of the method presented here, as it aims

to estimate the current source distribution of single neurons with unknown morphology. The sCSD

method provides an estimation of the cell-electrode distance and uses a simplified model of the

shape of the neuron to reach this. Separating potential patterns generated by different neurons is

critical and it is obtained by clustering extracellular fingerprints of action potentials which are differ-

ent for every neuron. The limitation of sCSD is the assumed simplified morphology of the model and

low spatial resolution. Despite that, even with this simplified model, it was possible to demonstrate

for the first time the EC observability of backpropagating action potentials in the basal dendrites of

cortical neurons, the forward propagation preceding the action potential on the dendritic tree and

the signs of the Ranvier-nodes (Somogyvári et al., 2012).

skCSD method
The single-cell kCSD method (skCSD), which we introduce in this work, is an application of the kCSD

framework where we assume that the measured extracellular potential comes mainly from a cell of

known morphology and known spatial relation to the MEA. To estimate the CSD in this case, we

must cover the morphology of the cell with a collection of basis functions. To do this, a one-dimen-

sional parametrization of the cell morphology is needed. This could be done independently for each

branch of the neuron or globally for the whole cell at once. While the first approach might seem eas-

ier, handling of the branching point is non-trivial. Instead, we decided to fit a closed curve on the

morphology, which we call the morphology loop (Figure 1). This curve should cover all the segments

of the cell, be as short as possible, and be aligned with the morphology. For example, in case of a

ball-and-stick neuron, the curve starts at the soma, goes towards the tip of the dendrite, turns back,

goes back to the soma, and closes there. One parameter s is enough to unambiguously determine a

position on this line, although most points on the morphology are mapped to two s parameters. We

also need a method to handle the branching points and guide the parametrization so that all the

branches will be visited in an optimal way. This problem is a special case of the Chinese postman

problem known from graph theory (Kwan, 1962). Given this information, we can distribute the basis

functions ebjðxÞ along the morphology of the cell (Figure 1).

In practice, based on the morphology information we define an ordered sequence of all the seg-

ments such that the consecutive segments are always physically connected and preference is given

to those neighbors which have not been visited yet. The process is continued until all the segments

are covered and the last element in the sequence connects to the first element. Note that in the

sequence the final segments of the branches are present once, the branching point multiple times

and the intermediate ones twice. Then we fit a spline on the coordinates of the segments following

the ordered sequence resulting in a morphology loop construction. The CSD basis functions are dis-

tributed along this loop uniformly. Any point x � ðx; y; zÞ on the morphology can be parameterized

with s 2 0; l½ � on the loop:

x¼ fxðsÞ;

y¼ fyðsÞ;

z¼ fzðsÞ;

(15)

where l is twice the length of all the branches. Consider the following basis functions:

ebiðsÞ ¼ e�ðs�siÞ
2=R2

(16)

where si is the location of the i-th basis function on the morphology loop, R its width.

The contribution to the extracellular potential from a basis source ebiðsÞ is given by

biðx;y; zÞ ¼
1

4ps

Z ebiðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� fxðsÞÞ

2 þðy� fyðsÞÞ
2þðz� fzðsÞÞ

2

q ds: (17)

As in kCSD, for CSD of the form
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CðsÞ ¼
XM

i¼1

aiebiðsÞ

we obtain the extracellular potential as

VðxÞ ¼
XM

i¼1

aibiðxÞ: (18)

As before, for estimation of potential we use kernel interpolation. Note that in this case the basis

functions in the CSD space, ebðsÞ, live on the morphology loop, while the basis functions in the poten-

tial space, biðxÞ, live in the physical 3D space. To determine the current source density distribution

along the fitted curve, we introduce the following kernel functions:

Kðx;x0Þ ¼
XM

j¼1

bjðxÞbjðx
0Þ; (19)

eKðs;x0Þ ¼
XM

j¼1

ebjðsÞbjðx0Þ: (20)

With these definitions the regularized solution for C on the morphology loop is given by

Equation 14:

CðsÞ ¼ eKTðsÞðKþlIÞ�1
V: (21)

To obtain the distribution of currents at a given point in space we need to sum the currents on

the loop at points which are mapped to that physical position x:

CðxÞ ¼
X

s:rðsÞ¼x

CðsÞ: (22)

Construction of ground truth data
To validate the method, we used simulated data which allows us to consider arbitrary cell-electrode

setups and test various current patterns. The LFPy package (Lindén et al., 2013) was used to simu-

late the extracellular potential at arbitrarily placed virtual electrodes. We assumed the .swc morphol-

ogy description format (Cannon et al., 1998) and the sections were further divided to segments.

The coordinates of every segment’s ends were used to find the connections. Once the connection

matrix was calculated, we used the Chinese postman algorithm to obtain the morphology loop. We

calculated the potential using neuron models with various morphologies shown in Figure 4 and dif-

ferent input distributions, assuming one- and two-dimensional multielectrode arrays. We used toy

models to better understand and characterize the method as well as a biologically realistic neuron

model to estimate performance of skCSD in an experimentally realistic scenario.

The simplest setup we used was a ball-and-stick neuron recorded with a laminar probe. Various

artificial CSD patterns and also biologically more realistic CSD distributions served as test distribu-

tions in order to quantify the spatial resolution and reconstruction errors. To generate the ground

truth data we simulated a 500 mm long linear cell model of 52 segments in LFPy. The diameter of

the two segments representing the soma was 20 mm, while the other segments were 4 mm wide. 100

synaptic excitation events were distributed randomly along this morphology in order to imitate a

biologically realistic scenario.

To test the effect of branching on the results, a simple Y-shaped morphology was used

(Figure 4B). The synapses were placed at segments 33 and 62 on different branches close to the

branching point. The first was stimulated at 5, 45, 60 ms, the other at 5, 25, 60 ms after the onset of

the simulation. The idea here was to consider the inputs stimulated together and separately. The

times of activation were randomly selected in such a way as to leave enough time for the membrane

activity to settle down. This can be viewed as extreme cases of correlated and uncorrelated events.

Note that the skCSD reconstruction is not affected directly by the temporal correlation of the synap-

tic inputs. Just like any CSD estimation method, skCSD is applied to the potentials recorded at a

given point in time. Of course, it is affected indirectly, in the sense that slower or faster oscillating

Cserpán et al. eLife 2017;6:e29384. DOI: https://doi.org/10.7554/eLife.29384 28 of 35

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.29384


inputs lead to different spatial patterns due to filtering effects of the dendritic membrane: fast oscil-

lations induce short dipoles, slow oscillations allow the current to spread along the cell leading to

stronger dipoles (Lindén et al., 2010). We address these effects indirectly in Figure 2.

As a realistic example, we used a mouse retinal ganglion cell morphology (Kong et al., 2005)

from NeuroMorpho.Org (Ascoli, 2006). In the simulations 608 segments were used. 100 synaptic

excitation events were distributed randomly along this morphology within the first 400 ms of the

simulation. The cell was also driven with an oscillatory current. In the dendrites, only passive ion

channels were used.

Parameters of the simulations
We simulated three different model morphologies: ball-and-stick (BS), Y-shaped (Y), and a ganglion

cell (Gang). The Y-shaped neuron was considered in two situations, when it was parallel (Y) or

orthogonal (Y-rot) to the MEA plane. The extracellular potential was computed at multiple points

modeling different experimentally viable recording configurations (cell and setup). All combinations

used are summarized in Table 1. The parameters describing the neuron membrane physiology are

given in Table 2. The length of the simulation was 70 s in case of the ball-and-stick and Y-shaped

neurons, and 850 s for the ganglion cell model.

Parameters of synapses
In most simulations we modeled synaptic activity. We used synapses with discontinuous change in

conductance at an event followed by an exponential decay with time constant t (ExpSyn model as

implemented in the NEURON simulator). When simulating the Y-shaped neuron we placed two syn-

apses with the following parameters: reversal potential: 0 mV , synaptic time constant: 2 ms, synaptic

weight: 0.04 mS. The synapses were placed at segments 33 and 62 (see Figures 4,5). When simulat-

ing the other models (ball-and-stick and ganglion cell) we used the same type of synapse; however,

the synaptic weights were a quarter of the above (0.01 mS) since they were more numerous

(Table 2).

Measuring the quality of reconstruction
To validate the skCSD method, we need to consider two situations. When we know the ground truth

— the actual distribution of sources which generated the measured potentials — we can compare

the reconstruction with it. This is available directly only in simulations. In that case, we can measure

the prediction error between the reconstruction and the original. However, the skCSD method by its

nature gives smooth results. This is a consequence of kernel interpolation of the potential which

occurs in the first step of the method. The same phenomenon occurs in regular CSD estimation

(Wójcik, 2015). Thus, we can never recover the original CSD distribution but only a coarse-grained

approximation. This is not a significant problem as the coarse-grained CSD should have equivalent

physiological consequence. However, to compare the reconstructed density with the ground-truth,

which is typically very irregular in consequence of multiple synaptic activations, we always smoothed

the ground truth CSD with a Gaussian kernel. The width of the kernel was 15 mm for ball-and-stick

model, while for the Y-shaped and ganglion cell models we used 30 mm.

Thus, whenever ground truth was known, we computed L1 norm of the difference between the

reconstruction C� and smoothed ground truth C normalized by the L1 norm of C:

Table 1. Main parameters of the simulated cells and setups.

Cell properties Synapse properties Distribution of electrodes

Length (�m ) Number of Seg. Location (ID of Seg.) Number of Syn. Synaptic Weight (�S ) Type Number

BS 516 53 random 100 0.01 linear 8,16, 32, 64, 128

Y 848 86 33, 62 6 0.04 rectangular, random 2 � 4, 4 � 4, 4x8, 4x16

Y-rot 848 86 33, 62 6 0.04 rectangular 8,16, 32, 64

Gang 5876 608 random 100 0.01 hexagonal, rectangular 128, 25, 49, 81, 441

DOI: https://doi.org/10.7554/eLife.29384.015
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�L1 ¼

P
segments;time

jC�C
�j

P
segments;time

jCj
: (23)

When analyzing experimental data we only have access to the noisy measurements and cannot

apply the above strategy directly. Thus we consider two strategies. One is to use cross-validation

error (CV). In leave-one-out cross-validation (Potworowski et al., 2012) we estimate CSD from all

the measurements but one and compare estimated prediction with actual measurement on the

removed electrode. Repeating this procedure for all the electrodes gives us a measure of prediction

quality for a given set of parameters for this specific dataset. Scanning over some parameter range

we identify optimal parameters as those giving minimum error. They are further used to analyze the

complete data. The advantage of using cross-validation error is that it does not require the knowl-

edge of the ground truth current source density distribution and can still provide an estimation

about the performance of the skCSD method. As this algorithm is quadratic in the number of elec-

trodes, for large arrays one might prefer to use the leave-p-out cross-validation instead. When we

test how the quality of the reconstruction changes with the number of electrodes we use CV error

normalized by the number of electrodes which can then be compared between different setups.

The other strategy we use and recommend in the experimental context, when we know the cell

morphology and its geometric relation to the setup, as well as the measurements, is model-based

analysis. The idea is to simulate different current source distributions, either placing specific distribu-

tion by hand or by modeling activity of the cell assuming passive membrane and random or specific

synaptic activations, both of which are relatively inexpensive both in computational time and coding

complexity. This reduces the problem to the modeling case. We can use thus generated data (CSD

and potentials) scanning for optimal reconstruction parameters to be used in analysis of actual

experimental data from the setup.

To handle the effects of noise one should study its properties on electrodes, for example, assum-

ing white measurement noise identify its variance, then tune the regularization parameter l on simu-

lated sets with comparable simulated noise added.

Parameter selection
To apply the skCSD method, we need to decide upon the number of basis functions, set their width

(R), and choose the regularization parameter l. In this work, the number of basis function was set to

512 for all cases, which is at least twice the number of electrodes used. This is usually not a limita-

tion, the more the better. For the basis width (Equation. (16)) we took the following values: 8, 16,

32, 64, 128 mm. Selection of the regularization parameter is not trivial (Potworowski et al., 2012;

Hansen, 2010). Here, we tested the effect of the regularization parameter taking values of 0.00001,

0.0001, 0.001, 0.01, 0.1 The optimal parameters were identified by the lowest value of reconstruc-

tion error.

Visual representation of CSD on the morphology
To visualize the distribution of current sources and other quantities along a neuron morphology we

use two representations of the cell:

Table 2. Biophysical parameters characterizing the simulated cell models.

Quantity Value Unit

Initial potential �65 mV

Axial resistance 123 
cm

Membrane resistivity 30000 
cm2

Membrane capacitance 1 �F=cm2

Passive mechanism reversal potential �65 mV

DOI: https://doi.org/10.7554/eLife.29384.016
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1. Interval representation: we stack all the compartments consecutively along the y-axis so that
the part of the dendrite stemming from the soma is shown first, followed by one branch, fol-
lowed by the other. The order of the branches in the stack is taken from the morphology loop
to make these representations consistent. The x-axis either shows different time instants of the
simulations or various distribution patterns.

2. Branching morphology representation: in this case a two-dimensional projection of the cell is
shown which is colored according to the amplitudes of the membrane current source densities
at a time instant. To visually enhance the current events, gray circles proportional to the ampli-
tude of CSD at a point are placed centered at the point to facilitate comprehension.

Experimental methods
In vitro experiment
One male Wistar rat (300 g) was used for the slice preparation procedure. The in vitro experiment

was performed according to the EC Council Directive of November 24, 1986 (86/89/EEC) and all

procedures were reviewed and approved by the local ethical committee and the Hungarian Central

Government Office (license number: PEI/001/695-9/2015). The animal was anesthetized with isoflur-

ane (0.2 ml/100 g). Horizontal hippocampal slices of 500 mm thickness were cut with a vibratome

(VT1200s; Leica, Nussloch, Germany). We followed our experimental procedures developed for

human in vitro recordings (Kerekes et al., 2014), adapted to rodent tissue. Briefly, slices were trans-

ferred to a dual superfusion chamber perfused with artificial cerebrospinal fluid. Intracellular patch-

clamp recordings, cell filling, visualization and three-dimensional reconstruction of the filled cell was

performed as described in (Kerekes et al., 2014). For the extracellular local field potential record-

ings, we used a 16-channel linear multielectrode (A16 � 1–2 mm-50-177-A16, Neuronexus Technolo-

gies, Ann Arbor, MI), with an INTAN RHD2000 FPGA-based acquisition system (InTan Technologies,

Los Angeles, CA). The system was connected to a laptop via USB 2.0. Wideband signals (0.1�7500

Hz) were recorded with a sampling frequency of 20 kHz and with 16-bit resolution. The recorded

neuron was held by a constant �40 nA current injection.

Data preprocessing
One hundred and fifty-four spikes were detected on the 180 s long intra-cellular recording by 0 mV

upward threshold crossing. A ± 5 ms wide time windows were cut around the moments of each

spikes on each channels of the extra-cellular (EC) potential recordings and averaged, to access the

fine details of the EC spatio-temporal potential pattern which accompanied the firing of the

recorded neuron on all channels. Two channels were broken (2, 5); however, as the skCSD method

allows retrieving CSD maps from arbitrarily distributed contacts, this has not prevented the analysis;

the broken channels were excluded from further consideration. The averaged spatio-temporal

potential maps were high-pass filtered by subtracting a moving window average with 100 ms width.

This filtering, together with the spike-triggered averaging procedure, ensured that the resulted EC

potential map contains only the contribution from the actually recorded cell. The price we paid was

filtering out EC signals of the spontaneous repetitive sharp-wave like activity of the slice which was

correlated by the firing of the recorded neuron and thus the presumptive synaptic inputs of the

recorded neuron as well. An additional temporal smoothing by a moving average with 0.15 ms win-

dow was used to reduce the effect of noise.
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